blob: 18087207e0948361d0f8689309312c15f168406e [file] [log] [blame]
/*
* Copyright (c) 2005-2015 The Linux Foundation. All rights reserved.
*
* Previously licensed under the ISC license by Qualcomm Atheros, Inc.
*
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This file was originally distributed by Qualcomm Atheros, Inc.
* under proprietary terms before Copyright ownership was assigned
* to the Linux Foundation.
*/
/*===========================================================================
dfs.h
OVERVIEW:
Source code borrowed from QCA_MAIN DFS module
DEPENDENCIES:
Are listed for each API below.
===========================================================================*/
#ifndef _DFS_H_
#define _DFS_H_
/*
*TO DO DFS- Need to include this file later on
*#include "ath_internal.h"
*/
/*DFS New Include Start*/
#include <cdf_net_types.h> /* CDF_NBUF_EXEMPT_NO_EXEMPTION, etc. */
#include <cdf_nbuf.h> /* cdf_nbuf_t, etc. */
#include <cdf_util.h> /* cdf_assert */
#include <cdf_lock.h> /* cdf_spinlock */
#include <cds_queue.h> /* TAILQ */
#include <cdf_time.h>
#include <cdf_softirq_timer.h>
#include <cdf_memory.h>
#include <osdep.h>
/*DFS Utility Include END*/
/* From wlan_modules/include/ */
#include "ath_dfs_structs.h"
/*DFS - Newly added File to interface cld UMAC and dfs data structures*/
#include <wma_dfs_interface.h>
/*
*TO DO DFS- Need to include this file later on
#include "ah.h"
*/
/* #include "ah_desc.h" */
#include "dfs_ioctl.h"
#include "dfs_ioctl_private.h"
#include "dfs_interface.h"
#include "cds_ieee80211_common.h"
#include "cds_api.h"
#define ATH_SUPPORT_DFS 1
#define CHANNEL_TURBO 0x00010
#define DFS_PRINTK(_fmt, ...) printk((_fmt), __VA_ARGS__)
#define DFS_DPRINTK(dfs, _m, _fmt, ...) do { \
if (((dfs) == NULL) || \
((dfs) != NULL && \
((_m) & (dfs)->dfs_debug_mask))) { \
CDF_TRACE(CDF_MODULE_ID_SAP, CDF_TRACE_LEVEL_DEBUG, \
_fmt, __VA_ARGS__); \
} \
} while (0)
#define DFS_MIN(a, b) ((a) < (b) ? (a) : (b))
#define DFS_MAX(a, b) ((a) > (b) ? (a) : (b))
#define DFS_DIFF(a, b) (DFS_MAX(a, b) - DFS_MIN(a, b))
/*
* Maximum number of radar events to be processed in a single iteration.
* Allows soft watchdog to run.
*/
#define MAX_EVENTS 100
#define DFS_STATUS_SUCCESS 0
#define DFS_STATUS_FAIL 1
/*
* Constants to use for chirping detection.
*
* All are unconverted as HW reports them.
*
* XXX Are these constants with or without fast clock 5GHz operation?
* XXX Peregrine reports pulses in microseconds, not hardware clocks!
*/
#define MIN_BIN5_DUR 63 /* 50 * 1.25 */
#define MIN_BIN5_DUR_MICROSEC 50
#define MAYBE_BIN5_DUR 35 /* 28 * 1.25 */
#define MAYBE_BIN5_DUR_MICROSEC 28
/* #define MAX_BIN5_DUR 131 / * 105 * 1.25* / */
/* use 145 for osprey conversion is already done using dfs->dur_multiplier */
#define MAX_BIN5_DUR 145
#define MAX_BIN5_DUR_MICROSEC 105
#define DFS_MARGIN_EQUAL(a, b, margin) ((DFS_DIFF(a, b)) <= margin)
#define DFS_MAX_STAGGERED_BURSTS 3
/*
* All filter thresholds in the radar filter tables
* are effective at a 50% channel loading
*/
#define DFS_CHAN_LOADING_THRESH 50
#define DFS_EXT_CHAN_LOADING_THRESH 30
#define DFS_DEFAULT_PRI_MARGIN 6
#define DFS_DEFAULT_FIXEDPATTERN_PRI_MARGIN 4
#define ATH_DFSQ_LOCK(_dfs) cdf_spin_lock_bh((&(_dfs)->dfs_radarqlock))
#define ATH_DFSQ_UNLOCK(_dfs) cdf_spin_unlock_bh((&(_dfs)->dfs_radarqlock))
#define ATH_DFSQ_LOCK_INIT(_dfs) cdf_spinlock_init(&(_dfs)->dfs_radarqlock)
#define ATH_ARQ_LOCK(_dfs) cdf_spin_lock_bh((&(_dfs)->dfs_arqlock))
#define ATH_ARQ_UNLOCK(_dfs) cdf_spin_unlock_bh((&(_dfs)->dfs_arqlock))
#define ATH_ARQ_LOCK_INIT(_dfs) cdf_spinlock_init(&(_dfs)->dfs_arqlock)
#define ATH_DFSEVENTQ_LOCK(_dfs) cdf_spin_lock_bh((&(_dfs)->dfs_eventqlock))
#define ATH_DFSEVENTQ_UNLOCK(_dfs) cdf_spin_unlock_bh((&(_dfs)->dfs_eventqlock))
#define ATH_DFSEVENTQ_LOCK_INIT(_dfs) \
cdf_spinlock_init((&(_dfs)->dfs_eventqlock))
/* Mask for time stamp from descriptor */
#define DFS_TSMASK 0xFFFFFFFF
/* Shift for time stamp from descriptor */
#define DFS_TSSHIFT 32
/* 64 bit TSF wrap value */
#define DFS_TSF_WRAP 0xFFFFFFFFFFFFFFFFULL
/* TS mask for 64 bit value */
#define DFS_64BIT_TSFMASK 0x0000000000007FFFULL
#define DFS_AR_RADAR_RSSI_THR 5 /* in dB */
#define DFS_AR_RADAR_RESET_INT 1 /* in secs */
#define DFS_AR_RADAR_MAX_HISTORY 500
#define DFS_AR_REGION_WIDTH 128
#define DFS_AR_RSSI_THRESH_STRONG_PKTS 17 /* in dB */
#define DFS_AR_RSSI_DOUBLE_THRESHOLD 15 /* in dB */
#define DFS_AR_MAX_NUM_ACK_REGIONS 9
#define DFS_AR_ACK_DETECT_PAR_THRESH 20
#define DFS_AR_PKT_COUNT_THRESH 20
#define DFS_MAX_DL_SIZE 64
#define DFS_MAX_DL_MASK 0x3F
#define DFS_NOL_TIME DFS_NOL_TIMEOUT_US
/* 30 minutes in usecs */
#define DFS_WAIT_TIME (60 * 1000000) /* 1 minute in usecs */
#define DFS_DISABLE_TIME (3 * 60 * 1000000) /* 3 minutes in usecs */
#define DFS_MAX_B5_SIZE 128
#define DFS_MAX_B5_MASK 0x0000007F /* 128 */
#define DFS_MAX_RADAR_OVERLAP 16 /* Max number of overlapping filters */
/* Max number of dfs events which can be q'd */
#define DFS_MAX_EVENTS 1024
#define DFS_RADAR_EN 0x80000000 /* Radar detect is capable */
#define DFS_AR_EN 0x40000000 /* AR detect is capable */
#define DFS_MAX_RSSI_VALUE 0x7fffffff /* Max rssi value */
/* max num of pulses in a burst */
#define DFS_BIN_MAX_PULSES 60
#define DFS_BIN5_PRI_LOWER_LIMIT 990 /* us */
/* to cover the single pusle burst case, change from 2010 us to 2010000 us */
/*
* this is reverted back to 2010 as larger value causes false
* bin5 detect (EV76432, EV76320)
*/
#define DFS_BIN5_PRI_HIGHER_LIMIT 2010 /* us */
#define DFS_BIN5_WIDTH_MARGIN 4 /* us */
#define DFS_BIN5_RSSI_MARGIN 5 /* dBm */
/*Following threshold is not specified but should be okay statistically*/
#define DFS_BIN5_BRI_LOWER_LIMIT 300000 /* us */
#define DFS_BIN5_BRI_UPPER_LIMIT 12000000 /* us */
/* Max number of pulses kept in buffer */
#define DFS_MAX_PULSE_BUFFER_SIZE 1024
#define DFS_MAX_PULSE_BUFFER_MASK 0x3ff
#define DFS_FAST_CLOCK_MULTIPLIER (800/11)
#define DFS_NO_FAST_CLOCK_MULTIPLIER (80)
#define DFS_WAR_PLUS_30_MHZ_SEPARATION 30
#define DFS_WAR_MINUS_30_MHZ_SEPARATION -30
#define DFS_WAR_PEAK_INDEX_ZERO 0
#define DFS_TYPE4_WAR_PULSE_DURATION_LOWER_LIMIT 11
#define DFS_TYPE4_WAR_PULSE_DURATION_UPPER_LIMIT 33
#define DFS_TYPE4_WAR_PRI_LOWER_LIMIT 200
#define DFS_TYPE4_WAR_PRI_UPPER_LIMIT 500
#define DFS_TYPE4_WAR_VALID_PULSE_DURATION 12
#define DFS_ETSI_TYPE2_TYPE3_WAR_PULSE_DUR_LOWER_LIMIT 15
#define DFS_ETSI_TYPE2_TYPE3_WAR_PULSE_DUR_UPPER_LIMIT 33
#define DFS_ETSI_TYPE2_WAR_PRI_LOWER_LIMIT 625
#define DFS_ETSI_TYPE2_WAR_PRI_UPPER_LIMIT 5000
#define DFS_ETSI_TYPE3_WAR_PRI_LOWER_LIMIT 250
#define DFS_ETSI_TYPE3_WAR_PRI_UPPER_LIMIT 435
#define DFS_ETSI_WAR_VALID_PULSE_DURATION 15
typedef cdf_spinlock_t dfsq_lock_t;
#ifdef WIN32
#pragma pack(push, dfs_pulseparams, 1)
#endif
struct dfs_pulseparams {
uint64_t p_time; /* time for start of pulse in usecs */
uint8_t p_dur; /* Duration of pulse in usecs */
uint8_t p_rssi; /* Duration of pulse in usecs */
} cdf_packed;
#ifdef WIN32
#pragma pack(pop, dfs_pulseparams)
#endif
#ifdef WIN32
#pragma pack(push, dfs_pulseline, 1)
#endif
struct dfs_pulseline {
/* pl_elems - array of pulses in delay line */
struct dfs_pulseparams pl_elems[DFS_MAX_PULSE_BUFFER_SIZE];
uint32_t pl_firstelem; /* Index of the first element */
uint32_t pl_lastelem; /* Index of the last element */
uint32_t pl_numelems; /* Number of elements in the delay line */
} cdf_packed;
#ifdef WIN32
#pragma pack(pop, dfs_pulseline)
#endif
#ifdef WIN32
#pragma pack(push, dfs_event, 1)
#endif
#define DFS_EVENT_CHECKCHIRP 0x01 /* Whether to check the chirp flag */
#define DFS_EVENT_HW_CHIRP 0x02 /* hardware chirp */
#define DFS_EVENT_SW_CHIRP 0x04 /* software chirp */
/*
* Use this only if the event has CHECKCHIRP set.
*/
#define DFS_EVENT_ISCHIRP(e) \
((e)->re_flags & (DFS_EVENT_HW_CHIRP | DFS_EVENT_SW_CHIRP))
/*
* Check if the given event is to be rejected as not possibly
* a chirp. This means:
* (a) it's a hardware or software checked chirp, and
* (b) the HW/SW chirp bits are both 0.
*/
#define DFS_EVENT_NOTCHIRP(e) \
(((e)->re_flags & (DFS_EVENT_CHECKCHIRP)) && \
(!DFS_EVENT_ISCHIRP((e))))
struct dfs_event {
uint64_t re_full_ts; /* 64-bit full timestamp from interrupt time */
uint32_t re_ts; /* Original 15 bit recv timestamp */
uint8_t re_rssi; /* rssi of radar event */
uint8_t re_dur; /* duration of radar pulse */
uint8_t re_chanindex; /* Channel of event */
uint8_t re_flags; /* Event flags */
uint32_t re_freq; /* Centre frequency of event, KHz */
uint32_t re_freq_lo; /* Lower bounds of frequency, KHz */
uint32_t re_freq_hi; /* Upper bounds of frequency, KHz */
int sidx; /* Pulse Index as in radar summary report */
STAILQ_ENTRY(dfs_event) re_list; /* List of radar events */
} cdf_packed;
#ifdef WIN32
#pragma pack(pop, dfs_event)
#endif
#define DFS_AR_MAX_ACK_RADAR_DUR 511
#define DFS_AR_MAX_NUM_PEAKS 3
#define DFS_AR_ARQ_SIZE 2048 /* 8K AR events for buffer size */
#define DFS_AR_ARQ_SEQSIZE 2049 /* Sequence counter wrap for AR */
#define DFS_RADARQ_SIZE 512 /* 1K radar events for buffer size */
#define DFS_RADARQ_SEQSIZE 513 /* Sequence counter wrap for radar */
/* Number of radar channels we keep state for */
#define DFS_NUM_RADAR_STATES 64
/* Max number radar filters for each type */
#define DFS_MAX_NUM_RADAR_FILTERS 10
/* Number of different radar types */
#define DFS_MAX_RADAR_TYPES 32
struct dfs_ar_state {
uint32_t ar_prevwidth;
uint32_t ar_phyerrcount[DFS_AR_MAX_ACK_RADAR_DUR];
uint32_t ar_acksum;
uint32_t ar_packetthreshold; /* Thresh to determine traffic load */
uint32_t ar_parthreshold; /* Thresh to determine peak */
uint32_t ar_radarrssi; /* Rssi threshold for AR event */
uint16_t ar_prevtimestamp;
uint16_t ar_peaklist[DFS_AR_MAX_NUM_PEAKS];
};
#ifdef WIN32
#pragma pack(push, dfs_delayelem, 1)
#endif
struct dfs_delayelem {
/* Current "filter" time for start of pulse in usecs */
uint32_t de_time;
/* Duration of pulse in usecs */
uint8_t de_dur;
/* rssi of pulse in dB */
uint8_t de_rssi;
/* time stamp for this delay element */
uint64_t de_ts;
} cdf_packed;
#ifdef WIN32
#pragma pack(pop, dfs_delayelem)
#endif
/* NB: The first element in the circular buffer is the oldest element */
#ifdef WIN32
#pragma pack(push, dfs_delayline, 1)
#endif
struct dfs_delayline {
/* Array of pulses in delay line */
struct dfs_delayelem dl_elems[DFS_MAX_DL_SIZE];
/* Last timestamp the delay line was used (in usecs) */
uint64_t dl_last_ts;
/* Index of the first element */
uint32_t dl_firstelem;
/* Index of the last element */
uint32_t dl_lastelem;
/* Number of elements in the delay line */
uint32_t dl_numelems;
} cdf_packed;
#ifdef WIN32
#pragma pack(pop, dfs_delayline)
#endif
#ifdef WIN32
#pragma pack(push, dfs_filter, 1)
#endif
struct dfs_filter {
/* Delay line of pulses for this filter */
struct dfs_delayline rf_dl;
/* Number of pulses in the filter */
uint32_t rf_numpulses;
/* min pri to be considered for this filter */
uint32_t rf_minpri;
/* max pri to be considered for this filter */
uint32_t rf_maxpri;
/* match filter output threshold for radar detect */
uint32_t rf_threshold;
/* Length (in usecs) of the filter */
uint32_t rf_filterlen;
/* fixed or variable pattern type */
uint32_t rf_patterntype;
/* indicates if it is a fixed pri pulse */
uint32_t rf_fixed_pri_radar_pulse;
/* Min duration for this radar filter */
uint32_t rf_mindur;
/* Max duration for this radar filter */
uint32_t rf_maxdur;
uint32_t rf_ignore_pri_window;
/* Unique ID corresponding to the original filter ID */
uint32_t rf_pulseid;
} cdf_packed;
#ifdef WIN32
#pragma pack(pop, dfs_filter)
#endif
struct dfs_filtertype {
struct dfs_filter ft_filters[DFS_MAX_NUM_RADAR_FILTERS];
/* Duration of pulse which specifies filter type */
uint32_t ft_filterdur;
/* Num filters of this type */
uint32_t ft_numfilters;
/* Last timestamp this filtertype was used(in usecs) */
uint64_t ft_last_ts;
/* min pulse duration to be considered for this filter type */
uint32_t ft_mindur;
/* max pulse duration to be considered for this filter type */
uint32_t ft_maxdur;
/* min rssi to be considered for this filter type */
uint32_t ft_rssithresh;
/* Num pulses in each filter of this type */
uint32_t ft_numpulses;
/* fixed or variable pattern type */
uint32_t ft_patterntype;
/* min pri to be considered for this type */
uint32_t ft_minpri;
/* rssi threshold margin. In Turbo Mode HW
* reports rssi 3dB lower than in non TURBO
* mode. This will offset that diff.
*/
uint32_t ft_rssimargin;
};
struct dfs_state {
struct ieee80211_channel rs_chan; /* Channel info */
uint8_t rs_chanindex; /* Channel index in radar structure */
uint32_t rs_numradarevents; /* Number of radar events */
struct ath_dfs_phyerr_param rs_param;
};
/* 30 minutes in seconds */
#define DFS_NOL_TIMEOUT_S (30*60)
/* 5 minutes in seconds - debugging */
/* #define DFS_NOL_TIMEOUT_S (5*60) */
#define DFS_NOL_TIMEOUT_MS (DFS_NOL_TIMEOUT_S * 1000)
#define DFS_NOL_TIMEOUT_US (DFS_NOL_TIMEOUT_MS * 1000)
#ifdef WIN32
#pragma pack(push, dfs_nolelem, 1)
#endif
struct dfs_nolelem {
uint32_t nol_freq; /* centre frequency */
uint32_t nol_chwidth; /* event width (MHz) */
unsigned long nol_start_ticks; /* NOL start time in OS ticks */
uint32_t nol_timeout_ms; /* NOL timeout value in msec */
os_timer_t nol_timer; /* per element NOL timer */
struct dfs_nolelem *nol_next; /* next element pointer */
} cdf_packed;
#ifdef WIN32
#pragma pack(pop, dfs_nolelem)
#endif
/* Pass structure to DFS NOL timer */
struct dfs_nol_timer_arg {
struct ath_dfs *dfs;
uint16_t delfreq;
uint16_t delchwidth;
};
#ifdef WIN32
#pragma pack(push, dfs_info, 1)
#endif
struct dfs_info {
/* Use the NOL when radar found (default: true) */
int rn_use_nol;
/* Number of different types of radars */
uint32_t rn_numradars;
/* Last 64 bit timstamp from recv interrupt */
uint64_t rn_lastfull_ts;
/* last 15 bit ts from recv descriptor */
uint16_t rn_last_ts;
/* last unique 32 bit ts from recv descriptor */
uint32_t rn_last_unique_ts;
/* Prefix to prepend to 15 bit recv ts */
uint64_t rn_ts_prefix;
/* Number of bin5 radar pulses to search for */
uint32_t rn_numbin5radars;
/* Value of fast diversity gc limit from init file */
uint32_t rn_fastdivGCval;
/* Min rssi for all radar types */
int32_t rn_minrssithresh;
/* Max pulse width in TSF ticks */
uint32_t rn_maxpulsedur;
uint8_t dfs_ext_chan_busy;
uint64_t ext_chan_busy_ts;
uint64_t dfs_bin5_chirp_ts;
uint8_t dfs_last_bin5_dur;
} cdf_packed;
#ifdef WIN32
#pragma pack(pop, dfs_info)
#endif
struct dfs_bin5elem {
uint64_t be_ts; /* Timestamp for the bin5 element */
uint32_t be_rssi; /* Rssi for the bin5 element */
uint32_t be_dur; /* Duration of bin5 element */
};
struct dfs_bin5radars {
/* List of bin5 elems that fall within the time window */
struct dfs_bin5elem br_elems[DFS_MAX_B5_SIZE];
/* Index of the first element */
uint32_t br_firstelem;
/* Index of the last element */
uint32_t br_lastelem;
/* Number of elements in the delay line */
uint32_t br_numelems;
/* Original info about bin5 pulse */
struct dfs_bin5pulse br_pulse;
};
struct dfs_stats {
uint32_t num_radar_detects; /* total num. of radar detects */
uint32_t total_phy_errors;
uint32_t owl_phy_errors;
uint32_t pri_phy_errors;
uint32_t ext_phy_errors;
uint32_t dc_phy_errors;
uint32_t early_ext_phy_errors;
uint32_t bwinfo_errors;
uint32_t datalen_discards;
uint32_t rssi_discards;
uint64_t last_reset_tstamp;
};
/*
* This is for debuggin DFS as console log interferes with (helps)
* radar detection
*/
#define DFS_EVENT_LOG_SIZE 256
struct dfs_event_log {
uint64_t ts; /* 64-bit full timestamp from interrupt time */
uint32_t diff_ts; /* diff timestamp */
uint8_t rssi; /* rssi of radar event */
uint8_t dur; /* duration of radar pulse */
};
#define ATH_DFS_RESET_TIME_S 7
#define ATH_DFS_WAIT (60 + ATH_DFS_RESET_TIME_S) /* 60 seconds */
#define ATH_DFS_WAIT_MS ((ATH_DFS_WAIT) * 1000) /*in MS */
#define ATH_DFS_WEATHER_CHANNEL_WAIT_MIN 10 /*10 minutes */
#define ATH_DFS_WEATHER_CHANNEL_WAIT_S (ATH_DFS_WEATHER_CHANNEL_WAIT_MIN * 60)
#define ATH_DFS_WEATHER_CHANNEL_WAIT_MS \
((ATH_DFS_WEATHER_CHANNEL_WAIT_S) * 1000) /*in MS */
#define ATH_DFS_WAIT_POLL_PERIOD 2 /* 2 seconds */
/*in MS */
#define ATH_DFS_WAIT_POLL_PERIOD_MS ((ATH_DFS_WAIT_POLL_PERIOD) * 1000)
#define ATH_DFS_TEST_RETURN_PERIOD 2 /* 2 seconds */
/* n MS */
#define ATH_DFS_TEST_RETURN_PERIOD_MS ((ATH_DFS_TEST_RETURN_PERIOD) * 1000)
#define IS_CHANNEL_WEATHER_RADAR(chan) ((chan->ic_freq >= 5600) && \
(chan->ic_freq <= 5650))
#define DFS_DEBUG_TIMEOUT_S 30 /* debug timeout is 30 seconds */
#define DFS_DEBUG_TIMEOUT_MS (DFS_DEBUG_TIMEOUT_S * 1000)
#define RSSI_POSSIBLY_FALSE 50
#define SEARCH_FFT_REPORT_PEAK_MAG_THRSH 40
struct ath_dfs {
uint32_t dfs_debug_mask; /* current debug bitmask */
int16_t dfs_curchan_radindex; /* cur. channel radar index */
int16_t dfs_extchan_radindex; /* extension channel radar index */
uint32_t dfsdomain; /* cur. DFS domain */
uint32_t dfs_proc_phyerr; /* Flags for Phy Errs to process */
struct ieee80211com *ic;
STAILQ_HEAD(, dfs_event) dfs_eventq; /* Q of free dfs event objects */
dfsq_lock_t dfs_eventqlock; /* Lock for free dfs event list */
STAILQ_HEAD(, dfs_event) dfs_radarq; /* Q of radar events */
dfsq_lock_t dfs_radarqlock; /* Lock for dfs q */
STAILQ_HEAD(, dfs_event) dfs_arq; /* Q of AR events */
dfsq_lock_t dfs_arqlock; /* Lock for AR q */
struct dfs_ar_state dfs_ar_state; /* AR state */
/* dfs_radar - Per-Channel Radar detector state */
struct dfs_state dfs_radar[DFS_NUM_RADAR_STATES];
/* dfs_radarf - One filter for each radar pulse type */
struct dfs_filtertype *dfs_radarf[DFS_MAX_RADAR_TYPES];
struct dfs_info dfs_rinfo; /* State vars for radar processing */
struct dfs_bin5radars *dfs_b5radars; /* array of bin5 radar events */
int8_t **dfs_radartable; /* map of radar durs to filter types */
#ifndef ATH_DFS_RADAR_DETECTION_ONLY
struct dfs_nolelem *dfs_nol; /* Non occupancy list for radar */
int dfs_nol_count; /* How many items? */
#endif
/* Default phy params per radar state */
struct ath_dfs_phyerr_param dfs_defaultparams;
struct dfs_stats ath_dfs_stats; /* DFS related stats */
struct dfs_pulseline *pulses; /* pulse history */
struct dfs_event *events; /* Events structure */
uint32_t ath_radar_tasksched:1, /* radar task is scheduled */
ath_dfswait:1, /* waiting on channel for radar detect */
ath_dfstest:1; /* Test timer in progress */
struct ath_dfs_caps dfs_caps;
/* IEEE chan num to return to after
* a dfs mute test
*/
uint8_t ath_dfstest_ieeechan;
#ifndef ATH_DFS_RADAR_DETECTION_ONLY
uint32_t ath_dfs_cac_time; /* CAC period */
uint32_t ath_dfstesttime; /* Time to stay off chan during dfs test */
os_timer_t ath_dfswaittimer; /* dfs wait timer */
os_timer_t ath_dfstesttimer; /* dfs mute test timer */
os_timer_t ath_dfs_debug_timer; /* dfs debug timer */
uint8_t dfs_bangradar;
#endif
os_timer_t ath_dfs_task_timer; /* dfs wait timer */
int dur_multiplier;
uint16_t ath_dfs_isdfsregdomain; /* true when we are DFS domain */
int ath_dfs_false_rssi_thres;
int ath_dfs_peak_mag;
struct dfs_event_log radar_log[DFS_EVENT_LOG_SIZE];
int dfs_event_log_count;
int dfs_event_log_on;
int dfs_phyerr_count; /* same as number of PHY radar interrupts */
/*
* when TLV is supported, # of radar events ignored after TLV is parsed
*/
int dfs_phyerr_reject_count;
/* number of radar events queued for matching the filters */
int dfs_phyerr_queued_count;
int dfs_phyerr_freq_min;
int dfs_phyerr_freq_max;
int dfs_phyerr_w53_counter;
/* allow pulse if they are within multiple of PRI for the radar type */
int dfs_pri_multiplier;
int ath_dfs_nol_timeout;
int dfs_pri_multiplier_ini; /* dfs pri configuration from ini */
/*
* Flag to indicate if DFS test mode is enabled and
* channel switch is disabled.
*/
int8_t disable_dfs_ch_switch;
};
/* This should match the table from if_ath.c */
enum {
ATH_DEBUG_DFS = 0x00000100, /* Minimal DFS debug */
ATH_DEBUG_DFS1 = 0x00000200, /* Normal DFS debug */
ATH_DEBUG_DFS2 = 0x00000400, /* Maximal DFS debug */
ATH_DEBUG_DFS3 = 0x00000800, /* matched filterID display */
ATH_DEBUG_DFS_PHYERR = 0x00001000, /* phy error parsing */
ATH_DEBUG_DFS_NOL = 0x00002000, /* NOL related entries */
ATH_DEBUG_DFS_PHYERR_SUM = 0x00004000, /* PHY error summary */
ATH_DEBUG_DFS_PHYERR_PKT = 0x00008000, /* PHY error payload */
ATH_DEBUG_DFS_BIN5 = 0x00010000, /* bin5 checks */
ATH_DEBUG_DFS_BIN5_FFT = 0x00020000, /* bin5 FFT check */
ATH_DEBUG_DFS_BIN5_PULSE = 0x00040000, /* bin5 pulse check */
};
#define IS_CHAN_HT40(_c) IEEE80211_IS_CHAN_11N_HT40(_c)
#define IS_CHAN_HT40_PLUS(_c) IEEE80211_IS_CHAN_11N_HT40PLUS(_c)
#define IS_CHAN_HT40_MINUS(_c) IEEE80211_IS_CHAN_11N_HT40MINUS(_c)
/*
* chirp notes!
*
* Pre-Sowl chips don't do FFT reports, so chirp pulses simply show up
* as long duration pulses.
*
* The bin5 checking code would simply look for a chirp pulse of the correct
* duration (within MIN_BIN5_DUR and MAX_BIN5_DUR) and add it to the "chirp"
* pattern.
*
* For Sowl and later, an FFT was done on longer duration frames. If those
* frames looked like a chirp, their duration was adjusted to fall within
* the chirp duration limits. If the pulse failed the chirp test (it had
* no FFT data or the FFT didn't meet the chirping requirements) then the
* pulse duration was adjusted to be greater than MAX_BIN5_DUR, so it
* would always fail chirp detection.
*
* This is pretty horrible.
*
* The eventual goal for chirp handling is thus:
*
* + In case someone ever wants to do chirp detection with this code on
* chips that don't support chirp detection, you can still do it based
* on pulse duration. That's your problem to solve.
*
* + For chips that do hardware chirp detection or FFT, the "do_check_chirp"
* bit should be set.
*
* + Then, either is_hw_chirp or is_sw_chirp is set, indicating that
* the hardware or software post-processing of the chirp event found
* that indeed it was a chirp.
*
* + Finally, the bin5 code should just check whether the chirp bits are
* set and behave appropriately, falling back onto the duration checks
* if someone wishes to use this on older hardware (or with disabled
* FFTs, for whatever reason.)
*/
/*
* XXX TODO:
*
* + add duration in uS and raw duration, so the PHY error parsing
* code is responsible for doing the duration calculation;
* + add ts in raw and corrected, so the PHY error parsing
* code is responsible for doing the offsetting, not the radar
* event code.
*/
struct dfs_phy_err {
uint64_t fulltsf; /* 64-bit TSF as read from MAC */
uint32_t is_pri:1, /* detected on primary channel */
is_ext:1, /* detected on extension channel */
is_dc:1, /* detected at DC */
is_early:1, /* early detect */
do_check_chirp:1, /* whether to check hw_chirp/sw_chirp */
is_hw_chirp:1, /* hardware-detected chirp */
is_sw_chirp:1; /* software detected chirp */
uint32_t rs_tstamp; /* 32 bit TSF from RX descriptor (event) */
uint32_t freq; /* Centre frequency of event - KHz */
uint32_t freq_lo; /* Lower bounds of frequency - KHz */
uint32_t freq_hi; /* Upper bounds of frequency - KHz */
uint8_t rssi; /* pulse RSSI */
uint8_t dur; /* pulse duration, raw (not uS) */
int sidx; /* Pulse Index as in radar summary report */
};
/* Attach, detach, handle ioctl prototypes */
int dfs_get_thresholds(struct ieee80211com *ic,
struct ath_dfs_phyerr_param *param);
int dfs_set_thresholds(struct ieee80211com *ic,
const uint32_t threshtype, const uint32_t value);
/* PHY error and radar event handling */
int dfs_process_radarevent(struct ath_dfs *dfs, struct ieee80211_channel *chan);
/* Non occupancy (NOL) handling prototypes */
void dfs_nol_addchan(struct ath_dfs *dfs, struct ieee80211_channel *chan,
uint32_t dfs_nol_timeout);
void dfs_get_nol(struct ath_dfs *dfs, struct dfsreq_nolelem *dfs_nol,
int *nchan);
void dfs_set_nol(struct ath_dfs *dfs, struct dfsreq_nolelem *dfs_nol,
int nchan);
void dfs_nol_update(struct ath_dfs *dfs);
void dfs_nol_timer_cleanup(struct ath_dfs *dfs);
/* FCC Bin5 detection prototypes */
int dfs_bin5_check_pulse(struct ath_dfs *dfs, struct dfs_event *re,
struct dfs_bin5radars *br);
int dfs_bin5_addpulse(struct ath_dfs *dfs, struct dfs_bin5radars *br,
struct dfs_event *re, uint64_t thists);
int dfs_bin5_check(struct ath_dfs *dfs);
int dfs_check_chirping(struct ath_dfs *dfs, void *buf,
uint16_t datalen, int is_ctl,
int is_ext, int *slope, int *is_dc);
uint8_t dfs_retain_bin5_burst_pattern(struct ath_dfs *dfs, uint32_t diff_ts,
uint8_t old_dur);
uint8_t dfs_retain_bin5_burst_pattern(struct ath_dfs *dfs, uint32_t diff_ts,
uint8_t old_dur);
int dfs_get_random_bin5_dur(struct ath_dfs *dfs, uint64_t tstamp);
/* Debug prototypes */
void dfs_print_delayline(struct ath_dfs *dfs, struct dfs_delayline *dl);
void dfs_print_nol(struct ath_dfs *dfs);
void dfs_print_filters(struct ath_dfs *dfs);
void dfs_print_activity(struct ath_dfs *dfs);
os_timer_func(dfs_debug_timeout);
void dfs_print_filter(struct ath_dfs *dfs, struct dfs_filter *rf);
/* Misc prototypes */
uint32_t dfs_round(int32_t val);
struct dfs_state *dfs_getchanstate(struct ath_dfs *dfs, uint8_t *index,
int ext_ch_flag);
/* Reset and init data structures */
int dfs_init_radar_filters(struct ieee80211com *ic,
struct ath_dfs_radar_tab_info *radar_info);
void dfs_reset_alldelaylines(struct ath_dfs *dfs);
void dfs_reset_delayline(struct dfs_delayline *dl);
void dfs_reset_filter_delaylines(struct dfs_filtertype *dft);
void dfs_reset_radarq(struct ath_dfs *dfs);
/* Detection algorithm prototypes */
void dfs_add_pulse(struct ath_dfs *dfs, struct dfs_filter *rf,
struct dfs_event *re, uint32_t deltaT, uint64_t this_ts);
int dfs_bin_fixedpattern_check(struct ath_dfs *dfs, struct dfs_filter *rf,
uint32_t dur, int ext_chan_flag);
int dfs_bin_check(struct ath_dfs *dfs, struct dfs_filter *rf,
uint32_t deltaT, uint32_t dur, int ext_chan_flag);
int dfs_bin_pri_check(struct ath_dfs *dfs, struct dfs_filter *rf,
struct dfs_delayline *dl, uint32_t score,
uint32_t refpri, uint32_t refdur, int ext_chan_flag,
int fundamentalpri);
int dfs_staggered_check(struct ath_dfs *dfs, struct dfs_filter *rf,
uint32_t deltaT, uint32_t width);
/* False detection reduction */
int dfs_get_pri_margin(struct ath_dfs *dfs, int is_extchan_detect,
int is_fixed_pattern);
int dfs_get_filter_threshold(struct ath_dfs *dfs, struct dfs_filter *rf,
int is_extchan_detect);
/* AR related prototypes */
/* Commenting out since all the ar functions are obsolete and
* the function definition has been removed as part of dfs_ar.c
* void dfs_process_ar_event(struct ath_dfs *dfs,
* struct ieee80211_channel *chan);
*/
/* Commenting out since all the ar functions are obsolete and
* the function definition has been removed as part of dfs_ar.c
* void ath_ar_disable(struct ath_dfs *dfs);
*/
/* Commenting out since all the ar functions are obsolete and
* the function definition has been removed as part of dfs_ar.c
* void ath_ar_enable(struct ath_dfs *dfs);
*/
void dfs_reset_ar(struct ath_dfs *dfs);
/* Commenting out since all the ar functions are obsolete and
* the function definition has been removed as part of dfs_ar.c
* void dfs_reset_arq(struct ath_dfs *dfs);
*/
struct ieee80211_channel *ieee80211_get_extchan(struct ieee80211com *ic);
#endif /* _DFS_H_ */