| /* BFD semi-generic back-end for a.out binaries. |
| Copyright (C) 1990-2016 Free Software Foundation, Inc. |
| Written by Cygnus Support. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| /* |
| SECTION |
| a.out backends |
| |
| DESCRIPTION |
| |
| BFD supports a number of different flavours of a.out format, |
| though the major differences are only the sizes of the |
| structures on disk, and the shape of the relocation |
| information. |
| |
| The support is split into a basic support file @file{aoutx.h} |
| and other files which derive functions from the base. One |
| derivation file is @file{aoutf1.h} (for a.out flavour 1), and |
| adds to the basic a.out functions support for sun3, sun4, 386 |
| and 29k a.out files, to create a target jump vector for a |
| specific target. |
| |
| This information is further split out into more specific files |
| for each machine, including @file{sunos.c} for sun3 and sun4, |
| @file{newsos3.c} for the Sony NEWS, and @file{demo64.c} for a |
| demonstration of a 64 bit a.out format. |
| |
| The base file @file{aoutx.h} defines general mechanisms for |
| reading and writing records to and from disk and various |
| other methods which BFD requires. It is included by |
| @file{aout32.c} and @file{aout64.c} to form the names |
| <<aout_32_swap_exec_header_in>>, <<aout_64_swap_exec_header_in>>, etc. |
| |
| As an example, this is what goes on to make the back end for a |
| sun4, from @file{aout32.c}: |
| |
| | #define ARCH_SIZE 32 |
| | #include "aoutx.h" |
| |
| Which exports names: |
| |
| | ... |
| | aout_32_canonicalize_reloc |
| | aout_32_find_nearest_line |
| | aout_32_get_lineno |
| | aout_32_get_reloc_upper_bound |
| | ... |
| |
| from @file{sunos.c}: |
| |
| | #define TARGET_NAME "a.out-sunos-big" |
| | #define VECNAME sparc_aout_sunos_be_vec |
| | #include "aoutf1.h" |
| |
| requires all the names from @file{aout32.c}, and produces the jump vector |
| |
| | sparc_aout_sunos_be_vec |
| |
| The file @file{host-aout.c} is a special case. It is for a large set |
| of hosts that use ``more or less standard'' a.out files, and |
| for which cross-debugging is not interesting. It uses the |
| standard 32-bit a.out support routines, but determines the |
| file offsets and addresses of the text, data, and BSS |
| sections, the machine architecture and machine type, and the |
| entry point address, in a host-dependent manner. Once these |
| values have been determined, generic code is used to handle |
| the object file. |
| |
| When porting it to run on a new system, you must supply: |
| |
| | HOST_PAGE_SIZE |
| | HOST_SEGMENT_SIZE |
| | HOST_MACHINE_ARCH (optional) |
| | HOST_MACHINE_MACHINE (optional) |
| | HOST_TEXT_START_ADDR |
| | HOST_STACK_END_ADDR |
| |
| in the file @file{../include/sys/h-@var{XXX}.h} (for your host). These |
| values, plus the structures and macros defined in @file{a.out.h} on |
| your host system, will produce a BFD target that will access |
| ordinary a.out files on your host. To configure a new machine |
| to use @file{host-aout.c}, specify: |
| |
| | TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec |
| | TDEPFILES= host-aout.o trad-core.o |
| |
| in the @file{config/@var{XXX}.mt} file, and modify @file{configure.ac} |
| to use the |
| @file{@var{XXX}.mt} file (by setting "<<bfd_target=XXX>>") when your |
| configuration is selected. */ |
| |
| /* Some assumptions: |
| * Any BFD with D_PAGED set is ZMAGIC, and vice versa. |
| Doesn't matter what the setting of WP_TEXT is on output, but it'll |
| get set on input. |
| * Any BFD with D_PAGED clear and WP_TEXT set is NMAGIC. |
| * Any BFD with both flags clear is OMAGIC. |
| (Just want to make these explicit, so the conditions tested in this |
| file make sense if you're more familiar with a.out than with BFD.) */ |
| |
| #define KEEPIT udata.i |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "safe-ctype.h" |
| #include "bfdlink.h" |
| |
| #include "libaout.h" |
| #include "libbfd.h" |
| #include "aout/aout64.h" |
| #include "aout/stab_gnu.h" |
| #include "aout/ar.h" |
| |
| /* |
| SUBSECTION |
| Relocations |
| |
| DESCRIPTION |
| The file @file{aoutx.h} provides for both the @emph{standard} |
| and @emph{extended} forms of a.out relocation records. |
| |
| The standard records contain only an |
| address, a symbol index, and a type field. The extended records |
| (used on 29ks and sparcs) also have a full integer for an |
| addend. */ |
| |
| #ifndef CTOR_TABLE_RELOC_HOWTO |
| #define CTOR_TABLE_RELOC_IDX 2 |
| #define CTOR_TABLE_RELOC_HOWTO(BFD) \ |
| ((obj_reloc_entry_size (BFD) == RELOC_EXT_SIZE \ |
| ? howto_table_ext : howto_table_std) \ |
| + CTOR_TABLE_RELOC_IDX) |
| #endif |
| |
| #ifndef MY_swap_std_reloc_in |
| #define MY_swap_std_reloc_in NAME (aout, swap_std_reloc_in) |
| #endif |
| |
| #ifndef MY_swap_ext_reloc_in |
| #define MY_swap_ext_reloc_in NAME (aout, swap_ext_reloc_in) |
| #endif |
| |
| #ifndef MY_swap_std_reloc_out |
| #define MY_swap_std_reloc_out NAME (aout, swap_std_reloc_out) |
| #endif |
| |
| #ifndef MY_swap_ext_reloc_out |
| #define MY_swap_ext_reloc_out NAME (aout, swap_ext_reloc_out) |
| #endif |
| |
| #ifndef MY_final_link_relocate |
| #define MY_final_link_relocate _bfd_final_link_relocate |
| #endif |
| |
| #ifndef MY_relocate_contents |
| #define MY_relocate_contents _bfd_relocate_contents |
| #endif |
| |
| #define howto_table_ext NAME (aout, ext_howto_table) |
| #define howto_table_std NAME (aout, std_howto_table) |
| |
| reloc_howto_type howto_table_ext[] = |
| { |
| /* Type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone. */ |
| HOWTO (RELOC_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, 0, "8", FALSE, 0, 0x000000ff, FALSE), |
| HOWTO (RELOC_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, 0, "16", FALSE, 0, 0x0000ffff, FALSE), |
| HOWTO (RELOC_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "32", FALSE, 0, 0xffffffff, FALSE), |
| HOWTO (RELOC_DISP8, 0, 0, 8, TRUE, 0, complain_overflow_signed, 0, "DISP8", FALSE, 0, 0x000000ff, FALSE), |
| HOWTO (RELOC_DISP16, 0, 1, 16, TRUE, 0, complain_overflow_signed, 0, "DISP16", FALSE, 0, 0x0000ffff, FALSE), |
| HOWTO (RELOC_DISP32, 0, 2, 32, TRUE, 0, complain_overflow_signed, 0, "DISP32", FALSE, 0, 0xffffffff, FALSE), |
| HOWTO (RELOC_WDISP30, 2, 2, 30, TRUE, 0, complain_overflow_signed, 0, "WDISP30", FALSE, 0, 0x3fffffff, FALSE), |
| HOWTO (RELOC_WDISP22, 2, 2, 22, TRUE, 0, complain_overflow_signed, 0, "WDISP22", FALSE, 0, 0x003fffff, FALSE), |
| HOWTO (RELOC_HI22, 10, 2, 22, FALSE, 0, complain_overflow_bitfield, 0, "HI22", FALSE, 0, 0x003fffff, FALSE), |
| HOWTO (RELOC_22, 0, 2, 22, FALSE, 0, complain_overflow_bitfield, 0, "22", FALSE, 0, 0x003fffff, FALSE), |
| HOWTO (RELOC_13, 0, 2, 13, FALSE, 0, complain_overflow_bitfield, 0, "13", FALSE, 0, 0x00001fff, FALSE), |
| HOWTO (RELOC_LO10, 0, 2, 10, FALSE, 0, complain_overflow_dont, 0, "LO10", FALSE, 0, 0x000003ff, FALSE), |
| HOWTO (RELOC_SFA_BASE,0, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "SFA_BASE", FALSE, 0, 0xffffffff, FALSE), |
| HOWTO (RELOC_SFA_OFF13,0, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "SFA_OFF13", FALSE, 0, 0xffffffff, FALSE), |
| HOWTO (RELOC_BASE10, 0, 2, 10, FALSE, 0, complain_overflow_dont, 0, "BASE10", FALSE, 0, 0x000003ff, FALSE), |
| HOWTO (RELOC_BASE13, 0, 2, 13, FALSE, 0, complain_overflow_signed, 0, "BASE13", FALSE, 0, 0x00001fff, FALSE), |
| HOWTO (RELOC_BASE22, 10, 2, 22, FALSE, 0, complain_overflow_bitfield, 0, "BASE22", FALSE, 0, 0x003fffff, FALSE), |
| HOWTO (RELOC_PC10, 0, 2, 10, TRUE, 0, complain_overflow_dont, 0, "PC10", FALSE, 0, 0x000003ff, TRUE), |
| HOWTO (RELOC_PC22, 10, 2, 22, TRUE, 0, complain_overflow_signed, 0, "PC22", FALSE, 0, 0x003fffff, TRUE), |
| HOWTO (RELOC_JMP_TBL, 2, 2, 30, TRUE, 0, complain_overflow_signed, 0, "JMP_TBL", FALSE, 0, 0x3fffffff, FALSE), |
| HOWTO (RELOC_SEGOFF16,0, 2, 0, FALSE, 0, complain_overflow_bitfield, 0, "SEGOFF16", FALSE, 0, 0x00000000, FALSE), |
| HOWTO (RELOC_GLOB_DAT,0, 2, 0, FALSE, 0, complain_overflow_bitfield, 0, "GLOB_DAT", FALSE, 0, 0x00000000, FALSE), |
| HOWTO (RELOC_JMP_SLOT,0, 2, 0, FALSE, 0, complain_overflow_bitfield, 0, "JMP_SLOT", FALSE, 0, 0x00000000, FALSE), |
| HOWTO (RELOC_RELATIVE,0, 2, 0, FALSE, 0, complain_overflow_bitfield, 0, "RELATIVE", FALSE, 0, 0x00000000, FALSE), |
| HOWTO (0, 0, 3, 0, FALSE, 0, complain_overflow_dont, 0, "R_SPARC_NONE",FALSE, 0, 0x00000000, TRUE), |
| HOWTO (0, 0, 3, 0, FALSE, 0, complain_overflow_dont, 0, "R_SPARC_NONE",FALSE, 0, 0x00000000, TRUE), |
| #define RELOC_SPARC_REV32 RELOC_WDISP19 |
| HOWTO (RELOC_SPARC_REV32, 0, 2, 32, FALSE, 0, complain_overflow_dont, 0,"R_SPARC_REV32",FALSE, 0, 0xffffffff, FALSE), |
| }; |
| |
| /* Convert standard reloc records to "arelent" format (incl byte swap). */ |
| |
| reloc_howto_type howto_table_std[] = |
| { |
| /* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone. */ |
| HOWTO ( 0, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,0,"8", TRUE, 0x000000ff,0x000000ff, FALSE), |
| HOWTO ( 1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,0,"16", TRUE, 0x0000ffff,0x0000ffff, FALSE), |
| HOWTO ( 2, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,0,"32", TRUE, 0xffffffff,0xffffffff, FALSE), |
| HOWTO ( 3, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,0,"64", TRUE, 0xdeaddead,0xdeaddead, FALSE), |
| HOWTO ( 4, 0, 0, 8, TRUE, 0, complain_overflow_signed, 0,"DISP8", TRUE, 0x000000ff,0x000000ff, FALSE), |
| HOWTO ( 5, 0, 1, 16, TRUE, 0, complain_overflow_signed, 0,"DISP16", TRUE, 0x0000ffff,0x0000ffff, FALSE), |
| HOWTO ( 6, 0, 2, 32, TRUE, 0, complain_overflow_signed, 0,"DISP32", TRUE, 0xffffffff,0xffffffff, FALSE), |
| HOWTO ( 7, 0, 4, 64, TRUE, 0, complain_overflow_signed, 0,"DISP64", TRUE, 0xfeedface,0xfeedface, FALSE), |
| HOWTO ( 8, 0, 2, 0, FALSE, 0, complain_overflow_bitfield,0,"GOT_REL", FALSE, 0,0x00000000, FALSE), |
| HOWTO ( 9, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,0,"BASE16", FALSE,0xffffffff,0xffffffff, FALSE), |
| HOWTO (10, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,0,"BASE32", FALSE,0xffffffff,0xffffffff, FALSE), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| HOWTO (16, 0, 2, 0, FALSE, 0, complain_overflow_bitfield,0,"JMP_TABLE", FALSE, 0,0x00000000, FALSE), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| HOWTO (32, 0, 2, 0, FALSE, 0, complain_overflow_bitfield,0,"RELATIVE", FALSE, 0,0x00000000, FALSE), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| EMPTY_HOWTO (-1), |
| HOWTO (40, 0, 2, 0, FALSE, 0, complain_overflow_bitfield,0,"BASEREL", FALSE, 0,0x00000000, FALSE), |
| }; |
| |
| #define TABLE_SIZE(TABLE) (sizeof (TABLE) / sizeof (TABLE[0])) |
| |
| reloc_howto_type * |
| NAME (aout, reloc_type_lookup) (bfd *abfd, bfd_reloc_code_real_type code) |
| { |
| #define EXT(i, j) case i: return & howto_table_ext [j] |
| #define STD(i, j) case i: return & howto_table_std [j] |
| int ext = obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE; |
| |
| if (code == BFD_RELOC_CTOR) |
| switch (bfd_arch_bits_per_address (abfd)) |
| { |
| case 32: |
| code = BFD_RELOC_32; |
| break; |
| case 64: |
| code = BFD_RELOC_64; |
| break; |
| } |
| |
| if (ext) |
| switch (code) |
| { |
| EXT (BFD_RELOC_8, 0); |
| EXT (BFD_RELOC_16, 1); |
| EXT (BFD_RELOC_32, 2); |
| EXT (BFD_RELOC_HI22, 8); |
| EXT (BFD_RELOC_LO10, 11); |
| EXT (BFD_RELOC_32_PCREL_S2, 6); |
| EXT (BFD_RELOC_SPARC_WDISP22, 7); |
| EXT (BFD_RELOC_SPARC13, 10); |
| EXT (BFD_RELOC_SPARC_GOT10, 14); |
| EXT (BFD_RELOC_SPARC_BASE13, 15); |
| EXT (BFD_RELOC_SPARC_GOT13, 15); |
| EXT (BFD_RELOC_SPARC_GOT22, 16); |
| EXT (BFD_RELOC_SPARC_PC10, 17); |
| EXT (BFD_RELOC_SPARC_PC22, 18); |
| EXT (BFD_RELOC_SPARC_WPLT30, 19); |
| EXT (BFD_RELOC_SPARC_REV32, 26); |
| default: |
| return NULL; |
| } |
| else |
| /* std relocs. */ |
| switch (code) |
| { |
| STD (BFD_RELOC_8, 0); |
| STD (BFD_RELOC_16, 1); |
| STD (BFD_RELOC_32, 2); |
| STD (BFD_RELOC_8_PCREL, 4); |
| STD (BFD_RELOC_16_PCREL, 5); |
| STD (BFD_RELOC_32_PCREL, 6); |
| STD (BFD_RELOC_16_BASEREL, 9); |
| STD (BFD_RELOC_32_BASEREL, 10); |
| default: |
| return NULL; |
| } |
| } |
| |
| reloc_howto_type * |
| NAME (aout, reloc_name_lookup) (bfd *abfd, const char *r_name) |
| { |
| unsigned int i, size; |
| reloc_howto_type *howto_table; |
| |
| if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE) |
| { |
| howto_table = howto_table_ext; |
| size = sizeof (howto_table_ext) / sizeof (howto_table_ext[0]); |
| } |
| else |
| { |
| howto_table = howto_table_std; |
| size = sizeof (howto_table_std) / sizeof (howto_table_std[0]); |
| } |
| |
| for (i = 0; i < size; i++) |
| if (howto_table[i].name != NULL |
| && strcasecmp (howto_table[i].name, r_name) == 0) |
| return &howto_table[i]; |
| |
| return NULL; |
| } |
| |
| /* |
| SUBSECTION |
| Internal entry points |
| |
| DESCRIPTION |
| @file{aoutx.h} exports several routines for accessing the |
| contents of an a.out file, which are gathered and exported in |
| turn by various format specific files (eg sunos.c). |
| */ |
| |
| /* |
| FUNCTION |
| aout_@var{size}_swap_exec_header_in |
| |
| SYNOPSIS |
| void aout_@var{size}_swap_exec_header_in, |
| (bfd *abfd, |
| struct external_exec *bytes, |
| struct internal_exec *execp); |
| |
| DESCRIPTION |
| Swap the information in an executable header @var{raw_bytes} taken |
| from a raw byte stream memory image into the internal exec header |
| structure @var{execp}. |
| */ |
| |
| #ifndef NAME_swap_exec_header_in |
| void |
| NAME (aout, swap_exec_header_in) (bfd *abfd, |
| struct external_exec *bytes, |
| struct internal_exec *execp) |
| { |
| /* The internal_exec structure has some fields that are unused in this |
| configuration (IE for i960), so ensure that all such uninitialized |
| fields are zero'd out. There are places where two of these structs |
| are memcmp'd, and thus the contents do matter. */ |
| memset ((void *) execp, 0, sizeof (struct internal_exec)); |
| /* Now fill in fields in the execp, from the bytes in the raw data. */ |
| execp->a_info = H_GET_32 (abfd, bytes->e_info); |
| execp->a_text = GET_WORD (abfd, bytes->e_text); |
| execp->a_data = GET_WORD (abfd, bytes->e_data); |
| execp->a_bss = GET_WORD (abfd, bytes->e_bss); |
| execp->a_syms = GET_WORD (abfd, bytes->e_syms); |
| execp->a_entry = GET_WORD (abfd, bytes->e_entry); |
| execp->a_trsize = GET_WORD (abfd, bytes->e_trsize); |
| execp->a_drsize = GET_WORD (abfd, bytes->e_drsize); |
| } |
| #define NAME_swap_exec_header_in NAME (aout, swap_exec_header_in) |
| #endif |
| |
| /* |
| FUNCTION |
| aout_@var{size}_swap_exec_header_out |
| |
| SYNOPSIS |
| void aout_@var{size}_swap_exec_header_out |
| (bfd *abfd, |
| struct internal_exec *execp, |
| struct external_exec *raw_bytes); |
| |
| DESCRIPTION |
| Swap the information in an internal exec header structure |
| @var{execp} into the buffer @var{raw_bytes} ready for writing to disk. |
| */ |
| void |
| NAME (aout, swap_exec_header_out) (bfd *abfd, |
| struct internal_exec *execp, |
| struct external_exec *bytes) |
| { |
| /* Now fill in fields in the raw data, from the fields in the exec struct. */ |
| H_PUT_32 (abfd, execp->a_info , bytes->e_info); |
| PUT_WORD (abfd, execp->a_text , bytes->e_text); |
| PUT_WORD (abfd, execp->a_data , bytes->e_data); |
| PUT_WORD (abfd, execp->a_bss , bytes->e_bss); |
| PUT_WORD (abfd, execp->a_syms , bytes->e_syms); |
| PUT_WORD (abfd, execp->a_entry , bytes->e_entry); |
| PUT_WORD (abfd, execp->a_trsize, bytes->e_trsize); |
| PUT_WORD (abfd, execp->a_drsize, bytes->e_drsize); |
| } |
| |
| /* Make all the section for an a.out file. */ |
| |
| bfd_boolean |
| NAME (aout, make_sections) (bfd *abfd) |
| { |
| if (obj_textsec (abfd) == NULL && bfd_make_section (abfd, ".text") == NULL) |
| return FALSE; |
| if (obj_datasec (abfd) == NULL && bfd_make_section (abfd, ".data") == NULL) |
| return FALSE; |
| if (obj_bsssec (abfd) == NULL && bfd_make_section (abfd, ".bss") == NULL) |
| return FALSE; |
| return TRUE; |
| } |
| |
| /* |
| FUNCTION |
| aout_@var{size}_some_aout_object_p |
| |
| SYNOPSIS |
| const bfd_target *aout_@var{size}_some_aout_object_p |
| (bfd *abfd, |
| struct internal_exec *execp, |
| const bfd_target *(*callback_to_real_object_p) (bfd *)); |
| |
| DESCRIPTION |
| Some a.out variant thinks that the file open in @var{abfd} |
| checking is an a.out file. Do some more checking, and set up |
| for access if it really is. Call back to the calling |
| environment's "finish up" function just before returning, to |
| handle any last-minute setup. |
| */ |
| |
| const bfd_target * |
| NAME (aout, some_aout_object_p) (bfd *abfd, |
| struct internal_exec *execp, |
| const bfd_target *(*callback_to_real_object_p) (bfd *)) |
| { |
| struct aout_data_struct *rawptr, *oldrawptr; |
| const bfd_target *result; |
| bfd_size_type amt = sizeof (* rawptr); |
| |
| rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, amt); |
| if (rawptr == NULL) |
| return NULL; |
| |
| oldrawptr = abfd->tdata.aout_data; |
| abfd->tdata.aout_data = rawptr; |
| |
| /* Copy the contents of the old tdata struct. |
| In particular, we want the subformat, since for hpux it was set in |
| hp300hpux.c:swap_exec_header_in and will be used in |
| hp300hpux.c:callback. */ |
| if (oldrawptr != NULL) |
| *abfd->tdata.aout_data = *oldrawptr; |
| |
| abfd->tdata.aout_data->a.hdr = &rawptr->e; |
| /* Copy in the internal_exec struct. */ |
| *(abfd->tdata.aout_data->a.hdr) = *execp; |
| execp = abfd->tdata.aout_data->a.hdr; |
| |
| /* Set the file flags. */ |
| abfd->flags = BFD_NO_FLAGS; |
| if (execp->a_drsize || execp->a_trsize) |
| abfd->flags |= HAS_RELOC; |
| /* Setting of EXEC_P has been deferred to the bottom of this function. */ |
| if (execp->a_syms) |
| abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS; |
| if (N_DYNAMIC (execp)) |
| abfd->flags |= DYNAMIC; |
| |
| if (N_MAGIC (execp) == ZMAGIC) |
| { |
| abfd->flags |= D_PAGED | WP_TEXT; |
| adata (abfd).magic = z_magic; |
| } |
| else if (N_MAGIC (execp) == QMAGIC) |
| { |
| abfd->flags |= D_PAGED | WP_TEXT; |
| adata (abfd).magic = z_magic; |
| adata (abfd).subformat = q_magic_format; |
| } |
| else if (N_MAGIC (execp) == NMAGIC) |
| { |
| abfd->flags |= WP_TEXT; |
| adata (abfd).magic = n_magic; |
| } |
| else if (N_MAGIC (execp) == OMAGIC |
| || N_MAGIC (execp) == BMAGIC) |
| adata (abfd).magic = o_magic; |
| else |
| /* Should have been checked with N_BADMAG before this routine |
| was called. */ |
| abort (); |
| |
| bfd_get_start_address (abfd) = execp->a_entry; |
| |
| obj_aout_symbols (abfd) = NULL; |
| bfd_get_symcount (abfd) = execp->a_syms / sizeof (struct external_nlist); |
| |
| /* The default relocation entry size is that of traditional V7 Unix. */ |
| obj_reloc_entry_size (abfd) = RELOC_STD_SIZE; |
| |
| /* The default symbol entry size is that of traditional Unix. */ |
| obj_symbol_entry_size (abfd) = EXTERNAL_NLIST_SIZE; |
| |
| #ifdef USE_MMAP |
| bfd_init_window (&obj_aout_sym_window (abfd)); |
| bfd_init_window (&obj_aout_string_window (abfd)); |
| #endif |
| obj_aout_external_syms (abfd) = NULL; |
| obj_aout_external_strings (abfd) = NULL; |
| obj_aout_sym_hashes (abfd) = NULL; |
| |
| if (! NAME (aout, make_sections) (abfd)) |
| goto error_ret; |
| |
| obj_datasec (abfd)->size = execp->a_data; |
| obj_bsssec (abfd)->size = execp->a_bss; |
| |
| obj_textsec (abfd)->flags = |
| (execp->a_trsize != 0 |
| ? (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_RELOC) |
| : (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)); |
| obj_datasec (abfd)->flags = |
| (execp->a_drsize != 0 |
| ? (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS | SEC_RELOC) |
| : (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS)); |
| obj_bsssec (abfd)->flags = SEC_ALLOC; |
| |
| #ifdef THIS_IS_ONLY_DOCUMENTATION |
| /* The common code can't fill in these things because they depend |
| on either the start address of the text segment, the rounding |
| up of virtual addresses between segments, or the starting file |
| position of the text segment -- all of which varies among different |
| versions of a.out. */ |
| |
| /* Call back to the format-dependent code to fill in the rest of the |
| fields and do any further cleanup. Things that should be filled |
| in by the callback: */ |
| |
| struct exec *execp = exec_hdr (abfd); |
| |
| obj_textsec (abfd)->size = N_TXTSIZE (execp); |
| /* Data and bss are already filled in since they're so standard. */ |
| |
| /* The virtual memory addresses of the sections. */ |
| obj_textsec (abfd)->vma = N_TXTADDR (execp); |
| obj_datasec (abfd)->vma = N_DATADDR (execp); |
| obj_bsssec (abfd)->vma = N_BSSADDR (execp); |
| |
| /* The file offsets of the sections. */ |
| obj_textsec (abfd)->filepos = N_TXTOFF (execp); |
| obj_datasec (abfd)->filepos = N_DATOFF (execp); |
| |
| /* The file offsets of the relocation info. */ |
| obj_textsec (abfd)->rel_filepos = N_TRELOFF (execp); |
| obj_datasec (abfd)->rel_filepos = N_DRELOFF (execp); |
| |
| /* The file offsets of the string table and symbol table. */ |
| obj_str_filepos (abfd) = N_STROFF (execp); |
| obj_sym_filepos (abfd) = N_SYMOFF (execp); |
| |
| /* Determine the architecture and machine type of the object file. */ |
| switch (N_MACHTYPE (exec_hdr (abfd))) |
| { |
| default: |
| abfd->obj_arch = bfd_arch_obscure; |
| break; |
| } |
| |
| adata (abfd)->page_size = TARGET_PAGE_SIZE; |
| adata (abfd)->segment_size = SEGMENT_SIZE; |
| adata (abfd)->exec_bytes_size = EXEC_BYTES_SIZE; |
| |
| return abfd->xvec; |
| |
| /* The architecture is encoded in various ways in various a.out variants, |
| or is not encoded at all in some of them. The relocation size depends |
| on the architecture and the a.out variant. Finally, the return value |
| is the bfd_target vector in use. If an error occurs, return zero and |
| set bfd_error to the appropriate error code. |
| |
| Formats such as b.out, which have additional fields in the a.out |
| header, should cope with them in this callback as well. */ |
| #endif /* DOCUMENTATION */ |
| |
| result = (*callback_to_real_object_p) (abfd); |
| |
| /* Now that the segment addresses have been worked out, take a better |
| guess at whether the file is executable. If the entry point |
| is within the text segment, assume it is. (This makes files |
| executable even if their entry point address is 0, as long as |
| their text starts at zero.). |
| |
| This test had to be changed to deal with systems where the text segment |
| runs at a different location than the default. The problem is that the |
| entry address can appear to be outside the text segment, thus causing an |
| erroneous conclusion that the file isn't executable. |
| |
| To fix this, we now accept any non-zero entry point as an indication of |
| executability. This will work most of the time, since only the linker |
| sets the entry point, and that is likely to be non-zero for most systems. */ |
| |
| if (execp->a_entry != 0 |
| || (execp->a_entry >= obj_textsec (abfd)->vma |
| && execp->a_entry < (obj_textsec (abfd)->vma |
| + obj_textsec (abfd)->size) |
| && execp->a_trsize == 0 |
| && execp->a_drsize == 0)) |
| abfd->flags |= EXEC_P; |
| #ifdef STAT_FOR_EXEC |
| else |
| { |
| struct stat stat_buf; |
| |
| /* The original heuristic doesn't work in some important cases. |
| The a.out file has no information about the text start |
| address. For files (like kernels) linked to non-standard |
| addresses (ld -Ttext nnn) the entry point may not be between |
| the default text start (obj_textsec(abfd)->vma) and |
| (obj_textsec(abfd)->vma) + text size. This is not just a mach |
| issue. Many kernels are loaded at non standard addresses. */ |
| if (abfd->iostream != NULL |
| && (abfd->flags & BFD_IN_MEMORY) == 0 |
| && (fstat (fileno ((FILE *) (abfd->iostream)), &stat_buf) == 0) |
| && ((stat_buf.st_mode & 0111) != 0)) |
| abfd->flags |= EXEC_P; |
| } |
| #endif /* STAT_FOR_EXEC */ |
| |
| if (result) |
| return result; |
| |
| error_ret: |
| bfd_release (abfd, rawptr); |
| abfd->tdata.aout_data = oldrawptr; |
| return NULL; |
| } |
| |
| /* |
| FUNCTION |
| aout_@var{size}_mkobject |
| |
| SYNOPSIS |
| bfd_boolean aout_@var{size}_mkobject, (bfd *abfd); |
| |
| DESCRIPTION |
| Initialize BFD @var{abfd} for use with a.out files. |
| */ |
| |
| bfd_boolean |
| NAME (aout, mkobject) (bfd *abfd) |
| { |
| struct aout_data_struct *rawptr; |
| bfd_size_type amt = sizeof (* rawptr); |
| |
| bfd_set_error (bfd_error_system_call); |
| |
| rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, amt); |
| if (rawptr == NULL) |
| return FALSE; |
| |
| abfd->tdata.aout_data = rawptr; |
| exec_hdr (abfd) = &(rawptr->e); |
| |
| obj_textsec (abfd) = NULL; |
| obj_datasec (abfd) = NULL; |
| obj_bsssec (abfd) = NULL; |
| |
| return TRUE; |
| } |
| |
| /* |
| FUNCTION |
| aout_@var{size}_machine_type |
| |
| SYNOPSIS |
| enum machine_type aout_@var{size}_machine_type |
| (enum bfd_architecture arch, |
| unsigned long machine, |
| bfd_boolean *unknown); |
| |
| DESCRIPTION |
| Keep track of machine architecture and machine type for |
| a.out's. Return the <<machine_type>> for a particular |
| architecture and machine, or <<M_UNKNOWN>> if that exact architecture |
| and machine can't be represented in a.out format. |
| |
| If the architecture is understood, machine type 0 (default) |
| is always understood. |
| */ |
| |
| enum machine_type |
| NAME (aout, machine_type) (enum bfd_architecture arch, |
| unsigned long machine, |
| bfd_boolean *unknown) |
| { |
| enum machine_type arch_flags; |
| |
| arch_flags = M_UNKNOWN; |
| *unknown = TRUE; |
| |
| switch (arch) |
| { |
| case bfd_arch_sparc: |
| if (machine == 0 |
| || machine == bfd_mach_sparc |
| || machine == bfd_mach_sparc_sparclite |
| || machine == bfd_mach_sparc_sparclite_le |
| || machine == bfd_mach_sparc_v8plus |
| || machine == bfd_mach_sparc_v8plusa |
| || machine == bfd_mach_sparc_v8plusb |
| || machine == bfd_mach_sparc_v8plusc |
| || machine == bfd_mach_sparc_v8plusd |
| || machine == bfd_mach_sparc_v8pluse |
| || machine == bfd_mach_sparc_v8plusv |
| || machine == bfd_mach_sparc_v8plusm |
| || machine == bfd_mach_sparc_v9 |
| || machine == bfd_mach_sparc_v9a |
| || machine == bfd_mach_sparc_v9b |
| || machine == bfd_mach_sparc_v9c |
| || machine == bfd_mach_sparc_v9d |
| || machine == bfd_mach_sparc_v9e |
| || machine == bfd_mach_sparc_v9v |
| || machine == bfd_mach_sparc_v9m) |
| arch_flags = M_SPARC; |
| else if (machine == bfd_mach_sparc_sparclet) |
| arch_flags = M_SPARCLET; |
| break; |
| |
| case bfd_arch_m68k: |
| switch (machine) |
| { |
| case 0: arch_flags = M_68010; break; |
| case bfd_mach_m68000: arch_flags = M_UNKNOWN; *unknown = FALSE; break; |
| case bfd_mach_m68010: arch_flags = M_68010; break; |
| case bfd_mach_m68020: arch_flags = M_68020; break; |
| default: arch_flags = M_UNKNOWN; break; |
| } |
| break; |
| |
| case bfd_arch_i386: |
| if (machine == 0 |
| || machine == bfd_mach_i386_i386 |
| || machine == bfd_mach_i386_i386_intel_syntax) |
| arch_flags = M_386; |
| break; |
| |
| case bfd_arch_arm: |
| if (machine == 0) |
| arch_flags = M_ARM; |
| break; |
| |
| case bfd_arch_mips: |
| switch (machine) |
| { |
| case 0: |
| case bfd_mach_mips3000: |
| case bfd_mach_mips3900: |
| arch_flags = M_MIPS1; |
| break; |
| case bfd_mach_mips6000: |
| arch_flags = M_MIPS2; |
| break; |
| case bfd_mach_mips4000: |
| case bfd_mach_mips4010: |
| case bfd_mach_mips4100: |
| case bfd_mach_mips4300: |
| case bfd_mach_mips4400: |
| case bfd_mach_mips4600: |
| case bfd_mach_mips4650: |
| case bfd_mach_mips8000: |
| case bfd_mach_mips9000: |
| case bfd_mach_mips10000: |
| case bfd_mach_mips12000: |
| case bfd_mach_mips14000: |
| case bfd_mach_mips16000: |
| case bfd_mach_mips16: |
| case bfd_mach_mipsisa32: |
| case bfd_mach_mipsisa32r2: |
| case bfd_mach_mipsisa32r3: |
| case bfd_mach_mipsisa32r5: |
| case bfd_mach_mipsisa32r6: |
| case bfd_mach_mips5: |
| case bfd_mach_mipsisa64: |
| case bfd_mach_mipsisa64r2: |
| case bfd_mach_mipsisa64r3: |
| case bfd_mach_mipsisa64r5: |
| case bfd_mach_mipsisa64r6: |
| case bfd_mach_mips_sb1: |
| case bfd_mach_mips_xlr: |
| /* FIXME: These should be MIPS3, MIPS4, MIPS16, MIPS32, etc. */ |
| arch_flags = M_MIPS2; |
| break; |
| default: |
| arch_flags = M_UNKNOWN; |
| break; |
| } |
| break; |
| |
| case bfd_arch_ns32k: |
| switch (machine) |
| { |
| case 0: arch_flags = M_NS32532; break; |
| case 32032: arch_flags = M_NS32032; break; |
| case 32532: arch_flags = M_NS32532; break; |
| default: arch_flags = M_UNKNOWN; break; |
| } |
| break; |
| |
| case bfd_arch_vax: |
| *unknown = FALSE; |
| break; |
| |
| case bfd_arch_cris: |
| if (machine == 0 || machine == 255) |
| arch_flags = M_CRIS; |
| break; |
| |
| case bfd_arch_m88k: |
| *unknown = FALSE; |
| break; |
| |
| default: |
| arch_flags = M_UNKNOWN; |
| } |
| |
| if (arch_flags != M_UNKNOWN) |
| *unknown = FALSE; |
| |
| return arch_flags; |
| } |
| |
| /* |
| FUNCTION |
| aout_@var{size}_set_arch_mach |
| |
| SYNOPSIS |
| bfd_boolean aout_@var{size}_set_arch_mach, |
| (bfd *, |
| enum bfd_architecture arch, |
| unsigned long machine); |
| |
| DESCRIPTION |
| Set the architecture and the machine of the BFD @var{abfd} to the |
| values @var{arch} and @var{machine}. Verify that @var{abfd}'s format |
| can support the architecture required. |
| */ |
| |
| bfd_boolean |
| NAME (aout, set_arch_mach) (bfd *abfd, |
| enum bfd_architecture arch, |
| unsigned long machine) |
| { |
| if (! bfd_default_set_arch_mach (abfd, arch, machine)) |
| return FALSE; |
| |
| if (arch != bfd_arch_unknown) |
| { |
| bfd_boolean unknown; |
| |
| NAME (aout, machine_type) (arch, machine, &unknown); |
| if (unknown) |
| return FALSE; |
| } |
| |
| /* Determine the size of a relocation entry. */ |
| switch (arch) |
| { |
| case bfd_arch_sparc: |
| case bfd_arch_mips: |
| obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE; |
| break; |
| default: |
| obj_reloc_entry_size (abfd) = RELOC_STD_SIZE; |
| break; |
| } |
| |
| return (*aout_backend_info (abfd)->set_sizes) (abfd); |
| } |
| |
| static void |
| adjust_o_magic (bfd *abfd, struct internal_exec *execp) |
| { |
| file_ptr pos = adata (abfd).exec_bytes_size; |
| bfd_vma vma = 0; |
| int pad = 0; |
| |
| /* Text. */ |
| obj_textsec (abfd)->filepos = pos; |
| if (!obj_textsec (abfd)->user_set_vma) |
| obj_textsec (abfd)->vma = vma; |
| else |
| vma = obj_textsec (abfd)->vma; |
| |
| pos += obj_textsec (abfd)->size; |
| vma += obj_textsec (abfd)->size; |
| |
| /* Data. */ |
| if (!obj_datasec (abfd)->user_set_vma) |
| { |
| obj_textsec (abfd)->size += pad; |
| pos += pad; |
| vma += pad; |
| obj_datasec (abfd)->vma = vma; |
| } |
| else |
| vma = obj_datasec (abfd)->vma; |
| obj_datasec (abfd)->filepos = pos; |
| pos += obj_datasec (abfd)->size; |
| vma += obj_datasec (abfd)->size; |
| |
| /* BSS. */ |
| if (!obj_bsssec (abfd)->user_set_vma) |
| { |
| obj_datasec (abfd)->size += pad; |
| pos += pad; |
| vma += pad; |
| obj_bsssec (abfd)->vma = vma; |
| } |
| else |
| { |
| /* The VMA of the .bss section is set by the VMA of the |
| .data section plus the size of the .data section. We may |
| need to add padding bytes to make this true. */ |
| pad = obj_bsssec (abfd)->vma - vma; |
| if (pad > 0) |
| { |
| obj_datasec (abfd)->size += pad; |
| pos += pad; |
| } |
| } |
| obj_bsssec (abfd)->filepos = pos; |
| |
| /* Fix up the exec header. */ |
| execp->a_text = obj_textsec (abfd)->size; |
| execp->a_data = obj_datasec (abfd)->size; |
| execp->a_bss = obj_bsssec (abfd)->size; |
| N_SET_MAGIC (execp, OMAGIC); |
| } |
| |
| static void |
| adjust_z_magic (bfd *abfd, struct internal_exec *execp) |
| { |
| bfd_size_type data_pad, text_pad; |
| file_ptr text_end; |
| const struct aout_backend_data *abdp; |
| /* TRUE if text includes exec header. */ |
| bfd_boolean ztih; |
| |
| abdp = aout_backend_info (abfd); |
| |
| /* Text. */ |
| ztih = (abdp != NULL |
| && (abdp->text_includes_header |
| || obj_aout_subformat (abfd) == q_magic_format)); |
| obj_textsec (abfd)->filepos = (ztih |
| ? adata (abfd).exec_bytes_size |
| : adata (abfd).zmagic_disk_block_size); |
| if (! obj_textsec (abfd)->user_set_vma) |
| { |
| /* ?? Do we really need to check for relocs here? */ |
| obj_textsec (abfd)->vma = ((abfd->flags & HAS_RELOC) |
| ? 0 |
| : (ztih |
| ? (abdp->default_text_vma |
| + adata (abfd).exec_bytes_size) |
| : abdp->default_text_vma)); |
| text_pad = 0; |
| } |
| else |
| { |
| /* The .text section is being loaded at an unusual address. We |
| may need to pad it such that the .data section starts at a page |
| boundary. */ |
| if (ztih) |
| text_pad = ((obj_textsec (abfd)->filepos - obj_textsec (abfd)->vma) |
| & (adata (abfd).page_size - 1)); |
| else |
| text_pad = ((- obj_textsec (abfd)->vma) |
| & (adata (abfd).page_size - 1)); |
| } |
| |
| /* Find start of data. */ |
| if (ztih) |
| { |
| text_end = obj_textsec (abfd)->filepos + obj_textsec (abfd)->size; |
| text_pad += BFD_ALIGN (text_end, adata (abfd).page_size) - text_end; |
| } |
| else |
| { |
| /* Note that if page_size == zmagic_disk_block_size, then |
| filepos == page_size, and this case is the same as the ztih |
| case. */ |
| text_end = obj_textsec (abfd)->size; |
| text_pad += BFD_ALIGN (text_end, adata (abfd).page_size) - text_end; |
| text_end += obj_textsec (abfd)->filepos; |
| } |
| obj_textsec (abfd)->size += text_pad; |
| text_end += text_pad; |
| |
| /* Data. */ |
| if (!obj_datasec (abfd)->user_set_vma) |
| { |
| bfd_vma vma; |
| vma = obj_textsec (abfd)->vma + obj_textsec (abfd)->size; |
| obj_datasec (abfd)->vma = BFD_ALIGN (vma, adata (abfd).segment_size); |
| } |
| if (abdp && abdp->zmagic_mapped_contiguous) |
| { |
| asection * text = obj_textsec (abfd); |
| asection * data = obj_datasec (abfd); |
| |
| text_pad = data->vma - (text->vma + text->size); |
| /* Only pad the text section if the data |
| section is going to be placed after it. */ |
| if (text_pad > 0) |
| text->size += text_pad; |
| } |
| obj_datasec (abfd)->filepos = (obj_textsec (abfd)->filepos |
| + obj_textsec (abfd)->size); |
| |
| /* Fix up exec header while we're at it. */ |
| execp->a_text = obj_textsec (abfd)->size; |
| if (ztih && (!abdp || (abdp && !abdp->exec_header_not_counted))) |
| execp->a_text += adata (abfd).exec_bytes_size; |
| if (obj_aout_subformat (abfd) == q_magic_format) |
| N_SET_MAGIC (execp, QMAGIC); |
| else |
| N_SET_MAGIC (execp, ZMAGIC); |
| |
| /* Spec says data section should be rounded up to page boundary. */ |
| obj_datasec (abfd)->size |
| = align_power (obj_datasec (abfd)->size, |
| obj_bsssec (abfd)->alignment_power); |
| execp->a_data = BFD_ALIGN (obj_datasec (abfd)->size, |
| adata (abfd).page_size); |
| data_pad = execp->a_data - obj_datasec (abfd)->size; |
| |
| /* BSS. */ |
| if (!obj_bsssec (abfd)->user_set_vma) |
| obj_bsssec (abfd)->vma = (obj_datasec (abfd)->vma |
| + obj_datasec (abfd)->size); |
| /* If the BSS immediately follows the data section and extra space |
| in the page is left after the data section, fudge data |
| in the header so that the bss section looks smaller by that |
| amount. We'll start the bss section there, and lie to the OS. |
| (Note that a linker script, as well as the above assignment, |
| could have explicitly set the BSS vma to immediately follow |
| the data section.) */ |
| if (align_power (obj_bsssec (abfd)->vma, obj_bsssec (abfd)->alignment_power) |
| == obj_datasec (abfd)->vma + obj_datasec (abfd)->size) |
| execp->a_bss = (data_pad > obj_bsssec (abfd)->size |
| ? 0 : obj_bsssec (abfd)->size - data_pad); |
| else |
| execp->a_bss = obj_bsssec (abfd)->size; |
| } |
| |
| static void |
| adjust_n_magic (bfd *abfd, struct internal_exec *execp) |
| { |
| file_ptr pos = adata (abfd).exec_bytes_size; |
| bfd_vma vma = 0; |
| int pad; |
| |
| /* Text. */ |
| obj_textsec (abfd)->filepos = pos; |
| if (!obj_textsec (abfd)->user_set_vma) |
| obj_textsec (abfd)->vma = vma; |
| else |
| vma = obj_textsec (abfd)->vma; |
| pos += obj_textsec (abfd)->size; |
| vma += obj_textsec (abfd)->size; |
| |
| /* Data. */ |
| obj_datasec (abfd)->filepos = pos; |
| if (!obj_datasec (abfd)->user_set_vma) |
| obj_datasec (abfd)->vma = BFD_ALIGN (vma, adata (abfd).segment_size); |
| vma = obj_datasec (abfd)->vma; |
| |
| /* Since BSS follows data immediately, see if it needs alignment. */ |
| vma += obj_datasec (abfd)->size; |
| pad = align_power (vma, obj_bsssec (abfd)->alignment_power) - vma; |
| obj_datasec (abfd)->size += pad; |
| pos += obj_datasec (abfd)->size; |
| |
| /* BSS. */ |
| if (!obj_bsssec (abfd)->user_set_vma) |
| obj_bsssec (abfd)->vma = vma; |
| else |
| vma = obj_bsssec (abfd)->vma; |
| |
| /* Fix up exec header. */ |
| execp->a_text = obj_textsec (abfd)->size; |
| execp->a_data = obj_datasec (abfd)->size; |
| execp->a_bss = obj_bsssec (abfd)->size; |
| N_SET_MAGIC (execp, NMAGIC); |
| } |
| |
| bfd_boolean |
| NAME (aout, adjust_sizes_and_vmas) (bfd *abfd) |
| { |
| struct internal_exec *execp = exec_hdr (abfd); |
| |
| if (! NAME (aout, make_sections) (abfd)) |
| return FALSE; |
| |
| if (adata (abfd).magic != undecided_magic) |
| return TRUE; |
| |
| obj_textsec (abfd)->size = |
| align_power (obj_textsec (abfd)->size, |
| obj_textsec (abfd)->alignment_power); |
| |
| /* Rule (heuristic) for when to pad to a new page. Note that there |
| are (at least) two ways demand-paged (ZMAGIC) files have been |
| handled. Most Berkeley-based systems start the text segment at |
| (TARGET_PAGE_SIZE). However, newer versions of SUNOS start the text |
| segment right after the exec header; the latter is counted in the |
| text segment size, and is paged in by the kernel with the rest of |
| the text. */ |
| |
| /* This perhaps isn't the right way to do this, but made it simpler for me |
| to understand enough to implement it. Better would probably be to go |
| right from BFD flags to alignment/positioning characteristics. But the |
| old code was sloppy enough about handling the flags, and had enough |
| other magic, that it was a little hard for me to understand. I think |
| I understand it better now, but I haven't time to do the cleanup this |
| minute. */ |
| |
| if (abfd->flags & D_PAGED) |
| /* Whether or not WP_TEXT is set -- let D_PAGED override. */ |
| adata (abfd).magic = z_magic; |
| else if (abfd->flags & WP_TEXT) |
| adata (abfd).magic = n_magic; |
| else |
| adata (abfd).magic = o_magic; |
| |
| #ifdef BFD_AOUT_DEBUG /* requires gcc2 */ |
| #if __GNUC__ >= 2 |
| fprintf (stderr, "%s text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x,%x>\n", |
| ({ char *str; |
| switch (adata (abfd).magic) |
| { |
| case n_magic: str = "NMAGIC"; break; |
| case o_magic: str = "OMAGIC"; break; |
| case z_magic: str = "ZMAGIC"; break; |
| default: abort (); |
| } |
| str; |
| }), |
| obj_textsec (abfd)->vma, obj_textsec (abfd)->size, |
| obj_textsec (abfd)->alignment_power, |
| obj_datasec (abfd)->vma, obj_datasec (abfd)->size, |
| obj_datasec (abfd)->alignment_power, |
| obj_bsssec (abfd)->vma, obj_bsssec (abfd)->size, |
| obj_bsssec (abfd)->alignment_power); |
| #endif |
| #endif |
| |
| switch (adata (abfd).magic) |
| { |
| case o_magic: |
| adjust_o_magic (abfd, execp); |
| break; |
| case z_magic: |
| adjust_z_magic (abfd, execp); |
| break; |
| case n_magic: |
| adjust_n_magic (abfd, execp); |
| break; |
| default: |
| abort (); |
| } |
| |
| #ifdef BFD_AOUT_DEBUG |
| fprintf (stderr, " text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x>\n", |
| obj_textsec (abfd)->vma, obj_textsec (abfd)->size, |
| obj_textsec (abfd)->filepos, |
| obj_datasec (abfd)->vma, obj_datasec (abfd)->size, |
| obj_datasec (abfd)->filepos, |
| obj_bsssec (abfd)->vma, obj_bsssec (abfd)->size); |
| #endif |
| |
| return TRUE; |
| } |
| |
| /* |
| FUNCTION |
| aout_@var{size}_new_section_hook |
| |
| SYNOPSIS |
| bfd_boolean aout_@var{size}_new_section_hook, |
| (bfd *abfd, |
| asection *newsect); |
| |
| DESCRIPTION |
| Called by the BFD in response to a @code{bfd_make_section} |
| request. |
| */ |
| bfd_boolean |
| NAME (aout, new_section_hook) (bfd *abfd, asection *newsect) |
| { |
| /* Align to double at least. */ |
| newsect->alignment_power = bfd_get_arch_info (abfd)->section_align_power; |
| |
| if (bfd_get_format (abfd) == bfd_object) |
| { |
| if (obj_textsec (abfd) == NULL && !strcmp (newsect->name, ".text")) |
| { |
| obj_textsec (abfd)= newsect; |
| newsect->target_index = N_TEXT; |
| } |
| else if (obj_datasec (abfd) == NULL && !strcmp (newsect->name, ".data")) |
| { |
| obj_datasec (abfd) = newsect; |
| newsect->target_index = N_DATA; |
| } |
| else if (obj_bsssec (abfd) == NULL && !strcmp (newsect->name, ".bss")) |
| { |
| obj_bsssec (abfd) = newsect; |
| newsect->target_index = N_BSS; |
| } |
| } |
| |
| /* We allow more than three sections internally. */ |
| return _bfd_generic_new_section_hook (abfd, newsect); |
| } |
| |
| bfd_boolean |
| NAME (aout, set_section_contents) (bfd *abfd, |
| sec_ptr section, |
| const void * location, |
| file_ptr offset, |
| bfd_size_type count) |
| { |
| if (! abfd->output_has_begun) |
| { |
| if (! NAME (aout, adjust_sizes_and_vmas) (abfd)) |
| return FALSE; |
| } |
| |
| if (section == obj_bsssec (abfd)) |
| { |
| bfd_set_error (bfd_error_no_contents); |
| return FALSE; |
| } |
| |
| if (section != obj_textsec (abfd) |
| && section != obj_datasec (abfd)) |
| { |
| if (aout_section_merge_with_text_p (abfd, section)) |
| section->filepos = obj_textsec (abfd)->filepos + |
| (section->vma - obj_textsec (abfd)->vma); |
| else |
| { |
| (*_bfd_error_handler) |
| (_("%s: can not represent section `%s' in a.out object file format"), |
| bfd_get_filename (abfd), bfd_get_section_name (abfd, section)); |
| bfd_set_error (bfd_error_nonrepresentable_section); |
| return FALSE; |
| } |
| } |
| |
| if (count != 0) |
| { |
| if (bfd_seek (abfd, section->filepos + offset, SEEK_SET) != 0 |
| || bfd_bwrite (location, count, abfd) != count) |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Read the external symbols from an a.out file. */ |
| |
| static bfd_boolean |
| aout_get_external_symbols (bfd *abfd) |
| { |
| if (obj_aout_external_syms (abfd) == NULL) |
| { |
| bfd_size_type count; |
| struct external_nlist *syms; |
| bfd_size_type amt = exec_hdr (abfd)->a_syms; |
| |
| count = amt / EXTERNAL_NLIST_SIZE; |
| if (count == 0) |
| return TRUE; /* Nothing to do. */ |
| |
| #ifdef USE_MMAP |
| if (! bfd_get_file_window (abfd, obj_sym_filepos (abfd), amt, |
| &obj_aout_sym_window (abfd), TRUE)) |
| return FALSE; |
| syms = (struct external_nlist *) obj_aout_sym_window (abfd).data; |
| #else |
| /* We allocate using malloc to make the values easy to free |
| later on. If we put them on the objalloc it might not be |
| possible to free them. */ |
| syms = (struct external_nlist *) bfd_malloc (amt); |
| if (syms == NULL) |
| return FALSE; |
| |
| if (bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET) != 0 |
| || bfd_bread (syms, amt, abfd) != amt) |
| { |
| free (syms); |
| return FALSE; |
| } |
| #endif |
| |
| obj_aout_external_syms (abfd) = syms; |
| obj_aout_external_sym_count (abfd) = count; |
| } |
| |
| if (obj_aout_external_strings (abfd) == NULL |
| && exec_hdr (abfd)->a_syms != 0) |
| { |
| unsigned char string_chars[BYTES_IN_WORD]; |
| bfd_size_type stringsize; |
| char *strings; |
| bfd_size_type amt = BYTES_IN_WORD; |
| |
| /* Get the size of the strings. */ |
| if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0 |
| || bfd_bread ((void *) string_chars, amt, abfd) != amt) |
| return FALSE; |
| stringsize = GET_WORD (abfd, string_chars); |
| |
| #ifdef USE_MMAP |
| if (! bfd_get_file_window (abfd, obj_str_filepos (abfd), stringsize, |
| &obj_aout_string_window (abfd), TRUE)) |
| return FALSE; |
| strings = (char *) obj_aout_string_window (abfd).data; |
| #else |
| strings = (char *) bfd_malloc (stringsize + 1); |
| if (strings == NULL) |
| return FALSE; |
| |
| /* Skip space for the string count in the buffer for convenience |
| when using indexes. */ |
| amt = stringsize - BYTES_IN_WORD; |
| if (bfd_bread (strings + BYTES_IN_WORD, amt, abfd) != amt) |
| { |
| free (strings); |
| return FALSE; |
| } |
| #endif |
| |
| /* Ensure that a zero index yields an empty string. */ |
| strings[0] = '\0'; |
| |
| strings[stringsize - 1] = 0; |
| |
| obj_aout_external_strings (abfd) = strings; |
| obj_aout_external_string_size (abfd) = stringsize; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Translate an a.out symbol into a BFD symbol. The desc, other, type |
| and symbol->value fields of CACHE_PTR will be set from the a.out |
| nlist structure. This function is responsible for setting |
| symbol->flags and symbol->section, and adjusting symbol->value. */ |
| |
| static bfd_boolean |
| translate_from_native_sym_flags (bfd *abfd, aout_symbol_type *cache_ptr) |
| { |
| flagword visible; |
| |
| if ((cache_ptr->type & N_STAB) != 0 |
| || cache_ptr->type == N_FN) |
| { |
| asection *sec; |
| |
| /* This is a debugging symbol. */ |
| cache_ptr->symbol.flags = BSF_DEBUGGING; |
| |
| /* Work out the symbol section. */ |
| switch (cache_ptr->type & N_TYPE) |
| { |
| case N_TEXT: |
| case N_FN: |
| sec = obj_textsec (abfd); |
| break; |
| case N_DATA: |
| sec = obj_datasec (abfd); |
| break; |
| case N_BSS: |
| sec = obj_bsssec (abfd); |
| break; |
| default: |
| case N_ABS: |
| sec = bfd_abs_section_ptr; |
| break; |
| } |
| |
| cache_ptr->symbol.section = sec; |
| cache_ptr->symbol.value -= sec->vma; |
| |
| return TRUE; |
| } |
| |
| /* Get the default visibility. This does not apply to all types, so |
| we just hold it in a local variable to use if wanted. */ |
| if ((cache_ptr->type & N_EXT) == 0) |
| visible = BSF_LOCAL; |
| else |
| visible = BSF_GLOBAL; |
| |
| switch (cache_ptr->type) |
| { |
| default: |
| case N_ABS: case N_ABS | N_EXT: |
| cache_ptr->symbol.section = bfd_abs_section_ptr; |
| cache_ptr->symbol.flags = visible; |
| break; |
| |
| case N_UNDF | N_EXT: |
| if (cache_ptr->symbol.value != 0) |
| { |
| /* This is a common symbol. */ |
| cache_ptr->symbol.flags = BSF_GLOBAL; |
| cache_ptr->symbol.section = bfd_com_section_ptr; |
| } |
| else |
| { |
| cache_ptr->symbol.flags = 0; |
| cache_ptr->symbol.section = bfd_und_section_ptr; |
| } |
| break; |
| |
| case N_TEXT: case N_TEXT | N_EXT: |
| cache_ptr->symbol.section = obj_textsec (abfd); |
| cache_ptr->symbol.value -= cache_ptr->symbol.section->vma; |
| cache_ptr->symbol.flags = visible; |
| break; |
| |
| /* N_SETV symbols used to represent set vectors placed in the |
| data section. They are no longer generated. Theoretically, |
| it was possible to extract the entries and combine them with |
| new ones, although I don't know if that was ever actually |
| done. Unless that feature is restored, treat them as data |
| symbols. */ |
| case N_SETV: case N_SETV | N_EXT: |
| case N_DATA: case N_DATA | N_EXT: |
| cache_ptr->symbol.section = obj_datasec (abfd); |
| cache_ptr->symbol.value -= cache_ptr->symbol.section->vma; |
| cache_ptr->symbol.flags = visible; |
| break; |
| |
| case N_BSS: case N_BSS | N_EXT: |
| cache_ptr->symbol.section = obj_bsssec (abfd); |
| cache_ptr->symbol.value -= cache_ptr->symbol.section->vma; |
| cache_ptr->symbol.flags = visible; |
| break; |
| |
| case N_SETA: case N_SETA | N_EXT: |
| case N_SETT: case N_SETT | N_EXT: |
| case N_SETD: case N_SETD | N_EXT: |
| case N_SETB: case N_SETB | N_EXT: |
| { |
| /* This code is no longer needed. It used to be used to make |
| the linker handle set symbols, but they are now handled in |
| the add_symbols routine instead. */ |
| switch (cache_ptr->type & N_TYPE) |
| { |
| case N_SETA: |
| cache_ptr->symbol.section = bfd_abs_section_ptr; |
| break; |
| case N_SETT: |
| cache_ptr->symbol.section = obj_textsec (abfd); |
| break; |
| case N_SETD: |
| cache_ptr->symbol.section = obj_datasec (abfd); |
| break; |
| case N_SETB: |
| cache_ptr->symbol.section = obj_bsssec (abfd); |
| break; |
| } |
| |
| cache_ptr->symbol.flags |= BSF_CONSTRUCTOR; |
| } |
| break; |
| |
| case N_WARNING: |
| /* This symbol is the text of a warning message. The next |
| symbol is the symbol to associate the warning with. If a |
| reference is made to that symbol, a warning is issued. */ |
| cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_WARNING; |
| cache_ptr->symbol.section = bfd_abs_section_ptr; |
| break; |
| |
| case N_INDR: case N_INDR | N_EXT: |
| /* An indirect symbol. This consists of two symbols in a row. |
| The first symbol is the name of the indirection. The second |
| symbol is the name of the target. A reference to the first |
| symbol becomes a reference to the second. */ |
| cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_INDIRECT | visible; |
| cache_ptr->symbol.section = bfd_ind_section_ptr; |
| break; |
| |
| case N_WEAKU: |
| cache_ptr->symbol.section = bfd_und_section_ptr; |
| cache_ptr->symbol.flags = BSF_WEAK; |
| break; |
| |
| case N_WEAKA: |
| cache_ptr->symbol.section = bfd_abs_section_ptr; |
| cache_ptr->symbol.flags = BSF_WEAK; |
| break; |
| |
| case N_WEAKT: |
| cache_ptr->symbol.section = obj_textsec (abfd); |
| cache_ptr->symbol.value -= cache_ptr->symbol.section->vma; |
| cache_ptr->symbol.flags = BSF_WEAK; |
| break; |
| |
| case N_WEAKD: |
| cache_ptr->symbol.section = obj_datasec (abfd); |
| cache_ptr->symbol.value -= cache_ptr->symbol.section->vma; |
| cache_ptr->symbol.flags = BSF_WEAK; |
| break; |
| |
| case N_WEAKB: |
| cache_ptr->symbol.section = obj_bsssec (abfd); |
| cache_ptr->symbol.value -= cache_ptr->symbol.section->vma; |
| cache_ptr->symbol.flags = BSF_WEAK; |
| break; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Set the fields of SYM_POINTER according to CACHE_PTR. */ |
| |
| static bfd_boolean |
| translate_to_native_sym_flags (bfd *abfd, |
| asymbol *cache_ptr, |
| struct external_nlist *sym_pointer) |
| { |
| bfd_vma value = cache_ptr->value; |
| asection *sec; |
| bfd_vma off; |
| |
| /* Mask out any existing type bits in case copying from one section |
| to another. */ |
| sym_pointer->e_type[0] &= ~N_TYPE; |
| |
| sec = bfd_get_section (cache_ptr); |
| off = 0; |
| |
| if (sec == NULL) |
| { |
| /* This case occurs, e.g., for the *DEBUG* section of a COFF |
| file. */ |
| (*_bfd_error_handler) |
| (_("%s: can not represent section for symbol `%s' in a.out object file format"), |
| bfd_get_filename (abfd), |
| cache_ptr->name != NULL ? cache_ptr->name : _("*unknown*")); |
| bfd_set_error (bfd_error_nonrepresentable_section); |
| return FALSE; |
| } |
| |
| if (sec->output_section != NULL) |
| { |
| off = sec->output_offset; |
| sec = sec->output_section; |
| } |
| |
| if (bfd_is_abs_section (sec)) |
| sym_pointer->e_type[0] |= N_ABS; |
| else if (sec == obj_textsec (abfd)) |
| sym_pointer->e_type[0] |= N_TEXT; |
| else if (sec == obj_datasec (abfd)) |
| sym_pointer->e_type[0] |= N_DATA; |
| else if (sec == obj_bsssec (abfd)) |
| sym_pointer->e_type[0] |= N_BSS; |
| else if (bfd_is_und_section (sec)) |
| sym_pointer->e_type[0] = N_UNDF | N_EXT; |
| else if (bfd_is_ind_section (sec)) |
| sym_pointer->e_type[0] = N_INDR; |
| else if (bfd_is_com_section (sec)) |
| sym_pointer->e_type[0] = N_UNDF | N_EXT; |
| else |
| { |
| if (aout_section_merge_with_text_p (abfd, sec)) |
| sym_pointer->e_type[0] |= N_TEXT; |
| else |
| { |
| (*_bfd_error_handler) |
| (_("%s: can not represent section `%s' in a.out object file format"), |
| bfd_get_filename (abfd), bfd_get_section_name (abfd, sec)); |
| bfd_set_error (bfd_error_nonrepresentable_section); |
| return FALSE; |
| } |
| } |
| |
| /* Turn the symbol from section relative to absolute again. */ |
| value += sec->vma + off; |
| |
| if ((cache_ptr->flags & BSF_WARNING) != 0) |
| sym_pointer->e_type[0] = N_WARNING; |
| |
| if ((cache_ptr->flags & BSF_DEBUGGING) != 0) |
| sym_pointer->e_type[0] = ((aout_symbol_type *) cache_ptr)->type; |
| else if ((cache_ptr->flags & BSF_GLOBAL) != 0) |
| sym_pointer->e_type[0] |= N_EXT; |
| else if ((cache_ptr->flags & BSF_LOCAL) != 0) |
| sym_pointer->e_type[0] &= ~N_EXT; |
| |
| if ((cache_ptr->flags & BSF_CONSTRUCTOR) != 0) |
| { |
| int type = ((aout_symbol_type *) cache_ptr)->type; |
| |
| switch (type) |
| { |
| case N_ABS: type = N_SETA; break; |
| case N_TEXT: type = N_SETT; break; |
| case N_DATA: type = N_SETD; break; |
| case N_BSS: type = N_SETB; break; |
| } |
| sym_pointer->e_type[0] = type; |
| } |
| |
| if ((cache_ptr->flags & BSF_WEAK) != 0) |
| { |
| int type; |
| |
| switch (sym_pointer->e_type[0] & N_TYPE) |
| { |
| default: |
| case N_ABS: type = N_WEAKA; break; |
| case N_TEXT: type = N_WEAKT; break; |
| case N_DATA: type = N_WEAKD; break; |
| case N_BSS: type = N_WEAKB; break; |
| case N_UNDF: type = N_WEAKU; break; |
| } |
| sym_pointer->e_type[0] = type; |
| } |
| |
| PUT_WORD (abfd, value, sym_pointer->e_value); |
| |
| return TRUE; |
| } |
| |
| /* Native-level interface to symbols. */ |
| |
| asymbol * |
| NAME (aout, make_empty_symbol) (bfd *abfd) |
| { |
| bfd_size_type amt = sizeof (aout_symbol_type); |
| |
| aout_symbol_type *new_symbol = (aout_symbol_type *) bfd_zalloc (abfd, amt); |
| if (!new_symbol) |
| return NULL; |
| new_symbol->symbol.the_bfd = abfd; |
| |
| return &new_symbol->symbol; |
| } |
| |
| /* Translate a set of internal symbols into external symbols. */ |
| |
| bfd_boolean |
| NAME (aout, translate_symbol_table) (bfd *abfd, |
| aout_symbol_type *in, |
| struct external_nlist *ext, |
| bfd_size_type count, |
| char *str, |
| bfd_size_type strsize, |
| bfd_boolean dynamic) |
| { |
| struct external_nlist *ext_end; |
| |
| ext_end = ext + count; |
| for (; ext < ext_end; ext++, in++) |
| { |
| bfd_vma x; |
| |
| x = GET_WORD (abfd, ext->e_strx); |
| in->symbol.the_bfd = abfd; |
| |
| /* For the normal symbols, the zero index points at the number |
| of bytes in the string table but is to be interpreted as the |
| null string. For the dynamic symbols, the number of bytes in |
| the string table is stored in the __DYNAMIC structure and the |
| zero index points at an actual string. */ |
| if (x == 0 && ! dynamic) |
| in->symbol.name = ""; |
| else if (x < strsize) |
| in->symbol.name = str + x; |
| else |
| return FALSE; |
| |
| in->symbol.value = GET_SWORD (abfd, ext->e_value); |
| in->desc = H_GET_16 (abfd, ext->e_desc); |
| in->other = H_GET_8 (abfd, ext->e_other); |
| in->type = H_GET_8 (abfd, ext->e_type); |
| in->symbol.udata.p = NULL; |
| |
| if (! translate_from_native_sym_flags (abfd, in)) |
| return FALSE; |
| |
| if (dynamic) |
| in->symbol.flags |= BSF_DYNAMIC; |
| } |
| |
| return TRUE; |
| } |
| |
| /* We read the symbols into a buffer, which is discarded when this |
| function exits. We read the strings into a buffer large enough to |
| hold them all plus all the cached symbol entries. */ |
| |
| bfd_boolean |
| NAME (aout, slurp_symbol_table) (bfd *abfd) |
| { |
| struct external_nlist *old_external_syms; |
| aout_symbol_type *cached; |
| bfd_size_type cached_size; |
| |
| /* If there's no work to be done, don't do any. */ |
| if (obj_aout_symbols (abfd) != NULL) |
| return TRUE; |
| |
| old_external_syms = obj_aout_external_syms (abfd); |
| |
| if (! aout_get_external_symbols (abfd)) |
| return FALSE; |
| |
| cached_size = obj_aout_external_sym_count (abfd); |
| if (cached_size == 0) |
| return TRUE; /* Nothing to do. */ |
| |
| cached_size *= sizeof (aout_symbol_type); |
| cached = (aout_symbol_type *) bfd_zmalloc (cached_size); |
| if (cached == NULL) |
| return FALSE; |
| |
| /* Convert from external symbol information to internal. */ |
| if (! (NAME (aout, translate_symbol_table) |
| (abfd, cached, |
| obj_aout_external_syms (abfd), |
| obj_aout_external_sym_count (abfd), |
| obj_aout_external_strings (abfd), |
| obj_aout_external_string_size (abfd), |
| FALSE))) |
| { |
| free (cached); |
| return FALSE; |
| } |
| |
| bfd_get_symcount (abfd) = obj_aout_external_sym_count (abfd); |
| |
| obj_aout_symbols (abfd) = cached; |
| |
| /* It is very likely that anybody who calls this function will not |
| want the external symbol information, so if it was allocated |
| because of our call to aout_get_external_symbols, we free it up |
| right away to save space. */ |
| if (old_external_syms == NULL |
| && obj_aout_external_syms (abfd) != NULL) |
| { |
| #ifdef USE_MMAP |
| bfd_free_window (&obj_aout_sym_window (abfd)); |
| #else |
| free (obj_aout_external_syms (abfd)); |
| #endif |
| obj_aout_external_syms (abfd) = NULL; |
| } |
| |
| return TRUE; |
| } |
| |
| /* We use a hash table when writing out symbols so that we only write |
| out a particular string once. This helps particularly when the |
| linker writes out stabs debugging entries, because each different |
| contributing object file tends to have many duplicate stabs |
| strings. |
| |
| This hash table code breaks dbx on SunOS 4.1.3, so we don't do it |
| if BFD_TRADITIONAL_FORMAT is set. */ |
| |
| /* Get the index of a string in a strtab, adding it if it is not |
| already present. */ |
| |
| static inline bfd_size_type |
| add_to_stringtab (bfd *abfd, |
| struct bfd_strtab_hash *tab, |
| const char *str, |
| bfd_boolean copy) |
| { |
| bfd_boolean hash; |
| bfd_size_type str_index; |
| |
| /* An index of 0 always means the empty string. */ |
| if (str == 0 || *str == '\0') |
| return 0; |
| |
| /* Don't hash if BFD_TRADITIONAL_FORMAT is set, because SunOS dbx |
| doesn't understand a hashed string table. */ |
| hash = TRUE; |
| if ((abfd->flags & BFD_TRADITIONAL_FORMAT) != 0) |
| hash = FALSE; |
| |
| str_index = _bfd_stringtab_add (tab, str, hash, copy); |
| |
| if (str_index != (bfd_size_type) -1) |
| /* Add BYTES_IN_WORD to the return value to account for the |
| space taken up by the string table size. */ |
| str_index += BYTES_IN_WORD; |
| |
| return str_index; |
| } |
| |
| /* Write out a strtab. ABFD is already at the right location in the |
| file. */ |
| |
| static bfd_boolean |
| emit_stringtab (bfd *abfd, struct bfd_strtab_hash *tab) |
| { |
| bfd_byte buffer[BYTES_IN_WORD]; |
| bfd_size_type amt = BYTES_IN_WORD; |
| |
| /* The string table starts with the size. */ |
| PUT_WORD (abfd, _bfd_stringtab_size (tab) + BYTES_IN_WORD, buffer); |
| if (bfd_bwrite ((void *) buffer, amt, abfd) != amt) |
| return FALSE; |
| |
| return _bfd_stringtab_emit (abfd, tab); |
| } |
| |
| bfd_boolean |
| NAME (aout, write_syms) (bfd *abfd) |
| { |
| unsigned int count ; |
| asymbol **generic = bfd_get_outsymbols (abfd); |
| struct bfd_strtab_hash *strtab; |
| |
| strtab = _bfd_stringtab_init (); |
| if (strtab == NULL) |
| return FALSE; |
| |
| for (count = 0; count < bfd_get_symcount (abfd); count++) |
| { |
| asymbol *g = generic[count]; |
| bfd_size_type indx; |
| struct external_nlist nsp; |
| bfd_size_type amt; |
| |
| indx = add_to_stringtab (abfd, strtab, g->name, FALSE); |
| if (indx == (bfd_size_type) -1) |
| goto error_return; |
| PUT_WORD (abfd, indx, (bfd_byte *) nsp.e_strx); |
| |
| if (bfd_asymbol_flavour (g) == abfd->xvec->flavour) |
| { |
| H_PUT_16 (abfd, aout_symbol (g)->desc, nsp.e_desc); |
| H_PUT_8 (abfd, aout_symbol (g)->other, nsp.e_other); |
| H_PUT_8 (abfd, aout_symbol (g)->type, nsp.e_type); |
| } |
| else |
| { |
| H_PUT_16 (abfd, 0, nsp.e_desc); |
| H_PUT_8 (abfd, 0, nsp.e_other); |
| H_PUT_8 (abfd, 0, nsp.e_type); |
| } |
| |
| if (! translate_to_native_sym_flags (abfd, g, &nsp)) |
| goto error_return; |
| |
| amt = EXTERNAL_NLIST_SIZE; |
| if (bfd_bwrite ((void *) &nsp, amt, abfd) != amt) |
| goto error_return; |
| |
| /* NB: `KEEPIT' currently overlays `udata.p', so set this only |
| here, at the end. */ |
| g->KEEPIT = count; |
| } |
| |
| if (! emit_stringtab (abfd, strtab)) |
| goto error_return; |
| |
| _bfd_stringtab_free (strtab); |
| |
| return TRUE; |
| |
| error_return: |
| _bfd_stringtab_free (strtab); |
| return FALSE; |
| } |
| |
| long |
| NAME (aout, canonicalize_symtab) (bfd *abfd, asymbol **location) |
| { |
| unsigned int counter = 0; |
| aout_symbol_type *symbase; |
| |
| if (!NAME (aout, slurp_symbol_table) (abfd)) |
| return -1; |
| |
| for (symbase = obj_aout_symbols (abfd); |
| counter++ < bfd_get_symcount (abfd); |
| ) |
| *(location++) = (asymbol *) (symbase++); |
| *location++ =0; |
| return bfd_get_symcount (abfd); |
| } |
| |
| /* Standard reloc stuff. */ |
| /* Output standard relocation information to a file in target byte order. */ |
| |
| extern void NAME (aout, swap_std_reloc_out) |
| (bfd *, arelent *, struct reloc_std_external *); |
| |
| void |
| NAME (aout, swap_std_reloc_out) (bfd *abfd, |
| arelent *g, |
| struct reloc_std_external *natptr) |
| { |
| int r_index; |
| asymbol *sym = *(g->sym_ptr_ptr); |
| int r_extern; |
| unsigned int r_length; |
| int r_pcrel; |
| int r_baserel, r_jmptable, r_relative; |
| asection *output_section = sym->section->output_section; |
| |
| PUT_WORD (abfd, g->address, natptr->r_address); |
| |
| r_length = g->howto->size ; /* Size as a power of two. */ |
| r_pcrel = (int) g->howto->pc_relative; /* Relative to PC? */ |
| /* XXX This relies on relocs coming from a.out files. */ |
| r_baserel = (g->howto->type & 8) != 0; |
| r_jmptable = (g->howto->type & 16) != 0; |
| r_relative = (g->howto->type & 32) != 0; |
| |
| /* Name was clobbered by aout_write_syms to be symbol index. */ |
| |
| /* If this relocation is relative to a symbol then set the |
| r_index to the symbols index, and the r_extern bit. |
| |
| Absolute symbols can come in in two ways, either as an offset |
| from the abs section, or as a symbol which has an abs value. |
| check for that here. */ |
| |
| if (bfd_is_com_section (output_section) |
| || bfd_is_abs_section (output_section) |
| || bfd_is_und_section (output_section) |
| /* PR gas/3041 a.out relocs against weak symbols |
| must be treated as if they were against externs. */ |
| || (sym->flags & BSF_WEAK)) |
| { |
| if (bfd_abs_section_ptr->symbol == sym) |
| { |
| /* Whoops, looked like an abs symbol, but is |
| really an offset from the abs section. */ |
| r_index = N_ABS; |
| r_extern = 0; |
| } |
| else |
| { |
| /* Fill in symbol. */ |
| r_extern = 1; |
| r_index = (*(g->sym_ptr_ptr))->KEEPIT; |
| } |
| } |
| else |
| { |
| /* Just an ordinary section. */ |
| r_extern = 0; |
| r_index = output_section->target_index; |
| } |
| |
| /* Now the fun stuff. */ |
| if (bfd_header_big_endian (abfd)) |
| { |
| natptr->r_index[0] = r_index >> 16; |
| natptr->r_index[1] = r_index >> 8; |
| natptr->r_index[2] = r_index; |
| natptr->r_type[0] = ((r_extern ? RELOC_STD_BITS_EXTERN_BIG : 0) |
| | (r_pcrel ? RELOC_STD_BITS_PCREL_BIG : 0) |
| | (r_baserel ? RELOC_STD_BITS_BASEREL_BIG : 0) |
| | (r_jmptable ? RELOC_STD_BITS_JMPTABLE_BIG : 0) |
| | (r_relative ? RELOC_STD_BITS_RELATIVE_BIG : 0) |
| | (r_length << RELOC_STD_BITS_LENGTH_SH_BIG)); |
| } |
| else |
| { |
| natptr->r_index[2] = r_index >> 16; |
| natptr->r_index[1] = r_index >> 8; |
| natptr->r_index[0] = r_index; |
| natptr->r_type[0] = ((r_extern ? RELOC_STD_BITS_EXTERN_LITTLE : 0) |
| | (r_pcrel ? RELOC_STD_BITS_PCREL_LITTLE : 0) |
| | (r_baserel ? RELOC_STD_BITS_BASEREL_LITTLE : 0) |
| | (r_jmptable ? RELOC_STD_BITS_JMPTABLE_LITTLE : 0) |
| | (r_relative ? RELOC_STD_BITS_RELATIVE_LITTLE : 0) |
| | (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE)); |
| } |
| } |
| |
| /* Extended stuff. */ |
| /* Output extended relocation information to a file in target byte order. */ |
| |
| extern void NAME (aout, swap_ext_reloc_out) |
| (bfd *, arelent *, struct reloc_ext_external *); |
| |
| void |
| NAME (aout, swap_ext_reloc_out) (bfd *abfd, |
| arelent *g, |
| struct reloc_ext_external *natptr) |
| { |
| int r_index; |
| int r_extern; |
| unsigned int r_type; |
| bfd_vma r_addend; |
| asymbol *sym = *(g->sym_ptr_ptr); |
| asection *output_section = sym->section->output_section; |
| |
| PUT_WORD (abfd, g->address, natptr->r_address); |
| |
| r_type = (unsigned int) g->howto->type; |
| |
| r_addend = g->addend; |
| if ((sym->flags & BSF_SECTION_SYM) != 0) |
| r_addend += (*(g->sym_ptr_ptr))->section->output_section->vma; |
| |
| /* If this relocation is relative to a symbol then set the |
| r_index to the symbols index, and the r_extern bit. |
| |
| Absolute symbols can come in in two ways, either as an offset |
| from the abs section, or as a symbol which has an abs value. |
| check for that here. */ |
| if (bfd_is_abs_section (bfd_get_section (sym))) |
| { |
| r_extern = 0; |
| r_index = N_ABS; |
| } |
| else if ((sym->flags & BSF_SECTION_SYM) == 0) |
| { |
| if (bfd_is_und_section (bfd_get_section (sym)) |
| || (sym->flags & BSF_GLOBAL) != 0) |
| r_extern = 1; |
| else |
| r_extern = 0; |
| r_index = (*(g->sym_ptr_ptr))->KEEPIT; |
| } |
| else |
| { |
| /* Just an ordinary section. */ |
| r_extern = 0; |
| r_index = output_section->target_index; |
| } |
| |
| /* Now the fun stuff. */ |
| if (bfd_header_big_endian (abfd)) |
| { |
| natptr->r_index[0] = r_index >> 16; |
| natptr->r_index[1] = r_index >> 8; |
| natptr->r_index[2] = r_index; |
| natptr->r_type[0] = ((r_extern ? RELOC_EXT_BITS_EXTERN_BIG : 0) |
| | (r_type << RELOC_EXT_BITS_TYPE_SH_BIG)); |
| } |
| else |
| { |
| natptr->r_index[2] = r_index >> 16; |
| natptr->r_index[1] = r_index >> 8; |
| natptr->r_index[0] = r_index; |
| natptr->r_type[0] = ((r_extern ? RELOC_EXT_BITS_EXTERN_LITTLE : 0) |
| | (r_type << RELOC_EXT_BITS_TYPE_SH_LITTLE)); |
| } |
| |
| PUT_WORD (abfd, r_addend, natptr->r_addend); |
| } |
| |
| /* BFD deals internally with all things based from the section they're |
| in. so, something in 10 bytes into a text section with a base of |
| 50 would have a symbol (.text+10) and know .text vma was 50. |
| |
| Aout keeps all it's symbols based from zero, so the symbol would |
| contain 60. This macro subs the base of each section from the value |
| to give the true offset from the section. */ |
| |
| #define MOVE_ADDRESS(ad) \ |
| if (r_extern) \ |
| { \ |
| /* Undefined symbol. */ \ |
| cache_ptr->sym_ptr_ptr = symbols + r_index; \ |
| cache_ptr->addend = ad; \ |
| } \ |
| else \ |
| { \ |
| /* Defined, section relative. Replace symbol with pointer to \ |
| symbol which points to section. */ \ |
| switch (r_index) \ |
| { \ |
| case N_TEXT: \ |
| case N_TEXT | N_EXT: \ |
| cache_ptr->sym_ptr_ptr = obj_textsec (abfd)->symbol_ptr_ptr; \ |
| cache_ptr->addend = ad - su->textsec->vma; \ |
| break; \ |
| case N_DATA: \ |
| case N_DATA | N_EXT: \ |
| cache_ptr->sym_ptr_ptr = obj_datasec (abfd)->symbol_ptr_ptr; \ |
| cache_ptr->addend = ad - su->datasec->vma; \ |
| break; \ |
| case N_BSS: \ |
| case N_BSS | N_EXT: \ |
| cache_ptr->sym_ptr_ptr = obj_bsssec (abfd)->symbol_ptr_ptr; \ |
| cache_ptr->addend = ad - su->bsssec->vma; \ |
| break; \ |
| default: \ |
| case N_ABS: \ |
| case N_ABS | N_EXT: \ |
| cache_ptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; \ |
| cache_ptr->addend = ad; \ |
| break; \ |
| } \ |
| } |
| |
| void |
| NAME (aout, swap_ext_reloc_in) (bfd *abfd, |
| struct reloc_ext_external *bytes, |
| arelent *cache_ptr, |
| asymbol **symbols, |
| bfd_size_type symcount) |
| { |
| unsigned int r_index; |
| int r_extern; |
| unsigned int r_type; |
| struct aoutdata *su = &(abfd->tdata.aout_data->a); |
| |
| cache_ptr->address = (GET_SWORD (abfd, bytes->r_address)); |
| |
| /* Now the fun stuff. */ |
| if (bfd_header_big_endian (abfd)) |
| { |
| r_index = (((unsigned int) bytes->r_index[0] << 16) |
| | ((unsigned int) bytes->r_index[1] << 8) |
| | bytes->r_index[2]); |
| r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG)); |
| r_type = ((bytes->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) |
| >> RELOC_EXT_BITS_TYPE_SH_BIG); |
| } |
| else |
| { |
| r_index = (((unsigned int) bytes->r_index[2] << 16) |
| | ((unsigned int) bytes->r_index[1] << 8) |
| | bytes->r_index[0]); |
| r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE)); |
| r_type = ((bytes->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) |
| >> RELOC_EXT_BITS_TYPE_SH_LITTLE); |
| } |
| |
| if (r_type < TABLE_SIZE (howto_table_ext)) |
| cache_ptr->howto = howto_table_ext + r_type; |
| else |
| cache_ptr->howto = NULL; |
| |
| /* Base relative relocs are always against the symbol table, |
| regardless of the setting of r_extern. r_extern just reflects |
| whether the symbol the reloc is against is local or global. */ |
| if (r_type == (unsigned int) RELOC_BASE10 |
| || r_type == (unsigned int) RELOC_BASE13 |
| || r_type == (unsigned int) RELOC_BASE22) |
| r_extern = 1; |
| |
| if (r_extern && r_index > symcount) |
| { |
| /* We could arrange to return an error, but it might be useful |
| to see the file even if it is bad. */ |
| r_extern = 0; |
| r_index = N_ABS; |
| } |
| |
| MOVE_ADDRESS (GET_SWORD (abfd, bytes->r_addend)); |
| } |
| |
| void |
| NAME (aout, swap_std_reloc_in) (bfd *abfd, |
| struct reloc_std_external *bytes, |
| arelent *cache_ptr, |
| asymbol **symbols, |
| bfd_size_type symcount) |
| { |
| unsigned int r_index; |
| int r_extern; |
| unsigned int r_length; |
| int r_pcrel; |
| int r_baserel, r_jmptable, r_relative; |
| struct aoutdata *su = &(abfd->tdata.aout_data->a); |
| unsigned int howto_idx; |
| |
| cache_ptr->address = H_GET_32 (abfd, bytes->r_address); |
| |
| /* Now the fun stuff. */ |
| if (bfd_header_big_endian (abfd)) |
| { |
| r_index = (((unsigned int) bytes->r_index[0] << 16) |
| | ((unsigned int) bytes->r_index[1] << 8) |
| | bytes->r_index[2]); |
| r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_BIG)); |
| r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_BIG)); |
| r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_BIG)); |
| r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG)); |
| r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG)); |
| r_length = ((bytes->r_type[0] & RELOC_STD_BITS_LENGTH_BIG) |
| >> RELOC_STD_BITS_LENGTH_SH_BIG); |
| } |
| else |
| { |
| r_index = (((unsigned int) bytes->r_index[2] << 16) |
| | ((unsigned int) bytes->r_index[1] << 8) |
| | bytes->r_index[0]); |
| r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE)); |
| r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE)); |
| r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE)); |
| r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE)); |
| r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE)); |
| r_length = ((bytes->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE) |
| >> RELOC_STD_BITS_LENGTH_SH_LITTLE); |
| } |
| |
| howto_idx = (r_length + 4 * r_pcrel + 8 * r_baserel |
| + 16 * r_jmptable + 32 * r_relative); |
| if (howto_idx < TABLE_SIZE (howto_table_std)) |
| { |
| cache_ptr->howto = howto_table_std + howto_idx; |
| if (cache_ptr->howto->type == (unsigned int) -1) |
| cache_ptr->howto = NULL; |
| } |
| else |
| cache_ptr->howto = NULL; |
| |
| /* Base relative relocs are always against the symbol table, |
| regardless of the setting of r_extern. r_extern just reflects |
| whether the symbol the reloc is against is local or global. */ |
| if (r_baserel) |
| r_extern = 1; |
| |
| if (r_extern && r_index > symcount) |
| { |
| /* We could arrange to return an error, but it might be useful |
| to see the file even if it is bad. */ |
| r_extern = 0; |
| r_index = N_ABS; |
| } |
| |
| MOVE_ADDRESS (0); |
| } |
| |
| /* Read and swap the relocs for a section. */ |
| |
| bfd_boolean |
| NAME (aout, slurp_reloc_table) (bfd *abfd, sec_ptr asect, asymbol **symbols) |
| { |
| bfd_size_type count; |
| bfd_size_type reloc_size; |
| void * relocs; |
| arelent *reloc_cache; |
| size_t each_size; |
| unsigned int counter = 0; |
| arelent *cache_ptr; |
| bfd_size_type amt; |
| |
| if (asect->relocation) |
| return TRUE; |
| |
| if (asect->flags & SEC_CONSTRUCTOR) |
| return TRUE; |
| |
| if (asect == obj_datasec (abfd)) |
| reloc_size = exec_hdr (abfd)->a_drsize; |
| else if (asect == obj_textsec (abfd)) |
| reloc_size = exec_hdr (abfd)->a_trsize; |
| else if (asect == obj_bsssec (abfd)) |
| reloc_size = 0; |
| else |
| { |
| bfd_set_error (bfd_error_invalid_operation); |
| return FALSE; |
| } |
| |
| if (reloc_size == 0) |
| return TRUE; /* Nothing to be done. */ |
| |
| if (bfd_seek (abfd, asect->rel_filepos, SEEK_SET) != 0) |
| return FALSE; |
| |
| each_size = obj_reloc_entry_size (abfd); |
| |
| count = reloc_size / each_size; |
| if (count == 0) |
| return TRUE; /* Nothing to be done. */ |
| |
| amt = count * sizeof (arelent); |
| reloc_cache = (arelent *) bfd_zmalloc (amt); |
| if (reloc_cache == NULL) |
| return FALSE; |
| |
| relocs = bfd_malloc (reloc_size); |
| if (relocs == NULL) |
| { |
| free (reloc_cache); |
| return FALSE; |
| } |
| |
| if (bfd_bread (relocs, reloc_size, abfd) != reloc_size) |
| { |
| free (relocs); |
| free (reloc_cache); |
| return FALSE; |
| } |
| |
| cache_ptr = reloc_cache; |
| if (each_size == RELOC_EXT_SIZE) |
| { |
| struct reloc_ext_external *rptr = (struct reloc_ext_external *) relocs; |
| |
| for (; counter < count; counter++, rptr++, cache_ptr++) |
| MY_swap_ext_reloc_in (abfd, rptr, cache_ptr, symbols, |
| (bfd_size_type) bfd_get_symcount (abfd)); |
| } |
| else |
| { |
| struct reloc_std_external *rptr = (struct reloc_std_external *) relocs; |
| |
| for (; counter < count; counter++, rptr++, cache_ptr++) |
| MY_swap_std_reloc_in (abfd, rptr, cache_ptr, symbols, |
| (bfd_size_type) bfd_get_symcount (abfd)); |
| } |
| |
| free (relocs); |
| |
| asect->relocation = reloc_cache; |
| asect->reloc_count = cache_ptr - reloc_cache; |
| |
| return TRUE; |
| } |
| |
| /* Write out a relocation section into an object file. */ |
| |
| bfd_boolean |
| NAME (aout, squirt_out_relocs) (bfd *abfd, asection *section) |
| { |
| arelent **generic; |
| unsigned char *native, *natptr; |
| size_t each_size; |
| |
| unsigned int count = section->reloc_count; |
| bfd_size_type natsize; |
| |
| if (count == 0 || section->orelocation == NULL) |
| return TRUE; |
| |
| each_size = obj_reloc_entry_size (abfd); |
| natsize = (bfd_size_type) each_size * count; |
| native = (unsigned char *) bfd_zalloc (abfd, natsize); |
| if (!native) |
| return FALSE; |
| |
| generic = section->orelocation; |
| |
| if (each_size == RELOC_EXT_SIZE) |
| { |
| for (natptr = native; |
| count != 0; |
| --count, natptr += each_size, ++generic) |
| MY_swap_ext_reloc_out (abfd, *generic, |
| (struct reloc_ext_external *) natptr); |
| } |
| else |
| { |
| for (natptr = native; |
| count != 0; |
| --count, natptr += each_size, ++generic) |
| MY_swap_std_reloc_out (abfd, *generic, |
| (struct reloc_std_external *) natptr); |
| } |
| |
| if (bfd_bwrite ((void *) native, natsize, abfd) != natsize) |
| { |
| bfd_release (abfd, native); |
| return FALSE; |
| } |
| bfd_release (abfd, native); |
| |
| return TRUE; |
| } |
| |
| /* This is stupid. This function should be a boolean predicate. */ |
| |
| long |
| NAME (aout, canonicalize_reloc) (bfd *abfd, |
| sec_ptr section, |
| arelent **relptr, |
| asymbol **symbols) |
| { |
| arelent *tblptr = section->relocation; |
| unsigned int count; |
| |
| if (section == obj_bsssec (abfd)) |
| { |
| *relptr = NULL; |
| return 0; |
| } |
| |
| if (!(tblptr || NAME (aout, slurp_reloc_table) (abfd, section, symbols))) |
| return -1; |
| |
| if (section->flags & SEC_CONSTRUCTOR) |
| { |
| arelent_chain *chain = section->constructor_chain; |
| for (count = 0; count < section->reloc_count; count ++) |
| { |
| *relptr ++ = &chain->relent; |
| chain = chain->next; |
| } |
| } |
| else |
| { |
| tblptr = section->relocation; |
| |
| for (count = 0; count++ < section->reloc_count; ) |
| { |
| *relptr++ = tblptr++; |
| } |
| } |
| *relptr = 0; |
| |
| return section->reloc_count; |
| } |
| |
| long |
| NAME (aout, get_reloc_upper_bound) (bfd *abfd, sec_ptr asect) |
| { |
| if (bfd_get_format (abfd) != bfd_object) |
| { |
| bfd_set_error (bfd_error_invalid_operation); |
| return -1; |
| } |
| |
| if (asect->flags & SEC_CONSTRUCTOR) |
| return sizeof (arelent *) * (asect->reloc_count + 1); |
| |
| if (asect == obj_datasec (abfd)) |
| return sizeof (arelent *) |
| * ((exec_hdr (abfd)->a_drsize / obj_reloc_entry_size (abfd)) |
| + 1); |
| |
| if (asect == obj_textsec (abfd)) |
| return sizeof (arelent *) |
| * ((exec_hdr (abfd)->a_trsize / obj_reloc_entry_size (abfd)) |
| + 1); |
| |
| if (asect == obj_bsssec (abfd)) |
| return sizeof (arelent *); |
| |
| if (asect == obj_bsssec (abfd)) |
| return 0; |
| |
| bfd_set_error (bfd_error_invalid_operation); |
| return -1; |
| } |
| |
| long |
| NAME (aout, get_symtab_upper_bound) (bfd *abfd) |
| { |
| if (!NAME (aout, slurp_symbol_table) (abfd)) |
| return -1; |
| |
| return (bfd_get_symcount (abfd)+1) * (sizeof (aout_symbol_type *)); |
| } |
| |
| alent * |
| NAME (aout, get_lineno) (bfd *ignore_abfd ATTRIBUTE_UNUSED, |
| asymbol *ignore_symbol ATTRIBUTE_UNUSED) |
| { |
| return NULL; |
| } |
| |
| void |
| NAME (aout, get_symbol_info) (bfd *ignore_abfd ATTRIBUTE_UNUSED, |
| asymbol *symbol, |
| symbol_info *ret) |
| { |
| bfd_symbol_info (symbol, ret); |
| |
| if (ret->type == '?') |
| { |
| int type_code = aout_symbol (symbol)->type & 0xff; |
| const char *stab_name = bfd_get_stab_name (type_code); |
| static char buf[10]; |
| |
| if (stab_name == NULL) |
| { |
| sprintf (buf, "(%d)", type_code); |
| stab_name = buf; |
| } |
| ret->type = '-'; |
| ret->stab_type = type_code; |
| ret->stab_other = (unsigned) (aout_symbol (symbol)->other & 0xff); |
| ret->stab_desc = (unsigned) (aout_symbol (symbol)->desc & 0xffff); |
| ret->stab_name = stab_name; |
| } |
| } |
| |
| void |
| NAME (aout, print_symbol) (bfd *abfd, |
| void * afile, |
| asymbol *symbol, |
| bfd_print_symbol_type how) |
| { |
| FILE *file = (FILE *)afile; |
| |
| switch (how) |
| { |
| case bfd_print_symbol_name: |
| if (symbol->name) |
| fprintf (file,"%s", symbol->name); |
| break; |
| case bfd_print_symbol_more: |
| fprintf (file,"%4x %2x %2x", |
| (unsigned) (aout_symbol (symbol)->desc & 0xffff), |
| (unsigned) (aout_symbol (symbol)->other & 0xff), |
| (unsigned) (aout_symbol (symbol)->type)); |
| break; |
| case bfd_print_symbol_all: |
| { |
| const char *section_name = symbol->section->name; |
| |
| bfd_print_symbol_vandf (abfd, (void *)file, symbol); |
| |
| fprintf (file," %-5s %04x %02x %02x", |
| section_name, |
| (unsigned) (aout_symbol (symbol)->desc & 0xffff), |
| (unsigned) (aout_symbol (symbol)->other & 0xff), |
| (unsigned) (aout_symbol (symbol)->type & 0xff)); |
| if (symbol->name) |
| fprintf (file," %s", symbol->name); |
| } |
| break; |
| } |
| } |
| |
| /* If we don't have to allocate more than 1MB to hold the generic |
| symbols, we use the generic minisymbol methord: it's faster, since |
| it only translates the symbols once, not multiple times. */ |
| #define MINISYM_THRESHOLD (1000000 / sizeof (asymbol)) |
| |
| /* Read minisymbols. For minisymbols, we use the unmodified a.out |
| symbols. The minisymbol_to_symbol function translates these into |
| BFD asymbol structures. */ |
| |
| long |
| NAME (aout, read_minisymbols) (bfd *abfd, |
| bfd_boolean dynamic, |
| void * *minisymsp, |
| unsigned int *sizep) |
| { |
| if (dynamic) |
| /* We could handle the dynamic symbols here as well, but it's |
| easier to hand them off. */ |
| return _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep); |
| |
| if (! aout_get_external_symbols (abfd)) |
| return -1; |
| |
| if (obj_aout_external_sym_count (abfd) < MINISYM_THRESHOLD) |
| return _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep); |
| |
| *minisymsp = (void *) obj_aout_external_syms (abfd); |
| |
| /* By passing the external symbols back from this routine, we are |
| giving up control over the memory block. Clear |
| obj_aout_external_syms, so that we do not try to free it |
| ourselves. */ |
| obj_aout_external_syms (abfd) = NULL; |
| |
| *sizep = EXTERNAL_NLIST_SIZE; |
| return obj_aout_external_sym_count (abfd); |
| } |
| |
| /* Convert a minisymbol to a BFD asymbol. A minisymbol is just an |
| unmodified a.out symbol. The SYM argument is a structure returned |
| by bfd_make_empty_symbol, which we fill in here. */ |
| |
| asymbol * |
| NAME (aout, minisymbol_to_symbol) (bfd *abfd, |
| bfd_boolean dynamic, |
| const void * minisym, |
| asymbol *sym) |
| { |
| if (dynamic |
| || obj_aout_external_sym_count (abfd) < MINISYM_THRESHOLD) |
| return _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym); |
| |
| memset (sym, 0, sizeof (aout_symbol_type)); |
| |
| /* We call translate_symbol_table to translate a single symbol. */ |
| if (! (NAME (aout, translate_symbol_table) |
| (abfd, |
| (aout_symbol_type *) sym, |
| (struct external_nlist *) minisym, |
| (bfd_size_type) 1, |
| obj_aout_external_strings (abfd), |
| obj_aout_external_string_size (abfd), |
| FALSE))) |
| return NULL; |
| |
| return sym; |
| } |
| |
| /* Provided a BFD, a section and an offset into the section, calculate |
| and return the name of the source file and the line nearest to the |
| wanted location. */ |
| |
| bfd_boolean |
| NAME (aout, find_nearest_line) (bfd *abfd, |
| asymbol **symbols, |
| asection *section, |
| bfd_vma offset, |
| const char **filename_ptr, |
| const char **functionname_ptr, |
| unsigned int *line_ptr, |
| unsigned int *disriminator_ptr) |
| { |
| /* Run down the file looking for the filename, function and linenumber. */ |
| asymbol **p; |
| const char *directory_name = NULL; |
| const char *main_file_name = NULL; |
| const char *current_file_name = NULL; |
| const char *line_file_name = NULL; /* Value of current_file_name at line number. */ |
| const char *line_directory_name = NULL; /* Value of directory_name at line number. */ |
| bfd_vma low_line_vma = 0; |
| bfd_vma low_func_vma = 0; |
| asymbol *func = 0; |
| bfd_size_type filelen, funclen; |
| char *buf; |
| |
| *filename_ptr = abfd->filename; |
| *functionname_ptr = 0; |
| *line_ptr = 0; |
| if (disriminator_ptr) |
| *disriminator_ptr = 0; |
| |
| if (symbols != NULL) |
| { |
| for (p = symbols; *p; p++) |
| { |
| aout_symbol_type *q = (aout_symbol_type *) (*p); |
| next: |
| switch (q->type) |
| { |
| case N_TEXT: |
| /* If this looks like a file name symbol, and it comes after |
| the line number we have found so far, but before the |
| offset, then we have probably not found the right line |
| number. */ |
| if (q->symbol.value <= offset |
| && ((q->symbol.value > low_line_vma |
| && (line_file_name != NULL |
| || *line_ptr != 0)) |
| || (q->symbol.value > low_func_vma |
| && func != NULL))) |
| { |
| const char *symname; |
| |
| symname = q->symbol.name; |
| if (strcmp (symname + strlen (symname) - 2, ".o") == 0) |
| { |
| if (q->symbol.value > low_line_vma) |
| { |
| *line_ptr = 0; |
| line_file_name = NULL; |
| } |
| if (q->symbol.value > low_func_vma) |
| func = NULL; |
| } |
| } |
| break; |
| |
| case N_SO: |
| /* If this symbol is less than the offset, but greater than |
| the line number we have found so far, then we have not |
| found the right line number. */ |
| if (q->symbol.value <= offset) |
| { |
| if (q->symbol.value > low_line_vma) |
| { |
| *line_ptr = 0; |
| line_file_name = NULL; |
| } |
| if (q->symbol.value > low_func_vma) |
| func = NULL; |
| } |
| |
| main_file_name = current_file_name = q->symbol.name; |
| /* Look ahead to next symbol to check if that too is an N_SO. */ |
| p++; |
| if (*p == NULL) |
| goto done; |
| q = (aout_symbol_type *) (*p); |
| if (q->type != (int)N_SO) |
| goto next; |
| |
| /* Found a second N_SO First is directory; second is filename. */ |
| directory_name = current_file_name; |
| main_file_name = current_file_name = q->symbol.name; |
| if (obj_textsec (abfd) != section) |
| goto done; |
| break; |
| case N_SOL: |
| current_file_name = q->symbol.name; |
| break; |
| |
| case N_SLINE: |
| |
| case N_DSLINE: |
| case N_BSLINE: |
| /* We'll keep this if it resolves nearer than the one we have |
| already. */ |
| if (q->symbol.value >= low_line_vma |
| && q->symbol.value <= offset) |
| { |
| *line_ptr = q->desc; |
| low_line_vma = q->symbol.value; |
| line_file_name = current_file_name; |
| line_directory_name = directory_name; |
| } |
| break; |
| case N_FUN: |
| { |
| /* We'll keep this if it is nearer than the one we have already. */ |
| if (q->symbol.value >= low_func_vma && |
| q->symbol.value <= offset) |
| { |
| low_func_vma = q->symbol.value; |
| func = (asymbol *)q; |
| } |
| else if (q->symbol.value > offset) |
| goto done; |
| } |
| break; |
| } |
| } |
| } |
| |
| done: |
| if (*line_ptr != 0) |
| { |
| main_file_name = line_file_name; |
| directory_name = line_directory_name; |
| } |
| |
| if (main_file_name == NULL |
| || IS_ABSOLUTE_PATH (main_file_name) |
| || directory_name == NULL) |
| filelen = 0; |
| else |
| filelen = strlen (directory_name) + strlen (main_file_name); |
| |
| if (func == NULL) |
| funclen = 0; |
| else |
| funclen = strlen (bfd_asymbol_name (func)); |
| |
| if (adata (abfd).line_buf != NULL) |
| free (adata (abfd).line_buf); |
| |
| if (filelen + funclen == 0) |
| adata (abfd).line_buf = buf = NULL; |
| else |
| { |
| buf = (char *) bfd_malloc (filelen + funclen + 3); |
| adata (abfd).line_buf = buf; |
| if (buf == NULL) |
| return FALSE; |
| } |
| |
| if (main_file_name != NULL) |
| { |
| if (IS_ABSOLUTE_PATH (main_file_name) || directory_name == NULL) |
| *filename_ptr = main_file_name; |
| else |
| { |
| sprintf (buf, "%s%s", directory_name, main_file_name); |
| *filename_ptr = buf; |
| buf += filelen + 1; |
| } |
| } |
| |
| if (func) |
| { |
| const char *function = func->name; |
| char *colon; |
| |
| /* The caller expects a symbol name. We actually have a |
| function name, without the leading underscore. Put the |
| underscore back in, so that the caller gets a symbol name. */ |
| if (bfd_get_symbol_leading_char (abfd) == '\0') |
| strcpy (buf, function); |
| else |
| { |
| buf[0] = bfd_get_symbol_leading_char (abfd); |
| strcpy (buf + 1, function); |
| } |
| /* Have to remove : stuff. */ |
| colon = strchr (buf, ':'); |
| if (colon != NULL) |
| *colon = '\0'; |
| *functionname_ptr = buf; |
| } |
| |
| return TRUE; |
| } |
| |
| int |
| NAME (aout, sizeof_headers) (bfd *abfd, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED) |
| { |
| return adata (abfd).exec_bytes_size; |
| } |
| |
| /* Free all information we have cached for this BFD. We can always |
| read it again later if we need it. */ |
| |
| bfd_boolean |
| NAME (aout, bfd_free_cached_info) (bfd *abfd) |
| { |
| asection *o; |
| |
| if (bfd_get_format (abfd) != bfd_object |
| || abfd->tdata.aout_data == NULL) |
| return TRUE; |
| |
| #define BFCI_FREE(x) if (x != NULL) { free (x); x = NULL; } |
| BFCI_FREE (obj_aout_symbols (abfd)); |
| #ifdef USE_MMAP |
| obj_aout_external_syms (abfd) = 0; |
| bfd_free_window (&obj_aout_sym_window (abfd)); |
| bfd_free_window (&obj_aout_string_window (abfd)); |
| obj_aout_external_strings (abfd) = 0; |
| #else |
| BFCI_FREE (obj_aout_external_syms (abfd)); |
| BFCI_FREE (obj_aout_external_strings (abfd)); |
| #endif |
| for (o = abfd->sections; o != NULL; o = o->next) |
| BFCI_FREE (o->relocation); |
| #undef BFCI_FREE |
| |
| return TRUE; |
| } |
| |
| /* a.out link code. */ |
| |
| /* Routine to create an entry in an a.out link hash table. */ |
| |
| struct bfd_hash_entry * |
| NAME (aout, link_hash_newfunc) (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| struct aout_link_hash_entry *ret = (struct aout_link_hash_entry *) entry; |
| |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (ret == NULL) |
| ret = (struct aout_link_hash_entry *) bfd_hash_allocate (table, |
| sizeof (* ret)); |
| if (ret == NULL) |
| return NULL; |
| |
| /* Call the allocation method of the superclass. */ |
| ret = ((struct aout_link_hash_entry *) |
| _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret, |
| table, string)); |
| if (ret) |
| { |
| /* Set local fields. */ |
| ret->written = FALSE; |
| ret->indx = -1; |
| } |
| |
| return (struct bfd_hash_entry *) ret; |
| } |
| |
| /* Initialize an a.out link hash table. */ |
| |
| bfd_boolean |
| NAME (aout, link_hash_table_init) (struct aout_link_hash_table *table, |
| bfd *abfd, |
| struct bfd_hash_entry *(*newfunc) |
| (struct bfd_hash_entry *, struct bfd_hash_table *, |
| const char *), |
| unsigned int entsize) |
| { |
| return _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize); |
| } |
| |
| /* Create an a.out link hash table. */ |
| |
| struct bfd_link_hash_table * |
| NAME (aout, link_hash_table_create) (bfd *abfd) |
| { |
| struct aout_link_hash_table *ret; |
| bfd_size_type amt = sizeof (* ret); |
| |
| ret = (struct aout_link_hash_table *) bfd_malloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| if (!NAME (aout, link_hash_table_init) (ret, abfd, |
| NAME (aout, link_hash_newfunc), |
| sizeof (struct aout_link_hash_entry))) |
| { |
| free (ret); |
| return NULL; |
| } |
| return &ret->root; |
| } |
| |
| /* Add all symbols from an object file to the hash table. */ |
| |
| static bfd_boolean |
| aout_link_add_symbols (bfd *abfd, struct bfd_link_info *info) |
| { |
| bfd_boolean (*add_one_symbol) |
| (struct bfd_link_info *, bfd *, const char *, flagword, asection *, |
| bfd_vma, const char *, bfd_boolean, bfd_boolean, |
| struct bfd_link_hash_entry **); |
| struct external_nlist *syms; |
| bfd_size_type sym_count; |
| char *strings; |
| bfd_boolean copy; |
| struct aout_link_hash_entry **sym_hash; |
| struct external_nlist *p; |
| struct external_nlist *pend; |
| bfd_size_type amt; |
| |
| syms = obj_aout_external_syms (abfd); |
| sym_count = obj_aout_external_sym_count (abfd); |
| strings = obj_aout_external_strings (abfd); |
| if (info->keep_memory) |
| copy = FALSE; |
| else |
| copy = TRUE; |
| |
| if (aout_backend_info (abfd)->add_dynamic_symbols != NULL) |
| { |
| if (! ((*aout_backend_info (abfd)->add_dynamic_symbols) |
| (abfd, info, &syms, &sym_count, &strings))) |
| return FALSE; |
| } |
| |
| if (sym_count == 0) |
| return TRUE; /* Nothing to do. */ |
| |
| /* We keep a list of the linker hash table entries that correspond |
| to particular symbols. We could just look them up in the hash |
| table, but keeping the list is more efficient. Perhaps this |
| should be conditional on info->keep_memory. */ |
| amt = sym_count * sizeof (struct aout_link_hash_entry *); |
| sym_hash = (struct aout_link_hash_entry **) bfd_alloc (abfd, amt); |
| if (sym_hash == NULL) |
| return FALSE; |
| obj_aout_sym_hashes (abfd) = sym_hash; |
| |
| add_one_symbol = aout_backend_info (abfd)->add_one_symbol; |
| if (add_one_symbol == NULL) |
| add_one_symbol = _bfd_generic_link_add_one_symbol; |
| |
| p = syms; |
| pend = p + sym_count; |
| for (; p < pend; p++, sym_hash++) |
| { |
| int type; |
| const char *name; |
| bfd_vma value; |
| asection *section; |
| flagword flags; |
| const char *string; |
| |
| *sym_hash = NULL; |
| |
| type = H_GET_8 (abfd, p->e_type); |
| |
| /* Ignore debugging symbols. */ |
| if ((type & N_STAB) != 0) |
| continue; |
| |
| /* PR 19629: Corrupt binaries can contain illegal string offsets. */ |
| if (GET_WORD (abfd, p->e_strx) > obj_aout_external_string_size (abfd)) |
| return FALSE; |
| name = strings + GET_WORD (abfd, p->e_strx); |
| |
| value = GET_WORD (abfd, p->e_value); |
| flags = BSF_GLOBAL; |
| string = NULL; |
| switch (type) |
| { |
| default: |
| abort (); |
| |
| case N_UNDF: |
| case N_ABS: |
| case N_TEXT: |
| case N_DATA: |
| case N_BSS: |
| case N_FN_SEQ: |
| case N_COMM: |
| case N_SETV: |
| case N_FN: |
| /* Ignore symbols that are not externally visible. */ |
| continue; |
| case N_INDR: |
| /* Ignore local indirect symbol. */ |
| ++p; |
| ++sym_hash; |
| continue; |
| |
| case N_UNDF | N_EXT: |
| if (value == 0) |
| { |
| section = bfd_und_section_ptr; |
| flags = 0; |
| } |
| else |
| section = bfd_com_section_ptr; |
| break; |
| case N_ABS | N_EXT: |
| section = bfd_abs_section_ptr; |
| break; |
| case N_TEXT | N_EXT: |
| section = obj_textsec (abfd); |
| value -= bfd_get_section_vma (abfd, section); |
| break; |
| case N_DATA | N_EXT: |
| case N_SETV | N_EXT: |
| /* Treat N_SETV symbols as N_DATA symbol; see comment in |
| translate_from_native_sym_flags. */ |
| section = obj_datasec (abfd); |
| value -= bfd_get_section_vma (abfd, section); |
| break; |
| case N_BSS | N_EXT: |
| section = obj_bsssec (abfd); |
| value -= bfd_get_section_vma (abfd, section); |
| break; |
| case N_INDR | N_EXT: |
| /* An indirect symbol. The next symbol is the symbol |
| which this one really is. */ |
| BFD_ASSERT (p + 1 < pend); |
| ++p; |
| /* PR 19629: Corrupt binaries can contain illegal string offsets. */ |
| if (GET_WORD (abfd, p->e_strx) > obj_aout_external_string_size (abfd)) |
| return FALSE; |
| string = strings + GET_WORD (abfd, p->e_strx); |
| section = bfd_ind_section_ptr; |
| flags |= BSF_INDIRECT; |
| break; |
| case N_COMM | N_EXT: |
| section = bfd_com_section_ptr; |
| break; |
| case N_SETA: case N_SETA | N_EXT: |
| section = bfd_abs_section_ptr; |
| flags |= BSF_CONSTRUCTOR; |
| break; |
| case N_SETT: case N_SETT | N_EXT: |
| section = obj_textsec (abfd); |
| flags |= BSF_CONSTRUCTOR; |
| value -= bfd_get_section_vma (abfd, section); |
| break; |
| case N_SETD: case N_SETD | N_EXT: |
| section = obj_datasec (abfd); |
| flags |= BSF_CONSTRUCTOR; |
| value -= bfd_get_section_vma (abfd, section); |
| break; |
| case N_SETB: case N_SETB | N_EXT: |
| section = obj_bsssec (abfd); |
| flags |= BSF_CONSTRUCTOR; |
| value -= bfd_get_section_vma (abfd, section); |
| break; |
| case N_WARNING: |
| /* A warning symbol. The next symbol is the one to warn |
| about. If there is no next symbol, just look away. */ |
| if (p + 1 >= pend) |
| return TRUE; |
| ++p; |
| string = name; |
| /* PR 19629: Corrupt binaries can contain illegal string offsets. */ |
| if (GET_WORD (abfd, p->e_strx) > obj_aout_external_string_size (abfd)) |
| return FALSE; |
| name = strings + GET_WORD (abfd, p->e_strx); |
| section = bfd_und_section_ptr; |
| flags |= BSF_WARNING; |
| break; |
| case N_WEAKU: |
| section = bfd_und_section_ptr; |
| flags = BSF_WEAK; |
| break; |
| case N_WEAKA: |
| section = bfd_abs_section_ptr; |
| flags = BSF_WEAK; |
| break; |
| case N_WEAKT: |
| section = obj_textsec (abfd); |
| value -= bfd_get_section_vma (abfd, section); |
| flags = BSF_WEAK; |
| break; |
| case N_WEAKD: |
| section = obj_datasec (abfd); |
| value -= bfd_get_section_vma (abfd, section); |
| flags = BSF_WEAK; |
| break; |
| case N_WEAKB: |
| section = obj_bsssec (abfd); |
| value -= bfd_get_section_vma (abfd, section); |
| flags = BSF_WEAK; |
| break; |
| } |
| |
| if (! ((*add_one_symbol) |
| (info, abfd, name, flags, section, value, string, copy, FALSE, |
| (struct bfd_link_hash_entry **) sym_hash))) |
| return FALSE; |
| |
| /* Restrict the maximum alignment of a common symbol based on |
| the architecture, since a.out has no way to represent |
| alignment requirements of a section in a .o file. FIXME: |
| This isn't quite right: it should use the architecture of the |
| output file, not the input files. */ |
| if ((*sym_hash)->root.type == bfd_link_hash_common |
| && ((*sym_hash)->root.u.c.p->alignment_power > |
| bfd_get_arch_info (abfd)->section_align_power)) |
| (*sym_hash)->root.u.c.p->alignment_power = |
| bfd_get_arch_info (abfd)->section_align_power; |
| |
| /* If this is a set symbol, and we are not building sets, then |
| it is possible for the hash entry to not have been set. In |
| such a case, treat the symbol as not globally defined. */ |
| if ((*sym_hash)->root.type == bfd_link_hash_new) |
| { |
| BFD_ASSERT ((flags & BSF_CONSTRUCTOR) != 0); |
| *sym_hash = NULL; |
| } |
| |
| if (type == (N_INDR | N_EXT) || type == N_WARNING) |
| ++sym_hash; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Free up the internal symbols read from an a.out file. */ |
| |
| static bfd_boolean |
| aout_link_free_symbols (bfd *abfd) |
| { |
| if (obj_aout_external_syms (abfd) != NULL) |
| { |
| #ifdef USE_MMAP |
| bfd_free_window (&obj_aout_sym_window (abfd)); |
| #else |
| free ((void *) obj_aout_external_syms (abfd)); |
| #endif |
| obj_aout_external_syms (abfd) = NULL; |
| } |
| if (obj_aout_external_strings (abfd) != NULL) |
| { |
| #ifdef USE_MMAP |
| bfd_free_window (&obj_aout_string_window (abfd)); |
| #else |
| free ((void *) obj_aout_external_strings (abfd)); |
| #endif |
| obj_aout_external_strings (abfd) = NULL; |
| } |
| return TRUE; |
| } |
| |
| /* Add symbols from an a.out object file. */ |
| |
| static bfd_boolean |
| aout_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) |
| { |
| if (! aout_get_external_symbols (abfd)) |
| return FALSE; |
| if (! aout_link_add_symbols (abfd, info)) |
| return FALSE; |
| if (! info->keep_memory) |
| { |
| if (! aout_link_free_symbols (abfd)) |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| /* Look through the internal symbols to see if this object file should |
| be included in the link. We should include this object file if it |
| defines any symbols which are currently undefined. If this object |
| file defines a common symbol, then we may adjust the size of the |
| known symbol but we do not include the object file in the link |
| (unless there is some other reason to include it). */ |
| |
| static bfd_boolean |
| aout_link_check_ar_symbols (bfd *abfd, |
| struct bfd_link_info *info, |
| bfd_boolean *pneeded, |
| bfd **subsbfd) |
| { |
| struct external_nlist *p; |
| struct external_nlist *pend; |
| char *strings; |
| |
| *pneeded = FALSE; |
| |
| /* Look through all the symbols. */ |
| p = obj_aout_external_syms (abfd); |
| pend = p + obj_aout_external_sym_count (abfd); |
| strings = obj_aout_external_strings (abfd); |
| for (; p < pend; p++) |
| { |
| int type = H_GET_8 (abfd, p->e_type); |
| const char *name; |
| struct bfd_link_hash_entry *h; |
| |
| /* Ignore symbols that are not externally visible. This is an |
| optimization only, as we check the type more thoroughly |
| below. */ |
| if (((type & N_EXT) == 0 |
| || (type & N_STAB) != 0 |
| || type == N_FN) |
| && type != N_WEAKA |
| && type != N_WEAKT |
| && type != N_WEAKD |
| && type != N_WEAKB) |
| { |
| if (type == N_WARNING |
| || type == N_INDR) |
| ++p; |
| continue; |
| } |
| |
| name = strings + GET_WORD (abfd, p->e_strx); |
| h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, TRUE); |
| |
| /* We are only interested in symbols that are currently |
| undefined or common. */ |
| if (h == NULL |
| || (h->type != bfd_link_hash_undefined |
| && h->type != bfd_link_hash_common)) |
| { |
| if (type == (N_INDR | N_EXT)) |
| ++p; |
| continue; |
| } |
| |
| if (type == (N_TEXT | N_EXT) |
| || type == (N_DATA | N_EXT) |
| || type == (N_BSS | N_EXT) |
| || type == (N_ABS | N_EXT) |
| || type == (N_INDR | N_EXT)) |
| { |
| /* This object file defines this symbol. We must link it |
| in. This is true regardless of whether the current |
| definition of the symbol is undefined or common. |
| |
| If the current definition is common, we have a case in |
| which we have already seen an object file including: |
| int a; |
| and this object file from the archive includes: |
| int a = 5; |
| In such a case, whether to include this object is target |
| dependant for backward compatibility. |
| |
| FIXME: The SunOS 4.1.3 linker will pull in the archive |
| element if the symbol is defined in the .data section, |
| but not if it is defined in the .text section. That |
| seems a bit crazy to me, and it has not been implemented |
| yet. However, it might be correct. */ |
| if (h->type == bfd_link_hash_common) |
| { |
| int skip = 0; |
| |
| switch (info->common_skip_ar_symbols) |
| { |
| case bfd_link_common_skip_text: |
| skip = (type == (N_TEXT | N_EXT)); |
| break; |
| case bfd_link_common_skip_data: |
| skip = (type == (N_DATA | N_EXT)); |
| break; |
| default: |
| case bfd_link_common_skip_all: |
| skip = 1; |
| break; |
| } |
| |
| if (skip) |
| continue; |
| } |
| |
| if (!(*info->callbacks |
| ->add_archive_element) (info, abfd, name, subsbfd)) |
| return FALSE; |
| *pneeded = TRUE; |
| return TRUE; |
| } |
| |
| if (type == (N_UNDF | N_EXT)) |
| { |
| bfd_vma value; |
| |
| value = GET_WORD (abfd, p->e_value); |
| if (value != 0) |
| { |
| /* This symbol is common in the object from the archive |
| file. */ |
| if (h->type == bfd_link_hash_undefined) |
| { |
| bfd *symbfd; |
| unsigned int power; |
| |
| symbfd = h->u.undef.abfd; |
| if (symbfd == NULL) |
| { |
| /* This symbol was created as undefined from |
| outside BFD. We assume that we should link |
| in the object file. This is done for the -u |
| option in the linker. */ |
| if (!(*info->callbacks |
| ->add_archive_element) (info, abfd, name, subsbfd)) |
| return FALSE; |
| *pneeded = TRUE; |
| return TRUE; |
| } |
| /* Turn the current link symbol into a common |
| symbol. It is already on the undefs list. */ |
| h->type = bfd_link_hash_common; |
| h->u.c.p = (struct bfd_link_hash_common_entry *) |
| bfd_hash_allocate (&info->hash->table, |
| sizeof (struct bfd_link_hash_common_entry)); |
| if (h->u.c.p == NULL) |
| return FALSE; |
| |
| h->u.c.size = value; |
| |
| /* FIXME: This isn't quite right. The maximum |
| alignment of a common symbol should be set by the |
| architecture of the output file, not of the input |
| file. */ |
| power = bfd_log2 (value); |
| if (power > bfd_get_arch_info (abfd)->section_align_power) |
| power = bfd_get_arch_info (abfd)->section_align_power; |
| h->u.c.p->alignment_power = power; |
| |
| h->u.c.p->section = bfd_make_section_old_way (symbfd, |
| "COMMON"); |
| } |
| else |
| { |
| /* Adjust the size of the common symbol if |
| necessary. */ |
| if (value > h->u.c.size) |
| h->u.c.size = value; |
| } |
| } |
| } |
| |
| if (type == N_WEAKA |
| || type == N_WEAKT |
| || type == N_WEAKD |
| || type == N_WEAKB) |
| { |
| /* This symbol is weak but defined. We must pull it in if |
| the current link symbol is undefined, but we don't want |
| it if the current link symbol is common. */ |
| if (h->type == bfd_link_hash_undefined) |
| { |
| if (!(*info->callbacks |
| ->add_archive_element) (info, abfd, name, subsbfd)) |
| return FALSE; |
| *pneeded = TRUE; |
| return TRUE; |
| } |
| } |
| } |
| |
| /* We do not need this object file. */ |
| return TRUE; |
| } |
| /* Check a single archive element to see if we need to include it in |
| the link. *PNEEDED is set according to whether this element is |
| needed in the link or not. This is called from |
| _bfd_generic_link_add_archive_symbols. */ |
| |
| static bfd_boolean |
| aout_link_check_archive_element (bfd *abfd, |
| struct bfd_link_info *info, |
| struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED, |
| const char *name ATTRIBUTE_UNUSED, |
| bfd_boolean *pneeded) |
| { |
| bfd *oldbfd; |
| bfd_boolean needed; |
| |
| if (!aout_get_external_symbols (abfd)) |
| return FALSE; |
| |
| oldbfd = abfd; |
| if (!aout_link_check_ar_symbols (abfd, info, pneeded, &abfd)) |
| return FALSE; |
| |
| needed = *pneeded; |
| if (needed) |
| { |
| /* Potentially, the add_archive_element hook may have set a |
| substitute BFD for us. */ |
| if (abfd != oldbfd) |
| { |
| if (!info->keep_memory |
| && !aout_link_free_symbols (oldbfd)) |
| return FALSE; |
| if (!aout_get_external_symbols (abfd)) |
| return FALSE; |
| } |
| if (!aout_link_add_symbols (abfd, info)) |
| return FALSE; |
| } |
| |
| if (!info->keep_memory || !needed) |
| { |
| if (!aout_link_free_symbols (abfd)) |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Given an a.out BFD, add symbols to the global hash table as |
| appropriate. */ |
| |
| bfd_boolean |
| NAME (aout, link_add_symbols) (bfd *abfd, struct bfd_link_info *info) |
| { |
| switch (bfd_get_format (abfd)) |
| { |
| case bfd_object: |
| return aout_link_add_object_symbols (abfd, info); |
| case bfd_archive: |
| return _bfd_generic_link_add_archive_symbols |
| (abfd, info, aout_link_check_archive_element); |
| default: |
| bfd_set_error (bfd_error_wrong_format); |
| return FALSE; |
| } |
| } |
| |
| /* A hash table used for header files with N_BINCL entries. */ |
| |
| struct aout_link_includes_table |
| { |
| struct bfd_hash_table root; |
| }; |
| |
| /* A linked list of totals that we have found for a particular header |
| file. */ |
| |
| struct aout_link_includes_totals |
| { |
| struct aout_link_includes_totals *next; |
| bfd_vma total; |
| }; |
| |
| /* An entry in the header file hash table. */ |
| |
| struct aout_link_includes_entry |
| { |
| struct bfd_hash_entry root; |
| /* List of totals we have found for this file. */ |
| struct aout_link_includes_totals *totals; |
| }; |
| |
| /* Look up an entry in an the header file hash table. */ |
| |
| #define aout_link_includes_lookup(table, string, create, copy) \ |
| ((struct aout_link_includes_entry *) \ |
| bfd_hash_lookup (&(table)->root, (string), (create), (copy))) |
| |
| /* During the final link step we need to pass around a bunch of |
| information, so we do it in an instance of this structure. */ |
| |
| struct aout_final_link_info |
| { |
| /* General link information. */ |
| struct bfd_link_info *info; |
| /* Output bfd. */ |
| bfd *output_bfd; |
| /* Reloc file positions. */ |
| file_ptr treloff, dreloff; |
| /* File position of symbols. */ |
| file_ptr symoff; |
| /* String table. */ |
| struct bfd_strtab_hash *strtab; |
| /* Header file hash table. */ |
| struct aout_link_includes_table includes; |
| /* A buffer large enough to hold the contents of any section. */ |
| bfd_byte *contents; |
| /* A buffer large enough to hold the relocs of any section. */ |
| void * relocs; |
| /* A buffer large enough to hold the symbol map of any input BFD. */ |
| int *symbol_map; |
| /* A buffer large enough to hold output symbols of any input BFD. */ |
| struct external_nlist *output_syms; |
| }; |
| |
| /* The function to create a new entry in the header file hash table. */ |
| |
| static struct bfd_hash_entry * |
| aout_link_includes_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| struct aout_link_includes_entry *ret = |
| (struct aout_link_includes_entry *) entry; |
| |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (ret == NULL) |
| ret = (struct aout_link_includes_entry *) |
| bfd_hash_allocate (table, sizeof (* ret)); |
| if (ret == NULL) |
| return NULL; |
| |
| /* Call the allocation method of the superclass. */ |
| ret = ((struct aout_link_includes_entry *) |
| bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); |
| if (ret) |
| { |
| /* Set local fields. */ |
| ret->totals = NULL; |
| } |
| |
| return (struct bfd_hash_entry *) ret; |
| } |
| |
| /* Write out a symbol that was not associated with an a.out input |
| object. */ |
| |
| static bfd_boolean |
| aout_link_write_other_symbol (struct bfd_hash_entry *bh, void *data) |
| { |
| struct aout_link_hash_entry *h = (struct aout_link_hash_entry *) bh; |
| struct aout_final_link_info *flaginfo = (struct aout_final_link_info *) data; |
| bfd *output_bfd; |
| int type; |
| bfd_vma val; |
| struct external_nlist outsym; |
| bfd_size_type indx; |
| bfd_size_type amt; |
| |
| if (h->root.type == bfd_link_hash_warning) |
| { |
| h = (struct aout_link_hash_entry *) h->root.u.i.link; |
| if (h->root.type == bfd_link_hash_new) |
| return TRUE; |
| } |
| |
| output_bfd = flaginfo->output_bfd; |
| |
| if (aout_backend_info (output_bfd)->write_dynamic_symbol != NULL) |
| { |
| if (! ((*aout_backend_info (output_bfd)->write_dynamic_symbol) |
| (output_bfd, flaginfo->info, h))) |
| { |
| /* FIXME: No way to handle errors. */ |
| abort (); |
| } |
| } |
| |
| if (h->written) |
| return TRUE; |
| |
| h->written = TRUE; |
| |
| /* An indx of -2 means the symbol must be written. */ |
| if (h->indx != -2 |
| && (flaginfo->info->strip == strip_all |
| || (flaginfo->info->strip == strip_some |
| && bfd_hash_lookup (flaginfo->info->keep_hash, h->root.root.string, |
| FALSE, FALSE) == NULL))) |
| return TRUE; |
| |
| switch (h->root.type) |
| { |
| default: |
| case bfd_link_hash_warning: |
| abort (); |
| /* Avoid variable not initialized warnings. */ |
| return TRUE; |
| case bfd_link_hash_new: |
| /* This can happen for set symbols when sets are not being |
| built. */ |
| return TRUE; |
| case bfd_link_hash_undefined: |
| type = N_UNDF | N_EXT; |
| val = 0; |
| break; |
| case bfd_link_hash_defined: |
| case bfd_link_hash_defweak: |
| { |
| asection *sec; |
| |
| sec = h->root.u.def.section->output_section; |
| BFD_ASSERT (bfd_is_abs_section (sec) |
| || sec->owner == output_bfd); |
| if (sec == obj_textsec (output_bfd)) |
| type = h->root.type == bfd_link_hash_defined ? N_TEXT : N_WEAKT; |
| else if (sec == obj_datasec (output_bfd)) |
| type = h->root.type == bfd_link_hash_defined ? N_DATA : N_WEAKD; |
| else if (sec == obj_bsssec (output_bfd)) |
| type = h->root.type == bfd_link_hash_defined ? N_BSS : N_WEAKB; |
| else |
| type = h->root.type == bfd_link_hash_defined ? N_ABS : N_WEAKA; |
| type |= N_EXT; |
| val = (h->root.u.def.value |
| + sec->vma |
| + h->root.u.def.section->output_offset); |
| } |
| break; |
| case bfd_link_hash_common: |
| type = N_UNDF | N_EXT; |
| val = h->root.u.c.size; |
| break; |
| case bfd_link_hash_undefweak: |
| type = N_WEAKU; |
| val = 0; |
| break; |
| case bfd_link_hash_indirect: |
| /* We ignore these symbols, since the indirected symbol is |
| already in the hash table. */ |
| return TRUE; |
| } |
| |
| H_PUT_8 (output_bfd, type, outsym.e_type); |
| H_PUT_8 (output_bfd, 0, outsym.e_other); |
| H_PUT_16 (output_bfd, 0, outsym.e_desc); |
| indx = add_to_stringtab (output_bfd, flaginfo->strtab, h->root.root.string, |
| FALSE); |
| if (indx == - (bfd_size_type) 1) |
| /* FIXME: No way to handle errors. */ |
| abort (); |
| |
| PUT_WORD (output_bfd, indx, outsym.e_strx); |
| PUT_WORD (output_bfd, val, outsym.e_value); |
| |
| amt = EXTERNAL_NLIST_SIZE; |
| if (bfd_seek (output_bfd, flaginfo->symoff, SEEK_SET) != 0 |
| || bfd_bwrite ((void *) &outsym, amt, output_bfd) != amt) |
| /* FIXME: No way to handle errors. */ |
| abort (); |
| |
| flaginfo->symoff += EXTERNAL_NLIST_SIZE; |
| h->indx = obj_aout_external_sym_count (output_bfd); |
| ++obj_aout_external_sym_count (output_bfd); |
| |
| return TRUE; |
| } |
| |
| /* Handle a link order which is supposed to generate a reloc. */ |
| |
| static bfd_boolean |
| aout_link_reloc_link_order (struct aout_final_link_info *flaginfo, |
| asection *o, |
| struct bfd_link_order *p) |
| { |
| struct bfd_link_order_reloc *pr; |
| int r_index; |
| int r_extern; |
| reloc_howto_type *howto; |
| file_ptr *reloff_ptr = NULL; |
| struct reloc_std_external srel; |
| struct reloc_ext_external erel; |
| void * rel_ptr; |
| bfd_size_type amt; |
| |
| pr = p->u.reloc.p; |
| |
| if (p->type == bfd_section_reloc_link_order) |
| { |
| r_extern = 0; |
| if (bfd_is_abs_section (pr->u.section)) |
| r_index = N_ABS | N_EXT; |
| else |
| { |
| BFD_ASSERT (pr->u.section->owner == flaginfo->output_bfd); |
| r_index = pr->u.section->target_index; |
| } |
| } |
| else |
| { |
| struct aout_link_hash_entry *h; |
| |
| BFD_ASSERT (p->type == bfd_symbol_reloc_link_order); |
| r_extern = 1; |
| h = ((struct aout_link_hash_entry *) |
| bfd_wrapped_link_hash_lookup (flaginfo->output_bfd, flaginfo->info, |
| pr->u.name, FALSE, FALSE, TRUE)); |
| if (h != NULL |
| && h->indx >= 0) |
| r_index = h->indx; |
| else if (h != NULL) |
| { |
| /* We decided to strip this symbol, but it turns out that we |
| can't. Note that we lose the other and desc information |
| here. I don't think that will ever matter for a global |
| symbol. */ |
| h->indx = -2; |
| h->written = FALSE; |
| if (!aout_link_write_other_symbol (&h->root.root, flaginfo)) |
| return FALSE; |
| r_index = h->indx; |
| } |
| else |
| { |
| (*flaginfo->info->callbacks->unattached_reloc) |
| (flaginfo->info, pr->u.name, NULL, NULL, (bfd_vma) 0); |
| r_index = 0; |
| } |
| } |
| |
| howto = bfd_reloc_type_lookup (flaginfo->output_bfd, pr->reloc); |
| if (howto == 0) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| if (o == obj_textsec (flaginfo->output_bfd)) |
| reloff_ptr = &flaginfo->treloff; |
| else if (o == obj_datasec (flaginfo->output_bfd)) |
| reloff_ptr = &flaginfo->dreloff; |
| else |
| abort (); |
| |
| if (obj_reloc_entry_size (flaginfo->output_bfd) == RELOC_STD_SIZE) |
| { |
| #ifdef MY_put_reloc |
| MY_put_reloc (flaginfo->output_bfd, r_extern, r_index, p->offset, howto, |
| &srel); |
| #else |
| { |
| int r_pcrel; |
| int r_baserel; |
| int r_jmptable; |
| int r_relative; |
| int r_length; |
| |
| r_pcrel = (int) howto->pc_relative; |
| r_baserel = (howto->type & 8) != 0; |
| r_jmptable = (howto->type & 16) != 0; |
| r_relative = (howto->type & 32) != 0; |
| r_length = howto->size; |
| |
| PUT_WORD (flaginfo->output_bfd, p->offset, srel.r_address); |
| if (bfd_header_big_endian (flaginfo->output_bfd)) |
| { |
| srel.r_index[0] = r_index >> 16; |
| srel.r_index[1] = r_index >> 8; |
| srel.r_index[2] = r_index; |
| srel.r_type[0] = |
| ((r_extern ? RELOC_STD_BITS_EXTERN_BIG : 0) |
| | (r_pcrel ? RELOC_STD_BITS_PCREL_BIG : 0) |
| | (r_baserel ? RELOC_STD_BITS_BASEREL_BIG : 0) |
| | (r_jmptable ? RELOC_STD_BITS_JMPTABLE_BIG : 0) |
| | (r_relative ? RELOC_STD_BITS_RELATIVE_BIG : 0) |
| | (r_length << RELOC_STD_BITS_LENGTH_SH_BIG)); |
| } |
| else |
| { |
| srel.r_index[2] = r_index >> 16; |
| srel.r_index[1] = r_index >> 8; |
| srel.r_index[0] = r_index; |
| srel.r_type[0] = |
| ((r_extern ? RELOC_STD_BITS_EXTERN_LITTLE : 0) |
| | (r_pcrel ? RELOC_STD_BITS_PCREL_LITTLE : 0) |
| | (r_baserel ? RELOC_STD_BITS_BASEREL_LITTLE : 0) |
| | (r_jmptable ? RELOC_STD_BITS_JMPTABLE_LITTLE : 0) |
| | (r_relative ? RELOC_STD_BITS_RELATIVE_LITTLE : 0) |
| | (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE)); |
| } |
| } |
| #endif |
| rel_ptr = (void *) &srel; |
| |
| /* We have to write the addend into the object file, since |
| standard a.out relocs are in place. It would be more |
| reliable if we had the current contents of the file here, |
| rather than assuming zeroes, but we can't read the file since |
| it was opened using bfd_openw. */ |
| if (pr->addend != 0) |
| { |
| bfd_size_type size; |
| bfd_reloc_status_type r; |
| bfd_byte *buf; |
| bfd_boolean ok; |
| |
| size = bfd_get_reloc_size (howto); |
| buf = (bfd_byte *) bfd_zmalloc (size); |
| if (buf == NULL && size != 0) |
| return FALSE; |
| r = MY_relocate_contents (howto, flaginfo->output_bfd, |
| (bfd_vma) pr->addend, buf); |
| switch (r) |
| { |
| case bfd_reloc_ok: |
| break; |
| default: |
| case bfd_reloc_outofrange: |
| abort (); |
| case bfd_reloc_overflow: |
| (*flaginfo->info->callbacks->reloc_overflow) |
| (flaginfo->info, NULL, |
| (p->type == bfd_section_reloc_link_order |
| ? bfd_section_name (flaginfo->output_bfd, |
| pr->u.section) |
| : pr->u.name), |
| howto->name, pr->addend, NULL, NULL, (bfd_vma) 0); |
| break; |
| } |
| ok = bfd_set_section_contents (flaginfo->output_bfd, o, (void *) buf, |
| (file_ptr) p->offset, size); |
| free (buf); |
| if (! ok) |
| return FALSE; |
| } |
| } |
| else |
| { |
| #ifdef MY_put_ext_reloc |
| MY_put_ext_reloc (flaginfo->output_bfd, r_extern, r_index, p->offset, |
| howto, &erel, pr->addend); |
| #else |
| PUT_WORD (flaginfo->output_bfd, p->offset, erel.r_address); |
| |
| if (bfd_header_big_endian (flaginfo->output_bfd)) |
| { |
| erel.r_index[0] = r_index >> 16; |
| erel.r_index[1] = r_index >> 8; |
| erel.r_index[2] = r_index; |
| erel.r_type[0] = |
| ((r_extern ? RELOC_EXT_BITS_EXTERN_BIG : 0) |
| | (howto->type << RELOC_EXT_BITS_TYPE_SH_BIG)); |
| } |
| else |
| { |
| erel.r_index[2] = r_index >> 16; |
| erel.r_index[1] = r_index >> 8; |
| erel.r_index[0] = r_index; |
| erel.r_type[0] = |
| (r_extern ? RELOC_EXT_BITS_EXTERN_LITTLE : 0) |
| | (howto->type << RELOC_EXT_BITS_TYPE_SH_LITTLE); |
| } |
| |
| PUT_WORD (flaginfo->output_bfd, (bfd_vma) pr->addend, erel.r_addend); |
| #endif /* MY_put_ext_reloc */ |
| |
| rel_ptr = (void *) &erel; |
| } |
| |
| amt = obj_reloc_entry_size (flaginfo->output_bfd); |
| if (bfd_seek (flaginfo->output_bfd, *reloff_ptr, SEEK_SET) != 0 |
| || bfd_bwrite (rel_ptr, amt, flaginfo->output_bfd) != amt) |
| return FALSE; |
| |
| *reloff_ptr += obj_reloc_entry_size (flaginfo->output_bfd); |
| |
| /* Assert that the relocs have not run into the symbols, and that n |
| the text relocs have not run into the data relocs. */ |
| BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (flaginfo->output_bfd) |
| && (reloff_ptr != &flaginfo->treloff |
| || (*reloff_ptr |
| <= obj_datasec (flaginfo->output_bfd)->rel_filepos))); |
| |
| return TRUE; |
| } |
| |
| /* Get the section corresponding to a reloc index. */ |
| |
| static INLINE asection * |
| aout_reloc_index_to_section (bfd *abfd, int indx) |
| { |
| switch (indx & N_TYPE) |
| { |
| case N_TEXT: return obj_textsec (abfd); |
| case N_DATA: return obj_datasec (abfd); |
| case N_BSS: return obj_bsssec (abfd); |
| case N_ABS: |
| case N_UNDF: return bfd_abs_section_ptr; |
| default: abort (); |
| } |
| return NULL; |
| } |
| |
| /* Relocate an a.out section using standard a.out relocs. */ |
| |
| static bfd_boolean |
| aout_link_input_section_std (struct aout_final_link_info *flaginfo, |
| bfd *input_bfd, |
| asection *input_section, |
| struct reloc_std_external *relocs, |
| bfd_size_type rel_size, |
| bfd_byte *contents) |
| { |
| bfd_boolean (*check_dynamic_reloc) |
| (struct bfd_link_info *, bfd *, asection *, |
| struct aout_link_hash_entry *, void *, bfd_byte *, bfd_boolean *, |
| bfd_vma *); |
| bfd *output_bfd; |
| bfd_boolean relocatable; |
| struct external_nlist *syms; |
| char *strings; |
| struct aout_link_hash_entry **sym_hashes; |
| int *symbol_map; |
| bfd_size_type reloc_count; |
| struct reloc_std_external *rel; |
| struct reloc_std_external *rel_end; |
| |
| output_bfd = flaginfo->output_bfd; |
| check_dynamic_reloc = aout_backend_info (output_bfd)->check_dynamic_reloc; |
| |
| BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE); |
| BFD_ASSERT (input_bfd->xvec->header_byteorder |
| == output_bfd->xvec->header_byteorder); |
| |
| relocatable = bfd_link_relocatable (flaginfo->info); |
| syms = obj_aout_external_syms (input_bfd); |
| strings = obj_aout_external_strings (input_bfd); |
| sym_hashes = obj_aout_sym_hashes (input_bfd); |
| symbol_map = flaginfo->symbol_map; |
| |
| reloc_count = rel_size / RELOC_STD_SIZE; |
| rel = relocs; |
| rel_end = rel + reloc_count; |
| for (; rel < rel_end; rel++) |
| { |
| bfd_vma r_addr; |
| int r_index; |
| int r_extern; |
| int r_pcrel; |
| int r_baserel = 0; |
| reloc_howto_type *howto; |
| struct aout_link_hash_entry *h = NULL; |
| bfd_vma relocation; |
| bfd_reloc_status_type r; |
| |
| r_addr = GET_SWORD (input_bfd, rel->r_address); |
| |
| #ifdef MY_reloc_howto |
| howto = MY_reloc_howto (input_bfd, rel, r_index, r_extern, r_pcrel); |
| #else |
| { |
| int r_jmptable; |
| int r_relative; |
| int r_length; |
| unsigned int howto_idx; |
| |
| if (bfd_header_big_endian (input_bfd)) |
| { |
| r_index = (((unsigned int) rel->r_index[0] << 16) |
| | ((unsigned int) rel->r_index[1] << 8) |
| | rel->r_index[2]); |
| r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG)); |
| r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_BIG)); |
| r_baserel = (0 != (rel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG)); |
| r_jmptable= (0 != (rel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG)); |
| r_relative= (0 != (rel->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG)); |
| r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_BIG) |
| >> RELOC_STD_BITS_LENGTH_SH_BIG); |
| } |
| else |
| { |
| r_index = (((unsigned int) rel->r_index[2] << 16) |
| | ((unsigned int) rel->r_index[1] << 8) |
| | rel->r_index[0]); |
| r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE)); |
| r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE)); |
| r_baserel = (0 != (rel->r_type[0] |
| & RELOC_STD_BITS_BASEREL_LITTLE)); |
| r_jmptable= (0 != (rel->r_type[0] |
| & RELOC_STD_BITS_JMPTABLE_LITTLE)); |
| r_relative= (0 != (rel->r_type[0] |
| & RELOC_STD_BITS_RELATIVE_LITTLE)); |
| r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE) |
| >> RELOC_STD_BITS_LENGTH_SH_LITTLE); |
| } |
| |
| howto_idx = (r_length + 4 * r_pcrel + 8 * r_baserel |
| + 16 * r_jmptable + 32 * r_relative); |
| if (howto_idx < TABLE_SIZE (howto_table_std)) |
| howto = howto_table_std + howto_idx; |
| else |
| howto = NULL; |
| } |
| #endif |
| |
| if (howto == NULL) |
| { |
| (*flaginfo->info->callbacks->einfo) |
| (_("%P: %B: unexpected relocation type\n"), input_bfd); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| if (relocatable) |
| { |
| /* We are generating a relocatable output file, and must |
| modify the reloc accordingly. */ |
| if (r_extern) |
| { |
| /* If we know the symbol this relocation is against, |
| convert it into a relocation against a section. This |
| is what the native linker does. */ |
| h = sym_hashes[r_index]; |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak)) |
| { |
| asection *output_section; |
| |
| /* Change the r_extern value. */ |
| if (bfd_header_big_endian (output_bfd)) |
| rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_BIG; |
| else |
| rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_LITTLE; |
| |
| /* Compute a new r_index. */ |
| output_section = h->root.u.def.section->output_section; |
| if (output_section == obj_textsec (output_bfd)) |
| r_index = N_TEXT; |
| else if (output_section == obj_datasec (output_bfd)) |
| r_index = N_DATA; |
| else if (output_section == obj_bsssec (output_bfd)) |
| r_index = N_BSS; |
| else |
| r_index = N_ABS; |
| |
| /* Add the symbol value and the section VMA to the |
| addend stored in the contents. */ |
| relocation = (h->root.u.def.value |
| + output_section->vma |
| + h->root.u.def.section->output_offset); |
| } |
| else |
| { |
| /* We must change r_index according to the symbol |
| map. */ |
| r_index = symbol_map[r_index]; |
| |
| if (r_index == -1) |
| { |
| if (h != NULL) |
| { |
| /* We decided to strip this symbol, but it |
| turns out that we can't. Note that we |
| lose the other and desc information here. |
| I don't think that will ever matter for a |
| global symbol. */ |
| if (h->indx < 0) |
| { |
| h->indx = -2; |
| h->written = FALSE; |
| if (!aout_link_write_other_symbol (&h->root.root, |
| flaginfo)) |
| return FALSE; |
| } |
| r_index = h->indx; |
| } |
| else |
| { |
| const char *name; |
| |
| name = strings + GET_WORD (input_bfd, |
| syms[r_index].e_strx); |
| (*flaginfo->info->callbacks->unattached_reloc) |
| (flaginfo->info, name, |
| input_bfd, input_section, r_addr); |
| r_index = 0; |
| } |
| } |
| |
| relocation = 0; |
| } |
| |
| /* Write out the new r_index value. */ |
| if (bfd_header_big_endian (output_bfd)) |
| { |
| rel->r_index[0] = r_index >> 16; |
| rel->r_index[1] = r_index >> 8; |
| rel->r_index[2] = r_index; |
| } |
| else |
| { |
| rel->r_index[2] = r_index >> 16; |
| rel->r_index[1] = r_index >> 8; |
| rel->r_index[0] = r_index; |
| } |
| } |
| else |
| { |
| asection *section; |
| |
| /* This is a relocation against a section. We must |
| adjust by the amount that the section moved. */ |
| section = aout_reloc_index_to_section (input_bfd, r_index); |
| relocation = (section->output_section->vma |
| + section->output_offset |
| - section->vma); |
| } |
| |
| /* Change the address of the relocation. */ |
| PUT_WORD (output_bfd, |
| r_addr + input_section->output_offset, |
| rel->r_address); |
| |
| /* Adjust a PC relative relocation by removing the reference |
| to the original address in the section and including the |
| reference to the new address. */ |
| if (r_pcrel) |
| relocation -= (input_section->output_section->vma |
| + input_section->output_offset |
| - input_section->vma); |
| |
| #ifdef MY_relocatable_reloc |
| MY_relocatable_reloc (howto, output_bfd, rel, relocation, r_addr); |
| #endif |
| |
| if (relocation == 0) |
| r = bfd_reloc_ok; |
| else |
| r = MY_relocate_contents (howto, |
| input_bfd, relocation, |
| contents + r_addr); |
| } |
| else |
| { |
| bfd_boolean hundef; |
| |
| /* We are generating an executable, and must do a full |
| relocation. */ |
| hundef = FALSE; |
| |
| if (r_extern) |
| { |
| h = sym_hashes[r_index]; |
| |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak)) |
| { |
| relocation = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| } |
| else if (h != NULL |
| && h->root.type == bfd_link_hash_undefweak) |
| relocation = 0; |
| else |
| { |
| hundef = TRUE; |
| relocation = 0; |
| } |
| } |
| else |
| { |
| asection *section; |
| |
| section = aout_reloc_index_to_section (input_bfd, r_index); |
| relocation = (section->output_section->vma |
| + section->output_offset |
| - section->vma); |
| if (r_pcrel) |
| relocation += input_section->vma; |
| } |
| |
| if (check_dynamic_reloc != NULL) |
| { |
| bfd_boolean skip; |
| |
| if (! ((*check_dynamic_reloc) |
| (flaginfo->info, input_bfd, input_section, h, |
| (void *) rel, contents, &skip, &relocation))) |
| return FALSE; |
| if (skip) |
| continue; |
| } |
| |
| /* Now warn if a global symbol is undefined. We could not |
| do this earlier, because check_dynamic_reloc might want |
| to skip this reloc. */ |
| if (hundef && ! bfd_link_pic (flaginfo->info) && ! r_baserel) |
| { |
| const char *name; |
| |
| if (h != NULL) |
| name = h->root.root.string; |
| else |
| name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); |
| (*flaginfo->info->callbacks->undefined_symbol) |
| (flaginfo->info, name, input_bfd, input_section, r_addr, TRUE); |
| } |
| |
| r = MY_final_link_relocate (howto, |
| input_bfd, input_section, |
| contents, r_addr, relocation, |
| (bfd_vma) 0); |
| } |
| |
| if (r != bfd_reloc_ok) |
| { |
| switch (r) |
| { |
| default: |
| case bfd_reloc_outofrange: |
| abort (); |
| case bfd_reloc_overflow: |
| { |
| const char *name; |
| |
| if (h != NULL) |
| name = NULL; |
| else if (r_extern) |
| name = strings + GET_WORD (input_bfd, |
| syms[r_index].e_strx); |
| else |
| { |
| asection *s; |
| |
| s = aout_reloc_index_to_section (input_bfd, r_index); |
| name = bfd_section_name (input_bfd, s); |
| } |
| (*flaginfo->info->callbacks->reloc_overflow) |
| (flaginfo->info, (h ? &h->root : NULL), name, howto->name, |
| (bfd_vma) 0, input_bfd, input_section, r_addr); |
| } |
| break; |
| } |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Relocate an a.out section using extended a.out relocs. */ |
| |
| static bfd_boolean |
| aout_link_input_section_ext (struct aout_final_link_info *flaginfo, |
| bfd *input_bfd, |
| asection *input_section, |
| struct reloc_ext_external *relocs, |
| bfd_size_type rel_size, |
| bfd_byte *contents) |
| { |
| bfd_boolean (*check_dynamic_reloc) |
| (struct bfd_link_info *, bfd *, asection *, |
| struct aout_link_hash_entry *, void *, bfd_byte *, bfd_boolean *, |
| bfd_vma *); |
| bfd *output_bfd; |
| bfd_boolean relocatable; |
| struct external_nlist *syms; |
| char *strings; |
| struct aout_link_hash_entry **sym_hashes; |
| int *symbol_map; |
| bfd_size_type reloc_count; |
| struct reloc_ext_external *rel; |
| struct reloc_ext_external *rel_end; |
| |
| output_bfd = flaginfo->output_bfd; |
| check_dynamic_reloc = aout_backend_info (output_bfd)->check_dynamic_reloc; |
| |
| BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_EXT_SIZE); |
| BFD_ASSERT (input_bfd->xvec->header_byteorder |
| == output_bfd->xvec->header_byteorder); |
| |
| relocatable = bfd_link_relocatable (flaginfo->info); |
| syms = obj_aout_external_syms (input_bfd); |
| strings = obj_aout_external_strings (input_bfd); |
| sym_hashes = obj_aout_sym_hashes (input_bfd); |
| symbol_map = flaginfo->symbol_map; |
| |
| reloc_count = rel_size / RELOC_EXT_SIZE; |
| rel = relocs; |
| rel_end = rel + reloc_count; |
| for (; rel < rel_end; rel++) |
| { |
| bfd_vma r_addr; |
| int r_index; |
| int r_extern; |
| unsigned int r_type; |
| bfd_vma r_addend; |
| struct aout_link_hash_entry *h = NULL; |
| asection *r_section = NULL; |
| bfd_vma relocation; |
| |
| r_addr = GET_SWORD (input_bfd, rel->r_address); |
| |
| if (bfd_header_big_endian (input_bfd)) |
| { |
| r_index = (((unsigned int) rel->r_index[0] << 16) |
| | ((unsigned int) rel->r_index[1] << 8) |
| | rel->r_index[2]); |
| r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG)); |
| r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) |
| >> RELOC_EXT_BITS_TYPE_SH_BIG); |
| } |
| else |
| { |
| r_index = (((unsigned int) rel->r_index[2] << 16) |
| | ((unsigned int) rel->r_index[1] << 8) |
| | rel->r_index[0]); |
| r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE)); |
| r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) |
| >> RELOC_EXT_BITS_TYPE_SH_LITTLE); |
| } |
| |
| r_addend = GET_SWORD (input_bfd, rel->r_addend); |
| |
| if (r_type >= TABLE_SIZE (howto_table_ext)) |
| { |
| (*flaginfo->info->callbacks->einfo) |
| (_("%P: %B: unexpected relocation type\n"), input_bfd); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| if (relocatable) |
| { |
| /* We are generating a relocatable output file, and must |
| modify the reloc accordingly. */ |
| if (r_extern |
| || r_type == (unsigned int) RELOC_BASE10 |
| || r_type == (unsigned int) RELOC_BASE13 |
| || r_type == (unsigned int) RELOC_BASE22) |
| { |
| /* If we know the symbol this relocation is against, |
| convert it into a relocation against a section. This |
| is what the native linker does. */ |
| if (r_type == (unsigned int) RELOC_BASE10 |
| || r_type == (unsigned int) RELOC_BASE13 |
| || r_type == (unsigned int) RELOC_BASE22) |
| h = NULL; |
| else |
| h = sym_hashes[r_index]; |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak)) |
| { |
| asection *output_section; |
| |
| /* Change the r_extern value. */ |
| if (bfd_header_big_endian (output_bfd)) |
| rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_BIG; |
| else |
| rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_LITTLE; |
| |
| /* Compute a new r_index. */ |
| output_section = h->root.u.def.section->output_section; |
| if (output_section == obj_textsec (output_bfd)) |
| r_index = N_TEXT; |
| else if (output_section == obj_datasec (output_bfd)) |
| r_index = N_DATA; |
| else if (output_section == obj_bsssec (output_bfd)) |
| r_index = N_BSS; |
| else |
| r_index = N_ABS; |
| |
| /* Add the symbol value and the section VMA to the |
| addend. */ |
| relocation = (h->root.u.def.value |
| + output_section->vma |
| + h->root.u.def.section->output_offset); |
| |
| /* Now RELOCATION is the VMA of the final |
| destination. If this is a PC relative reloc, |
| then ADDEND is the negative of the source VMA. |
| We want to set ADDEND to the difference between |
| the destination VMA and the source VMA, which |
| means we must adjust RELOCATION by the change in |
| the source VMA. This is done below. */ |
| } |
| else |
| { |
| /* We must change r_index according to the symbol |
| map. */ |
| r_index = symbol_map[r_index]; |
| |
| if (r_index == -1) |
| { |
| if (h != NULL) |
| { |
| /* We decided to strip this symbol, but it |
| turns out that we can't. Note that we |
| lose the other and desc information here. |
| I don't think that will ever matter for a |
| global symbol. */ |
| if (h->indx < 0) |
| { |
| h->indx = -2; |
| h->written = FALSE; |
| if (!aout_link_write_other_symbol (&h->root.root, |
| flaginfo)) |
| return FALSE; |
| } |
| r_index = h->indx; |
| } |
| else |
| { |
| const char *name; |
| |
| name = strings + GET_WORD (input_bfd, |
| syms[r_index].e_strx); |
| (*flaginfo->info->callbacks->unattached_reloc) |
| (flaginfo->info, name, |
| input_bfd, input_section, r_addr); |
| r_index = 0; |
| } |
| } |
| |
| relocation = 0; |
| |
| /* If this is a PC relative reloc, then the addend |
| is the negative of the source VMA. We must |
| adjust it by the change in the source VMA. This |
| is done below. */ |
| } |
| |
| /* Write out the new r_index value. */ |
| if (bfd_header_big_endian (output_bfd)) |
| { |
| rel->r_index[0] = r_index >> 16; |
| rel->r_index[1] = r_index >> 8; |
| rel->r_index[2] = r_index; |
| } |
| else |
| { |
| rel->r_index[2] = r_index >> 16; |
| rel->r_index[1] = r_index >> 8; |
| rel->r_index[0] = r_index; |
| } |
| } |
| else |
| { |
| /* This is a relocation against a section. We must |
| adjust by the amount that the section moved. */ |
| r_section = aout_reloc_index_to_section (input_bfd, r_index); |
| relocation = (r_section->output_section->vma |
| + r_section->output_offset |
| - r_section->vma); |
| |
| /* If this is a PC relative reloc, then the addend is |
| the difference in VMA between the destination and the |
| source. We have just adjusted for the change in VMA |
| of the destination, so we must also adjust by the |
| change in VMA of the source. This is done below. */ |
| } |
| |
| /* As described above, we must always adjust a PC relative |
| reloc by the change in VMA of the source. However, if |
| pcrel_offset is set, then the addend does not include the |
| location within the section, in which case we don't need |
| to adjust anything. */ |
| if (howto_table_ext[r_type].pc_relative |
| && ! howto_table_ext[r_type].pcrel_offset) |
| relocation -= (input_section->output_section->vma |
| + input_section->output_offset |
| - input_section->vma); |
| |
| /* Change the addend if necessary. */ |
| if (relocation != 0) |
| PUT_WORD (output_bfd, r_addend + relocation, rel->r_addend); |
| |
| /* Change the address of the relocation. */ |
| PUT_WORD (output_bfd, |
| r_addr + input_section->output_offset, |
| rel->r_address); |
| } |
| else |
| { |
| bfd_boolean hundef; |
| bfd_reloc_status_type r; |
| |
| /* We are generating an executable, and must do a full |
| relocation. */ |
| hundef = FALSE; |
| |
| if (r_extern) |
| { |
| h = sym_hashes[r_index]; |
| |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak)) |
| { |
| relocation = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| } |
| else if (h != NULL |
| && h->root.type == bfd_link_hash_undefweak) |
| relocation = 0; |
| else |
| { |
| hundef = TRUE; |
| relocation = 0; |
| } |
| } |
| else if (r_type == (unsigned int) RELOC_BASE10 |
| || r_type == (unsigned int) RELOC_BASE13 |
| || r_type == (unsigned int) RELOC_BASE22) |
| { |
| struct external_nlist *sym; |
| int type; |
| |
| /* For base relative relocs, r_index is always an index |
| into the symbol table, even if r_extern is 0. */ |
| sym = syms + r_index; |
| type = H_GET_8 (input_bfd, sym->e_type); |
| if ((type & N_TYPE) == N_TEXT |
| || type == N_WEAKT) |
| r_section = obj_textsec (input_bfd); |
| else if ((type & N_TYPE) == N_DATA |
| || type == N_WEAKD) |
| r_section = obj_datasec (input_bfd); |
| else if ((type & N_TYPE) == N_BSS |
| || type == N_WEAKB) |
| r_section = obj_bsssec (input_bfd); |
| else if ((type & N_TYPE) == N_ABS |
| || type == N_WEAKA) |
| r_section = bfd_abs_section_ptr; |
| else |
| abort (); |
| relocation = (r_section->output_section->vma |
| + r_section->output_offset |
| + (GET_WORD (input_bfd, sym->e_value) |
| - r_section->vma)); |
| } |
| else |
| { |
| r_section = aout_reloc_index_to_section (input_bfd, r_index); |
| |
| /* If this is a PC relative reloc, then R_ADDEND is the |
| difference between the two vmas, or |
| old_dest_sec + old_dest_off - (old_src_sec + old_src_off) |
| where |
| old_dest_sec == section->vma |
| and |
| old_src_sec == input_section->vma |
| and |
| old_src_off == r_addr |
| |
| _bfd_final_link_relocate expects RELOCATION + |
| R_ADDEND to be the VMA of the destination minus |
| r_addr (the minus r_addr is because this relocation |
| is not pcrel_offset, which is a bit confusing and |
| should, perhaps, be changed), or |
| new_dest_sec |
| where |
| new_dest_sec == output_section->vma + output_offset |
| We arrange for this to happen by setting RELOCATION to |
| new_dest_sec + old_src_sec - old_dest_sec |
| |
| If this is not a PC relative reloc, then R_ADDEND is |
| simply the VMA of the destination, so we set |
| RELOCATION to the change in the destination VMA, or |
| new_dest_sec - old_dest_sec |
| */ |
| relocation = (r_section->output_section->vma |
| + r_section->output_offset |
| - r_section->vma); |
| if (howto_table_ext[r_type].pc_relative) |
| relocation += input_section->vma; |
| } |
| |
| if (check_dynamic_reloc != NULL) |
| { |
| bfd_boolean skip; |
| |
| if (! ((*check_dynamic_reloc) |
| (flaginfo->info, input_bfd, input_section, h, |
| (void *) rel, contents, &skip, &relocation))) |
| return FALSE; |
| if (skip) |
| continue; |
| } |
| |
| /* Now warn if a global symbol is undefined. We could not |
| do this earlier, because check_dynamic_reloc might want |
| to skip this reloc. */ |
| if (hundef |
| && ! bfd_link_pic (flaginfo->info) |
| && r_type != (unsigned int) RELOC_BASE10 |
| && r_type != (unsigned int) RELOC_BASE13 |
| && r_type != (unsigned int) RELOC_BASE22) |
| { |
| const char *name; |
| |
| if (h != NULL) |
| name = h->root.root.string; |
| else |
| name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); |
| (*flaginfo->info->callbacks->undefined_symbol) |
| (flaginfo->info, name, input_bfd, input_section, r_addr, TRUE); |
| } |
| |
| if (r_type != (unsigned int) RELOC_SPARC_REV32) |
| r = MY_final_link_relocate (howto_table_ext + r_type, |
| input_bfd, input_section, |
| contents, r_addr, relocation, |
| r_addend); |
| else |
| { |
| bfd_vma x; |
| |
| x = bfd_get_32 (input_bfd, contents + r_addr); |
| x = x + relocation + r_addend; |
| bfd_putl32 (/*input_bfd,*/ x, contents + r_addr); |
| r = bfd_reloc_ok; |
| } |
| |
| if (r != bfd_reloc_ok) |
| { |
| switch (r) |
| { |
| default: |
| case bfd_reloc_outofrange: |
| abort (); |
| case bfd_reloc_overflow: |
| { |
| const char *name; |
| |
| if (h != NULL) |
| name = NULL; |
| else if (r_extern |
| || r_type == (unsigned int) RELOC_BASE10 |
| || r_type == (unsigned int) RELOC_BASE13 |
| || r_type == (unsigned int) RELOC_BASE22) |
| name = strings + GET_WORD (input_bfd, |
| syms[r_index].e_strx); |
| else |
| { |
| asection *s; |
| |
| s = aout_reloc_index_to_section (input_bfd, r_index); |
| name = bfd_section_name (input_bfd, s); |
| } |
| (*flaginfo->info->callbacks->reloc_overflow) |
| (flaginfo->info, (h ? &h->root : NULL), name, |
| howto_table_ext[r_type].name, |
| r_addend, input_bfd, input_section, r_addr); |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Link an a.out section into the output file. */ |
| |
| static bfd_boolean |
| aout_link_input_section (struct aout_final_link_info *flaginfo, |
| bfd *input_bfd, |
| asection *input_section, |
| file_ptr *reloff_ptr, |
| bfd_size_type rel_size) |
| { |
| bfd_size_type input_size; |
| void * relocs; |
| |
| /* Get the section contents. */ |
| input_size = input_section->size; |
| if (! bfd_get_section_contents (input_bfd, input_section, |
| (void *) flaginfo->contents, |
| (file_ptr) 0, input_size)) |
| return FALSE; |
| |
| /* Read in the relocs if we haven't already done it. */ |
| if (aout_section_data (input_section) != NULL |
| && aout_section_data (input_section)->relocs != NULL) |
| relocs = aout_section_data (input_section)->relocs; |
| else |
| { |
| relocs = flaginfo->relocs; |
| if (rel_size > 0) |
| { |
| if (bfd_seek (input_bfd, input_section->rel_filepos, SEEK_SET) != 0 |
| || bfd_bread (relocs, rel_size, input_bfd) != rel_size) |
| return FALSE; |
| } |
| } |
| |
| /* Relocate the section contents. */ |
| if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE) |
| { |
| if (! aout_link_input_section_std (flaginfo, input_bfd, input_section, |
| (struct reloc_std_external *) relocs, |
| rel_size, flaginfo->contents)) |
| return FALSE; |
| } |
| else |
| { |
| if (! aout_link_input_section_ext (flaginfo, input_bfd, input_section, |
| (struct reloc_ext_external *) relocs, |
| rel_size, flaginfo->contents)) |
| return FALSE; |
| } |
| |
| /* Write out the section contents. */ |
| if (! bfd_set_section_contents (flaginfo->output_bfd, |
| input_section->output_section, |
| (void *) flaginfo->contents, |
| (file_ptr) input_section->output_offset, |
| input_size)) |
| return FALSE; |
| |
| /* If we are producing relocatable output, the relocs were |
| modified, and we now write them out. */ |
| if (bfd_link_relocatable (flaginfo->info) && rel_size > 0) |
| { |
| if (bfd_seek (flaginfo->output_bfd, *reloff_ptr, SEEK_SET) != 0) |
| return FALSE; |
| if (bfd_bwrite (relocs, rel_size, flaginfo->output_bfd) != rel_size) |
| return FALSE; |
| *reloff_ptr += rel_size; |
| |
| /* Assert that the relocs have not run into the symbols, and |
| that if these are the text relocs they have not run into the |
| data relocs. */ |
| BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (flaginfo->output_bfd) |
| && (reloff_ptr != &flaginfo->treloff |
| || (*reloff_ptr |
| <= obj_datasec (flaginfo->output_bfd)->rel_filepos))); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Adjust and write out the symbols for an a.out file. Set the new |
| symbol indices into a symbol_map. */ |
| |
| static bfd_boolean |
| aout_link_write_symbols (struct aout_final_link_info *flaginfo, bfd *input_bfd) |
| { |
| bfd *output_bfd; |
| bfd_size_type sym_count; |
| char *strings; |
| enum bfd_link_strip strip; |
| enum bfd_link_discard discard; |
| struct external_nlist *outsym; |
| bfd_size_type strtab_index; |
| struct external_nlist *sym; |
| struct external_nlist *sym_end; |
| struct aout_link_hash_entry **sym_hash; |
| int *symbol_map; |
| bfd_boolean pass; |
| bfd_boolean skip_next; |
| |
| output_bfd = flaginfo->output_bfd; |
| sym_count = obj_aout_external_sym_count (input_bfd); |
| strings = obj_aout_external_strings (input_bfd); |
| strip = flaginfo->info->strip; |
| discard = flaginfo->info->discard; |
| outsym = flaginfo->output_syms; |
| |
| /* First write out a symbol for this object file, unless we are |
| discarding such symbols. */ |
| if (strip != strip_all |
| && (strip != strip_some |
| || bfd_hash_lookup (flaginfo->info->keep_hash, input_bfd->filename, |
| FALSE, FALSE) != NULL) |
| && discard != discard_all) |
| { |
| H_PUT_8 (output_bfd, N_TEXT, outsym->e_type); |
| H_PUT_8 (output_bfd, 0, outsym->e_other); |
| H_PUT_16 (output_bfd, 0, outsym->e_desc); |
| strtab_index = add_to_stringtab (output_bfd, flaginfo->strtab, |
| input_bfd->filename, FALSE); |
| if (strtab_index == (bfd_size_type) -1) |
| return FALSE; |
| PUT_WORD (output_bfd, strtab_index, outsym->e_strx); |
| PUT_WORD (output_bfd, |
| (bfd_get_section_vma (output_bfd, |
| obj_textsec (input_bfd)->output_section) |
| + obj_textsec (input_bfd)->output_offset), |
| outsym->e_value); |
| ++obj_aout_external_sym_count (output_bfd); |
| ++outsym; |
| } |
| |
| pass = FALSE; |
| skip_next = FALSE; |
| sym = obj_aout_external_syms (input_bfd); |
| sym_end = sym + sym_count; |
| sym_hash = obj_aout_sym_hashes (input_bfd); |
| symbol_map = flaginfo->symbol_map; |
| memset (symbol_map, 0, (size_t) sym_count * sizeof *symbol_map); |
| for (; sym < sym_end; sym++, sym_hash++, symbol_map++) |
| { |
| const char *name; |
| int type; |
| struct aout_link_hash_entry *h; |
| bfd_boolean skip; |
| asection *symsec; |
| bfd_vma val = 0; |
| bfd_boolean copy; |
| |
| /* We set *symbol_map to 0 above for all symbols. If it has |
| already been set to -1 for this symbol, it means that we are |
| discarding it because it appears in a duplicate header file. |
| See the N_BINCL code below. */ |
| if (*symbol_map == -1) |
| continue; |
| |
| /* Initialize *symbol_map to -1, which means that the symbol was |
| not copied into the output file. We will change it later if |
| we do copy the symbol over. */ |
| *symbol_map = -1; |
| |
| type = H_GET_8 (input_bfd, sym->e_type); |
| name = strings + GET_WORD (input_bfd, sym->e_strx); |
| |
| h = NULL; |
| |
| if (pass) |
| { |
| /* Pass this symbol through. It is the target of an |
| indirect or warning symbol. */ |
| val = GET_WORD (input_bfd, sym->e_value); |
| pass = FALSE; |
| } |
| else if (skip_next) |
| { |
| /* Skip this symbol, which is the target of an indirect |
| symbol that we have changed to no longer be an indirect |
| symbol. */ |
| skip_next = FALSE; |
| continue; |
| } |
| else |
| { |
| struct aout_link_hash_entry *hresolve; |
| |
| /* We have saved the hash table entry for this symbol, if |
| there is one. Note that we could just look it up again |
| in the hash table, provided we first check that it is an |
| external symbol. */ |
| h = *sym_hash; |
| |
| /* Use the name from the hash table, in case the symbol was |
| wrapped. */ |
| if (h != NULL |
| && h->root.type != bfd_link_hash_warning) |
| name = h->root.root.string; |
| |
| /* If this is an indirect or warning symbol, then change |
| hresolve to the base symbol. We also change *sym_hash so |
| that the relocation routines relocate against the real |
| symbol. */ |
| hresolve = h; |
| if (h != (struct aout_link_hash_entry *) NULL |
| && (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning)) |
| { |
| hresolve = (struct aout_link_hash_entry *) h->root.u.i.link; |
| while (hresolve->root.type == bfd_link_hash_indirect |
| || hresolve->root.type == bfd_link_hash_warning) |
| hresolve = ((struct aout_link_hash_entry *) |
| hresolve->root.u.i.link); |
| *sym_hash = hresolve; |
| } |
| |
| /* If the symbol has already been written out, skip it. */ |
| if (h != NULL |
| && h->written) |
| { |
| if ((type & N_TYPE) == N_INDR |
| || type == N_WARNING) |
| skip_next = TRUE; |
| *symbol_map = h->indx; |
| continue; |
| } |
| |
| /* See if we are stripping this symbol. */ |
| skip = FALSE; |
| switch (strip) |
| { |
| case strip_none: |
| break; |
| case strip_debugger: |
| if ((type & N_STAB) != 0) |
| skip = TRUE; |
| break; |
| case strip_some: |
| if (bfd_hash_lookup (flaginfo->info->keep_hash, name, FALSE, FALSE) |
| == NULL) |
| skip = TRUE; |
| break; |
| case strip_all: |
| skip = TRUE; |
| break; |
| } |
| if (skip) |
| { |
| if (h != NULL) |
| h->written = TRUE; |
| continue; |
| } |
| |
| /* Get the value of the symbol. */ |
| if ((type & N_TYPE) == N_TEXT |
| || type == N_WEAKT) |
| symsec = obj_textsec (input_bfd); |
| else if ((type & N_TYPE) == N_DATA |
| || type == N_WEAKD) |
| symsec = obj_datasec (input_bfd); |
| else if ((type & N_TYPE) == N_BSS |
| || type == N_WEAKB) |
| symsec = obj_bsssec (input_bfd); |
| else if ((type & N_TYPE) == N_ABS |
| || type == N_WEAKA) |
| symsec = bfd_abs_section_ptr; |
| else if (((type & N_TYPE) == N_INDR |
| && (hresolve == NULL |
| || (hresolve->root.type != bfd_link_hash_defined |
| && hresolve->root.type != bfd_link_hash_defweak |
| && hresolve->root.type != bfd_link_hash_common))) |
| || type == N_WARNING) |
| { |
| /* Pass the next symbol through unchanged. The |
| condition above for indirect symbols is so that if |
| the indirect symbol was defined, we output it with |
| the correct definition so the debugger will |
| understand it. */ |
| pass = TRUE; |
| val = GET_WORD (input_bfd, sym->e_value); |
| symsec = NULL; |
| } |
| else if ((type & N_STAB) != 0) |
| { |
| val = GET_WORD (input_bfd, sym->e_value); |
| symsec = NULL; |
| } |
| else |
| { |
| /* If we get here with an indirect symbol, it means that |
| we are outputting it with a real definition. In such |
| a case we do not want to output the next symbol, |
| which is the target of the indirection. */ |
| if ((type & N_TYPE) == N_INDR) |
| skip_next = TRUE; |
| |
| symsec = NULL; |
| |
| /* We need to get the value from the hash table. We use |
| hresolve so that if we have defined an indirect |
| symbol we output the final definition. */ |
| if (h == NULL) |
| { |
| switch (type & N_TYPE) |
| { |
| case N_SETT: |
| symsec = obj_textsec (input_bfd); |
| break; |
| case N_SETD: |
| symsec = obj_datasec (input_bfd); |
| break; |
| case N_SETB: |
| symsec = obj_bsssec (input_bfd); |
| break; |
| case N_SETA: |
| symsec = bfd_abs_section_ptr; |
| break; |
| default: |
| val = 0; |
| break; |
| } |
| } |
| else if (hresolve->root.type == bfd_link_hash_defined |
| || hresolve->root.type == bfd_link_hash_defweak) |
| { |
| asection *input_section; |
| asection *output_section; |
| |
| /* This case usually means a common symbol which was |
| turned into a defined symbol. */ |
| input_section = hresolve->root.u.def.section; |
| output_section = input_section->output_section; |
| BFD_ASSERT (bfd_is_abs_section (output_section) |
| || output_section->owner == output_bfd); |
| val = (hresolve->root.u.def.value |
| + bfd_get_section_vma (output_bfd, output_section) |
| + input_section->output_offset); |
| |
| /* Get the correct type based on the section. If |
| this is a constructed set, force it to be |
| globally visible. */ |
| if (type == N_SETT |
| || type == N_SETD |
| || type == N_SETB |
| || type == N_SETA) |
| type |= N_EXT; |
| |
| type &=~ N_TYPE; |
| |
| if (output_section == obj_textsec (output_bfd)) |
| type |= (hresolve->root.type == bfd_link_hash_defined |
| ? N_TEXT |
| : N_WEAKT); |
| else if (output_section == obj_datasec (output_bfd)) |
| type |= (hresolve->root.type == bfd_link_hash_defined |
| ? N_DATA |
| : N_WEAKD); |
| else if (output_section == obj_bsssec (output_bfd)) |
| type |= (hresolve->root.type == bfd_link_hash_defined |
| ? N_BSS |
| : N_WEAKB); |
| else |
| type |= (hresolve->root.type == bfd_link_hash_defined |
| ? N_ABS |
| : N_WEAKA); |
| } |
| else if (hresolve->root.type == bfd_link_hash_common) |
| val = hresolve->root.u.c.size; |
| else if (hresolve->root.type == bfd_link_hash_undefweak) |
| { |
| val = 0; |
| type = N_WEAKU; |
| } |
| else |
| val = 0; |
| } |
| if (symsec != NULL) |
| val = (symsec->output_section->vma |
| + symsec->output_offset |
| + (GET_WORD (input_bfd, sym->e_value) |
| - symsec->vma)); |
| |
| /* If this is a global symbol set the written flag, and if |
| it is a local symbol see if we should discard it. */ |
| if (h != NULL) |
| { |
| h->written = TRUE; |
| h->indx = obj_aout_external_sym_count (output_bfd); |
| } |
| else if ((type & N_TYPE) != N_SETT |
| && (type & N_TYPE) != N_SETD |
| && (type & N_TYPE) != N_SETB |
| && (type & N_TYPE) != N_SETA) |
| { |
| switch (discard) |
| { |
| case discard_none: |
| case discard_sec_merge: |
| break; |
| case discard_l: |
| if ((type & N_STAB) == 0 |
| && bfd_is_local_label_name (input_bfd, name)) |
| skip = TRUE; |
| break; |
| case discard_all: |
| skip = TRUE; |
| break; |
| } |
| if (skip) |
| { |
| pass = FALSE; |
| continue; |
| } |
| } |
| |
| /* An N_BINCL symbol indicates the start of the stabs |
| entries for a header file. We need to scan ahead to the |
| next N_EINCL symbol, ignoring nesting, adding up all the |
| characters in the symbol names, not including the file |
| numbers in types (the first number after an open |
| parenthesis). */ |
| if (type == (int) N_BINCL) |
| { |
| struct external_nlist *incl_sym; |
| int nest; |
| struct aout_link_includes_entry *incl_entry; |
| struct aout_link_includes_totals *t; |
| |
| val = 0; |
| nest = 0; |
| for (incl_sym = sym + 1; incl_sym < sym_end; incl_sym++) |
| { |
| int incl_type; |
| |
| incl_type = H_GET_8 (input_bfd, incl_sym->e_type); |
| if (incl_type == (int) N_EINCL) |
| { |
| if (nest == 0) |
| break; |
| --nest; |
| } |
| else if (incl_type == (int) N_BINCL) |
| ++nest; |
| else if (nest == 0) |
| { |
| const char *s; |
| |
| s = strings + GET_WORD (input_bfd, incl_sym->e_strx); |
| for (; *s != '\0'; s++) |
| { |
| val += *s; |
| if (*s == '(') |
| { |
| /* Skip the file number. */ |
| ++s; |
| while (ISDIGIT (*s)) |
| ++s; |
| --s; |
| } |
| } |
| } |
| } |
| |
| /* If we have already included a header file with the |
| same value, then replace this one with an N_EXCL |
| symbol. */ |
| copy = (bfd_boolean) (! flaginfo->info->keep_memory); |
| incl_entry = aout_link_includes_lookup (&flaginfo->includes, |
| name, TRUE, copy); |
| if (incl_entry == NULL) |
| return FALSE; |
| for (t = incl_entry->totals; t != NULL; t = t->next) |
| if (t->total == val) |
| break; |
| if (t == NULL) |
| { |
| /* This is the first time we have seen this header |
| file with this set of stabs strings. */ |
| t = (struct aout_link_includes_totals *) |
| bfd_hash_allocate (&flaginfo->includes.root, |
| sizeof *t); |
| if (t == NULL) |
| return FALSE; |
| t->total = val; |
| t->next = incl_entry->totals; |
| incl_entry->totals = t; |
| } |
| else |
| { |
| int *incl_map; |
| |
| /* This is a duplicate header file. We must change |
| it to be an N_EXCL entry, and mark all the |
| included symbols to prevent outputting them. */ |
| type = (int) N_EXCL; |
| |
| nest = 0; |
| for (incl_sym = sym + 1, incl_map = symbol_map + 1; |
| incl_sym < sym_end; |
| incl_sym++, incl_map++) |
| { |
| int incl_type; |
| |
| incl_type = H_GET_8 (input_bfd, incl_sym->e_type); |
| if (incl_type == (int) N_EINCL) |
| { |
| if (nest == 0) |
| { |
| *incl_map = -1; |
| break; |
| } |
| --nest; |
| } |
| else if (incl_type == (int) N_BINCL) |
| ++nest; |
| else if (nest == 0) |
| *incl_map = -1; |
| } |
| } |
| } |
| } |
| |
| /* Copy this symbol into the list of symbols we are going to |
| write out. */ |
| H_PUT_8 (output_bfd, type, outsym->e_type); |
| H_PUT_8 (output_bfd, H_GET_8 (input_bfd, sym->e_other), outsym->e_other); |
| H_PUT_16 (output_bfd, H_GET_16 (input_bfd, sym->e_desc), outsym->e_desc); |
| copy = FALSE; |
| if (! flaginfo->info->keep_memory) |
| { |
| /* name points into a string table which we are going to |
| free. If there is a hash table entry, use that string. |
| Otherwise, copy name into memory. */ |
| if (h != NULL) |
| name = h->root.root.string; |
| else |
| copy = TRUE; |
| } |
| strtab_index = add_to_stringtab (output_bfd, flaginfo->strtab, |
| name, copy); |
| if (strtab_index == (bfd_size_type) -1) |
| return FALSE; |
| PUT_WORD (output_bfd, strtab_index, outsym->e_strx); |
| PUT_WORD (output_bfd, val, outsym->e_value); |
| *symbol_map = obj_aout_external_sym_count (output_bfd); |
| ++obj_aout_external_sym_count (output_bfd); |
| ++outsym; |
| } |
| |
| /* Write out the output symbols we have just constructed. */ |
| if (outsym > flaginfo->output_syms) |
| { |
| bfd_size_type outsym_size; |
| |
| if (bfd_seek (output_bfd, flaginfo->symoff, SEEK_SET) != 0) |
| return FALSE; |
| outsym_size = outsym - flaginfo->output_syms; |
| outsym_size *= EXTERNAL_NLIST_SIZE; |
| if (bfd_bwrite ((void *) flaginfo->output_syms, outsym_size, output_bfd) |
| != outsym_size) |
| return FALSE; |
| flaginfo->symoff += outsym_size; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Link an a.out input BFD into the output file. */ |
| |
| static bfd_boolean |
| aout_link_input_bfd (struct aout_final_link_info *flaginfo, bfd *input_bfd) |
| { |
| BFD_ASSERT (bfd_get_format (input_bfd) == bfd_object); |
| |
| /* If this is a dynamic object, it may need special handling. */ |
| if ((input_bfd->flags & DYNAMIC) != 0 |
| && aout_backend_info (input_bfd)->link_dynamic_object != NULL) |
| return ((*aout_backend_info (input_bfd)->link_dynamic_object) |
| (flaginfo->info, input_bfd)); |
| |
| /* Get the symbols. We probably have them already, unless |
| flaginfo->info->keep_memory is FALSE. */ |
| if (! aout_get_external_symbols (input_bfd)) |
| return FALSE; |
| |
| /* Write out the symbols and get a map of the new indices. The map |
| is placed into flaginfo->symbol_map. */ |
| if (! aout_link_write_symbols (flaginfo, input_bfd)) |
| return FALSE; |
| |
| /* Relocate and write out the sections. These functions use the |
| symbol map created by aout_link_write_symbols. The linker_mark |
| field will be set if these sections are to be included in the |
| link, which will normally be the case. */ |
| if (obj_textsec (input_bfd)->linker_mark) |
| { |
| if (! aout_link_input_section (flaginfo, input_bfd, |
| obj_textsec (input_bfd), |
| &flaginfo->treloff, |
| exec_hdr (input_bfd)->a_trsize)) |
| return FALSE; |
| } |
| if (obj_datasec (input_bfd)->linker_mark) |
| { |
| if (! aout_link_input_section (flaginfo, input_bfd, |
| obj_datasec (input_bfd), |
| &flaginfo->dreloff, |
| exec_hdr (input_bfd)->a_drsize)) |
| return FALSE; |
| } |
| |
| /* If we are not keeping memory, we don't need the symbols any |
| longer. We still need them if we are keeping memory, because the |
| strings in the hash table point into them. */ |
| if (! flaginfo->info->keep_memory) |
| { |
| if (! aout_link_free_symbols (input_bfd)) |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Do the final link step. This is called on the output BFD. The |
| INFO structure should point to a list of BFDs linked through the |
| link.next field which can be used to find each BFD which takes part |
| in the output. Also, each section in ABFD should point to a list |
| of bfd_link_order structures which list all the input sections for |
| the output section. */ |
| |
| bfd_boolean |
| NAME (aout, final_link) (bfd *abfd, |
| struct bfd_link_info *info, |
| void (*callback) (bfd *, file_ptr *, file_ptr *, file_ptr *)) |
| { |
| struct aout_final_link_info aout_info; |
| bfd_boolean includes_hash_initialized = FALSE; |
| bfd *sub; |
| bfd_size_type trsize, drsize; |
| bfd_size_type max_contents_size; |
| bfd_size_type max_relocs_size; |
| bfd_size_type max_sym_count; |
| struct bfd_link_order *p; |
| asection *o; |
| bfd_boolean have_link_order_relocs; |
| |
| if (bfd_link_pic (info)) |
| abfd->flags |= DYNAMIC; |
| |
| aout_info.info = info; |
| aout_info.output_bfd = abfd; |
| aout_info.contents = NULL; |
| aout_info.relocs = NULL; |
| aout_info.symbol_map = NULL; |
| aout_info.output_syms = NULL; |
| |
| if (!bfd_hash_table_init_n (&aout_info.includes.root, |
| aout_link_includes_newfunc, |
| sizeof (struct aout_link_includes_entry), |
| 251)) |
| goto error_return; |
| includes_hash_initialized = TRUE; |
| |
| /* Figure out the largest section size. Also, if generating |
| relocatable output, count the relocs. */ |
| trsize = 0; |
| drsize = 0; |
| max_contents_size = 0; |
| max_relocs_size = 0; |
| max_sym_count = 0; |
| for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
| { |
| bfd_size_type sz; |
| |
| if (bfd_link_relocatable (info)) |
| { |
| if (bfd_get_flavour (sub) == bfd_target_aout_flavour) |
| { |
| trsize += exec_hdr (sub)->a_trsize; |
| drsize += exec_hdr (sub)->a_drsize; |
| } |
| else |
| { |
| /* FIXME: We need to identify the .text and .data sections |
| and call get_reloc_upper_bound and canonicalize_reloc to |
| work out the number of relocs needed, and then multiply |
| by the reloc size. */ |
| (*_bfd_error_handler) |
| (_("%s: relocatable link from %s to %s not supported"), |
| bfd_get_filename (abfd), |
| sub->xvec->name, abfd->xvec->name); |
| bfd_set_error (bfd_error_invalid_operation); |
| goto error_return; |
| } |
| } |
| |
| if (bfd_get_flavour (sub) == bfd_target_aout_flavour) |
| { |
| sz = obj_textsec (sub)->size; |
| if (sz > max_contents_size) |
| max_contents_size = sz; |
| sz = obj_datasec (sub)->size; |
| if (sz > max_contents_size) |
| max_contents_size = sz; |
| |
| sz = exec_hdr (sub)->a_trsize; |
| if (sz > max_relocs_size) |
| max_relocs_size = sz; |
| sz = exec_hdr (sub)->a_drsize; |
| if (sz > max_relocs_size) |
| max_relocs_size = sz; |
| |
| sz = obj_aout_external_sym_count (sub); |
| if (sz > max_sym_count) |
| max_sym_count = sz; |
| } |
| } |
| |
| if (bfd_link_relocatable (info)) |
| { |
| if (obj_textsec (abfd) != NULL) |
| trsize += (_bfd_count_link_order_relocs (obj_textsec (abfd) |
| ->map_head.link_order) |
| * obj_reloc_entry_size (abfd)); |
| if (obj_datasec (abfd) != NULL) |
| drsize += (_bfd_count_link_order_relocs (obj_datasec (abfd) |
| ->map_head.link_order) |
| * obj_reloc_entry_size (abfd)); |
| } |
| |
| exec_hdr (abfd)->a_trsize = trsize; |
| exec_hdr (abfd)->a_drsize = drsize; |
| |
| exec_hdr (abfd)->a_entry = bfd_get_start_address (abfd); |
| |
| /* Adjust the section sizes and vmas according to the magic number. |
| This sets a_text, a_data and a_bss in the exec_hdr and sets the |
| filepos for each section. */ |
| if (! NAME (aout, adjust_sizes_and_vmas) (abfd)) |
| goto error_return; |
| |
| /* The relocation and symbol file positions differ among a.out |
| targets. We are passed a callback routine from the backend |
| specific code to handle this. |
| FIXME: At this point we do not know how much space the symbol |
| table will require. This will not work for any (nonstandard) |
| a.out target that needs to know the symbol table size before it |
| can compute the relocation file positions. This may or may not |
| be the case for the hp300hpux target, for example. */ |
| (*callback) (abfd, &aout_info.treloff, &aout_info.dreloff, |
| &aout_info.symoff); |
| obj_textsec (abfd)->rel_filepos = aout_info.treloff; |
| obj_datasec (abfd)->rel_filepos = aout_info.dreloff; |
| obj_sym_filepos (abfd) = aout_info.symoff; |
| |
| /* We keep a count of the symbols as we output them. */ |
| obj_aout_external_sym_count (abfd) = 0; |
| |
| /* We accumulate the string table as we write out the symbols. */ |
| aout_info.strtab = _bfd_stringtab_init (); |
| if (aout_info.strtab == NULL) |
| goto error_return; |
| |
| /* Allocate buffers to hold section contents and relocs. */ |
| aout_info.contents = (bfd_byte *) bfd_malloc (max_contents_size); |
| aout_info.relocs = bfd_malloc (max_relocs_size); |
| aout_info.symbol_map = (int *) bfd_malloc (max_sym_count * sizeof (int)); |
| aout_info.output_syms = (struct external_nlist *) |
| bfd_malloc ((max_sym_count + 1) * sizeof (struct external_nlist)); |
| if ((aout_info.contents == NULL && max_contents_size != 0) |
| || (aout_info.relocs == NULL && max_relocs_size != 0) |
| || (aout_info.symbol_map == NULL && max_sym_count != 0) |
| || aout_info.output_syms == NULL) |
| goto error_return; |
| |
| /* If we have a symbol named __DYNAMIC, force it out now. This is |
| required by SunOS. Doing this here rather than in sunos.c is a |
| hack, but it's easier than exporting everything which would be |
| needed. */ |
| { |
| struct aout_link_hash_entry *h; |
| |
| h = aout_link_hash_lookup (aout_hash_table (info), "__DYNAMIC", |
| FALSE, FALSE, FALSE); |
| if (h != NULL) |
| aout_link_write_other_symbol (&h->root.root, &aout_info); |
| } |
| |
| /* The most time efficient way to do the link would be to read all |
| the input object files into memory and then sort out the |
| information into the output file. Unfortunately, that will |
| probably use too much memory. Another method would be to step |
| through everything that composes the text section and write it |
| out, and then everything that composes the data section and write |
| it out, and then write out the relocs, and then write out the |
| symbols. Unfortunately, that requires reading stuff from each |
| input file several times, and we will not be able to keep all the |
| input files open simultaneously, and reopening them will be slow. |
| |
| What we do is basically process one input file at a time. We do |
| everything we need to do with an input file once--copy over the |
| section contents, handle the relocation information, and write |
| out the symbols--and then we throw away the information we read |
| from it. This approach requires a lot of lseeks of the output |
| file, which is unfortunate but still faster than reopening a lot |
| of files. |
| |
| We use the output_has_begun field of the input BFDs to see |
| whether we have already handled it. */ |
| for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
| sub->output_has_begun = FALSE; |
| |
| /* Mark all sections which are to be included in the link. This |
| will normally be every section. We need to do this so that we |
| can identify any sections which the linker has decided to not |
| include. */ |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| for (p = o->map_head.link_order; p != NULL; p = p->next) |
| if (p->type == bfd_indirect_link_order) |
| p->u.indirect.section->linker_mark = TRUE; |
| } |
| |
| have_link_order_relocs = FALSE; |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| for (p = o->map_head.link_order; |
| p != NULL; |
| p = p->next) |
| { |
| if (p->type == bfd_indirect_link_order |
| && (bfd_get_flavour (p->u.indirect.section->owner) |
| == bfd_target_aout_flavour)) |
| { |
| bfd *input_bfd; |
| |
| input_bfd = p->u.indirect.section->owner; |
| if (! input_bfd->output_has_begun) |
| { |
| if (! aout_link_input_bfd (&aout_info, input_bfd)) |
| goto error_return; |
| input_bfd->output_has_begun = TRUE; |
| } |
| } |
| else if (p->type == bfd_section_reloc_link_order |
| || p->type == bfd_symbol_reloc_link_order) |
| { |
| /* These are handled below. */ |
| have_link_order_relocs = TRUE; |
| } |
| else |
| { |
| if (! _bfd_default_link_order (abfd, info, o, p)) |
| goto error_return; |
| } |
| } |
| } |
| |
| /* Write out any symbols that we have not already written out. */ |
| bfd_hash_traverse (&info->hash->table, |
| aout_link_write_other_symbol, |
| &aout_info); |
| |
| /* Now handle any relocs we were asked to create by the linker. |
| These did not come from any input file. We must do these after |
| we have written out all the symbols, so that we know the symbol |
| indices to use. */ |
| if (have_link_order_relocs) |
| { |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| for (p = o->map_head.link_order; |
| p != NULL; |
| p = p->next) |
| { |
| if (p->type == bfd_section_reloc_link_order |
| || p->type == bfd_symbol_reloc_link_order) |
| { |
| if (! aout_link_reloc_link_order (&aout_info, o, p)) |
| goto error_return; |
| } |
| } |
| } |
| } |
| |
| if (aout_info.contents != NULL) |
| { |
| free (aout_info.contents); |
| aout_info.contents = NULL; |
| } |
| if (aout_info.relocs != NULL) |
| { |
| free (aout_info.relocs); |
| aout_info.relocs = NULL; |
| } |
| if (aout_info.symbol_map != NULL) |
| { |
| free (aout_info.symbol_map); |
| aout_info.symbol_map = NULL; |
| } |
| if (aout_info.output_syms != NULL) |
| { |
| free (aout_info.output_syms); |
| aout_info.output_syms = NULL; |
| } |
| if (includes_hash_initialized) |
| { |
| bfd_hash_table_free (&aout_info.includes.root); |
| includes_hash_initialized = FALSE; |
| } |
| |
| /* Finish up any dynamic linking we may be doing. */ |
| if (aout_backend_info (abfd)->finish_dynamic_link != NULL) |
| { |
| if (! (*aout_backend_info (abfd)->finish_dynamic_link) (abfd, info)) |
| goto error_return; |
| } |
| |
| /* Update the header information. */ |
| abfd->symcount = obj_aout_external_sym_count (abfd); |
| exec_hdr (abfd)->a_syms = abfd->symcount * EXTERNAL_NLIST_SIZE; |
| obj_str_filepos (abfd) = obj_sym_filepos (abfd) + exec_hdr (abfd)->a_syms; |
| obj_textsec (abfd)->reloc_count = |
| exec_hdr (abfd)->a_trsize / obj_reloc_entry_size (abfd); |
| obj_datasec (abfd)->reloc_count = |
| exec_hdr (abfd)->a_drsize / obj_reloc_entry_size (abfd); |
| |
| /* Write out the string table, unless there are no symbols. */ |
| if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0) |
| goto error_return; |
| if (abfd->symcount > 0) |
| { |
| if (!emit_stringtab (abfd, aout_info.strtab)) |
| goto error_return; |
| } |
| else |
| { |
| bfd_byte b[BYTES_IN_WORD]; |
| |
| memset (b, 0, BYTES_IN_WORD); |
| if (bfd_bwrite (b, (bfd_size_type) BYTES_IN_WORD, abfd) != BYTES_IN_WORD) |
| goto error_return; |
| } |
| |
| return TRUE; |
| |
| error_return: |
| if (aout_info.contents != NULL) |
| free (aout_info.contents); |
| if (aout_info.relocs != NULL) |
| free (aout_info.relocs); |
| if (aout_info.symbol_map != NULL) |
| free (aout_info.symbol_map); |
| if (aout_info.output_syms != NULL) |
| free (aout_info.output_syms); |
| if (includes_hash_initialized) |
| bfd_hash_table_free (&aout_info.includes.root); |
| return FALSE; |
| } |