blob: c7efbc12fd18438620ecf9f1bc5a93178d857d90 [file] [log] [blame]
/*
* Copyright (c) 2013-2015 The Linux Foundation. All rights reserved.
*
* Previously licensed under the ISC license by Qualcomm Atheros, Inc.
*
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This file was originally distributed by Qualcomm Atheros, Inc.
* under proprietary terms before Copyright ownership was assigned
* to the Linux Foundation.
*/
/**
* DOC: wlan_hdd_ipa.c
*
* WLAN HDD and ipa interface implementation
* Originally written by Qualcomm Atheros, Inc
*/
#ifdef IPA_OFFLOAD
/* Include Files */
#include <wlan_hdd_includes.h>
#include <wlan_hdd_ipa.h>
#include <linux/etherdevice.h>
#include <linux/atomic.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/list.h>
#include <linux/debugfs.h>
#include <linux/inetdevice.h>
#include <linux/ip.h>
#include <wlan_hdd_softap_tx_rx.h>
#include <ol_txrx_osif_api.h>
#include "cds_sched.h"
#include "wma.h"
#include "wma_api.h"
#define HDD_IPA_DESC_BUFFER_RATIO 4
#define HDD_IPA_IPV4_NAME_EXT "_ipv4"
#define HDD_IPA_IPV6_NAME_EXT "_ipv6"
#define HDD_IPA_RX_INACTIVITY_MSEC_DELAY 1000
#define HDD_IPA_UC_WLAN_HDR_DES_MAC_OFFSET 12
#define HDD_IPA_UC_WLAN_8023_HDR_SIZE 14
/* WDI TX and RX PIPE */
#define HDD_IPA_UC_NUM_WDI_PIPE 2
#define HDD_IPA_UC_MAX_PENDING_EVENT 33
#define HDD_IPA_UC_DEBUG_DUMMY_MEM_SIZE 32000
#define HDD_IPA_UC_RT_DEBUG_PERIOD 300
#define HDD_IPA_UC_RT_DEBUG_BUF_COUNT 30
#define HDD_IPA_UC_RT_DEBUG_FILL_INTERVAL 10000
#define HDD_IPA_WLAN_HDR_DES_MAC_OFFSET 0
#define HDD_IPA_MAX_IFACE 3
#define HDD_IPA_MAX_SYSBAM_PIPE 4
#define HDD_IPA_RX_PIPE HDD_IPA_MAX_IFACE
#define HDD_IPA_ENABLE_MASK BIT(0)
#define HDD_IPA_PRE_FILTER_ENABLE_MASK BIT(1)
#define HDD_IPA_IPV6_ENABLE_MASK BIT(2)
#define HDD_IPA_RM_ENABLE_MASK BIT(3)
#define HDD_IPA_CLK_SCALING_ENABLE_MASK BIT(4)
#define HDD_IPA_UC_ENABLE_MASK BIT(5)
#define HDD_IPA_UC_STA_ENABLE_MASK BIT(6)
#define HDD_IPA_REAL_TIME_DEBUGGING BIT(8)
typedef enum {
HDD_IPA_UC_OPCODE_TX_SUSPEND = 0,
HDD_IPA_UC_OPCODE_TX_RESUME = 1,
HDD_IPA_UC_OPCODE_RX_SUSPEND = 2,
HDD_IPA_UC_OPCODE_RX_RESUME = 3,
HDD_IPA_UC_OPCODE_STATS = 4,
/* keep this last */
HDD_IPA_UC_OPCODE_MAX
} hdd_ipa_uc_op_code;
/**
* enum - Reason codes for stat query
*
* @HDD_IPA_UC_STAT_REASON_NONE: Initial value
* @HDD_IPA_UC_STAT_REASON_DEBUG: For debug/info
* @HDD_IPA_UC_STAT_REASON_BW_CAL: For bandwidth calibration
*/
enum {
HDD_IPA_UC_STAT_REASON_NONE,
HDD_IPA_UC_STAT_REASON_DEBUG,
HDD_IPA_UC_STAT_REASON_BW_CAL
};
/**
* enum hdd_ipa_rm_state - IPA resource manager state
* @HDD_IPA_RM_RELEASED: PROD pipe resource released
* @HDD_IPA_RM_GRANT_PENDING: PROD pipe resource requested but not granted yet
* @HDD_IPA_RM_GRANTED: PROD pipe resource granted
*/
enum hdd_ipa_rm_state {
HDD_IPA_RM_RELEASED,
HDD_IPA_RM_GRANT_PENDING,
HDD_IPA_RM_GRANTED,
};
struct llc_snap_hdr {
uint8_t dsap;
uint8_t ssap;
uint8_t resv[4];
__be16 eth_type;
} __packed;
struct hdd_ipa_tx_hdr {
struct ethhdr eth;
struct llc_snap_hdr llc_snap;
} __packed;
struct frag_header {
uint32_t
length:16, /* length field is LSB of the FRAG DESC */
reserved16:16;
uint32_t reserved32;
} __packed;
struct ipa_header {
uint32_t
vdev_id:8, /* vdev_id field is LSB of IPA DESC */
reserved:24;
} __packed;
struct hdd_ipa_uc_tx_hdr {
struct frag_header frag_hd;
struct ipa_header ipa_hd;
struct ethhdr eth;
} __packed;
#define HDD_IPA_WLAN_FRAG_HEADER sizeof(struct frag_header)
#define HDD_IPA_WLAN_IPA_HEADER sizeof(struct frag_header)
/**
* struct hdd_ipa_cld_hdr - IPA CLD Header
* @reserved: reserved fields
* @iface_id: interface ID
* @sta_id: Station ID
*
* Packed 32-bit structure
* +----------+----------+--------------+--------+
* | Reserved | QCMAP ID | interface id | STA ID |
* +----------+----------+--------------+--------+
*/
struct hdd_ipa_cld_hdr {
uint8_t reserved[2];
uint8_t iface_id;
uint8_t sta_id;
} __packed;
struct hdd_ipa_rx_hdr {
struct hdd_ipa_cld_hdr cld_hdr;
struct ethhdr eth;
} __packed;
struct hdd_ipa_pm_tx_cb {
struct hdd_ipa_iface_context *iface_context;
struct ipa_rx_data *ipa_tx_desc;
};
struct hdd_ipa_uc_rx_hdr {
struct ethhdr eth;
} __packed;
struct hdd_ipa_sys_pipe {
uint32_t conn_hdl;
uint8_t conn_hdl_valid;
struct ipa_sys_connect_params ipa_sys_params;
};
struct hdd_ipa_iface_stats {
uint64_t num_tx;
uint64_t num_tx_drop;
uint64_t num_tx_err;
uint64_t num_tx_cac_drop;
uint64_t num_rx_prefilter;
uint64_t num_rx_ipa_excep;
uint64_t num_rx_recv;
uint64_t num_rx_recv_mul;
uint64_t num_rx_send_desc_err;
uint64_t max_rx_mul;
};
struct hdd_ipa_priv;
struct hdd_ipa_iface_context {
struct hdd_ipa_priv *hdd_ipa;
hdd_adapter_t *adapter;
void *tl_context;
enum ipa_client_type cons_client;
enum ipa_client_type prod_client;
uint8_t iface_id; /* This iface ID */
uint8_t sta_id; /* This iface station ID */
cdf_spinlock_t interface_lock;
uint32_t ifa_address;
struct hdd_ipa_iface_stats stats;
};
struct hdd_ipa_stats {
uint32_t event[IPA_WLAN_EVENT_MAX];
uint64_t num_send_msg;
uint64_t num_free_msg;
uint64_t num_rm_grant;
uint64_t num_rm_release;
uint64_t num_rm_grant_imm;
uint64_t num_cons_perf_req;
uint64_t num_prod_perf_req;
uint64_t num_rx_drop;
uint64_t num_rx_ipa_tx_dp;
uint64_t num_rx_ipa_splice;
uint64_t num_rx_ipa_loop;
uint64_t num_rx_ipa_tx_dp_err;
uint64_t num_rx_ipa_write_done;
uint64_t num_max_ipa_tx_mul;
uint64_t num_rx_ipa_hw_maxed_out;
uint64_t max_pend_q_cnt;
uint64_t num_tx_comp_cnt;
uint64_t num_tx_queued;
uint64_t num_tx_dequeued;
uint64_t num_max_pm_queue;
uint64_t num_freeq_empty;
uint64_t num_pri_freeq_empty;
uint64_t num_rx_excep;
uint64_t num_tx_bcmc;
uint64_t num_tx_bcmc_err;
};
struct ipa_uc_stas_map {
bool is_reserved;
uint8_t sta_id;
};
struct op_msg_type {
uint8_t msg_t;
uint8_t rsvd;
uint16_t op_code;
uint16_t len;
uint16_t rsvd_snd;
};
struct ipa_uc_fw_stats {
uint32_t tx_comp_ring_base;
uint32_t tx_comp_ring_size;
uint32_t tx_comp_ring_dbell_addr;
uint32_t tx_comp_ring_dbell_ind_val;
uint32_t tx_comp_ring_dbell_cached_val;
uint32_t tx_pkts_enqueued;
uint32_t tx_pkts_completed;
uint32_t tx_is_suspend;
uint32_t tx_reserved;
uint32_t rx_ind_ring_base;
uint32_t rx_ind_ring_size;
uint32_t rx_ind_ring_dbell_addr;
uint32_t rx_ind_ring_dbell_ind_val;
uint32_t rx_ind_ring_dbell_ind_cached_val;
uint32_t rx_ind_ring_rdidx_addr;
uint32_t rx_ind_ring_rd_idx_cached_val;
uint32_t rx_refill_idx;
uint32_t rx_num_pkts_indicated;
uint32_t rx_buf_refilled;
uint32_t rx_num_ind_drop_no_space;
uint32_t rx_num_ind_drop_no_buf;
uint32_t rx_is_suspend;
uint32_t rx_reserved;
};
struct ipa_uc_pending_event {
cdf_list_node_t node;
hdd_adapter_t *adapter;
enum ipa_wlan_event type;
uint8_t sta_id;
uint8_t mac_addr[CDF_MAC_ADDR_SIZE];
};
/**
* struct uc_rm_work_struct
* @work: uC RM work
* @event: IPA RM event
*/
struct uc_rm_work_struct {
struct work_struct work;
enum ipa_rm_event event;
};
/**
* struct uc_op_work_struct
* @work: uC OP work
* @msg: OP message
*/
struct uc_op_work_struct {
struct work_struct work;
struct op_msg_type *msg;
};
static uint8_t vdev_to_iface[CSR_ROAM_SESSION_MAX];
/**
* struct uc_rt_debug_info
* @time: system time
* @ipa_excep_count: IPA exception packet count
* @rx_drop_count: IPA Rx drop packet count
* @net_sent_count: IPA Rx packet sent to network stack count
* @rx_discard_count: IPA Rx discard packet count
* @rx_mcbc_count: IPA Rx BCMC packet count
* @tx_mcbc_count: IPA Tx BCMC packet countt
* @tx_fwd_count: IPA Tx forward packet count
* @rx_destructor_call: IPA Rx packet destructor count
*/
struct uc_rt_debug_info {
v_TIME_t time;
uint64_t ipa_excep_count;
uint64_t rx_drop_count;
uint64_t net_sent_count;
uint64_t rx_discard_count;
uint64_t rx_mcbc_count;
uint64_t tx_mcbc_count;
uint64_t tx_fwd_count;
uint64_t rx_destructor_call;
};
struct hdd_ipa_priv {
struct hdd_ipa_sys_pipe sys_pipe[HDD_IPA_MAX_SYSBAM_PIPE];
struct hdd_ipa_iface_context iface_context[HDD_IPA_MAX_IFACE];
uint8_t num_iface;
enum hdd_ipa_rm_state rm_state;
/*
* IPA driver can send RM notifications with IRQ disabled so using cdf
* APIs as it is taken care gracefully. Without this, kernel would throw
* an warning if spin_lock_bh is used while IRQ is disabled
*/
cdf_spinlock_t rm_lock;
struct uc_rm_work_struct uc_rm_work;
struct uc_op_work_struct uc_op_work[HDD_IPA_UC_OPCODE_MAX];
cdf_wake_lock_t wake_lock;
struct delayed_work wake_lock_work;
bool wake_lock_released;
enum ipa_client_type prod_client;
atomic_t tx_ref_cnt;
cdf_nbuf_queue_t pm_queue_head;
struct work_struct pm_work;
cdf_spinlock_t pm_lock;
bool suspended;
uint32_t pending_hw_desc_cnt;
uint32_t hw_desc_cnt;
spinlock_t q_lock;
uint32_t freeq_cnt;
struct list_head free_desc_head;
uint32_t pend_q_cnt;
struct list_head pend_desc_head;
hdd_context_t *hdd_ctx;
struct dentry *debugfs_dir;
struct hdd_ipa_stats stats;
struct notifier_block ipv4_notifier;
uint32_t curr_prod_bw;
uint32_t curr_cons_bw;
uint8_t activated_fw_pipe;
uint8_t sap_num_connected_sta;
uint8_t sta_connected;
uint32_t tx_pipe_handle;
uint32_t rx_pipe_handle;
bool resource_loading;
bool resource_unloading;
bool pending_cons_req;
struct ipa_uc_stas_map assoc_stas_map[WLAN_MAX_STA_COUNT];
cdf_list_t pending_event;
cdf_mutex_t event_lock;
uint32_t ipa_tx_packets_diff;
uint32_t ipa_rx_packets_diff;
uint32_t ipa_p_tx_packets;
uint32_t ipa_p_rx_packets;
uint32_t stat_req_reason;
uint64_t ipa_tx_forward;
uint64_t ipa_rx_discard;
uint64_t ipa_rx_net_send_count;
uint64_t ipa_rx_internel_drop_count;
uint64_t ipa_rx_destructor_count;
cdf_mc_timer_t rt_debug_timer;
struct uc_rt_debug_info rt_bug_buffer[HDD_IPA_UC_RT_DEBUG_BUF_COUNT];
unsigned int rt_buf_fill_index;
cdf_mc_timer_t rt_debug_fill_timer;
cdf_mutex_t rt_debug_lock;
};
#define HDD_IPA_WLAN_CLD_HDR_LEN sizeof(struct hdd_ipa_cld_hdr)
#define HDD_IPA_UC_WLAN_CLD_HDR_LEN 0
#define HDD_IPA_WLAN_TX_HDR_LEN sizeof(struct hdd_ipa_tx_hdr)
#define HDD_IPA_UC_WLAN_TX_HDR_LEN sizeof(struct hdd_ipa_uc_tx_hdr)
#define HDD_IPA_WLAN_RX_HDR_LEN sizeof(struct hdd_ipa_rx_hdr)
#define HDD_IPA_UC_WLAN_RX_HDR_LEN sizeof(struct hdd_ipa_uc_rx_hdr)
#define HDD_IPA_GET_IFACE_ID(_data) \
(((struct hdd_ipa_cld_hdr *) (_data))->iface_id)
#define HDD_IPA_LOG(LVL, fmt, args ...) \
CDF_TRACE(CDF_MODULE_ID_HDD, LVL, \
"%s:%d: "fmt, __func__, __LINE__, ## args)
#define HDD_IPA_DBG_DUMP(_lvl, _prefix, _buf, _len) \
do { \
CDF_TRACE(CDF_MODULE_ID_HDD, _lvl, "%s:", _prefix); \
CDF_TRACE_HEX_DUMP(CDF_MODULE_ID_HDD, _lvl, _buf, _len); \
} while (0)
#define HDD_IPA_IS_CONFIG_ENABLED(_hdd_ctx, _mask) \
(((_hdd_ctx)->config->IpaConfig & (_mask)) == (_mask))
#define HDD_IPA_INCREASE_INTERNAL_DROP_COUNT(hdd_ipa) \
do { \
hdd_ipa->ipa_rx_internel_drop_count++; \
} while (0)
#define HDD_IPA_INCREASE_NET_SEND_COUNT(hdd_ipa) \
do { \
hdd_ipa->ipa_rx_net_send_count++; \
} while (0)
#define HDD_BW_GET_DIFF(_x, _y) (unsigned long)((ULONG_MAX - (_y)) + (_x) + 1)
static struct hdd_ipa_adapter_2_client {
enum ipa_client_type cons_client;
enum ipa_client_type prod_client;
} hdd_ipa_adapter_2_client[HDD_IPA_MAX_IFACE] = {
{
IPA_CLIENT_WLAN2_CONS, IPA_CLIENT_WLAN1_PROD
}, {
IPA_CLIENT_WLAN3_CONS, IPA_CLIENT_WLAN1_PROD
}, {
IPA_CLIENT_WLAN4_CONS, IPA_CLIENT_WLAN1_PROD
},
};
/* For Tx pipes, use Ethernet-II Header format */
struct hdd_ipa_uc_tx_hdr ipa_uc_tx_hdr = {
{
0x00000000,
0x00000000
},
{
0x00000000
},
{
{0x00, 0x03, 0x7f, 0xaa, 0xbb, 0xcc},
{0x00, 0x03, 0x7f, 0xdd, 0xee, 0xff},
0x0008
}
};
/* For Tx pipes, use 802.3 Header format */
static struct hdd_ipa_tx_hdr ipa_tx_hdr = {
{
{0xDE, 0xAD, 0xBE, 0xEF, 0xFF, 0xFF},
{0xDE, 0xAD, 0xBE, 0xEF, 0xFF, 0xFF},
0x00 /* length can be zero */
},
{
/* LLC SNAP header 8 bytes */
0xaa, 0xaa,
{0x03, 0x00, 0x00, 0x00},
0x0008 /* type value(2 bytes) ,filled by wlan */
/* 0x0800 - IPV4, 0x86dd - IPV6 */
}
};
static const char *op_string[] = {
"TX_SUSPEND",
"TX_RESUME",
"RX_SUSPEND",
"RX_RESUME",
"STATS",
};
static struct hdd_ipa_priv *ghdd_ipa;
/* Local Function Prototypes */
static void hdd_ipa_i2w_cb(void *priv, enum ipa_dp_evt_type evt,
unsigned long data);
static void hdd_ipa_w2i_cb(void *priv, enum ipa_dp_evt_type evt,
unsigned long data);
static void hdd_ipa_cleanup_iface(struct hdd_ipa_iface_context *iface_context);
/**
* hdd_ipa_is_enabled() - Is IPA enabled?
* @hdd_ctx: Global HDD context
*
* Return: true if IPA is enabled, false otherwise
*/
bool hdd_ipa_is_enabled(hdd_context_t *hdd_ctx)
{
return HDD_IPA_IS_CONFIG_ENABLED(hdd_ctx, HDD_IPA_ENABLE_MASK);
}
/**
* hdd_ipa_uc_is_enabled() - Is IPA uC offload enabled?
* @hdd_ctx: Global HDD context
*
* Return: true if IPA uC offload is enabled, false otherwise
*/
bool hdd_ipa_uc_is_enabled(hdd_context_t *hdd_ctx)
{
return HDD_IPA_IS_CONFIG_ENABLED(hdd_ctx, HDD_IPA_UC_ENABLE_MASK);
}
/**
* hdd_ipa_uc_sta_is_enabled() - Is STA mode IPA uC offload enabled?
* @hdd_ctx: Global HDD context
*
* Return: true if STA mode IPA uC offload is enabled, false otherwise
*/
static inline bool hdd_ipa_uc_sta_is_enabled(hdd_context_t *hdd_ctx)
{
return HDD_IPA_IS_CONFIG_ENABLED(hdd_ctx, HDD_IPA_UC_STA_ENABLE_MASK);
}
/**
* hdd_ipa_is_pre_filter_enabled() - Is IPA pre-filter enabled?
* @hdd_ipa: Global HDD IPA context
*
* Return: true if pre-filter is enabled, otherwise false
*/
static inline bool hdd_ipa_is_pre_filter_enabled(hdd_context_t *hdd_ctx)
{
return HDD_IPA_IS_CONFIG_ENABLED(hdd_ctx,
HDD_IPA_PRE_FILTER_ENABLE_MASK);
}
/**
* hdd_ipa_is_ipv6_enabled() - Is IPA IPv6 enabled?
* @hdd_ipa: Global HDD IPA context
*
* Return: true if IPv6 is enabled, otherwise false
*/
static inline bool hdd_ipa_is_ipv6_enabled(hdd_context_t *hdd_ctx)
{
return HDD_IPA_IS_CONFIG_ENABLED(hdd_ctx, HDD_IPA_IPV6_ENABLE_MASK);
}
/**
* hdd_ipa_is_rm_enabled() - Is IPA resource manager enabled?
* @hdd_ipa: Global HDD IPA context
*
* Return: true if resource manager is enabled, otherwise false
*/
static inline bool hdd_ipa_is_rm_enabled(hdd_context_t *hdd_ctx)
{
return HDD_IPA_IS_CONFIG_ENABLED(hdd_ctx, HDD_IPA_RM_ENABLE_MASK);
}
/**
* hdd_ipa_is_rt_debugging_enabled() - Is IPA real-time debug enabled?
* @hdd_ipa: Global HDD IPA context
*
* Return: true if resource manager is enabled, otherwise false
*/
static inline bool hdd_ipa_is_rt_debugging_enabled(hdd_context_t *hdd_ctx)
{
return HDD_IPA_IS_CONFIG_ENABLED(hdd_ctx, HDD_IPA_REAL_TIME_DEBUGGING);
}
/**
* hdd_ipa_is_clk_scaling_enabled() - Is IPA clock scaling enabled?
* @hdd_ipa: Global HDD IPA context
*
* Return: true if clock scaling is enabled, otherwise false
*/
static inline bool hdd_ipa_is_clk_scaling_enabled(hdd_context_t *hdd_ctx)
{
return HDD_IPA_IS_CONFIG_ENABLED(hdd_ctx,
HDD_IPA_CLK_SCALING_ENABLE_MASK |
HDD_IPA_RM_ENABLE_MASK);
}
/**
* hdd_ipa_uc_rt_debug_host_fill - fill rt debug buffer
* @ctext: pointer to hdd context.
*
* If rt debug enabled, periodically called, and fill debug buffer
*
* Return: none
*/
static void hdd_ipa_uc_rt_debug_host_fill(void *ctext)
{
hdd_context_t *hdd_ctx = (hdd_context_t *)ctext;
struct hdd_ipa_priv *hdd_ipa;
struct uc_rt_debug_info *dump_info = NULL;
if (wlan_hdd_validate_context(hdd_ctx))
return;
if (!hdd_ctx->hdd_ipa || !hdd_ipa_uc_is_enabled(hdd_ctx)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: IPA UC is not enabled", __func__);
return;
}
hdd_ipa = (struct hdd_ipa_priv *)hdd_ctx->hdd_ipa;
cdf_mutex_acquire(&hdd_ipa->rt_debug_lock);
dump_info = &hdd_ipa->rt_bug_buffer[
hdd_ipa->rt_buf_fill_index % HDD_IPA_UC_RT_DEBUG_BUF_COUNT];
dump_info->time = cdf_mc_timer_get_system_time();
dump_info->ipa_excep_count = hdd_ipa->stats.num_rx_excep;
dump_info->rx_drop_count = hdd_ipa->ipa_rx_internel_drop_count;
dump_info->net_sent_count = hdd_ipa->ipa_rx_net_send_count;
dump_info->rx_discard_count = hdd_ipa->ipa_rx_discard;
dump_info->tx_mcbc_count = hdd_ipa->stats.num_tx_bcmc;
dump_info->tx_fwd_count = hdd_ipa->ipa_tx_forward;
dump_info->rx_destructor_call = hdd_ipa->ipa_rx_destructor_count;
hdd_ipa->rt_buf_fill_index++;
cdf_mutex_release(&hdd_ipa->rt_debug_lock);
cdf_mc_timer_start(&hdd_ipa->rt_debug_fill_timer,
HDD_IPA_UC_RT_DEBUG_FILL_INTERVAL);
}
/**
* hdd_ipa_uc_rt_debug_host_dump - dump rt debug buffer
* @hdd_ctx: pointer to hdd context.
*
* If rt debug enabled, dump debug buffer contents based on requirement
*
* Return: none
*/
void hdd_ipa_uc_rt_debug_host_dump(hdd_context_t *hdd_ctx)
{
struct hdd_ipa_priv *hdd_ipa;
unsigned int dump_count;
unsigned int dump_index;
struct uc_rt_debug_info *dump_info = NULL;
if (wlan_hdd_validate_context(hdd_ctx))
return;
hdd_ipa = hdd_ctx->hdd_ipa;
if (!hdd_ipa || !hdd_ipa_uc_is_enabled(hdd_ctx)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: IPA UC is not enabled", __func__);
return;
}
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"========= WLAN-IPA DEBUG BUF DUMP ==========\n");
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
" TM : EXEP : DROP : NETS : MCBC : TXFD : DSTR : DSCD\n");
cdf_mutex_acquire(&hdd_ipa->rt_debug_lock);
for (dump_count = 0;
dump_count < HDD_IPA_UC_RT_DEBUG_BUF_COUNT;
dump_count++) {
dump_index = (hdd_ipa->rt_buf_fill_index + dump_count) %
HDD_IPA_UC_RT_DEBUG_BUF_COUNT;
dump_info = &hdd_ipa->rt_bug_buffer[dump_index];
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%12lu:%10llu:%10llu:%10llu:%10llu:%10llu:%10llu:%10llu\n",
dump_info->time, dump_info->ipa_excep_count,
dump_info->rx_drop_count, dump_info->net_sent_count,
dump_info->tx_mcbc_count, dump_info->tx_fwd_count,
dump_info->rx_destructor_call,
dump_info->rx_discard_count);
}
cdf_mutex_release(&hdd_ipa->rt_debug_lock);
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"======= WLAN-IPA DEBUG BUF DUMP END ========\n");
}
/**
* hdd_ipa_uc_rt_debug_handler - periodic memory health monitor handler
* @ctext: pointer to hdd context.
*
* periodically called by timer expire
* will try to alloc dummy memory and detect out of memory condition
* if out of memory detected, dump wlan-ipa stats
*
* Return: none
*/
static void hdd_ipa_uc_rt_debug_handler(void *ctext)
{
hdd_context_t *hdd_ctx = (hdd_context_t *)ctext;
struct hdd_ipa_priv *hdd_ipa = (struct hdd_ipa_priv *)hdd_ctx->hdd_ipa;
void *dummy_ptr = NULL;
if (wlan_hdd_validate_context(hdd_ctx))
return;
if (!hdd_ipa_is_rt_debugging_enabled(hdd_ctx)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: IPA RT debug is not enabled", __func__);
return;
}
/* Allocate dummy buffer periodically and free immediately. this will
* proactively detect OOM and if allocation fails dump ipa stats
*/
dummy_ptr = kmalloc(HDD_IPA_UC_DEBUG_DUMMY_MEM_SIZE,
GFP_KERNEL | GFP_ATOMIC);
if (!dummy_ptr) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_FATAL,
"%s: Dummy alloc fail", __func__);
hdd_ipa_uc_rt_debug_host_dump(hdd_ctx);
hdd_ipa_uc_stat_request(
hdd_get_adapter(hdd_ctx, WLAN_HDD_SOFTAP), 1);
} else {
kfree(dummy_ptr);
}
cdf_mc_timer_start(&hdd_ipa->rt_debug_timer,
HDD_IPA_UC_RT_DEBUG_PERIOD);
}
/**
* hdd_ipa_uc_rt_debug_destructor - called by data packet free
* @skb: packet pinter
*
* when free data packet, will be invoked by wlan client and will increase
* free counter
*
* Return: none
*/
void hdd_ipa_uc_rt_debug_destructor(struct sk_buff *skb)
{
if (!ghdd_ipa) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: invalid hdd context", __func__);
return;
}
ghdd_ipa->ipa_rx_destructor_count++;
}
/**
* hdd_ipa_uc_rt_debug_deinit - remove resources to handle rt debugging
* @hdd_ctx: hdd main context
*
* free all rt debugging resources
*
* Return: none
*/
static void hdd_ipa_uc_rt_debug_deinit(hdd_context_t *hdd_ctx)
{
struct hdd_ipa_priv *hdd_ipa = (struct hdd_ipa_priv *)hdd_ctx->hdd_ipa;
if (CDF_TIMER_STATE_STOPPED !=
cdf_mc_timer_get_current_state(&hdd_ipa->rt_debug_fill_timer)) {
cdf_mc_timer_stop(&hdd_ipa->rt_debug_fill_timer);
}
cdf_mc_timer_destroy(&hdd_ipa->rt_debug_fill_timer);
cdf_mutex_destroy(&hdd_ipa->rt_debug_lock);
if (!hdd_ipa_is_rt_debugging_enabled(hdd_ctx)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: IPA RT debug is not enabled", __func__);
return;
}
if (CDF_TIMER_STATE_STOPPED !=
cdf_mc_timer_get_current_state(&hdd_ipa->rt_debug_timer)) {
cdf_mc_timer_stop(&hdd_ipa->rt_debug_timer);
}
cdf_mc_timer_destroy(&hdd_ipa->rt_debug_timer);
}
/**
* hdd_ipa_uc_rt_debug_init - intialize resources to handle rt debugging
* @hdd_ctx: hdd main context
*
* alloc and initialize all rt debugging resources
*
* Return: none
*/
static void hdd_ipa_uc_rt_debug_init(hdd_context_t *hdd_ctx)
{
struct hdd_ipa_priv *hdd_ipa = (struct hdd_ipa_priv *)hdd_ctx->hdd_ipa;
cdf_mutex_init(&hdd_ipa->rt_debug_lock);
cdf_mc_timer_init(&hdd_ipa->rt_debug_fill_timer, CDF_TIMER_TYPE_SW,
hdd_ipa_uc_rt_debug_host_fill, (void *)hdd_ctx);
hdd_ipa->rt_buf_fill_index = 0;
cdf_mem_zero(hdd_ipa->rt_bug_buffer,
sizeof(struct uc_rt_debug_info) *
HDD_IPA_UC_RT_DEBUG_BUF_COUNT);
hdd_ipa->ipa_tx_forward = 0;
hdd_ipa->ipa_rx_discard = 0;
hdd_ipa->ipa_rx_net_send_count = 0;
hdd_ipa->ipa_rx_internel_drop_count = 0;
hdd_ipa->ipa_rx_destructor_count = 0;
cdf_mc_timer_start(&hdd_ipa->rt_debug_fill_timer,
HDD_IPA_UC_RT_DEBUG_FILL_INTERVAL);
/* Reatime debug enable on feature enable */
if (!hdd_ipa_is_rt_debugging_enabled(hdd_ctx)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: IPA RT debug is not enabled", __func__);
return;
}
cdf_mc_timer_init(&hdd_ipa->rt_debug_timer, CDF_TIMER_TYPE_SW,
hdd_ipa_uc_rt_debug_handler, (void *)hdd_ctx);
cdf_mc_timer_start(&hdd_ipa->rt_debug_timer,
HDD_IPA_UC_RT_DEBUG_PERIOD);
}
/**
* hdd_ipa_uc_stat_query() - Query the IPA stats
* @hdd_ctx: Global HDD context
* @ipa_tx_diff: tx packet count diff from previous
* tx packet count
* @ipa_rx_diff: rx packet count diff from previous
* rx packet count
*
* Return: true if IPA is enabled, false otherwise
*/
void hdd_ipa_uc_stat_query(hdd_context_t *pHddCtx,
uint32_t *ipa_tx_diff, uint32_t *ipa_rx_diff)
{
struct hdd_ipa_priv *hdd_ipa;
hdd_ipa = (struct hdd_ipa_priv *)pHddCtx->hdd_ipa;
*ipa_tx_diff = 0;
*ipa_rx_diff = 0;
if (!hdd_ipa_is_enabled(pHddCtx) ||
!(hdd_ipa_uc_is_enabled(pHddCtx))) {
return;
}
cdf_mutex_acquire(&hdd_ipa->event_lock);
if ((HDD_IPA_UC_NUM_WDI_PIPE == hdd_ipa->activated_fw_pipe) &&
(false == hdd_ipa->resource_loading)) {
*ipa_tx_diff = hdd_ipa->ipa_tx_packets_diff;
*ipa_rx_diff = hdd_ipa->ipa_rx_packets_diff;
HDD_IPA_LOG(LOG1, "STAT Query TX DIFF %d, RX DIFF %d",
*ipa_tx_diff, *ipa_rx_diff);
}
cdf_mutex_release(&hdd_ipa->event_lock);
return;
}
/**
* hdd_ipa_uc_stat_request() - Get IPA stats from IPA.
* @adapter: network adapter
* @reason: STAT REQ Reason
*
* Return: None
*/
void hdd_ipa_uc_stat_request(hdd_adapter_t *adapter, uint8_t reason)
{
hdd_context_t *pHddCtx;
struct hdd_ipa_priv *hdd_ipa;
if (!adapter) {
return;
}
pHddCtx = (hdd_context_t *)adapter->pHddCtx;
hdd_ipa = (struct hdd_ipa_priv *)pHddCtx->hdd_ipa;
if (!hdd_ipa_is_enabled(pHddCtx) ||
!(hdd_ipa_uc_is_enabled(pHddCtx))) {
return;
}
HDD_IPA_LOG(LOG1, "STAT REQ Reason %d", reason);
cdf_mutex_acquire(&hdd_ipa->event_lock);
if ((HDD_IPA_UC_NUM_WDI_PIPE == hdd_ipa->activated_fw_pipe) &&
(false == hdd_ipa->resource_loading)) {
hdd_ipa->stat_req_reason = reason;
wma_cli_set_command(
(int)adapter->sessionId,
(int)WMA_VDEV_TXRX_GET_IPA_UC_FW_STATS_CMDID,
0, VDEV_CMD);
}
cdf_mutex_release(&hdd_ipa->event_lock);
}
/**
* hdd_ipa_uc_find_add_assoc_sta() - Find associated station
* @hdd_ipa: Global HDD IPA context
* @sta_add: Should station be added
* @sta_id: ID of the station being queried
*
* Return: true if the station was found
*/
static bool hdd_ipa_uc_find_add_assoc_sta(struct hdd_ipa_priv *hdd_ipa,
bool sta_add, uint8_t sta_id)
{
bool sta_found = false;
uint8_t idx;
for (idx = 0; idx < WLAN_MAX_STA_COUNT; idx++) {
if ((hdd_ipa->assoc_stas_map[idx].is_reserved) &&
(hdd_ipa->assoc_stas_map[idx].sta_id == sta_id)) {
sta_found = true;
break;
}
}
if (sta_add && sta_found) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: STA ID %d already exist, cannot add",
__func__, sta_id);
return sta_found;
}
if (sta_add) {
for (idx = 0; idx < WLAN_MAX_STA_COUNT; idx++) {
if (!hdd_ipa->assoc_stas_map[idx].is_reserved) {
hdd_ipa->assoc_stas_map[idx].is_reserved = true;
hdd_ipa->assoc_stas_map[idx].sta_id = sta_id;
return sta_found;
}
}
}
if (!sta_add && !sta_found) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: STA ID %d does not exist, cannot delete",
__func__, sta_id);
return sta_found;
}
if (!sta_add) {
for (idx = 0; idx < WLAN_MAX_STA_COUNT; idx++) {
if ((hdd_ipa->assoc_stas_map[idx].is_reserved) &&
(hdd_ipa->assoc_stas_map[idx].sta_id == sta_id)) {
hdd_ipa->assoc_stas_map[idx].is_reserved =
false;
hdd_ipa->assoc_stas_map[idx].sta_id = 0xFF;
return sta_found;
}
}
}
return sta_found;
}
/**
* hdd_ipa_uc_enable_pipes() - Enable IPA uC pipes
* @hdd_ipa: Global HDD IPA context
*
* Return: 0 on success, negative errno if error
*/
static int hdd_ipa_uc_enable_pipes(struct hdd_ipa_priv *hdd_ipa)
{
int result;
p_cds_contextType cds_ctx = hdd_ipa->hdd_ctx->pcds_context;
/* ACTIVATE TX PIPE */
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s: Enable TX PIPE", __func__);
result = ipa_enable_wdi_pipe(hdd_ipa->tx_pipe_handle);
if (result) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: Enable TX PIPE fail, code %d",
__func__, result);
return result;
}
result = ipa_resume_wdi_pipe(hdd_ipa->tx_pipe_handle);
if (result) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: Resume TX PIPE fail, code %d",
__func__, result);
return result;
}
ol_txrx_ipa_uc_set_active(cds_ctx->pdev_txrx_ctx, true, true);
/* ACTIVATE RX PIPE */
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s: Enable RX PIPE", __func__);
result = ipa_enable_wdi_pipe(hdd_ipa->rx_pipe_handle);
if (result) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: Enable RX PIPE fail, code %d",
__func__, result);
return result;
}
result = ipa_resume_wdi_pipe(hdd_ipa->rx_pipe_handle);
if (result) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: Resume RX PIPE fail, code %d",
__func__, result);
return result;
}
ol_txrx_ipa_uc_set_active(cds_ctx->pdev_txrx_ctx, true, false);
return 0;
}
/**
* hdd_ipa_uc_disable_pipes() - Disable IPA uC pipes
* @hdd_ipa: Global HDD IPA context
*
* Return: 0 on success, negative errno if error
*/
static int hdd_ipa_uc_disable_pipes(struct hdd_ipa_priv *hdd_ipa)
{
int result;
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s: Disable RX PIPE", __func__);
result = ipa_suspend_wdi_pipe(hdd_ipa->rx_pipe_handle);
if (result) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: Suspend RX PIPE fail, code %d",
__func__, result);
return result;
}
result = ipa_disable_wdi_pipe(hdd_ipa->rx_pipe_handle);
if (result) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: Disable RX PIPE fail, code %d",
__func__, result);
return result;
}
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s: Disable TX PIPE", __func__);
result = ipa_suspend_wdi_pipe(hdd_ipa->tx_pipe_handle);
if (result) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: Suspend TX PIPE fail, code %d",
__func__, result);
return result;
}
result = ipa_disable_wdi_pipe(hdd_ipa->tx_pipe_handle);
if (result) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: Disable TX PIPE fail, code %d",
__func__, result);
return result;
}
return 0;
}
/**
* hdd_ipa_uc_handle_first_con() - Handle first uC IPA connection
* @hdd_ipa: Global HDD IPA context
*
* Return: 0 on success, negative errno if error
*/
static int hdd_ipa_uc_handle_first_con(struct hdd_ipa_priv *hdd_ipa)
{
hdd_ipa->activated_fw_pipe = 0;
hdd_ipa->resource_loading = true;
/* If RM feature enabled
* Request PROD Resource first
* PROD resource may return sync or async manners */
if ((hdd_ipa_is_rm_enabled(hdd_ipa->hdd_ctx)) &&
(!ipa_rm_request_resource(IPA_RM_RESOURCE_WLAN_PROD))) {
/* RM PROD request sync return
* enable pipe immediately */
if (hdd_ipa_uc_enable_pipes(hdd_ipa)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: IPA WDI Pipes activate fail",
__func__);
hdd_ipa->resource_loading = false;
return -EBUSY;
}
} else {
/* RM Disabled
* Just enabled all the PIPEs */
if (hdd_ipa_uc_enable_pipes(hdd_ipa)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: IPA WDI Pipes activate fail",
__func__);
hdd_ipa->resource_loading = false;
return -EBUSY;
}
hdd_ipa->resource_loading = false;
}
return 0;
}
/**
* hdd_ipa_uc_handle_last_discon() - Handle last uC IPA disconnection
* @hdd_ipa: Global HDD IPA context
*
* Return: None
*/
static void hdd_ipa_uc_handle_last_discon(struct hdd_ipa_priv *hdd_ipa)
{
p_cds_contextType cds_ctx = hdd_ipa->hdd_ctx->pcds_context;
hdd_ipa->resource_unloading = true;
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s: Disable FW RX PIPE", __func__);
ol_txrx_ipa_uc_set_active(cds_ctx->pdev_txrx_ctx, false, false);
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s: Disable FW TX PIPE", __func__);
ol_txrx_ipa_uc_set_active(cds_ctx->pdev_txrx_ctx, false, true);
}
/**
* hdd_ipa_uc_rm_notify_handler() - IPA uC resource notification handler
* @context: User context registered with TL (the IPA Global context is
* registered
* @rxpkt: Packet containing the notification
* @staid: ID of the station associated with the packet
*
* Return: None
*/
static void
hdd_ipa_uc_rm_notify_handler(void *context, enum ipa_rm_event event)
{
struct hdd_ipa_priv *hdd_ipa = context;
CDF_STATUS status = CDF_STATUS_SUCCESS;
/*
* When SSR is going on or driver is unloading, just return.
*/
status = wlan_hdd_validate_context(hdd_ipa->hdd_ctx);
if (0 != status) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "HDD context is not valid");
return;
}
if (!hdd_ipa_is_rm_enabled(hdd_ipa->hdd_ctx))
return;
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s, event code %d",
__func__, event);
switch (event) {
case IPA_RM_RESOURCE_GRANTED:
/* Differed RM Granted */
hdd_ipa_uc_enable_pipes(hdd_ipa);
cdf_mutex_acquire(&hdd_ipa->event_lock);
if ((false == hdd_ipa->resource_unloading) &&
(!hdd_ipa->activated_fw_pipe)) {
hdd_ipa_uc_enable_pipes(hdd_ipa);
}
cdf_mutex_release(&hdd_ipa->event_lock);
if (hdd_ipa->pending_cons_req) {
ipa_rm_notify_completion(IPA_RM_RESOURCE_GRANTED,
IPA_RM_RESOURCE_WLAN_CONS);
}
hdd_ipa->pending_cons_req = false;
break;
case IPA_RM_RESOURCE_RELEASED:
/* Differed RM Released */
hdd_ipa->resource_unloading = false;
if (hdd_ipa->pending_cons_req) {
ipa_rm_notify_completion(IPA_RM_RESOURCE_RELEASED,
IPA_RM_RESOURCE_WLAN_CONS);
}
hdd_ipa->pending_cons_req = false;
break;
default:
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s, invalid event code %d", __func__, event);
break;
}
}
/**
* hdd_ipa_uc_rm_notify_defer() - Defer IPA uC notification
* @hdd_ipa: Global HDD IPA context
* @event: IPA resource manager event to be deferred
*
* This function is called when a resource manager event is received
* from firmware in interrupt context. This function will defer the
* handling to the OL RX thread
*
* Return: None
*/
static void hdd_ipa_uc_rm_notify_defer(struct work_struct *work)
{
enum ipa_rm_event event;
struct uc_rm_work_struct *uc_rm_work = container_of(work,
struct uc_rm_work_struct, work);
struct hdd_ipa_priv *hdd_ipa = container_of(uc_rm_work,
struct hdd_ipa_priv, uc_rm_work);
cds_ssr_protect(__func__);
event = uc_rm_work->event;
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO_HIGH,
"%s, posted event %d", __func__, event);
hdd_ipa_uc_rm_notify_handler(hdd_ipa, event);
cds_ssr_unprotect(__func__);
return;
}
/**
* hdd_ipa_uc_proc_pending_event() - Process IPA uC pending events
* @hdd_ipa: Global HDD IPA context
*
* Return: None
*/
static void hdd_ipa_uc_proc_pending_event(struct hdd_ipa_priv *hdd_ipa)
{
unsigned int pending_event_count;
struct ipa_uc_pending_event *pending_event = NULL;
cdf_list_size(&hdd_ipa->pending_event, &pending_event_count);
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s, Pending Event Count %d", __func__, pending_event_count);
if (!pending_event_count) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s, No Pending Event", __func__);
return;
}
cdf_list_remove_front(&hdd_ipa->pending_event,
(cdf_list_node_t **)&pending_event);
while (pending_event != NULL) {
hdd_ipa_wlan_evt(pending_event->adapter,
pending_event->type,
pending_event->sta_id,
pending_event->mac_addr);
cdf_mem_free(pending_event);
pending_event = NULL;
cdf_list_remove_front(&hdd_ipa->pending_event,
(cdf_list_node_t **)&pending_event);
}
}
/**
* hdd_ipa_uc_op_cb() - IPA uC operation callback
* @op_msg: operation message received from firmware
* @usr_ctxt: user context registered with TL (we register the HDD Global
* context)
*
* Return: None
*/
static void hdd_ipa_uc_op_cb(struct op_msg_type *op_msg, void *usr_ctxt)
{
struct op_msg_type *msg = op_msg;
struct ipa_uc_fw_stats *uc_fw_stat;
struct IpaHwStatsWDIInfoData_t ipa_stat;
struct hdd_ipa_priv *hdd_ipa;
hdd_context_t *hdd_ctx;
CDF_STATUS status = CDF_STATUS_SUCCESS;
if (!op_msg || !usr_ctxt) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "%s, INVALID ARG", __func__);
return;
}
if (HDD_IPA_UC_OPCODE_MAX <= msg->op_code) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s, INVALID OPCODE %d", __func__, msg->op_code);
return;
}
hdd_ctx = (hdd_context_t *) usr_ctxt;
/*
* When SSR is going on or driver is unloading, just return.
*/
status = wlan_hdd_validate_context(hdd_ctx);
if (0 != status) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "HDD context is not valid");
cdf_mem_free(op_msg);
return;
}
hdd_ipa = (struct hdd_ipa_priv *)hdd_ctx->hdd_ipa;
HDD_IPA_LOG(CDF_TRACE_LEVEL_DEBUG,
"%s, OPCODE %s", __func__, op_string[msg->op_code]);
if ((HDD_IPA_UC_OPCODE_TX_RESUME == msg->op_code) ||
(HDD_IPA_UC_OPCODE_RX_RESUME == msg->op_code)) {
cdf_mutex_acquire(&hdd_ipa->event_lock);
hdd_ipa->activated_fw_pipe++;
if (HDD_IPA_UC_NUM_WDI_PIPE == hdd_ipa->activated_fw_pipe) {
hdd_ipa->resource_loading = false;
hdd_ipa_uc_proc_pending_event(hdd_ipa);
}
cdf_mutex_release(&hdd_ipa->event_lock);
}
if ((HDD_IPA_UC_OPCODE_TX_SUSPEND == msg->op_code) ||
(HDD_IPA_UC_OPCODE_RX_SUSPEND == msg->op_code)) {
cdf_mutex_acquire(&hdd_ipa->event_lock);
hdd_ipa->activated_fw_pipe--;
if (!hdd_ipa->activated_fw_pipe) {
hdd_ipa_uc_disable_pipes(hdd_ipa);
if ((hdd_ipa_is_rm_enabled(hdd_ipa->hdd_ctx)) &&
(!ipa_rm_release_resource(IPA_RM_RESOURCE_WLAN_PROD))) {
/* Sync return success from IPA
* Enable/resume all the PIPEs */
hdd_ipa->resource_unloading = false;
hdd_ipa_uc_proc_pending_event(hdd_ipa);
} else {
hdd_ipa->resource_unloading = false;
hdd_ipa_uc_proc_pending_event(hdd_ipa);
}
}
cdf_mutex_release(&hdd_ipa->event_lock);
}
if ((HDD_IPA_UC_OPCODE_STATS == msg->op_code) &&
(HDD_IPA_UC_STAT_REASON_DEBUG == hdd_ipa->stat_req_reason)) {
/* STATs from host */
CDF_TRACE(CDF_MODULE_ID_HDD, CDF_TRACE_LEVEL_ERROR,
"==== IPA_UC WLAN_HOST CE ====\n"
"CE RING BASE: 0x%x\n"
"CE RING SIZE: %d\n"
"CE REG ADDR : 0x%llx",
hdd_ctx->ce_sr_base_paddr,
hdd_ctx->ce_sr_ring_size,
(uint64_t) hdd_ctx->ce_reg_paddr);
CDF_TRACE(CDF_MODULE_ID_HDD, CDF_TRACE_LEVEL_ERROR,
"==== IPA_UC WLAN_HOST TX ====\n"
"COMP RING BASE: 0x%x\n"
"COMP RING SIZE: %d\n"
"NUM ALLOC BUF: %d\n"
"COMP RING DBELL : 0x%x",
hdd_ctx->tx_comp_ring_base_paddr,
hdd_ctx->tx_comp_ring_size,
hdd_ctx->tx_num_alloc_buffer,
hdd_ctx->tx_comp_doorbell_paddr);
CDF_TRACE(CDF_MODULE_ID_HDD, CDF_TRACE_LEVEL_ERROR,
"==== IPA_UC WLAN_HOST RX ====\n"
"IND RING BASE: 0x%x\n"
"IND RING SIZE: %d\n"
"IND RING DBELL : 0x%x\n"
"PROC DONE IND ADDR : 0x%x\n"
"NUM EXCP PKT : %llu\n"
"NUM TX BCMC : %llu\n"
"NUM TX BCMC ERR : %llu",
hdd_ctx->rx_rdy_ring_base_paddr,
hdd_ctx->rx_rdy_ring_size,
hdd_ctx->rx_ready_doorbell_paddr,
hdd_ctx->rx_proc_done_idx_paddr,
hdd_ipa->stats.num_rx_excep,
hdd_ipa->stats.num_tx_bcmc,
hdd_ipa->stats.num_tx_bcmc_err);
CDF_TRACE(CDF_MODULE_ID_HDD, CDF_TRACE_LEVEL_ERROR,
"==== IPA_UC WLAN_HOST CONTROL ====\n"
"SAP NUM STAs: %d\n"
"STA CONNECTED: %d\n"
"TX PIPE HDL: %d\n"
"RX PIPE HDL : %d\n"
"RSC LOADING : %d\n"
"RSC UNLOADING : %d\n"
"PNDNG CNS RQT : %d",
hdd_ipa->sap_num_connected_sta,
hdd_ipa->sta_connected,
hdd_ipa->tx_pipe_handle,
hdd_ipa->rx_pipe_handle,
(unsigned int)hdd_ipa->resource_loading,
(unsigned int)hdd_ipa->resource_unloading,
(unsigned int)hdd_ipa->pending_cons_req);
/* STATs from FW */
uc_fw_stat = (struct ipa_uc_fw_stats *)
((uint8_t *)op_msg + sizeof(struct op_msg_type));
CDF_TRACE(CDF_MODULE_ID_HDD, CDF_TRACE_LEVEL_ERROR,
"==== IPA_UC WLAN_FW TX ====\n"
"COMP RING BASE: 0x%x\n"
"COMP RING SIZE: %d\n"
"COMP RING DBELL : 0x%x\n"
"COMP RING DBELL IND VAL : %d\n"
"COMP RING DBELL CACHED VAL : %d\n"
"COMP RING DBELL CACHED VAL : %d\n"
"PKTS ENQ : %d\n"
"PKTS COMP : %d\n"
"IS SUSPEND : %d\n"
"RSVD : 0x%x",
uc_fw_stat->tx_comp_ring_base,
uc_fw_stat->tx_comp_ring_size,
uc_fw_stat->tx_comp_ring_dbell_addr,
uc_fw_stat->tx_comp_ring_dbell_ind_val,
uc_fw_stat->tx_comp_ring_dbell_cached_val,
uc_fw_stat->tx_comp_ring_dbell_cached_val,
uc_fw_stat->tx_pkts_enqueued,
uc_fw_stat->tx_pkts_completed,
uc_fw_stat->tx_is_suspend, uc_fw_stat->tx_reserved);
CDF_TRACE(CDF_MODULE_ID_HDD, CDF_TRACE_LEVEL_ERROR,
"==== IPA_UC WLAN_FW RX ====\n"
"IND RING BASE: 0x%x\n"
"IND RING SIZE: %d\n"
"IND RING DBELL : 0x%x\n"
"IND RING DBELL IND VAL : %d\n"
"IND RING DBELL CACHED VAL : %d\n"
"RDY IND ADDR : 0x%x\n"
"RDY IND CACHE VAL : %d\n"
"RFIL IND : %d\n"
"NUM PKT INDICAT : %d\n"
"BUF REFIL : %d\n"
"NUM DROP NO SPC : %d\n"
"NUM DROP NO BUF : %d\n"
"IS SUSPND : %d\n"
"RSVD : 0x%x\n",
uc_fw_stat->rx_ind_ring_base,
uc_fw_stat->rx_ind_ring_size,
uc_fw_stat->rx_ind_ring_dbell_addr,
uc_fw_stat->rx_ind_ring_dbell_ind_val,
uc_fw_stat->rx_ind_ring_dbell_ind_cached_val,
uc_fw_stat->rx_ind_ring_rdidx_addr,
uc_fw_stat->rx_ind_ring_rd_idx_cached_val,
uc_fw_stat->rx_refill_idx,
uc_fw_stat->rx_num_pkts_indicated,
uc_fw_stat->rx_buf_refilled,
uc_fw_stat->rx_num_ind_drop_no_space,
uc_fw_stat->rx_num_ind_drop_no_buf,
uc_fw_stat->rx_is_suspend, uc_fw_stat->rx_reserved);
/* STATs from IPA */
ipa_get_wdi_stats(&ipa_stat);
CDF_TRACE(CDF_MODULE_ID_HDD, CDF_TRACE_LEVEL_ERROR,
"==== IPA_UC IPA TX ====\n"
"NUM PROCD : %d\n"
"CE DBELL : 0x%x\n"
"NUM DBELL FIRED : %d\n"
"COMP RNG FULL : %d\n"
"COMP RNG EMPT : %d\n"
"COMP RNG USE HGH : %d\n"
"COMP RNG USE LOW : %d\n"
"BAM FIFO FULL : %d\n"
"BAM FIFO EMPT : %d\n"
"BAM FIFO USE HGH : %d\n"
"BAM FIFO USE LOW : %d\n"
"NUM DBELL : %d\n"
"NUM UNEXP DBELL : %d\n"
"NUM BAM INT HDL : 0x%x\n"
"NUM BAM INT NON-RUN : 0x%x\n"
"NUM QMB INT HDL : 0x%x",
ipa_stat.tx_ch_stats.num_pkts_processed,
ipa_stat.tx_ch_stats.copy_engine_doorbell_value,
ipa_stat.tx_ch_stats.num_db_fired,
ipa_stat.tx_ch_stats.tx_comp_ring_stats.ringFull,
ipa_stat.tx_ch_stats.tx_comp_ring_stats.ringEmpty,
ipa_stat.tx_ch_stats.tx_comp_ring_stats.ringUsageHigh,
ipa_stat.tx_ch_stats.tx_comp_ring_stats.ringUsageLow,
ipa_stat.tx_ch_stats.bam_stats.bamFifoFull,
ipa_stat.tx_ch_stats.bam_stats.bamFifoEmpty,
ipa_stat.tx_ch_stats.bam_stats.bamFifoUsageHigh,
ipa_stat.tx_ch_stats.bam_stats.bamFifoUsageLow,
ipa_stat.tx_ch_stats.num_db,
ipa_stat.tx_ch_stats.num_unexpected_db,
ipa_stat.tx_ch_stats.num_bam_int_handled,
ipa_stat.tx_ch_stats.
num_bam_int_in_non_runnning_state,
ipa_stat.tx_ch_stats.num_qmb_int_handled);
CDF_TRACE(CDF_MODULE_ID_HDD, CDF_TRACE_LEVEL_ERROR,
"==== IPA_UC IPA RX ====\n"
"MAX OST PKT : %d\n"
"NUM PKT PRCSD : %d\n"
"RNG RP : 0x%x\n"
"COMP RNG FULL : %d\n"
"COMP RNG EMPT : %d\n"
"COMP RNG USE HGH : %d\n"
"COMP RNG USE LOW : %d\n"
"BAM FIFO FULL : %d\n"
"BAM FIFO EMPT : %d\n"
"BAM FIFO USE HGH : %d\n"
"BAM FIFO USE LOW : %d\n"
"NUM DB : %d\n"
"NUM UNEXP DB : %d\n"
"NUM BAM INT HNDL : 0x%x\n",
ipa_stat.rx_ch_stats.max_outstanding_pkts,
ipa_stat.rx_ch_stats.num_pkts_processed,
ipa_stat.rx_ch_stats.rx_ring_rp_value,
ipa_stat.rx_ch_stats.rx_ind_ring_stats.ringFull,
ipa_stat.rx_ch_stats.rx_ind_ring_stats.ringEmpty,
ipa_stat.rx_ch_stats.rx_ind_ring_stats.ringUsageHigh,
ipa_stat.rx_ch_stats.rx_ind_ring_stats.ringUsageLow,
ipa_stat.rx_ch_stats.bam_stats.bamFifoFull,
ipa_stat.rx_ch_stats.bam_stats.bamFifoEmpty,
ipa_stat.rx_ch_stats.bam_stats.bamFifoUsageHigh,
ipa_stat.rx_ch_stats.bam_stats.bamFifoUsageLow,
ipa_stat.rx_ch_stats.num_db,
ipa_stat.rx_ch_stats.num_unexpected_db,
ipa_stat.rx_ch_stats.num_bam_int_handled);
} else if ((HDD_IPA_UC_OPCODE_STATS == msg->op_code) &&
(HDD_IPA_UC_STAT_REASON_BW_CAL == hdd_ipa->stat_req_reason)) {
/* STATs from FW */
uc_fw_stat = (struct ipa_uc_fw_stats *)
((uint8_t *)op_msg + sizeof(struct op_msg_type));
cdf_mutex_acquire(&hdd_ipa->event_lock);
hdd_ipa->ipa_tx_packets_diff = HDD_BW_GET_DIFF(
uc_fw_stat->tx_pkts_completed,
hdd_ipa->ipa_p_tx_packets);
hdd_ipa->ipa_rx_packets_diff = HDD_BW_GET_DIFF(
(uc_fw_stat->rx_num_ind_drop_no_space +
uc_fw_stat->rx_num_ind_drop_no_buf +
uc_fw_stat->rx_num_pkts_indicated),
hdd_ipa->ipa_p_rx_packets);
hdd_ipa->ipa_p_tx_packets = uc_fw_stat->tx_pkts_completed;
hdd_ipa->ipa_p_rx_packets =
(uc_fw_stat->rx_num_ind_drop_no_space +
uc_fw_stat->rx_num_ind_drop_no_buf +
uc_fw_stat->rx_num_pkts_indicated);
cdf_mutex_release(&hdd_ipa->event_lock);
} else {
HDD_IPA_LOG(LOGE, "INVALID REASON %d",
hdd_ipa->stat_req_reason);
}
cdf_mem_free(op_msg);
}
/**
* hdd_ipa_uc_offload_enable_disable() - wdi enable/disable notify to fw
* @adapter: device adapter instance
* @offload_type: MCC or SCC
* @enable: TX offload enable or disable
*
* Return: none
*/
static void hdd_ipa_uc_offload_enable_disable(hdd_adapter_t *adapter,
uint32_t offload_type, uint32_t enable)
{
struct sir_ipa_offload_enable_disable ipa_offload_enable_disable;
/* Lower layer may send multiple START_BSS_EVENT in DFS mode or during
* channel change indication. Since these indications are sent by lower
* layer as SAP updates and IPA doesn't have to do anything for these
* updates so ignoring!
*/
if (WLAN_HDD_SOFTAP == adapter->device_mode && adapter->ipa_context)
return;
/* Lower layer may send multiple START_BSS_EVENT in DFS mode or during
* channel change indication. Since these indications are sent by lower
* layer as SAP updates and IPA doesn't have to do anything for these
* updates so ignoring!
*/
if (adapter->ipa_context)
return;
cdf_mem_zero(&ipa_offload_enable_disable,
sizeof(ipa_offload_enable_disable));
ipa_offload_enable_disable.offload_type = offload_type;
ipa_offload_enable_disable.vdev_id = adapter->sessionId;
ipa_offload_enable_disable.enable = enable;
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: offload_type=%d, vdev_id=%d, enable=%d", __func__,
ipa_offload_enable_disable.offload_type,
ipa_offload_enable_disable.vdev_id,
ipa_offload_enable_disable.enable);
if (CDF_STATUS_SUCCESS !=
sme_ipa_offload_enable_disable(WLAN_HDD_GET_HAL_CTX(adapter),
adapter->sessionId, &ipa_offload_enable_disable)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: Failure to enable IPA offload \
(offload_type=%d, vdev_id=%d, enable=%d)", __func__,
ipa_offload_enable_disable.offload_type,
ipa_offload_enable_disable.vdev_id,
ipa_offload_enable_disable.enable);
}
}
/**
* hdd_ipa_uc_fw_op_event_handler - IPA uC FW OPvent handler
* @work: uC OP work
*
* Return: None
*/
static void hdd_ipa_uc_fw_op_event_handler(struct work_struct *work)
{
struct op_msg_type *msg;
struct uc_op_work_struct *uc_op_work = container_of(work,
struct uc_op_work_struct, work);
struct hdd_ipa_priv *hdd_ipa = ghdd_ipa;
cds_ssr_protect(__func__);
msg = uc_op_work->msg;
uc_op_work->msg = NULL;
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO_HIGH,
"%s, posted msg %d", __func__, msg->op_code);
hdd_ipa_uc_op_cb(msg, hdd_ipa->hdd_ctx);
cds_ssr_unprotect(__func__);
return;
}
/**
* hdd_ipa_uc_op_event_handler() - Adapter lookup
* hdd_ipa_uc_fw_op_event_handler - IPA uC FW OPvent handler
* @op_msg: operation message received from firmware
* @hdd_ctx: Global HDD context
*
* Return: None
*/
static void hdd_ipa_uc_op_event_handler(uint8_t *op_msg, void *hdd_ctx)
{
struct hdd_ipa_priv *hdd_ipa;
struct op_msg_type *msg;
struct uc_op_work_struct *uc_op_work;
CDF_STATUS status = CDF_STATUS_SUCCESS;
status = wlan_hdd_validate_context(hdd_ctx);
if (0 != status) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "HDD context is not valid");
goto end;
}
msg = (struct op_msg_type *)op_msg;
hdd_ipa = ((hdd_context_t *)hdd_ctx)->hdd_ipa;
if (unlikely(!hdd_ipa))
goto end;
if (HDD_IPA_UC_OPCODE_MAX <= msg->op_code) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "%s: Invalid OP Code (%d)",
__func__, msg->op_code);
goto end;
}
uc_op_work = &hdd_ipa->uc_op_work[msg->op_code];
if (uc_op_work->msg)
/* When the same uC OPCODE is already pended, just return */
goto end;
uc_op_work->msg = msg;
schedule_work(&uc_op_work->work);
return;
end:
cdf_mem_free(op_msg);
}
/**
* hdd_ipa_uc_ol_init() - Initialize IPA uC offload
* @hdd_ctx: Global HDD context
*
* Return: CDF_STATUS
*/
static CDF_STATUS hdd_ipa_uc_ol_init(hdd_context_t *hdd_ctx)
{
struct ipa_wdi_in_params pipe_in;
struct ipa_wdi_out_params pipe_out;
struct hdd_ipa_priv *ipa_ctxt = (struct hdd_ipa_priv *)hdd_ctx->hdd_ipa;
p_cds_contextType cds_ctx = hdd_ctx->pcds_context;
uint8_t i;
cdf_mem_zero(&pipe_in, sizeof(struct ipa_wdi_in_params));
cdf_mem_zero(&pipe_out, sizeof(struct ipa_wdi_out_params));
cdf_list_init(&ipa_ctxt->pending_event, 1000);
cdf_mutex_init(&ipa_ctxt->event_lock);
/* TX PIPE */
pipe_in.sys.ipa_ep_cfg.nat.nat_en = IPA_BYPASS_NAT;
pipe_in.sys.ipa_ep_cfg.hdr.hdr_len = HDD_IPA_UC_WLAN_TX_HDR_LEN;
pipe_in.sys.ipa_ep_cfg.hdr.hdr_ofst_pkt_size_valid = 1;
pipe_in.sys.ipa_ep_cfg.hdr.hdr_ofst_pkt_size = 0;
pipe_in.sys.ipa_ep_cfg.hdr.hdr_additional_const_len =
HDD_IPA_UC_WLAN_8023_HDR_SIZE;
pipe_in.sys.ipa_ep_cfg.mode.mode = IPA_BASIC;
pipe_in.sys.client = IPA_CLIENT_WLAN1_CONS;
pipe_in.sys.desc_fifo_sz = hdd_ctx->config->IpaDescSize;
pipe_in.sys.priv = hdd_ctx->hdd_ipa;
pipe_in.sys.ipa_ep_cfg.hdr_ext.hdr_little_endian = true;
pipe_in.sys.notify = hdd_ipa_i2w_cb;
if (!hdd_ipa_is_rm_enabled(hdd_ctx)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: IPA RM DISABLED, IPA AWAKE", __func__);
pipe_in.sys.keep_ipa_awake = true;
}
pipe_in.u.dl.comp_ring_base_pa = hdd_ctx->tx_comp_ring_base_paddr;
pipe_in.u.dl.comp_ring_size = hdd_ctx->tx_comp_ring_size * 4;
pipe_in.u.dl.ce_ring_base_pa = hdd_ctx->ce_sr_base_paddr;
pipe_in.u.dl.ce_door_bell_pa = hdd_ctx->ce_reg_paddr;
pipe_in.u.dl.ce_ring_size = hdd_ctx->ce_sr_ring_size * 8;
pipe_in.u.dl.num_tx_buffers = hdd_ctx->tx_num_alloc_buffer;
/* Connect WDI IPA PIPE */
ipa_connect_wdi_pipe(&pipe_in, &pipe_out);
/* Micro Controller Doorbell register */
hdd_ctx->tx_comp_doorbell_paddr = (uint32_t) pipe_out.uc_door_bell_pa;
/* WLAN TX PIPE Handle */
ipa_ctxt->tx_pipe_handle = pipe_out.clnt_hdl;
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO_HIGH,
"TX : CRBPA 0x%x, CRS %d, CERBPA 0x%x, CEDPA 0x%x,"
" CERZ %d, NB %d, CDBPAD 0x%x",
(unsigned int)pipe_in.u.dl.comp_ring_base_pa,
pipe_in.u.dl.comp_ring_size,
(unsigned int)pipe_in.u.dl.ce_ring_base_pa,
(unsigned int)pipe_in.u.dl.ce_door_bell_pa,
pipe_in.u.dl.ce_ring_size,
pipe_in.u.dl.num_tx_buffers,
(unsigned int)hdd_ctx->tx_comp_doorbell_paddr);
/* RX PIPE */
pipe_in.sys.ipa_ep_cfg.nat.nat_en = IPA_BYPASS_NAT;
pipe_in.sys.ipa_ep_cfg.hdr.hdr_len = HDD_IPA_UC_WLAN_RX_HDR_LEN;
pipe_in.sys.ipa_ep_cfg.hdr.hdr_ofst_metadata_valid = 0;
pipe_in.sys.ipa_ep_cfg.hdr.hdr_metadata_reg_valid = 1;
pipe_in.sys.ipa_ep_cfg.mode.mode = IPA_BASIC;
pipe_in.sys.client = IPA_CLIENT_WLAN1_PROD;
pipe_in.sys.desc_fifo_sz = hdd_ctx->config->IpaDescSize +
sizeof(struct sps_iovec);
pipe_in.sys.notify = hdd_ipa_w2i_cb;
if (!hdd_ipa_is_rm_enabled(hdd_ctx)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: IPA RM DISABLED, IPA AWAKE", __func__);
pipe_in.sys.keep_ipa_awake = true;
}
pipe_in.u.ul.rdy_ring_base_pa = hdd_ctx->rx_rdy_ring_base_paddr;
pipe_in.u.ul.rdy_ring_size = hdd_ctx->rx_rdy_ring_size;
pipe_in.u.ul.rdy_ring_rp_pa = hdd_ctx->rx_proc_done_idx_paddr;
ipa_connect_wdi_pipe(&pipe_in, &pipe_out);
hdd_ctx->rx_ready_doorbell_paddr = pipe_out.uc_door_bell_pa;
ipa_ctxt->rx_pipe_handle = pipe_out.clnt_hdl;
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO_HIGH,
"RX : RRBPA 0x%x, RRS %d, PDIPA 0x%x, RDY_DB_PAD 0x%x",
(unsigned int)pipe_in.u.ul.rdy_ring_base_pa,
pipe_in.u.ul.rdy_ring_size,
(unsigned int)pipe_in.u.ul.rdy_ring_rp_pa,
(unsigned int)hdd_ctx->rx_ready_doorbell_paddr);
ol_txrx_ipa_uc_set_doorbell_paddr(cds_ctx->pdev_txrx_ctx,
(uint32_t) hdd_ctx->tx_comp_doorbell_paddr,
(uint32_t) hdd_ctx->rx_ready_doorbell_paddr);
ol_txrx_ipa_uc_register_op_cb(cds_ctx->pdev_txrx_ctx,
hdd_ipa_uc_op_event_handler, (void *)hdd_ctx);
for (i = 0; i < HDD_IPA_UC_OPCODE_MAX; i++) {
cnss_init_work(&ipa_ctxt->uc_op_work[i].work,
hdd_ipa_uc_fw_op_event_handler);
ipa_ctxt->uc_op_work[i].msg = NULL;
}
return CDF_STATUS_SUCCESS;
}
#ifdef IPA_UC_OFFLOAD
/**
* hdd_ipa_uc_ssr_deinit() - handle ipa deinit for SSR
*
* Deinit basic IPA UC host side to be in sync reloaded FW during
* SSR
*
* Return: 0 - Success
*/
int hdd_ipa_uc_ssr_deinit(void)
{
struct hdd_ipa_priv *hdd_ipa = ghdd_ipa;
int idx;
struct hdd_ipa_iface_context *iface_context;
if (!hdd_ipa_uc_is_enabled(hdd_ipa))
return 0;
/* Clean up HDD IPA interfaces */
for (idx = 0; (hdd_ipa->num_iface > 0) &&
(idx < HDD_IPA_MAX_IFACE); idx++) {
iface_context = &hdd_ipa->iface_context[idx];
if (iface_context && iface_context->adapter)
hdd_ipa_cleanup_iface(iface_context);
}
/* After SSR, wlan driver reloads FW again. But we need to protect
* IPA submodule during SSR transient state. So deinit basic IPA
* UC host side to be in sync with reloaded FW during SSR
*/
hdd_ipa_uc_disable_pipes(hdd_ipa);
cdf_wake_lock_acquire(&hdd_ipa->event_lock);
for (idx = 0; idx < WLAN_MAX_STA_COUNT; idx++) {
hdd_ipa->assoc_stas_map[idx].is_reserved = false;
hdd_ipa->assoc_stas_map[idx].sta_id = 0xFF;
}
cdf_wake_lock_release(&hdd_ipa->event_lock);
/* Full IPA driver cleanup not required since wlan driver is now
* unloaded and reloaded after SSR.
*/
return 0;
}
/**
* hdd_ipa_uc_ssr_reinit() - handle ipa reinit after SSR
*
* Init basic IPA UC host side to be in sync with reloaded FW after
* SSR to resume IPA UC operations
*
* Return: 0 - Success
*/
int hdd_ipa_uc_ssr_reinit(void)
{
struct hdd_ipa_priv *hdd_ipa = ghdd_ipa;
if (!hdd_ipa_uc_is_enabled(hdd_ipa))
return 0;
/* After SSR is complete, IPA UC can resume operation. But now wlan
* driver will be unloaded and reloaded, which takes care of IPA cleanup
* and initialization. This is a placeholder func if IPA has to resume
* operations without driver reload.
*/
return 0;
}
#endif
/**
* hdd_ipa_wake_lock_timer_func() - Wake lock work handler
* @work: scheduled work
*
* When IPA resources are released in hdd_ipa_rm_try_release() we do
* not want to immediately release the wake lock since the system
* would then potentially try to suspend when there is a healthy data
* rate. Deferred work is scheduled and this function handles the
* work. When this function is called, if the IPA resource is still
* released then we release the wake lock.
*
* Return: None
*/
static void hdd_ipa_wake_lock_timer_func(struct work_struct *work)
{
struct hdd_ipa_priv *hdd_ipa = container_of(to_delayed_work(work),
struct hdd_ipa_priv,
wake_lock_work);
cdf_spin_lock_bh(&hdd_ipa->rm_lock);
if (hdd_ipa->rm_state != HDD_IPA_RM_RELEASED)
goto end;
hdd_ipa->wake_lock_released = true;
cdf_wake_lock_release(&hdd_ipa->wake_lock,
WIFI_POWER_EVENT_WAKELOCK_IPA);
end:
cdf_spin_unlock_bh(&hdd_ipa->rm_lock);
}
/**
* hdd_ipa_rm_request() - Request resource from IPA
* @hdd_ipa: Global HDD IPA context
*
* Return: 0 on success, negative errno on error
*/
static int hdd_ipa_rm_request(struct hdd_ipa_priv *hdd_ipa)
{
int ret = 0;
if (!hdd_ipa_is_rm_enabled(hdd_ipa->hdd_ctx))
return 0;
cdf_spin_lock_bh(&hdd_ipa->rm_lock);
switch (hdd_ipa->rm_state) {
case HDD_IPA_RM_GRANTED:
cdf_spin_unlock_bh(&hdd_ipa->rm_lock);
return 0;
case HDD_IPA_RM_GRANT_PENDING:
cdf_spin_unlock_bh(&hdd_ipa->rm_lock);
return -EINPROGRESS;
case HDD_IPA_RM_RELEASED:
hdd_ipa->rm_state = HDD_IPA_RM_GRANT_PENDING;
break;
}
cdf_spin_unlock_bh(&hdd_ipa->rm_lock);
ret = ipa_rm_inactivity_timer_request_resource(
IPA_RM_RESOURCE_WLAN_PROD);
cdf_spin_lock_bh(&hdd_ipa->rm_lock);
if (ret == 0) {
hdd_ipa->rm_state = HDD_IPA_RM_GRANTED;
hdd_ipa->stats.num_rm_grant_imm++;
}
cancel_delayed_work(&hdd_ipa->wake_lock_work);
if (hdd_ipa->wake_lock_released) {
cdf_wake_lock_acquire(&hdd_ipa->wake_lock,
WIFI_POWER_EVENT_WAKELOCK_IPA);
hdd_ipa->wake_lock_released = false;
}
cdf_spin_unlock_bh(&hdd_ipa->rm_lock);
return ret;
}
/**
* hdd_ipa_rm_try_release() - Attempt to release IPA resource
* @hdd_ipa: Global HDD IPA context
*
* Return: 0 if resources released, negative errno otherwise
*/
static int hdd_ipa_rm_try_release(struct hdd_ipa_priv *hdd_ipa)
{
int ret = 0;
if (!hdd_ipa_is_rm_enabled(hdd_ipa->hdd_ctx))
return 0;
if (atomic_read(&hdd_ipa->tx_ref_cnt))
return -EAGAIN;
spin_lock_bh(&hdd_ipa->q_lock);
if (!hdd_ipa_uc_sta_is_enabled(hdd_ipa->hdd_ctx) &&
(hdd_ipa->pending_hw_desc_cnt || hdd_ipa->pend_q_cnt)) {
spin_unlock_bh(&hdd_ipa->q_lock);
return -EAGAIN;
}
spin_unlock_bh(&hdd_ipa->q_lock);
cdf_spin_lock_bh(&hdd_ipa->pm_lock);
if (!cdf_nbuf_is_queue_empty(&hdd_ipa->pm_queue_head)) {
cdf_spin_unlock_bh(&hdd_ipa->pm_lock);
return -EAGAIN;
}
cdf_spin_unlock_bh(&hdd_ipa->pm_lock);
cdf_spin_lock_bh(&hdd_ipa->rm_lock);
switch (hdd_ipa->rm_state) {
case HDD_IPA_RM_GRANTED:
break;
case HDD_IPA_RM_GRANT_PENDING:
cdf_spin_unlock_bh(&hdd_ipa->rm_lock);
return -EINPROGRESS;
case HDD_IPA_RM_RELEASED:
cdf_spin_unlock_bh(&hdd_ipa->rm_lock);
return 0;
}
/* IPA driver returns immediately so set the state here to avoid any
* race condition.
*/
hdd_ipa->rm_state = HDD_IPA_RM_RELEASED;
hdd_ipa->stats.num_rm_release++;
cdf_spin_unlock_bh(&hdd_ipa->rm_lock);
ret =
ipa_rm_inactivity_timer_release_resource(IPA_RM_RESOURCE_WLAN_PROD);
cdf_spin_lock_bh(&hdd_ipa->rm_lock);
if (unlikely(ret != 0)) {
hdd_ipa->rm_state = HDD_IPA_RM_GRANTED;
WARN_ON(1);
}
/*
* If wake_lock is released immediately, kernel would try to suspend
* immediately as well, Just avoid ping-pong between suspend-resume
* while there is healthy amount of data transfer going on by
* releasing the wake_lock after some delay.
*/
schedule_delayed_work(&hdd_ipa->wake_lock_work,
msecs_to_jiffies
(HDD_IPA_RX_INACTIVITY_MSEC_DELAY));
cdf_spin_unlock_bh(&hdd_ipa->rm_lock);
return ret;
}
/**
* hdd_ipa_rm_notify() - IPA resource manager notifier callback
* @user_data: user data registered with IPA
* @event: the IPA resource manager event that occurred
* @data: the data associated with the event
*
* Return: None
*/
static void hdd_ipa_rm_notify(void *user_data, enum ipa_rm_event event,
unsigned long data)
{
struct hdd_ipa_priv *hdd_ipa = user_data;
if (unlikely(!hdd_ipa))
return;
if (!hdd_ipa_is_rm_enabled(hdd_ipa->hdd_ctx))
return;
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "Evt: %d", event);
switch (event) {
case IPA_RM_RESOURCE_GRANTED:
if (hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
/* RM Notification comes with ISR context
* it should be serialized into work queue to avoid
* ISR sleep problem
*/
hdd_ipa->uc_rm_work.event = event;
schedule_work(&hdd_ipa->uc_rm_work.work);
break;
}
cdf_spin_lock_bh(&hdd_ipa->rm_lock);
hdd_ipa->rm_state = HDD_IPA_RM_GRANTED;
cdf_spin_unlock_bh(&hdd_ipa->rm_lock);
hdd_ipa->stats.num_rm_grant++;
break;
case IPA_RM_RESOURCE_RELEASED:
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "RM Release");
hdd_ipa->resource_unloading = false;
break;
default:
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "Unknown RM Evt: %d", event);
break;
}
}
/**
* hdd_ipa_rm_cons_release() - WLAN consumer resource release handler
*
* Callback function registered with IPA that is called when IPA wants
* to release the WLAN consumer resource
*
* Return: 0 if the request is granted, negative errno otherwise
*/
static int hdd_ipa_rm_cons_release(void)
{
return 0;
}
/**
* hdd_ipa_rm_cons_request() - WLAN consumer resource request handler
*
* Callback function registered with IPA that is called when IPA wants
* to access the WLAN consumer resource
*
* Return: 0 if the request is granted, negative errno otherwise
*/
static int hdd_ipa_rm_cons_request(void)
{
if ((ghdd_ipa->resource_loading) || (ghdd_ipa->resource_unloading)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_FATAL,
"%s: ipa resource loading/unloading in progress",
__func__);
ghdd_ipa->pending_cons_req = true;
return -EPERM;
}
return 0;
}
/**
* hdd_ipa_set_perf_level() - Set IPA performance level
* @hdd_ctx: Global HDD context
* @tx_packets: Number of packets transmitted in the last sample period
* @rx_packets: Number of packets received in the last sample period
*
* Return: 0 on success, negative errno on error
*/
int hdd_ipa_set_perf_level(hdd_context_t *hdd_ctx, uint64_t tx_packets,
uint64_t rx_packets)
{
uint32_t next_cons_bw, next_prod_bw;
struct hdd_ipa_priv *hdd_ipa = hdd_ctx->hdd_ipa;
struct ipa_rm_perf_profile profile;
int ret;
if ((!hdd_ipa_is_enabled(hdd_ctx)) ||
(!hdd_ipa_is_clk_scaling_enabled(hdd_ctx)))
return 0;
memset(&profile, 0, sizeof(profile));
if (tx_packets > (hdd_ctx->config->busBandwidthHighThreshold / 2))
next_cons_bw = hdd_ctx->config->IpaHighBandwidthMbps;
else if (tx_packets >
(hdd_ctx->config->busBandwidthMediumThreshold / 2))
next_cons_bw = hdd_ctx->config->IpaMediumBandwidthMbps;
else
next_cons_bw = hdd_ctx->config->IpaLowBandwidthMbps;
if (rx_packets > (hdd_ctx->config->busBandwidthHighThreshold / 2))
next_prod_bw = hdd_ctx->config->IpaHighBandwidthMbps;
else if (rx_packets >
(hdd_ctx->config->busBandwidthMediumThreshold / 2))
next_prod_bw = hdd_ctx->config->IpaMediumBandwidthMbps;
else
next_prod_bw = hdd_ctx->config->IpaLowBandwidthMbps;
HDD_IPA_LOG(LOG1,
"CONS perf curr: %d, next: %d",
hdd_ipa->curr_cons_bw, next_cons_bw);
HDD_IPA_LOG(LOG1,
"PROD perf curr: %d, next: %d",
hdd_ipa->curr_prod_bw, next_prod_bw);
if (hdd_ipa->curr_cons_bw != next_cons_bw) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"Requesting CONS perf curr: %d, next: %d",
hdd_ipa->curr_cons_bw, next_cons_bw);
profile.max_supported_bandwidth_mbps = next_cons_bw;
ret = ipa_rm_set_perf_profile(IPA_RM_RESOURCE_WLAN_CONS,
&profile);
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"RM CONS set perf profile failed: %d", ret);
return ret;
}
hdd_ipa->curr_cons_bw = next_cons_bw;
hdd_ipa->stats.num_cons_perf_req++;
}
if (hdd_ipa->curr_prod_bw != next_prod_bw) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"Requesting PROD perf curr: %d, next: %d",
hdd_ipa->curr_prod_bw, next_prod_bw);
profile.max_supported_bandwidth_mbps = next_prod_bw;
ret = ipa_rm_set_perf_profile(IPA_RM_RESOURCE_WLAN_PROD,
&profile);
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"RM PROD set perf profile failed: %d", ret);
return ret;
}
hdd_ipa->curr_prod_bw = next_prod_bw;
hdd_ipa->stats.num_prod_perf_req++;
}
return 0;
}
/**
* hdd_ipa_setup_rm() - Setup IPA resource management
* @hdd_ipa: Global HDD IPA context
*
* Return: 0 on success, negative errno on error
*/
static int hdd_ipa_setup_rm(struct hdd_ipa_priv *hdd_ipa)
{
struct ipa_rm_create_params create_params = { 0 };
int ret;
if (!hdd_ipa_is_rm_enabled(hdd_ipa->hdd_ctx))
return 0;
cnss_init_work(&hdd_ipa->uc_rm_work.work, hdd_ipa_uc_rm_notify_defer);
memset(&create_params, 0, sizeof(create_params));
create_params.name = IPA_RM_RESOURCE_WLAN_PROD;
create_params.reg_params.user_data = hdd_ipa;
create_params.reg_params.notify_cb = hdd_ipa_rm_notify;
create_params.floor_voltage = IPA_VOLTAGE_SVS;
ret = ipa_rm_create_resource(&create_params);
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"Create RM resource failed: %d", ret);
goto setup_rm_fail;
}
memset(&create_params, 0, sizeof(create_params));
create_params.name = IPA_RM_RESOURCE_WLAN_CONS;
create_params.request_resource = hdd_ipa_rm_cons_request;
create_params.release_resource = hdd_ipa_rm_cons_release;
create_params.floor_voltage = IPA_VOLTAGE_SVS;
ret = ipa_rm_create_resource(&create_params);
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"Create RM CONS resource failed: %d", ret);
goto delete_prod;
}
ipa_rm_add_dependency(IPA_RM_RESOURCE_WLAN_PROD,
IPA_RM_RESOURCE_APPS_CONS);
ret = ipa_rm_inactivity_timer_init(IPA_RM_RESOURCE_WLAN_PROD,
HDD_IPA_RX_INACTIVITY_MSEC_DELAY);
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "Timer init failed: %d",
ret);
goto timer_init_failed;
}
/* Set the lowest bandwidth to start with */
ret = hdd_ipa_set_perf_level(hdd_ipa->hdd_ctx, 0, 0);
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"Set perf level failed: %d", ret);
goto set_perf_failed;
}
cdf_wake_lock_init(&hdd_ipa->wake_lock, "wlan_ipa");
#ifdef CONFIG_CNSS
cnss_init_delayed_work(&hdd_ipa->wake_lock_work,
hdd_ipa_wake_lock_timer_func);
#else
INIT_DELAYED_WORK(&hdd_ipa->wake_lock_work,
hdd_ipa_wake_lock_timer_func);
#endif
cdf_spinlock_init(&hdd_ipa->rm_lock);
hdd_ipa->rm_state = HDD_IPA_RM_RELEASED;
hdd_ipa->wake_lock_released = true;
atomic_set(&hdd_ipa->tx_ref_cnt, 0);
return ret;
set_perf_failed:
ipa_rm_inactivity_timer_destroy(IPA_RM_RESOURCE_WLAN_PROD);
timer_init_failed:
ipa_rm_delete_resource(IPA_RM_RESOURCE_WLAN_CONS);
delete_prod:
ipa_rm_delete_resource(IPA_RM_RESOURCE_WLAN_PROD);
setup_rm_fail:
return ret;
}
/**
* hdd_ipa_destroy_rm_resource() - Destroy IPA resources
* @hdd_ipa: Global HDD IPA context
*
* Destroys all resources associated with the IPA resource manager
*
* Return: None
*/
static void hdd_ipa_destroy_rm_resource(struct hdd_ipa_priv *hdd_ipa)
{
int ret;
if (!hdd_ipa_is_rm_enabled(hdd_ipa->hdd_ctx))
return;
cancel_delayed_work_sync(&hdd_ipa->wake_lock_work);
cdf_wake_lock_destroy(&hdd_ipa->wake_lock);
#ifdef WLAN_OPEN_SOURCE
cancel_work_sync(&hdd_ipa->uc_rm_work.work);
#endif
cdf_spinlock_destroy(&hdd_ipa->rm_lock);
ipa_rm_inactivity_timer_destroy(IPA_RM_RESOURCE_WLAN_PROD);
ret = ipa_rm_delete_resource(IPA_RM_RESOURCE_WLAN_PROD);
if (ret)
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"RM PROD resource delete failed %d", ret);
ret = ipa_rm_delete_resource(IPA_RM_RESOURCE_WLAN_CONS);
if (ret)
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"RM CONS resource delete failed %d", ret);
}
/**
* hdd_ipa_send_skb_to_network() - Send skb to kernel
* @skb: network buffer
* @adapter: network adapter
*
* Called when a network buffer is received which should not be routed
* to the IPA module.
*
* Return: None
*/
static void hdd_ipa_send_skb_to_network(cdf_nbuf_t skb,
hdd_adapter_t *adapter)
{
struct hdd_ipa_priv *hdd_ipa = ghdd_ipa;
unsigned int cpu_index;
if (!adapter || adapter->magic != WLAN_HDD_ADAPTER_MAGIC) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO_LOW, "Invalid adapter: 0x%p",
adapter);
HDD_IPA_INCREASE_INTERNAL_DROP_COUNT(hdd_ipa);
cdf_nbuf_free(skb);
return;
}
if (hdd_ipa->hdd_ctx->isUnloadInProgress) {
HDD_IPA_INCREASE_INTERNAL_DROP_COUNT(hdd_ipa);
cdf_nbuf_free(skb);
return;
}
skb->destructor = hdd_ipa_uc_rt_debug_destructor;
skb->dev = adapter->dev;
skb->protocol = eth_type_trans(skb, skb->dev);
skb->ip_summed = CHECKSUM_NONE;
cpu_index = wlan_hdd_get_cpu();
++adapter->hdd_stats.hddTxRxStats.rxPackets[cpu_index];
if (netif_rx_ni(skb) == NET_RX_SUCCESS)
++adapter->hdd_stats.hddTxRxStats.rxDelivered[cpu_index];
else
++adapter->hdd_stats.hddTxRxStats.rxRefused[cpu_index];
HDD_IPA_INCREASE_NET_SEND_COUNT(hdd_ipa);
adapter->dev->last_rx = jiffies;
}
#define FW_RX_DESC_DISCARD_M 0x1
#define FW_RX_DESC_FORWARD_M 0x2
/**
* hdd_ipa_w2i_cb() - WLAN to IPA callback handler
* @priv: pointer to private data registered with IPA (we register a
* pointer to the global IPA context)
* @evt: the IPA event which triggered the callback
* @data: data associated with the event
*
* Return: None
*/
static void hdd_ipa_w2i_cb(void *priv, enum ipa_dp_evt_type evt,
unsigned long data)
{
struct hdd_ipa_priv *hdd_ipa = NULL;
hdd_adapter_t *adapter = NULL;
cdf_nbuf_t skb;
uint8_t iface_id;
uint8_t session_id;
struct hdd_ipa_iface_context *iface_context;
cdf_nbuf_t copy;
uint8_t fw_desc;
int ret;
hdd_ipa = (struct hdd_ipa_priv *)priv;
switch (evt) {
case IPA_RECEIVE:
skb = (cdf_nbuf_t) data;
if (hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
session_id = (uint8_t)skb->cb[0];
iface_id = vdev_to_iface[session_id];
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO_HIGH,
"IPA_RECEIVE: session_id=%u, iface_id=%u",
session_id, iface_id);
} else {
iface_id = HDD_IPA_GET_IFACE_ID(skb->data);
}
if (iface_id >= HDD_IPA_MAX_IFACE) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"IPA_RECEIVE: Invalid iface_id: %u",
iface_id);
HDD_IPA_DBG_DUMP(CDF_TRACE_LEVEL_INFO_HIGH,
"w2i -- skb", skb->data, 8);
HDD_IPA_INCREASE_INTERNAL_DROP_COUNT(hdd_ipa);
cdf_nbuf_free(skb);
return;
}
iface_context = &hdd_ipa->iface_context[iface_id];
adapter = iface_context->adapter;
HDD_IPA_DBG_DUMP(CDF_TRACE_LEVEL_DEBUG,
"w2i -- skb", skb->data, 8);
if (hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
hdd_ipa->stats.num_rx_excep++;
skb_pull(skb, HDD_IPA_UC_WLAN_CLD_HDR_LEN);
} else {
skb_pull(skb, HDD_IPA_WLAN_CLD_HDR_LEN);
}
iface_context->stats.num_rx_ipa_excep++;
/* Disable to forward Intra-BSS Rx packets when
* ap_isolate=1 in hostapd.conf
*/
if (adapter->sessionCtx.ap.apDisableIntraBssFwd) {
/*
* When INTRA_BSS_FWD_OFFLOAD is enabled, FW will send
* all Rx packets to IPA uC, which need to be forwarded
* to other interface.
* And, IPA driver will send back to WLAN host driver
* through exception pipe with fw_desc field set by FW.
* Here we are checking fw_desc field for FORWARD bit
* set, and forward to Tx. Then copy to kernel stack
* only when DISCARD bit is not set.
*/
fw_desc = (uint8_t)skb->cb[1];
if (fw_desc & FW_RX_DESC_DISCARD_M) {
HDD_IPA_INCREASE_INTERNAL_DROP_COUNT(hdd_ipa);
hdd_ipa->ipa_rx_discard++;
cdf_nbuf_free(skb);
break;
}
if (fw_desc & FW_RX_DESC_FORWARD_M) {
HDD_IPA_LOG(
CDF_TRACE_LEVEL_DEBUG,
"Forward packet to Tx (fw_desc=%d)",
fw_desc);
copy = cdf_nbuf_copy(skb);
if (copy) {
hdd_ipa->ipa_tx_forward++;
ret = hdd_softap_hard_start_xmit(
(struct sk_buff *)copy,
adapter->dev);
if (ret) {
HDD_IPA_LOG(
CDF_TRACE_LEVEL_DEBUG,
"Forward packet tx fail");
hdd_ipa->stats.
num_tx_bcmc_err++;
} else {
hdd_ipa->stats.num_tx_bcmc++;
}
}
}
} else {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO_HIGH,
"Intra-BSS FWD is disabled-skip forward to Tx");
}
hdd_ipa_send_skb_to_network(skb, adapter);
break;
default:
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"w2i cb wrong event: 0x%x", evt);
return;
}
}
/**
* hdd_ipa_nbuf_cb() - IPA TX complete callback
* @skb: packet buffer which was transmitted
*
* Return: None
*/
static void hdd_ipa_nbuf_cb(cdf_nbuf_t skb)
{
struct hdd_ipa_priv *hdd_ipa = ghdd_ipa;
HDD_IPA_LOG(CDF_TRACE_LEVEL_DEBUG, "%lx", NBUF_OWNER_PRIV_DATA(skb));
ipa_free_skb((struct ipa_rx_data *)NBUF_OWNER_PRIV_DATA(skb));
hdd_ipa->stats.num_tx_comp_cnt++;
atomic_dec(&hdd_ipa->tx_ref_cnt);
hdd_ipa_rm_try_release(hdd_ipa);
}
/**
* hdd_ipa_send_pkt_to_tl() - Send an IPA packet to TL
* @iface_context: interface-specific IPA context
* @ipa_tx_desc: packet data descriptor
*
* Return: None
*/
static void hdd_ipa_send_pkt_to_tl(
struct hdd_ipa_iface_context *iface_context,
struct ipa_rx_data *ipa_tx_desc)
{
struct hdd_ipa_priv *hdd_ipa = iface_context->hdd_ipa;
uint8_t interface_id;
hdd_adapter_t *adapter = NULL;
cdf_nbuf_t skb;
cdf_spin_lock_bh(&iface_context->interface_lock);
adapter = iface_context->adapter;
if (!adapter) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_WARN, "Interface Down");
ipa_free_skb(ipa_tx_desc);
iface_context->stats.num_tx_drop++;
cdf_spin_unlock_bh(&iface_context->interface_lock);
hdd_ipa_rm_try_release(hdd_ipa);
return;
}
/*
* During CAC period, data packets shouldn't be sent over the air so
* drop all the packets here
*/
if (WLAN_HDD_GET_AP_CTX_PTR(adapter)->dfs_cac_block_tx) {
ipa_free_skb(ipa_tx_desc);
cdf_spin_unlock_bh(&iface_context->interface_lock);
iface_context->stats.num_tx_cac_drop++;
hdd_ipa_rm_try_release(hdd_ipa);
return;
}
interface_id = adapter->sessionId;
++adapter->stats.tx_packets;
cdf_spin_unlock_bh(&iface_context->interface_lock);
skb = ipa_tx_desc->skb;
cdf_mem_set(skb->cb, sizeof(skb->cb), 0);
NBUF_OWNER_ID(skb) = IPA_NBUF_OWNER_ID;
NBUF_CALLBACK_FN(skb) = hdd_ipa_nbuf_cb;
if (hdd_ipa_uc_sta_is_enabled(hdd_ipa->hdd_ctx)) {
NBUF_MAPPED_PADDR_LO(skb) = ipa_tx_desc->dma_addr
+ HDD_IPA_WLAN_FRAG_HEADER
+ HDD_IPA_WLAN_IPA_HEADER;
ipa_tx_desc->skb->len -=
HDD_IPA_WLAN_FRAG_HEADER + HDD_IPA_WLAN_IPA_HEADER;
} else
NBUF_MAPPED_PADDR_LO(skb) = ipa_tx_desc->dma_addr;
NBUF_OWNER_PRIV_DATA(skb) = (unsigned long)ipa_tx_desc;
adapter->stats.tx_bytes += ipa_tx_desc->skb->len;
skb = ol_tx_send_ipa_data_frame(iface_context->tl_context,
ipa_tx_desc->skb);
if (skb) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_DEBUG, "TLSHIM tx fail");
ipa_free_skb(ipa_tx_desc);
iface_context->stats.num_tx_err++;
hdd_ipa_rm_try_release(hdd_ipa);
return;
}
atomic_inc(&hdd_ipa->tx_ref_cnt);
iface_context->stats.num_tx++;
}
/**
* hdd_ipa_pm_send_pkt_to_tl() - Send queued packets to TL
* @work: pointer to the scheduled work
*
* Called during PM resume to send packets to TL which were queued
* while host was in the process of suspending.
*
* Return: None
*/
static void hdd_ipa_pm_send_pkt_to_tl(struct work_struct *work)
{
struct hdd_ipa_priv *hdd_ipa = container_of(work,
struct hdd_ipa_priv,
pm_work);
struct hdd_ipa_pm_tx_cb *pm_tx_cb = NULL;
cdf_nbuf_t skb;
uint32_t dequeued = 0;
cdf_spin_lock_bh(&hdd_ipa->pm_lock);
while (((skb = cdf_nbuf_queue_remove(&hdd_ipa->pm_queue_head)) != NULL)) {
cdf_spin_unlock_bh(&hdd_ipa->pm_lock);
pm_tx_cb = (struct hdd_ipa_pm_tx_cb *)skb->cb;
dequeued++;
hdd_ipa_send_pkt_to_tl(pm_tx_cb->iface_context,
pm_tx_cb->ipa_tx_desc);
cdf_spin_lock_bh(&hdd_ipa->pm_lock);
}
cdf_spin_unlock_bh(&hdd_ipa->pm_lock);
hdd_ipa->stats.num_tx_dequeued += dequeued;
if (dequeued > hdd_ipa->stats.num_max_pm_queue)
hdd_ipa->stats.num_max_pm_queue = dequeued;
}
/**
* hdd_ipa_i2w_cb() - IPA to WLAN callback
* @priv: pointer to private data registered with IPA (we register a
* pointer to the interface-specific IPA context)
* @evt: the IPA event which triggered the callback
* @data: data associated with the event
*
* Return: None
*/
static void hdd_ipa_i2w_cb(void *priv, enum ipa_dp_evt_type evt,
unsigned long data)
{
struct hdd_ipa_priv *hdd_ipa = NULL;
struct ipa_rx_data *ipa_tx_desc;
struct hdd_ipa_iface_context *iface_context;
cdf_nbuf_t skb;
struct hdd_ipa_pm_tx_cb *pm_tx_cb = NULL;
CDF_STATUS status = CDF_STATUS_SUCCESS;
if (evt != IPA_RECEIVE) {
skb = (cdf_nbuf_t) data;
dev_kfree_skb_any(skb);
iface_context->stats.num_tx_drop++;
return;
}
iface_context = (struct hdd_ipa_iface_context *)priv;
ipa_tx_desc = (struct ipa_rx_data *)data;
hdd_ipa = iface_context->hdd_ipa;
/*
* When SSR is going on or driver is unloading, just drop the packets.
* During SSR, there is no use in queueing the packets as STA has to
* connect back any way
*/
status = wlan_hdd_validate_context(hdd_ipa->hdd_ctx);
if (0 != status) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "HDD context is not valid");
ipa_free_skb(ipa_tx_desc);
iface_context->stats.num_tx_drop++;
return;
}
skb = ipa_tx_desc->skb;
HDD_IPA_DBG_DUMP(CDF_TRACE_LEVEL_DEBUG, "i2w", skb->data, 8);
/*
* If PROD resource is not requested here then there may be cases where
* IPA hardware may be clocked down because of not having proper
* dependency graph between WLAN CONS and modem PROD pipes. Adding the
* workaround to request PROD resource while data is going over CONS
* pipe to prevent the IPA hardware clockdown.
*/
hdd_ipa_rm_request(hdd_ipa);
cdf_spin_lock_bh(&hdd_ipa->pm_lock);
/*
* If host is still suspended then queue the packets and these will be
* drained later when resume completes. When packet is arrived here and
* host is suspended, this means that there is already resume is in
* progress.
*/
if (hdd_ipa->suspended) {
cdf_mem_set(skb->cb, sizeof(skb->cb), 0);
pm_tx_cb = (struct hdd_ipa_pm_tx_cb *)skb->cb;
pm_tx_cb->iface_context = iface_context;
pm_tx_cb->ipa_tx_desc = ipa_tx_desc;
cdf_nbuf_queue_add(&hdd_ipa->pm_queue_head, skb);
hdd_ipa->stats.num_tx_queued++;
cdf_spin_unlock_bh(&hdd_ipa->pm_lock);
return;
}
cdf_spin_unlock_bh(&hdd_ipa->pm_lock);
/*
* If we are here means, host is not suspended, wait for the work queue
* to finish.
*/
#ifdef WLAN_OPEN_SOURCE
flush_work(&hdd_ipa->pm_work);
#endif
return hdd_ipa_send_pkt_to_tl(iface_context, ipa_tx_desc);
}
/**
* hdd_ipa_suspend() - Suspend IPA
* @hdd_ctx: Global HDD context
*
* Return: 0 on success, negativer errno on error
*/
int hdd_ipa_suspend(hdd_context_t *hdd_ctx)
{
struct hdd_ipa_priv *hdd_ipa = hdd_ctx->hdd_ipa;
if (!hdd_ipa_is_enabled(hdd_ctx))
return 0;
/*
* Check if IPA is ready for suspend, If we are here means, there is
* high chance that suspend would go through but just to avoid any race
* condition after suspend started, these checks are conducted before
* allowing to suspend.
*/
if (atomic_read(&hdd_ipa->tx_ref_cnt))
return -EAGAIN;
cdf_spin_lock_bh(&hdd_ipa->rm_lock);
if (hdd_ipa->rm_state != HDD_IPA_RM_RELEASED) {
cdf_spin_unlock_bh(&hdd_ipa->rm_lock);
return -EAGAIN;
}
cdf_spin_unlock_bh(&hdd_ipa->rm_lock);
cdf_spin_lock_bh(&hdd_ipa->pm_lock);
hdd_ipa->suspended = true;
cdf_spin_unlock_bh(&hdd_ipa->pm_lock);
return 0;
}
/**
* hdd_ipa_resume() - Resume IPA following suspend
* hdd_ctx: Global HDD context
*
* Return: 0 on success, negative errno on error
*/
int hdd_ipa_resume(hdd_context_t *hdd_ctx)
{
struct hdd_ipa_priv *hdd_ipa = hdd_ctx->hdd_ipa;
if (!hdd_ipa_is_enabled(hdd_ctx))
return 0;
schedule_work(&hdd_ipa->pm_work);
cdf_spin_lock_bh(&hdd_ipa->pm_lock);
hdd_ipa->suspended = false;
cdf_spin_unlock_bh(&hdd_ipa->pm_lock);
return 0;
}
/**
* hdd_ipa_setup_sys_pipe() - Setup all IPA Sys pipes
* @hdd_ipa: Global HDD IPA context
*
* Return: 0 on success, negative errno on error
*/
static int hdd_ipa_setup_sys_pipe(struct hdd_ipa_priv *hdd_ipa)
{
int i, ret = 0;
struct ipa_sys_connect_params *ipa;
uint32_t desc_fifo_sz;
/* The maximum number of descriptors that can be provided to a BAM at
* once is one less than the total number of descriptors that the buffer
* can contain.
* If max_num_of_descriptors = (BAM_PIPE_DESCRIPTOR_FIFO_SIZE / sizeof
* (SPS_DESCRIPTOR)), then (max_num_of_descriptors - 1) descriptors can
* be provided at once.
* Because of above requirement, one extra descriptor will be added to
* make sure hardware always has one descriptor.
*/
desc_fifo_sz = hdd_ipa->hdd_ctx->config->IpaDescSize
+ sizeof(struct sps_iovec);
/*setup TX pipes */
for (i = 0; i < HDD_IPA_MAX_IFACE; i++) {
ipa = &hdd_ipa->sys_pipe[i].ipa_sys_params;
ipa->client = hdd_ipa_adapter_2_client[i].cons_client;
ipa->desc_fifo_sz = desc_fifo_sz;
ipa->priv = &hdd_ipa->iface_context[i];
ipa->notify = hdd_ipa_i2w_cb;
if (hdd_ipa_uc_sta_is_enabled(hdd_ipa->hdd_ctx)) {
ipa->ipa_ep_cfg.hdr.hdr_len =
HDD_IPA_UC_WLAN_TX_HDR_LEN;
ipa->ipa_ep_cfg.nat.nat_en = IPA_BYPASS_NAT;
ipa->ipa_ep_cfg.hdr.hdr_ofst_pkt_size_valid = 1;
ipa->ipa_ep_cfg.hdr.hdr_ofst_pkt_size = 0;
ipa->ipa_ep_cfg.hdr.hdr_additional_const_len =
HDD_IPA_UC_WLAN_8023_HDR_SIZE;
ipa->ipa_ep_cfg.hdr_ext.hdr_little_endian = true;
} else {
ipa->ipa_ep_cfg.hdr.hdr_len = HDD_IPA_WLAN_TX_HDR_LEN;
}
ipa->ipa_ep_cfg.mode.mode = IPA_BASIC;
if (!hdd_ipa_is_rm_enabled(hdd_ipa->hdd_ctx))
ipa->keep_ipa_awake = 1;
ret = ipa_setup_sys_pipe(ipa, &(hdd_ipa->sys_pipe[i].conn_hdl));
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "Failed for pipe %d"
" ret: %d", i, ret);
goto setup_sys_pipe_fail;
}
hdd_ipa->sys_pipe[i].conn_hdl_valid = 1;
}
if (!hdd_ipa_uc_sta_is_enabled(hdd_ipa->hdd_ctx)) {
/*
* Hard code it here, this can be extended if in case
* PROD pipe is also per interface.
* Right now there is no advantage of doing this.
*/
hdd_ipa->prod_client = IPA_CLIENT_WLAN1_PROD;
ipa = &hdd_ipa->sys_pipe[HDD_IPA_RX_PIPE].ipa_sys_params;
ipa->client = hdd_ipa->prod_client;
ipa->desc_fifo_sz = desc_fifo_sz;
ipa->priv = hdd_ipa;
ipa->notify = hdd_ipa_w2i_cb;
ipa->ipa_ep_cfg.nat.nat_en = IPA_BYPASS_NAT;
ipa->ipa_ep_cfg.hdr.hdr_len = HDD_IPA_WLAN_RX_HDR_LEN;
ipa->ipa_ep_cfg.hdr.hdr_ofst_metadata_valid = 1;
ipa->ipa_ep_cfg.mode.mode = IPA_BASIC;
if (!hdd_ipa_is_rm_enabled(hdd_ipa->hdd_ctx))
ipa->keep_ipa_awake = 1;
ret = ipa_setup_sys_pipe(ipa, &(hdd_ipa->sys_pipe[i].conn_hdl));
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"Failed for RX pipe: %d", ret);
goto setup_sys_pipe_fail;
}
hdd_ipa->sys_pipe[HDD_IPA_RX_PIPE].conn_hdl_valid = 1;
}
return ret;
setup_sys_pipe_fail:
while (--i >= 0) {
ipa_teardown_sys_pipe(hdd_ipa->sys_pipe[i].conn_hdl);
cdf_mem_zero(&hdd_ipa->sys_pipe[i],
sizeof(struct hdd_ipa_sys_pipe));
}
return ret;
}
/**
* hdd_ipa_teardown_sys_pipe() - Tear down all IPA Sys pipes
* @hdd_ipa: Global HDD IPA context
*
* Return: None
*/
static void hdd_ipa_teardown_sys_pipe(struct hdd_ipa_priv *hdd_ipa)
{
int ret = 0, i;
for (i = 0; i < HDD_IPA_MAX_SYSBAM_PIPE; i++) {
if (hdd_ipa->sys_pipe[i].conn_hdl_valid) {
ret =
ipa_teardown_sys_pipe(hdd_ipa->sys_pipe[i].
conn_hdl);
if (ret)
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "Failed: %d",
ret);
hdd_ipa->sys_pipe[i].conn_hdl_valid = 0;
}
}
}
/**
* hdd_ipa_register_interface() - register IPA interface
* @hdd_ipa: Global IPA context
* @iface_context: Per-interface IPA context
*
* Return: 0 on success, negative errno on error
*/
static int hdd_ipa_register_interface(struct hdd_ipa_priv *hdd_ipa,
struct hdd_ipa_iface_context
*iface_context)
{
struct ipa_tx_intf tx_intf;
struct ipa_rx_intf rx_intf;
struct ipa_ioc_tx_intf_prop *tx_prop = NULL;
struct ipa_ioc_rx_intf_prop *rx_prop = NULL;
char *ifname = iface_context->adapter->dev->name;
char ipv4_hdr_name[IPA_RESOURCE_NAME_MAX];
char ipv6_hdr_name[IPA_RESOURCE_NAME_MAX];
int num_prop = 1;
int ret = 0;
if (hdd_ipa_is_ipv6_enabled(hdd_ipa->hdd_ctx))
num_prop++;
/* Allocate TX properties for TOS categories, 1 each for IPv4 & IPv6 */
tx_prop =
cdf_mem_malloc(sizeof(struct ipa_ioc_tx_intf_prop) * num_prop);
if (!tx_prop) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "tx_prop allocation failed");
goto register_interface_fail;
}
/* Allocate RX properties, 1 each for IPv4 & IPv6 */
rx_prop =
cdf_mem_malloc(sizeof(struct ipa_ioc_rx_intf_prop) * num_prop);
if (!rx_prop) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "rx_prop allocation failed");
goto register_interface_fail;
}
cdf_mem_zero(&tx_intf, sizeof(tx_intf));
cdf_mem_zero(&rx_intf, sizeof(rx_intf));
snprintf(ipv4_hdr_name, IPA_RESOURCE_NAME_MAX, "%s%s",
ifname, HDD_IPA_IPV4_NAME_EXT);
snprintf(ipv6_hdr_name, IPA_RESOURCE_NAME_MAX, "%s%s",
ifname, HDD_IPA_IPV6_NAME_EXT);
rx_prop[IPA_IP_v4].ip = IPA_IP_v4;
rx_prop[IPA_IP_v4].src_pipe = iface_context->prod_client;
rx_prop[IPA_IP_v4].hdr_l2_type = IPA_HDR_L2_ETHERNET_II;
rx_prop[IPA_IP_v4].attrib.attrib_mask = IPA_FLT_META_DATA;
/*
* Interface ID is 3rd byte in the CLD header. Add the meta data and
* mask to identify the interface in IPA hardware
*/
rx_prop[IPA_IP_v4].attrib.meta_data =
htonl(iface_context->adapter->sessionId << 16);
rx_prop[IPA_IP_v4].attrib.meta_data_mask = htonl(0x00FF0000);
rx_intf.num_props++;
if (hdd_ipa_is_ipv6_enabled(hdd_ipa->hdd_ctx)) {
rx_prop[IPA_IP_v6].ip = IPA_IP_v6;
rx_prop[IPA_IP_v6].src_pipe = iface_context->prod_client;
rx_prop[IPA_IP_v6].hdr_l2_type = IPA_HDR_L2_ETHERNET_II;
rx_prop[IPA_IP_v4].attrib.attrib_mask = IPA_FLT_META_DATA;
rx_prop[IPA_IP_v4].attrib.meta_data =
htonl(iface_context->adapter->sessionId << 16);
rx_prop[IPA_IP_v4].attrib.meta_data_mask = htonl(0x00FF0000);
rx_intf.num_props++;
}
tx_prop[IPA_IP_v4].ip = IPA_IP_v4;
tx_prop[IPA_IP_v4].hdr_l2_type = IPA_HDR_L2_ETHERNET_II;
tx_prop[IPA_IP_v4].dst_pipe = IPA_CLIENT_WLAN1_CONS;
tx_prop[IPA_IP_v4].alt_dst_pipe = iface_context->cons_client;
strlcpy(tx_prop[IPA_IP_v4].hdr_name, ipv4_hdr_name,
IPA_RESOURCE_NAME_MAX);
tx_intf.num_props++;
if (hdd_ipa_is_ipv6_enabled(hdd_ipa->hdd_ctx)) {
tx_prop[IPA_IP_v6].ip = IPA_IP_v6;
tx_prop[IPA_IP_v6].hdr_l2_type = IPA_HDR_L2_ETHERNET_II;
tx_prop[IPA_IP_v6].dst_pipe = IPA_CLIENT_WLAN1_CONS;
tx_prop[IPA_IP_v6].alt_dst_pipe = iface_context->cons_client;
strlcpy(tx_prop[IPA_IP_v6].hdr_name, ipv6_hdr_name,
IPA_RESOURCE_NAME_MAX);
tx_intf.num_props++;
}
tx_intf.prop = tx_prop;
rx_intf.prop = rx_prop;
/* Call the ipa api to register interface */
ret = ipa_register_intf(ifname, &tx_intf, &rx_intf);
register_interface_fail:
cdf_mem_free(tx_prop);
cdf_mem_free(rx_prop);
return ret;
}
/**
* hdd_remove_ipa_header() - Remove a specific header from IPA
* @name: Name of the header to be removed
*
* Return: None
*/
static void hdd_ipa_remove_header(char *name)
{
struct ipa_ioc_get_hdr hdrlookup;
int ret = 0, len;
struct ipa_ioc_del_hdr *ipa_hdr;
cdf_mem_zero(&hdrlookup, sizeof(hdrlookup));
strlcpy(hdrlookup.name, name, sizeof(hdrlookup.name));
ret = ipa_get_hdr(&hdrlookup);
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "Hdr deleted already %s, %d",
name, ret);
return;
}
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "hdl: 0x%x", hdrlookup.hdl);
len = sizeof(struct ipa_ioc_del_hdr) + sizeof(struct ipa_hdr_del) * 1;
ipa_hdr = (struct ipa_ioc_del_hdr *)cdf_mem_malloc(len);
if (ipa_hdr == NULL) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "ipa_hdr allocation failed");
return;
}
ipa_hdr->num_hdls = 1;
ipa_hdr->commit = 0;
ipa_hdr->hdl[0].hdl = hdrlookup.hdl;
ipa_hdr->hdl[0].status = -1;
ret = ipa_del_hdr(ipa_hdr);
if (ret != 0)
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "Delete header failed: %d",
ret);
cdf_mem_free(ipa_hdr);
}
/**
* hdd_ipa_add_header_info() - Add IPA header for a given interface
* @hdd_ipa: Global HDD IPA context
* @iface_context: Interface-specific HDD IPA context
* @mac_addr: Interface MAC address
*
* Return: 0 on success, negativer errno value on error
*/
static int hdd_ipa_add_header_info(struct hdd_ipa_priv *hdd_ipa,
struct hdd_ipa_iface_context *iface_context,
uint8_t *mac_addr)
{
hdd_adapter_t *adapter = iface_context->adapter;
char *ifname;
struct ipa_ioc_add_hdr *ipa_hdr = NULL;
int ret = -EINVAL;
struct hdd_ipa_tx_hdr *tx_hdr = NULL;
struct hdd_ipa_uc_tx_hdr *uc_tx_hdr = NULL;
ifname = adapter->dev->name;
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "Add Partial hdr: %s, %pM",
ifname, mac_addr);
/* dynamically allocate the memory to add the hdrs */
ipa_hdr = cdf_mem_malloc(sizeof(struct ipa_ioc_add_hdr)
+ sizeof(struct ipa_hdr_add));
if (!ipa_hdr) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: ipa_hdr allocation failed", ifname);
ret = -ENOMEM;
goto end;
}
ipa_hdr->commit = 0;
ipa_hdr->num_hdrs = 1;
if (hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
uc_tx_hdr = (struct hdd_ipa_uc_tx_hdr *)ipa_hdr->hdr[0].hdr;
memcpy(uc_tx_hdr, &ipa_uc_tx_hdr, HDD_IPA_UC_WLAN_TX_HDR_LEN);
memcpy(uc_tx_hdr->eth.h_source, mac_addr, ETH_ALEN);
uc_tx_hdr->ipa_hd.vdev_id = iface_context->adapter->sessionId;
HDD_IPA_LOG(CDF_TRACE_LEVEL_DEBUG,
"ifname=%s, vdev_id=%d",
ifname, uc_tx_hdr->ipa_hd.vdev_id);
snprintf(ipa_hdr->hdr[0].name, IPA_RESOURCE_NAME_MAX, "%s%s",
ifname, HDD_IPA_IPV4_NAME_EXT);
ipa_hdr->hdr[0].hdr_len = HDD_IPA_UC_WLAN_TX_HDR_LEN;
ipa_hdr->hdr[0].type = IPA_HDR_L2_ETHERNET_II;
ipa_hdr->hdr[0].is_partial = 1;
ipa_hdr->hdr[0].hdr_hdl = 0;
ipa_hdr->hdr[0].is_eth2_ofst_valid = 1;
ipa_hdr->hdr[0].eth2_ofst = HDD_IPA_UC_WLAN_HDR_DES_MAC_OFFSET;
ret = ipa_add_hdr(ipa_hdr);
} else {
tx_hdr = (struct hdd_ipa_tx_hdr *)ipa_hdr->hdr[0].hdr;
/* Set the Source MAC */
memcpy(tx_hdr, &ipa_tx_hdr, HDD_IPA_WLAN_TX_HDR_LEN);
memcpy(tx_hdr->eth.h_source, mac_addr, ETH_ALEN);
snprintf(ipa_hdr->hdr[0].name, IPA_RESOURCE_NAME_MAX, "%s%s",
ifname, HDD_IPA_IPV4_NAME_EXT);
ipa_hdr->hdr[0].hdr_len = HDD_IPA_WLAN_TX_HDR_LEN;
ipa_hdr->hdr[0].is_partial = 1;
ipa_hdr->hdr[0].hdr_hdl = 0;
ipa_hdr->hdr[0].is_eth2_ofst_valid = 1;
ipa_hdr->hdr[0].eth2_ofst = HDD_IPA_WLAN_HDR_DES_MAC_OFFSET;
/* Set the type to IPV4 in the header */
tx_hdr->llc_snap.eth_type = cpu_to_be16(ETH_P_IP);
ret = ipa_add_hdr(ipa_hdr);
}
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "%s IPv4 add hdr failed: %d",
ifname, ret);
goto end;
}
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s: IPv4 hdr_hdl: 0x%x",
ipa_hdr->hdr[0].name, ipa_hdr->hdr[0].hdr_hdl);
if (hdd_ipa_is_ipv6_enabled(hdd_ipa->hdd_ctx)) {
snprintf(ipa_hdr->hdr[0].name, IPA_RESOURCE_NAME_MAX, "%s%s",
ifname, HDD_IPA_IPV6_NAME_EXT);
if (hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
uc_tx_hdr =
(struct hdd_ipa_uc_tx_hdr *)ipa_hdr->hdr[0].hdr;
uc_tx_hdr->eth.h_proto = cpu_to_be16(ETH_P_IPV6);
} else {
/* Set the type to IPV6 in the header */
tx_hdr = (struct hdd_ipa_tx_hdr *)ipa_hdr->hdr[0].hdr;
tx_hdr->llc_snap.eth_type = cpu_to_be16(ETH_P_IPV6);
}
ret = ipa_add_hdr(ipa_hdr);
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: IPv6 add hdr failed: %d", ifname, ret);
goto clean_ipv4_hdr;
}
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s: IPv6 hdr_hdl: 0x%x",
ipa_hdr->hdr[0].name, ipa_hdr->hdr[0].hdr_hdl);
}
cdf_mem_free(ipa_hdr);
return ret;
clean_ipv4_hdr:
snprintf(ipa_hdr->hdr[0].name, IPA_RESOURCE_NAME_MAX, "%s%s",
ifname, HDD_IPA_IPV4_NAME_EXT);
hdd_ipa_remove_header(ipa_hdr->hdr[0].name);
end:
if (ipa_hdr)
cdf_mem_free(ipa_hdr);
return ret;
}
/**
* hdd_ipa_clean_hdr() - Cleanup IPA on a given adapter
* @adapter: Adapter upon which IPA was previously configured
*
* Return: None
*/
static void hdd_ipa_clean_hdr(hdd_adapter_t *adapter)
{
struct hdd_ipa_priv *hdd_ipa = ghdd_ipa;
int ret;
char name_ipa[IPA_RESOURCE_NAME_MAX];
/* Remove the headers */
snprintf(name_ipa, IPA_RESOURCE_NAME_MAX, "%s%s",
adapter->dev->name, HDD_IPA_IPV4_NAME_EXT);
hdd_ipa_remove_header(name_ipa);
if (hdd_ipa_is_ipv6_enabled(hdd_ipa->hdd_ctx)) {
snprintf(name_ipa, IPA_RESOURCE_NAME_MAX, "%s%s",
adapter->dev->name, HDD_IPA_IPV6_NAME_EXT);
hdd_ipa_remove_header(name_ipa);
}
/* unregister the interface with IPA */
ret = ipa_deregister_intf(adapter->dev->name);
if (ret)
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: ipa_deregister_intf fail: %d",
adapter->dev->name, ret);
}
/**
* hdd_ipa_cleanup_iface() - Cleanup IPA on a given interface
* @iface_context: interface-specific IPA context
*
* Return: None
*/
static void hdd_ipa_cleanup_iface(struct hdd_ipa_iface_context *iface_context)
{
if (iface_context == NULL)
return;
hdd_ipa_clean_hdr(iface_context->adapter);
cdf_spin_lock_bh(&iface_context->interface_lock);
iface_context->adapter->ipa_context = NULL;
iface_context->adapter = NULL;
iface_context->tl_context = NULL;
cdf_spin_unlock_bh(&iface_context->interface_lock);
iface_context->ifa_address = 0;
if (!iface_context->hdd_ipa->num_iface) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"NUM INTF 0, Invalid");
CDF_ASSERT(0);
}
iface_context->hdd_ipa->num_iface--;
}
/**
* hdd_ipa_setup_iface() - Setup IPA on a given interface
* @hdd_ipa: HDD IPA global context
* @adapter: Interface upon which IPA is being setup
* @sta_id: Station ID of the API instance
*
* Return: 0 on success, negative errno value on error
*/
static int hdd_ipa_setup_iface(struct hdd_ipa_priv *hdd_ipa,
hdd_adapter_t *adapter, uint8_t sta_id)
{
struct hdd_ipa_iface_context *iface_context = NULL;
void *tl_context = NULL;
int i, ret = 0;
/* Lower layer may send multiple START_BSS_EVENT in DFS mode or during
* channel change indication. Since these indications are sent by lower
* layer as SAP updates and IPA doesn't have to do anything for these
* updates so ignoring!
*/
if (WLAN_HDD_SOFTAP == adapter->device_mode && adapter->ipa_context)
return 0;
for (i = 0; i < HDD_IPA_MAX_IFACE; i++) {
if (hdd_ipa->iface_context[i].adapter == NULL) {
iface_context = &(hdd_ipa->iface_context[i]);
break;
}
}
if (iface_context == NULL) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"All the IPA interfaces are in use");
ret = -ENOMEM;
goto end;
}
adapter->ipa_context = iface_context;
iface_context->adapter = adapter;
iface_context->sta_id = sta_id;
tl_context = ol_txrx_get_vdev_by_sta_id(sta_id);
if (tl_context == NULL) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"Not able to get TL context sta_id: %d", sta_id);
ret = -EINVAL;
goto end;
}
iface_context->tl_context = tl_context;
ret = hdd_ipa_add_header_info(hdd_ipa, iface_context,
adapter->dev->dev_addr);
if (ret)
goto end;
/* Configure the TX and RX pipes filter rules */
ret = hdd_ipa_register_interface(hdd_ipa, iface_context);
if (ret)
goto cleanup_header;
hdd_ipa->num_iface++;
return ret;
cleanup_header:
hdd_ipa_clean_hdr(adapter);
end:
if (iface_context)
hdd_ipa_cleanup_iface(iface_context);
return ret;
}
/**
* hdd_ipa_msg_free_fn() - Free an IPA message
* @buff: pointer to the IPA message
* @len: length of the IPA message
* @type: type of IPA message
*
* Return: None
*/
static void hdd_ipa_msg_free_fn(void *buff, uint32_t len, uint32_t type)
{
hddLog(LOG1, "msg type:%d, len:%d", type, len);
ghdd_ipa->stats.num_free_msg++;
cdf_mem_free(buff);
}
/**
* hdd_ipa_send_mcc_scc_msg() - send IPA WLAN_SWITCH_TO_MCC/SCC message
* @mcc_mode: 0=MCC/1=SCC
*
* Return: 0 on success, negative errno value on error
*/
int hdd_ipa_send_mcc_scc_msg(hdd_context_t *pHddCtx, bool mcc_mode)
{
hdd_adapter_list_node_t *adapter_node = NULL, *next = NULL;
CDF_STATUS status;
hdd_adapter_t *pAdapter;
struct ipa_msg_meta meta;
struct ipa_wlan_msg *msg;
int ret;
if (!hdd_ipa_uc_sta_is_enabled(pHddCtx))
return -EINVAL;
if (!pHddCtx->mcc_mode) {
/* Flush TxRx queue for each adapter before switch to SCC */
status = hdd_get_front_adapter(pHddCtx, &adapter_node);
while (NULL != adapter_node && CDF_STATUS_SUCCESS == status) {
pAdapter = adapter_node->pAdapter;
if (pAdapter->device_mode == WLAN_HDD_INFRA_STATION ||
pAdapter->device_mode == WLAN_HDD_SOFTAP) {
hddLog(CDF_TRACE_LEVEL_INFO,
"MCC->SCC: Flush TxRx queue(d_mode=%d)",
pAdapter->device_mode);
hdd_deinit_tx_rx(pAdapter);
}
status = hdd_get_next_adapter(
pHddCtx, adapter_node, &next);
adapter_node = next;
}
}
/* Send SCC/MCC Switching event to IPA */
meta.msg_len = sizeof(*msg);
msg = cdf_mem_malloc(meta.msg_len);
if (msg == NULL) {
hddLog(LOGE, "msg allocation failed");
return -ENOMEM;
}
meta.msg_type = mcc_mode ?
WLAN_SWITCH_TO_MCC : WLAN_SWITCH_TO_SCC;
hddLog(LOG1, "ipa_send_msg(Evt:%d)", meta.msg_type);
ret = ipa_send_msg(&meta, msg, hdd_ipa_msg_free_fn);
if (ret) {
hddLog(LOGE, "ipa_send_msg(Evt:%d) - fail=%d",
meta.msg_type, ret);
cdf_mem_free(msg);
}
return ret;
}
/**
* hdd_ipa_wlan_event_to_str() - convert IPA WLAN event to string
* @event: IPA WLAN event to be converted to a string
*
* Return: ASCII string representing the IPA WLAN event
*/
static inline char *hdd_ipa_wlan_event_to_str(enum ipa_wlan_event event)
{
switch (event) {
case WLAN_CLIENT_CONNECT:
return "WLAN_CLIENT_CONNECT";
case WLAN_CLIENT_DISCONNECT:
return "WLAN_CLIENT_DISCONNECT";
case WLAN_CLIENT_POWER_SAVE_MODE:
return "WLAN_CLIENT_POWER_SAVE_MODE";
case WLAN_CLIENT_NORMAL_MODE:
return "WLAN_CLIENT_NORMAL_MODE";
case SW_ROUTING_ENABLE:
return "SW_ROUTING_ENABLE";
case SW_ROUTING_DISABLE:
return "SW_ROUTING_DISABLE";
case WLAN_AP_CONNECT:
return "WLAN_AP_CONNECT";
case WLAN_AP_DISCONNECT:
return "WLAN_AP_DISCONNECT";
case WLAN_STA_CONNECT:
return "WLAN_STA_CONNECT";
case WLAN_STA_DISCONNECT:
return "WLAN_STA_DISCONNECT";
case WLAN_CLIENT_CONNECT_EX:
return "WLAN_CLIENT_CONNECT_EX";
case IPA_WLAN_EVENT_MAX:
default:
return "UNKNOWN";
}
}
/**
* hdd_ipa_wlan_evt() - IPA event handler
* @adapter: adapter upon which the event was received
* @sta_id: station id for the event
* @type: the event type
* @mac_address: MAC address associated with the event
*
* Return: 0 on success, negative errno value on error
*/
int hdd_ipa_wlan_evt(hdd_adapter_t *adapter, uint8_t sta_id,
enum ipa_wlan_event type, uint8_t *mac_addr)
{
struct hdd_ipa_priv *hdd_ipa = ghdd_ipa;
struct ipa_msg_meta meta;
struct ipa_wlan_msg *msg;
struct ipa_wlan_msg_ex *msg_ex = NULL;
int ret;
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s: %s evt, MAC: %pM sta_id: %d",
adapter->dev->name, hdd_ipa_wlan_event_to_str(type),
mac_addr, sta_id);
if (type >= IPA_WLAN_EVENT_MAX)
return -EINVAL;
if (WARN_ON(is_zero_ether_addr(mac_addr)))
return -EINVAL;
if (!hdd_ipa || !hdd_ipa_is_enabled(hdd_ipa->hdd_ctx)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "IPA OFFLOAD NOT ENABLED");
return -EINVAL;
}
if (hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx) &&
!hdd_ipa_uc_sta_is_enabled(hdd_ipa->hdd_ctx) &&
(WLAN_HDD_SOFTAP != adapter->device_mode)) {
return 0;
}
/*
* During IPA UC resource loading/unloading new events can be issued.
* Store the events separately and handle them later.
*/
if (hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx) &&
((hdd_ipa->resource_loading) ||
(hdd_ipa->resource_unloading))) {
struct ipa_uc_pending_event *pending_evet = NULL;
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s, RL/RUL inprogress", __func__);
pending_evet = (struct ipa_uc_pending_event *)cdf_mem_malloc(
sizeof(struct ipa_uc_pending_event));
if (!pending_evet) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"Pending event memory alloc fail");
return -ENOMEM;
}
pending_evet->adapter = adapter;
pending_evet->sta_id = sta_id;
pending_evet->type = type;
cdf_mem_copy(pending_evet->mac_addr,
mac_addr,
CDF_MAC_ADDR_SIZE);
cdf_list_insert_back(&hdd_ipa->pending_event,
&pending_evet->node);
return 0;
}
hdd_ipa->stats.event[type]++;
switch (type) {
case WLAN_STA_CONNECT:
/* STA already connected and without disconnect, connect again
* This is Roaming scenario
*/
if (hdd_ipa->sta_connected)
hdd_ipa_cleanup_iface(adapter->ipa_context);
if ((hdd_ipa_uc_sta_is_enabled(hdd_ipa->hdd_ctx)) &&
(!hdd_ipa->sta_connected))
hdd_ipa_uc_offload_enable_disable(adapter,
SIR_STA_RX_DATA_OFFLOAD, 1);
cdf_mutex_acquire(&hdd_ipa->event_lock);
if (!hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: Evt: %d, IPA UC OFFLOAD NOT ENABLED",
msg_ex->name, meta.msg_type);
} else if ((!hdd_ipa->sap_num_connected_sta) &&
(!hdd_ipa->sta_connected)) {
/* Enable IPA UC TX PIPE when STA connected */
ret = hdd_ipa_uc_handle_first_con(hdd_ipa);
if (!ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"handle 1st con ret %d", ret);
} else {
cdf_mutex_release(&hdd_ipa->event_lock);
hdd_ipa_uc_offload_enable_disable(adapter,
SIR_STA_RX_DATA_OFFLOAD, 0);
goto end;
}
}
ret = hdd_ipa_setup_iface(hdd_ipa, adapter, sta_id);
if (ret) {
cdf_mutex_release(&hdd_ipa->event_lock);
hdd_ipa_uc_offload_enable_disable(adapter,
SIR_STA_RX_DATA_OFFLOAD, 0);
goto end;
#ifdef IPA_UC_OFFLOAD
vdev_to_iface[adapter->sessionId] =
((struct hdd_ipa_iface_context *)
(adapter->ipa_context))->iface_id;
#endif /* IPA_UC_OFFLOAD */
}
cdf_mutex_release(&hdd_ipa->event_lock);
hdd_ipa->sta_connected = 1;
break;
case WLAN_AP_CONNECT:
/* For DFS channel we get two start_bss event (before and after
* CAC). Also when ACS range includes both DFS and non DFS
* channels, we could possibly change channel many times due to
* RADAR detection and chosen channel may not be a DFS channels.
* So dont return error here. Just discard the event.
*/
if (adapter->ipa_context)
return 0;
if (hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
hdd_ipa_uc_offload_enable_disable(adapter,
SIR_AP_RX_DATA_OFFLOAD, 1);
}
cdf_mutex_acquire(&hdd_ipa->event_lock);
ret = hdd_ipa_setup_iface(hdd_ipa, adapter, sta_id);
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: Evt: %d, Interface setup failed",
msg_ex->name, meta.msg_type);
cdf_mutex_release(&hdd_ipa->event_lock);
goto end;
#ifdef IPA_UC_OFFLOAD
vdev_to_iface[adapter->sessionId] =
((struct hdd_ipa_iface_context *)
(adapter->ipa_context))->iface_id;
#endif /* IPA_UC_OFFLOAD */
}
cdf_mutex_release(&hdd_ipa->event_lock);
break;
case WLAN_STA_DISCONNECT:
cdf_mutex_acquire(&hdd_ipa->event_lock);
hdd_ipa_cleanup_iface(adapter->ipa_context);
if (!hdd_ipa->sta_connected) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: Evt: %d, STA already disconnected",
msg_ex->name, meta.msg_type);
cdf_mutex_release(&hdd_ipa->event_lock);
return -EINVAL;
}
hdd_ipa->sta_connected = 0;
if (!hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: IPA UC OFFLOAD NOT ENABLED",
msg_ex->name);
} else {
/* Disable IPA UC TX PIPE when STA disconnected */
if ((!hdd_ipa->sap_num_connected_sta) ||
((!hdd_ipa->num_iface) &&
(HDD_IPA_UC_NUM_WDI_PIPE ==
hdd_ipa->activated_fw_pipe))) {
hdd_ipa_uc_handle_last_discon(hdd_ipa);
}
}
if (hdd_ipa_uc_sta_is_enabled(hdd_ipa->hdd_ctx)) {
hdd_ipa_uc_offload_enable_disable(adapter,
SIR_STA_RX_DATA_OFFLOAD, 0);
vdev_to_iface[adapter->sessionId] = HDD_IPA_MAX_IFACE;
}
cdf_mutex_release(&hdd_ipa->event_lock);
break;
case WLAN_AP_DISCONNECT:
if (!adapter->ipa_context) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: Evt: %d, SAP already disconnected",
msg_ex->name, meta.msg_type);
return -EINVAL;
}
cdf_mutex_acquire(&hdd_ipa->event_lock);
hdd_ipa_cleanup_iface(adapter->ipa_context);
if ((!hdd_ipa->num_iface) &&
(HDD_IPA_UC_NUM_WDI_PIPE ==
hdd_ipa->activated_fw_pipe)) {
if (hdd_ipa->hdd_ctx->isUnloadInProgress) {
/*
* We disable WDI pipes directly here since
* IPA_OPCODE_TX/RX_SUSPEND message will not be
* processed when unloading WLAN driver is in
* progress
*/
hdd_ipa_uc_disable_pipes(hdd_ipa);
} else {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"NO INTF left but still pipe clean up");
hdd_ipa_uc_handle_last_discon(hdd_ipa);
}
}
if (hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
hdd_ipa_uc_offload_enable_disable(adapter,
SIR_AP_RX_DATA_OFFLOAD, 0);
vdev_to_iface[adapter->sessionId] = HDD_IPA_MAX_IFACE;
}
cdf_mutex_release(&hdd_ipa->event_lock);
break;
case WLAN_CLIENT_CONNECT_EX:
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%d %d",
adapter->dev->ifindex, sta_id);
if (!hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: Evt: %d, IPA UC OFFLOAD NOT ENABLED",
adapter->dev->name, meta.msg_type);
return 0;
}
cdf_mutex_acquire(&hdd_ipa->event_lock);
if (hdd_ipa_uc_find_add_assoc_sta(hdd_ipa,
true, sta_id)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: STA ID %d found, not valid",
adapter->dev->name, sta_id);
cdf_mutex_release(&hdd_ipa->event_lock);
return 0;
}
hdd_ipa->sap_num_connected_sta++;
hdd_ipa->pending_cons_req = false;
cdf_mutex_release(&hdd_ipa->event_lock);
meta.msg_type = type;
meta.msg_len = (sizeof(struct ipa_wlan_msg_ex) +
sizeof(struct ipa_wlan_hdr_attrib_val));
msg_ex = cdf_mem_malloc(meta.msg_len);
if (msg_ex == NULL) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"msg_ex allocation failed");
return -ENOMEM;
}
strlcpy(msg_ex->name, adapter->dev->name,
IPA_RESOURCE_NAME_MAX);
msg_ex->num_of_attribs = 1;
msg_ex->attribs[0].attrib_type = WLAN_HDR_ATTRIB_MAC_ADDR;
if (hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
msg_ex->attribs[0].offset =
HDD_IPA_UC_WLAN_HDR_DES_MAC_OFFSET;
} else {
msg_ex->attribs[0].offset =
HDD_IPA_WLAN_HDR_DES_MAC_OFFSET;
}
memcpy(msg_ex->attribs[0].u.mac_addr, mac_addr,
IPA_MAC_ADDR_SIZE);
ret = ipa_send_msg(&meta, msg_ex, hdd_ipa_msg_free_fn);
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s: Evt: %d : %d",
msg_ex->name, meta.msg_type, ret);
cdf_mem_free(msg_ex);
return ret;
}
hdd_ipa->stats.num_send_msg++;
cdf_mutex_acquire(&hdd_ipa->event_lock);
/* Enable IPA UC Data PIPEs when first STA connected */
if ((1 == hdd_ipa->sap_num_connected_sta)
&& (!hdd_ipa_uc_sta_is_enabled(hdd_ipa->hdd_ctx)
|| !hdd_ipa->sta_connected)) {
ret = hdd_ipa_uc_handle_first_con(hdd_ipa);
if (ret) {
cdf_mutex_release(&hdd_ipa->event_lock);
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: handle 1st con ret %d",
adapter->dev->name, ret);
return ret;
}
}
cdf_mutex_release(&hdd_ipa->event_lock);
return ret;
case WLAN_CLIENT_DISCONNECT:
if (!hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: IPA UC OFFLOAD NOT ENABLED",
msg_ex->name);
return 0;
}
cdf_mutex_acquire(&hdd_ipa->event_lock);
if (!hdd_ipa_uc_find_add_assoc_sta(hdd_ipa, false, sta_id)) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"%s: STA ID %d NOT found, not valid",
msg_ex->name, sta_id);
cdf_mutex_release(&hdd_ipa->event_lock);
return 0;
}
hdd_ipa->sap_num_connected_sta--;
/* Disable IPA UC TX PIPE when last STA disconnected */
if (!hdd_ipa->sap_num_connected_sta
&& (!hdd_ipa_uc_sta_is_enabled(hdd_ipa->hdd_ctx) ||
!hdd_ipa->sta_connected)
&& (false == hdd_ipa->resource_unloading)
&& (HDD_IPA_UC_NUM_WDI_PIPE ==
hdd_ipa->activated_fw_pipe))
hdd_ipa_uc_handle_last_discon(hdd_ipa);
cdf_mutex_release(&hdd_ipa->event_lock);
break;
default:
return 0;
}
meta.msg_len = sizeof(struct ipa_wlan_msg);
msg = cdf_mem_malloc(meta.msg_len);
if (msg == NULL) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR, "msg allocation failed");
return -ENOMEM;
}
meta.msg_type = type;
strlcpy(msg->name, adapter->dev->name, IPA_RESOURCE_NAME_MAX);
memcpy(msg->mac_addr, mac_addr, ETH_ALEN);
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s: Evt: %d",
msg->name, meta.msg_type);
ret = ipa_send_msg(&meta, msg, hdd_ipa_msg_free_fn);
if (ret) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO, "%s: Evt: %d fail:%d",
msg->name, meta.msg_type, ret);
cdf_mem_free(msg);
return ret;
}
hdd_ipa->stats.num_send_msg++;
end:
return ret;
}
/**
* hdd_ipa_rm_state_to_str() - Convert IPA RM state to string
* @state: IPA RM state value
*
* Return: ASCII string representing the IPA RM state
*/
static inline char *hdd_ipa_rm_state_to_str(enum hdd_ipa_rm_state state)
{
switch (state) {
case HDD_IPA_RM_RELEASED:
return "RELEASED";
case HDD_IPA_RM_GRANT_PENDING:
return "GRANT_PENDING";
case HDD_IPA_RM_GRANTED:
return "GRANTED";
}
return "UNKNOWN";
}
/**
* hdd_ipa_init() - IPA initialization function
* @hdd_ctx: HDD global context
*
* Allocate hdd_ipa resources, ipa pipe resource and register
* wlan interface with IPA module.
*
* Return: CDF_STATUS enumeration
*/
CDF_STATUS hdd_ipa_init(hdd_context_t *hdd_ctx)
{
struct hdd_ipa_priv *hdd_ipa = NULL;
int ret, i;
struct hdd_ipa_iface_context *iface_context = NULL;
if (!hdd_ipa_is_enabled(hdd_ctx))
return CDF_STATUS_SUCCESS;
hdd_ipa = cdf_mem_malloc(sizeof(*hdd_ipa));
if (!hdd_ipa) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_FATAL, "hdd_ipa allocation failed");
goto fail_setup_rm;
}
hdd_ctx->hdd_ipa = hdd_ipa;
ghdd_ipa = hdd_ipa;
hdd_ipa->hdd_ctx = hdd_ctx;
hdd_ipa->num_iface = 0;
/* Create the interface context */
for (i = 0; i < HDD_IPA_MAX_IFACE; i++) {
iface_context = &hdd_ipa->iface_context[i];
iface_context->hdd_ipa = hdd_ipa;
iface_context->cons_client =
hdd_ipa_adapter_2_client[i].cons_client;
iface_context->prod_client =
hdd_ipa_adapter_2_client[i].prod_client;
iface_context->iface_id = i;
iface_context->adapter = NULL;
cdf_spinlock_init(&iface_context->interface_lock);
}
#ifdef CONFIG_CNSS
cnss_init_work(&hdd_ipa->pm_work, hdd_ipa_pm_send_pkt_to_tl);
#else
INIT_WORK(&hdd_ipa->pm_work, hdd_ipa_pm_send_pkt_to_tl);
#endif
cdf_spinlock_init(&hdd_ipa->pm_lock);
cdf_nbuf_queue_init(&hdd_ipa->pm_queue_head);
ret = hdd_ipa_setup_rm(hdd_ipa);
if (ret)
goto fail_setup_rm;
if (hdd_ipa_uc_is_enabled(hdd_ipa->hdd_ctx)) {
hdd_ipa_uc_rt_debug_init(hdd_ctx);
cdf_mem_zero(&hdd_ipa->stats, sizeof(hdd_ipa->stats));
hdd_ipa->sap_num_connected_sta = 0;
hdd_ipa->ipa_tx_packets_diff = 0;
hdd_ipa->ipa_rx_packets_diff = 0;
hdd_ipa->ipa_p_tx_packets = 0;
hdd_ipa->ipa_p_rx_packets = 0;
hdd_ipa->resource_loading = false;
hdd_ipa->resource_unloading = false;
hdd_ipa->sta_connected = 0;
/* Setup IPA sys_pipe for MCC */
if (hdd_ipa_uc_sta_is_enabled(hdd_ipa->hdd_ctx)) {
ret = hdd_ipa_setup_sys_pipe(hdd_ipa);
if (ret)
goto fail_create_sys_pipe;
}
hdd_ipa_uc_ol_init(hdd_ctx);
} else {
ret = hdd_ipa_setup_sys_pipe(hdd_ipa);
if (ret)
goto fail_create_sys_pipe;
}
return CDF_STATUS_SUCCESS;
fail_create_sys_pipe:
hdd_ipa_destroy_rm_resource(hdd_ipa);
fail_setup_rm:
if (hdd_ipa)
cdf_mem_free(hdd_ipa);
return CDF_STATUS_E_FAILURE;
}
/**
* hdd_ipa_cleanup - IPA cleanup function
* @hdd_ctx: HDD global context
*
* Return: CDF_STATUS enumeration
*/
CDF_STATUS hdd_ipa_cleanup(hdd_context_t *hdd_ctx)
{
struct hdd_ipa_priv *hdd_ipa = hdd_ctx->hdd_ipa;
int i;
struct hdd_ipa_iface_context *iface_context = NULL;
cdf_nbuf_t skb;
struct hdd_ipa_pm_tx_cb *pm_tx_cb = NULL;
if (!hdd_ipa_is_enabled(hdd_ctx))
return CDF_STATUS_SUCCESS;
if (!hdd_ipa_uc_is_enabled(hdd_ctx)) {
unregister_inetaddr_notifier(&hdd_ipa->ipv4_notifier);
hdd_ipa_teardown_sys_pipe(hdd_ipa);
}
/* Teardown IPA sys_pipe for MCC */
if (hdd_ipa_uc_sta_is_enabled(hdd_ipa->hdd_ctx))
hdd_ipa_teardown_sys_pipe(hdd_ipa);
hdd_ipa_destroy_rm_resource(hdd_ipa);
#ifdef WLAN_OPEN_SOURCE
cancel_work_sync(&hdd_ipa->pm_work);
#endif
cdf_spin_lock_bh(&hdd_ipa->pm_lock);
while (((skb = cdf_nbuf_queue_remove(&hdd_ipa->pm_queue_head)) != NULL)) {
cdf_spin_unlock_bh(&hdd_ipa->pm_lock);
pm_tx_cb = (struct hdd_ipa_pm_tx_cb *)skb->cb;
ipa_free_skb(pm_tx_cb->ipa_tx_desc);
cdf_spin_lock_bh(&hdd_ipa->pm_lock);
}
cdf_spin_unlock_bh(&hdd_ipa->pm_lock);
cdf_spinlock_destroy(&hdd_ipa->pm_lock);
/* destory the interface lock */
for (i = 0; i < HDD_IPA_MAX_IFACE; i++) {
iface_context = &hdd_ipa->iface_context[i];
cdf_spinlock_destroy(&iface_context->interface_lock);
}
/* This should never hit but still make sure that there are no pending
* descriptor in IPA hardware
*/
if (hdd_ipa->pending_hw_desc_cnt != 0) {
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"IPA Pending write done: %d Waiting!",
hdd_ipa->pending_hw_desc_cnt);
for (i = 0; hdd_ipa->pending_hw_desc_cnt != 0 && i < 10; i++) {
usleep_range(100, 100);
}
HDD_IPA_LOG(CDF_TRACE_LEVEL_ERROR,
"IPA Pending write done: desc: %d %s(%d)!",
hdd_ipa->pending_hw_desc_cnt,
hdd_ipa->pending_hw_desc_cnt == 0 ? "completed"
: "leak", i);
}
if (hdd_ipa_uc_is_enabled(hdd_ctx)) {
hdd_ipa_uc_rt_debug_deinit(hdd_ctx);
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: Disconnect TX PIPE", __func__);
ipa_disconnect_wdi_pipe(hdd_ipa->tx_pipe_handle);
HDD_IPA_LOG(CDF_TRACE_LEVEL_INFO,
"%s: Disconnect RX PIPE", __func__);
ipa_disconnect_wdi_pipe(hdd_ipa->rx_pipe_handle);
cdf_mutex_destroy(&hdd_ipa->event_lock);
cdf_list_destroy(&hdd_ipa->pending_event);
#ifdef WLAN_OPEN_SOURCE
for (i = 0; i < HDD_IPA_UC_OPCODE_MAX; i++) {
cancel_work_sync(&hdd_ipa->uc_op_work[i].work);
hdd_ipa->uc_op_work[i].msg = NULL;
}
#endif
}
cdf_mem_free(hdd_ipa);
hdd_ctx->hdd_ipa = NULL;
return CDF_STATUS_SUCCESS;
}
#endif /* IPA_OFFLOAD */