blob: 34d0a2447fab4d104e3e9f372b0f3e12d682cee0 [file] [log] [blame]
/*
* Copyright (c) 2012-2017 The Linux Foundation. All rights reserved.
*
* Previously licensed under the ISC license by Qualcomm Atheros, Inc.
*
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This file was originally distributed by Qualcomm Atheros, Inc.
* under proprietary terms before Copyright ownership was assigned
* to the Linux Foundation.
*/
/**
* DOC: wlan_hdd_tx_rx.c
*
* Linux HDD Tx/RX APIs
*/
/* denote that this file does not allow legacy hddLog */
#define HDD_DISALLOW_LEGACY_HDDLOG 1
#include <wlan_hdd_tx_rx.h>
#include <wlan_hdd_softap_tx_rx.h>
#include <wlan_hdd_napi.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <cds_sched.h>
#include <cds_utils.h>
#include <wlan_hdd_p2p.h>
#include <linux/wireless.h>
#include <net/cfg80211.h>
#include <net/ieee80211_radiotap.h>
#include "sap_api.h"
#include "wlan_hdd_wmm.h"
#include "wlan_hdd_tdls.h"
#include <wlan_hdd_ipa.h>
#include "wlan_hdd_ocb.h"
#include "wlan_hdd_lro.h"
#include <cdp_txrx_cmn.h>
#include <cdp_txrx_peer_ops.h>
#include <cdp_txrx_flow_ctrl_v2.h>
#include "wlan_hdd_nan_datapath.h"
#include "pld_common.h"
#include <cdp_txrx_handle.h>
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
/*
* Mapping Linux AC interpretation to SME AC.
* Host has 5 tx queues, 4 flow-controlled queues for regular traffic and
* one non-flow-controlled queue for high priority control traffic(EOPOL, DHCP).
* The fifth queue is mapped to AC_VO to allow for proper prioritization.
*/
const uint8_t hdd_qdisc_ac_to_tl_ac[] = {
SME_AC_VO,
SME_AC_VI,
SME_AC_BE,
SME_AC_BK,
SME_AC_VO,
};
#else
const uint8_t hdd_qdisc_ac_to_tl_ac[] = {
SME_AC_VO,
SME_AC_VI,
SME_AC_BE,
SME_AC_BK,
};
#endif
#ifdef QCA_LL_LEGACY_TX_FLOW_CONTROL
/**
* hdd_tx_resume_timer_expired_handler() - TX Q resume timer handler
* @adapter_context: pointer to vdev adapter
*
* If Blocked OS Q is not resumed during timeout period, to prevent
* permanent stall, resume OS Q forcefully.
*
* Return: None
*/
void hdd_tx_resume_timer_expired_handler(void *adapter_context)
{
hdd_adapter_t *pAdapter = (hdd_adapter_t *) adapter_context;
if (!pAdapter) {
/* INVALID ARG */
return;
}
hdd_notice("Enabling queues");
wlan_hdd_netif_queue_control(pAdapter, WLAN_WAKE_ALL_NETIF_QUEUE,
WLAN_CONTROL_PATH);
}
#if defined(CONFIG_PER_VDEV_TX_DESC_POOL)
/**
* hdd_tx_resume_false() - Resume OS TX Q false leads to queue disabling
* @pAdapter: pointer to hdd adapter
* @tx_resume: TX Q resume trigger
*
*
* Return: None
*/
static void
hdd_tx_resume_false(hdd_adapter_t *pAdapter, bool tx_resume)
{
if (true == tx_resume)
return;
/* Pause TX */
hdd_notice("Disabling queues");
wlan_hdd_netif_queue_control(pAdapter, WLAN_STOP_ALL_NETIF_QUEUE,
WLAN_DATA_FLOW_CONTROL);
if (QDF_TIMER_STATE_STOPPED ==
qdf_mc_timer_get_current_state(&pAdapter->
tx_flow_control_timer)) {
QDF_STATUS status;
status = qdf_mc_timer_start(&pAdapter->tx_flow_control_timer,
WLAN_HDD_TX_FLOW_CONTROL_OS_Q_BLOCK_TIME);
if (!QDF_IS_STATUS_SUCCESS(status))
hdd_err("Failed to start tx_flow_control_timer");
else
pAdapter->hdd_stats.hddTxRxStats.txflow_timer_cnt++;
}
pAdapter->hdd_stats.hddTxRxStats.txflow_pause_cnt++;
pAdapter->hdd_stats.hddTxRxStats.is_txflow_paused = true;
}
#else
static inline void
hdd_tx_resume_false(hdd_adapter_t *pAdapter, bool tx_resume)
{
}
#endif
static inline struct sk_buff *hdd_skb_orphan(hdd_adapter_t *pAdapter,
struct sk_buff *skb)
{
if (pAdapter->tx_flow_low_watermark > 0)
skb_orphan(skb);
else
skb = skb_unshare(skb, GFP_ATOMIC);
return skb;
}
/**
* hdd_tx_resume_cb() - Resume OS TX Q.
* @adapter_context: pointer to vdev apdapter
* @tx_resume: TX Q resume trigger
*
* Q was stopped due to WLAN TX path low resource condition
*
* Return: None
*/
void hdd_tx_resume_cb(void *adapter_context, bool tx_resume)
{
hdd_adapter_t *pAdapter = (hdd_adapter_t *) adapter_context;
hdd_station_ctx_t *hdd_sta_ctx = NULL;
if (!pAdapter) {
/* INVALID ARG */
return;
}
hdd_sta_ctx = WLAN_HDD_GET_STATION_CTX_PTR(pAdapter);
/* Resume TX */
if (true == tx_resume) {
if (QDF_TIMER_STATE_STOPPED !=
qdf_mc_timer_get_current_state(&pAdapter->
tx_flow_control_timer)) {
qdf_mc_timer_stop(&pAdapter->tx_flow_control_timer);
}
hdd_notice("Enabling queues");
wlan_hdd_netif_queue_control(pAdapter,
WLAN_WAKE_ALL_NETIF_QUEUE,
WLAN_DATA_FLOW_CONTROL);
}
hdd_tx_resume_false(pAdapter, tx_resume);
}
/**
* hdd_register_tx_flow_control() - Register TX Flow control
* @adapter: adapter handle
* @timer_callback: timer callback
* @flow_control_fp: txrx flow control
*
* Return: none
*/
void hdd_register_tx_flow_control(hdd_adapter_t *adapter,
qdf_mc_timer_callback_t timer_callback,
ol_txrx_tx_flow_control_fp flow_control_fp)
{
if (adapter->tx_flow_timer_initialized == false) {
qdf_mc_timer_init(&adapter->tx_flow_control_timer,
QDF_TIMER_TYPE_SW,
timer_callback,
adapter);
adapter->tx_flow_timer_initialized = true;
}
cdp_fc_register(cds_get_context(QDF_MODULE_ID_SOC),
adapter->sessionId, flow_control_fp, adapter);
}
/**
* hdd_deregister_tx_flow_control() - Deregister TX Flow control
* @adapter: adapter handle
*
* Return: none
*/
void hdd_deregister_tx_flow_control(hdd_adapter_t *adapter)
{
cdp_fc_deregister(cds_get_context(QDF_MODULE_ID_SOC),
adapter->sessionId);
if (adapter->tx_flow_timer_initialized == true) {
qdf_mc_timer_stop(&adapter->tx_flow_control_timer);
qdf_mc_timer_destroy(&adapter->tx_flow_control_timer);
adapter->tx_flow_timer_initialized = false;
}
}
/**
* hdd_get_tx_resource() - check tx resources and take action
* @adapter: adapter handle
* @STAId: station id
* @timer_value: timer value
*
* Return: none
*/
void hdd_get_tx_resource(hdd_adapter_t *adapter,
uint8_t STAId, uint16_t timer_value)
{
if (false ==
cdp_fc_get_tx_resource(cds_get_context(QDF_MODULE_ID_SOC), STAId,
adapter->tx_flow_low_watermark,
adapter->tx_flow_high_watermark_offset)) {
hdd_info("Disabling queues lwm %d hwm offset %d",
adapter->tx_flow_low_watermark,
adapter->tx_flow_high_watermark_offset);
wlan_hdd_netif_queue_control(adapter, WLAN_STOP_ALL_NETIF_QUEUE,
WLAN_DATA_FLOW_CONTROL);
if ((adapter->tx_flow_timer_initialized == true) &&
(QDF_TIMER_STATE_STOPPED ==
qdf_mc_timer_get_current_state(&adapter->
tx_flow_control_timer))) {
qdf_mc_timer_start(&adapter->tx_flow_control_timer,
timer_value);
adapter->hdd_stats.hddTxRxStats.txflow_timer_cnt++;
adapter->hdd_stats.hddTxRxStats.txflow_pause_cnt++;
adapter->hdd_stats.hddTxRxStats.is_txflow_paused = true;
}
}
}
#else
/**
* hdd_skb_orphan() - skb_unshare a cloned packed else skb_orphan
* @pAdapter: pointer to HDD adapter
* @skb: pointer to skb data packet
*
* Return: pointer to skb structure
*/
static inline struct sk_buff *hdd_skb_orphan(hdd_adapter_t *pAdapter,
struct sk_buff *skb) {
struct sk_buff *nskb;
nskb = skb_unshare(skb, GFP_ATOMIC);
if (nskb == skb) {
/*
* For UDP packets we want to orphan the packet to allow the app
* to send more packets. The flow would ultimately be controlled
* by the limited number of tx descriptors for the vdev.
*/
++pAdapter->hdd_stats.hddTxRxStats.txXmitOrphaned;
skb_orphan(skb);
}
return nskb;
}
#endif /* QCA_LL_LEGACY_TX_FLOW_CONTROL */
/**
* qdf_event_eapol_log() - send event to wlan diag
* @skb: skb ptr
* @dir: direction
* @eapol_key_info: eapol key info
*
* Return: None
*/
void hdd_event_eapol_log(struct sk_buff *skb, enum qdf_proto_dir dir)
{
int16_t eapol_key_info;
WLAN_HOST_DIAG_EVENT_DEF(wlan_diag_event, struct host_event_wlan_eapol);
if ((dir == QDF_TX &&
(QDF_NBUF_CB_PACKET_TYPE_EAPOL !=
QDF_NBUF_CB_GET_PACKET_TYPE(skb))))
return;
else if (!qdf_nbuf_is_ipv4_eapol_pkt(skb))
return;
eapol_key_info = (uint16_t)(*(uint16_t *)
(skb->data + EAPOL_KEY_INFO_OFFSET));
wlan_diag_event.event_sub_type =
(dir == QDF_TX ?
WIFI_EVENT_DRIVER_EAPOL_FRAME_TRANSMIT_REQUESTED :
WIFI_EVENT_DRIVER_EAPOL_FRAME_RECEIVED);
wlan_diag_event.eapol_packet_type = (uint8_t)(*(uint8_t *)
(skb->data + EAPOL_PACKET_TYPE_OFFSET));
wlan_diag_event.eapol_key_info = eapol_key_info;
wlan_diag_event.eapol_rate = 0;
qdf_mem_copy(wlan_diag_event.dest_addr,
(skb->data + QDF_NBUF_DEST_MAC_OFFSET),
sizeof(wlan_diag_event.dest_addr));
qdf_mem_copy(wlan_diag_event.src_addr,
(skb->data + QDF_NBUF_SRC_MAC_OFFSET),
sizeof(wlan_diag_event.src_addr));
WLAN_HOST_DIAG_EVENT_REPORT(&wlan_diag_event, EVENT_WLAN_EAPOL);
}
/**
* wlan_hdd_classify_pkt() - classify packet
* @skb - sk buff
*
* Return: none
*/
void wlan_hdd_classify_pkt(struct sk_buff *skb)
{
struct ethhdr *eh = (struct ethhdr *)skb->data;
qdf_mem_set(skb->cb, sizeof(skb->cb), 0);
/* check destination mac address is broadcast/multicast */
if (is_broadcast_ether_addr((uint8_t *)eh))
QDF_NBUF_CB_GET_IS_BCAST(skb) = true;
else if (is_multicast_ether_addr((uint8_t *)eh))
QDF_NBUF_CB_GET_IS_MCAST(skb) = true;
if (qdf_nbuf_is_ipv4_arp_pkt(skb))
QDF_NBUF_CB_GET_PACKET_TYPE(skb) =
QDF_NBUF_CB_PACKET_TYPE_ARP;
else if (qdf_nbuf_is_ipv4_dhcp_pkt(skb))
QDF_NBUF_CB_GET_PACKET_TYPE(skb) =
QDF_NBUF_CB_PACKET_TYPE_DHCP;
else if (qdf_nbuf_is_ipv4_eapol_pkt(skb))
QDF_NBUF_CB_GET_PACKET_TYPE(skb) =
QDF_NBUF_CB_PACKET_TYPE_EAPOL;
else if (qdf_nbuf_is_ipv4_wapi_pkt(skb))
QDF_NBUF_CB_GET_PACKET_TYPE(skb) =
QDF_NBUF_CB_PACKET_TYPE_WAPI;
}
/**
* hdd_get_transmit_sta_id() - function to retrieve station id to be used for
* sending traffic towards a particular destination address. The destination
* address can be unicast, multicast or broadcast
*
* @adapter: Handle to adapter context
* @dst_addr: Destination address
* @station_id: station id
*
* Returns: None
*/
static void hdd_get_transmit_sta_id(hdd_adapter_t *adapter,
struct sk_buff *skb, uint8_t *station_id)
{
bool mcbc_addr = false;
hdd_station_ctx_t *sta_ctx = WLAN_HDD_GET_STATION_CTX_PTR(adapter);
struct qdf_mac_addr *dst_addr = NULL;
dst_addr = (struct qdf_mac_addr *)skb->data;
hdd_get_peer_sta_id(sta_ctx, dst_addr, station_id);
if (*station_id == HDD_WLAN_INVALID_STA_ID) {
if (QDF_NBUF_CB_GET_IS_BCAST(skb) ||
QDF_NBUF_CB_GET_IS_MCAST(skb)) {
hdd_info("Received MC/BC packet for transmission");
mcbc_addr = true;
}
}
if (adapter->device_mode == QDF_IBSS_MODE ||
adapter->device_mode == QDF_NDI_MODE) {
/*
* This check is necessary to make sure station id is not
* overwritten for UC traffic in IBSS or NDI mode
*/
if (mcbc_addr)
*station_id = sta_ctx->broadcast_staid;
} else {
/* For the rest, traffic is directed to AP/P2P GO */
if (eConnectionState_Associated == sta_ctx->conn_info.connState)
*station_id = sta_ctx->conn_info.staId[0];
}
}
/**
* hdd_is_tx_allowed() - check if Tx is allowed based on current peer state
* @skb: pointer to OS packet (sk_buff)
* @peer_id: Peer STA ID in peer table
*
* This function gets the peer state from DP and check if it is either
* in OL_TXRX_PEER_STATE_CONN or OL_TXRX_PEER_STATE_AUTH. Only EAP packets
* are allowed when peer_state is OL_TXRX_PEER_STATE_CONN. All packets
* allowed when peer_state is OL_TXRX_PEER_STATE_AUTH.
*
* Return: true if Tx is allowed and false otherwise.
*/
static inline bool hdd_is_tx_allowed(struct sk_buff *skb, uint8_t peer_id)
{
enum ol_txrx_peer_state peer_state;
void *soc = cds_get_context(QDF_MODULE_ID_SOC);
void *pdev = cds_get_context(QDF_MODULE_ID_TXRX);
void *peer;
QDF_BUG(soc);
QDF_BUG(pdev);
peer = cdp_peer_find_by_local_id(soc, pdev, peer_id);
if (peer == NULL) {
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_WARN,
FL("Unable to find peer entry for staid: %d"),
peer_id);
return false;
}
peer_state = cdp_peer_state_get(soc, peer);
if (likely(OL_TXRX_PEER_STATE_AUTH == peer_state))
return true;
if (OL_TXRX_PEER_STATE_CONN == peer_state &&
ntohs(skb->protocol) == HDD_ETHERTYPE_802_1_X)
return true;
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_WARN,
FL("Invalid peer state for Tx: %d"), peer_state);
return false;
}
/**
* __hdd_hard_start_xmit() - Transmit a frame
* @skb: pointer to OS packet (sk_buff)
* @dev: pointer to network device
*
* Function registered with the Linux OS for transmitting
* packets. This version of the function directly passes
* the packet to Transport Layer.
* In case of any packet drop or error, log the error with
* INFO HIGH/LOW/MEDIUM to avoid excessive logging in kmsg.
*
* Return: Always returns NETDEV_TX_OK
*/
static int __hdd_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
QDF_STATUS status;
sme_ac_enum_type ac;
sme_QosWmmUpType up;
hdd_adapter_t *pAdapter = WLAN_HDD_GET_PRIV_PTR(dev);
bool granted;
uint8_t STAId;
hdd_station_ctx_t *pHddStaCtx = &pAdapter->sessionCtx.station;
#ifdef QCA_PKT_PROTO_TRACE
uint8_t proto_type = 0;
hdd_context_t *hdd_ctx = WLAN_HDD_GET_CTX(pAdapter);
#endif /* QCA_PKT_PROTO_TRACE */
#ifdef QCA_WIFI_FTM
if (hdd_get_conparam() == QDF_GLOBAL_FTM_MODE) {
kfree_skb(skb);
return NETDEV_TX_OK;
}
#endif
++pAdapter->hdd_stats.hddTxRxStats.txXmitCalled;
if (cds_is_driver_recovering()) {
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_INFO_HIGH,
"Recovery in progress, dropping the packet");
goto drop_pkt;
}
wlan_hdd_classify_pkt(skb);
STAId = HDD_WLAN_INVALID_STA_ID;
hdd_get_transmit_sta_id(pAdapter, skb, &STAId);
if (STAId >= WLAN_MAX_STA_COUNT) {
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_INFO_HIGH,
"Invalid station id, transmit operation suspended");
goto drop_pkt;
}
hdd_get_tx_resource(pAdapter, STAId,
WLAN_HDD_TX_FLOW_CONTROL_OS_Q_BLOCK_TIME);
/* Get TL AC corresponding to Qdisc queue index/AC. */
ac = hdd_qdisc_ac_to_tl_ac[skb->queue_mapping];
if (!qdf_nbuf_ipa_owned_get(skb)) {
#if (LINUX_VERSION_CODE > KERNEL_VERSION(3, 19, 0))
/*
* The TCP TX throttling logic is changed a little after
* 3.19-rc1 kernel, the TCP sending limit will be smaller,
* which will throttle the TCP packets to the host driver.
* The TCP UP LINK throughput will drop heavily. In order to
* fix this issue, need to orphan the socket buffer asap, which
* will call skb's destructor to notify the TCP stack that the
* SKB buffer is unowned. And then the TCP stack will pump more
* packets to host driver.
*
* The TX packets might be dropped for UDP case in the iperf
* testing. So need to be protected by follow control.
*/
skb = hdd_skb_orphan(pAdapter, skb);
#else
/* Check if the buffer has enough header room */
skb = skb_unshare(skb, GFP_ATOMIC);
#endif
if (!skb)
goto drop_pkt_accounting;
}
/*
* Add SKB to internal tracking table before further processing
* in WLAN driver.
*/
qdf_net_buf_debug_acquire_skb(skb, __FILE__, __LINE__);
/*
* user priority from IP header, which is already extracted and set from
* select_queue call back function
*/
up = skb->priority;
++pAdapter->hdd_stats.hddTxRxStats.txXmitClassifiedAC[ac];
#ifdef HDD_WMM_DEBUG
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_DEBUG,
"%s: Classified as ac %d up %d", __func__, ac, up);
#endif /* HDD_WMM_DEBUG */
if (HDD_PSB_CHANGED == pAdapter->psbChanged) {
/*
* Function which will determine acquire admittance for a
* WMM AC is required or not based on psb configuration done
* in the framework
*/
hdd_wmm_acquire_access_required(pAdapter, ac);
}
/*
* Make sure we already have access to this access category
* or it is EAPOL or WAPI frame during initial authentication which
* can have artifically boosted higher qos priority.
*/
if (((pAdapter->psbChanged & (1 << ac)) &&
likely(pAdapter->hddWmmStatus.wmmAcStatus[ac].
wmmAcAccessAllowed)) ||
((pHddStaCtx->conn_info.uIsAuthenticated == false) &&
(QDF_NBUF_CB_PACKET_TYPE_EAPOL ==
QDF_NBUF_CB_GET_PACKET_TYPE(skb) ||
QDF_NBUF_CB_PACKET_TYPE_WAPI ==
QDF_NBUF_CB_GET_PACKET_TYPE(skb)))) {
granted = true;
} else {
status = hdd_wmm_acquire_access(pAdapter, ac, &granted);
pAdapter->psbChanged |= (1 << ac);
}
if (!granted) {
bool isDefaultAc = false;
/*
* ADDTS request for this AC is sent, for now
* send this packet through next avaiable lower
* Access category until ADDTS negotiation completes.
*/
while (!likely
(pAdapter->hddWmmStatus.wmmAcStatus[ac].
wmmAcAccessAllowed)) {
switch (ac) {
case SME_AC_VO:
ac = SME_AC_VI;
up = SME_QOS_WMM_UP_VI;
break;
case SME_AC_VI:
ac = SME_AC_BE;
up = SME_QOS_WMM_UP_BE;
break;
case SME_AC_BE:
ac = SME_AC_BK;
up = SME_QOS_WMM_UP_BK;
break;
default:
ac = SME_AC_BK;
up = SME_QOS_WMM_UP_BK;
isDefaultAc = true;
break;
}
if (isDefaultAc)
break;
}
skb->priority = up;
skb->queue_mapping = hdd_linux_up_to_ac_map[up];
}
#ifdef QCA_PKT_PROTO_TRACE
if ((hdd_ctx->config->gEnableDebugLog & CDS_PKT_TRAC_TYPE_EAPOL) ||
(hdd_ctx->config->gEnableDebugLog & CDS_PKT_TRAC_TYPE_DHCP)) {
proto_type = cds_pkt_get_proto_type(skb,
hdd_ctx->config->gEnableDebugLog,
0);
if (CDS_PKT_TRAC_TYPE_EAPOL & proto_type)
cds_pkt_trace_buf_update("ST:T:EPL");
else if (CDS_PKT_TRAC_TYPE_DHCP & proto_type)
cds_pkt_trace_buf_update("ST:T:DHC");
}
#endif /* QCA_PKT_PROTO_TRACE */
pAdapter->stats.tx_bytes += skb->len;
wlan_hdd_tdls_update_tx_pkt_cnt(pAdapter, skb);
if (qdf_nbuf_is_tso(skb))
pAdapter->stats.tx_packets += qdf_nbuf_get_tso_num_seg(skb);
else
++pAdapter->stats.tx_packets;
hdd_event_eapol_log(skb, QDF_TX);
qdf_dp_trace_log_pkt(pAdapter->sessionId, skb, QDF_TX);
QDF_NBUF_CB_TX_PACKET_TRACK(skb) = QDF_NBUF_TX_PKT_DATA_TRACK;
QDF_NBUF_UPDATE_TX_PKT_COUNT(skb, QDF_NBUF_TX_PKT_HDD);
qdf_dp_trace_set_track(skb, QDF_TX);
DPTRACE(qdf_dp_trace(skb, QDF_DP_TRACE_HDD_TX_PACKET_PTR_RECORD,
qdf_nbuf_data_addr(skb), sizeof(qdf_nbuf_data(skb)),
QDF_TX));
DPTRACE(qdf_dp_trace(skb, QDF_DP_TRACE_HDD_TX_PACKET_RECORD,
(uint8_t *)skb->data, qdf_nbuf_len(skb), QDF_TX));
if (qdf_nbuf_len(skb) > QDF_DP_TRACE_RECORD_SIZE) {
DPTRACE(qdf_dp_trace(skb, QDF_DP_TRACE_HDD_TX_PACKET_RECORD,
(uint8_t *)&skb->data[QDF_DP_TRACE_RECORD_SIZE],
(qdf_nbuf_len(skb)-QDF_DP_TRACE_RECORD_SIZE), QDF_TX));
}
if (!hdd_is_tx_allowed(skb, STAId)) {
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_INFO_HIGH,
FL("Tx not allowed for sta_id: %d"), STAId);
++pAdapter->hdd_stats.hddTxRxStats.txXmitDroppedAC[ac];
goto drop_pkt_and_release_skb;
}
/*
* If a transmit function is not registered, drop packet
*/
if (!pAdapter->tx_fn) {
QDF_TRACE(QDF_MODULE_ID_HDD_SAP_DATA, QDF_TRACE_LEVEL_INFO_HIGH,
"%s: TX function not registered by the data path",
__func__);
++pAdapter->hdd_stats.hddTxRxStats.txXmitDroppedAC[ac];
goto drop_pkt_and_release_skb;
}
if (pAdapter->tx_fn(pAdapter->txrx_vdev,
(qdf_nbuf_t) skb) != NULL) {
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_INFO_HIGH,
"%s: Failed to send packet to txrx for staid: %d",
__func__, STAId);
++pAdapter->hdd_stats.hddTxRxStats.txXmitDroppedAC[ac];
goto drop_pkt_and_release_skb;
}
netif_trans_update(dev);
return NETDEV_TX_OK;
drop_pkt_and_release_skb:
qdf_net_buf_debug_release_skb(skb);
drop_pkt:
if (skb) {
DPTRACE(qdf_dp_trace(skb, QDF_DP_TRACE_DROP_PACKET_RECORD,
(uint8_t *)skb->data, qdf_nbuf_len(skb), QDF_TX));
if (qdf_nbuf_len(skb) > QDF_DP_TRACE_RECORD_SIZE)
DPTRACE(qdf_dp_trace(skb,
QDF_DP_TRACE_DROP_PACKET_RECORD,
(uint8_t *)&skb->data[QDF_DP_TRACE_RECORD_SIZE],
(qdf_nbuf_len(skb)-QDF_DP_TRACE_RECORD_SIZE),
QDF_TX));
kfree_skb(skb);
}
drop_pkt_accounting:
++pAdapter->stats.tx_dropped;
++pAdapter->hdd_stats.hddTxRxStats.txXmitDropped;
return NETDEV_TX_OK;
}
/**
* hdd_hard_start_xmit() - Wrapper function to protect
* __hdd_hard_start_xmit from SSR
* @skb: pointer to OS packet
* @dev: pointer to net_device structure
*
* Function called by OS if any packet needs to transmit.
*
* Return: Always returns NETDEV_TX_OK
*/
int hdd_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
int ret;
cds_ssr_protect(__func__);
ret = __hdd_hard_start_xmit(skb, dev);
cds_ssr_unprotect(__func__);
return ret;
}
/**
* hdd_get_peer_sta_id() - Get the StationID using the Peer Mac address
* @pHddStaCtx: pointer to HDD Station Context
* @pMacAddress: pointer to Peer Mac address
* @staID: pointer to returned Station Index
*
* Return: QDF_STATUS_SUCCESS/QDF_STATUS_E_FAILURE
*/
QDF_STATUS hdd_get_peer_sta_id(hdd_station_ctx_t *pHddStaCtx,
struct qdf_mac_addr *pMacAddress, uint8_t *staId)
{
uint8_t idx;
for (idx = 0; idx < MAX_PEERS; idx++) {
if (!qdf_mem_cmp(&pHddStaCtx->conn_info.peerMacAddress[idx],
pMacAddress, QDF_MAC_ADDR_SIZE)) {
*staId = pHddStaCtx->conn_info.staId[idx];
return QDF_STATUS_SUCCESS;
}
}
return QDF_STATUS_E_FAILURE;
}
#ifdef FEATURE_WLAN_DIAG_SUPPORT
/**
* hdd_wlan_datastall_sta_event()- send sta datastall information
*
* This Function send send sta datastall status diag event
*
* Return: void.
*/
static void hdd_wlan_datastall_sta_event(void)
{
WLAN_HOST_DIAG_EVENT_DEF(sta_data_stall,
struct host_event_wlan_datastall);
qdf_mem_zero(&sta_data_stall, sizeof(sta_data_stall));
sta_data_stall.reason = STA_TX_TIMEOUT;
WLAN_HOST_DIAG_EVENT_REPORT(&sta_data_stall, EVENT_WLAN_STA_DATASTALL);
}
#else
static inline void hdd_wlan_datastall_sta_event(void)
{
}
#endif
/**
* __hdd_tx_timeout() - TX timeout handler
* @dev: pointer to network device
*
* This function is registered as a netdev ndo_tx_timeout method, and
* is invoked by the kernel if the driver takes too long to transmit a
* frame.
*
* Return: None
*/
static void __hdd_tx_timeout(struct net_device *dev)
{
hdd_adapter_t *adapter = WLAN_HDD_GET_PRIV_PTR(dev);
hdd_context_t *hdd_ctx;
struct netdev_queue *txq;
int i = 0;
TX_TIMEOUT_TRACE(dev, QDF_MODULE_ID_HDD_DATA);
DPTRACE(qdf_dp_trace(NULL, QDF_DP_TRACE_HDD_TX_TIMEOUT,
NULL, 0, QDF_TX));
/* Getting here implies we disabled the TX queues for too
* long. Queues are disabled either because of disassociation
* or low resource scenarios. In case of disassociation it is
* ok to ignore this. But if associated, we have do possible
* recovery here
*/
for (i = 0; i < NUM_TX_QUEUES; i++) {
txq = netdev_get_tx_queue(dev, i);
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_DEBUG,
"Queue: %d status: %d txq->trans_start: %lu",
i, netif_tx_queue_stopped(txq), txq->trans_start);
}
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_INFO,
"carrier state: %d", netif_carrier_ok(dev));
hdd_ctx = WLAN_HDD_GET_CTX(adapter);
wlan_hdd_display_netif_queue_history(hdd_ctx);
cdp_dump_flow_pool_info(cds_get_context(QDF_MODULE_ID_SOC));
hdd_wlan_datastall_sta_event();
}
/**
* hdd_tx_timeout() - Wrapper function to protect __hdd_tx_timeout from SSR
* @dev: pointer to net_device structure
*
* Function called by OS if there is any timeout during transmission.
* Since HDD simply enqueues packet and returns control to OS right away,
* this would never be invoked
*
* Return: none
*/
void hdd_tx_timeout(struct net_device *dev)
{
cds_ssr_protect(__func__);
__hdd_tx_timeout(dev);
cds_ssr_unprotect(__func__);
}
/**
* @hdd_init_tx_rx() - Initialize Tx/RX module
* @pAdapter: pointer to adapter context
*
* Return: QDF_STATUS_E_FAILURE if any errors encountered,
* QDF_STATUS_SUCCESS otherwise
*/
QDF_STATUS hdd_init_tx_rx(hdd_adapter_t *pAdapter)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (NULL == pAdapter) {
hdd_err("pAdapter is NULL");
QDF_ASSERT(0);
return QDF_STATUS_E_FAILURE;
}
return status;
}
/**
* @hdd_deinit_tx_rx() - Deinitialize Tx/RX module
* @pAdapter: pointer to adapter context
*
* Return: QDF_STATUS_E_FAILURE if any errors encountered,
* QDF_STATUS_SUCCESS otherwise
*/
QDF_STATUS hdd_deinit_tx_rx(hdd_adapter_t *pAdapter)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (NULL == pAdapter) {
hdd_err("pAdapter is NULL");
QDF_ASSERT(0);
return QDF_STATUS_E_FAILURE;
}
return status;
}
/**
* hdd_mon_rx_packet_cbk() - Receive callback registered with OL layer.
* @context: [in] pointer to qdf context
* @rxBuf: [in] pointer to rx qdf_nbuf
*
* TL will call this to notify the HDD when one or more packets were
* received for a registered STA.
*
* Return: QDF_STATUS_E_FAILURE if any errors encountered, QDF_STATUS_SUCCESS
* otherwise
*/
static QDF_STATUS hdd_mon_rx_packet_cbk(void *context, qdf_nbuf_t rxbuf)
{
hdd_adapter_t *adapter;
int rxstat;
struct sk_buff *skb;
struct sk_buff *skb_next;
unsigned int cpu_index;
/* Sanity check on inputs */
if ((NULL == context) || (NULL == rxbuf)) {
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_ERROR,
"%s: Null params being passed", __func__);
return QDF_STATUS_E_FAILURE;
}
adapter = (hdd_adapter_t *)context;
if ((NULL == adapter) || (WLAN_HDD_ADAPTER_MAGIC != adapter->magic)) {
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_ERROR,
"invalid adapter %p", adapter);
return QDF_STATUS_E_FAILURE;
}
cpu_index = wlan_hdd_get_cpu();
/* walk the chain until all are processed */
skb = (struct sk_buff *) rxbuf;
while (NULL != skb) {
skb_next = skb->next;
skb->dev = adapter->dev;
++adapter->hdd_stats.hddTxRxStats.rxPackets[cpu_index];
++adapter->stats.rx_packets;
adapter->stats.rx_bytes += skb->len;
/* Remove SKB from internal tracking table before submitting
* it to stack
*/
qdf_net_buf_debug_release_skb(skb);
/*
* If this is not a last packet on the chain
* Just put packet into backlog queue, not scheduling RX sirq
*/
if (skb->next) {
rxstat = netif_rx(skb);
} else {
/*
* This is the last packet on the chain
* Scheduling rx sirq
*/
rxstat = netif_rx_ni(skb);
}
if (NET_RX_SUCCESS == rxstat)
++adapter->
hdd_stats.hddTxRxStats.rxDelivered[cpu_index];
else
++adapter->hdd_stats.hddTxRxStats.rxRefused[cpu_index];
skb = skb_next;
}
adapter->dev->last_rx = jiffies;
return QDF_STATUS_SUCCESS;
}
/**
* hdd_get_peer_idx() - Get the idx for given address in peer table
* @sta_ctx: pointer to HDD Station Context
* @addr: pointer to Peer Mac address
*
* Return: index when success else INVALID_PEER_IDX
*/
int hdd_get_peer_idx(hdd_station_ctx_t *sta_ctx, struct qdf_mac_addr *addr)
{
uint8_t idx;
for (idx = 0; idx < MAX_PEERS; idx++) {
if (sta_ctx->conn_info.staId[idx] == 0)
continue;
if (qdf_mem_cmp(&sta_ctx->conn_info.peerMacAddress[idx],
addr, sizeof(struct qdf_mac_addr)))
continue;
return idx;
}
return INVALID_PEER_IDX;
}
/*
* hdd_is_mcast_replay() - checks if pkt is multicast replay
* @skb: packet skb
*
* Return: true if replayed multicast pkt, false otherwise
*/
static bool hdd_is_mcast_replay(struct sk_buff *skb)
{
struct ethhdr *eth;
eth = eth_hdr(skb);
if (unlikely(skb->pkt_type == PACKET_MULTICAST)) {
if (unlikely(ether_addr_equal(eth->h_source,
skb->dev->dev_addr)))
return true;
}
return false;
}
/**
* hdd_rx_packet_cbk() - Receive packet handler
* @context: pointer to HDD context
* @rxBuf: pointer to rx qdf_nbuf
*
* Receive callback registered with TL. TL will call this to notify
* the HDD when one or more packets were received for a registered
* STA.
*
* Return: QDF_STATUS_E_FAILURE if any errors encountered,
* QDF_STATUS_SUCCESS otherwise
*/
QDF_STATUS hdd_rx_packet_cbk(void *context, qdf_nbuf_t rxBuf)
{
hdd_adapter_t *pAdapter = NULL;
hdd_context_t *pHddCtx = NULL;
int rxstat;
struct sk_buff *skb = NULL;
struct sk_buff *next = NULL;
hdd_station_ctx_t *pHddStaCtx = NULL;
unsigned int cpu_index;
/* Sanity check on inputs */
if (unlikely((NULL == context) || (NULL == rxBuf))) {
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_ERROR,
"%s: Null params being passed", __func__);
return QDF_STATUS_E_FAILURE;
}
pAdapter = (hdd_adapter_t *)context;
if (unlikely(WLAN_HDD_ADAPTER_MAGIC != pAdapter->magic)) {
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_ERROR,
"Magic cookie(%x) for adapter sanity verification is invalid",
pAdapter->magic);
return QDF_STATUS_E_FAILURE;
}
pHddCtx = pAdapter->pHddCtx;
if (unlikely(NULL == pHddCtx)) {
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_ERROR,
"%s: HDD context is Null", __func__);
return QDF_STATUS_E_FAILURE;
}
cpu_index = wlan_hdd_get_cpu();
next = (struct sk_buff *)rxBuf;
while (next) {
skb = next;
next = skb->next;
skb->next = NULL;
#ifdef QCA_WIFI_NAPIER_EMULATION /* Debug code, remove later */
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_ERROR,
"%s: skb %p skb->len %d\n", __func__, skb, skb->len);
#endif
pHddStaCtx = WLAN_HDD_GET_STATION_CTX_PTR(pAdapter);
if ((pHddStaCtx->conn_info.proxyARPService) &&
cfg80211_is_gratuitous_arp_unsolicited_na(skb)) {
++pAdapter->hdd_stats.hddTxRxStats.rxDropped[cpu_index];
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_INFO,
"%s: Dropping HS 2.0 Gratuitous ARP or Unsolicited NA",
__func__);
/* Remove SKB from internal tracking table before submitting
* it to stack
*/
qdf_nbuf_free(skb);
continue;
}
hdd_event_eapol_log(skb, QDF_RX);
DPTRACE(qdf_dp_trace(skb,
QDF_DP_TRACE_RX_HDD_PACKET_PTR_RECORD,
qdf_nbuf_data_addr(skb),
sizeof(qdf_nbuf_data(skb)), QDF_RX));
DPTRACE(qdf_dp_trace(skb, QDF_DP_TRACE_HDD_RX_PACKET_RECORD,
(uint8_t *)skb->data, qdf_nbuf_len(skb), QDF_RX));
if (qdf_nbuf_len(skb) > QDF_DP_TRACE_RECORD_SIZE)
DPTRACE(qdf_dp_trace(skb,
QDF_DP_TRACE_HDD_RX_PACKET_RECORD,
(uint8_t *)&skb->data[QDF_DP_TRACE_RECORD_SIZE],
(qdf_nbuf_len(skb)-QDF_DP_TRACE_RECORD_SIZE),
QDF_RX));
wlan_hdd_tdls_update_rx_pkt_cnt(pAdapter, skb);
skb->dev = pAdapter->dev;
skb->protocol = eth_type_trans(skb, skb->dev);
++pAdapter->hdd_stats.hddTxRxStats.rxPackets[cpu_index];
++pAdapter->stats.rx_packets;
pAdapter->stats.rx_bytes += skb->len;
/* Check & drop replayed mcast packets (for IPV6) */
if (pHddCtx->config->multicast_replay_filter &&
hdd_is_mcast_replay(skb)) {
++pAdapter->hdd_stats.hddTxRxStats.rxDropped[cpu_index];
QDF_TRACE(QDF_MODULE_ID_HDD_DATA, QDF_TRACE_LEVEL_DEBUG,
"%s: Dropping multicast replay pkt", __func__);
qdf_nbuf_free(skb);
continue;
}
/* hold configurable wakelock for unicast traffic */
if (pHddCtx->config->rx_wakelock_timeout &&
skb->pkt_type != PACKET_BROADCAST &&
skb->pkt_type != PACKET_MULTICAST) {
cds_host_diag_log_work(&pHddCtx->rx_wake_lock,
pHddCtx->config->rx_wakelock_timeout,
WIFI_POWER_EVENT_WAKELOCK_HOLD_RX);
qdf_wake_lock_timeout_acquire(&pHddCtx->rx_wake_lock,
pHddCtx->config->
rx_wakelock_timeout);
}
if (HDD_LRO_NO_RX == hdd_lro_rx(pHddCtx, pAdapter, skb)) {
if (hdd_napi_enabled(HDD_NAPI_ANY) &&
!pHddCtx->enableRxThread)
rxstat = netif_receive_skb(skb);
else
rxstat = netif_rx_ni(skb);
}
/* Remove SKB from internal tracking table before submitting
* it to stack
*/
qdf_net_buf_debug_release_skb(skb);
if (HDD_LRO_NO_RX ==
hdd_lro_rx(pHddCtx, pAdapter, skb)) {
if (hdd_napi_enabled(HDD_NAPI_ANY) &&
!pHddCtx->enableRxThread)
rxstat = netif_receive_skb(skb);
else
rxstat = netif_rx_ni(skb);
if (NET_RX_SUCCESS == rxstat)
++pAdapter->hdd_stats.hddTxRxStats.
rxDelivered[cpu_index];
else
++pAdapter->hdd_stats.hddTxRxStats.
rxRefused[cpu_index];
} else {
++pAdapter->hdd_stats.hddTxRxStats.
rxDelivered[cpu_index];
}
pAdapter->dev->last_rx = jiffies;
}
return QDF_STATUS_SUCCESS;
}
/**
* hdd_reason_type_to_string() - return string conversion of reason type
* @reason: reason type
*
* This utility function helps log string conversion of reason type.
*
* Return: string conversion of device mode, if match found;
* "Unknown" otherwise.
*/
const char *hdd_reason_type_to_string(enum netif_reason_type reason)
{
switch (reason) {
CASE_RETURN_STRING(WLAN_CONTROL_PATH);
CASE_RETURN_STRING(WLAN_DATA_FLOW_CONTROL);
CASE_RETURN_STRING(WLAN_FW_PAUSE);
CASE_RETURN_STRING(WLAN_TX_ABORT);
CASE_RETURN_STRING(WLAN_VDEV_STOP);
CASE_RETURN_STRING(WLAN_PEER_UNAUTHORISED);
CASE_RETURN_STRING(WLAN_THERMAL_MITIGATION);
default:
return "Invalid";
}
}
/**
* hdd_action_type_to_string() - return string conversion of action type
* @action: action type
*
* This utility function helps log string conversion of action_type.
*
* Return: string conversion of device mode, if match found;
* "Unknown" otherwise.
*/
const char *hdd_action_type_to_string(enum netif_action_type action)
{
switch (action) {
CASE_RETURN_STRING(WLAN_STOP_ALL_NETIF_QUEUE);
CASE_RETURN_STRING(WLAN_START_ALL_NETIF_QUEUE);
CASE_RETURN_STRING(WLAN_WAKE_ALL_NETIF_QUEUE);
CASE_RETURN_STRING(WLAN_STOP_ALL_NETIF_QUEUE_N_CARRIER);
CASE_RETURN_STRING(WLAN_START_ALL_NETIF_QUEUE_N_CARRIER);
CASE_RETURN_STRING(WLAN_NETIF_CARRIER_ON);
CASE_RETURN_STRING(WLAN_NETIF_CARRIER_OFF);
default:
return "Invalid";
}
}
/**
* wlan_hdd_update_queue_oper_stats - update queue operation statistics
* @adapter: adapter handle
* @action: action type
* @reason: reason type
*/
static void wlan_hdd_update_queue_oper_stats(hdd_adapter_t *adapter,
enum netif_action_type action, enum netif_reason_type reason)
{
switch (action) {
case WLAN_STOP_ALL_NETIF_QUEUE:
case WLAN_STOP_ALL_NETIF_QUEUE_N_CARRIER:
adapter->queue_oper_stats[reason].pause_count++;
break;
case WLAN_START_ALL_NETIF_QUEUE:
case WLAN_WAKE_ALL_NETIF_QUEUE:
case WLAN_START_ALL_NETIF_QUEUE_N_CARRIER:
adapter->queue_oper_stats[reason].unpause_count++;
break;
default:
break;
}
}
/**
* wlan_hdd_update_txq_timestamp() - update txq timestamp
* @dev: net device
*
* Return: none
*/
static void wlan_hdd_update_txq_timestamp(struct net_device *dev)
{
struct netdev_queue *txq;
int i;
bool unlock;
for (i = 0; i < NUM_TX_QUEUES; i++) {
txq = netdev_get_tx_queue(dev, i);
unlock = __netif_tx_trylock(txq);
txq_trans_update(txq);
if (unlock == true)
__netif_tx_unlock(txq);
}
}
/**
* wlan_hdd_update_unpause_time() - update unpause time
* @adapter: adapter handle
*
* Return: none
*/
static void wlan_hdd_update_unpause_time(hdd_adapter_t *adapter)
{
qdf_time_t curr_time = qdf_system_ticks();
adapter->total_unpause_time += curr_time - adapter->last_time;
adapter->last_time = curr_time;
}
/**
* wlan_hdd_update_pause_time() - update pause time
* @adapter: adapter handle
*
* Return: none
*/
static void wlan_hdd_update_pause_time(hdd_adapter_t *adapter,
uint32_t temp_map)
{
qdf_time_t curr_time = qdf_system_ticks();
uint8_t i;
qdf_time_t pause_time;
pause_time = curr_time - adapter->last_time;
adapter->total_pause_time += pause_time;
adapter->last_time = curr_time;
for (i = 0; i < WLAN_REASON_TYPE_MAX; i++) {
if (temp_map & (1 << i)) {
adapter->queue_oper_stats[i].total_pause_time +=
pause_time;
break;
}
}
}
/**
* wlan_hdd_netif_queue_control() - Use for netif_queue related actions
* @adapter: adapter handle
* @action: action type
* @reason: reason type
*
* This is single function which is used for netif_queue related
* actions like start/stop of network queues and on/off carrier
* option.
*
* Return: None
*/
void wlan_hdd_netif_queue_control(hdd_adapter_t *adapter,
enum netif_action_type action, enum netif_reason_type reason)
{
uint32_t temp_map;
if ((!adapter) || (WLAN_HDD_ADAPTER_MAGIC != adapter->magic) ||
(!adapter->dev)) {
hdd_err("adapter is invalid");
return;
}
switch (action) {
case WLAN_NETIF_CARRIER_ON:
netif_carrier_on(adapter->dev);
break;
case WLAN_NETIF_CARRIER_OFF:
netif_carrier_off(adapter->dev);
break;
case WLAN_STOP_ALL_NETIF_QUEUE:
spin_lock_bh(&adapter->pause_map_lock);
if (!adapter->pause_map) {
netif_tx_stop_all_queues(adapter->dev);
wlan_hdd_update_txq_timestamp(adapter->dev);
wlan_hdd_update_unpause_time(adapter);
}
adapter->pause_map |= (1 << reason);
spin_unlock_bh(&adapter->pause_map_lock);
break;
case WLAN_START_ALL_NETIF_QUEUE:
spin_lock_bh(&adapter->pause_map_lock);
temp_map = adapter->pause_map;
adapter->pause_map &= ~(1 << reason);
if (!adapter->pause_map) {
netif_tx_start_all_queues(adapter->dev);
wlan_hdd_update_pause_time(adapter, temp_map);
}
spin_unlock_bh(&adapter->pause_map_lock);
break;
case WLAN_WAKE_ALL_NETIF_QUEUE:
spin_lock_bh(&adapter->pause_map_lock);
temp_map = adapter->pause_map;
adapter->pause_map &= ~(1 << reason);
if (!adapter->pause_map) {
netif_tx_wake_all_queues(adapter->dev);
wlan_hdd_update_pause_time(adapter, temp_map);
}
spin_unlock_bh(&adapter->pause_map_lock);
break;
case WLAN_STOP_ALL_NETIF_QUEUE_N_CARRIER:
spin_lock_bh(&adapter->pause_map_lock);
if (!adapter->pause_map) {
netif_tx_stop_all_queues(adapter->dev);
wlan_hdd_update_txq_timestamp(adapter->dev);
wlan_hdd_update_unpause_time(adapter);
}
adapter->pause_map |= (1 << reason);
netif_carrier_off(adapter->dev);
spin_unlock_bh(&adapter->pause_map_lock);
break;
case WLAN_START_ALL_NETIF_QUEUE_N_CARRIER:
spin_lock_bh(&adapter->pause_map_lock);
netif_carrier_on(adapter->dev);
temp_map = adapter->pause_map;
adapter->pause_map &= ~(1 << reason);
if (!adapter->pause_map) {
netif_tx_start_all_queues(adapter->dev);
wlan_hdd_update_pause_time(adapter, temp_map);
}
spin_unlock_bh(&adapter->pause_map_lock);
break;
default:
hdd_err("unsupported action %d", action);
}
spin_lock_bh(&adapter->pause_map_lock);
if (adapter->pause_map & (1 << WLAN_PEER_UNAUTHORISED))
wlan_hdd_process_peer_unauthorised_pause(adapter);
spin_unlock_bh(&adapter->pause_map_lock);
wlan_hdd_update_queue_oper_stats(adapter, action, reason);
adapter->queue_oper_history[adapter->history_index].time =
qdf_system_ticks();
adapter->queue_oper_history[adapter->history_index].netif_action =
action;
adapter->queue_oper_history[adapter->history_index].netif_reason =
reason;
adapter->queue_oper_history[adapter->history_index].pause_map =
adapter->pause_map;
if (++adapter->history_index == WLAN_HDD_MAX_HISTORY_ENTRY)
adapter->history_index = 0;
}
/**
* hdd_set_mon_rx_cb() - Set Monitor mode Rx callback
* @dev: Pointer to net_device structure
*
* Return: 0 for success; non-zero for failure
*/
int hdd_set_mon_rx_cb(struct net_device *dev)
{
hdd_adapter_t *adapter = WLAN_HDD_GET_PRIV_PTR(dev);
hdd_context_t *hdd_ctx = WLAN_HDD_GET_CTX(adapter);
int ret;
QDF_STATUS qdf_status;
struct ol_txrx_desc_type sta_desc = {0};
struct ol_txrx_ops txrx_ops;
void *soc = cds_get_context(QDF_MODULE_ID_SOC);
void *pdev = cds_get_context(QDF_MODULE_ID_TXRX);
ret = wlan_hdd_validate_context(hdd_ctx);
if (0 != ret)
return ret;
qdf_mem_zero(&txrx_ops, sizeof(txrx_ops));
txrx_ops.rx.rx = hdd_mon_rx_packet_cbk;
cdp_vdev_register(soc,
(struct cdp_vdev *)cdp_get_vdev_from_vdev_id(soc,
(struct cdp_pdev *)pdev, adapter->sessionId),
adapter, &txrx_ops);
/* peer is created wma_vdev_attach->wma_create_peer */
qdf_status = cdp_peer_register(soc,
(struct cdp_pdev *)pdev, &sta_desc);
if (QDF_STATUS_SUCCESS != qdf_status) {
hdd_err("cdp_peer_register() failed to register. Status= %d [0x%08X]",
qdf_status, qdf_status);
goto exit;
}
qdf_status = sme_create_mon_session(hdd_ctx->hHal,
adapter->macAddressCurrent.bytes);
if (QDF_STATUS_SUCCESS != qdf_status) {
hdd_err("sme_create_mon_session() failed to register. Status= %d [0x%08X]",
qdf_status, qdf_status);
}
exit:
ret = qdf_status_to_os_return(qdf_status);
return ret;
}
/**
* hdd_send_rps_ind() - send rps indication to daemon
* @adapter: adapter context
*
* If RPS feature enabled by INI, send RPS enable indication to daemon
* Indication contents is the name of interface to find correct sysfs node
* Should send all available interfaces
*
* Return: none
*/
void hdd_send_rps_ind(hdd_adapter_t *adapter)
{
int i;
uint8_t cpu_map_list_len = 0;
hdd_context_t *hdd_ctxt = NULL;
struct wlan_rps_data rps_data;
if (!adapter) {
hdd_err("adapter is NULL");
return;
}
hdd_ctxt = WLAN_HDD_GET_CTX(adapter);
rps_data.num_queues = NUM_TX_QUEUES;
hdd_info("cpu_map_list '%s'", hdd_ctxt->config->cpu_map_list);
/* in case no cpu map list is provided, simply return */
if (!strlen(hdd_ctxt->config->cpu_map_list)) {
hdd_err("no cpu map list found");
goto err;
}
if (QDF_STATUS_SUCCESS !=
hdd_hex_string_to_u16_array(hdd_ctxt->config->cpu_map_list,
rps_data.cpu_map_list,
&cpu_map_list_len,
WLAN_SVC_IFACE_NUM_QUEUES)) {
hdd_err("invalid cpu map list");
goto err;
}
rps_data.num_queues =
(cpu_map_list_len < rps_data.num_queues) ?
cpu_map_list_len : rps_data.num_queues;
for (i = 0; i < rps_data.num_queues; i++) {
hdd_info("cpu_map_list[%d] = 0x%x",
i, rps_data.cpu_map_list[i]);
}
strlcpy(rps_data.ifname, adapter->dev->name,
sizeof(rps_data.ifname));
wlan_hdd_send_svc_nlink_msg(hdd_ctxt->radio_index,
WLAN_SVC_RPS_ENABLE_IND,
&rps_data, sizeof(rps_data));
err:
hdd_err("Wrong RPS configuration. enabling rx_thread");
hdd_ctxt->rps = false;
hdd_ctxt->enableRxThread = true;
}
#ifdef MSM_PLATFORM
/**
* hdd_reset_tcp_delack() - Reset tcp delack value to default
* @hdd_ctx: Handle to hdd context
*
* Function used to reset TCP delack value to its default value
*
* Return: None
*/
void hdd_reset_tcp_delack(hdd_context_t *hdd_ctx)
{
enum pld_bus_width_type next_level = PLD_BUS_WIDTH_LOW;
hdd_ctx->rx_high_ind_cnt = 0;
wlan_hdd_send_svc_nlink_msg(hdd_ctx->radio_index, WLAN_SVC_WLAN_TP_IND,
&next_level, sizeof(next_level));
}
#endif /* MSM_PLATFORM */