|  | //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the SelectionDAG::LegalizeVectors method. | 
|  | // | 
|  | // The vector legalizer looks for vector operations which might need to be | 
|  | // scalarized and legalizes them. This is a separate step from Legalize because | 
|  | // scalarizing can introduce illegal types.  For example, suppose we have an | 
|  | // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition | 
|  | // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the | 
|  | // operation, which introduces nodes with the illegal type i64 which must be | 
|  | // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; | 
|  | // the operation must be unrolled, which introduces nodes with the illegal | 
|  | // type i8 which must be promoted. | 
|  | // | 
|  | // This does not legalize vector manipulations like ISD::BUILD_VECTOR, | 
|  | // or operations that happen to take a vector which are custom-lowered; | 
|  | // the legalization for such operations never produces nodes | 
|  | // with illegal types, so it's okay to put off legalizing them until | 
|  | // SelectionDAG::Legalize runs. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "legalizevectorops" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class VectorLegalizer { | 
|  | SelectionDAG& DAG; | 
|  | const TargetLowering &TLI; | 
|  | bool Changed = false; // Keep track of whether anything changed | 
|  |  | 
|  | /// For nodes that are of legal width, and that have more than one use, this | 
|  | /// map indicates what regularized operand to use.  This allows us to avoid | 
|  | /// legalizing the same thing more than once. | 
|  | SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; | 
|  |  | 
|  | /// Adds a node to the translation cache. | 
|  | void AddLegalizedOperand(SDValue From, SDValue To) { | 
|  | LegalizedNodes.insert(std::make_pair(From, To)); | 
|  | // If someone requests legalization of the new node, return itself. | 
|  | if (From != To) | 
|  | LegalizedNodes.insert(std::make_pair(To, To)); | 
|  | } | 
|  |  | 
|  | /// Legalizes the given node. | 
|  | SDValue LegalizeOp(SDValue Op); | 
|  |  | 
|  | /// Assuming the node is legal, "legalize" the results. | 
|  | SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); | 
|  |  | 
|  | /// Implements unrolling a VSETCC. | 
|  | SDValue UnrollVSETCC(SDValue Op); | 
|  |  | 
|  | /// Implement expand-based legalization of vector operations. | 
|  | /// | 
|  | /// This is just a high-level routine to dispatch to specific code paths for | 
|  | /// operations to legalize them. | 
|  | SDValue Expand(SDValue Op); | 
|  |  | 
|  | /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if | 
|  | /// FP_TO_SINT isn't legal. | 
|  | SDValue ExpandFP_TO_UINT(SDValue Op); | 
|  |  | 
|  | /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if | 
|  | /// SINT_TO_FLOAT and SHR on vectors isn't legal. | 
|  | SDValue ExpandUINT_TO_FLOAT(SDValue Op); | 
|  |  | 
|  | /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. | 
|  | SDValue ExpandSEXTINREG(SDValue Op); | 
|  |  | 
|  | /// Implement expansion for ANY_EXTEND_VECTOR_INREG. | 
|  | /// | 
|  | /// Shuffles the low lanes of the operand into place and bitcasts to the proper | 
|  | /// type. The contents of the bits in the extended part of each element are | 
|  | /// undef. | 
|  | SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); | 
|  |  | 
|  | /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. | 
|  | /// | 
|  | /// Shuffles the low lanes of the operand into place, bitcasts to the proper | 
|  | /// type, then shifts left and arithmetic shifts right to introduce a sign | 
|  | /// extension. | 
|  | SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); | 
|  |  | 
|  | /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. | 
|  | /// | 
|  | /// Shuffles the low lanes of the operand into place and blends zeros into | 
|  | /// the remaining lanes, finally bitcasting to the proper type. | 
|  | SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); | 
|  |  | 
|  | /// Implement expand-based legalization of ABS vector operations. | 
|  | /// If following expanding is legal/custom then do it: | 
|  | /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1)) | 
|  | /// else unroll the operation. | 
|  | SDValue ExpandABS(SDValue Op); | 
|  |  | 
|  | /// Expand bswap of vectors into a shuffle if legal. | 
|  | SDValue ExpandBSWAP(SDValue Op); | 
|  |  | 
|  | /// Implement vselect in terms of XOR, AND, OR when blend is not | 
|  | /// supported by the target. | 
|  | SDValue ExpandVSELECT(SDValue Op); | 
|  | SDValue ExpandSELECT(SDValue Op); | 
|  | SDValue ExpandLoad(SDValue Op); | 
|  | SDValue ExpandStore(SDValue Op); | 
|  | SDValue ExpandFNEG(SDValue Op); | 
|  | SDValue ExpandFSUB(SDValue Op); | 
|  | SDValue ExpandBITREVERSE(SDValue Op); | 
|  | SDValue ExpandCTPOP(SDValue Op); | 
|  | SDValue ExpandCTLZ(SDValue Op); | 
|  | SDValue ExpandCTTZ(SDValue Op); | 
|  | SDValue ExpandFunnelShift(SDValue Op); | 
|  | SDValue ExpandROT(SDValue Op); | 
|  | SDValue ExpandFMINNUM_FMAXNUM(SDValue Op); | 
|  | SDValue ExpandUADDSUBO(SDValue Op); | 
|  | SDValue ExpandSADDSUBO(SDValue Op); | 
|  | SDValue ExpandMULO(SDValue Op); | 
|  | SDValue ExpandAddSubSat(SDValue Op); | 
|  | SDValue ExpandFixedPointMul(SDValue Op); | 
|  | SDValue ExpandStrictFPOp(SDValue Op); | 
|  |  | 
|  | /// Implements vector promotion. | 
|  | /// | 
|  | /// This is essentially just bitcasting the operands to a different type and | 
|  | /// bitcasting the result back to the original type. | 
|  | SDValue Promote(SDValue Op); | 
|  |  | 
|  | /// Implements [SU]INT_TO_FP vector promotion. | 
|  | /// | 
|  | /// This is a [zs]ext of the input operand to a larger integer type. | 
|  | SDValue PromoteINT_TO_FP(SDValue Op); | 
|  |  | 
|  | /// Implements FP_TO_[SU]INT vector promotion of the result type. | 
|  | /// | 
|  | /// It is promoted to a larger integer type.  The result is then | 
|  | /// truncated back to the original type. | 
|  | SDValue PromoteFP_TO_INT(SDValue Op); | 
|  |  | 
|  | public: | 
|  | VectorLegalizer(SelectionDAG& dag) : | 
|  | DAG(dag), TLI(dag.getTargetLoweringInfo()) {} | 
|  |  | 
|  | /// Begin legalizer the vector operations in the DAG. | 
|  | bool Run(); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool VectorLegalizer::Run() { | 
|  | // Before we start legalizing vector nodes, check if there are any vectors. | 
|  | bool HasVectors = false; | 
|  | for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), | 
|  | E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { | 
|  | // Check if the values of the nodes contain vectors. We don't need to check | 
|  | // the operands because we are going to check their values at some point. | 
|  | for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); | 
|  | J != E; ++J) | 
|  | HasVectors |= J->isVector(); | 
|  |  | 
|  | // If we found a vector node we can start the legalization. | 
|  | if (HasVectors) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this basic block has no vectors then no need to legalize vectors. | 
|  | if (!HasVectors) | 
|  | return false; | 
|  |  | 
|  | // The legalize process is inherently a bottom-up recursive process (users | 
|  | // legalize their uses before themselves).  Given infinite stack space, we | 
|  | // could just start legalizing on the root and traverse the whole graph.  In | 
|  | // practice however, this causes us to run out of stack space on large basic | 
|  | // blocks.  To avoid this problem, compute an ordering of the nodes where each | 
|  | // node is only legalized after all of its operands are legalized. | 
|  | DAG.AssignTopologicalOrder(); | 
|  | for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), | 
|  | E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) | 
|  | LegalizeOp(SDValue(&*I, 0)); | 
|  |  | 
|  | // Finally, it's possible the root changed.  Get the new root. | 
|  | SDValue OldRoot = DAG.getRoot(); | 
|  | assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); | 
|  | DAG.setRoot(LegalizedNodes[OldRoot]); | 
|  |  | 
|  | LegalizedNodes.clear(); | 
|  |  | 
|  | // Remove dead nodes now. | 
|  | DAG.RemoveDeadNodes(); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { | 
|  | // Generic legalization: just pass the operand through. | 
|  | for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) | 
|  | AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); | 
|  | return Result.getValue(Op.getResNo()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::LegalizeOp(SDValue Op) { | 
|  | // Note that LegalizeOp may be reentered even from single-use nodes, which | 
|  | // means that we always must cache transformed nodes. | 
|  | DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); | 
|  | if (I != LegalizedNodes.end()) return I->second; | 
|  |  | 
|  | SDNode* Node = Op.getNode(); | 
|  |  | 
|  | // Legalize the operands | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (const SDValue &Op : Node->op_values()) | 
|  | Ops.push_back(LegalizeOp(Op)); | 
|  |  | 
|  | SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), | 
|  | Op.getResNo()); | 
|  |  | 
|  | if (Op.getOpcode() == ISD::LOAD) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { | 
|  | LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; | 
|  | Node->dump(&DAG)); | 
|  | switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), | 
|  | LD->getMemoryVT())) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | return TranslateLegalizeResults(Op, Result); | 
|  | case TargetLowering::Custom: | 
|  | if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { | 
|  | assert(Lowered->getNumValues() == Op->getNumValues() && | 
|  | "Unexpected number of results"); | 
|  | if (Lowered != Result) { | 
|  | // Make sure the new code is also legal. | 
|  | Lowered = LegalizeOp(Lowered); | 
|  | Changed = true; | 
|  | } | 
|  | return TranslateLegalizeResults(Op, Lowered); | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case TargetLowering::Expand: | 
|  | Changed = true; | 
|  | return ExpandLoad(Op); | 
|  | } | 
|  | } | 
|  | } else if (Op.getOpcode() == ISD::STORE) { | 
|  | StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); | 
|  | EVT StVT = ST->getMemoryVT(); | 
|  | MVT ValVT = ST->getValue().getSimpleValueType(); | 
|  | if (StVT.isVector() && ST->isTruncatingStore()) { | 
|  | LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; | 
|  | Node->dump(&DAG)); | 
|  | switch (TLI.getTruncStoreAction(ValVT, StVT)) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | return TranslateLegalizeResults(Op, Result); | 
|  | case TargetLowering::Custom: { | 
|  | SDValue Lowered = TLI.LowerOperation(Result, DAG); | 
|  | if (Lowered != Result) { | 
|  | // Make sure the new code is also legal. | 
|  | Lowered = LegalizeOp(Lowered); | 
|  | Changed = true; | 
|  | } | 
|  | return TranslateLegalizeResults(Op, Lowered); | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | Changed = true; | 
|  | return ExpandStore(Op); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HasVectorValueOrOp = false; | 
|  | for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J) | 
|  | HasVectorValueOrOp |= J->isVector(); | 
|  | for (const SDValue &Op : Node->op_values()) | 
|  | HasVectorValueOrOp |= Op.getValueType().isVector(); | 
|  |  | 
|  | if (!HasVectorValueOrOp) | 
|  | return TranslateLegalizeResults(Op, Result); | 
|  |  | 
|  | TargetLowering::LegalizeAction Action = TargetLowering::Legal; | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | return TranslateLegalizeResults(Op, Result); | 
|  | case ISD::STRICT_FADD: | 
|  | case ISD::STRICT_FSUB: | 
|  | case ISD::STRICT_FMUL: | 
|  | case ISD::STRICT_FDIV: | 
|  | case ISD::STRICT_FREM: | 
|  | case ISD::STRICT_FSQRT: | 
|  | case ISD::STRICT_FMA: | 
|  | case ISD::STRICT_FPOW: | 
|  | case ISD::STRICT_FPOWI: | 
|  | case ISD::STRICT_FSIN: | 
|  | case ISD::STRICT_FCOS: | 
|  | case ISD::STRICT_FEXP: | 
|  | case ISD::STRICT_FEXP2: | 
|  | case ISD::STRICT_FLOG: | 
|  | case ISD::STRICT_FLOG10: | 
|  | case ISD::STRICT_FLOG2: | 
|  | case ISD::STRICT_FRINT: | 
|  | case ISD::STRICT_FNEARBYINT: | 
|  | case ISD::STRICT_FMAXNUM: | 
|  | case ISD::STRICT_FMINNUM: | 
|  | case ISD::STRICT_FCEIL: | 
|  | case ISD::STRICT_FFLOOR: | 
|  | case ISD::STRICT_FROUND: | 
|  | case ISD::STRICT_FTRUNC: | 
|  | case ISD::STRICT_FP_ROUND: | 
|  | case ISD::STRICT_FP_EXTEND: | 
|  | // These pseudo-ops get legalized as if they were their non-strict | 
|  | // equivalent.  For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT | 
|  | // is also legal, but if ISD::FSQRT requires expansion then so does | 
|  | // ISD::STRICT_FSQRT. | 
|  | Action = TLI.getStrictFPOperationAction(Node->getOpcode(), | 
|  | Node->getValueType(0)); | 
|  | break; | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::MULHS: | 
|  | case ISD::MULHU: | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UREM: | 
|  | case ISD::SDIVREM: | 
|  | case ISD::UDIVREM: | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::FSHL: | 
|  | case ISD::FSHR: | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: | 
|  | case ISD::ABS: | 
|  | case ISD::BSWAP: | 
|  | case ISD::BITREVERSE: | 
|  | case ISD::CTLZ: | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTLZ_ZERO_UNDEF: | 
|  | case ISD::CTTZ_ZERO_UNDEF: | 
|  | case ISD::CTPOP: | 
|  | case ISD::SELECT: | 
|  | case ISD::VSELECT: | 
|  | case ISD::SELECT_CC: | 
|  | case ISD::SETCC: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::TRUNCATE: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::FNEG: | 
|  | case ISD::FABS: | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | case ISD::FMINNUM_IEEE: | 
|  | case ISD::FMAXNUM_IEEE: | 
|  | case ISD::FMINIMUM: | 
|  | case ISD::FMAXIMUM: | 
|  | case ISD::FCOPYSIGN: | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FPOWI: | 
|  | case ISD::FPOW: | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: | 
|  | case ISD::FROUND: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FMA: | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | case ISD::ANY_EXTEND_VECTOR_INREG: | 
|  | case ISD::SIGN_EXTEND_VECTOR_INREG: | 
|  | case ISD::ZERO_EXTEND_VECTOR_INREG: | 
|  | case ISD::SMIN: | 
|  | case ISD::SMAX: | 
|  | case ISD::UMIN: | 
|  | case ISD::UMAX: | 
|  | case ISD::SMUL_LOHI: | 
|  | case ISD::UMUL_LOHI: | 
|  | case ISD::SADDO: | 
|  | case ISD::UADDO: | 
|  | case ISD::SSUBO: | 
|  | case ISD::USUBO: | 
|  | case ISD::SMULO: | 
|  | case ISD::UMULO: | 
|  | case ISD::FCANONICALIZE: | 
|  | case ISD::SADDSAT: | 
|  | case ISD::UADDSAT: | 
|  | case ISD::SSUBSAT: | 
|  | case ISD::USUBSAT: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); | 
|  | break; | 
|  | case ISD::SMULFIX: | 
|  | case ISD::SMULFIXSAT: | 
|  | case ISD::UMULFIX: { | 
|  | unsigned Scale = Node->getConstantOperandVal(2); | 
|  | Action = TLI.getFixedPointOperationAction(Node->getOpcode(), | 
|  | Node->getValueType(0), Scale); | 
|  | break; | 
|  | } | 
|  | case ISD::FP_ROUND_INREG: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | cast<VTSDNode>(Node->getOperand(1))->getVT()); | 
|  | break; | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::VECREDUCE_ADD: | 
|  | case ISD::VECREDUCE_MUL: | 
|  | case ISD::VECREDUCE_AND: | 
|  | case ISD::VECREDUCE_OR: | 
|  | case ISD::VECREDUCE_XOR: | 
|  | case ISD::VECREDUCE_SMAX: | 
|  | case ISD::VECREDUCE_SMIN: | 
|  | case ISD::VECREDUCE_UMAX: | 
|  | case ISD::VECREDUCE_UMIN: | 
|  | case ISD::VECREDUCE_FADD: | 
|  | case ISD::VECREDUCE_FMUL: | 
|  | case ISD::VECREDUCE_FMAX: | 
|  | case ISD::VECREDUCE_FMIN: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getOperand(0).getValueType()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); | 
|  |  | 
|  | switch (Action) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Promote: | 
|  | Result = Promote(Op); | 
|  | Changed = true; | 
|  | break; | 
|  | case TargetLowering::Legal: | 
|  | LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); | 
|  | break; | 
|  | case TargetLowering::Custom: { | 
|  | LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); | 
|  | if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { | 
|  | LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); | 
|  | Result = Tmp1; | 
|  | break; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | Result = Expand(Op); | 
|  | } | 
|  |  | 
|  | // Make sure that the generated code is itself legal. | 
|  | if (Result != Op) { | 
|  | Result = LegalizeOp(Result); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // Note that LegalizeOp may be reentered even from single-use nodes, which | 
|  | // means that we always must cache transformed nodes. | 
|  | AddLegalizedOperand(Op, Result); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::Promote(SDValue Op) { | 
|  | // For a few operations there is a specific concept for promotion based on | 
|  | // the operand's type. | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | // "Promote" the operation by extending the operand. | 
|  | return PromoteINT_TO_FP(Op); | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::FP_TO_SINT: | 
|  | // Promote the operation by extending the operand. | 
|  | return PromoteFP_TO_INT(Op); | 
|  | } | 
|  |  | 
|  | // There are currently two cases of vector promotion: | 
|  | // 1) Bitcasting a vector of integers to a different type to a vector of the | 
|  | //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. | 
|  | // 2) Extending a vector of floats to a vector of the same number of larger | 
|  | //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | assert(Op.getNode()->getNumValues() == 1 && | 
|  | "Can't promote a vector with multiple results!"); | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); | 
|  | SDLoc dl(Op); | 
|  | SmallVector<SDValue, 4> Operands(Op.getNumOperands()); | 
|  |  | 
|  | for (unsigned j = 0; j != Op.getNumOperands(); ++j) { | 
|  | if (Op.getOperand(j).getValueType().isVector()) | 
|  | if (Op.getOperand(j) | 
|  | .getValueType() | 
|  | .getVectorElementType() | 
|  | .isFloatingPoint() && | 
|  | NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) | 
|  | Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); | 
|  | else | 
|  | Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); | 
|  | else | 
|  | Operands[j] = Op.getOperand(j); | 
|  | } | 
|  |  | 
|  | Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); | 
|  | if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || | 
|  | (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && | 
|  | NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) | 
|  | return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); | 
|  | else | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Op); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { | 
|  | // INT_TO_FP operations may require the input operand be promoted even | 
|  | // when the type is otherwise legal. | 
|  | MVT VT = Op.getOperand(0).getSimpleValueType(); | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); | 
|  | assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && | 
|  | "Vectors have different number of elements!"); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | SmallVector<SDValue, 4> Operands(Op.getNumOperands()); | 
|  |  | 
|  | unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : | 
|  | ISD::SIGN_EXTEND; | 
|  | for (unsigned j = 0; j != Op.getNumOperands(); ++j) { | 
|  | if (Op.getOperand(j).getValueType().isVector()) | 
|  | Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); | 
|  | else | 
|  | Operands[j] = Op.getOperand(j); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); | 
|  | } | 
|  |  | 
|  | // For FP_TO_INT we promote the result type to a vector type with wider | 
|  | // elements and then truncate the result.  This is different from the default | 
|  | // PromoteVector which uses bitcast to promote thus assumning that the | 
|  | // promoted vector type has the same overall size. | 
|  | SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); | 
|  | assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && | 
|  | "Vectors have different number of elements!"); | 
|  |  | 
|  | unsigned NewOpc = Op->getOpcode(); | 
|  | // Change FP_TO_UINT to FP_TO_SINT if possible. | 
|  | // TODO: Should we only do this if FP_TO_UINT itself isn't legal? | 
|  | if (NewOpc == ISD::FP_TO_UINT && | 
|  | TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) | 
|  | NewOpc = ISD::FP_TO_SINT; | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | SDValue Promoted  = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); | 
|  |  | 
|  | // Assert that the converted value fits in the original type.  If it doesn't | 
|  | // (eg: because the value being converted is too big), then the result of the | 
|  | // original operation was undefined anyway, so the assert is still correct. | 
|  | Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext | 
|  | : ISD::AssertSext, | 
|  | dl, NVT, Promoted, | 
|  | DAG.getValueType(VT.getScalarType())); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandLoad(SDValue Op) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); | 
|  |  | 
|  | EVT SrcVT = LD->getMemoryVT(); | 
|  | EVT SrcEltVT = SrcVT.getScalarType(); | 
|  | unsigned NumElem = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | SDValue NewChain; | 
|  | SDValue Value; | 
|  | if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | SmallVector<SDValue, 8> Vals; | 
|  | SmallVector<SDValue, 8> LoadChains; | 
|  |  | 
|  | EVT DstEltVT = LD->getValueType(0).getScalarType(); | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue BasePTR = LD->getBasePtr(); | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  |  | 
|  | // When elements in a vector is not byte-addressable, we cannot directly | 
|  | // load each element by advancing pointer, which could only address bytes. | 
|  | // Instead, we load all significant words, mask bits off, and concatenate | 
|  | // them to form each element. Finally, they are extended to destination | 
|  | // scalar type to build the destination vector. | 
|  | EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | assert(WideVT.isRound() && | 
|  | "Could not handle the sophisticated case when the widest integer is" | 
|  | " not power of 2."); | 
|  | assert(WideVT.bitsGE(SrcEltVT) && | 
|  | "Type is not legalized?"); | 
|  |  | 
|  | unsigned WideBytes = WideVT.getStoreSize(); | 
|  | unsigned Offset = 0; | 
|  | unsigned RemainingBytes = SrcVT.getStoreSize(); | 
|  | SmallVector<SDValue, 8> LoadVals; | 
|  | while (RemainingBytes > 0) { | 
|  | SDValue ScalarLoad; | 
|  | unsigned LoadBytes = WideBytes; | 
|  |  | 
|  | if (RemainingBytes >= LoadBytes) { | 
|  | ScalarLoad = | 
|  | DAG.getLoad(WideVT, dl, Chain, BasePTR, | 
|  | LD->getPointerInfo().getWithOffset(Offset), | 
|  | MinAlign(LD->getAlignment(), Offset), | 
|  | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
|  | } else { | 
|  | EVT LoadVT = WideVT; | 
|  | while (RemainingBytes < LoadBytes) { | 
|  | LoadBytes >>= 1; // Reduce the load size by half. | 
|  | LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); | 
|  | } | 
|  | ScalarLoad = | 
|  | DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, | 
|  | LD->getPointerInfo().getWithOffset(Offset), LoadVT, | 
|  | MinAlign(LD->getAlignment(), Offset), | 
|  | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
|  | } | 
|  |  | 
|  | RemainingBytes -= LoadBytes; | 
|  | Offset += LoadBytes; | 
|  |  | 
|  | BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); | 
|  |  | 
|  | LoadVals.push_back(ScalarLoad.getValue(0)); | 
|  | LoadChains.push_back(ScalarLoad.getValue(1)); | 
|  | } | 
|  |  | 
|  | unsigned BitOffset = 0; | 
|  | unsigned WideIdx = 0; | 
|  | unsigned WideBits = WideVT.getSizeInBits(); | 
|  |  | 
|  | // Extract bits, pack and extend/trunc them into destination type. | 
|  | unsigned SrcEltBits = SrcEltVT.getSizeInBits(); | 
|  | SDValue SrcEltBitMask = DAG.getConstant( | 
|  | APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT); | 
|  |  | 
|  | for (unsigned Idx = 0; Idx != NumElem; ++Idx) { | 
|  | assert(BitOffset < WideBits && "Unexpected offset!"); | 
|  |  | 
|  | SDValue ShAmt = DAG.getConstant( | 
|  | BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); | 
|  | SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); | 
|  |  | 
|  | BitOffset += SrcEltBits; | 
|  | if (BitOffset >= WideBits) { | 
|  | WideIdx++; | 
|  | BitOffset -= WideBits; | 
|  | if (BitOffset > 0) { | 
|  | ShAmt = DAG.getConstant( | 
|  | SrcEltBits - BitOffset, dl, | 
|  | TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); | 
|  | SDValue Hi = | 
|  | DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); | 
|  | Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); | 
|  | } | 
|  | } | 
|  |  | 
|  | Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); | 
|  |  | 
|  | switch (ExtType) { | 
|  | default: llvm_unreachable("Unknown extended-load op!"); | 
|  | case ISD::EXTLOAD: | 
|  | Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); | 
|  | break; | 
|  | case ISD::ZEXTLOAD: | 
|  | Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); | 
|  | break; | 
|  | case ISD::SEXTLOAD: | 
|  | ShAmt = | 
|  | DAG.getConstant(WideBits - SrcEltBits, dl, | 
|  | TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); | 
|  | Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); | 
|  | Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); | 
|  | Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); | 
|  | break; | 
|  | } | 
|  | Vals.push_back(Lo); | 
|  | } | 
|  |  | 
|  | NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); | 
|  | Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); | 
|  | } else { | 
|  | SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); | 
|  | // Skip past MERGE_VALUE node if known. | 
|  | if (Scalarized->getOpcode() == ISD::MERGE_VALUES) { | 
|  | NewChain = Scalarized.getOperand(1); | 
|  | Value = Scalarized.getOperand(0); | 
|  | } else { | 
|  | NewChain = Scalarized.getValue(1); | 
|  | Value = Scalarized.getValue(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | AddLegalizedOperand(Op.getValue(0), Value); | 
|  | AddLegalizedOperand(Op.getValue(1), NewChain); | 
|  |  | 
|  | return (Op.getResNo() ? NewChain : Value); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandStore(SDValue Op) { | 
|  | StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); | 
|  | SDValue TF = TLI.scalarizeVectorStore(ST, DAG); | 
|  | AddLegalizedOperand(Op, TF); | 
|  | return TF; | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::Expand(SDValue Op) { | 
|  | switch (Op->getOpcode()) { | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | return ExpandSEXTINREG(Op); | 
|  | case ISD::ANY_EXTEND_VECTOR_INREG: | 
|  | return ExpandANY_EXTEND_VECTOR_INREG(Op); | 
|  | case ISD::SIGN_EXTEND_VECTOR_INREG: | 
|  | return ExpandSIGN_EXTEND_VECTOR_INREG(Op); | 
|  | case ISD::ZERO_EXTEND_VECTOR_INREG: | 
|  | return ExpandZERO_EXTEND_VECTOR_INREG(Op); | 
|  | case ISD::BSWAP: | 
|  | return ExpandBSWAP(Op); | 
|  | case ISD::VSELECT: | 
|  | return ExpandVSELECT(Op); | 
|  | case ISD::SELECT: | 
|  | return ExpandSELECT(Op); | 
|  | case ISD::FP_TO_UINT: | 
|  | return ExpandFP_TO_UINT(Op); | 
|  | case ISD::UINT_TO_FP: | 
|  | return ExpandUINT_TO_FLOAT(Op); | 
|  | case ISD::FNEG: | 
|  | return ExpandFNEG(Op); | 
|  | case ISD::FSUB: | 
|  | return ExpandFSUB(Op); | 
|  | case ISD::SETCC: | 
|  | return UnrollVSETCC(Op); | 
|  | case ISD::ABS: | 
|  | return ExpandABS(Op); | 
|  | case ISD::BITREVERSE: | 
|  | return ExpandBITREVERSE(Op); | 
|  | case ISD::CTPOP: | 
|  | return ExpandCTPOP(Op); | 
|  | case ISD::CTLZ: | 
|  | case ISD::CTLZ_ZERO_UNDEF: | 
|  | return ExpandCTLZ(Op); | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTTZ_ZERO_UNDEF: | 
|  | return ExpandCTTZ(Op); | 
|  | case ISD::FSHL: | 
|  | case ISD::FSHR: | 
|  | return ExpandFunnelShift(Op); | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: | 
|  | return ExpandROT(Op); | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | return ExpandFMINNUM_FMAXNUM(Op); | 
|  | case ISD::UADDO: | 
|  | case ISD::USUBO: | 
|  | return ExpandUADDSUBO(Op); | 
|  | case ISD::SADDO: | 
|  | case ISD::SSUBO: | 
|  | return ExpandSADDSUBO(Op); | 
|  | case ISD::UMULO: | 
|  | case ISD::SMULO: | 
|  | return ExpandMULO(Op); | 
|  | case ISD::USUBSAT: | 
|  | case ISD::SSUBSAT: | 
|  | case ISD::UADDSAT: | 
|  | case ISD::SADDSAT: | 
|  | return ExpandAddSubSat(Op); | 
|  | case ISD::SMULFIX: | 
|  | case ISD::UMULFIX: | 
|  | return ExpandFixedPointMul(Op); | 
|  | case ISD::STRICT_FADD: | 
|  | case ISD::STRICT_FSUB: | 
|  | case ISD::STRICT_FMUL: | 
|  | case ISD::STRICT_FDIV: | 
|  | case ISD::STRICT_FREM: | 
|  | case ISD::STRICT_FSQRT: | 
|  | case ISD::STRICT_FMA: | 
|  | case ISD::STRICT_FPOW: | 
|  | case ISD::STRICT_FPOWI: | 
|  | case ISD::STRICT_FSIN: | 
|  | case ISD::STRICT_FCOS: | 
|  | case ISD::STRICT_FEXP: | 
|  | case ISD::STRICT_FEXP2: | 
|  | case ISD::STRICT_FLOG: | 
|  | case ISD::STRICT_FLOG10: | 
|  | case ISD::STRICT_FLOG2: | 
|  | case ISD::STRICT_FRINT: | 
|  | case ISD::STRICT_FNEARBYINT: | 
|  | case ISD::STRICT_FMAXNUM: | 
|  | case ISD::STRICT_FMINNUM: | 
|  | case ISD::STRICT_FCEIL: | 
|  | case ISD::STRICT_FFLOOR: | 
|  | case ISD::STRICT_FROUND: | 
|  | case ISD::STRICT_FTRUNC: | 
|  | return ExpandStrictFPOp(Op); | 
|  | case ISD::VECREDUCE_ADD: | 
|  | case ISD::VECREDUCE_MUL: | 
|  | case ISD::VECREDUCE_AND: | 
|  | case ISD::VECREDUCE_OR: | 
|  | case ISD::VECREDUCE_XOR: | 
|  | case ISD::VECREDUCE_SMAX: | 
|  | case ISD::VECREDUCE_SMIN: | 
|  | case ISD::VECREDUCE_UMAX: | 
|  | case ISD::VECREDUCE_UMIN: | 
|  | case ISD::VECREDUCE_FADD: | 
|  | case ISD::VECREDUCE_FMUL: | 
|  | case ISD::VECREDUCE_FMAX: | 
|  | case ISD::VECREDUCE_FMIN: | 
|  | return TLI.expandVecReduce(Op.getNode(), DAG); | 
|  | default: | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { | 
|  | // Lower a select instruction where the condition is a scalar and the | 
|  | // operands are vectors. Lower this select to VSELECT and implement it | 
|  | // using XOR AND OR. The selector bit is broadcasted. | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | SDValue Mask = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue Op2 = Op.getOperand(2); | 
|  |  | 
|  | assert(VT.isVector() && !Mask.getValueType().isVector() | 
|  | && Op1.getValueType() == Op2.getValueType() && "Invalid type"); | 
|  |  | 
|  | // If we can't even use the basic vector operations of | 
|  | // AND,OR,XOR, we will have to scalarize the op. | 
|  | // Notice that the operation may be 'promoted' which means that it is | 
|  | // 'bitcasted' to another type which is handled. | 
|  | // Also, we need to be able to construct a splat vector using BUILD_VECTOR. | 
|  | if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | // Generate a mask operand. | 
|  | EVT MaskTy = VT.changeVectorElementTypeToInteger(); | 
|  |  | 
|  | // What is the size of each element in the vector mask. | 
|  | EVT BitTy = MaskTy.getScalarType(); | 
|  |  | 
|  | Mask = DAG.getSelect(DL, BitTy, Mask, | 
|  | DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, | 
|  | BitTy), | 
|  | DAG.getConstant(0, DL, BitTy)); | 
|  |  | 
|  | // Broadcast the mask so that the entire vector is all-one or all zero. | 
|  | Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); | 
|  |  | 
|  | // Bitcast the operands to be the same type as the mask. | 
|  | // This is needed when we select between FP types because | 
|  | // the mask is a vector of integers. | 
|  | Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); | 
|  | Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); | 
|  |  | 
|  | SDValue AllOnes = DAG.getConstant( | 
|  | APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); | 
|  | SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); | 
|  |  | 
|  | Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); | 
|  | Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); | 
|  | SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); | 
|  | return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | // Make sure that the SRA and SHL instructions are available. | 
|  | if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); | 
|  |  | 
|  | unsigned BW = VT.getScalarSizeInBits(); | 
|  | unsigned OrigBW = OrigTy.getScalarSizeInBits(); | 
|  | SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); | 
|  |  | 
|  | Op = Op.getOperand(0); | 
|  | Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); | 
|  | return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); | 
|  | } | 
|  |  | 
|  | // Generically expand a vector anyext in register to a shuffle of the relevant | 
|  | // lanes into the appropriate locations, with other lanes left undef. | 
|  | SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | int NumElements = VT.getVectorNumElements(); | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | int NumSrcElements = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector | 
|  | // into a larger vector type. | 
|  | if (SrcVT.bitsLE(VT)) { | 
|  | assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && | 
|  | "ANY_EXTEND_VECTOR_INREG vector size mismatch"); | 
|  | NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); | 
|  | SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), | 
|  | NumSrcElements); | 
|  | Src = DAG.getNode( | 
|  | ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, | 
|  | DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | } | 
|  |  | 
|  | // Build a base mask of undef shuffles. | 
|  | SmallVector<int, 16> ShuffleMask; | 
|  | ShuffleMask.resize(NumSrcElements, -1); | 
|  |  | 
|  | // Place the extended lanes into the correct locations. | 
|  | int ExtLaneScale = NumSrcElements / NumElements; | 
|  | int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; | 
|  | for (int i = 0; i < NumElements; ++i) | 
|  | ShuffleMask[i * ExtLaneScale + EndianOffset] = i; | 
|  |  | 
|  | return DAG.getNode( | 
|  | ISD::BITCAST, DL, VT, | 
|  | DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  |  | 
|  | // First build an any-extend node which can be legalized above when we | 
|  | // recurse through it. | 
|  | Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); | 
|  |  | 
|  | // Now we need sign extend. Do this by shifting the elements. Even if these | 
|  | // aren't legal operations, they have a better chance of being legalized | 
|  | // without full scalarization than the sign extension does. | 
|  | unsigned EltWidth = VT.getScalarSizeInBits(); | 
|  | unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); | 
|  | SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); | 
|  | return DAG.getNode(ISD::SRA, DL, VT, | 
|  | DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), | 
|  | ShiftAmount); | 
|  | } | 
|  |  | 
|  | // Generically expand a vector zext in register to a shuffle of the relevant | 
|  | // lanes into the appropriate locations, a blend of zero into the high bits, | 
|  | // and a bitcast to the wider element type. | 
|  | SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | int NumElements = VT.getVectorNumElements(); | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | int NumSrcElements = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector | 
|  | // into a larger vector type. | 
|  | if (SrcVT.bitsLE(VT)) { | 
|  | assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && | 
|  | "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); | 
|  | NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); | 
|  | SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), | 
|  | NumSrcElements); | 
|  | Src = DAG.getNode( | 
|  | ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, | 
|  | DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | } | 
|  |  | 
|  | // Build up a zero vector to blend into this one. | 
|  | SDValue Zero = DAG.getConstant(0, DL, SrcVT); | 
|  |  | 
|  | // Shuffle the incoming lanes into the correct position, and pull all other | 
|  | // lanes from the zero vector. | 
|  | SmallVector<int, 16> ShuffleMask; | 
|  | ShuffleMask.reserve(NumSrcElements); | 
|  | for (int i = 0; i < NumSrcElements; ++i) | 
|  | ShuffleMask.push_back(i); | 
|  |  | 
|  | int ExtLaneScale = NumSrcElements / NumElements; | 
|  | int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; | 
|  | for (int i = 0; i < NumElements; ++i) | 
|  | ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, | 
|  | DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); | 
|  | } | 
|  |  | 
|  | static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { | 
|  | int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; | 
|  | for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) | 
|  | for (int J = ScalarSizeInBytes - 1; J >= 0; --J) | 
|  | ShuffleMask.push_back((I * ScalarSizeInBytes) + J); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | // Generate a byte wise shuffle mask for the BSWAP. | 
|  | SmallVector<int, 16> ShuffleMask; | 
|  | createBSWAPShuffleMask(VT, ShuffleMask); | 
|  | EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); | 
|  |  | 
|  | // Only emit a shuffle if the mask is legal. | 
|  | if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); | 
|  | Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Op); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | // If we have the scalar operation, it's probably cheaper to unroll it. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | // If the vector element width is a whole number of bytes, test if its legal | 
|  | // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte | 
|  | // vector. This greatly reduces the number of bit shifts necessary. | 
|  | unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); | 
|  | if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { | 
|  | SmallVector<int, 16> BSWAPMask; | 
|  | createBSWAPShuffleMask(VT, BSWAPMask); | 
|  |  | 
|  | EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); | 
|  | if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && | 
|  | (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || | 
|  | (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && | 
|  | TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && | 
|  | TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { | 
|  | SDLoc DL(Op); | 
|  | Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); | 
|  | Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), | 
|  | BSWAPMask); | 
|  | Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Op); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have the appropriate vector bit operations, it is better to use them | 
|  | // than unrolling and expanding each component. | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || | 
|  | !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || | 
|  | !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || | 
|  | !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | // Let LegalizeDAG handle this later. | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { | 
|  | // Implement VSELECT in terms of XOR, AND, OR | 
|  | // on platforms which do not support blend natively. | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | SDValue Mask = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue Op2 = Op.getOperand(2); | 
|  |  | 
|  | EVT VT = Mask.getValueType(); | 
|  |  | 
|  | // If we can't even use the basic vector operations of | 
|  | // AND,OR,XOR, we will have to scalarize the op. | 
|  | // Notice that the operation may be 'promoted' which means that it is | 
|  | // 'bitcasted' to another type which is handled. | 
|  | // This operation also isn't safe with AND, OR, XOR when the boolean | 
|  | // type is 0/1 as we need an all ones vector constant to mask with. | 
|  | // FIXME: Sign extend 1 to all ones if thats legal on the target. | 
|  | if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || | 
|  | TLI.getBooleanContents(Op1.getValueType()) != | 
|  | TargetLowering::ZeroOrNegativeOneBooleanContent) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | // If the mask and the type are different sizes, unroll the vector op. This | 
|  | // can occur when getSetCCResultType returns something that is different in | 
|  | // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. | 
|  | if (VT.getSizeInBits() != Op1.getValueSizeInBits()) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | // Bitcast the operands to be the same type as the mask. | 
|  | // This is needed when we select between FP types because | 
|  | // the mask is a vector of integers. | 
|  | Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); | 
|  | Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); | 
|  |  | 
|  | SDValue AllOnes = DAG.getConstant( | 
|  | APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); | 
|  | SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); | 
|  |  | 
|  | Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); | 
|  | Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); | 
|  | SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); | 
|  | return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandABS(SDValue Op) { | 
|  | // Attempt to expand using TargetLowering. | 
|  | SDValue Result; | 
|  | if (TLI.expandABS(Op.getNode(), Result, DAG)) | 
|  | return Result; | 
|  |  | 
|  | // Otherwise go ahead and unroll. | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) { | 
|  | // Attempt to expand using TargetLowering. | 
|  | SDValue Result; | 
|  | if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG)) | 
|  | return Result; | 
|  |  | 
|  | // Otherwise go ahead and unroll. | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { | 
|  | EVT VT = Op.getOperand(0).getValueType(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // Attempt to expand using TargetLowering. | 
|  | SDValue Result; | 
|  | if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG)) | 
|  | return Result; | 
|  |  | 
|  | // Make sure that the SINT_TO_FP and SRL instructions are available. | 
|  | if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | unsigned BW = VT.getScalarSizeInBits(); | 
|  | assert((BW == 64 || BW == 32) && | 
|  | "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); | 
|  |  | 
|  | SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); | 
|  |  | 
|  | // Constants to clear the upper part of the word. | 
|  | // Notice that we can also use SHL+SHR, but using a constant is slightly | 
|  | // faster on x86. | 
|  | uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; | 
|  | SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); | 
|  |  | 
|  | // Two to the power of half-word-size. | 
|  | SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); | 
|  |  | 
|  | // Clear upper part of LO, lower HI | 
|  | SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); | 
|  | SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); | 
|  |  | 
|  | // Convert hi and lo to floats | 
|  | // Convert the hi part back to the upper values | 
|  | // TODO: Can any fast-math-flags be set on these nodes? | 
|  | SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); | 
|  | fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); | 
|  | SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); | 
|  |  | 
|  | // Add the two halves | 
|  | return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { | 
|  | SDLoc DL(Op); | 
|  | SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); | 
|  | // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. | 
|  | return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), | 
|  | Zero, Op.getOperand(0)); | 
|  | } | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { | 
|  | // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, | 
|  | // we can defer this to operation legalization where it will be lowered as | 
|  | // a+(-b). | 
|  | EVT VT = Op.getValueType(); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::FADD, VT)) | 
|  | return Op; // Defer to LegalizeDAG | 
|  |  | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) { | 
|  | SDValue Result; | 
|  | if (TLI.expandCTPOP(Op.getNode(), Result, DAG)) | 
|  | return Result; | 
|  |  | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { | 
|  | SDValue Result; | 
|  | if (TLI.expandCTLZ(Op.getNode(), Result, DAG)) | 
|  | return Result; | 
|  |  | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) { | 
|  | SDValue Result; | 
|  | if (TLI.expandCTTZ(Op.getNode(), Result, DAG)) | 
|  | return Result; | 
|  |  | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) { | 
|  | SDValue Result; | 
|  | if (TLI.expandFunnelShift(Op.getNode(), Result, DAG)) | 
|  | return Result; | 
|  |  | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandROT(SDValue Op) { | 
|  | SDValue Result; | 
|  | if (TLI.expandROT(Op.getNode(), Result, DAG)) | 
|  | return Result; | 
|  |  | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) { | 
|  | if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG)) | 
|  | return Expanded; | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandUADDSUBO(SDValue Op) { | 
|  | SDValue Result, Overflow; | 
|  | TLI.expandUADDSUBO(Op.getNode(), Result, Overflow, DAG); | 
|  |  | 
|  | if (Op.getResNo() == 0) { | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); | 
|  | return Result; | 
|  | } else { | 
|  | AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); | 
|  | return Overflow; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandSADDSUBO(SDValue Op) { | 
|  | SDValue Result, Overflow; | 
|  | TLI.expandSADDSUBO(Op.getNode(), Result, Overflow, DAG); | 
|  |  | 
|  | if (Op.getResNo() == 0) { | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); | 
|  | return Result; | 
|  | } else { | 
|  | AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); | 
|  | return Overflow; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandMULO(SDValue Op) { | 
|  | SDValue Result, Overflow; | 
|  | if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG)) | 
|  | std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode()); | 
|  |  | 
|  | if (Op.getResNo() == 0) { | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); | 
|  | return Result; | 
|  | } else { | 
|  | AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); | 
|  | return Overflow; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) { | 
|  | if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG)) | 
|  | return Expanded; | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) { | 
|  | if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG)) | 
|  | return Expanded; | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | unsigned NumOpers = Op.getNumOperands(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT ValueVTs[] = {EltVT, MVT::Other}; | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | SmallVector<SDValue, 32> OpValues; | 
|  | SmallVector<SDValue, 32> OpChains; | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SmallVector<SDValue, 4> Opers; | 
|  | SDValue Idx = DAG.getConstant(i, dl, | 
|  | TLI.getVectorIdxTy(DAG.getDataLayout())); | 
|  |  | 
|  | // The Chain is the first operand. | 
|  | Opers.push_back(Chain); | 
|  |  | 
|  | // Now process the remaining operands. | 
|  | for (unsigned j = 1; j < NumOpers; ++j) { | 
|  | SDValue Oper = Op.getOperand(j); | 
|  | EVT OperVT = Oper.getValueType(); | 
|  |  | 
|  | if (OperVT.isVector()) | 
|  | Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
|  | OperVT.getVectorElementType(), Oper, Idx); | 
|  |  | 
|  | Opers.push_back(Oper); | 
|  | } | 
|  |  | 
|  | SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); | 
|  |  | 
|  | OpValues.push_back(ScalarOp.getValue(0)); | 
|  | OpChains.push_back(ScalarOp.getValue(1)); | 
|  | } | 
|  |  | 
|  | SDValue Result = DAG.getBuildVector(VT, dl, OpValues); | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); | 
|  |  | 
|  | AddLegalizedOperand(Op.getValue(0), Result); | 
|  | AddLegalizedOperand(Op.getValue(1), NewChain); | 
|  |  | 
|  | return Op.getResNo() ? NewChain : Result; | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); | 
|  | EVT TmpEltVT = LHS.getValueType().getVectorElementType(); | 
|  | SDLoc dl(Op); | 
|  | SmallVector<SDValue, 8> Ops(NumElems); | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue LHSElem = DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, | 
|  | DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | SDValue RHSElem = DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, | 
|  | DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | Ops[i] = DAG.getNode(ISD::SETCC, dl, | 
|  | TLI.getSetCCResultType(DAG.getDataLayout(), | 
|  | *DAG.getContext(), TmpEltVT), | 
|  | LHSElem, RHSElem, CC); | 
|  | Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], | 
|  | DAG.getConstant(APInt::getAllOnesValue | 
|  | (EltVT.getSizeInBits()), dl, EltVT), | 
|  | DAG.getConstant(0, dl, EltVT)); | 
|  | } | 
|  | return DAG.getBuildVector(VT, dl, Ops); | 
|  | } | 
|  |  | 
|  | bool SelectionDAG::LegalizeVectors() { | 
|  | return VectorLegalizer(*this).Run(); | 
|  | } |