blob: 697763d091441582ee32a5c82ae8737319133ac8 [file] [log] [blame]
/*
* Copyright (c) 2011-2015 The Linux Foundation. All rights reserved.
*
* Previously licensed under the ISC license by Qualcomm Atheros, Inc.
*
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This file was originally distributed by Qualcomm Atheros, Inc.
* under proprietary terms before Copyright ownership was assigned
* to the Linux Foundation.
*/
/**
* @file htt_rx.c
* @brief Implement receive aspects of HTT.
* @details
* This file contains three categories of HTT rx code:
* 1. An abstraction of the rx descriptor, to hide the
* differences between the HL vs. LL rx descriptor.
* 2. Functions for providing access to the (series of)
* rx descriptor(s) and rx frame(s) associated with
* an rx indication message.
* 3. Functions for setting up and using the MAC DMA
* rx ring (applies to LL only).
*/
#include <cdf_memory.h> /* cdf_mem_malloc,free, etc. */
#include <cdf_types.h> /* cdf_print, bool */
#include <cdf_nbuf.h> /* cdf_nbuf_t, etc. */
#include <cdf_softirq_timer.h> /* cdf_softirq_timer_free */
#include <htt.h> /* HTT_HL_RX_DESC_SIZE */
#include <ol_cfg.h>
#include <ol_rx.h>
#include <ol_htt_rx_api.h>
#include <htt_internal.h> /* HTT_ASSERT, htt_pdev_t, HTT_RX_BUF_SIZE */
#include "regtable.h"
#include <cds_ieee80211_common.h> /* ieee80211_frame, ieee80211_qoscntl */
#include <cds_ieee80211_defines.h> /* ieee80211_rx_status */
#ifdef DEBUG_DMA_DONE
#include <asm/barrier.h>
#include <wma_api.h>
#endif
/* AR9888v1 WORKAROUND for EV#112367 */
/* FIX THIS - remove this WAR when the bug is fixed */
#define PEREGRINE_1_0_ZERO_LEN_PHY_ERR_WAR
/*--- setup / tear-down functions -------------------------------------------*/
#ifndef HTT_RX_RING_SIZE_MIN
#define HTT_RX_RING_SIZE_MIN 128 /* slightly > than one large A-MPDU */
#endif
#ifndef HTT_RX_RING_SIZE_MAX
#define HTT_RX_RING_SIZE_MAX 2048 /* ~20 ms @ 1 Gbps of 1500B MSDUs */
#endif
#ifndef HTT_RX_AVG_FRM_BYTES
#define HTT_RX_AVG_FRM_BYTES 1000
#endif
#ifndef HTT_RX_HOST_LATENCY_MAX_MS
#define HTT_RX_HOST_LATENCY_MAX_MS 20 /* ms */ /* very conservative */
#endif
#ifndef HTT_RX_HOST_LATENCY_WORST_LIKELY_MS
#define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10 /* ms */ /* conservative */
#endif
#ifndef HTT_RX_RING_REFILL_RETRY_TIME_MS
#define HTT_RX_RING_REFILL_RETRY_TIME_MS 50
#endif
/*--- RX In Order Definitions ------------------------------------------------*/
/* Number of buckets in the hash table */
#define RX_NUM_HASH_BUCKETS 1024 /* This should always be a power of 2 */
#define RX_NUM_HASH_BUCKETS_MASK (RX_NUM_HASH_BUCKETS - 1)
/* Number of hash entries allocated per bucket */
#define RX_ENTRIES_SIZE 10
#define RX_HASH_FUNCTION(a) (((a >> 14) ^ (a >> 4)) & RX_NUM_HASH_BUCKETS_MASK)
#ifdef RX_HASH_DEBUG_LOG
#define RX_HASH_LOG(x) x
#else
#define RX_HASH_LOG(x) /* no-op */
#endif
/* De -initialization function of the rx buffer hash table. This function will
free up the hash table which includes freeing all the pending rx buffers*/
void htt_rx_hash_deinit(struct htt_pdev_t *pdev)
{
uint32_t i;
struct htt_rx_hash_entry *hash_entry;
struct htt_list_node *list_iter = NULL;
if (NULL == pdev->rx_ring.hash_table)
return;
for (i = 0; i < RX_NUM_HASH_BUCKETS; i++) {
/* Free the hash entries in hash bucket i */
list_iter = pdev->rx_ring.hash_table[i].listhead.next;
while (list_iter != &pdev->rx_ring.hash_table[i].listhead) {
hash_entry =
(struct htt_rx_hash_entry *)((char *)list_iter -
pdev->rx_ring.
listnode_offset);
if (hash_entry->netbuf) {
cdf_nbuf_free(hash_entry->netbuf);
hash_entry->paddr = 0;
}
list_iter = list_iter->next;
if (!hash_entry->fromlist)
cdf_mem_free(hash_entry);
}
cdf_mem_free(pdev->rx_ring.hash_table[i].entries);
}
cdf_mem_free(pdev->rx_ring.hash_table);
pdev->rx_ring.hash_table = NULL;
}
static int ceil_pwr2(int value)
{
int log2;
if (IS_PWR2(value))
return value;
log2 = 0;
while (value) {
value >>= 1;
log2++;
}
return 1 << log2;
}
static bool
htt_rx_msdu_first_msdu_flag_ll(htt_pdev_handle pdev, void *msdu_desc)
{
struct htt_host_rx_desc_base *rx_desc =
(struct htt_host_rx_desc_base *)msdu_desc;
return (bool)
(((*(((uint32_t *) &rx_desc->msdu_end) + 4)) &
RX_MSDU_END_4_FIRST_MSDU_MASK) >>
RX_MSDU_END_4_FIRST_MSDU_LSB);
}
static int htt_rx_ring_size(struct htt_pdev_t *pdev)
{
int size;
/*
* It is expected that the host CPU will typically be able to service
* the rx indication from one A-MPDU before the rx indication from
* the subsequent A-MPDU happens, roughly 1-2 ms later.
* However, the rx ring should be sized very conservatively, to
* accomodate the worst reasonable delay before the host CPU services
* a rx indication interrupt.
* The rx ring need not be kept full of empty buffers. In theory,
* the htt host SW can dynamically track the low-water mark in the
* rx ring, and dynamically adjust the level to which the rx ring
* is filled with empty buffers, to dynamically meet the desired
* low-water mark.
* In contrast, it's difficult to resize the rx ring itself, once
* it's in use.
* Thus, the ring itself should be sized very conservatively, while
* the degree to which the ring is filled with empty buffers should
* be sized moderately conservatively.
*/
size =
ol_cfg_max_thruput_mbps(pdev->ctrl_pdev) *
1000 /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */ /
(8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS;
if (size < HTT_RX_RING_SIZE_MIN)
size = HTT_RX_RING_SIZE_MIN;
else if (size > HTT_RX_RING_SIZE_MAX)
size = HTT_RX_RING_SIZE_MAX;
size = ceil_pwr2(size);
return size;
}
static int htt_rx_ring_fill_level(struct htt_pdev_t *pdev)
{
int size;
size = ol_cfg_max_thruput_mbps(pdev->ctrl_pdev) *
1000 /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */ /
8 * HTT_RX_AVG_FRM_BYTES * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS;
/*
* Make sure the fill level is at least 1 less than the ring size.
* Leaving 1 element empty allows the SW to easily distinguish
* between a full ring vs. an empty ring.
*/
if (size >= pdev->rx_ring.size)
size = pdev->rx_ring.size - 1;
return size;
}
static void htt_rx_ring_refill_retry(void *arg)
{
htt_pdev_handle pdev = (htt_pdev_handle) arg;
htt_rx_msdu_buff_replenish(pdev);
}
void htt_rx_ring_fill_n(struct htt_pdev_t *pdev, int num)
{
int idx;
CDF_STATUS status;
struct htt_host_rx_desc_base *rx_desc;
idx = *(pdev->rx_ring.alloc_idx.vaddr);
while (num > 0) {
uint32_t paddr;
cdf_nbuf_t rx_netbuf;
int headroom;
rx_netbuf =
cdf_nbuf_alloc(pdev->osdev, HTT_RX_BUF_SIZE,
0, 4, false);
if (!rx_netbuf) {
cdf_softirq_timer_cancel(&pdev->rx_ring.
refill_retry_timer);
/*
* Failed to fill it to the desired level -
* we'll start a timer and try again next time.
* As long as enough buffers are left in the ring for
* another A-MPDU rx, no special recovery is needed.
*/
#ifdef DEBUG_DMA_DONE
pdev->rx_ring.dbg_refill_cnt++;
#endif
cdf_softirq_timer_start(
&pdev->rx_ring.refill_retry_timer,
HTT_RX_RING_REFILL_RETRY_TIME_MS);
goto fail;
}
/* Clear rx_desc attention word before posting to Rx ring */
rx_desc = htt_rx_desc(rx_netbuf);
*(uint32_t *) &rx_desc->attention = 0;
#ifdef DEBUG_DMA_DONE
*(uint32_t *) &rx_desc->msdu_end = 1;
#define MAGIC_PATTERN 0xDEADBEEF
*(uint32_t *) &rx_desc->msdu_start = MAGIC_PATTERN;
/* To ensure that attention bit is reset and msdu_end is set
before calling dma_map */
smp_mb();
#endif
/*
* Adjust cdf_nbuf_data to point to the location in the buffer
* where the rx descriptor will be filled in.
*/
headroom = cdf_nbuf_data(rx_netbuf) - (uint8_t *) rx_desc;
cdf_nbuf_push_head(rx_netbuf, headroom);
#ifdef DEBUG_DMA_DONE
status =
cdf_nbuf_map(pdev->osdev, rx_netbuf,
CDF_DMA_BIDIRECTIONAL);
#else
status =
cdf_nbuf_map(pdev->osdev, rx_netbuf,
CDF_DMA_FROM_DEVICE);
#endif
if (status != CDF_STATUS_SUCCESS) {
cdf_nbuf_free(rx_netbuf);
goto fail;
}
paddr = cdf_nbuf_get_frag_paddr_lo(rx_netbuf, 0);
if (pdev->cfg.is_full_reorder_offload) {
if (cdf_unlikely
(htt_rx_hash_list_insert(pdev, paddr,
rx_netbuf))) {
cdf_print("%s: hash insert failed!\n",
__func__);
#ifdef DEBUG_DMA_DONE
cdf_nbuf_unmap(pdev->osdev, rx_netbuf,
CDF_DMA_BIDIRECTIONAL);
#else
cdf_nbuf_unmap(pdev->osdev, rx_netbuf,
CDF_DMA_FROM_DEVICE);
#endif
cdf_nbuf_free(rx_netbuf);
goto fail;
}
} else {
pdev->rx_ring.buf.netbufs_ring[idx] = rx_netbuf;
}
#if HTT_PADDR64
pdev->rx_ring.buf.paddrs_ring[idx] = 0;
pdev->rx_ring.buf.paddrs_ring[idx] = (uint32_t)paddr;
#else
pdev->rx_ring.buf.paddrs_ring[idx] = paddr;
#endif /* HTT_PADDR64 */
pdev->rx_ring.fill_cnt++;
num--;
idx++;
idx &= pdev->rx_ring.size_mask;
}
fail:
*(pdev->rx_ring.alloc_idx.vaddr) = idx;
return;
}
unsigned htt_rx_ring_elems(struct htt_pdev_t *pdev)
{
return
(*pdev->rx_ring.alloc_idx.vaddr -
pdev->rx_ring.sw_rd_idx.msdu_payld) & pdev->rx_ring.size_mask;
}
unsigned int htt_rx_in_order_ring_elems(struct htt_pdev_t *pdev)
{
return
(*pdev->rx_ring.alloc_idx.vaddr -
*pdev->rx_ring.target_idx.vaddr) &
pdev->rx_ring.size_mask;
}
void htt_rx_detach(struct htt_pdev_t *pdev)
{
cdf_softirq_timer_cancel(&pdev->rx_ring.refill_retry_timer);
cdf_softirq_timer_free(&pdev->rx_ring.refill_retry_timer);
if (pdev->cfg.is_full_reorder_offload) {
cdf_os_mem_free_consistent(pdev->osdev,
sizeof(uint32_t),
pdev->rx_ring.target_idx.vaddr,
pdev->rx_ring.target_idx.paddr,
cdf_get_dma_mem_context((&pdev->
rx_ring.
target_idx),
memctx));
htt_rx_hash_deinit(pdev);
} else {
int sw_rd_idx = pdev->rx_ring.sw_rd_idx.msdu_payld;
while (sw_rd_idx != *(pdev->rx_ring.alloc_idx.vaddr)) {
#ifdef DEBUG_DMA_DONE
cdf_nbuf_unmap(pdev->osdev,
pdev->rx_ring.buf.
netbufs_ring[sw_rd_idx],
CDF_DMA_BIDIRECTIONAL);
#else
cdf_nbuf_unmap(pdev->osdev,
pdev->rx_ring.buf.
netbufs_ring[sw_rd_idx],
CDF_DMA_FROM_DEVICE);
#endif
cdf_nbuf_free(pdev->rx_ring.buf.
netbufs_ring[sw_rd_idx]);
sw_rd_idx++;
sw_rd_idx &= pdev->rx_ring.size_mask;
}
cdf_mem_free(pdev->rx_ring.buf.netbufs_ring);
}
cdf_os_mem_free_consistent(pdev->osdev,
sizeof(uint32_t),
pdev->rx_ring.alloc_idx.vaddr,
pdev->rx_ring.alloc_idx.paddr,
cdf_get_dma_mem_context((&pdev->rx_ring.
alloc_idx),
memctx));
cdf_os_mem_free_consistent(pdev->osdev,
pdev->rx_ring.size * sizeof(uint32_t),
pdev->rx_ring.buf.paddrs_ring,
pdev->rx_ring.base_paddr,
cdf_get_dma_mem_context((&pdev->rx_ring.buf),
memctx));
}
/*--- rx descriptor field access functions ----------------------------------*/
/*
* These functions need to use bit masks and shifts to extract fields
* from the rx descriptors, rather than directly using the bitfields.
* For example, use
* (desc & FIELD_MASK) >> FIELD_LSB
* rather than
* desc.field
* This allows the functions to work correctly on either little-endian
* machines (no endianness conversion needed) or big-endian machines
* (endianness conversion provided automatically by the HW DMA's
* byte-swizzling).
*/
/* FIX THIS: APPLIES TO LL ONLY */
/**
* htt_rx_mpdu_desc_retry_ll() - Returns the retry bit from the Rx descriptor
* for the Low Latency driver
* @pdev: Handle (pointer) to HTT pdev.
* @mpdu_desc: Void pointer to the Rx descriptor for MPDU
* before the beginning of the payload.
*
* This function returns the retry bit of the 802.11 header for the
* provided rx MPDU descriptor.
*
* Return: boolean -- true if retry is set, false otherwise
*/
bool
htt_rx_mpdu_desc_retry_ll(htt_pdev_handle pdev, void *mpdu_desc)
{
struct htt_host_rx_desc_base *rx_desc =
(struct htt_host_rx_desc_base *) mpdu_desc;
return
(bool)(((*((uint32_t *) &rx_desc->mpdu_start)) &
RX_MPDU_START_0_RETRY_MASK) >>
RX_MPDU_START_0_RETRY_LSB);
}
uint16_t htt_rx_mpdu_desc_seq_num_ll(htt_pdev_handle pdev, void *mpdu_desc)
{
struct htt_host_rx_desc_base *rx_desc =
(struct htt_host_rx_desc_base *)mpdu_desc;
return
(uint16_t) (((*((uint32_t *) &rx_desc->mpdu_start)) &
RX_MPDU_START_0_SEQ_NUM_MASK) >>
RX_MPDU_START_0_SEQ_NUM_LSB);
}
/* FIX THIS: APPLIES TO LL ONLY */
void
htt_rx_mpdu_desc_pn_ll(htt_pdev_handle pdev,
void *mpdu_desc, union htt_rx_pn_t *pn, int pn_len_bits)
{
struct htt_host_rx_desc_base *rx_desc =
(struct htt_host_rx_desc_base *)mpdu_desc;
switch (pn_len_bits) {
case 24:
/* bits 23:0 */
pn->pn24 = rx_desc->mpdu_start.pn_31_0 & 0xffffff;
break;
case 48:
/* bits 31:0 */
pn->pn48 = rx_desc->mpdu_start.pn_31_0;
/* bits 47:32 */
pn->pn48 |= ((uint64_t)
((*(((uint32_t *) &rx_desc->mpdu_start) + 2))
& RX_MPDU_START_2_PN_47_32_MASK))
<< (32 - RX_MPDU_START_2_PN_47_32_LSB);
break;
case 128:
/* bits 31:0 */
pn->pn128[0] = rx_desc->mpdu_start.pn_31_0;
/* bits 47:32 */
pn->pn128[0] |=
((uint64_t) ((*(((uint32_t *)&rx_desc->mpdu_start) + 2))
& RX_MPDU_START_2_PN_47_32_MASK))
<< (32 - RX_MPDU_START_2_PN_47_32_LSB);
/* bits 63:48 */
pn->pn128[0] |=
((uint64_t) ((*(((uint32_t *) &rx_desc->msdu_end) + 2))
& RX_MSDU_END_1_EXT_WAPI_PN_63_48_MASK))
<< (48 - RX_MSDU_END_1_EXT_WAPI_PN_63_48_LSB);
/* bits 95:64 */
pn->pn128[1] = rx_desc->msdu_end.ext_wapi_pn_95_64;
/* bits 127:96 */
pn->pn128[1] |=
((uint64_t) rx_desc->msdu_end.ext_wapi_pn_127_96) << 32;
break;
default:
cdf_print("Error: invalid length spec (%d bits) for PN\n",
pn_len_bits);
};
}
/**
* htt_rx_mpdu_desc_tid_ll() - Returns the TID value from the Rx descriptor
* for Low Latency driver
* @pdev: Handle (pointer) to HTT pdev.
* @mpdu_desc: Void pointer to the Rx descriptor for the MPDU
* before the beginning of the payload.
*
* This function returns the TID set in the 802.11 QoS Control for the MPDU
* in the packet header, by looking at the mpdu_start of the Rx descriptor.
* Rx descriptor gets a copy of the TID from the MAC.
*
* Return: Actual TID set in the packet header.
*/
uint8_t
htt_rx_mpdu_desc_tid_ll(htt_pdev_handle pdev, void *mpdu_desc)
{
struct htt_host_rx_desc_base *rx_desc =
(struct htt_host_rx_desc_base *) mpdu_desc;
return
(uint8_t)(((*(((uint32_t *) &rx_desc->mpdu_start) + 2)) &
RX_MPDU_START_2_TID_MASK) >>
RX_MPDU_START_2_TID_LSB);
}
uint32_t htt_rx_mpdu_desc_tsf32(htt_pdev_handle pdev, void *mpdu_desc)
{
/* FIX THIS */
return 0;
}
/* FIX THIS: APPLIES TO LL ONLY */
char *htt_rx_mpdu_wifi_hdr_retrieve(htt_pdev_handle pdev, void *mpdu_desc)
{
struct htt_host_rx_desc_base *rx_desc =
(struct htt_host_rx_desc_base *)mpdu_desc;
return rx_desc->rx_hdr_status;
}
/* FIX THIS: APPLIES TO LL ONLY */
bool htt_rx_msdu_desc_completes_mpdu_ll(htt_pdev_handle pdev, void *msdu_desc)
{
struct htt_host_rx_desc_base *rx_desc =
(struct htt_host_rx_desc_base *)msdu_desc;
return (bool)
(((*(((uint32_t *) &rx_desc->msdu_end) + 4)) &
RX_MSDU_END_4_LAST_MSDU_MASK) >> RX_MSDU_END_4_LAST_MSDU_LSB);
}
/* FIX THIS: APPLIES TO LL ONLY */
int htt_rx_msdu_has_wlan_mcast_flag_ll(htt_pdev_handle pdev, void *msdu_desc)
{
struct htt_host_rx_desc_base *rx_desc =
(struct htt_host_rx_desc_base *)msdu_desc;
/* HW rx desc: the mcast_bcast flag is only valid
if first_msdu is set */
return
((*(((uint32_t *) &rx_desc->msdu_end) + 4)) &
RX_MSDU_END_4_FIRST_MSDU_MASK) >> RX_MSDU_END_4_FIRST_MSDU_LSB;
}
/* FIX THIS: APPLIES TO LL ONLY */
bool htt_rx_msdu_is_wlan_mcast_ll(htt_pdev_handle pdev, void *msdu_desc)
{
struct htt_host_rx_desc_base *rx_desc =
(struct htt_host_rx_desc_base *)msdu_desc;
return
((*((uint32_t *) &rx_desc->attention)) &
RX_ATTENTION_0_MCAST_BCAST_MASK)
>> RX_ATTENTION_0_MCAST_BCAST_LSB;
}
/* FIX THIS: APPLIES TO LL ONLY */
int htt_rx_msdu_is_frag_ll(htt_pdev_handle pdev, void *msdu_desc)
{
struct htt_host_rx_desc_base *rx_desc =
(struct htt_host_rx_desc_base *)msdu_desc;
return
((*((uint32_t *) &rx_desc->attention)) &
RX_ATTENTION_0_FRAGMENT_MASK) >> RX_ATTENTION_0_FRAGMENT_LSB;
}
static inline
uint8_t htt_rx_msdu_fw_desc_get(htt_pdev_handle pdev, void *msdu_desc)
{
/*
* HL and LL use the same format for FW rx desc, but have the FW rx desc
* in different locations.
* In LL, the FW rx descriptor has been copied into the same
* htt_host_rx_desc_base struct that holds the HW rx desc.
* In HL, the FW rx descriptor, along with the MSDU payload,
* is in the same buffer as the rx indication message.
*
* Use the FW rx desc offset configured during startup to account for
* this difference between HL vs. LL.
*
* An optimization would be to define the LL and HL msdu_desc pointer
* in such a way that they both use the same offset to the FW rx desc.
* Then the following functions could be converted to macros, without
* needing to expose the htt_pdev_t definition outside HTT.
*/
return *(((uint8_t *) msdu_desc) + pdev->rx_fw_desc_offset);
}
int htt_rx_msdu_discard(htt_pdev_handle pdev, void *msdu_desc)
{
return htt_rx_msdu_fw_desc_get(pdev, msdu_desc) & FW_RX_DESC_DISCARD_M;
}
int htt_rx_msdu_forward(htt_pdev_handle pdev, void *msdu_desc)
{
return htt_rx_msdu_fw_desc_get(pdev, msdu_desc) & FW_RX_DESC_FORWARD_M;
}
int htt_rx_msdu_inspect(htt_pdev_handle pdev, void *msdu_desc)
{
return htt_rx_msdu_fw_desc_get(pdev, msdu_desc) & FW_RX_DESC_INSPECT_M;
}
void
htt_rx_msdu_actions(htt_pdev_handle pdev,
void *msdu_desc, int *discard, int *forward, int *inspect)
{
uint8_t rx_msdu_fw_desc = htt_rx_msdu_fw_desc_get(pdev, msdu_desc);
#ifdef HTT_DEBUG_DATA
HTT_PRINT("act:0x%x ", rx_msdu_fw_desc);
#endif
*discard = rx_msdu_fw_desc & FW_RX_DESC_DISCARD_M;
*forward = rx_msdu_fw_desc & FW_RX_DESC_FORWARD_M;
*inspect = rx_msdu_fw_desc & FW_RX_DESC_INSPECT_M;
}
static inline cdf_nbuf_t htt_rx_netbuf_pop(htt_pdev_handle pdev)
{
int idx;
cdf_nbuf_t msdu;
HTT_ASSERT1(htt_rx_ring_elems(pdev) != 0);
#ifdef DEBUG_DMA_DONE
pdev->rx_ring.dbg_ring_idx++;
pdev->rx_ring.dbg_ring_idx &= pdev->rx_ring.size_mask;
#endif
idx = pdev->rx_ring.sw_rd_idx.msdu_payld;
msdu = pdev->rx_ring.buf.netbufs_ring[idx];
idx++;
idx &= pdev->rx_ring.size_mask;
pdev->rx_ring.sw_rd_idx.msdu_payld = idx;
pdev->rx_ring.fill_cnt--;
return msdu;
}
static inline cdf_nbuf_t
htt_rx_in_order_netbuf_pop(htt_pdev_handle pdev, uint32_t paddr)
{
HTT_ASSERT1(htt_rx_in_order_ring_elems(pdev) != 0);
pdev->rx_ring.fill_cnt--;
return htt_rx_hash_list_lookup(pdev, paddr);
}
/* FIX ME: this function applies only to LL rx descs.
An equivalent for HL rx descs is needed. */
#ifdef CHECKSUM_OFFLOAD
static inline
void
htt_set_checksum_result_ll(htt_pdev_handle pdev, cdf_nbuf_t msdu,
struct htt_host_rx_desc_base *rx_desc)
{
#define MAX_IP_VER 2
#define MAX_PROTO_VAL 4
struct rx_msdu_start *rx_msdu = &rx_desc->msdu_start;
unsigned int proto = (rx_msdu->tcp_proto) | (rx_msdu->udp_proto << 1);
/*
* HW supports TCP & UDP checksum offload for ipv4 and ipv6
*/
static const cdf_nbuf_l4_rx_cksum_type_t
cksum_table[][MAX_PROTO_VAL][MAX_IP_VER] = {
{
/* non-fragmented IP packet */
/* non TCP/UDP packet */
{CDF_NBUF_RX_CKSUM_NONE, CDF_NBUF_RX_CKSUM_NONE},
/* TCP packet */
{CDF_NBUF_RX_CKSUM_TCP, CDF_NBUF_RX_CKSUM_TCPIPV6},
/* UDP packet */
{CDF_NBUF_RX_CKSUM_UDP, CDF_NBUF_RX_CKSUM_UDPIPV6},
/* invalid packet type */
{CDF_NBUF_RX_CKSUM_NONE, CDF_NBUF_RX_CKSUM_NONE},
},
{
/* fragmented IP packet */
{CDF_NBUF_RX_CKSUM_NONE, CDF_NBUF_RX_CKSUM_NONE},
{CDF_NBUF_RX_CKSUM_NONE, CDF_NBUF_RX_CKSUM_NONE},
{CDF_NBUF_RX_CKSUM_NONE, CDF_NBUF_RX_CKSUM_NONE},
{CDF_NBUF_RX_CKSUM_NONE, CDF_NBUF_RX_CKSUM_NONE},
}
};
cdf_nbuf_rx_cksum_t cksum = {
cksum_table[rx_msdu->ip_frag][proto][rx_msdu->ipv6_proto],
CDF_NBUF_RX_CKSUM_NONE,
0
};
if (cksum.l4_type !=
(cdf_nbuf_l4_rx_cksum_type_t) CDF_NBUF_RX_CKSUM_NONE) {
cksum.l4_result =
((*(uint32_t *) &rx_desc->attention) &
RX_ATTENTION_0_TCP_UDP_CHKSUM_FAIL_MASK) ?
CDF_NBUF_RX_CKSUM_NONE :
CDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
}
cdf_nbuf_set_rx_cksum(msdu, &cksum);
#undef MAX_IP_VER
#undef MAX_PROTO_VAL
}
#else
#define htt_set_checksum_result_ll(pdev, msdu, rx_desc) /* no-op */
#endif
#ifdef DEBUG_DMA_DONE
void htt_rx_print_rx_indication(cdf_nbuf_t rx_ind_msg, htt_pdev_handle pdev)
{
uint32_t *msg_word;
int byte_offset;
int mpdu_range, num_mpdu_range;
msg_word = (uint32_t *) cdf_nbuf_data(rx_ind_msg);
cdf_print
("------------------HTT RX IND-----------------------------\n");
cdf_print("alloc idx paddr %x (*vaddr) %d\n",
pdev->rx_ring.alloc_idx.paddr,
*pdev->rx_ring.alloc_idx.vaddr);
cdf_print("sw_rd_idx msdu_payld %d msdu_desc %d\n",
pdev->rx_ring.sw_rd_idx.msdu_payld,
pdev->rx_ring.sw_rd_idx.msdu_desc);
cdf_print("dbg_ring_idx %d\n", pdev->rx_ring.dbg_ring_idx);
cdf_print("fill_level %d fill_cnt %d\n", pdev->rx_ring.fill_level,
pdev->rx_ring.fill_cnt);
cdf_print("initial msdu_payld %d curr mpdu range %d curr mpdu cnt %d\n",
pdev->rx_ring.dbg_initial_msdu_payld,
pdev->rx_ring.dbg_mpdu_range, pdev->rx_ring.dbg_mpdu_count);
/* Print the RX_IND contents */
cdf_print("peer id %x RV %x FV %x ext_tid %x msg_type %x\n",
HTT_RX_IND_PEER_ID_GET(*msg_word),
HTT_RX_IND_REL_VALID_GET(*msg_word),
HTT_RX_IND_FLUSH_VALID_GET(*msg_word),
HTT_RX_IND_EXT_TID_GET(*msg_word),
HTT_T2H_MSG_TYPE_GET(*msg_word));
cdf_print("num_mpdu_ranges %x rel_seq_num_end %x rel_seq_num_start %x\n"
" flush_seq_num_end %x flush_seq_num_start %x\n",
HTT_RX_IND_NUM_MPDU_RANGES_GET(*(msg_word + 1)),
HTT_RX_IND_REL_SEQ_NUM_END_GET(*(msg_word + 1)),
HTT_RX_IND_REL_SEQ_NUM_START_GET(*(msg_word + 1)),
HTT_RX_IND_FLUSH_SEQ_NUM_END_GET(*(msg_word + 1)),
HTT_RX_IND_FLUSH_SEQ_NUM_START_GET(*(msg_word + 1)));
cdf_print("fw_rx_desc_bytes %x\n",
HTT_RX_IND_FW_RX_DESC_BYTES_GET(*
(msg_word + 2 +
HTT_RX_PPDU_DESC_SIZE32)));
/* receive MSDU desc for current frame */
byte_offset =
HTT_ENDIAN_BYTE_IDX_SWAP(HTT_RX_IND_FW_RX_DESC_BYTE_OFFSET +
pdev->rx_ind_msdu_byte_idx);
cdf_print("msdu byte idx %x msdu desc %x\n", pdev->rx_ind_msdu_byte_idx,
HTT_RX_IND_FW_RX_DESC_BYTES_GET(*
(msg_word + 2 +
HTT_RX_PPDU_DESC_SIZE32)));
num_mpdu_range = HTT_RX_IND_NUM_MPDU_RANGES_GET(*(msg_word + 1));
for (mpdu_range = 0; mpdu_range < num_mpdu_range; mpdu_range++) {
enum htt_rx_status status;
int num_mpdus;
htt_rx_ind_mpdu_range_info(pdev, rx_ind_msg, mpdu_range,
&status, &num_mpdus);
cdf_print("mpdu_range %x status %x num_mpdus %x\n",
pdev->rx_ind_msdu_byte_idx, status, num_mpdus);
}
cdf_print
("---------------------------------------------------------\n");
}
#endif
#ifdef DEBUG_DMA_DONE
#define MAX_DONE_BIT_CHECK_ITER 5
#endif
int
htt_rx_amsdu_pop_ll(htt_pdev_handle pdev,
cdf_nbuf_t rx_ind_msg,
cdf_nbuf_t *head_msdu, cdf_nbuf_t *tail_msdu)
{
int msdu_len, msdu_chaining = 0;
cdf_nbuf_t msdu;
struct htt_host_rx_desc_base *rx_desc;
uint8_t *rx_ind_data;
uint32_t *msg_word, num_msdu_bytes;
enum htt_t2h_msg_type msg_type;
uint8_t pad_bytes = 0;
HTT_ASSERT1(htt_rx_ring_elems(pdev) != 0);
rx_ind_data = cdf_nbuf_data(rx_ind_msg);
msg_word = (uint32_t *) rx_ind_data;
msg_type = HTT_T2H_MSG_TYPE_GET(*msg_word);
if (cdf_unlikely(HTT_T2H_MSG_TYPE_RX_FRAG_IND == msg_type)) {
num_msdu_bytes = HTT_RX_FRAG_IND_FW_RX_DESC_BYTES_GET(
*(msg_word + HTT_RX_FRAG_IND_HDR_PREFIX_SIZE32));
} else {
num_msdu_bytes = HTT_RX_IND_FW_RX_DESC_BYTES_GET(
*(msg_word
+ HTT_RX_IND_HDR_PREFIX_SIZE32
+ HTT_RX_PPDU_DESC_SIZE32));
}
msdu = *head_msdu = htt_rx_netbuf_pop(pdev);
while (1) {
int last_msdu, msdu_len_invalid, msdu_chained;
int byte_offset;
/*
* Set the netbuf length to be the entire buffer length
* initially, so the unmap will unmap the entire buffer.
*/
cdf_nbuf_set_pktlen(msdu, HTT_RX_BUF_SIZE);
#ifdef DEBUG_DMA_DONE
cdf_nbuf_unmap(pdev->osdev, msdu, CDF_DMA_BIDIRECTIONAL);
#else
cdf_nbuf_unmap(pdev->osdev, msdu, CDF_DMA_FROM_DEVICE);
#endif
/* cache consistency has been taken care of by cdf_nbuf_unmap */
/*
* Now read the rx descriptor.
* Set the length to the appropriate value.
* Check if this MSDU completes a MPDU.
*/
rx_desc = htt_rx_desc(msdu);
#if defined(HELIUMPLUS_PADDR64)
if (HTT_WIFI_IP(pdev, 2, 0))
pad_bytes = rx_desc->msdu_end.l3_header_padding;
#endif /* defined(HELIUMPLUS_PADDR64) */
/*
* Make the netbuf's data pointer point to the payload rather
* than the descriptor.
*/
cdf_nbuf_pull_head(msdu,
HTT_RX_STD_DESC_RESERVATION + pad_bytes);
/*
* Sanity check - confirm the HW is finished filling in
* the rx data.
* If the HW and SW are working correctly, then it's guaranteed
* that the HW's MAC DMA is done before this point in the SW.
* To prevent the case that we handle a stale Rx descriptor,
* just assert for now until we have a way to recover.
*/
#ifdef DEBUG_DMA_DONE
if (cdf_unlikely(!((*(uint32_t *) &rx_desc->attention)
& RX_ATTENTION_0_MSDU_DONE_MASK))) {
int dbg_iter = MAX_DONE_BIT_CHECK_ITER;
cdf_print("malformed frame\n");
while (dbg_iter &&
(!((*(uint32_t *) &rx_desc->attention) &
RX_ATTENTION_0_MSDU_DONE_MASK))) {
cdf_mdelay(1);
cdf_invalidate_range((void *)rx_desc,
(void *)((char *)rx_desc +
HTT_RX_STD_DESC_RESERVATION));
cdf_print("debug iter %d success %d\n",
dbg_iter,
pdev->rx_ring.dbg_sync_success);
dbg_iter--;
}
if (cdf_unlikely(!((*(uint32_t *) &rx_desc->attention)
& RX_ATTENTION_0_MSDU_DONE_MASK))) {
#ifdef HTT_RX_RESTORE
cdf_print("RX done bit error detected!\n");
cdf_nbuf_set_next(msdu, NULL);
*tail_msdu = msdu;
pdev->rx_ring.rx_reset = 1;
return msdu_chaining;
#else
wma_cli_set_command(0, GEN_PARAM_CRASH_INJECT,
0, GEN_CMD);
HTT_ASSERT_ALWAYS(0);
#endif
}
pdev->rx_ring.dbg_sync_success++;
cdf_print("debug iter %d success %d\n", dbg_iter,
pdev->rx_ring.dbg_sync_success);
}
#else
HTT_ASSERT_ALWAYS((*(uint32_t *) &rx_desc->attention) &
RX_ATTENTION_0_MSDU_DONE_MASK);
#endif
/*
* Copy the FW rx descriptor for this MSDU from the rx
* indication message into the MSDU's netbuf.
* HL uses the same rx indication message definition as LL, and
* simply appends new info (fields from the HW rx desc, and the
* MSDU payload itself).
* So, the offset into the rx indication message only has to
* account for the standard offset of the per-MSDU FW rx
* desc info within the message, and how many bytes of the
* per-MSDU FW rx desc info have already been consumed.
* (And the endianness of the host,
* since for a big-endian host, the rx ind message contents,
* including the per-MSDU rx desc bytes, were byteswapped during
* upload.)
*/
if (pdev->rx_ind_msdu_byte_idx < num_msdu_bytes) {
if (cdf_unlikely
(HTT_T2H_MSG_TYPE_RX_FRAG_IND == msg_type))
byte_offset =
HTT_ENDIAN_BYTE_IDX_SWAP
(HTT_RX_FRAG_IND_FW_DESC_BYTE_OFFSET);
else
byte_offset =
HTT_ENDIAN_BYTE_IDX_SWAP
(HTT_RX_IND_FW_RX_DESC_BYTE_OFFSET +
pdev->rx_ind_msdu_byte_idx);
*((uint8_t *) &rx_desc->fw_desc.u.val) =
rx_ind_data[byte_offset];
/*
* The target is expected to only provide the basic
* per-MSDU rx descriptors. Just to be sure,
* verify that the target has not attached
* extension data (e.g. LRO flow ID).
*/
/*
* The assertion below currently doesn't work for
* RX_FRAG_IND messages, since their format differs
* from the RX_IND format (no FW rx PPDU desc in
* the current RX_FRAG_IND message).
* If the RX_FRAG_IND message format is updated to match
* the RX_IND message format, then the following
* assertion can be restored.
*/
/* cdf_assert((rx_ind_data[byte_offset] &
FW_RX_DESC_EXT_M) == 0); */
pdev->rx_ind_msdu_byte_idx += 1;
/* or more, if there's ext data */
} else {
/*
* When an oversized AMSDU happened, FW will lost some
* of MSDU status - in this case, the FW descriptors
* provided will be less than the actual MSDUs
* inside this MPDU.
* Mark the FW descriptors so that it will still
* deliver to upper stack, if no CRC error for the MPDU.
*
* FIX THIS - the FW descriptors are actually for MSDUs
* in the end of this A-MSDU instead of the beginning.
*/
*((uint8_t *) &rx_desc->fw_desc.u.val) = 0;
}
/*
* TCP/UDP checksum offload support
*/
htt_set_checksum_result_ll(pdev, msdu, rx_desc);
msdu_len_invalid = (*(uint32_t *) &rx_desc->attention) &
RX_ATTENTION_0_MPDU_LENGTH_ERR_MASK;
msdu_chained = (((*(uint32_t *) &rx_desc->frag_info) &
RX_FRAG_INFO_0_RING2_MORE_COUNT_MASK) >>
RX_FRAG_INFO_0_RING2_MORE_COUNT_LSB);
msdu_len =
((*((uint32_t *) &rx_desc->msdu_start)) &
RX_MSDU_START_0_MSDU_LENGTH_MASK) >>
RX_MSDU_START_0_MSDU_LENGTH_LSB;
do {
if (!msdu_len_invalid && !msdu_chained) {
#if defined(PEREGRINE_1_0_ZERO_LEN_PHY_ERR_WAR)
if (msdu_len > 0x3000)
break;
#endif
cdf_nbuf_trim_tail(msdu,
HTT_RX_BUF_SIZE -
(RX_STD_DESC_SIZE +
msdu_len));
}
} while (0);
while (msdu_chained--) {
cdf_nbuf_t next = htt_rx_netbuf_pop(pdev);
cdf_nbuf_set_pktlen(next, HTT_RX_BUF_SIZE);
msdu_len -= HTT_RX_BUF_SIZE;
cdf_nbuf_set_next(msdu, next);
msdu = next;
msdu_chaining = 1;
if (msdu_chained == 0) {
/* Trim the last one to the correct size -
* accounting for inconsistent HW lengths
* causing length overflows and underflows
*/
if (((unsigned)msdu_len) >
((unsigned)
(HTT_RX_BUF_SIZE - RX_STD_DESC_SIZE))) {
msdu_len =
(HTT_RX_BUF_SIZE -
RX_STD_DESC_SIZE);
}
cdf_nbuf_trim_tail(next,
HTT_RX_BUF_SIZE -
(RX_STD_DESC_SIZE +
msdu_len));
}
}
last_msdu =
((*(((uint32_t *) &rx_desc->msdu_end) + 4)) &
RX_MSDU_END_4_LAST_MSDU_MASK) >>
RX_MSDU_END_4_LAST_MSDU_LSB;
if (last_msdu) {
cdf_nbuf_set_next(msdu, NULL);
break;
} else {
cdf_nbuf_t next = htt_rx_netbuf_pop(pdev);
cdf_nbuf_set_next(msdu, next);
msdu = next;
}
}
*tail_msdu = msdu;
/*
* Don't refill the ring yet.
* First, the elements popped here are still in use - it is
* not safe to overwrite them until the matching call to
* mpdu_desc_list_next.
* Second, for efficiency it is preferable to refill the rx ring
* with 1 PPDU's worth of rx buffers (something like 32 x 3 buffers),
* rather than one MPDU's worth of rx buffers (sth like 3 buffers).
* Consequently, we'll rely on the txrx SW to tell us when it is done
* pulling all the PPDU's rx buffers out of the rx ring, and then
* refill it just once.
*/
return msdu_chaining;
}
int
htt_rx_offload_msdu_pop_ll(htt_pdev_handle pdev,
cdf_nbuf_t offload_deliver_msg,
int *vdev_id,
int *peer_id,
int *tid,
uint8_t *fw_desc,
cdf_nbuf_t *head_buf, cdf_nbuf_t *tail_buf)
{
cdf_nbuf_t buf;
uint32_t *msdu_hdr, msdu_len;
*head_buf = *tail_buf = buf = htt_rx_netbuf_pop(pdev);
/* Fake read mpdu_desc to keep desc ptr in sync */
htt_rx_mpdu_desc_list_next(pdev, NULL);
cdf_nbuf_set_pktlen(buf, HTT_RX_BUF_SIZE);
#ifdef DEBUG_DMA_DONE
cdf_nbuf_unmap(pdev->osdev, buf, CDF_DMA_BIDIRECTIONAL);
#else
cdf_nbuf_unmap(pdev->osdev, buf, CDF_DMA_FROM_DEVICE);
#endif
msdu_hdr = (uint32_t *) cdf_nbuf_data(buf);
/* First dword */
msdu_len = HTT_RX_OFFLOAD_DELIVER_IND_MSDU_LEN_GET(*msdu_hdr);
*peer_id = HTT_RX_OFFLOAD_DELIVER_IND_MSDU_PEER_ID_GET(*msdu_hdr);
/* Second dword */
msdu_hdr++;
*vdev_id = HTT_RX_OFFLOAD_DELIVER_IND_MSDU_VDEV_ID_GET(*msdu_hdr);
*tid = HTT_RX_OFFLOAD_DELIVER_IND_MSDU_TID_GET(*msdu_hdr);
*fw_desc = HTT_RX_OFFLOAD_DELIVER_IND_MSDU_DESC_GET(*msdu_hdr);
cdf_nbuf_pull_head(buf, HTT_RX_OFFLOAD_DELIVER_IND_MSDU_HDR_BYTES);
cdf_nbuf_set_pktlen(buf, msdu_len);
return 0;
}
int
htt_rx_offload_paddr_msdu_pop_ll(htt_pdev_handle pdev,
uint32_t *msg_word,
int msdu_iter,
int *vdev_id,
int *peer_id,
int *tid,
uint8_t *fw_desc,
cdf_nbuf_t *head_buf, cdf_nbuf_t *tail_buf)
{
cdf_nbuf_t buf;
uint32_t *msdu_hdr, msdu_len;
uint32_t *curr_msdu;
uint32_t paddr;
curr_msdu =
msg_word + (msdu_iter * HTT_RX_IN_ORD_PADDR_IND_MSDU_DWORDS);
paddr = HTT_RX_IN_ORD_PADDR_IND_PADDR_GET(*curr_msdu);
*head_buf = *tail_buf = buf = htt_rx_in_order_netbuf_pop(pdev, paddr);
if (cdf_unlikely(NULL == buf)) {
cdf_print("%s: netbuf pop failed!\n", __func__);
return 0;
}
cdf_nbuf_set_pktlen(buf, HTT_RX_BUF_SIZE);
#ifdef DEBUG_DMA_DONE
cdf_nbuf_unmap(pdev->osdev, buf, CDF_DMA_BIDIRECTIONAL);
#else
cdf_nbuf_unmap(pdev->osdev, buf, CDF_DMA_FROM_DEVICE);
#endif
msdu_hdr = (uint32_t *) cdf_nbuf_data(buf);
/* First dword */
msdu_len = HTT_RX_OFFLOAD_DELIVER_IND_MSDU_LEN_GET(*msdu_hdr);
*peer_id = HTT_RX_OFFLOAD_DELIVER_IND_MSDU_PEER_ID_GET(*msdu_hdr);
/* Second dword */
msdu_hdr++;
*vdev_id = HTT_RX_OFFLOAD_DELIVER_IND_MSDU_VDEV_ID_GET(*msdu_hdr);
*tid = HTT_RX_OFFLOAD_DELIVER_IND_MSDU_TID_GET(*msdu_hdr);
*fw_desc = HTT_RX_OFFLOAD_DELIVER_IND_MSDU_DESC_GET(*msdu_hdr);
cdf_nbuf_pull_head(buf, HTT_RX_OFFLOAD_DELIVER_IND_MSDU_HDR_BYTES);
cdf_nbuf_set_pktlen(buf, msdu_len);
return 0;
}
extern void
dump_pkt(cdf_nbuf_t nbuf, uint32_t nbuf_paddr, int len);
#ifdef RX_HASH_DEBUG
#define HTT_RX_CHECK_MSDU_COUNT(msdu_count) HTT_ASSERT_ALWAYS(msdu_count)
#else
#define HTT_RX_CHECK_MSDU_COUNT(msdu_count) /* no-op */
#endif
/* Return values: 1 - success, 0 - failure */
int
htt_rx_amsdu_rx_in_order_pop_ll(htt_pdev_handle pdev,
cdf_nbuf_t rx_ind_msg,
cdf_nbuf_t *head_msdu, cdf_nbuf_t *tail_msdu)
{
cdf_nbuf_t msdu, next, prev = NULL;
uint8_t *rx_ind_data;
uint32_t *msg_word;
unsigned int msdu_count = 0;
uint8_t offload_ind;
struct htt_host_rx_desc_base *rx_desc;
HTT_ASSERT1(htt_rx_in_order_ring_elems(pdev) != 0);
rx_ind_data = cdf_nbuf_data(rx_ind_msg);
msg_word = (uint32_t *) rx_ind_data;
offload_ind = HTT_RX_IN_ORD_PADDR_IND_OFFLOAD_GET(*msg_word);
/* Get the total number of MSDUs */
msdu_count = HTT_RX_IN_ORD_PADDR_IND_MSDU_CNT_GET(*(msg_word + 1));
HTT_RX_CHECK_MSDU_COUNT(msdu_count);
msg_word =
(uint32_t *) (rx_ind_data + HTT_RX_IN_ORD_PADDR_IND_HDR_BYTES);
if (offload_ind) {
ol_rx_offload_paddr_deliver_ind_handler(pdev, msdu_count,
msg_word);
*head_msdu = *tail_msdu = NULL;
return 0;
}
(*head_msdu) = msdu = htt_rx_in_order_netbuf_pop(
pdev,
HTT_RX_IN_ORD_PADDR_IND_PADDR_GET(*msg_word));
if (cdf_unlikely(NULL == msdu)) {
cdf_print("%s: netbuf pop failed!\n", __func__);
*tail_msdu = NULL;
return 0;
}
while (msdu_count > 0) {
/*
* Set the netbuf length to be the entire buffer length
* initially, so the unmap will unmap the entire buffer.
*/
cdf_nbuf_set_pktlen(msdu, HTT_RX_BUF_SIZE);
#ifdef DEBUG_DMA_DONE
cdf_nbuf_unmap(pdev->osdev, msdu, CDF_DMA_BIDIRECTIONAL);
#else
cdf_nbuf_unmap(pdev->osdev, msdu, CDF_DMA_FROM_DEVICE);
#endif
/* cache consistency has been taken care of by cdf_nbuf_unmap */
rx_desc = htt_rx_desc(msdu);
htt_rx_extract_lro_info(msdu, rx_desc);
/*
* Make the netbuf's data pointer point to the payload rather
* than the descriptor.
*/
cdf_nbuf_pull_head(msdu, HTT_RX_STD_DESC_RESERVATION);
#if HTT_PADDR64
#define NEXT_FIELD_OFFSET_IN32 2
#else /* ! HTT_PADDR64 */
#define NEXT_FIELD_OFFSET_IN32 1
#endif /* HTT_PADDR64 */
#
cdf_nbuf_trim_tail(msdu,
HTT_RX_BUF_SIZE -
(RX_STD_DESC_SIZE +
HTT_RX_IN_ORD_PADDR_IND_MSDU_LEN_GET(
*(msg_word + NEXT_FIELD_OFFSET_IN32))));
#if defined(HELIUMPLUS_DEBUG)
dump_pkt(msdu, 0, 64);
#endif
*((uint8_t *) &rx_desc->fw_desc.u.val) =
HTT_RX_IN_ORD_PADDR_IND_FW_DESC_GET(*(msg_word + NEXT_FIELD_OFFSET_IN32));
#undef NEXT_FIELD_OFFSET_IN32
msdu_count--;
if (cdf_unlikely((*((u_int8_t *) &rx_desc->fw_desc.u.val)) &
FW_RX_DESC_MIC_ERR_M)) {
u_int8_t tid =
HTT_RX_IN_ORD_PADDR_IND_EXT_TID_GET(
*(u_int32_t *)rx_ind_data);
u_int16_t peer_id =
HTT_RX_IN_ORD_PADDR_IND_PEER_ID_GET(
*(u_int32_t *)rx_ind_data);
ol_rx_mic_error_handler(pdev->txrx_pdev, tid, peer_id,
rx_desc, msdu);
htt_rx_desc_frame_free(pdev, msdu);
/* if this is the last msdu */
if (!msdu_count) {
/* if this is the only msdu */
if (!prev) {
*head_msdu = *tail_msdu = NULL;
return 0;
} else {
*tail_msdu = prev;
cdf_nbuf_set_next(prev, NULL);
return 1;
}
} else { /* if this is not the last msdu */
/* get the next msdu */
msg_word += HTT_RX_IN_ORD_PADDR_IND_MSDU_DWORDS;
next = htt_rx_in_order_netbuf_pop(
pdev,
HTT_RX_IN_ORD_PADDR_IND_PADDR_GET(
*msg_word));
if (cdf_unlikely(NULL == next)) {
cdf_print("%s: netbuf pop failed!\n",
__func__);
*tail_msdu = NULL;
return 0;
}
/* if this is not the first msdu, update the
* next pointer of the preceding msdu
*/
if (prev) {
cdf_nbuf_set_next(prev, next);
} else {
/* if this is the first msdu, update the
* head pointer
*/
*head_msdu = next;
}
msdu = next;
continue;
}
}
/* Update checksum result */
htt_set_checksum_result_ll(pdev, msdu, rx_desc);
/* check if this is the last msdu */
if (msdu_count) {
msg_word += HTT_RX_IN_ORD_PADDR_IND_MSDU_DWORDS;
next = htt_rx_in_order_netbuf_pop(
pdev,
HTT_RX_IN_ORD_PADDR_IND_PADDR_GET(*msg_word));
if (cdf_unlikely(NULL == next)) {
cdf_print("%s: netbuf pop failed!\n",
__func__);
*tail_msdu = NULL;
return 0;
}
cdf_nbuf_set_next(msdu, next);
prev = msdu;
msdu = next;
} else {
*tail_msdu = msdu;
cdf_nbuf_set_next(msdu, NULL);
}
}
return 1;
}
/* Util fake function that has same prototype as cdf_nbuf_clone that just
* retures the same nbuf
*/
cdf_nbuf_t htt_rx_cdf_noclone_buf(cdf_nbuf_t buf)
{
return buf;
}
/* FIXME: This is a HW definition not provded by HW, where does it go ? */
enum {
HW_RX_DECAP_FORMAT_RAW = 0,
HW_RX_DECAP_FORMAT_NWIFI,
HW_RX_DECAP_FORMAT_8023,
HW_RX_DECAP_FORMAT_ETH2,
};
#define HTT_FCS_LEN (4)
static void
htt_rx_parse_ppdu_start_status(struct htt_host_rx_desc_base *rx_desc,
struct ieee80211_rx_status *rs)
{
struct rx_ppdu_start *ppdu_start = &rx_desc->ppdu_start;
/* RSSI */
rs->rs_rssi = ppdu_start->rssi_comb;
/* PHY rate */
/* rs_ratephy coding
[b3 - b0]
0 -> OFDM
1 -> CCK
2 -> HT
3 -> VHT
OFDM / CCK
[b7 - b4 ] => LSIG rate
[b23 - b8 ] => service field
(b'12 static/dynamic,
b'14..b'13 BW for VHT)
[b31 - b24 ] => Reserved
HT / VHT
[b15 - b4 ] => SIG A_2 12 LSBs
[b31 - b16] => SIG A_1 16 LSBs
*/
if (ppdu_start->preamble_type == 0x4) {
rs->rs_ratephy = ppdu_start->l_sig_rate_select;
rs->rs_ratephy |= ppdu_start->l_sig_rate << 4;
rs->rs_ratephy |= ppdu_start->service << 8;
} else {
rs->rs_ratephy = (ppdu_start->preamble_type & 0x4) ? 3 : 2;
#ifdef HELIUMPLUS
rs->rs_ratephy |=
(ppdu_start->ht_sig_vht_sig_ah_sig_a_2 & 0xFFF) << 4;
rs->rs_ratephy |=
(ppdu_start->ht_sig_vht_sig_ah_sig_a_1 & 0xFFFF) << 16;
#else
rs->rs_ratephy |= (ppdu_start->ht_sig_vht_sig_a_2 & 0xFFF) << 4;
rs->rs_ratephy |=
(ppdu_start->ht_sig_vht_sig_a_1 & 0xFFFF) << 16;
#endif
}
return;
}
/* This function is used by montior mode code to restitch an MSDU list
* corresponding to an MPDU back into an MPDU by linking up the skbs.
*/
cdf_nbuf_t
htt_rx_restitch_mpdu_from_msdus(htt_pdev_handle pdev,
cdf_nbuf_t head_msdu,
struct ieee80211_rx_status *rx_status,
unsigned clone_not_reqd)
{
cdf_nbuf_t msdu, mpdu_buf, prev_buf, msdu_orig, head_frag_list_cloned;
cdf_nbuf_t (*clone_nbuf_fn)(cdf_nbuf_t buf);
unsigned decap_format, wifi_hdr_len, sec_hdr_len, msdu_llc_len,
mpdu_buf_len, decap_hdr_pull_bytes, frag_list_sum_len, dir,
is_amsdu, is_first_frag, amsdu_pad, msdu_len;
struct htt_host_rx_desc_base *rx_desc;
char *hdr_desc;
unsigned char *dest;
struct ieee80211_frame *wh;
struct ieee80211_qoscntl *qos;
/* If this packet does not go up the normal stack path we dont need to
* waste cycles cloning the packets
*/
clone_nbuf_fn =
clone_not_reqd ? htt_rx_cdf_noclone_buf : cdf_nbuf_clone;
/* The nbuf has been pulled just beyond the status and points to the
* payload
*/
msdu_orig = head_msdu;
rx_desc = htt_rx_desc(msdu_orig);
/* Fill out the rx_status from the PPDU start and end fields */
if (rx_desc->attention.first_mpdu) {
htt_rx_parse_ppdu_start_status(rx_desc, rx_status);
/* The timestamp is no longer valid - It will be valid only for
* the last MPDU
*/
rx_status->rs_tstamp.tsf = ~0;
}
decap_format =
GET_FIELD(&rx_desc->msdu_start, RX_MSDU_START_2_DECAP_FORMAT);
head_frag_list_cloned = NULL;
/* Easy case - The MSDU status indicates that this is a non-decapped
* packet in RAW mode.
* return
*/
if (decap_format == HW_RX_DECAP_FORMAT_RAW) {
/* Note that this path might suffer from headroom unavailabilty,
* but the RX status is usually enough
*/
mpdu_buf = clone_nbuf_fn(head_msdu);
prev_buf = mpdu_buf;
frag_list_sum_len = 0;
is_first_frag = 1;
msdu_len = cdf_nbuf_len(mpdu_buf);
/* Drop the zero-length msdu */
if (!msdu_len)
goto mpdu_stitch_fail;
msdu_orig = cdf_nbuf_next(head_msdu);
while (msdu_orig) {
/* TODO: intra AMSDU padding - do we need it ??? */
msdu = clone_nbuf_fn(msdu_orig);
if (!msdu)
goto mpdu_stitch_fail;
if (is_first_frag) {
is_first_frag = 0;
head_frag_list_cloned = msdu;
}
msdu_len = cdf_nbuf_len(msdu);
/* Drop the zero-length msdu */
if (!msdu_len)
goto mpdu_stitch_fail;
frag_list_sum_len += msdu_len;
/* Maintain the linking of the cloned MSDUS */
cdf_nbuf_set_next_ext(prev_buf, msdu);
/* Move to the next */
prev_buf = msdu;
msdu_orig = cdf_nbuf_next(msdu_orig);
}
/* The last msdu length need be larger than HTT_FCS_LEN */
if (msdu_len < HTT_FCS_LEN)
goto mpdu_stitch_fail;
cdf_nbuf_trim_tail(prev_buf, HTT_FCS_LEN);
/* If there were more fragments to this RAW frame */
if (head_frag_list_cloned) {
cdf_nbuf_append_ext_list(mpdu_buf,
head_frag_list_cloned,
frag_list_sum_len);
}
goto mpdu_stitch_done;
}
/* Decap mode:
* Calculate the amount of header in decapped packet to knock off based
* on the decap type and the corresponding number of raw bytes to copy
* status header
*/
hdr_desc = &rx_desc->rx_hdr_status[0];
/* Base size */
wifi_hdr_len = sizeof(struct ieee80211_frame);
wh = (struct ieee80211_frame *)hdr_desc;
dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
if (dir == IEEE80211_FC1_DIR_DSTODS)
wifi_hdr_len += 6;
is_amsdu = 0;
if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
qos = (struct ieee80211_qoscntl *)
(hdr_desc + wifi_hdr_len);
wifi_hdr_len += 2;
is_amsdu = (qos->i_qos[0] & IEEE80211_QOS_AMSDU);
}
/* TODO: Any security headers associated with MPDU */
sec_hdr_len = 0;
/* MSDU related stuff LLC - AMSDU subframe header etc */
msdu_llc_len = is_amsdu ? (14 + 8) : 8;
mpdu_buf_len = wifi_hdr_len + sec_hdr_len + msdu_llc_len;
/* "Decap" header to remove from MSDU buffer */
decap_hdr_pull_bytes = 14;
/* Allocate a new nbuf for holding the 802.11 header retrieved from the
* status of the now decapped first msdu. Leave enough headroom for
* accomodating any radio-tap /prism like PHY header
*/
#define HTT_MAX_MONITOR_HEADER (512)
mpdu_buf = cdf_nbuf_alloc(pdev->osdev,
HTT_MAX_MONITOR_HEADER + mpdu_buf_len,
HTT_MAX_MONITOR_HEADER, 4, false);
if (!mpdu_buf)
goto mpdu_stitch_fail;
/* Copy the MPDU related header and enc headers into the first buffer
* - Note that there can be a 2 byte pad between heaader and enc header
*/
prev_buf = mpdu_buf;
dest = cdf_nbuf_put_tail(prev_buf, wifi_hdr_len);
if (!dest)
goto mpdu_stitch_fail;
cdf_mem_copy(dest, hdr_desc, wifi_hdr_len);
hdr_desc += wifi_hdr_len;
/* NOTE - This padding is present only in the RAW header status - not
* when the MSDU data payload is in RAW format.
*/
/* Skip the "IV pad" */
if (wifi_hdr_len & 0x3)
hdr_desc += 2;
/* The first LLC len is copied into the MPDU buffer */
frag_list_sum_len = 0;
frag_list_sum_len -= msdu_llc_len;
msdu_orig = head_msdu;
is_first_frag = 1;
amsdu_pad = 0;
while (msdu_orig) {
/* TODO: intra AMSDU padding - do we need it ??? */
msdu = clone_nbuf_fn(msdu_orig);
if (!msdu)
goto mpdu_stitch_fail;
if (is_first_frag) {
is_first_frag = 0;
head_frag_list_cloned = msdu;
} else {
/* Maintain the linking of the cloned MSDUS */
cdf_nbuf_set_next_ext(prev_buf, msdu);
/* Reload the hdr ptr only on non-first MSDUs */
rx_desc = htt_rx_desc(msdu_orig);
hdr_desc = &rx_desc->rx_hdr_status[0];
}
/* Copy this buffers MSDU related status into the prev buffer */
dest = cdf_nbuf_put_tail(prev_buf, msdu_llc_len + amsdu_pad);
dest += amsdu_pad;
cdf_mem_copy(dest, hdr_desc, msdu_llc_len);
/* Push the MSDU buffer beyond the decap header */
cdf_nbuf_pull_head(msdu, decap_hdr_pull_bytes);
frag_list_sum_len +=
msdu_llc_len + cdf_nbuf_len(msdu) + amsdu_pad;
/* Set up intra-AMSDU pad to be added to start of next buffer -
* AMSDU pad is 4 byte pad on AMSDU subframe */
amsdu_pad = (msdu_llc_len + cdf_nbuf_len(msdu)) & 0x3;
amsdu_pad = amsdu_pad ? (4 - amsdu_pad) : 0;
/* TODO FIXME How do we handle MSDUs that have fraglist - Should
* probably iterate all the frags cloning them along the way and
* and also updating the prev_buf pointer
*/
/* Move to the next */
prev_buf = msdu;
msdu_orig = cdf_nbuf_next(msdu_orig);
}
/* TODO: Convert this to suitable cdf routines */
cdf_nbuf_append_ext_list(mpdu_buf, head_frag_list_cloned,
frag_list_sum_len);
mpdu_stitch_done:
/* Check if this buffer contains the PPDU end status for TSF */
if (rx_desc->attention.last_mpdu)
#ifdef HELIUMPLUS
rx_status->rs_tstamp.tsf =
rx_desc->ppdu_end.rx_pkt_end.phy_timestamp_1_lower_32;
#else
rx_status->rs_tstamp.tsf = rx_desc->ppdu_end.tsf_timestamp;
#endif
/* All the nbufs have been linked into the ext list and
then unlink the nbuf list */
if (clone_not_reqd) {
msdu = head_msdu;
while (msdu) {
msdu_orig = msdu;
msdu = cdf_nbuf_next(msdu);
cdf_nbuf_set_next(msdu_orig, NULL);
}
}
return mpdu_buf;
mpdu_stitch_fail:
/* Free these alloced buffers and the orig buffers in non-clone case */
if (!clone_not_reqd) {
/* Free the head buffer */
if (mpdu_buf)
cdf_nbuf_free(mpdu_buf);
/* Free the partial list */
while (head_frag_list_cloned) {
msdu = head_frag_list_cloned;
head_frag_list_cloned =
cdf_nbuf_next_ext(head_frag_list_cloned);
cdf_nbuf_free(msdu);
}
} else {
/* Free the alloced head buffer */
if (decap_format != HW_RX_DECAP_FORMAT_RAW)
if (mpdu_buf)
cdf_nbuf_free(mpdu_buf);
/* Free the orig buffers */
msdu = head_msdu;
while (msdu) {
msdu_orig = msdu;
msdu = cdf_nbuf_next(msdu);
cdf_nbuf_free(msdu_orig);
}
}
return NULL;
}
int16_t htt_rx_mpdu_desc_rssi_dbm(htt_pdev_handle pdev, void *mpdu_desc)
{
/*
* Currently the RSSI is provided only as a field in the
* HTT_T2H_RX_IND message, rather than in each rx descriptor.
*/
return HTT_RSSI_INVALID;
}
/*
* htt_rx_amsdu_pop -
* global function pointer that is programmed during attach to point
* to either htt_rx_amsdu_pop_ll or htt_rx_amsdu_rx_in_order_pop_ll.
*/
int (*htt_rx_amsdu_pop)(htt_pdev_handle pdev,
cdf_nbuf_t rx_ind_msg,
cdf_nbuf_t *head_msdu, cdf_nbuf_t *tail_msdu);
/*
* htt_rx_frag_pop -
* global function pointer that is programmed during attach to point
* to either htt_rx_amsdu_pop_ll
*/
int (*htt_rx_frag_pop)(htt_pdev_handle pdev,
cdf_nbuf_t rx_ind_msg,
cdf_nbuf_t *head_msdu, cdf_nbuf_t *tail_msdu);
int
(*htt_rx_offload_msdu_pop)(htt_pdev_handle pdev,
cdf_nbuf_t offload_deliver_msg,
int *vdev_id,
int *peer_id,
int *tid,
uint8_t *fw_desc,
cdf_nbuf_t *head_buf, cdf_nbuf_t *tail_buf);
void * (*htt_rx_mpdu_desc_list_next)(htt_pdev_handle pdev,
cdf_nbuf_t rx_ind_msg);
bool (*htt_rx_mpdu_desc_retry)(
htt_pdev_handle pdev, void *mpdu_desc);
uint16_t (*htt_rx_mpdu_desc_seq_num)(htt_pdev_handle pdev, void *mpdu_desc);
void (*htt_rx_mpdu_desc_pn)(htt_pdev_handle pdev,
void *mpdu_desc,
union htt_rx_pn_t *pn, int pn_len_bits);
uint8_t (*htt_rx_mpdu_desc_tid)(
htt_pdev_handle pdev, void *mpdu_desc);
bool (*htt_rx_msdu_desc_completes_mpdu)(htt_pdev_handle pdev, void *msdu_desc);
bool (*htt_rx_msdu_first_msdu_flag)(htt_pdev_handle pdev, void *msdu_desc);
int (*htt_rx_msdu_has_wlan_mcast_flag)(htt_pdev_handle pdev, void *msdu_desc);
bool (*htt_rx_msdu_is_wlan_mcast)(htt_pdev_handle pdev, void *msdu_desc);
int (*htt_rx_msdu_is_frag)(htt_pdev_handle pdev, void *msdu_desc);
void * (*htt_rx_msdu_desc_retrieve)(htt_pdev_handle pdev, cdf_nbuf_t msdu);
bool (*htt_rx_mpdu_is_encrypted)(htt_pdev_handle pdev, void *mpdu_desc);
bool (*htt_rx_msdu_desc_key_id)(htt_pdev_handle pdev,
void *mpdu_desc, uint8_t *key_id);
void *htt_rx_mpdu_desc_list_next_ll(htt_pdev_handle pdev, cdf_nbuf_t rx_ind_msg)
{
int idx = pdev->rx_ring.sw_rd_idx.msdu_desc;
cdf_nbuf_t netbuf = pdev->rx_ring.buf.netbufs_ring[idx];
pdev->rx_ring.sw_rd_idx.msdu_desc = pdev->rx_ring.sw_rd_idx.msdu_payld;
return (void *)htt_rx_desc(netbuf);
}
bool (*htt_rx_msdu_chan_info_present)(
htt_pdev_handle pdev,
void *mpdu_desc);
bool (*htt_rx_msdu_center_freq)(
htt_pdev_handle pdev,
struct ol_txrx_peer_t *peer,
void *mpdu_desc,
uint16_t *primary_chan_center_freq_mhz,
uint16_t *contig_chan1_center_freq_mhz,
uint16_t *contig_chan2_center_freq_mhz,
uint8_t *phy_mode);
void *htt_rx_in_ord_mpdu_desc_list_next_ll(htt_pdev_handle pdev,
cdf_nbuf_t netbuf)
{
return (void *)htt_rx_desc(netbuf);
}
void *htt_rx_msdu_desc_retrieve_ll(htt_pdev_handle pdev, cdf_nbuf_t msdu)
{
return htt_rx_desc(msdu);
}
bool htt_rx_mpdu_is_encrypted_ll(htt_pdev_handle pdev, void *mpdu_desc)
{
struct htt_host_rx_desc_base *rx_desc =
(struct htt_host_rx_desc_base *)mpdu_desc;
return (((*((uint32_t *) &rx_desc->mpdu_start)) &
RX_MPDU_START_0_ENCRYPTED_MASK) >>
RX_MPDU_START_0_ENCRYPTED_LSB) ? true : false;
}
bool htt_rx_msdu_chan_info_present_ll(htt_pdev_handle pdev, void *mpdu_desc)
{
return false;
}
bool htt_rx_msdu_center_freq_ll(htt_pdev_handle pdev,
struct ol_txrx_peer_t *peer,
void *mpdu_desc,
uint16_t *primary_chan_center_freq_mhz,
uint16_t *contig_chan1_center_freq_mhz,
uint16_t *contig_chan2_center_freq_mhz,
uint8_t *phy_mode)
{
if (primary_chan_center_freq_mhz)
*primary_chan_center_freq_mhz = 0;
if (contig_chan1_center_freq_mhz)
*contig_chan1_center_freq_mhz = 0;
if (contig_chan2_center_freq_mhz)
*contig_chan2_center_freq_mhz = 0;
if (phy_mode)
*phy_mode = 0;
return false;
}
bool
htt_rx_msdu_desc_key_id_ll(htt_pdev_handle pdev, void *mpdu_desc,
uint8_t *key_id)
{
struct htt_host_rx_desc_base *rx_desc = (struct htt_host_rx_desc_base *)
mpdu_desc;
if (!htt_rx_msdu_first_msdu_flag_ll(pdev, mpdu_desc))
return false;
*key_id = ((*(((uint32_t *) &rx_desc->msdu_end) + 1)) &
(RX_MSDU_END_1_KEY_ID_OCT_MASK >>
RX_MSDU_END_1_KEY_ID_OCT_LSB));
return true;
}
void htt_rx_desc_frame_free(htt_pdev_handle htt_pdev, cdf_nbuf_t msdu)
{
cdf_nbuf_free(msdu);
}
void htt_rx_msdu_desc_free(htt_pdev_handle htt_pdev, cdf_nbuf_t msdu)
{
/*
* The rx descriptor is in the same buffer as the rx MSDU payload,
* and does not need to be freed separately.
*/
}
void htt_rx_msdu_buff_replenish(htt_pdev_handle pdev)
{
if (cdf_atomic_dec_and_test(&pdev->rx_ring.refill_ref_cnt)) {
int num_to_fill;
num_to_fill = pdev->rx_ring.fill_level -
pdev->rx_ring.fill_cnt;
htt_rx_ring_fill_n(pdev,
num_to_fill /* okay if <= 0 */);
}
cdf_atomic_inc(&pdev->rx_ring.refill_ref_cnt);
}
#define AR600P_ASSEMBLE_HW_RATECODE(_rate, _nss, _pream) \
(((_pream) << 6) | ((_nss) << 4) | (_rate))
enum AR600P_HW_RATECODE_PREAM_TYPE {
AR600P_HW_RATECODE_PREAM_OFDM,
AR600P_HW_RATECODE_PREAM_CCK,
AR600P_HW_RATECODE_PREAM_HT,
AR600P_HW_RATECODE_PREAM_VHT,
};
/*--- RX In Order Hash Code --------------------------------------------------*/
/* Initializes the circular linked list */
static inline void htt_list_init(struct htt_list_node *head)
{
head->prev = head;
head->next = head;
}
/* Adds entry to the end of the linked list */
static inline void htt_list_add_tail(struct htt_list_node *head,
struct htt_list_node *node)
{
head->prev->next = node;
node->prev = head->prev;
node->next = head;
head->prev = node;
}
/* Removes the entry corresponding to the input node from the linked list */
static inline void htt_list_remove(struct htt_list_node *node)
{
node->prev->next = node->next;
node->next->prev = node->prev;
}
/* Helper macro to iterate through the linked list */
#define HTT_LIST_ITER_FWD(iter, head) for (iter = (head)->next; \
(iter) != (head); \
(iter) = (iter)->next) \
#ifdef RX_HASH_DEBUG
/* Hash cookie related macros */
#define HTT_RX_HASH_COOKIE 0xDEED
#define HTT_RX_HASH_COOKIE_SET(hash_element) \
((hash_element)->cookie = HTT_RX_HASH_COOKIE)
#define HTT_RX_HASH_COOKIE_CHECK(hash_element) \
HTT_ASSERT_ALWAYS((hash_element)->cookie == HTT_RX_HASH_COOKIE)
/* Hash count related macros */
#define HTT_RX_HASH_COUNT_INCR(hash_bucket) \
((hash_bucket).count++)
#define HTT_RX_HASH_COUNT_DECR(hash_bucket) \
((hash_bucket).count--)
#define HTT_RX_HASH_COUNT_RESET(hash_bucket) ((hash_bucket).count = 0)
#define HTT_RX_HASH_COUNT_PRINT(hash_bucket) \
RX_HASH_LOG(cdf_print(" count %d\n", (hash_bucket).count))
#else /* RX_HASH_DEBUG */
/* Hash cookie related macros */
#define HTT_RX_HASH_COOKIE_SET(hash_element) /* no-op */
#define HTT_RX_HASH_COOKIE_CHECK(hash_element) /* no-op */
/* Hash count related macros */
#define HTT_RX_HASH_COUNT_INCR(hash_bucket) /* no-op */
#define HTT_RX_HASH_COUNT_DECR(hash_bucket) /* no-op */
#define HTT_RX_HASH_COUNT_PRINT(hash_bucket) /* no-op */
#define HTT_RX_HASH_COUNT_RESET(hash_bucket) /* no-op */
#endif /* RX_HASH_DEBUG */
/* Inserts the given "physical address - network buffer" pair into the
hash table for the given pdev. This function will do the following:
1. Determine which bucket to insert the pair into
2. First try to allocate the hash entry for this pair from the pre-allocated
entries list
3. If there are no more entries in the pre-allocated entries list, allocate
the hash entry from the hash memory pool
Note: this function is not thread-safe
Returns 0 - success, 1 - failure */
int
htt_rx_hash_list_insert(struct htt_pdev_t *pdev, uint32_t paddr,
cdf_nbuf_t netbuf)
{
int i;
struct htt_rx_hash_entry *hash_element = NULL;
i = RX_HASH_FUNCTION(paddr);
/* Check if there are any entries in the pre-allocated free list */
if (pdev->rx_ring.hash_table[i].freepool.next !=
&pdev->rx_ring.hash_table[i].freepool) {
hash_element =
(struct htt_rx_hash_entry *)(
(char *)
pdev->rx_ring.hash_table[i].freepool.next -
pdev->rx_ring.listnode_offset);
if (cdf_unlikely(NULL == hash_element)) {
HTT_ASSERT_ALWAYS(0);
return 1;
}
htt_list_remove(pdev->rx_ring.hash_table[i].freepool.next);
} else {
hash_element = cdf_mem_malloc(sizeof(struct htt_rx_hash_entry));
if (cdf_unlikely(NULL == hash_element)) {
HTT_ASSERT_ALWAYS(0);
return 1;
}
hash_element->fromlist = 0;
}
hash_element->netbuf = netbuf;
hash_element->paddr = paddr;
HTT_RX_HASH_COOKIE_SET(hash_element);
htt_list_add_tail(&pdev->rx_ring.hash_table[i].listhead,
&hash_element->listnode);
RX_HASH_LOG(cdf_print("rx hash: %s: paddr 0x%x netbuf %p bucket %d\n",
__func__, paddr, netbuf, (int)i));
HTT_RX_HASH_COUNT_INCR(pdev->rx_ring.hash_table[i]);
HTT_RX_HASH_COUNT_PRINT(pdev->rx_ring.hash_table[i]);
return 0;
}
/* Given a physical address this function will find the corresponding network
buffer from the hash table.
Note: this function is not thread-safe */
cdf_nbuf_t htt_rx_hash_list_lookup(struct htt_pdev_t *pdev, uint32_t paddr)
{
uint32_t i;
struct htt_list_node *list_iter = NULL;
cdf_nbuf_t netbuf = NULL;
struct htt_rx_hash_entry *hash_entry;
i = RX_HASH_FUNCTION(paddr);
HTT_LIST_ITER_FWD(list_iter, &pdev->rx_ring.hash_table[i].listhead) {
hash_entry = (struct htt_rx_hash_entry *)
((char *)list_iter -
pdev->rx_ring.listnode_offset);
HTT_RX_HASH_COOKIE_CHECK(hash_entry);
if (hash_entry->paddr == paddr) {
/* Found the entry corresponding to paddr */
netbuf = hash_entry->netbuf;
htt_list_remove(&hash_entry->listnode);
HTT_RX_HASH_COUNT_DECR(pdev->rx_ring.hash_table[i]);
/* if the rx entry is from the pre-allocated list,
return it */
if (hash_entry->fromlist)
htt_list_add_tail(&pdev->rx_ring.hash_table[i].
freepool,
&hash_entry->listnode);
else
cdf_mem_free(hash_entry);
break;
}
}
RX_HASH_LOG(cdf_print("rx hash: %s: paddr 0x%x, netbuf %p, bucket %d\n",
__func__, paddr, netbuf, (int)i));
HTT_RX_HASH_COUNT_PRINT(pdev->rx_ring.hash_table[i]);
if (netbuf == NULL) {
cdf_print("rx hash: %s: no entry found for 0x%x!!!\n",
__func__, paddr);
HTT_ASSERT_ALWAYS(0);
}
return netbuf;
}
/* Initialization function of the rx buffer hash table. This function will
allocate a hash table of a certain pre-determined size and initialize all
the elements */
int htt_rx_hash_init(struct htt_pdev_t *pdev)
{
int i, j;
HTT_ASSERT2(IS_PWR2(RX_NUM_HASH_BUCKETS));
pdev->rx_ring.hash_table =
cdf_mem_malloc(RX_NUM_HASH_BUCKETS *
sizeof(struct htt_rx_hash_bucket));
if (NULL == pdev->rx_ring.hash_table) {
cdf_print("rx hash table allocation failed!\n");
return 1;
}
for (i = 0; i < RX_NUM_HASH_BUCKETS; i++) {
HTT_RX_HASH_COUNT_RESET(pdev->rx_ring.hash_table[i]);
/* initialize the hash table buckets */
htt_list_init(&pdev->rx_ring.hash_table[i].listhead);
/* initialize the hash table free pool per bucket */
htt_list_init(&pdev->rx_ring.hash_table[i].freepool);
/* pre-allocate a pool of entries for this bucket */
pdev->rx_ring.hash_table[i].entries =
cdf_mem_malloc(RX_ENTRIES_SIZE *
sizeof(struct htt_rx_hash_entry));
if (NULL == pdev->rx_ring.hash_table[i].entries) {
cdf_print("rx hash bucket %d entries alloc failed\n",
(int)i);
while (i) {
i--;
cdf_mem_free(pdev->rx_ring.hash_table[i].
entries);
}
cdf_mem_free(pdev->rx_ring.hash_table);
pdev->rx_ring.hash_table = NULL;
return 1;
}
/* initialize the free list with pre-allocated entries */
for (j = 0; j < RX_ENTRIES_SIZE; j++) {
pdev->rx_ring.hash_table[i].entries[j].fromlist = 1;
htt_list_add_tail(&pdev->rx_ring.hash_table[i].freepool,
&pdev->rx_ring.hash_table[i].
entries[j].listnode);
}
}
pdev->rx_ring.listnode_offset =
cdf_offsetof(struct htt_rx_hash_entry, listnode);
return 0;
}
void htt_rx_hash_dump_table(struct htt_pdev_t *pdev)
{
uint32_t i;
struct htt_rx_hash_entry *hash_entry;
struct htt_list_node *list_iter = NULL;
for (i = 0; i < RX_NUM_HASH_BUCKETS; i++) {
HTT_LIST_ITER_FWD(list_iter,
&pdev->rx_ring.hash_table[i].listhead) {
hash_entry =
(struct htt_rx_hash_entry *)((char *)list_iter -
pdev->rx_ring.
listnode_offset);
cdf_print("hash_table[%d]: netbuf %p paddr 0x%x\n", i,
hash_entry->netbuf, hash_entry->paddr);
}
}
}
/*--- RX In Order Hash Code --------------------------------------------------*/
/* move the function to the end of file
* to omit ll/hl pre-declaration
*/
int htt_rx_attach(struct htt_pdev_t *pdev)
{
cdf_dma_addr_t paddr;
#if HTT_PADDR64
uint32_t ring_elem_size = sizeof(uint64_t);
#else
uint32_t ring_elem_size = sizeof(uint32_t);
#endif /* HTT_PADDR64 */
pdev->rx_ring.size = htt_rx_ring_size(pdev);
HTT_ASSERT2(IS_PWR2(pdev->rx_ring.size));
pdev->rx_ring.size_mask = pdev->rx_ring.size - 1;
/*
* Set the initial value for the level to which the rx ring
* should be filled, based on the max throughput and the worst
* likely latency for the host to fill the rx ring.
* In theory, this fill level can be dynamically adjusted from
* the initial value set here to reflect the actual host latency
* rather than a conservative assumption.
*/
pdev->rx_ring.fill_level = htt_rx_ring_fill_level(pdev);
if (pdev->cfg.is_full_reorder_offload) {
if (htt_rx_hash_init(pdev))
goto fail1;
/* allocate the target index */
pdev->rx_ring.target_idx.vaddr =
cdf_os_mem_alloc_consistent(pdev->osdev,
sizeof(uint32_t),
&paddr,
cdf_get_dma_mem_context(
(&pdev->rx_ring.target_idx),
memctx));
if (!pdev->rx_ring.target_idx.vaddr)
goto fail1;
pdev->rx_ring.target_idx.paddr = paddr;
*pdev->rx_ring.target_idx.vaddr = 0;
} else {
pdev->rx_ring.buf.netbufs_ring =
cdf_mem_malloc(pdev->rx_ring.size * sizeof(cdf_nbuf_t));
if (!pdev->rx_ring.buf.netbufs_ring)
goto fail1;
pdev->rx_ring.sw_rd_idx.msdu_payld = 0;
pdev->rx_ring.sw_rd_idx.msdu_desc = 0;
}
pdev->rx_ring.buf.paddrs_ring =
cdf_os_mem_alloc_consistent(
pdev->osdev,
pdev->rx_ring.size * ring_elem_size,
&paddr,
cdf_get_dma_mem_context(
(&pdev->rx_ring.buf),
memctx));
if (!pdev->rx_ring.buf.paddrs_ring)
goto fail2;
pdev->rx_ring.base_paddr = paddr;
pdev->rx_ring.alloc_idx.vaddr =
cdf_os_mem_alloc_consistent(
pdev->osdev,
sizeof(uint32_t),
&paddr,
cdf_get_dma_mem_context(
(&pdev->rx_ring.alloc_idx),
memctx));
if (!pdev->rx_ring.alloc_idx.vaddr)
goto fail3;
pdev->rx_ring.alloc_idx.paddr = paddr;
*pdev->rx_ring.alloc_idx.vaddr = 0;
/*
* Initialize the Rx refill reference counter to be one so that
* only one thread is allowed to refill the Rx ring.
*/
cdf_atomic_init(&pdev->rx_ring.refill_ref_cnt);
cdf_atomic_inc(&pdev->rx_ring.refill_ref_cnt);
/* Initialize the Rx refill retry timer */
cdf_softirq_timer_init(pdev->osdev,
&pdev->rx_ring.refill_retry_timer,
htt_rx_ring_refill_retry, (void *)pdev,
CDF_TIMER_TYPE_SW);
pdev->rx_ring.fill_cnt = 0;
#ifdef DEBUG_DMA_DONE
pdev->rx_ring.dbg_ring_idx = 0;
pdev->rx_ring.dbg_refill_cnt = 0;
pdev->rx_ring.dbg_sync_success = 0;
#endif
#ifdef HTT_RX_RESTORE
pdev->rx_ring.rx_reset = 0;
pdev->rx_ring.htt_rx_restore = 0;
#endif
htt_rx_ring_fill_n(pdev, pdev->rx_ring.fill_level);
if (pdev->cfg.is_full_reorder_offload) {
cdf_print("HTT: full reorder offload enabled\n");
htt_rx_amsdu_pop = htt_rx_amsdu_rx_in_order_pop_ll;
htt_rx_frag_pop = htt_rx_amsdu_rx_in_order_pop_ll;
htt_rx_mpdu_desc_list_next =
htt_rx_in_ord_mpdu_desc_list_next_ll;
} else {
htt_rx_amsdu_pop = htt_rx_amsdu_pop_ll;
htt_rx_frag_pop = htt_rx_amsdu_pop_ll;
htt_rx_mpdu_desc_list_next = htt_rx_mpdu_desc_list_next_ll;
}
htt_rx_offload_msdu_pop = htt_rx_offload_msdu_pop_ll;
htt_rx_mpdu_desc_retry = htt_rx_mpdu_desc_retry_ll;
htt_rx_mpdu_desc_seq_num = htt_rx_mpdu_desc_seq_num_ll;
htt_rx_mpdu_desc_pn = htt_rx_mpdu_desc_pn_ll;
htt_rx_mpdu_desc_tid = htt_rx_mpdu_desc_tid_ll;
htt_rx_msdu_desc_completes_mpdu = htt_rx_msdu_desc_completes_mpdu_ll;
htt_rx_msdu_first_msdu_flag = htt_rx_msdu_first_msdu_flag_ll;
htt_rx_msdu_has_wlan_mcast_flag = htt_rx_msdu_has_wlan_mcast_flag_ll;
htt_rx_msdu_is_wlan_mcast = htt_rx_msdu_is_wlan_mcast_ll;
htt_rx_msdu_is_frag = htt_rx_msdu_is_frag_ll;
htt_rx_msdu_desc_retrieve = htt_rx_msdu_desc_retrieve_ll;
htt_rx_mpdu_is_encrypted = htt_rx_mpdu_is_encrypted_ll;
htt_rx_msdu_desc_key_id = htt_rx_msdu_desc_key_id_ll;
htt_rx_msdu_chan_info_present = htt_rx_msdu_chan_info_present_ll;
htt_rx_msdu_center_freq = htt_rx_msdu_center_freq_ll;
return 0; /* success */
fail3:
cdf_os_mem_free_consistent(pdev->osdev,
pdev->rx_ring.size * sizeof(uint32_t),
pdev->rx_ring.buf.paddrs_ring,
pdev->rx_ring.base_paddr,
cdf_get_dma_mem_context((&pdev->rx_ring.buf),
memctx));
fail2:
if (pdev->cfg.is_full_reorder_offload) {
cdf_os_mem_free_consistent(pdev->osdev,
sizeof(uint32_t),
pdev->rx_ring.target_idx.vaddr,
pdev->rx_ring.target_idx.paddr,
cdf_get_dma_mem_context((&pdev->
rx_ring.
target_idx),
memctx));
htt_rx_hash_deinit(pdev);
} else {
cdf_mem_free(pdev->rx_ring.buf.netbufs_ring);
}
fail1:
return 1; /* failure */
}
#ifdef IPA_OFFLOAD
int htt_rx_ipa_uc_attach(struct htt_pdev_t *pdev,
unsigned int rx_ind_ring_elements)
{
/* Allocate RX indication ring */
/* RX IND ring element
* 4bytes: pointer
* 2bytes: VDEV ID
* 2bytes: length */
pdev->ipa_uc_rx_rsc.rx_ind_ring_base.vaddr =
cdf_os_mem_alloc_consistent(
pdev->osdev,
rx_ind_ring_elements *
sizeof(struct ipa_uc_rx_ring_elem_t),
&pdev->ipa_uc_rx_rsc.rx_ind_ring_base.paddr,
cdf_get_dma_mem_context((&pdev->ipa_uc_rx_rsc.
rx_ind_ring_base),
memctx));
if (!pdev->ipa_uc_rx_rsc.rx_ind_ring_base.vaddr) {
cdf_print("%s: RX IND RING alloc fail", __func__);
return -ENOBUFS;
}
/* RX indication ring size, by bytes */
pdev->ipa_uc_rx_rsc.rx_ind_ring_size =
rx_ind_ring_elements * sizeof(struct ipa_uc_rx_ring_elem_t);
cdf_mem_zero(pdev->ipa_uc_rx_rsc.rx_ind_ring_base.vaddr,
pdev->ipa_uc_rx_rsc.rx_ind_ring_size);
/* Allocate RX process done index */
pdev->ipa_uc_rx_rsc.rx_ipa_prc_done_idx.vaddr =
cdf_os_mem_alloc_consistent(
pdev->osdev,
4,
&pdev->ipa_uc_rx_rsc.rx_ipa_prc_done_idx.paddr,
cdf_get_dma_mem_context((&pdev->ipa_uc_rx_rsc.
rx_ipa_prc_done_idx),
memctx));
if (!pdev->ipa_uc_rx_rsc.rx_ipa_prc_done_idx.vaddr) {
cdf_print("%s: RX PROC DONE IND alloc fail", __func__);
cdf_os_mem_free_consistent(
pdev->osdev,
pdev->ipa_uc_rx_rsc.rx_ind_ring_size,
pdev->ipa_uc_rx_rsc.rx_ind_ring_base.vaddr,
pdev->ipa_uc_rx_rsc.rx_ind_ring_base.paddr,
cdf_get_dma_mem_context((&pdev->ipa_uc_rx_rsc.
rx_ind_ring_base),
memctx));
return -ENOBUFS;
}
cdf_mem_zero(pdev->ipa_uc_rx_rsc.rx_ipa_prc_done_idx.vaddr, 4);
/* Allocate RX2 indication ring */
/* RX2 IND ring element
* 4bytes: pointer
* 2bytes: VDEV ID
* 2bytes: length */
pdev->ipa_uc_rx_rsc.rx2_ind_ring_base.vaddr =
cdf_os_mem_alloc_consistent(
pdev->osdev,
rx_ind_ring_elements *
sizeof(struct ipa_uc_rx_ring_elem_t),
&pdev->ipa_uc_rx_rsc.rx2_ind_ring_base.paddr,
cdf_get_dma_mem_context((&pdev->ipa_uc_rx_rsc.
rx2_ind_ring_base),
memctx));
if (!pdev->ipa_uc_rx_rsc.rx2_ind_ring_base.vaddr) {
cdf_print("%s: RX IND RING alloc fail", __func__);
return -ENOBUFS;
}
/* RX indication ring size, by bytes */
pdev->ipa_uc_rx_rsc.rx2_ind_ring_size =
rx_ind_ring_elements * sizeof(struct ipa_uc_rx_ring_elem_t);
cdf_mem_zero(pdev->ipa_uc_rx_rsc.rx2_ind_ring_base.vaddr,
pdev->ipa_uc_rx_rsc.rx2_ind_ring_size);
/* Allocate RX process done index */
pdev->ipa_uc_rx_rsc.rx2_ipa_prc_done_idx.vaddr =
cdf_os_mem_alloc_consistent(
pdev->osdev,
4,
&pdev->ipa_uc_rx_rsc.rx2_ipa_prc_done_idx.paddr,
cdf_get_dma_mem_context((&pdev->ipa_uc_rx_rsc.
rx_ipa_prc_done_idx),
memctx));
if (!pdev->ipa_uc_rx_rsc.rx2_ipa_prc_done_idx.vaddr) {
cdf_print("%s: RX PROC DONE IND alloc fail", __func__);
cdf_os_mem_free_consistent(
pdev->osdev,
pdev->ipa_uc_rx_rsc.rx2_ind_ring_size,
pdev->ipa_uc_rx_rsc.rx2_ind_ring_base.vaddr,
pdev->ipa_uc_rx_rsc.rx2_ind_ring_base.paddr,
cdf_get_dma_mem_context((&pdev->ipa_uc_rx_rsc.
rx2_ind_ring_base),
memctx));
return -ENOBUFS;
}
cdf_mem_zero(pdev->ipa_uc_rx_rsc.rx2_ipa_prc_done_idx.vaddr, 4);
return 0;
}
int htt_rx_ipa_uc_detach(struct htt_pdev_t *pdev)
{
if (pdev->ipa_uc_rx_rsc.rx_ind_ring_base.vaddr) {
cdf_os_mem_free_consistent(
pdev->osdev,
pdev->ipa_uc_rx_rsc.rx_ind_ring_size,
pdev->ipa_uc_rx_rsc.rx_ind_ring_base.vaddr,
pdev->ipa_uc_rx_rsc.rx_ind_ring_base.paddr,
cdf_get_dma_mem_context((&pdev->ipa_uc_rx_rsc.
rx_ind_ring_base),
memctx));
}
if (pdev->ipa_uc_rx_rsc.rx_ipa_prc_done_idx.vaddr) {
cdf_os_mem_free_consistent(
pdev->osdev,
4,
pdev->ipa_uc_rx_rsc.
rx_ipa_prc_done_idx.vaddr,
pdev->ipa_uc_rx_rsc.rx_ipa_prc_done_idx.paddr,
cdf_get_dma_mem_context((&pdev->ipa_uc_rx_rsc.
rx_ipa_prc_done_idx),
memctx));
}
if (pdev->ipa_uc_rx_rsc.rx2_ind_ring_base.vaddr) {
cdf_os_mem_free_consistent(
pdev->osdev,
pdev->ipa_uc_rx_rsc.rx2_ind_ring_size,
pdev->ipa_uc_rx_rsc.rx2_ind_ring_base.vaddr,
pdev->ipa_uc_rx_rsc.rx2_ind_ring_base.paddr,
cdf_get_dma_mem_context((&pdev->ipa_uc_rx_rsc.
rx2_ind_ring_base),
memctx));
}
if (pdev->ipa_uc_rx_rsc.rx2_ipa_prc_done_idx.vaddr) {
cdf_os_mem_free_consistent(
pdev->osdev,
4,
pdev->ipa_uc_rx_rsc.
rx_ipa_prc_done_idx.vaddr,
pdev->ipa_uc_rx_rsc.rx2_ipa_prc_done_idx.paddr,
cdf_get_dma_mem_context((&pdev->ipa_uc_rx_rsc.
rx_ipa_prc_done_idx),
memctx));
}
return 0;
}
#endif /* IPA_OFFLOAD */