|  | //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the PPCISelLowering class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPCISelLowering.h" | 
|  | #include "MCTargetDesc/PPCPredicates.h" | 
|  | #include "PPCMachineFunctionInfo.h" | 
|  | #include "PPCPerfectShuffle.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "PPCTargetObjectFile.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", | 
|  | cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", | 
|  | cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", | 
|  | cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); | 
|  |  | 
|  | // FIXME: Remove this once the bug has been fixed! | 
|  | extern cl::opt<bool> ANDIGlueBug; | 
|  |  | 
|  | static TargetLoweringObjectFile *createTLOF(const Triple &TT) { | 
|  | // If it isn't a Mach-O file then it's going to be a linux ELF | 
|  | // object file. | 
|  | if (TT.isOSDarwin()) | 
|  | return new TargetLoweringObjectFileMachO(); | 
|  |  | 
|  | return new PPC64LinuxTargetObjectFile(); | 
|  | } | 
|  |  | 
|  | PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) | 
|  | : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))), | 
|  | Subtarget(*TM.getSubtargetImpl()) { | 
|  | setPow2DivIsCheap(); | 
|  |  | 
|  | // Use _setjmp/_longjmp instead of setjmp/longjmp. | 
|  | setUseUnderscoreSetJmp(true); | 
|  | setUseUnderscoreLongJmp(true); | 
|  |  | 
|  | // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all | 
|  | // arguments are at least 4/8 bytes aligned. | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | setMinStackArgumentAlignment(isPPC64 ? 8:4); | 
|  |  | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i32, &PPC::GPRCRegClass); | 
|  | addRegisterClass(MVT::f32, &PPC::F4RCRegClass); | 
|  | addRegisterClass(MVT::f64, &PPC::F8RCRegClass); | 
|  |  | 
|  | // PowerPC has an i16 but no i8 (or i1) SEXTLOAD | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  |  | 
|  | // PowerPC has pre-inc load and store's. | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); | 
|  |  | 
|  | if (Subtarget.useCRBits()) { | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); | 
|  |  | 
|  | if (isPPC64 || Subtarget.hasFPCVT()) { | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); | 
|  | AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, | 
|  | isPPC64 ? MVT::i64 : MVT::i32); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); | 
|  | AddPromotedToType (ISD::UINT_TO_FP, MVT::i1, | 
|  | isPPC64 ? MVT::i64 : MVT::i32); | 
|  | } else { | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); | 
|  | } | 
|  |  | 
|  | // PowerPC does not support direct load / store of condition registers | 
|  | setOperationAction(ISD::LOAD, MVT::i1, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::i1, Custom); | 
|  |  | 
|  | // FIXME: Remove this once the ANDI glue bug is fixed: | 
|  | if (ANDIGlueBug) | 
|  | setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); | 
|  |  | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); | 
|  | setTruncStoreAction(MVT::i64, MVT::i1, Expand); | 
|  | setTruncStoreAction(MVT::i32, MVT::i1, Expand); | 
|  | setTruncStoreAction(MVT::i16, MVT::i1, Expand); | 
|  | setTruncStoreAction(MVT::i8, MVT::i1, Expand); | 
|  |  | 
|  | addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); | 
|  | } | 
|  |  | 
|  | // This is used in the ppcf128->int sequence.  Note it has different semantics | 
|  | // from FP_ROUND:  that rounds to nearest, this rounds to zero. | 
|  | setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); | 
|  |  | 
|  | // We do not currently implement these libm ops for PowerPC. | 
|  | setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); | 
|  | setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand); | 
|  | setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); | 
|  | setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand); | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); | 
|  | setOperationAction(ISD::FREM, MVT::ppcf128, Expand); | 
|  |  | 
|  | // PowerPC has no SREM/UREM instructions | 
|  | setOperationAction(ISD::SREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SREM, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i64, Expand); | 
|  |  | 
|  | // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. | 
|  | setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UDIVREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SDIVREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UDIVREM, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SDIVREM, MVT::i64, Expand); | 
|  |  | 
|  | // We don't support sin/cos/sqrt/fmod/pow | 
|  | setOperationAction(ISD::FSIN , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FREM , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FPOW , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FMA  , MVT::f64, Legal); | 
|  | setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f32, Expand); | 
|  | setOperationAction(ISD::FREM , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FPOW , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FMA  , MVT::f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); | 
|  |  | 
|  | // If we're enabling GP optimizations, use hardware square root | 
|  | if (!Subtarget.hasFSQRT() && | 
|  | !(TM.Options.UnsafeFPMath && | 
|  | Subtarget.hasFRSQRTE() && Subtarget.hasFRE())) | 
|  | setOperationAction(ISD::FSQRT, MVT::f64, Expand); | 
|  |  | 
|  | if (!Subtarget.hasFSQRT() && | 
|  | !(TM.Options.UnsafeFPMath && | 
|  | Subtarget.hasFRSQRTES() && Subtarget.hasFRES())) | 
|  | setOperationAction(ISD::FSQRT, MVT::f32, Expand); | 
|  |  | 
|  | if (Subtarget.hasFCPSGN()) { | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); | 
|  | } else { | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); | 
|  | } | 
|  |  | 
|  | if (Subtarget.hasFPRND()) { | 
|  | setOperationAction(ISD::FFLOOR, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FCEIL,  MVT::f64, Legal); | 
|  | setOperationAction(ISD::FTRUNC, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FROUND, MVT::f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FFLOOR, MVT::f32, Legal); | 
|  | setOperationAction(ISD::FCEIL,  MVT::f32, Legal); | 
|  | setOperationAction(ISD::FTRUNC, MVT::f32, Legal); | 
|  | setOperationAction(ISD::FROUND, MVT::f32, Legal); | 
|  | } | 
|  |  | 
|  | // PowerPC does not have BSWAP, CTPOP or CTTZ | 
|  | setOperationAction(ISD::BSWAP, MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTTZ , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); | 
|  | setOperationAction(ISD::BSWAP, MVT::i64  , Expand); | 
|  | setOperationAction(ISD::CTTZ , MVT::i64  , Expand); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); | 
|  |  | 
|  | if (Subtarget.hasPOPCNTD()) { | 
|  | setOperationAction(ISD::CTPOP, MVT::i32  , Legal); | 
|  | setOperationAction(ISD::CTPOP, MVT::i64  , Legal); | 
|  | } else { | 
|  | setOperationAction(ISD::CTPOP, MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTPOP, MVT::i64  , Expand); | 
|  | } | 
|  |  | 
|  | // PowerPC does not have ROTR | 
|  | setOperationAction(ISD::ROTR, MVT::i32   , Expand); | 
|  | setOperationAction(ISD::ROTR, MVT::i64   , Expand); | 
|  |  | 
|  | if (!Subtarget.useCRBits()) { | 
|  | // PowerPC does not have Select | 
|  | setOperationAction(ISD::SELECT, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::f32, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::f64, Expand); | 
|  | } | 
|  |  | 
|  | // PowerPC wants to turn select_cc of FP into fsel when possible. | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); | 
|  |  | 
|  | // PowerPC wants to optimize integer setcc a bit | 
|  | if (!Subtarget.useCRBits()) | 
|  | setOperationAction(ISD::SETCC, MVT::i32, Custom); | 
|  |  | 
|  | // PowerPC does not have BRCOND which requires SetCC | 
|  | if (!Subtarget.useCRBits()) | 
|  | setOperationAction(ISD::BRCOND, MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BR_JT,  MVT::Other, Expand); | 
|  |  | 
|  | // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); | 
|  |  | 
|  | // PowerPC does not have [U|S]INT_TO_FP | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BITCAST, MVT::f32, Expand); | 
|  | setOperationAction(ISD::BITCAST, MVT::i32, Expand); | 
|  | setOperationAction(ISD::BITCAST, MVT::i64, Expand); | 
|  | setOperationAction(ISD::BITCAST, MVT::f64, Expand); | 
|  |  | 
|  | // We cannot sextinreg(i1).  Expand to shifts. | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); | 
|  |  | 
|  | // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support | 
|  | // SjLj exception handling but a light-weight setjmp/longjmp replacement to | 
|  | // support continuation, user-level threading, and etc.. As a result, no | 
|  | // other SjLj exception interfaces are implemented and please don't build | 
|  | // your own exception handling based on them. | 
|  | // LLVM/Clang supports zero-cost DWARF exception handling. | 
|  | setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); | 
|  | setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); | 
|  |  | 
|  | // We want to legalize GlobalAddress and ConstantPool nodes into the | 
|  | // appropriate instructions to materialize the address. | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); | 
|  | setOperationAction(ISD::BlockAddress,  MVT::i32, Custom); | 
|  | setOperationAction(ISD::ConstantPool,  MVT::i32, Custom); | 
|  | setOperationAction(ISD::JumpTable,     MVT::i32, Custom); | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::BlockAddress,  MVT::i64, Custom); | 
|  | setOperationAction(ISD::ConstantPool,  MVT::i64, Custom); | 
|  | setOperationAction(ISD::JumpTable,     MVT::i64, Custom); | 
|  |  | 
|  | // TRAP is legal. | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Legal); | 
|  |  | 
|  | // TRAMPOLINE is custom lowered. | 
|  | setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); | 
|  | setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); | 
|  |  | 
|  | // VASTART needs to be custom lowered to use the VarArgsFrameIndex | 
|  | setOperationAction(ISD::VASTART           , MVT::Other, Custom); | 
|  |  | 
|  | if (Subtarget.isSVR4ABI()) { | 
|  | if (isPPC64) { | 
|  | // VAARG always uses double-word chunks, so promote anything smaller. | 
|  | setOperationAction(ISD::VAARG, MVT::i1, Promote); | 
|  | AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); | 
|  | setOperationAction(ISD::VAARG, MVT::i8, Promote); | 
|  | AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); | 
|  | setOperationAction(ISD::VAARG, MVT::i16, Promote); | 
|  | AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); | 
|  | setOperationAction(ISD::VAARG, MVT::i32, Promote); | 
|  | AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); | 
|  | setOperationAction(ISD::VAARG, MVT::Other, Expand); | 
|  | } else { | 
|  | // VAARG is custom lowered with the 32-bit SVR4 ABI. | 
|  | setOperationAction(ISD::VAARG, MVT::Other, Custom); | 
|  | setOperationAction(ISD::VAARG, MVT::i64, Custom); | 
|  | } | 
|  | } else | 
|  | setOperationAction(ISD::VAARG, MVT::Other, Expand); | 
|  |  | 
|  | if (Subtarget.isSVR4ABI() && !isPPC64) | 
|  | // VACOPY is custom lowered with the 32-bit SVR4 ABI. | 
|  | setOperationAction(ISD::VACOPY            , MVT::Other, Custom); | 
|  | else | 
|  | setOperationAction(ISD::VACOPY            , MVT::Other, Expand); | 
|  |  | 
|  | // Use the default implementation. | 
|  | setOperationAction(ISD::VAEND             , MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom); | 
|  |  | 
|  | // We want to custom lower some of our intrinsics. | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  |  | 
|  | // To handle counter-based loop conditions. | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); | 
|  |  | 
|  | // Comparisons that require checking two conditions. | 
|  | setCondCodeAction(ISD::SETULT, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETULT, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETONE, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETONE, MVT::f64, Expand); | 
|  |  | 
|  | if (Subtarget.has64BitSupport()) { | 
|  | // They also have instructions for converting between i64 and fp. | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); | 
|  | // This is just the low 32 bits of a (signed) fp->i64 conversion. | 
|  | // We cannot do this with Promote because i64 is not a legal type. | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); | 
|  |  | 
|  | if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); | 
|  | } else { | 
|  | // PowerPC does not have FP_TO_UINT on 32-bit implementations. | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); | 
|  | } | 
|  |  | 
|  | // With the instructions enabled under FPCVT, we can do everything. | 
|  | if (Subtarget.hasFPCVT()) { | 
|  | if (Subtarget.has64BitSupport()) { | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget.use64BitRegs()) { | 
|  | // 64-bit PowerPC implementations can support i64 types directly | 
|  | addRegisterClass(MVT::i64, &PPC::G8RCRegClass); | 
|  | // BUILD_PAIR can't be handled natively, and should be expanded to shl/or | 
|  | setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); | 
|  | // 64-bit PowerPC wants to expand i128 shifts itself. | 
|  | setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); | 
|  | } else { | 
|  | // 32-bit PowerPC wants to expand i64 shifts itself. | 
|  | setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget.hasAltivec()) { | 
|  | // First set operation action for all vector types to expand. Then we | 
|  | // will selectively turn on ones that can be effectively codegen'd. | 
|  | for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; | 
|  | i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { | 
|  | MVT::SimpleValueType VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | // add/sub are legal for all supported vector VT's. | 
|  | setOperationAction(ISD::ADD , VT, Legal); | 
|  | setOperationAction(ISD::SUB , VT, Legal); | 
|  |  | 
|  | // We promote all shuffles to v16i8. | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); | 
|  | AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); | 
|  |  | 
|  | // We promote all non-typed operations to v4i32. | 
|  | setOperationAction(ISD::AND   , VT, Promote); | 
|  | AddPromotedToType (ISD::AND   , VT, MVT::v4i32); | 
|  | setOperationAction(ISD::OR    , VT, Promote); | 
|  | AddPromotedToType (ISD::OR    , VT, MVT::v4i32); | 
|  | setOperationAction(ISD::XOR   , VT, Promote); | 
|  | AddPromotedToType (ISD::XOR   , VT, MVT::v4i32); | 
|  | setOperationAction(ISD::LOAD  , VT, Promote); | 
|  | AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32); | 
|  | setOperationAction(ISD::SELECT, VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); | 
|  | setOperationAction(ISD::STORE, VT, Promote); | 
|  | AddPromotedToType (ISD::STORE, VT, MVT::v4i32); | 
|  |  | 
|  | // No other operations are legal. | 
|  | setOperationAction(ISD::MUL , VT, Expand); | 
|  | setOperationAction(ISD::SDIV, VT, Expand); | 
|  | setOperationAction(ISD::SREM, VT, Expand); | 
|  | setOperationAction(ISD::UDIV, VT, Expand); | 
|  | setOperationAction(ISD::UREM, VT, Expand); | 
|  | setOperationAction(ISD::FDIV, VT, Expand); | 
|  | setOperationAction(ISD::FREM, VT, Expand); | 
|  | setOperationAction(ISD::FNEG, VT, Expand); | 
|  | setOperationAction(ISD::FSQRT, VT, Expand); | 
|  | setOperationAction(ISD::FLOG, VT, Expand); | 
|  | setOperationAction(ISD::FLOG10, VT, Expand); | 
|  | setOperationAction(ISD::FLOG2, VT, Expand); | 
|  | setOperationAction(ISD::FEXP, VT, Expand); | 
|  | setOperationAction(ISD::FEXP2, VT, Expand); | 
|  | setOperationAction(ISD::FSIN, VT, Expand); | 
|  | setOperationAction(ISD::FCOS, VT, Expand); | 
|  | setOperationAction(ISD::FABS, VT, Expand); | 
|  | setOperationAction(ISD::FPOWI, VT, Expand); | 
|  | setOperationAction(ISD::FFLOOR, VT, Expand); | 
|  | setOperationAction(ISD::FCEIL,  VT, Expand); | 
|  | setOperationAction(ISD::FTRUNC, VT, Expand); | 
|  | setOperationAction(ISD::FRINT,  VT, Expand); | 
|  | setOperationAction(ISD::FNEARBYINT, VT, Expand); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); | 
|  | setOperationAction(ISD::BUILD_VECTOR, VT, Expand); | 
|  | setOperationAction(ISD::MULHU, VT, Expand); | 
|  | setOperationAction(ISD::MULHS, VT, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, VT, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, VT, Expand); | 
|  | setOperationAction(ISD::UDIVREM, VT, Expand); | 
|  | setOperationAction(ISD::SDIVREM, VT, Expand); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); | 
|  | setOperationAction(ISD::FPOW, VT, Expand); | 
|  | setOperationAction(ISD::BSWAP, VT, Expand); | 
|  | setOperationAction(ISD::CTPOP, VT, Expand); | 
|  | setOperationAction(ISD::CTLZ, VT, Expand); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); | 
|  | setOperationAction(ISD::CTTZ, VT, Expand); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); | 
|  | setOperationAction(ISD::VSELECT, VT, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); | 
|  |  | 
|  | for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; | 
|  | j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) { | 
|  | MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j; | 
|  | setTruncStoreAction(VT, InnerVT, Expand); | 
|  | } | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, Expand); | 
|  | } | 
|  |  | 
|  | // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle | 
|  | // with merges, splats, etc. | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::AND   , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::OR    , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::XOR   , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::LOAD  , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SELECT, MVT::v4i32, | 
|  | Subtarget.useCRBits() ? Legal : Expand); | 
|  | setOperationAction(ISD::STORE , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); | 
|  |  | 
|  | addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); | 
|  | addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); | 
|  | addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); | 
|  | addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); | 
|  |  | 
|  | setOperationAction(ISD::MUL, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FMA, MVT::v4f32, Legal); | 
|  |  | 
|  | if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { | 
|  | setOperationAction(ISD::FDIV, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::MUL, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::MUL, MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::MUL, MVT::v16i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); | 
|  |  | 
|  | // Altivec does not contain unordered floating-point compare instructions | 
|  | setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); | 
|  | setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); | 
|  | setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand); | 
|  | setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); | 
|  |  | 
|  | if (Subtarget.hasVSX()) { | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FROUND, MVT::v2f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FROUND, MVT::v4f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::MUL, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FMA, MVT::v2f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FDIV, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); | 
|  |  | 
|  | // Share the Altivec comparison restrictions. | 
|  | setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); | 
|  | setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); | 
|  | setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand); | 
|  | setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::STORE, MVT::v2f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); | 
|  |  | 
|  | addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); | 
|  | addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); | 
|  |  | 
|  | // VSX v2i64 only supports non-arithmetic operations. | 
|  | setOperationAction(ISD::ADD, MVT::v2i64, Expand); | 
|  | setOperationAction(ISD::SUB, MVT::v2i64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SHL, MVT::v2i64, Expand); | 
|  | setOperationAction(ISD::SRA, MVT::v2i64, Expand); | 
|  | setOperationAction(ISD::SRL, MVT::v2i64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SETCC, MVT::v2i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::v2i64, Promote); | 
|  | AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); | 
|  | setOperationAction(ISD::STORE, MVT::v2i64, Promote); | 
|  | AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); | 
|  |  | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); | 
|  |  | 
|  | // Vector operation legalization checks the result type of | 
|  | // SIGN_EXTEND_INREG, overall legalization checks the inner type. | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); | 
|  |  | 
|  | addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Subtarget.has64BitSupport()) { | 
|  | setOperationAction(ISD::PREFETCH, MVT::Other, Legal); | 
|  | setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand); | 
|  | setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); | 
|  | setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand); | 
|  | setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); | 
|  |  | 
|  | setBooleanContents(ZeroOrOneBooleanContent); | 
|  | // Altivec instructions set fields to all zeros or all ones. | 
|  | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); | 
|  |  | 
|  | if (!isPPC64) { | 
|  | // These libcalls are not available in 32-bit. | 
|  | setLibcallName(RTLIB::SHL_I128, nullptr); | 
|  | setLibcallName(RTLIB::SRL_I128, nullptr); | 
|  | setLibcallName(RTLIB::SRA_I128, nullptr); | 
|  | } | 
|  |  | 
|  | if (isPPC64) { | 
|  | setStackPointerRegisterToSaveRestore(PPC::X1); | 
|  | setExceptionPointerRegister(PPC::X3); | 
|  | setExceptionSelectorRegister(PPC::X4); | 
|  | } else { | 
|  | setStackPointerRegisterToSaveRestore(PPC::R1); | 
|  | setExceptionPointerRegister(PPC::R3); | 
|  | setExceptionSelectorRegister(PPC::R4); | 
|  | } | 
|  |  | 
|  | // We have target-specific dag combine patterns for the following nodes: | 
|  | setTargetDAGCombine(ISD::SINT_TO_FP); | 
|  | setTargetDAGCombine(ISD::LOAD); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  | setTargetDAGCombine(ISD::BR_CC); | 
|  | if (Subtarget.useCRBits()) | 
|  | setTargetDAGCombine(ISD::BRCOND); | 
|  | setTargetDAGCombine(ISD::BSWAP); | 
|  | setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); | 
|  |  | 
|  | setTargetDAGCombine(ISD::SIGN_EXTEND); | 
|  | setTargetDAGCombine(ISD::ZERO_EXTEND); | 
|  | setTargetDAGCombine(ISD::ANY_EXTEND); | 
|  |  | 
|  | if (Subtarget.useCRBits()) { | 
|  | setTargetDAGCombine(ISD::TRUNCATE); | 
|  | setTargetDAGCombine(ISD::SETCC); | 
|  | setTargetDAGCombine(ISD::SELECT_CC); | 
|  | } | 
|  |  | 
|  | // Use reciprocal estimates. | 
|  | if (TM.Options.UnsafeFPMath) { | 
|  | setTargetDAGCombine(ISD::FDIV); | 
|  | setTargetDAGCombine(ISD::FSQRT); | 
|  | } | 
|  |  | 
|  | // Darwin long double math library functions have $LDBL128 appended. | 
|  | if (Subtarget.isDarwin()) { | 
|  | setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); | 
|  | setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); | 
|  | setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); | 
|  | setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); | 
|  | setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); | 
|  | setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); | 
|  | setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); | 
|  | setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); | 
|  | setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); | 
|  | setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); | 
|  | } | 
|  |  | 
|  | // With 32 condition bits, we don't need to sink (and duplicate) compares | 
|  | // aggressively in CodeGenPrep. | 
|  | if (Subtarget.useCRBits()) | 
|  | setHasMultipleConditionRegisters(); | 
|  |  | 
|  | setMinFunctionAlignment(2); | 
|  | if (Subtarget.isDarwin()) | 
|  | setPrefFunctionAlignment(4); | 
|  |  | 
|  | if (isPPC64 && Subtarget.isJITCodeModel()) | 
|  | // Temporary workaround for the inability of PPC64 JIT to handle jump | 
|  | // tables. | 
|  | setSupportJumpTables(false); | 
|  |  | 
|  | setInsertFencesForAtomic(true); | 
|  |  | 
|  | if (Subtarget.enableMachineScheduler()) | 
|  | setSchedulingPreference(Sched::Source); | 
|  | else | 
|  | setSchedulingPreference(Sched::Hybrid); | 
|  |  | 
|  | computeRegisterProperties(); | 
|  |  | 
|  | // The Freescale cores does better with aggressive inlining of memcpy and | 
|  | // friends. Gcc uses same threshold of 128 bytes (= 32 word stores). | 
|  | if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || | 
|  | Subtarget.getDarwinDirective() == PPC::DIR_E5500) { | 
|  | MaxStoresPerMemset = 32; | 
|  | MaxStoresPerMemsetOptSize = 16; | 
|  | MaxStoresPerMemcpy = 32; | 
|  | MaxStoresPerMemcpyOptSize = 8; | 
|  | MaxStoresPerMemmove = 32; | 
|  | MaxStoresPerMemmoveOptSize = 8; | 
|  |  | 
|  | setPrefFunctionAlignment(4); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getMaxByValAlign - Helper for getByValTypeAlignment to determine | 
|  | /// the desired ByVal argument alignment. | 
|  | static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, | 
|  | unsigned MaxMaxAlign) { | 
|  | if (MaxAlign == MaxMaxAlign) | 
|  | return; | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { | 
|  | if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) | 
|  | MaxAlign = 32; | 
|  | else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) | 
|  | MaxAlign = 16; | 
|  | } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | unsigned EltAlign = 0; | 
|  | getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); | 
|  | if (EltAlign > MaxAlign) | 
|  | MaxAlign = EltAlign; | 
|  | } else if (StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | unsigned EltAlign = 0; | 
|  | getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign); | 
|  | if (EltAlign > MaxAlign) | 
|  | MaxAlign = EltAlign; | 
|  | if (MaxAlign == MaxMaxAlign) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | 
|  | /// function arguments in the caller parameter area. | 
|  | unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { | 
|  | // Darwin passes everything on 4 byte boundary. | 
|  | if (Subtarget.isDarwin()) | 
|  | return 4; | 
|  |  | 
|  | // 16byte and wider vectors are passed on 16byte boundary. | 
|  | // The rest is 8 on PPC64 and 4 on PPC32 boundary. | 
|  | unsigned Align = Subtarget.isPPC64() ? 8 : 4; | 
|  | if (Subtarget.hasAltivec() || Subtarget.hasQPX()) | 
|  | getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch (Opcode) { | 
|  | default: return nullptr; | 
|  | case PPCISD::FSEL:            return "PPCISD::FSEL"; | 
|  | case PPCISD::FCFID:           return "PPCISD::FCFID"; | 
|  | case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ"; | 
|  | case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ"; | 
|  | case PPCISD::FRE:             return "PPCISD::FRE"; | 
|  | case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE"; | 
|  | case PPCISD::STFIWX:          return "PPCISD::STFIWX"; | 
|  | case PPCISD::VMADDFP:         return "PPCISD::VMADDFP"; | 
|  | case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP"; | 
|  | case PPCISD::VPERM:           return "PPCISD::VPERM"; | 
|  | case PPCISD::Hi:              return "PPCISD::Hi"; | 
|  | case PPCISD::Lo:              return "PPCISD::Lo"; | 
|  | case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY"; | 
|  | case PPCISD::LOAD:            return "PPCISD::LOAD"; | 
|  | case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC"; | 
|  | case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC"; | 
|  | case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg"; | 
|  | case PPCISD::SRL:             return "PPCISD::SRL"; | 
|  | case PPCISD::SRA:             return "PPCISD::SRA"; | 
|  | case PPCISD::SHL:             return "PPCISD::SHL"; | 
|  | case PPCISD::CALL:            return "PPCISD::CALL"; | 
|  | case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP"; | 
|  | case PPCISD::MTCTR:           return "PPCISD::MTCTR"; | 
|  | case PPCISD::BCTRL:           return "PPCISD::BCTRL"; | 
|  | case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG"; | 
|  | case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP"; | 
|  | case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; | 
|  | case PPCISD::MFOCRF:          return "PPCISD::MFOCRF"; | 
|  | case PPCISD::VCMP:            return "PPCISD::VCMP"; | 
|  | case PPCISD::VCMPo:           return "PPCISD::VCMPo"; | 
|  | case PPCISD::LBRX:            return "PPCISD::LBRX"; | 
|  | case PPCISD::STBRX:           return "PPCISD::STBRX"; | 
|  | case PPCISD::LARX:            return "PPCISD::LARX"; | 
|  | case PPCISD::STCX:            return "PPCISD::STCX"; | 
|  | case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH"; | 
|  | case PPCISD::BDNZ:            return "PPCISD::BDNZ"; | 
|  | case PPCISD::BDZ:             return "PPCISD::BDZ"; | 
|  | case PPCISD::MFFS:            return "PPCISD::MFFS"; | 
|  | case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ"; | 
|  | case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN"; | 
|  | case PPCISD::CR6SET:          return "PPCISD::CR6SET"; | 
|  | case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET"; | 
|  | case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA"; | 
|  | case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L"; | 
|  | case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L"; | 
|  | case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT"; | 
|  | case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; | 
|  | case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L"; | 
|  | case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS"; | 
|  | case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA"; | 
|  | case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L"; | 
|  | case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR"; | 
|  | case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA"; | 
|  | case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L"; | 
|  | case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR"; | 
|  | case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; | 
|  | case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L"; | 
|  | case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT"; | 
|  | case PPCISD::SC:              return "PPCISD::SC"; | 
|  | } | 
|  | } | 
|  |  | 
|  | EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { | 
|  | if (!VT.isVector()) | 
|  | return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; | 
|  | return VT.changeVectorElementTypeToInteger(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Node matching predicates, for use by the tblgen matching code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isFloatingPointZero - Return true if this is 0.0 or -0.0. | 
|  | static bool isFloatingPointZero(SDValue Op) { | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) | 
|  | return CFP->getValueAPF().isZero(); | 
|  | else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { | 
|  | // Maybe this has already been legalized into the constant pool? | 
|  | if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) | 
|  | return CFP->getValueAPF().isZero(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return | 
|  | /// true if Op is undef or if it matches the specified value. | 
|  | static bool isConstantOrUndef(int Op, int Val) { | 
|  | return Op < 0 || Op == Val; | 
|  | } | 
|  |  | 
|  | /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a | 
|  | /// VPKUHUM instruction. | 
|  | /// The ShuffleKind distinguishes between big-endian operations with | 
|  | /// two different inputs (0), either-endian operations with two identical | 
|  | /// inputs (1), and little-endian operantion with two different inputs (2). | 
|  | /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). | 
|  | bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, | 
|  | SelectionDAG &DAG) { | 
|  | bool IsLE = DAG.getSubtarget().getDataLayout()->isLittleEndian(); | 
|  | if (ShuffleKind == 0) { | 
|  | if (IsLE) | 
|  | return false; | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) | 
|  | return false; | 
|  | } else if (ShuffleKind == 2) { | 
|  | if (!IsLE) | 
|  | return false; | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | if (!isConstantOrUndef(N->getMaskElt(i), i*2)) | 
|  | return false; | 
|  | } else if (ShuffleKind == 1) { | 
|  | unsigned j = IsLE ? 0 : 1; | 
|  | for (unsigned i = 0; i != 8; ++i) | 
|  | if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) || | 
|  | !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a | 
|  | /// VPKUWUM instruction. | 
|  | /// The ShuffleKind distinguishes between big-endian operations with | 
|  | /// two different inputs (0), either-endian operations with two identical | 
|  | /// inputs (1), and little-endian operantion with two different inputs (2). | 
|  | /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). | 
|  | bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, | 
|  | SelectionDAG &DAG) { | 
|  | bool IsLE = DAG.getSubtarget().getDataLayout()->isLittleEndian(); | 
|  | if (ShuffleKind == 0) { | 
|  | if (IsLE) | 
|  | return false; | 
|  | for (unsigned i = 0; i != 16; i += 2) | 
|  | if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) || | 
|  | !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3)) | 
|  | return false; | 
|  | } else if (ShuffleKind == 2) { | 
|  | if (!IsLE) | 
|  | return false; | 
|  | for (unsigned i = 0; i != 16; i += 2) | 
|  | if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) || | 
|  | !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1)) | 
|  | return false; | 
|  | } else if (ShuffleKind == 1) { | 
|  | unsigned j = IsLE ? 0 : 2; | 
|  | for (unsigned i = 0; i != 8; i += 2) | 
|  | if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   || | 
|  | !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) || | 
|  | !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   || | 
|  | !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVMerge - Common function, used to match vmrg* shuffles. | 
|  | /// | 
|  | static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, | 
|  | unsigned LHSStart, unsigned RHSStart) { | 
|  | if (N->getValueType(0) != MVT::v16i8) | 
|  | return false; | 
|  | assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && | 
|  | "Unsupported merge size!"); | 
|  |  | 
|  | for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units | 
|  | for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit | 
|  | if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), | 
|  | LHSStart+j+i*UnitSize) || | 
|  | !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), | 
|  | RHSStart+j+i*UnitSize)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for | 
|  | /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). | 
|  | /// The ShuffleKind distinguishes between big-endian merges with two | 
|  | /// different inputs (0), either-endian merges with two identical inputs (1), | 
|  | /// and little-endian merges with two different inputs (2).  For the latter, | 
|  | /// the input operands are swapped (see PPCInstrAltivec.td). | 
|  | bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, | 
|  | unsigned ShuffleKind, SelectionDAG &DAG) { | 
|  | if (DAG.getSubtarget().getDataLayout()->isLittleEndian()) { | 
|  | if (ShuffleKind == 1) // unary | 
|  | return isVMerge(N, UnitSize, 0, 0); | 
|  | else if (ShuffleKind == 2) // swapped | 
|  | return isVMerge(N, UnitSize, 0, 16); | 
|  | else | 
|  | return false; | 
|  | } else { | 
|  | if (ShuffleKind == 1) // unary | 
|  | return isVMerge(N, UnitSize, 8, 8); | 
|  | else if (ShuffleKind == 0) // normal | 
|  | return isVMerge(N, UnitSize, 8, 24); | 
|  | else | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for | 
|  | /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). | 
|  | /// The ShuffleKind distinguishes between big-endian merges with two | 
|  | /// different inputs (0), either-endian merges with two identical inputs (1), | 
|  | /// and little-endian merges with two different inputs (2).  For the latter, | 
|  | /// the input operands are swapped (see PPCInstrAltivec.td). | 
|  | bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, | 
|  | unsigned ShuffleKind, SelectionDAG &DAG) { | 
|  | if (DAG.getSubtarget().getDataLayout()->isLittleEndian()) { | 
|  | if (ShuffleKind == 1) // unary | 
|  | return isVMerge(N, UnitSize, 8, 8); | 
|  | else if (ShuffleKind == 2) // swapped | 
|  | return isVMerge(N, UnitSize, 8, 24); | 
|  | else | 
|  | return false; | 
|  | } else { | 
|  | if (ShuffleKind == 1) // unary | 
|  | return isVMerge(N, UnitSize, 0, 0); | 
|  | else if (ShuffleKind == 0) // normal | 
|  | return isVMerge(N, UnitSize, 0, 16); | 
|  | else | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift | 
|  | /// amount, otherwise return -1. | 
|  | /// The ShuffleKind distinguishes between big-endian operations with two | 
|  | /// different inputs (0), either-endian operations with two identical inputs | 
|  | /// (1), and little-endian operations with two different inputs (2).  For the | 
|  | /// latter, the input operands are swapped (see PPCInstrAltivec.td). | 
|  | int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, | 
|  | SelectionDAG &DAG) { | 
|  | if (N->getValueType(0) != MVT::v16i8) | 
|  | return -1; | 
|  |  | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  |  | 
|  | // Find the first non-undef value in the shuffle mask. | 
|  | unsigned i; | 
|  | for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) | 
|  | /*search*/; | 
|  |  | 
|  | if (i == 16) return -1;  // all undef. | 
|  |  | 
|  | // Otherwise, check to see if the rest of the elements are consecutively | 
|  | // numbered from this value. | 
|  | unsigned ShiftAmt = SVOp->getMaskElt(i); | 
|  | if (ShiftAmt < i) return -1; | 
|  |  | 
|  | ShiftAmt -= i; | 
|  | bool isLE = DAG.getTarget().getSubtargetImpl()->getDataLayout()-> | 
|  | isLittleEndian(); | 
|  |  | 
|  | if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { | 
|  | // Check the rest of the elements to see if they are consecutive. | 
|  | for (++i; i != 16; ++i) | 
|  | if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) | 
|  | return -1; | 
|  | } else if (ShuffleKind == 1) { | 
|  | // Check the rest of the elements to see if they are consecutive. | 
|  | for (++i; i != 16; ++i) | 
|  | if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) | 
|  | return -1; | 
|  | } else | 
|  | return -1; | 
|  |  | 
|  | if (ShuffleKind == 2 && isLE) | 
|  | ShiftAmt = 16 - ShiftAmt; | 
|  |  | 
|  | return ShiftAmt; | 
|  | } | 
|  |  | 
|  | /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a splat of a single element that is suitable for input to | 
|  | /// VSPLTB/VSPLTH/VSPLTW. | 
|  | bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { | 
|  | assert(N->getValueType(0) == MVT::v16i8 && | 
|  | (EltSize == 1 || EltSize == 2 || EltSize == 4)); | 
|  |  | 
|  | // This is a splat operation if each element of the permute is the same, and | 
|  | // if the value doesn't reference the second vector. | 
|  | unsigned ElementBase = N->getMaskElt(0); | 
|  |  | 
|  | // FIXME: Handle UNDEF elements too! | 
|  | if (ElementBase >= 16) | 
|  | return false; | 
|  |  | 
|  | // Check that the indices are consecutive, in the case of a multi-byte element | 
|  | // splatted with a v16i8 mask. | 
|  | for (unsigned i = 1; i != EltSize; ++i) | 
|  | if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { | 
|  | if (N->getMaskElt(i) < 0) continue; | 
|  | for (unsigned j = 0; j != EltSize; ++j) | 
|  | if (N->getMaskElt(i+j) != N->getMaskElt(j)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isAllNegativeZeroVector - Returns true if all elements of build_vector | 
|  | /// are -0.0. | 
|  | bool PPC::isAllNegativeZeroVector(SDNode *N) { | 
|  | BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); | 
|  |  | 
|  | APInt APVal, APUndef; | 
|  | unsigned BitSize; | 
|  | bool HasAnyUndefs; | 
|  |  | 
|  | if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) | 
|  | return CFP->getValueAPF().isNegZero(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the | 
|  | /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. | 
|  | unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, | 
|  | SelectionDAG &DAG) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  | assert(isSplatShuffleMask(SVOp, EltSize)); | 
|  | if (DAG.getSubtarget().getDataLayout()->isLittleEndian()) | 
|  | return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); | 
|  | else | 
|  | return SVOp->getMaskElt(0) / EltSize; | 
|  | } | 
|  |  | 
|  | /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed | 
|  | /// by using a vspltis[bhw] instruction of the specified element size, return | 
|  | /// the constant being splatted.  The ByteSize field indicates the number of | 
|  | /// bytes of each element [124] -> [bhw]. | 
|  | SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { | 
|  | SDValue OpVal(nullptr, 0); | 
|  |  | 
|  | // If ByteSize of the splat is bigger than the element size of the | 
|  | // build_vector, then we have a case where we are checking for a splat where | 
|  | // multiple elements of the buildvector are folded together into a single | 
|  | // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). | 
|  | unsigned EltSize = 16/N->getNumOperands(); | 
|  | if (EltSize < ByteSize) { | 
|  | unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval. | 
|  | SDValue UniquedVals[4]; | 
|  | assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); | 
|  |  | 
|  | // See if all of the elements in the buildvector agree across. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | // If the element isn't a constant, bail fully out. | 
|  | if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); | 
|  |  | 
|  |  | 
|  | if (!UniquedVals[i&(Multiple-1)].getNode()) | 
|  | UniquedVals[i&(Multiple-1)] = N->getOperand(i); | 
|  | else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) | 
|  | return SDValue();  // no match. | 
|  | } | 
|  |  | 
|  | // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains | 
|  | // either constant or undef values that are identical for each chunk.  See | 
|  | // if these chunks can form into a larger vspltis*. | 
|  |  | 
|  | // Check to see if all of the leading entries are either 0 or -1.  If | 
|  | // neither, then this won't fit into the immediate field. | 
|  | bool LeadingZero = true; | 
|  | bool LeadingOnes = true; | 
|  | for (unsigned i = 0; i != Multiple-1; ++i) { | 
|  | if (!UniquedVals[i].getNode()) continue;  // Must have been undefs. | 
|  |  | 
|  | LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); | 
|  | LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); | 
|  | } | 
|  | // Finally, check the least significant entry. | 
|  | if (LeadingZero) { | 
|  | if (!UniquedVals[Multiple-1].getNode()) | 
|  | return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef | 
|  | int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); | 
|  | if (Val < 16) | 
|  | return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4) | 
|  | } | 
|  | if (LeadingOnes) { | 
|  | if (!UniquedVals[Multiple-1].getNode()) | 
|  | return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef | 
|  | int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); | 
|  | if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2) | 
|  | return DAG.getTargetConstant(Val, MVT::i32); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Check to see if this buildvec has a single non-undef value in its elements. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | if (!OpVal.getNode()) | 
|  | OpVal = N->getOperand(i); | 
|  | else if (OpVal != N->getOperand(i)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def. | 
|  |  | 
|  | unsigned ValSizeInBytes = EltSize; | 
|  | uint64_t Value = 0; | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { | 
|  | Value = CN->getZExtValue(); | 
|  | } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { | 
|  | assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); | 
|  | Value = FloatToBits(CN->getValueAPF().convertToFloat()); | 
|  | } | 
|  |  | 
|  | // If the splat value is larger than the element value, then we can never do | 
|  | // this splat.  The only case that we could fit the replicated bits into our | 
|  | // immediate field for would be zero, and we prefer to use vxor for it. | 
|  | if (ValSizeInBytes < ByteSize) return SDValue(); | 
|  |  | 
|  | // If the element value is larger than the splat value, cut it in half and | 
|  | // check to see if the two halves are equal.  Continue doing this until we | 
|  | // get to ByteSize.  This allows us to handle 0x01010101 as 0x01. | 
|  | while (ValSizeInBytes > ByteSize) { | 
|  | ValSizeInBytes >>= 1; | 
|  |  | 
|  | // If the top half equals the bottom half, we're still ok. | 
|  | if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != | 
|  | (Value                        & ((1 << (8*ValSizeInBytes))-1))) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Properly sign extend the value. | 
|  | int MaskVal = SignExtend32(Value, ByteSize * 8); | 
|  |  | 
|  | // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. | 
|  | if (MaskVal == 0) return SDValue(); | 
|  |  | 
|  | // Finally, if this value fits in a 5 bit sext field, return it | 
|  | if (SignExtend32<5>(MaskVal) == MaskVal) | 
|  | return DAG.getTargetConstant(MaskVal, MVT::i32); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Addressing Mode Selection | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isIntS16Immediate - This method tests to see if the node is either a 32-bit | 
|  | /// or 64-bit immediate, and if the value can be accurately represented as a | 
|  | /// sign extension from a 16-bit value.  If so, this returns true and the | 
|  | /// immediate. | 
|  | static bool isIntS16Immediate(SDNode *N, short &Imm) { | 
|  | if (!isa<ConstantSDNode>(N)) | 
|  | return false; | 
|  |  | 
|  | Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | else | 
|  | return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | } | 
|  | static bool isIntS16Immediate(SDValue Op, short &Imm) { | 
|  | return isIntS16Immediate(Op.getNode(), Imm); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SelectAddressRegReg - Given the specified addressed, check to see if it | 
|  | /// can be represented as an indexed [r+r] operation.  Returns false if it | 
|  | /// can be more efficiently represented with [r+imm]. | 
|  | bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, | 
|  | SDValue &Index, | 
|  | SelectionDAG &DAG) const { | 
|  | short imm = 0; | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) | 
|  | return false;    // r+i | 
|  | if (N.getOperand(1).getOpcode() == PPCISD::Lo) | 
|  | return false;    // r+i | 
|  |  | 
|  | Base = N.getOperand(0); | 
|  | Index = N.getOperand(1); | 
|  | return true; | 
|  | } else if (N.getOpcode() == ISD::OR) { | 
|  | if (isIntS16Immediate(N.getOperand(1), imm)) | 
|  | return false;    // r+i can fold it if we can. | 
|  |  | 
|  | // If this is an or of disjoint bitfields, we can codegen this as an add | 
|  | // (for better address arithmetic) if the LHS and RHS of the OR are provably | 
|  | // disjoint. | 
|  | APInt LHSKnownZero, LHSKnownOne; | 
|  | APInt RHSKnownZero, RHSKnownOne; | 
|  | DAG.computeKnownBits(N.getOperand(0), | 
|  | LHSKnownZero, LHSKnownOne); | 
|  |  | 
|  | if (LHSKnownZero.getBoolValue()) { | 
|  | DAG.computeKnownBits(N.getOperand(1), | 
|  | RHSKnownZero, RHSKnownOne); | 
|  | // If all of the bits are known zero on the LHS or RHS, the add won't | 
|  | // carry. | 
|  | if (~(LHSKnownZero | RHSKnownZero) == 0) { | 
|  | Base = N.getOperand(0); | 
|  | Index = N.getOperand(1); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we happen to be doing an i64 load or store into a stack slot that has | 
|  | // less than a 4-byte alignment, then the frame-index elimination may need to | 
|  | // use an indexed load or store instruction (because the offset may not be a | 
|  | // multiple of 4). The extra register needed to hold the offset comes from the | 
|  | // register scavenger, and it is possible that the scavenger will need to use | 
|  | // an emergency spill slot. As a result, we need to make sure that a spill slot | 
|  | // is allocated when doing an i64 load/store into a less-than-4-byte-aligned | 
|  | // stack slot. | 
|  | static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { | 
|  | // FIXME: This does not handle the LWA case. | 
|  | if (VT != MVT::i64) | 
|  | return; | 
|  |  | 
|  | // NOTE: We'll exclude negative FIs here, which come from argument | 
|  | // lowering, because there are no known test cases triggering this problem | 
|  | // using packed structures (or similar). We can remove this exclusion if | 
|  | // we find such a test case. The reason why this is so test-case driven is | 
|  | // because this entire 'fixup' is only to prevent crashes (from the | 
|  | // register scavenger) on not-really-valid inputs. For example, if we have: | 
|  | //   %a = alloca i1 | 
|  | //   %b = bitcast i1* %a to i64* | 
|  | //   store i64* a, i64 b | 
|  | // then the store should really be marked as 'align 1', but is not. If it | 
|  | // were marked as 'align 1' then the indexed form would have been | 
|  | // instruction-selected initially, and the problem this 'fixup' is preventing | 
|  | // won't happen regardless. | 
|  | if (FrameIdx < 0) | 
|  | return; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  |  | 
|  | unsigned Align = MFI->getObjectAlignment(FrameIdx); | 
|  | if (Align >= 4) | 
|  | return; | 
|  |  | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  | FuncInfo->setHasNonRISpills(); | 
|  | } | 
|  |  | 
|  | /// Returns true if the address N can be represented by a base register plus | 
|  | /// a signed 16-bit displacement [r+imm], and if it is not better | 
|  | /// represented as reg+reg.  If Aligned is true, only accept displacements | 
|  | /// suitable for STD and friends, i.e. multiples of 4. | 
|  | bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, | 
|  | SDValue &Base, | 
|  | SelectionDAG &DAG, | 
|  | bool Aligned) const { | 
|  | // FIXME dl should come from parent load or store, not from address | 
|  | SDLoc dl(N); | 
|  | // If this can be more profitably realized as r+r, fail. | 
|  | if (SelectAddressRegReg(N, Disp, Base, DAG)) | 
|  | return false; | 
|  |  | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm) && | 
|  | (!Aligned || (imm & 3) == 0)) { | 
|  | Disp = DAG.getTargetConstant(imm, N.getValueType()); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { | 
|  | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); | 
|  | } else { | 
|  | Base = N.getOperand(0); | 
|  | } | 
|  | return true; // [r+i] | 
|  | } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { | 
|  | // Match LOAD (ADD (X, Lo(G))). | 
|  | assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() | 
|  | && "Cannot handle constant offsets yet!"); | 
|  | Disp = N.getOperand(1).getOperand(0);  // The global address. | 
|  | assert(Disp.getOpcode() == ISD::TargetGlobalAddress || | 
|  | Disp.getOpcode() == ISD::TargetGlobalTLSAddress || | 
|  | Disp.getOpcode() == ISD::TargetConstantPool || | 
|  | Disp.getOpcode() == ISD::TargetJumpTable); | 
|  | Base = N.getOperand(0); | 
|  | return true;  // [&g+r] | 
|  | } | 
|  | } else if (N.getOpcode() == ISD::OR) { | 
|  | short imm = 0; | 
|  | if (isIntS16Immediate(N.getOperand(1), imm) && | 
|  | (!Aligned || (imm & 3) == 0)) { | 
|  | // If this is an or of disjoint bitfields, we can codegen this as an add | 
|  | // (for better address arithmetic) if the LHS and RHS of the OR are | 
|  | // provably disjoint. | 
|  | APInt LHSKnownZero, LHSKnownOne; | 
|  | DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); | 
|  |  | 
|  | if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { | 
|  | // If all of the bits are known zero on the LHS or RHS, the add won't | 
|  | // carry. | 
|  | if (FrameIndexSDNode *FI = | 
|  | dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { | 
|  | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); | 
|  | } else { | 
|  | Base = N.getOperand(0); | 
|  | } | 
|  | Disp = DAG.getTargetConstant(imm, N.getValueType()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { | 
|  | // Loading from a constant address. | 
|  |  | 
|  | // If this address fits entirely in a 16-bit sext immediate field, codegen | 
|  | // this as "d, 0" | 
|  | short Imm; | 
|  | if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { | 
|  | Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); | 
|  | Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, | 
|  | CN->getValueType(0)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Handle 32-bit sext immediates with LIS + addr mode. | 
|  | if ((CN->getValueType(0) == MVT::i32 || | 
|  | (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && | 
|  | (!Aligned || (CN->getZExtValue() & 3) == 0)) { | 
|  | int Addr = (int)CN->getZExtValue(); | 
|  |  | 
|  | // Otherwise, break this down into an LIS + disp. | 
|  | Disp = DAG.getTargetConstant((short)Addr, MVT::i32); | 
|  |  | 
|  | Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); | 
|  | unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; | 
|  | Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Disp = DAG.getTargetConstant(0, getPointerTy()); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { | 
|  | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | 
|  | fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); | 
|  | } else | 
|  | Base = N; | 
|  | return true;      // [r+0] | 
|  | } | 
|  |  | 
|  | /// SelectAddressRegRegOnly - Given the specified addressed, force it to be | 
|  | /// represented as an indexed [r+r] operation. | 
|  | bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, | 
|  | SDValue &Index, | 
|  | SelectionDAG &DAG) const { | 
|  | // Check to see if we can easily represent this as an [r+r] address.  This | 
|  | // will fail if it thinks that the address is more profitably represented as | 
|  | // reg+imm, e.g. where imm = 0. | 
|  | if (SelectAddressRegReg(N, Base, Index, DAG)) | 
|  | return true; | 
|  |  | 
|  | // If the operand is an addition, always emit this as [r+r], since this is | 
|  | // better (for code size, and execution, as the memop does the add for free) | 
|  | // than emitting an explicit add. | 
|  | if (N.getOpcode() == ISD::ADD) { | 
|  | Base = N.getOperand(0); | 
|  | Index = N.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, do it the hard way, using R0 as the base register. | 
|  | Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, | 
|  | N.getValueType()); | 
|  | Index = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getPreIndexedAddressParts - returns true by value, base pointer and | 
|  | /// offset pointer and addressing mode by reference if the node's address | 
|  | /// can be legally represented as pre-indexed load / store address. | 
|  | bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, | 
|  | SDValue &Offset, | 
|  | ISD::MemIndexedMode &AM, | 
|  | SelectionDAG &DAG) const { | 
|  | if (DisablePPCPreinc) return false; | 
|  |  | 
|  | bool isLoad = true; | 
|  | SDValue Ptr; | 
|  | EVT VT; | 
|  | unsigned Alignment; | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
|  | Ptr = LD->getBasePtr(); | 
|  | VT = LD->getMemoryVT(); | 
|  | Alignment = LD->getAlignment(); | 
|  | } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
|  | Ptr = ST->getBasePtr(); | 
|  | VT  = ST->getMemoryVT(); | 
|  | Alignment = ST->getAlignment(); | 
|  | isLoad = false; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // PowerPC doesn't have preinc load/store instructions for vectors. | 
|  | if (VT.isVector()) | 
|  | return false; | 
|  |  | 
|  | if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { | 
|  |  | 
|  | // Common code will reject creating a pre-inc form if the base pointer | 
|  | // is a frame index, or if N is a store and the base pointer is either | 
|  | // the same as or a predecessor of the value being stored.  Check for | 
|  | // those situations here, and try with swapped Base/Offset instead. | 
|  | bool Swap = false; | 
|  |  | 
|  | if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) | 
|  | Swap = true; | 
|  | else if (!isLoad) { | 
|  | SDValue Val = cast<StoreSDNode>(N)->getValue(); | 
|  | if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) | 
|  | Swap = true; | 
|  | } | 
|  |  | 
|  | if (Swap) | 
|  | std::swap(Base, Offset); | 
|  |  | 
|  | AM = ISD::PRE_INC; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // LDU/STU can only handle immediates that are a multiple of 4. | 
|  | if (VT != MVT::i64) { | 
|  | if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) | 
|  | return false; | 
|  | } else { | 
|  | // LDU/STU need an address with at least 4-byte alignment. | 
|  | if (Alignment < 4) | 
|  | return false; | 
|  |  | 
|  | if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
|  | // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of | 
|  | // sext i32 to i64 when addr mode is r+i. | 
|  | if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && | 
|  | LD->getExtensionType() == ISD::SEXTLOAD && | 
|  | isa<ConstantSDNode>(Offset)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | AM = ISD::PRE_INC; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  LowerOperation implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// GetLabelAccessInfo - Return true if we should reference labels using a | 
|  | /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. | 
|  | static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, | 
|  | unsigned &LoOpFlags, | 
|  | const GlobalValue *GV = nullptr) { | 
|  | HiOpFlags = PPCII::MO_HA; | 
|  | LoOpFlags = PPCII::MO_LO; | 
|  |  | 
|  | // Don't use the pic base if not in PIC relocation model. | 
|  | bool isPIC = TM.getRelocationModel() == Reloc::PIC_; | 
|  |  | 
|  | if (isPIC) { | 
|  | HiOpFlags |= PPCII::MO_PIC_FLAG; | 
|  | LoOpFlags |= PPCII::MO_PIC_FLAG; | 
|  | } | 
|  |  | 
|  | // If this is a reference to a global value that requires a non-lazy-ptr, make | 
|  | // sure that instruction lowering adds it. | 
|  | if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { | 
|  | HiOpFlags |= PPCII::MO_NLP_FLAG; | 
|  | LoOpFlags |= PPCII::MO_NLP_FLAG; | 
|  |  | 
|  | if (GV->hasHiddenVisibility()) { | 
|  | HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; | 
|  | LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; | 
|  | } | 
|  | } | 
|  |  | 
|  | return isPIC; | 
|  | } | 
|  |  | 
|  | static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, | 
|  | SelectionDAG &DAG) { | 
|  | EVT PtrVT = HiPart.getValueType(); | 
|  | SDValue Zero = DAG.getConstant(0, PtrVT); | 
|  | SDLoc DL(HiPart); | 
|  |  | 
|  | SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); | 
|  | SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); | 
|  |  | 
|  | // With PIC, the first instruction is actually "GR+hi(&G)". | 
|  | if (isPIC) | 
|  | Hi = DAG.getNode(ISD::ADD, DL, PtrVT, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); | 
|  |  | 
|  | // Generate non-pic code that has direct accesses to the constant pool. | 
|  | // The address of the global is just (hi(&g)+lo(&g)). | 
|  | return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT PtrVT = Op.getValueType(); | 
|  | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | 
|  | const Constant *C = CP->getConstVal(); | 
|  |  | 
|  | // 64-bit SVR4 ABI code is always position-independent. | 
|  | // The actual address of the GlobalValue is stored in the TOC. | 
|  | if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { | 
|  | SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); | 
|  | return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA, | 
|  | DAG.getRegister(PPC::X2, MVT::i64)); | 
|  | } | 
|  |  | 
|  | unsigned MOHiFlag, MOLoFlag; | 
|  | bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); | 
|  |  | 
|  | if (isPIC && Subtarget.isSVR4ABI()) { | 
|  | SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), | 
|  | PPCII::MO_PIC_FLAG); | 
|  | SDLoc DL(CP); | 
|  | return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i32, GA, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT)); | 
|  | } | 
|  |  | 
|  | SDValue CPIHi = | 
|  | DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); | 
|  | SDValue CPILo = | 
|  | DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); | 
|  | return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT PtrVT = Op.getValueType(); | 
|  | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | 
|  |  | 
|  | // 64-bit SVR4 ABI code is always position-independent. | 
|  | // The actual address of the GlobalValue is stored in the TOC. | 
|  | if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { | 
|  | SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); | 
|  | return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA, | 
|  | DAG.getRegister(PPC::X2, MVT::i64)); | 
|  | } | 
|  |  | 
|  | unsigned MOHiFlag, MOLoFlag; | 
|  | bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); | 
|  |  | 
|  | if (isPIC && Subtarget.isSVR4ABI()) { | 
|  | SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, | 
|  | PPCII::MO_PIC_FLAG); | 
|  | SDLoc DL(GA); | 
|  | return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), PtrVT, GA, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT)); | 
|  | } | 
|  |  | 
|  | SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); | 
|  | SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); | 
|  | return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT PtrVT = Op.getValueType(); | 
|  |  | 
|  | const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); | 
|  |  | 
|  | unsigned MOHiFlag, MOLoFlag; | 
|  | bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); | 
|  | SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); | 
|  | SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); | 
|  | return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  |  | 
|  | // FIXME: TLS addresses currently use medium model code sequences, | 
|  | // which is the most useful form.  Eventually support for small and | 
|  | // large models could be added if users need it, at the cost of | 
|  | // additional complexity. | 
|  | GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | 
|  | SDLoc dl(GA); | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  | EVT PtrVT = getPointerTy(); | 
|  | bool is64bit = Subtarget.isPPC64(); | 
|  |  | 
|  | TLSModel::Model Model = getTargetMachine().getTLSModel(GV); | 
|  |  | 
|  | if (Model == TLSModel::LocalExec) { | 
|  | SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, | 
|  | PPCII::MO_TPREL_HA); | 
|  | SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, | 
|  | PPCII::MO_TPREL_LO); | 
|  | SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, | 
|  | is64bit ? MVT::i64 : MVT::i32); | 
|  | SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); | 
|  | return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); | 
|  | } | 
|  |  | 
|  | if (Model == TLSModel::InitialExec) { | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); | 
|  | SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, | 
|  | PPCII::MO_TLS); | 
|  | SDValue GOTPtr; | 
|  | if (is64bit) { | 
|  | SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); | 
|  | GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, | 
|  | PtrVT, GOTReg, TGA); | 
|  | } else | 
|  | GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); | 
|  | SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, | 
|  | PtrVT, TGA, GOTPtr); | 
|  | return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); | 
|  | } | 
|  |  | 
|  | if (Model == TLSModel::GeneralDynamic) { | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); | 
|  | SDValue GOTPtr; | 
|  | if (is64bit) { | 
|  | SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); | 
|  | GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, | 
|  | GOTReg, TGA); | 
|  | } else { | 
|  | GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); | 
|  | } | 
|  | SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT, | 
|  | GOTPtr, TGA); | 
|  |  | 
|  | // We need a chain node, and don't have one handy.  The underlying | 
|  | // call has no side effects, so using the function entry node | 
|  | // suffices. | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, | 
|  | is64bit ? PPC::X3 : PPC::R3, GOTEntry); | 
|  | SDValue ParmReg = DAG.getRegister(is64bit ? PPC::X3 : PPC::R3, | 
|  | is64bit ? MVT::i64 : MVT::i32); | 
|  | SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl, | 
|  | PtrVT, ParmReg, TGA); | 
|  | // The return value from GET_TLS_ADDR really is in X3 already, but | 
|  | // some hacks are needed here to tie everything together.  The extra | 
|  | // copies dissolve during subsequent transforms. | 
|  | Chain = DAG.getCopyToReg(Chain, dl, is64bit ? PPC::X3 : PPC::R3, TLSAddr); | 
|  | return DAG.getCopyFromReg(Chain, dl, is64bit ? PPC::X3 : PPC::R3, PtrVT); | 
|  | } | 
|  |  | 
|  | if (Model == TLSModel::LocalDynamic) { | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); | 
|  | SDValue GOTPtr; | 
|  | if (is64bit) { | 
|  | SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); | 
|  | GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, | 
|  | GOTReg, TGA); | 
|  | } else { | 
|  | GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); | 
|  | } | 
|  | SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT, | 
|  | GOTPtr, TGA); | 
|  |  | 
|  | // We need a chain node, and don't have one handy.  The underlying | 
|  | // call has no side effects, so using the function entry node | 
|  | // suffices. | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, | 
|  | is64bit ? PPC::X3 : PPC::R3, GOTEntry); | 
|  | SDValue ParmReg = DAG.getRegister(is64bit ? PPC::X3 : PPC::R3, | 
|  | is64bit ? MVT::i64 : MVT::i32); | 
|  | SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl, | 
|  | PtrVT, ParmReg, TGA); | 
|  | // The return value from GET_TLSLD_ADDR really is in X3 already, but | 
|  | // some hacks are needed here to tie everything together.  The extra | 
|  | // copies dissolve during subsequent transforms. | 
|  | Chain = DAG.getCopyToReg(Chain, dl, is64bit ? PPC::X3 : PPC::R3, TLSAddr); | 
|  | SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT, | 
|  | Chain, ParmReg, TGA); | 
|  | return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unknown TLS model!"); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT PtrVT = Op.getValueType(); | 
|  | GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); | 
|  | SDLoc DL(GSDN); | 
|  | const GlobalValue *GV = GSDN->getGlobal(); | 
|  |  | 
|  | // 64-bit SVR4 ABI code is always position-independent. | 
|  | // The actual address of the GlobalValue is stored in the TOC. | 
|  | if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { | 
|  | SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); | 
|  | return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, | 
|  | DAG.getRegister(PPC::X2, MVT::i64)); | 
|  | } | 
|  |  | 
|  | unsigned MOHiFlag, MOLoFlag; | 
|  | bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); | 
|  |  | 
|  | if (isPIC && Subtarget.isSVR4ABI()) { | 
|  | SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, | 
|  | GSDN->getOffset(), | 
|  | PPCII::MO_PIC_FLAG); | 
|  | return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i32, GA, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | SDValue GAHi = | 
|  | DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); | 
|  | SDValue GALo = | 
|  | DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); | 
|  |  | 
|  | SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); | 
|  |  | 
|  | // If the global reference is actually to a non-lazy-pointer, we have to do an | 
|  | // extra load to get the address of the global. | 
|  | if (MOHiFlag & PPCII::MO_NLP_FLAG) | 
|  | Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | return Ptr; | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (Op.getValueType() == MVT::v2i64) { | 
|  | // When the operands themselves are v2i64 values, we need to do something | 
|  | // special because VSX has no underlying comparison operations for these. | 
|  | if (Op.getOperand(0).getValueType() == MVT::v2i64) { | 
|  | // Equality can be handled by casting to the legal type for Altivec | 
|  | // comparisons, everything else needs to be expanded. | 
|  | if (CC == ISD::SETEQ || CC == ISD::SETNE) { | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, | 
|  | DAG.getSetCC(dl, MVT::v4i32, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), | 
|  | CC)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // We handle most of these in the usual way. | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // If we're comparing for equality to zero, expose the fact that this is | 
|  | // implented as a ctlz/srl pair on ppc, so that the dag combiner can | 
|  | // fold the new nodes. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | if (C->isNullValue() && CC == ISD::SETEQ) { | 
|  | EVT VT = Op.getOperand(0).getValueType(); | 
|  | SDValue Zext = Op.getOperand(0); | 
|  | if (VT.bitsLT(MVT::i32)) { | 
|  | VT = MVT::i32; | 
|  | Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); | 
|  | } | 
|  | unsigned Log2b = Log2_32(VT.getSizeInBits()); | 
|  | SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); | 
|  | SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, | 
|  | DAG.getConstant(Log2b, MVT::i32)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); | 
|  | } | 
|  | // Leave comparisons against 0 and -1 alone for now, since they're usually | 
|  | // optimized.  FIXME: revisit this when we can custom lower all setcc | 
|  | // optimizations. | 
|  | if (C->isAllOnesValue() || C->isNullValue()) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If we have an integer seteq/setne, turn it into a compare against zero | 
|  | // by xor'ing the rhs with the lhs, which is faster than setting a | 
|  | // condition register, reading it back out, and masking the correct bit.  The | 
|  | // normal approach here uses sub to do this instead of xor.  Using xor exposes | 
|  | // the result to other bit-twiddling opportunities. | 
|  | EVT LHSVT = Op.getOperand(0).getValueType(); | 
|  | if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), | 
|  | Op.getOperand(1)); | 
|  | return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, | 
|  | const PPCSubtarget &Subtarget) const { | 
|  | SDNode *Node = Op.getNode(); | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | SDValue InChain = Node->getOperand(0); | 
|  | SDValue VAListPtr = Node->getOperand(1); | 
|  | const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); | 
|  | SDLoc dl(Node); | 
|  |  | 
|  | assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); | 
|  |  | 
|  | // gpr_index | 
|  | SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, | 
|  | VAListPtr, MachinePointerInfo(SV), MVT::i8, | 
|  | false, false, false, 0); | 
|  | InChain = GprIndex.getValue(1); | 
|  |  | 
|  | if (VT == MVT::i64) { | 
|  | // Check if GprIndex is even | 
|  | SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, | 
|  | DAG.getConstant(0, MVT::i32), ISD::SETNE); | 
|  | SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | // Align GprIndex to be even if it isn't | 
|  | GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, | 
|  | GprIndex); | 
|  | } | 
|  |  | 
|  | // fpr index is 1 byte after gpr | 
|  | SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  |  | 
|  | // fpr | 
|  | SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, | 
|  | FprPtr, MachinePointerInfo(SV), MVT::i8, | 
|  | false, false, false, 0); | 
|  | InChain = FprIndex.getValue(1); | 
|  |  | 
|  | SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, | 
|  | DAG.getConstant(8, MVT::i32)); | 
|  |  | 
|  | SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, | 
|  | DAG.getConstant(4, MVT::i32)); | 
|  |  | 
|  | // areas | 
|  | SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, | 
|  | MachinePointerInfo(), false, false, | 
|  | false, 0); | 
|  | InChain = OverflowArea.getValue(1); | 
|  |  | 
|  | SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, | 
|  | MachinePointerInfo(), false, false, | 
|  | false, 0); | 
|  | InChain = RegSaveArea.getValue(1); | 
|  |  | 
|  | // select overflow_area if index > 8 | 
|  | SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, | 
|  | DAG.getConstant(8, MVT::i32), ISD::SETLT); | 
|  |  | 
|  | // adjustment constant gpr_index * 4/8 | 
|  | SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, | 
|  | VT.isInteger() ? GprIndex : FprIndex, | 
|  | DAG.getConstant(VT.isInteger() ? 4 : 8, | 
|  | MVT::i32)); | 
|  |  | 
|  | // OurReg = RegSaveArea + RegConstant | 
|  | SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, | 
|  | RegConstant); | 
|  |  | 
|  | // Floating types are 32 bytes into RegSaveArea | 
|  | if (VT.isFloatingPoint()) | 
|  | OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, | 
|  | DAG.getConstant(32, MVT::i32)); | 
|  |  | 
|  | // increase {f,g}pr_index by 1 (or 2 if VT is i64) | 
|  | SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, | 
|  | VT.isInteger() ? GprIndex : FprIndex, | 
|  | DAG.getConstant(VT == MVT::i64 ? 2 : 1, | 
|  | MVT::i32)); | 
|  |  | 
|  | InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, | 
|  | VT.isInteger() ? VAListPtr : FprPtr, | 
|  | MachinePointerInfo(SV), | 
|  | MVT::i8, false, false, 0); | 
|  |  | 
|  | // determine if we should load from reg_save_area or overflow_area | 
|  | SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); | 
|  |  | 
|  | // increase overflow_area by 4/8 if gpr/fpr > 8 | 
|  | SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, | 
|  | DAG.getConstant(VT.isInteger() ? 4 : 8, | 
|  | MVT::i32)); | 
|  |  | 
|  | OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, | 
|  | OverflowAreaPlusN); | 
|  |  | 
|  | InChain = DAG.getTruncStore(InChain, dl, OverflowArea, | 
|  | OverflowAreaPtr, | 
|  | MachinePointerInfo(), | 
|  | MVT::i32, false, false, 0); | 
|  |  | 
|  | return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, | 
|  | const PPCSubtarget &Subtarget) const { | 
|  | assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); | 
|  |  | 
|  | // We have to copy the entire va_list struct: | 
|  | // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte | 
|  | return DAG.getMemcpy(Op.getOperand(0), Op, | 
|  | Op.getOperand(1), Op.getOperand(2), | 
|  | DAG.getConstant(12, MVT::i32), 8, false, true, | 
|  | MachinePointerInfo(), MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | return Op.getOperand(0); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Trmp = Op.getOperand(1); // trampoline | 
|  | SDValue FPtr = Op.getOperand(2); // nested function | 
|  | SDValue Nest = Op.getOperand(3); // 'nest' parameter value | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | bool isPPC64 = (PtrVT == MVT::i64); | 
|  | Type *IntPtrTy = | 
|  | DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType( | 
|  | *DAG.getContext()); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  |  | 
|  | Entry.Ty = IntPtrTy; | 
|  | Entry.Node = Trmp; Args.push_back(Entry); | 
|  |  | 
|  | // TrampSize == (isPPC64 ? 48 : 40); | 
|  | Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, | 
|  | isPPC64 ? MVT::i64 : MVT::i32); | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | Entry.Node = FPtr; Args.push_back(Entry); | 
|  | Entry.Node = Nest; Args.push_back(Entry); | 
|  |  | 
|  | // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(dl).setChain(Chain) | 
|  | .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), | 
|  | DAG.getExternalSymbol("__trampoline_setup", PtrVT), | 
|  | std::move(Args), 0); | 
|  |  | 
|  | std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); | 
|  | return CallResult.second; | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, | 
|  | const PPCSubtarget &Subtarget) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), | 
|  | MachinePointerInfo(SV), | 
|  | false, false, 0); | 
|  | } | 
|  |  | 
|  | // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. | 
|  | // We suppose the given va_list is already allocated. | 
|  | // | 
|  | // typedef struct { | 
|  | //  char gpr;     /* index into the array of 8 GPRs | 
|  | //                 * stored in the register save area | 
|  | //                 * gpr=0 corresponds to r3, | 
|  | //                 * gpr=1 to r4, etc. | 
|  | //                 */ | 
|  | //  char fpr;     /* index into the array of 8 FPRs | 
|  | //                 * stored in the register save area | 
|  | //                 * fpr=0 corresponds to f1, | 
|  | //                 * fpr=1 to f2, etc. | 
|  | //                 */ | 
|  | //  char *overflow_arg_area; | 
|  | //                /* location on stack that holds | 
|  | //                 * the next overflow argument | 
|  | //                 */ | 
|  | //  char *reg_save_area; | 
|  | //               /* where r3:r10 and f1:f8 (if saved) | 
|  | //                * are stored | 
|  | //                */ | 
|  | // } va_list[1]; | 
|  |  | 
|  |  | 
|  | SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); | 
|  | SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); | 
|  |  | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  |  | 
|  | SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), | 
|  | PtrVT); | 
|  | SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), | 
|  | PtrVT); | 
|  |  | 
|  | uint64_t FrameOffset = PtrVT.getSizeInBits()/8; | 
|  | SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); | 
|  |  | 
|  | uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; | 
|  | SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); | 
|  |  | 
|  | uint64_t FPROffset = 1; | 
|  | SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); | 
|  |  | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  |  | 
|  | // Store first byte : number of int regs | 
|  | SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, | 
|  | Op.getOperand(1), | 
|  | MachinePointerInfo(SV), | 
|  | MVT::i8, false, false, 0); | 
|  | uint64_t nextOffset = FPROffset; | 
|  | SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), | 
|  | ConstFPROffset); | 
|  |  | 
|  | // Store second byte : number of float regs | 
|  | SDValue secondStore = | 
|  | DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, | 
|  | MachinePointerInfo(SV, nextOffset), MVT::i8, | 
|  | false, false, 0); | 
|  | nextOffset += StackOffset; | 
|  | nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); | 
|  |  | 
|  | // Store second word : arguments given on stack | 
|  | SDValue thirdStore = | 
|  | DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, | 
|  | MachinePointerInfo(SV, nextOffset), | 
|  | false, false, 0); | 
|  | nextOffset += FrameOffset; | 
|  | nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); | 
|  |  | 
|  | // Store third word : arguments given in registers | 
|  | return DAG.getStore(thirdStore, dl, FR, nextPtr, | 
|  | MachinePointerInfo(SV, nextOffset), | 
|  | false, false, 0); | 
|  |  | 
|  | } | 
|  |  | 
|  | #include "PPCGenCallingConv.inc" | 
|  |  | 
|  | // Function whose sole purpose is to kill compiler warnings | 
|  | // stemming from unused functions included from PPCGenCallingConv.inc. | 
|  | CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { | 
|  | return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; | 
|  | } | 
|  |  | 
|  | bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, | 
|  | MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | static const MCPhysReg ArgRegs[] = { | 
|  | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | 
|  | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | 
|  | }; | 
|  | const unsigned NumArgRegs = array_lengthof(ArgRegs); | 
|  |  | 
|  | unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); | 
|  |  | 
|  | // Skip one register if the first unallocated register has an even register | 
|  | // number and there are still argument registers available which have not been | 
|  | // allocated yet. RegNum is actually an index into ArgRegs, which means we | 
|  | // need to skip a register if RegNum is odd. | 
|  | if (RegNum != NumArgRegs && RegNum % 2 == 1) { | 
|  | State.AllocateReg(ArgRegs[RegNum]); | 
|  | } | 
|  |  | 
|  | // Always return false here, as this function only makes sure that the first | 
|  | // unallocated register has an odd register number and does not actually | 
|  | // allocate a register for the current argument. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, | 
|  | MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | static const MCPhysReg ArgRegs[] = { | 
|  | PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, | 
|  | PPC::F8 | 
|  | }; | 
|  |  | 
|  | const unsigned NumArgRegs = array_lengthof(ArgRegs); | 
|  |  | 
|  | unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); | 
|  |  | 
|  | // If there is only one Floating-point register left we need to put both f64 | 
|  | // values of a split ppc_fp128 value on the stack. | 
|  | if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { | 
|  | State.AllocateReg(ArgRegs[RegNum]); | 
|  | } | 
|  |  | 
|  | // Always return false here, as this function only makes sure that the two f64 | 
|  | // values a ppc_fp128 value is split into are both passed in registers or both | 
|  | // passed on the stack and does not actually allocate a register for the | 
|  | // current argument. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// GetFPR - Get the set of FP registers that should be allocated for arguments, | 
|  | /// on Darwin. | 
|  | static const MCPhysReg *GetFPR() { | 
|  | static const MCPhysReg FPR[] = { | 
|  | PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, | 
|  | PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 | 
|  | }; | 
|  |  | 
|  | return FPR; | 
|  | } | 
|  |  | 
|  | /// CalculateStackSlotSize - Calculates the size reserved for this argument on | 
|  | /// the stack. | 
|  | static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, | 
|  | unsigned PtrByteSize) { | 
|  | unsigned ArgSize = ArgVT.getStoreSize(); | 
|  | if (Flags.isByVal()) | 
|  | ArgSize = Flags.getByValSize(); | 
|  |  | 
|  | // Round up to multiples of the pointer size, except for array members, | 
|  | // which are always packed. | 
|  | if (!Flags.isInConsecutiveRegs()) | 
|  | ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  |  | 
|  | return ArgSize; | 
|  | } | 
|  |  | 
|  | /// CalculateStackSlotAlignment - Calculates the alignment of this argument | 
|  | /// on the stack. | 
|  | static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, | 
|  | ISD::ArgFlagsTy Flags, | 
|  | unsigned PtrByteSize) { | 
|  | unsigned Align = PtrByteSize; | 
|  |  | 
|  | // Altivec parameters are padded to a 16 byte boundary. | 
|  | if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || | 
|  | ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || | 
|  | ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) | 
|  | Align = 16; | 
|  |  | 
|  | // ByVal parameters are aligned as requested. | 
|  | if (Flags.isByVal()) { | 
|  | unsigned BVAlign = Flags.getByValAlign(); | 
|  | if (BVAlign > PtrByteSize) { | 
|  | if (BVAlign % PtrByteSize != 0) | 
|  | llvm_unreachable( | 
|  | "ByVal alignment is not a multiple of the pointer size"); | 
|  |  | 
|  | Align = BVAlign; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Array members are always packed to their original alignment. | 
|  | if (Flags.isInConsecutiveRegs()) { | 
|  | // If the array member was split into multiple registers, the first | 
|  | // needs to be aligned to the size of the full type.  (Except for | 
|  | // ppcf128, which is only aligned as its f64 components.) | 
|  | if (Flags.isSplit() && OrigVT != MVT::ppcf128) | 
|  | Align = OrigVT.getStoreSize(); | 
|  | else | 
|  | Align = ArgVT.getStoreSize(); | 
|  | } | 
|  |  | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | /// CalculateStackSlotUsed - Return whether this argument will use its | 
|  | /// stack slot (instead of being passed in registers).  ArgOffset, | 
|  | /// AvailableFPRs, and AvailableVRs must hold the current argument | 
|  | /// position, and will be updated to account for this argument. | 
|  | static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, | 
|  | ISD::ArgFlagsTy Flags, | 
|  | unsigned PtrByteSize, | 
|  | unsigned LinkageSize, | 
|  | unsigned ParamAreaSize, | 
|  | unsigned &ArgOffset, | 
|  | unsigned &AvailableFPRs, | 
|  | unsigned &AvailableVRs) { | 
|  | bool UseMemory = false; | 
|  |  | 
|  | // Respect alignment of argument on the stack. | 
|  | unsigned Align = | 
|  | CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); | 
|  | ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; | 
|  | // If there's no space left in the argument save area, we must | 
|  | // use memory (this check also catches zero-sized arguments). | 
|  | if (ArgOffset >= LinkageSize + ParamAreaSize) | 
|  | UseMemory = true; | 
|  |  | 
|  | // Allocate argument on the stack. | 
|  | ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); | 
|  | if (Flags.isInConsecutiveRegsLast()) | 
|  | ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  | // If we overran the argument save area, we must use memory | 
|  | // (this check catches arguments passed partially in memory) | 
|  | if (ArgOffset > LinkageSize + ParamAreaSize) | 
|  | UseMemory = true; | 
|  |  | 
|  | // However, if the argument is actually passed in an FPR or a VR, | 
|  | // we don't use memory after all. | 
|  | if (!Flags.isByVal()) { | 
|  | if (ArgVT == MVT::f32 || ArgVT == MVT::f64) | 
|  | if (AvailableFPRs > 0) { | 
|  | --AvailableFPRs; | 
|  | return false; | 
|  | } | 
|  | if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || | 
|  | ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || | 
|  | ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) | 
|  | if (AvailableVRs > 0) { | 
|  | --AvailableVRs; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return UseMemory; | 
|  | } | 
|  |  | 
|  | /// EnsureStackAlignment - Round stack frame size up from NumBytes to | 
|  | /// ensure minimum alignment required for target. | 
|  | static unsigned EnsureStackAlignment(const TargetMachine &Target, | 
|  | unsigned NumBytes) { | 
|  | unsigned TargetAlign = | 
|  | Target.getSubtargetImpl()->getFrameLowering()->getStackAlignment(); | 
|  | unsigned AlignMask = TargetAlign - 1; | 
|  | NumBytes = (NumBytes + AlignMask) & ~AlignMask; | 
|  | return NumBytes; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerFormalArguments(SDValue Chain, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> | 
|  | &Ins, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) | 
|  | const { | 
|  | if (Subtarget.isSVR4ABI()) { | 
|  | if (Subtarget.isPPC64()) | 
|  | return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, | 
|  | dl, DAG, InVals); | 
|  | else | 
|  | return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, | 
|  | dl, DAG, InVals); | 
|  | } else { | 
|  | return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, | 
|  | dl, DAG, InVals); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerFormalArguments_32SVR4( | 
|  | SDValue Chain, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> | 
|  | &Ins, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  |  | 
|  | // 32-bit SVR4 ABI Stack Frame Layout: | 
|  | //              +-----------------------------------+ | 
|  | //        +-->  |            Back chain             | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     | Floating-point register save area | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |    General register save area     | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |          CR save word             | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |         VRSAVE save word          | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |         Alignment padding         | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |     Vector register save area     | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |       Local variable space        | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |        Parameter list area        | | 
|  | //        |     +-----------------------------------+ | 
|  | //        |     |           LR save word            | | 
|  | //        |     +-----------------------------------+ | 
|  | // SP-->  +---  |            Back chain             | | 
|  | //              +-----------------------------------+ | 
|  | // | 
|  | // Specifications: | 
|  | //   System V Application Binary Interface PowerPC Processor Supplement | 
|  | //   AltiVec Technology Programming Interface Manual | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | // Potential tail calls could cause overwriting of argument stack slots. | 
|  | bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && | 
|  | (CallConv == CallingConv::Fast)); | 
|  | unsigned PtrByteSize = 4; | 
|  |  | 
|  | // Assign locations to all of the incoming arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // Reserve space for the linkage area on the stack. | 
|  | unsigned LinkageSize = PPCFrameLowering::getLinkageSize(false, false, false); | 
|  | CCInfo.AllocateStack(LinkageSize, PtrByteSize); | 
|  |  | 
|  | CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); | 
|  |  | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  |  | 
|  | // Arguments stored in registers. | 
|  | if (VA.isRegLoc()) { | 
|  | const TargetRegisterClass *RC; | 
|  | EVT ValVT = VA.getValVT(); | 
|  |  | 
|  | switch (ValVT.getSimpleVT().SimpleTy) { | 
|  | default: | 
|  | llvm_unreachable("ValVT not supported by formal arguments Lowering"); | 
|  | case MVT::i1: | 
|  | case MVT::i32: | 
|  | RC = &PPC::GPRCRegClass; | 
|  | break; | 
|  | case MVT::f32: | 
|  | RC = &PPC::F4RCRegClass; | 
|  | break; | 
|  | case MVT::f64: | 
|  | if (Subtarget.hasVSX()) | 
|  | RC = &PPC::VSFRCRegClass; | 
|  | else | 
|  | RC = &PPC::F8RCRegClass; | 
|  | break; | 
|  | case MVT::v16i8: | 
|  | case MVT::v8i16: | 
|  | case MVT::v4i32: | 
|  | case MVT::v4f32: | 
|  | RC = &PPC::VRRCRegClass; | 
|  | break; | 
|  | case MVT::v2f64: | 
|  | case MVT::v2i64: | 
|  | RC = &PPC::VSHRCRegClass; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Transform the arguments stored in physical registers into virtual ones. | 
|  | unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); | 
|  | SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, | 
|  | ValVT == MVT::i1 ? MVT::i32 : ValVT); | 
|  |  | 
|  | if (ValVT == MVT::i1) | 
|  | ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); | 
|  |  | 
|  | InVals.push_back(ArgValue); | 
|  | } else { | 
|  | // Argument stored in memory. | 
|  | assert(VA.isMemLoc()); | 
|  |  | 
|  | unsigned ArgSize = VA.getLocVT().getStoreSize(); | 
|  | int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), | 
|  | isImmutable); | 
|  |  | 
|  | // Create load nodes to retrieve arguments from the stack. | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assign locations to all of the incoming aggregate by value arguments. | 
|  | // Aggregates passed by value are stored in the local variable space of the | 
|  | // caller's stack frame, right above the parameter list area. | 
|  | SmallVector<CCValAssign, 16> ByValArgLocs; | 
|  | CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), | 
|  | ByValArgLocs, *DAG.getContext()); | 
|  |  | 
|  | // Reserve stack space for the allocations in CCInfo. | 
|  | CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); | 
|  |  | 
|  | CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); | 
|  |  | 
|  | // Area that is at least reserved in the caller of this function. | 
|  | unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); | 
|  | MinReservedArea = std::max(MinReservedArea, LinkageSize); | 
|  |  | 
|  | // Set the size that is at least reserved in caller of this function.  Tail | 
|  | // call optimized function's reserved stack space needs to be aligned so that | 
|  | // taking the difference between two stack areas will result in an aligned | 
|  | // stack. | 
|  | MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea); | 
|  | FuncInfo->setMinReservedArea(MinReservedArea); | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (isVarArg) { | 
|  | static const MCPhysReg GPArgRegs[] = { | 
|  | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | 
|  | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | 
|  | }; | 
|  | const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); | 
|  |  | 
|  | static const MCPhysReg FPArgRegs[] = { | 
|  | PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, | 
|  | PPC::F8 | 
|  | }; | 
|  | const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); | 
|  |  | 
|  | FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, | 
|  | NumGPArgRegs)); | 
|  | FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, | 
|  | NumFPArgRegs)); | 
|  |  | 
|  | // Make room for NumGPArgRegs and NumFPArgRegs. | 
|  | int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + | 
|  | NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; | 
|  |  | 
|  | FuncInfo->setVarArgsStackOffset( | 
|  | MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, | 
|  | CCInfo.getNextStackOffset(), true)); | 
|  |  | 
|  | FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); | 
|  | SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); | 
|  |  | 
|  | // The fixed integer arguments of a variadic function are stored to the | 
|  | // VarArgsFrameIndex on the stack so that they may be loaded by deferencing | 
|  | // the result of va_next. | 
|  | for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { | 
|  | // Get an existing live-in vreg, or add a new one. | 
|  | unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); | 
|  | if (!VReg) | 
|  | VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); | 
|  |  | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | 
|  | SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by four for the next argument to store | 
|  | SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  |  | 
|  | // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 | 
|  | // is set. | 
|  | // The double arguments are stored to the VarArgsFrameIndex | 
|  | // on the stack. | 
|  | for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { | 
|  | // Get an existing live-in vreg, or add a new one. | 
|  | unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); | 
|  | if (!VReg) | 
|  | VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); | 
|  |  | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); | 
|  | SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by eight for the next argument to store | 
|  | SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, | 
|  | PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOps.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | // PPC64 passes i8, i16, and i32 values in i64 registers. Promote | 
|  | // value to MVT::i64 and then truncate to the correct register size. | 
|  | SDValue | 
|  | PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, | 
|  | SelectionDAG &DAG, SDValue ArgVal, | 
|  | SDLoc dl) const { | 
|  | if (Flags.isSExt()) | 
|  | ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, | 
|  | DAG.getValueType(ObjectVT)); | 
|  | else if (Flags.isZExt()) | 
|  | ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, | 
|  | DAG.getValueType(ObjectVT)); | 
|  |  | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerFormalArguments_64SVR4( | 
|  | SDValue Chain, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> | 
|  | &Ins, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | // TODO: add description of PPC stack frame format, or at least some docs. | 
|  | // | 
|  | bool isELFv2ABI = Subtarget.isELFv2ABI(); | 
|  | bool isLittleEndian = Subtarget.isLittleEndian(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | // Potential tail calls could cause overwriting of argument stack slots. | 
|  | bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && | 
|  | (CallConv == CallingConv::Fast)); | 
|  | unsigned PtrByteSize = 8; | 
|  |  | 
|  | unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false, | 
|  | isELFv2ABI); | 
|  |  | 
|  | static const MCPhysReg GPR[] = { | 
|  | PPC::X3, PPC::X4, PPC::X5, PPC::X6, | 
|  | PPC::X7, PPC::X8, PPC::X9, PPC::X10, | 
|  | }; | 
|  |  | 
|  | static const MCPhysReg *FPR = GetFPR(); | 
|  |  | 
|  | static const MCPhysReg VR[] = { | 
|  | PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, | 
|  | PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 | 
|  | }; | 
|  | static const MCPhysReg VSRH[] = { | 
|  | PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, | 
|  | PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 | 
|  | }; | 
|  |  | 
|  | const unsigned Num_GPR_Regs = array_lengthof(GPR); | 
|  | const unsigned Num_FPR_Regs = 13; | 
|  | const unsigned Num_VR_Regs  = array_lengthof(VR); | 
|  |  | 
|  | // Do a first pass over the arguments to determine whether the ABI | 
|  | // guarantees that our caller has allocated the parameter save area | 
|  | // on its stack frame.  In the ELFv1 ABI, this is always the case; | 
|  | // in the ELFv2 ABI, it is true if this is a vararg function or if | 
|  | // any parameter is located in a stack slot. | 
|  |  | 
|  | bool HasParameterArea = !isELFv2ABI || isVarArg; | 
|  | unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; | 
|  | unsigned NumBytes = LinkageSize; | 
|  | unsigned AvailableFPRs = Num_FPR_Regs; | 
|  | unsigned AvailableVRs = Num_VR_Regs; | 
|  | for (unsigned i = 0, e = Ins.size(); i != e; ++i) | 
|  | if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, | 
|  | PtrByteSize, LinkageSize, ParamAreaSize, | 
|  | NumBytes, AvailableFPRs, AvailableVRs)) | 
|  | HasParameterArea = true; | 
|  |  | 
|  | // Add DAG nodes to load the arguments or copy them out of registers.  On | 
|  | // entry to a function on PPC, the arguments start after the linkage area, | 
|  | // although the first ones are often in registers. | 
|  |  | 
|  | unsigned ArgOffset = LinkageSize; | 
|  | unsigned GPR_idx, FPR_idx = 0, VR_idx = 0; | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  | Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); | 
|  | unsigned CurArgIdx = 0; | 
|  | for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { | 
|  | SDValue ArgVal; | 
|  | bool needsLoad = false; | 
|  | EVT ObjectVT = Ins[ArgNo].VT; | 
|  | EVT OrigVT = Ins[ArgNo].ArgVT; | 
|  | unsigned ObjSize = ObjectVT.getStoreSize(); | 
|  | unsigned ArgSize = ObjSize; | 
|  | ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; | 
|  | std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx); | 
|  | CurArgIdx = Ins[ArgNo].OrigArgIndex; | 
|  |  | 
|  | /* Respect alignment of argument on the stack.  */ | 
|  | unsigned Align = | 
|  | CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); | 
|  | ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; | 
|  | unsigned CurArgOffset = ArgOffset; | 
|  |  | 
|  | /* Compute GPR index associated with argument offset.  */ | 
|  | GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; | 
|  | GPR_idx = std::min(GPR_idx, Num_GPR_Regs); | 
|  |  | 
|  | // FIXME the codegen can be much improved in some cases. | 
|  | // We do not have to keep everything in memory. | 
|  | if (Flags.isByVal()) { | 
|  | // ObjSize is the true size, ArgSize rounded up to multiple of registers. | 
|  | ObjSize = Flags.getByValSize(); | 
|  | ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  | // Empty aggregate parameters do not take up registers.  Examples: | 
|  | //   struct { } a; | 
|  | //   union  { } b; | 
|  | //   int c[0]; | 
|  | // etc.  However, we have to provide a place-holder in InVals, so | 
|  | // pretend we have an 8-byte item at the current address for that | 
|  | // purpose. | 
|  | if (!ObjSize) { | 
|  | int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | InVals.push_back(FIN); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Create a stack object covering all stack doublewords occupied | 
|  | // by the argument.  If the argument is (fully or partially) on | 
|  | // the stack, or if the argument is fully in registers but the | 
|  | // caller has allocated the parameter save anyway, we can refer | 
|  | // directly to the caller's stack frame.  Otherwise, create a | 
|  | // local copy in our own frame. | 
|  | int FI; | 
|  | if (HasParameterArea || | 
|  | ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) | 
|  | FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false); | 
|  | else | 
|  | FI = MFI->CreateStackObject(ArgSize, Align, false); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  |  | 
|  | // Handle aggregates smaller than 8 bytes. | 
|  | if (ObjSize < PtrByteSize) { | 
|  | // The value of the object is its address, which differs from the | 
|  | // address of the enclosing doubleword on big-endian systems. | 
|  | SDValue Arg = FIN; | 
|  | if (!isLittleEndian) { | 
|  | SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, PtrVT); | 
|  | Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); | 
|  | } | 
|  | InVals.push_back(Arg); | 
|  |  | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | 
|  | SDValue Store; | 
|  |  | 
|  | if (ObjSize==1 || ObjSize==2 || ObjSize==4) { | 
|  | EVT ObjType = (ObjSize == 1 ? MVT::i8 : | 
|  | (ObjSize == 2 ? MVT::i16 : MVT::i32)); | 
|  | Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, | 
|  | MachinePointerInfo(FuncArg), | 
|  | ObjType, false, false, 0); | 
|  | } else { | 
|  | // For sizes that don't fit a truncating store (3, 5, 6, 7), | 
|  | // store the whole register as-is to the parameter save area | 
|  | // slot. | 
|  | Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, | 
|  | MachinePointerInfo(FuncArg), | 
|  | false, false, 0); | 
|  | } | 
|  |  | 
|  | MemOps.push_back(Store); | 
|  | } | 
|  | // Whether we copied from a register or not, advance the offset | 
|  | // into the parameter save area by a full doubleword. | 
|  | ArgOffset += PtrByteSize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The value of the object is its address, which is the address of | 
|  | // its first stack doubleword. | 
|  | InVals.push_back(FIN); | 
|  |  | 
|  | // Store whatever pieces of the object are in registers to memory. | 
|  | for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { | 
|  | if (GPR_idx == Num_GPR_Regs) | 
|  | break; | 
|  |  | 
|  | unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | 
|  | SDValue Addr = FIN; | 
|  | if (j) { | 
|  | SDValue Off = DAG.getConstant(j, PtrVT); | 
|  | Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); | 
|  | } | 
|  | SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, | 
|  | MachinePointerInfo(FuncArg, j), | 
|  | false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | ++GPR_idx; | 
|  | } | 
|  | ArgOffset += ArgSize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (ObjectVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unhandled argument type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | // These can be scalar arguments or elements of an integer array type | 
|  | // passed directly.  Clang may use those instead of "byval" aggregate | 
|  | // types to avoid forcing arguments to memory unnecessarily. | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | 
|  | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); | 
|  |  | 
|  | if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) | 
|  | // PPC64 passes i8, i16, and i32 values in i64 registers. Promote | 
|  | // value to MVT::i64 and then truncate to the correct register size. | 
|  | ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); | 
|  | } else { | 
|  | needsLoad = true; | 
|  | ArgSize = PtrByteSize; | 
|  | } | 
|  | ArgOffset += 8; | 
|  | break; | 
|  |  | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | // These can be scalar arguments or elements of a float array type | 
|  | // passed directly.  The latter are used to implement ELFv2 homogenous | 
|  | // float aggregates. | 
|  | if (FPR_idx != Num_FPR_Regs) { | 
|  | unsigned VReg; | 
|  |  | 
|  | if (ObjectVT == MVT::f32) | 
|  | VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); | 
|  | else | 
|  | VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() ? | 
|  | &PPC::VSFRCRegClass : | 
|  | &PPC::F8RCRegClass); | 
|  |  | 
|  | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); | 
|  | ++FPR_idx; | 
|  | } else if (GPR_idx != Num_GPR_Regs) { | 
|  | // This can only ever happen in the presence of f32 array types, | 
|  | // since otherwise we never run out of FPRs before running out | 
|  | // of GPRs. | 
|  | unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | 
|  | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); | 
|  |  | 
|  | if (ObjectVT == MVT::f32) { | 
|  | if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) | 
|  | ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, | 
|  | DAG.getConstant(32, MVT::i32)); | 
|  | ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); | 
|  | } | 
|  |  | 
|  | ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); | 
|  | } else { | 
|  | needsLoad = true; | 
|  | } | 
|  |  | 
|  | // When passing an array of floats, the array occupies consecutive | 
|  | // space in the argument area; only round up to the next doubleword | 
|  | // at the end of the array.  Otherwise, each float takes 8 bytes. | 
|  | ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; | 
|  | ArgOffset += ArgSize; | 
|  | if (Flags.isInConsecutiveRegsLast()) | 
|  | ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  | break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | case MVT::v2f64: | 
|  | case MVT::v2i64: | 
|  | // These can be scalar arguments or elements of a vector array type | 
|  | // passed directly.  The latter are used to implement ELFv2 homogenous | 
|  | // vector aggregates. | 
|  | if (VR_idx != Num_VR_Regs) { | 
|  | unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? | 
|  | MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : | 
|  | MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); | 
|  | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); | 
|  | ++VR_idx; | 
|  | } else { | 
|  | needsLoad = true; | 
|  | } | 
|  | ArgOffset += 16; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We need to load the argument to a virtual register if we determined | 
|  | // above that we ran out of physical registers of the appropriate type. | 
|  | if (needsLoad) { | 
|  | if (ObjSize < ArgSize && !isLittleEndian) | 
|  | CurArgOffset += ArgSize - ObjSize; | 
|  | int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | InVals.push_back(ArgVal); | 
|  | } | 
|  |  | 
|  | // Area that is at least reserved in the caller of this function. | 
|  | unsigned MinReservedArea; | 
|  | if (HasParameterArea) | 
|  | MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); | 
|  | else | 
|  | MinReservedArea = LinkageSize; | 
|  |  | 
|  | // Set the size that is at least reserved in caller of this function.  Tail | 
|  | // call optimized functions' reserved stack space needs to be aligned so that | 
|  | // taking the difference between two stack areas will result in an aligned | 
|  | // stack. | 
|  | MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea); | 
|  | FuncInfo->setMinReservedArea(MinReservedArea); | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (isVarArg) { | 
|  | int Depth = ArgOffset; | 
|  |  | 
|  | FuncInfo->setVarArgsFrameIndex( | 
|  | MFI->CreateFixedObject(PtrByteSize, Depth, true)); | 
|  | SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); | 
|  |  | 
|  | // If this function is vararg, store any remaining integer argument regs | 
|  | // to their spots on the stack so that they may be loaded by deferencing the | 
|  | // result of va_next. | 
|  | for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; | 
|  | GPR_idx < Num_GPR_Regs; ++GPR_idx) { | 
|  | unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | 
|  | SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by four for the next argument to store | 
|  | SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOps.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerFormalArguments_Darwin( | 
|  | SDValue Chain, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> | 
|  | &Ins, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | // TODO: add description of PPC stack frame format, or at least some docs. | 
|  | // | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | bool isPPC64 = PtrVT == MVT::i64; | 
|  | // Potential tail calls could cause overwriting of argument stack slots. | 
|  | bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && | 
|  | (CallConv == CallingConv::Fast)); | 
|  | unsigned PtrByteSize = isPPC64 ? 8 : 4; | 
|  |  | 
|  | unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true, | 
|  | false); | 
|  | unsigned ArgOffset = LinkageSize; | 
|  | // Area that is at least reserved in caller of this function. | 
|  | unsigned MinReservedArea = ArgOffset; | 
|  |  | 
|  | static const MCPhysReg GPR_32[] = {           // 32-bit registers. | 
|  | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | 
|  | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | 
|  | }; | 
|  | static const MCPhysReg GPR_64[] = {           // 64-bit registers. | 
|  | PPC::X3, PPC::X4, PPC::X5, PPC::X6, | 
|  | PPC::X7, PPC::X8, PPC::X9, PPC::X10, | 
|  | }; | 
|  |  | 
|  | static const MCPhysReg *FPR = GetFPR(); | 
|  |  | 
|  | static const MCPhysReg VR[] = { | 
|  | PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, | 
|  | PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 | 
|  | }; | 
|  |  | 
|  | const unsigned Num_GPR_Regs = array_lengthof(GPR_32); | 
|  | const unsigned Num_FPR_Regs = 13; | 
|  | const unsigned Num_VR_Regs  = array_lengthof( VR); | 
|  |  | 
|  | unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; | 
|  |  | 
|  | const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; | 
|  |  | 
|  | // In 32-bit non-varargs functions, the stack space for vectors is after the | 
|  | // stack space for non-vectors.  We do not use this space unless we have | 
|  | // too many vectors to fit in registers, something that only occurs in | 
|  | // constructed examples:), but we have to walk the arglist to figure | 
|  | // that out...for the pathological case, compute VecArgOffset as the | 
|  | // start of the vector parameter area.  Computing VecArgOffset is the | 
|  | // entire point of the following loop. | 
|  | unsigned VecArgOffset = ArgOffset; | 
|  | if (!isVarArg && !isPPC64) { | 
|  | for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; | 
|  | ++ArgNo) { | 
|  | EVT ObjectVT = Ins[ArgNo].VT; | 
|  | ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; | 
|  |  | 
|  | if (Flags.isByVal()) { | 
|  | // ObjSize is the true size, ArgSize rounded up to multiple of regs. | 
|  | unsigned ObjSize = Flags.getByValSize(); | 
|  | unsigned ArgSize = | 
|  | ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  | VecArgOffset += ArgSize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch(ObjectVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unhandled argument type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i32: | 
|  | case MVT::f32: | 
|  | VecArgOffset += 4; | 
|  | break; | 
|  | case MVT::i64:  // PPC64 | 
|  | case MVT::f64: | 
|  | // FIXME: We are guaranteed to be !isPPC64 at this point. | 
|  | // Does MVT::i64 apply? | 
|  | VecArgOffset += 8; | 
|  | break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | // Nothing to do, we're only looking at Nonvector args here. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | // We've found where the vector parameter area in memory is.  Skip the | 
|  | // first 12 parameters; these don't use that memory. | 
|  | VecArgOffset = ((VecArgOffset+15)/16)*16; | 
|  | VecArgOffset += 12*16; | 
|  |  | 
|  | // Add DAG nodes to load the arguments or copy them out of registers.  On | 
|  | // entry to a function on PPC, the arguments start after the linkage area, | 
|  | // although the first ones are often in registers. | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  | unsigned nAltivecParamsAtEnd = 0; | 
|  | Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); | 
|  | unsigned CurArgIdx = 0; | 
|  | for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { | 
|  | SDValue ArgVal; | 
|  | bool needsLoad = false; | 
|  | EVT ObjectVT = Ins[ArgNo].VT; | 
|  | unsigned ObjSize = ObjectVT.getSizeInBits()/8; | 
|  | unsigned ArgSize = ObjSize; | 
|  | ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; | 
|  | std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx); | 
|  | CurArgIdx = Ins[ArgNo].OrigArgIndex; | 
|  |  | 
|  | unsigned CurArgOffset = ArgOffset; | 
|  |  | 
|  | // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. | 
|  | if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || | 
|  | ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { | 
|  | if (isVarArg || isPPC64) { | 
|  | MinReservedArea = ((MinReservedArea+15)/16)*16; | 
|  | MinReservedArea += CalculateStackSlotSize(ObjectVT, | 
|  | Flags, | 
|  | PtrByteSize); | 
|  | } else  nAltivecParamsAtEnd++; | 
|  | } else | 
|  | // Calculate min reserved area. | 
|  | MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, | 
|  | Flags, | 
|  | PtrByteSize); | 
|  |  | 
|  | // FIXME the codegen can be much improved in some cases. | 
|  | // We do not have to keep everything in memory. | 
|  | if (Flags.isByVal()) { | 
|  | // ObjSize is the true size, ArgSize rounded up to multiple of registers. | 
|  | ObjSize = Flags.getByValSize(); | 
|  | ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  | // Objects of size 1 and 2 are right justified, everything else is | 
|  | // left justified.  This means the memory address is adjusted forwards. | 
|  | if (ObjSize==1 || ObjSize==2) { | 
|  | CurArgOffset = CurArgOffset + (4 - ObjSize); | 
|  | } | 
|  | // The value of the object is its address. | 
|  | int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | InVals.push_back(FIN); | 
|  | if (ObjSize==1 || ObjSize==2) { | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg; | 
|  | if (isPPC64) | 
|  | VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | 
|  | else | 
|  | VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | 
|  | EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; | 
|  | SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, | 
|  | MachinePointerInfo(FuncArg), | 
|  | ObjType, false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | ++GPR_idx; | 
|  | } | 
|  |  | 
|  | ArgOffset += PtrByteSize; | 
|  |  | 
|  | continue; | 
|  | } | 
|  | for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { | 
|  | // Store whatever pieces of the object are in registers | 
|  | // to memory.  ArgOffset will be the address of the beginning | 
|  | // of the object. | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg; | 
|  | if (isPPC64) | 
|  | VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | 
|  | else | 
|  | VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); | 
|  | int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | 
|  | SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, | 
|  | MachinePointerInfo(FuncArg, j), | 
|  | false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | ++GPR_idx; | 
|  | ArgOffset += PtrByteSize; | 
|  | } else { | 
|  | ArgOffset += ArgSize - (ArgOffset-CurArgOffset); | 
|  | break; | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (ObjectVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unhandled argument type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i32: | 
|  | if (!isPPC64) { | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); | 
|  | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); | 
|  |  | 
|  | if (ObjectVT == MVT::i1) | 
|  | ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); | 
|  |  | 
|  | ++GPR_idx; | 
|  | } else { | 
|  | needsLoad = true; | 
|  | ArgSize = PtrByteSize; | 
|  | } | 
|  | // All int arguments reserve stack space in the Darwin ABI. | 
|  | ArgOffset += PtrByteSize; | 
|  | break; | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case MVT::i64:  // PPC64 | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | 
|  | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); | 
|  |  | 
|  | if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) | 
|  | // PPC64 passes i8, i16, and i32 values in i64 registers. Promote | 
|  | // value to MVT::i64 and then truncate to the correct register size. | 
|  | ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); | 
|  |  | 
|  | ++GPR_idx; | 
|  | } else { | 
|  | needsLoad = true; | 
|  | ArgSize = PtrByteSize; | 
|  | } | 
|  | // All int arguments reserve stack space in the Darwin ABI. | 
|  | ArgOffset += 8; | 
|  | break; | 
|  |  | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | // Every 4 bytes of argument space consumes one of the GPRs available for | 
|  | // argument passing. | 
|  | if (GPR_idx != Num_GPR_Regs) { | 
|  | ++GPR_idx; | 
|  | if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) | 
|  | ++GPR_idx; | 
|  | } | 
|  | if (FPR_idx != Num_FPR_Regs) { | 
|  | unsigned VReg; | 
|  |  | 
|  | if (ObjectVT == MVT::f32) | 
|  | VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); | 
|  | else | 
|  | VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); | 
|  |  | 
|  | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); | 
|  | ++FPR_idx; | 
|  | } else { | 
|  | needsLoad = true; | 
|  | } | 
|  |  | 
|  | // All FP arguments reserve stack space in the Darwin ABI. | 
|  | ArgOffset += isPPC64 ? 8 : ObjSize; | 
|  | break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | // Note that vector arguments in registers don't reserve stack space, | 
|  | // except in varargs functions. | 
|  | if (VR_idx != Num_VR_Regs) { | 
|  | unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); | 
|  | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); | 
|  | if (isVarArg) { | 
|  | while ((ArgOffset % 16) != 0) { | 
|  | ArgOffset += PtrByteSize; | 
|  | if (GPR_idx != Num_GPR_Regs) | 
|  | GPR_idx++; | 
|  | } | 
|  | ArgOffset += 16; | 
|  | GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? | 
|  | } | 
|  | ++VR_idx; | 
|  | } else { | 
|  | if (!isVarArg && !isPPC64) { | 
|  | // Vectors go after all the nonvectors. | 
|  | CurArgOffset = VecArgOffset; | 
|  | VecArgOffset += 16; | 
|  | } else { | 
|  | // Vectors are aligned. | 
|  | ArgOffset = ((ArgOffset+15)/16)*16; | 
|  | CurArgOffset = ArgOffset; | 
|  | ArgOffset += 16; | 
|  | } | 
|  | needsLoad = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We need to load the argument to a virtual register if we determined above | 
|  | // that we ran out of physical registers of the appropriate type. | 
|  | if (needsLoad) { | 
|  | int FI = MFI->CreateFixedObject(ObjSize, | 
|  | CurArgOffset + (ArgSize - ObjSize), | 
|  | isImmutable); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | 
|  | ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | InVals.push_back(ArgVal); | 
|  | } | 
|  |  | 
|  | // Allow for Altivec parameters at the end, if needed. | 
|  | if (nAltivecParamsAtEnd) { | 
|  | MinReservedArea = ((MinReservedArea+15)/16)*16; | 
|  | MinReservedArea += 16*nAltivecParamsAtEnd; | 
|  | } | 
|  |  | 
|  | // Area that is at least reserved in the caller of this function. | 
|  | MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); | 
|  |  | 
|  | // Set the size that is at least reserved in caller of this function.  Tail | 
|  | // call optimized functions' reserved stack space needs to be aligned so that | 
|  | // taking the difference between two stack areas will result in an aligned | 
|  | // stack. | 
|  | MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea); | 
|  | FuncInfo->setMinReservedArea(MinReservedArea); | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (isVarArg) { | 
|  | int Depth = ArgOffset; | 
|  |  | 
|  | FuncInfo->setVarArgsFrameIndex( | 
|  | MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, | 
|  | Depth, true)); | 
|  | SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); | 
|  |  | 
|  | // If this function is vararg, store any remaining integer argument regs | 
|  | // to their spots on the stack so that they may be loaded by deferencing the | 
|  | // result of va_next. | 
|  | for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { | 
|  | unsigned VReg; | 
|  |  | 
|  | if (isPPC64) | 
|  | VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | 
|  | else | 
|  | VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); | 
|  |  | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | 
|  | SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by four for the next argument to store | 
|  | SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); | 
|  | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOps.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be | 
|  | /// adjusted to accommodate the arguments for the tailcall. | 
|  | static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, | 
|  | unsigned ParamSize) { | 
|  |  | 
|  | if (!isTailCall) return 0; | 
|  |  | 
|  | PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); | 
|  | unsigned CallerMinReservedArea = FI->getMinReservedArea(); | 
|  | int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; | 
|  | // Remember only if the new adjustement is bigger. | 
|  | if (SPDiff < FI->getTailCallSPDelta()) | 
|  | FI->setTailCallSPDelta(SPDiff); | 
|  |  | 
|  | return SPDiff; | 
|  | } | 
|  |  | 
|  | /// IsEligibleForTailCallOptimization - Check whether the call is eligible | 
|  | /// for tail call optimization. Targets which want to do tail call | 
|  | /// optimization should implement this function. | 
|  | bool | 
|  | PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, | 
|  | CallingConv::ID CalleeCC, | 
|  | bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SelectionDAG& DAG) const { | 
|  | if (!getTargetMachine().Options.GuaranteedTailCallOpt) | 
|  | return false; | 
|  |  | 
|  | // Variable argument functions are not supported. | 
|  | if (isVarArg) | 
|  | return false; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); | 
|  | if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { | 
|  | // Functions containing by val parameters are not supported. | 
|  | for (unsigned i = 0; i != Ins.size(); i++) { | 
|  | ISD::ArgFlagsTy Flags = Ins[i].Flags; | 
|  | if (Flags.isByVal()) return false; | 
|  | } | 
|  |  | 
|  | // Non-PIC/GOT tail calls are supported. | 
|  | if (getTargetMachine().getRelocationModel() != Reloc::PIC_) | 
|  | return true; | 
|  |  | 
|  | // At the moment we can only do local tail calls (in same module, hidden | 
|  | // or protected) if we are generating PIC. | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) | 
|  | return G->getGlobal()->hasHiddenVisibility() | 
|  | || G->getGlobal()->hasProtectedVisibility(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isCallCompatibleAddress - Return the immediate to use if the specified | 
|  | /// 32-bit value is representable in the immediate field of a BxA instruction. | 
|  | static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); | 
|  | if (!C) return nullptr; | 
|  |  | 
|  | int Addr = C->getZExtValue(); | 
|  | if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero. | 
|  | SignExtend32<26>(Addr) != Addr) | 
|  | return nullptr;  // Top 6 bits have to be sext of immediate. | 
|  |  | 
|  | return DAG.getConstant((int)C->getZExtValue() >> 2, | 
|  | DAG.getTargetLoweringInfo().getPointerTy()).getNode(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct TailCallArgumentInfo { | 
|  | SDValue Arg; | 
|  | SDValue FrameIdxOp; | 
|  | int       FrameIdx; | 
|  |  | 
|  | TailCallArgumentInfo() : FrameIdx(0) {} | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. | 
|  | static void | 
|  | StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, | 
|  | SDValue Chain, | 
|  | const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, | 
|  | SmallVectorImpl<SDValue> &MemOpChains, | 
|  | SDLoc dl) { | 
|  | for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { | 
|  | SDValue Arg = TailCallArgs[i].Arg; | 
|  | SDValue FIN = TailCallArgs[i].FrameIdxOp; | 
|  | int FI = TailCallArgs[i].FrameIdx; | 
|  | // Store relative to framepointer. | 
|  | MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, | 
|  | MachinePointerInfo::getFixedStack(FI), | 
|  | false, false, 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to | 
|  | /// the appropriate stack slot for the tail call optimized function call. | 
|  | static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, | 
|  | MachineFunction &MF, | 
|  | SDValue Chain, | 
|  | SDValue OldRetAddr, | 
|  | SDValue OldFP, | 
|  | int SPDiff, | 
|  | bool isPPC64, | 
|  | bool isDarwinABI, | 
|  | SDLoc dl) { | 
|  | if (SPDiff) { | 
|  | // Calculate the new stack slot for the return address. | 
|  | int SlotSize = isPPC64 ? 8 : 4; | 
|  | int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, | 
|  | isDarwinABI); | 
|  | int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, | 
|  | NewRetAddrLoc, true); | 
|  | EVT VT = isPPC64 ? MVT::i64 : MVT::i32; | 
|  | SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); | 
|  | Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, | 
|  | MachinePointerInfo::getFixedStack(NewRetAddr), | 
|  | false, false, 0); | 
|  |  | 
|  | // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack | 
|  | // slot as the FP is never overwritten. | 
|  | if (isDarwinABI) { | 
|  | int NewFPLoc = | 
|  | SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); | 
|  | int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, | 
|  | true); | 
|  | SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); | 
|  | Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, | 
|  | MachinePointerInfo::getFixedStack(NewFPIdx), | 
|  | false, false, 0); | 
|  | } | 
|  | } | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate | 
|  | /// the position of the argument. | 
|  | static void | 
|  | CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, | 
|  | SDValue Arg, int SPDiff, unsigned ArgOffset, | 
|  | SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { | 
|  | int Offset = ArgOffset + SPDiff; | 
|  | uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; | 
|  | int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); | 
|  | EVT VT = isPPC64 ? MVT::i64 : MVT::i32; | 
|  | SDValue FIN = DAG.getFrameIndex(FI, VT); | 
|  | TailCallArgumentInfo Info; | 
|  | Info.Arg = Arg; | 
|  | Info.FrameIdxOp = FIN; | 
|  | Info.FrameIdx = FI; | 
|  | TailCallArguments.push_back(Info); | 
|  | } | 
|  |  | 
|  | /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address | 
|  | /// stack slot. Returns the chain as result and the loaded frame pointers in | 
|  | /// LROpOut/FPOpout. Used when tail calling. | 
|  | SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, | 
|  | int SPDiff, | 
|  | SDValue Chain, | 
|  | SDValue &LROpOut, | 
|  | SDValue &FPOpOut, | 
|  | bool isDarwinABI, | 
|  | SDLoc dl) const { | 
|  | if (SPDiff) { | 
|  | // Load the LR and FP stack slot for later adjusting. | 
|  | EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; | 
|  | LROpOut = getReturnAddrFrameIndex(DAG); | 
|  | LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | Chain = SDValue(LROpOut.getNode(), 1); | 
|  |  | 
|  | // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack | 
|  | // slot as the FP is never overwritten. | 
|  | if (isDarwinABI) { | 
|  | FPOpOut = getFramePointerFrameIndex(DAG); | 
|  | FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | Chain = SDValue(FPOpOut.getNode(), 1); | 
|  | } | 
|  | } | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified | 
|  | /// by "Src" to address "Dst" of size "Size".  Alignment information is | 
|  | /// specified by the specific parameter attribute. The copy will be passed as | 
|  | /// a byval function parameter. | 
|  | /// Sometimes what we are copying is the end of a larger object, the part that | 
|  | /// does not fit in registers. | 
|  | static SDValue | 
|  | CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, | 
|  | ISD::ArgFlagsTy Flags, SelectionDAG &DAG, | 
|  | SDLoc dl) { | 
|  | SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); | 
|  | return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), | 
|  | false, false, MachinePointerInfo(), | 
|  | MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of | 
|  | /// tail calls. | 
|  | static void | 
|  | LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, | 
|  | SDValue Arg, SDValue PtrOff, int SPDiff, | 
|  | unsigned ArgOffset, bool isPPC64, bool isTailCall, | 
|  | bool isVector, SmallVectorImpl<SDValue> &MemOpChains, | 
|  | SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, | 
|  | SDLoc dl) { | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | if (!isTailCall) { | 
|  | if (isVector) { | 
|  | SDValue StackPtr; | 
|  | if (isPPC64) | 
|  | StackPtr = DAG.getRegister(PPC::X1, MVT::i64); | 
|  | else | 
|  | StackPtr = DAG.getRegister(PPC::R1, MVT::i32); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, | 
|  | DAG.getConstant(ArgOffset, PtrVT)); | 
|  | } | 
|  | MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, | 
|  | MachinePointerInfo(), false, false, 0)); | 
|  | // Calculate and remember argument location. | 
|  | } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, | 
|  | TailCallArguments); | 
|  | } | 
|  |  | 
|  | static | 
|  | void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, | 
|  | SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, | 
|  | SDValue LROp, SDValue FPOp, bool isDarwinABI, | 
|  | SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | // Emit a sequence of copyto/copyfrom virtual registers for arguments that | 
|  | // might overwrite each other in case of tail call optimization. | 
|  | SmallVector<SDValue, 8> MemOpChains2; | 
|  | // Do not flag preceding copytoreg stuff together with the following stuff. | 
|  | InFlag = SDValue(); | 
|  | StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, | 
|  | MemOpChains2, dl); | 
|  | if (!MemOpChains2.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); | 
|  |  | 
|  | // Store the return address to the appropriate stack slot. | 
|  | Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, | 
|  | isPPC64, isDarwinABI, dl); | 
|  |  | 
|  | // Emit callseq_end just before tailcall node. | 
|  | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), | 
|  | DAG.getIntPtrConstant(0, true), InFlag, dl); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | static | 
|  | unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, | 
|  | SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall, | 
|  | SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, | 
|  | SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, | 
|  | const PPCSubtarget &Subtarget) { | 
|  |  | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | bool isSVR4ABI = Subtarget.isSVR4ABI(); | 
|  | bool isELFv2ABI = Subtarget.isELFv2ABI(); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | NodeTys.push_back(MVT::Other);   // Returns a chain | 
|  | NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use. | 
|  |  | 
|  | unsigned CallOpc = PPCISD::CALL; | 
|  |  | 
|  | bool needIndirectCall = true; | 
|  | if (!isSVR4ABI || !isPPC64) | 
|  | if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { | 
|  | // If this is an absolute destination address, use the munged value. | 
|  | Callee = SDValue(Dest, 0); | 
|  | needIndirectCall = false; | 
|  | } | 
|  |  | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 | 
|  | // Use indirect calls for ALL functions calls in JIT mode, since the | 
|  | // far-call stubs may be outside relocation limits for a BL instruction. | 
|  | if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { | 
|  | unsigned OpFlags = 0; | 
|  | if ((DAG.getTarget().getRelocationModel() != Reloc::Static && | 
|  | (Subtarget.getTargetTriple().isMacOSX() && | 
|  | Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && | 
|  | (G->getGlobal()->isDeclaration() || | 
|  | G->getGlobal()->isWeakForLinker())) || | 
|  | (Subtarget.isTargetELF() && !isPPC64 && | 
|  | !G->getGlobal()->hasLocalLinkage() && | 
|  | DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { | 
|  | // PC-relative references to external symbols should go through $stub, | 
|  | // unless we're building with the leopard linker or later, which | 
|  | // automatically synthesizes these stubs. | 
|  | OpFlags = PPCII::MO_PLT_OR_STUB; | 
|  | } | 
|  |  | 
|  | // If the callee is a GlobalAddress/ExternalSymbol node (quite common, | 
|  | // every direct call is) turn it into a TargetGlobalAddress / | 
|  | // TargetExternalSymbol node so that legalize doesn't hack it. | 
|  | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, | 
|  | Callee.getValueType(), | 
|  | 0, OpFlags); | 
|  | needIndirectCall = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | unsigned char OpFlags = 0; | 
|  |  | 
|  | if ((DAG.getTarget().getRelocationModel() != Reloc::Static && | 
|  | (Subtarget.getTargetTriple().isMacOSX() && | 
|  | Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || | 
|  | (Subtarget.isTargetELF() && !isPPC64 && | 
|  | DAG.getTarget().getRelocationModel() == Reloc::PIC_)	) { | 
|  | // PC-relative references to external symbols should go through $stub, | 
|  | // unless we're building with the leopard linker or later, which | 
|  | // automatically synthesizes these stubs. | 
|  | OpFlags = PPCII::MO_PLT_OR_STUB; | 
|  | } | 
|  |  | 
|  | Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), | 
|  | OpFlags); | 
|  | needIndirectCall = false; | 
|  | } | 
|  |  | 
|  | if (needIndirectCall) { | 
|  | // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair | 
|  | // to do the call, we can't use PPCISD::CALL. | 
|  | SDValue MTCTROps[] = {Chain, Callee, InFlag}; | 
|  |  | 
|  | if (isSVR4ABI && isPPC64 && !isELFv2ABI) { | 
|  | // Function pointers in the 64-bit SVR4 ABI do not point to the function | 
|  | // entry point, but to the function descriptor (the function entry point | 
|  | // address is part of the function descriptor though). | 
|  | // The function descriptor is a three doubleword structure with the | 
|  | // following fields: function entry point, TOC base address and | 
|  | // environment pointer. | 
|  | // Thus for a call through a function pointer, the following actions need | 
|  | // to be performed: | 
|  | //   1. Save the TOC of the caller in the TOC save area of its stack | 
|  | //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). | 
|  | //   2. Load the address of the function entry point from the function | 
|  | //      descriptor. | 
|  | //   3. Load the TOC of the callee from the function descriptor into r2. | 
|  | //   4. Load the environment pointer from the function descriptor into | 
|  | //      r11. | 
|  | //   5. Branch to the function entry point address. | 
|  | //   6. On return of the callee, the TOC of the caller needs to be | 
|  | //      restored (this is done in FinishCall()). | 
|  | // | 
|  | // All those operations are flagged together to ensure that no other | 
|  | // operations can be scheduled in between. E.g. without flagging the | 
|  | // operations together, a TOC access in the caller could be scheduled | 
|  | // between the load of the callee TOC and the branch to the callee, which | 
|  | // results in the TOC access going through the TOC of the callee instead | 
|  | // of going through the TOC of the caller, which leads to incorrect code. | 
|  |  | 
|  | // Load the address of the function entry point from the function | 
|  | // descriptor. | 
|  | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); | 
|  | SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, | 
|  | makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); | 
|  | Chain = LoadFuncPtr.getValue(1); | 
|  | InFlag = LoadFuncPtr.getValue(2); | 
|  |  | 
|  | // Load environment pointer into r11. | 
|  | // Offset of the environment pointer within the function descriptor. | 
|  | SDValue PtrOff = DAG.getIntPtrConstant(16); | 
|  |  | 
|  | SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); | 
|  | SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, | 
|  | InFlag); | 
|  | Chain = LoadEnvPtr.getValue(1); | 
|  | InFlag = LoadEnvPtr.getValue(2); | 
|  |  | 
|  | SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, | 
|  | InFlag); | 
|  | Chain = EnvVal.getValue(0); | 
|  | InFlag = EnvVal.getValue(1); | 
|  |  | 
|  | // Load TOC of the callee into r2. We are using a target-specific load | 
|  | // with r2 hard coded, because the result of a target-independent load | 
|  | // would never go directly into r2, since r2 is a reserved register (which | 
|  | // prevents the register allocator from allocating it), resulting in an | 
|  | // additional register being allocated and an unnecessary move instruction | 
|  | // being generated. | 
|  | VTs = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue TOCOff = DAG.getIntPtrConstant(8); | 
|  | SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); | 
|  | SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, | 
|  | AddTOC, InFlag); | 
|  | Chain = LoadTOCPtr.getValue(0); | 
|  | InFlag = LoadTOCPtr.getValue(1); | 
|  |  | 
|  | MTCTROps[0] = Chain; | 
|  | MTCTROps[1] = LoadFuncPtr; | 
|  | MTCTROps[2] = InFlag; | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, | 
|  | makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::Other); | 
|  | NodeTys.push_back(MVT::Glue); | 
|  | Ops.push_back(Chain); | 
|  | CallOpc = PPCISD::BCTRL; | 
|  | Callee.setNode(nullptr); | 
|  | // Add use of X11 (holding environment pointer) | 
|  | if (isSVR4ABI && isPPC64 && !isELFv2ABI) | 
|  | Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); | 
|  | // Add CTR register as callee so a bctr can be emitted later. | 
|  | if (isTailCall) | 
|  | Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); | 
|  | } | 
|  |  | 
|  | // If this is a direct call, pass the chain and the callee. | 
|  | if (Callee.getNode()) { | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  | } | 
|  | // If this is a tail call add stack pointer delta. | 
|  | if (isTailCall) | 
|  | Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are known live | 
|  | // into the call. | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) | 
|  | Ops.push_back(DAG.getRegister(RegsToPass[i].first, | 
|  | RegsToPass[i].second.getValueType())); | 
|  |  | 
|  | // Direct calls in the ELFv2 ABI need the TOC register live into the call. | 
|  | if (Callee.getNode() && isELFv2ABI) | 
|  | Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); | 
|  |  | 
|  | return CallOpc; | 
|  | } | 
|  |  | 
|  | static | 
|  | bool isLocalCall(const SDValue &Callee) | 
|  | { | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) | 
|  | return !G->getGlobal()->isDeclaration() && | 
|  | !G->getGlobal()->isWeakForLinker(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  | CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  |  | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, | 
|  | VA.getLocReg(), VA.getLocVT(), InFlag); | 
|  | Chain = Val.getValue(1); | 
|  | InFlag = Val.getValue(2); | 
|  |  | 
|  | switch (VA.getLocInfo()) { | 
|  | default: llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: break; | 
|  | case CCValAssign::AExt: | 
|  | Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); | 
|  | break; | 
|  | } | 
|  |  | 
|  | InVals.push_back(Val); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, | 
|  | bool isTailCall, bool isVarArg, | 
|  | SelectionDAG &DAG, | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> | 
|  | &RegsToPass, | 
|  | SDValue InFlag, SDValue Chain, | 
|  | SDValue &Callee, | 
|  | int SPDiff, unsigned NumBytes, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  |  | 
|  | bool isELFv2ABI = Subtarget.isELFv2ABI(); | 
|  | std::vector<EVT> NodeTys; | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, | 
|  | isTailCall, RegsToPass, Ops, NodeTys, | 
|  | Subtarget); | 
|  |  | 
|  | // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls | 
|  | if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) | 
|  | Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); | 
|  |  | 
|  | // When performing tail call optimization the callee pops its arguments off | 
|  | // the stack. Account for this here so these bytes can be pushed back on in | 
|  | // PPCFrameLowering::eliminateCallFramePseudoInstr. | 
|  | int BytesCalleePops = | 
|  | (CallConv == CallingConv::Fast && | 
|  | getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; | 
|  |  | 
|  | // Add a register mask operand representing the call-preserved registers. | 
|  | const TargetRegisterInfo *TRI = | 
|  | getTargetMachine().getSubtargetImpl()->getRegisterInfo(); | 
|  | const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); | 
|  | assert(Mask && "Missing call preserved mask for calling convention"); | 
|  | Ops.push_back(DAG.getRegisterMask(Mask)); | 
|  |  | 
|  | if (InFlag.getNode()) | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | // Emit tail call. | 
|  | if (isTailCall) { | 
|  | assert(((Callee.getOpcode() == ISD::Register && | 
|  | cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || | 
|  | Callee.getOpcode() == ISD::TargetExternalSymbol || | 
|  | Callee.getOpcode() == ISD::TargetGlobalAddress || | 
|  | isa<ConstantSDNode>(Callee)) && | 
|  | "Expecting an global address, external symbol, absolute value or register"); | 
|  |  | 
|  | return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); | 
|  | } | 
|  |  | 
|  | // Add a NOP immediately after the branch instruction when using the 64-bit | 
|  | // SVR4 ABI. At link time, if caller and callee are in a different module and | 
|  | // thus have a different TOC, the call will be replaced with a call to a stub | 
|  | // function which saves the current TOC, loads the TOC of the callee and | 
|  | // branches to the callee. The NOP will be replaced with a load instruction | 
|  | // which restores the TOC of the caller from the TOC save slot of the current | 
|  | // stack frame. If caller and callee belong to the same module (and have the | 
|  | // same TOC), the NOP will remain unchanged. | 
|  |  | 
|  | bool needsTOCRestore = false; | 
|  | if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64()) { | 
|  | if (CallOpc == PPCISD::BCTRL) { | 
|  | // This is a call through a function pointer. | 
|  | // Restore the caller TOC from the save area into R2. | 
|  | // See PrepareCall() for more information about calls through function | 
|  | // pointers in the 64-bit SVR4 ABI. | 
|  | // We are using a target-specific load with r2 hard coded, because the | 
|  | // result of a target-independent load would never go directly into r2, | 
|  | // since r2 is a reserved register (which prevents the register allocator | 
|  | // from allocating it), resulting in an additional register being | 
|  | // allocated and an unnecessary move instruction being generated. | 
|  | needsTOCRestore = true; | 
|  | } else if ((CallOpc == PPCISD::CALL) && | 
|  | (!isLocalCall(Callee) || | 
|  | DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { | 
|  | // Otherwise insert NOP for non-local calls. | 
|  | CallOpc = PPCISD::CALL_NOP; | 
|  | } | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | if (needsTOCRestore) { | 
|  | SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); | 
|  | unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset(isELFv2ABI); | 
|  | SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset); | 
|  | SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); | 
|  | Chain = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, AddTOC, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), | 
|  | DAG.getIntPtrConstant(BytesCalleePops, true), | 
|  | InFlag, dl); | 
|  | if (!Ins.empty()) | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | return LowerCallResult(Chain, InFlag, CallConv, isVarArg, | 
|  | Ins, dl, DAG, InVals); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | SelectionDAG &DAG                     = CLI.DAG; | 
|  | SDLoc &dl                             = CLI.DL; | 
|  | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; | 
|  | SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals; | 
|  | SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins; | 
|  | SDValue Chain                         = CLI.Chain; | 
|  | SDValue Callee                        = CLI.Callee; | 
|  | bool &isTailCall                      = CLI.IsTailCall; | 
|  | CallingConv::ID CallConv              = CLI.CallConv; | 
|  | bool isVarArg                         = CLI.IsVarArg; | 
|  |  | 
|  | if (isTailCall) | 
|  | isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, | 
|  | Ins, DAG); | 
|  |  | 
|  | if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall()) | 
|  | report_fatal_error("failed to perform tail call elimination on a call " | 
|  | "site marked musttail"); | 
|  |  | 
|  | if (Subtarget.isSVR4ABI()) { | 
|  | if (Subtarget.isPPC64()) | 
|  | return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, | 
|  | isTailCall, Outs, OutVals, Ins, | 
|  | dl, DAG, InVals); | 
|  | else | 
|  | return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, | 
|  | isTailCall, Outs, OutVals, Ins, | 
|  | dl, DAG, InVals); | 
|  | } | 
|  |  | 
|  | return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, | 
|  | isTailCall, Outs, OutVals, Ins, | 
|  | dl, DAG, InVals); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | bool isTailCall, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description | 
|  | // of the 32-bit SVR4 ABI stack frame layout. | 
|  |  | 
|  | assert((CallConv == CallingConv::C || | 
|  | CallConv == CallingConv::Fast) && "Unknown calling convention!"); | 
|  |  | 
|  | unsigned PtrByteSize = 4; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | // Mark this function as potentially containing a function that contains a | 
|  | // tail call. As a consequence the frame pointer will be used for dynamicalloc | 
|  | // and restoring the callers stack pointer in this functions epilog. This is | 
|  | // done because by tail calling the called function might overwrite the value | 
|  | // in this function's (MF) stack pointer stack slot 0(SP). | 
|  | if (getTargetMachine().Options.GuaranteedTailCallOpt && | 
|  | CallConv == CallingConv::Fast) | 
|  | MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); | 
|  |  | 
|  | // Count how many bytes are to be pushed on the stack, including the linkage | 
|  | // area, parameter list area and the part of the local variable space which | 
|  | // contains copies of aggregates which are passed by value. | 
|  |  | 
|  | // Assign locations to all of the outgoing arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // Reserve space for the linkage area on the stack. | 
|  | CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false, false), | 
|  | PtrByteSize); | 
|  |  | 
|  | if (isVarArg) { | 
|  | // Handle fixed and variable vector arguments differently. | 
|  | // Fixed vector arguments go into registers as long as registers are | 
|  | // available. Variable vector arguments always go into memory. | 
|  | unsigned NumArgs = Outs.size(); | 
|  |  | 
|  | for (unsigned i = 0; i != NumArgs; ++i) { | 
|  | MVT ArgVT = Outs[i].VT; | 
|  | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; | 
|  | bool Result; | 
|  |  | 
|  | if (Outs[i].IsFixed) { | 
|  | Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, | 
|  | CCInfo); | 
|  | } else { | 
|  | Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, | 
|  | ArgFlags, CCInfo); | 
|  | } | 
|  |  | 
|  | if (Result) { | 
|  | #ifndef NDEBUG | 
|  | errs() << "Call operand #" << i << " has unhandled type " | 
|  | << EVT(ArgVT).getEVTString() << "\n"; | 
|  | #endif | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // All arguments are treated the same. | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); | 
|  | } | 
|  |  | 
|  | // Assign locations to all of the outgoing aggregate by value arguments. | 
|  | SmallVector<CCValAssign, 16> ByValArgLocs; | 
|  | CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), | 
|  | ByValArgLocs, *DAG.getContext()); | 
|  |  | 
|  | // Reserve stack space for the allocations in CCInfo. | 
|  | CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); | 
|  |  | 
|  | CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); | 
|  |  | 
|  | // Size of the linkage area, parameter list area and the part of the local | 
|  | // space variable where copies of aggregates which are passed by value are | 
|  | // stored. | 
|  | unsigned NumBytes = CCByValInfo.getNextStackOffset(); | 
|  |  | 
|  | // Calculate by how many bytes the stack has to be adjusted in case of tail | 
|  | // call optimization. | 
|  | int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); | 
|  |  | 
|  | // Adjust the stack pointer for the new arguments... | 
|  | // These operations are automatically eliminated by the prolog/epilog pass | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), | 
|  | dl); | 
|  | SDValue CallSeqStart = Chain; | 
|  |  | 
|  | // Load the return address and frame pointer so it can be moved somewhere else | 
|  | // later. | 
|  | SDValue LROp, FPOp; | 
|  | Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, | 
|  | dl); | 
|  |  | 
|  | // Set up a copy of the stack pointer for use loading and storing any | 
|  | // arguments that may not fit in the registers available for argument | 
|  | // passing. | 
|  | SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); | 
|  |  | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  | SmallVector<TailCallArgumentInfo, 8> TailCallArguments; | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  |  | 
|  | bool seenFloatArg = false; | 
|  | // Walk the register/memloc assignments, inserting copies/loads. | 
|  | for (unsigned i = 0, j = 0, e = ArgLocs.size(); | 
|  | i != e; | 
|  | ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | SDValue Arg = OutVals[i]; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  |  | 
|  | if (Flags.isByVal()) { | 
|  | // Argument is an aggregate which is passed by value, thus we need to | 
|  | // create a copy of it in the local variable space of the current stack | 
|  | // frame (which is the stack frame of the caller) and pass the address of | 
|  | // this copy to the callee. | 
|  | assert((j < ByValArgLocs.size()) && "Index out of bounds!"); | 
|  | CCValAssign &ByValVA = ByValArgLocs[j++]; | 
|  | assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); | 
|  |  | 
|  | // Memory reserved in the local variable space of the callers stack frame. | 
|  | unsigned LocMemOffset = ByValVA.getLocMemOffset(); | 
|  |  | 
|  | SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); | 
|  |  | 
|  | // Create a copy of the argument in the local area of the current | 
|  | // stack frame. | 
|  | SDValue MemcpyCall = | 
|  | CreateCopyOfByValArgument(Arg, PtrOff, | 
|  | CallSeqStart.getNode()->getOperand(0), | 
|  | Flags, DAG, dl); | 
|  |  | 
|  | // This must go outside the CALLSEQ_START..END. | 
|  | SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, | 
|  | CallSeqStart.getNode()->getOperand(1), | 
|  | SDLoc(MemcpyCall)); | 
|  | DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), | 
|  | NewCallSeqStart.getNode()); | 
|  | Chain = CallSeqStart = NewCallSeqStart; | 
|  |  | 
|  | // Pass the address of the aggregate copy on the stack either in a | 
|  | // physical register or in the parameter list area of the current stack | 
|  | // frame to the callee. | 
|  | Arg = PtrOff; | 
|  | } | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | if (Arg.getValueType() == MVT::i1) | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); | 
|  |  | 
|  | seenFloatArg |= VA.getLocVT().isFloatingPoint(); | 
|  | // Put argument in a physical register. | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
|  | } else { | 
|  | // Put argument in the parameter list area of the current stack frame. | 
|  | assert(VA.isMemLoc()); | 
|  | unsigned LocMemOffset = VA.getLocMemOffset(); | 
|  |  | 
|  | if (!isTailCall) { | 
|  | SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); | 
|  |  | 
|  | MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, | 
|  | MachinePointerInfo(), | 
|  | false, false, 0)); | 
|  | } else { | 
|  | // Calculate and remember argument location. | 
|  | CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, | 
|  | TailCallArguments); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into the appropriate regs. | 
|  | SDValue InFlag; | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // Set CR bit 6 to true if this is a vararg call with floating args passed in | 
|  | // registers. | 
|  | if (isVarArg) { | 
|  | SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue Ops[] = { Chain, InFlag }; | 
|  |  | 
|  | Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, | 
|  | dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); | 
|  |  | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | if (isTailCall) | 
|  | PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, | 
|  | false, TailCallArguments); | 
|  |  | 
|  | return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, | 
|  | RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, | 
|  | Ins, InVals); | 
|  | } | 
|  |  | 
|  | // Copy an argument into memory, being careful to do this outside the | 
|  | // call sequence for the call to which the argument belongs. | 
|  | SDValue | 
|  | PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, | 
|  | SDValue CallSeqStart, | 
|  | ISD::ArgFlagsTy Flags, | 
|  | SelectionDAG &DAG, | 
|  | SDLoc dl) const { | 
|  | SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, | 
|  | CallSeqStart.getNode()->getOperand(0), | 
|  | Flags, DAG, dl); | 
|  | // The MEMCPY must go outside the CALLSEQ_START..END. | 
|  | SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, | 
|  | CallSeqStart.getNode()->getOperand(1), | 
|  | SDLoc(MemcpyCall)); | 
|  | DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), | 
|  | NewCallSeqStart.getNode()); | 
|  | return NewCallSeqStart; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | bool isTailCall, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  |  | 
|  | bool isELFv2ABI = Subtarget.isELFv2ABI(); | 
|  | bool isLittleEndian = Subtarget.isLittleEndian(); | 
|  | unsigned NumOps = Outs.size(); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | unsigned PtrByteSize = 8; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | // Mark this function as potentially containing a function that contains a | 
|  | // tail call. As a consequence the frame pointer will be used for dynamicalloc | 
|  | // and restoring the callers stack pointer in this functions epilog. This is | 
|  | // done because by tail calling the called function might overwrite the value | 
|  | // in this function's (MF) stack pointer stack slot 0(SP). | 
|  | if (getTargetMachine().Options.GuaranteedTailCallOpt && | 
|  | CallConv == CallingConv::Fast) | 
|  | MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); | 
|  |  | 
|  | // Count how many bytes are to be pushed on the stack, including the linkage | 
|  | // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes | 
|  | // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage | 
|  | // area is 32 bytes reserved space for [SP][CR][LR][TOC]. | 
|  | unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false, | 
|  | isELFv2ABI); | 
|  | unsigned NumBytes = LinkageSize; | 
|  |  | 
|  | // Add up all the space actually used. | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | EVT ArgVT = Outs[i].VT; | 
|  | EVT OrigVT = Outs[i].ArgVT; | 
|  |  | 
|  | /* Respect alignment of argument on the stack.  */ | 
|  | unsigned Align = | 
|  | CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); | 
|  | NumBytes = ((NumBytes + Align - 1) / Align) * Align; | 
|  |  | 
|  | NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); | 
|  | if (Flags.isInConsecutiveRegsLast()) | 
|  | NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  | } | 
|  |  | 
|  | unsigned NumBytesActuallyUsed = NumBytes; | 
|  |  | 
|  | // The prolog code of the callee may store up to 8 GPR argument registers to | 
|  | // the stack, allowing va_start to index over them in memory if its varargs. | 
|  | // Because we cannot tell if this is needed on the caller side, we have to | 
|  | // conservatively assume that it is needed.  As such, make sure we have at | 
|  | // least enough stack space for the caller to store the 8 GPRs. | 
|  | // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. | 
|  | NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); | 
|  |  | 
|  | // Tail call needs the stack to be aligned. | 
|  | if (getTargetMachine().Options.GuaranteedTailCallOpt && | 
|  | CallConv == CallingConv::Fast) | 
|  | NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes); | 
|  |  | 
|  | // Calculate by how many bytes the stack has to be adjusted in case of tail | 
|  | // call optimization. | 
|  | int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); | 
|  |  | 
|  | // To protect arguments on the stack from being clobbered in a tail call, | 
|  | // force all the loads to happen before doing any other lowering. | 
|  | if (isTailCall) | 
|  | Chain = DAG.getStackArgumentTokenFactor(Chain); | 
|  |  | 
|  | // Adjust the stack pointer for the new arguments... | 
|  | // These operations are automatically eliminated by the prolog/epilog pass | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), | 
|  | dl); | 
|  | SDValue CallSeqStart = Chain; | 
|  |  | 
|  | // Load the return address and frame pointer so it can be move somewhere else | 
|  | // later. | 
|  | SDValue LROp, FPOp; | 
|  | Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, | 
|  | dl); | 
|  |  | 
|  | // Set up a copy of the stack pointer for use loading and storing any | 
|  | // arguments that may not fit in the registers available for argument | 
|  | // passing. | 
|  | SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); | 
|  |  | 
|  | // Figure out which arguments are going to go in registers, and which in | 
|  | // memory.  Also, if this is a vararg function, floating point operations | 
|  | // must be stored to our stack, and loaded into integer regs as well, if | 
|  | // any integer regs are available for argument passing. | 
|  | unsigned ArgOffset = LinkageSize; | 
|  | unsigned GPR_idx, FPR_idx = 0, VR_idx = 0; | 
|  |  | 
|  | static const MCPhysReg GPR[] = { | 
|  | PPC::X3, PPC::X4, PPC::X5, PPC::X6, | 
|  | PPC::X7, PPC::X8, PPC::X9, PPC::X10, | 
|  | }; | 
|  | static const MCPhysReg *FPR = GetFPR(); | 
|  |  | 
|  | static const MCPhysReg VR[] = { | 
|  | PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, | 
|  | PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 | 
|  | }; | 
|  | static const MCPhysReg VSRH[] = { | 
|  | PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, | 
|  | PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 | 
|  | }; | 
|  |  | 
|  | const unsigned NumGPRs = array_lengthof(GPR); | 
|  | const unsigned NumFPRs = 13; | 
|  | const unsigned NumVRs  = array_lengthof(VR); | 
|  |  | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  | SmallVector<TailCallArgumentInfo, 8> TailCallArguments; | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | SDValue Arg = OutVals[i]; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | EVT ArgVT = Outs[i].VT; | 
|  | EVT OrigVT = Outs[i].ArgVT; | 
|  |  | 
|  | /* Respect alignment of argument on the stack.  */ | 
|  | unsigned Align = | 
|  | CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); | 
|  | ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; | 
|  |  | 
|  | /* Compute GPR index associated with argument offset.  */ | 
|  | GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; | 
|  | GPR_idx = std::min(GPR_idx, NumGPRs); | 
|  |  | 
|  | // PtrOff will be used to store the current argument to the stack if a | 
|  | // register cannot be found for it. | 
|  | SDValue PtrOff; | 
|  |  | 
|  | PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); | 
|  |  | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); | 
|  |  | 
|  | // Promote integers to 64-bit values. | 
|  | if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { | 
|  | // FIXME: Should this use ANY_EXTEND if neither sext nor zext? | 
|  | unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); | 
|  | } | 
|  |  | 
|  | // FIXME memcpy is used way more than necessary.  Correctness first. | 
|  | // Note: "by value" is code for passing a structure by value, not | 
|  | // basic types. | 
|  | if (Flags.isByVal()) { | 
|  | // Note: Size includes alignment padding, so | 
|  | //   struct x { short a; char b; } | 
|  | // will have Size = 4.  With #pragma pack(1), it will have Size = 3. | 
|  | // These are the proper values we need for right-justifying the | 
|  | // aggregate in a parameter register. | 
|  | unsigned Size = Flags.getByValSize(); | 
|  |  | 
|  | // An empty aggregate parameter takes up no storage and no | 
|  | // registers. | 
|  | if (Size == 0) | 
|  | continue; | 
|  |  | 
|  | // All aggregates smaller than 8 bytes must be passed right-justified. | 
|  | if (Size==1 || Size==2 || Size==4) { | 
|  | EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); | 
|  | if (GPR_idx != NumGPRs) { | 
|  | SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, | 
|  | MachinePointerInfo(), VT, | 
|  | false, false, false, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load)); | 
|  |  | 
|  | ArgOffset += PtrByteSize; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (GPR_idx == NumGPRs && Size < 8) { | 
|  | SDValue AddPtr = PtrOff; | 
|  | if (!isLittleEndian) { | 
|  | SDValue Const = DAG.getConstant(PtrByteSize - Size, | 
|  | PtrOff.getValueType()); | 
|  | AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); | 
|  | } | 
|  | Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, | 
|  | CallSeqStart, | 
|  | Flags, DAG, dl); | 
|  | ArgOffset += PtrByteSize; | 
|  | continue; | 
|  | } | 
|  | // Copy entire object into memory.  There are cases where gcc-generated | 
|  | // code assumes it is there, even if it could be put entirely into | 
|  | // registers.  (This is not what the doc says.) | 
|  |  | 
|  | // FIXME: The above statement is likely due to a misunderstanding of the | 
|  | // documents.  All arguments must be copied into the parameter area BY | 
|  | // THE CALLEE in the event that the callee takes the address of any | 
|  | // formal argument.  That has not yet been implemented.  However, it is | 
|  | // reasonable to use the stack area as a staging area for the register | 
|  | // load. | 
|  |  | 
|  | // Skip this for small aggregates, as we will use the same slot for a | 
|  | // right-justified copy, below. | 
|  | if (Size >= 8) | 
|  | Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, | 
|  | CallSeqStart, | 
|  | Flags, DAG, dl); | 
|  |  | 
|  | // When a register is available, pass a small aggregate right-justified. | 
|  | if (Size < 8 && GPR_idx != NumGPRs) { | 
|  | // The easiest way to get this right-justified in a register | 
|  | // is to copy the structure into the rightmost portion of a | 
|  | // local variable slot, then load the whole slot into the | 
|  | // register. | 
|  | // FIXME: The memcpy seems to produce pretty awful code for | 
|  | // small aggregates, particularly for packed ones. | 
|  | // FIXME: It would be preferable to use the slot in the | 
|  | // parameter save area instead of a new local variable. | 
|  | SDValue AddPtr = PtrOff; | 
|  | if (!isLittleEndian) { | 
|  | SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType()); | 
|  | AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); | 
|  | } | 
|  | Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, | 
|  | CallSeqStart, | 
|  | Flags, DAG, dl); | 
|  |  | 
|  | // Load the slot into the register. | 
|  | SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load)); | 
|  |  | 
|  | // Done with this argument. | 
|  | ArgOffset += PtrByteSize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For aggregates larger than PtrByteSize, copy the pieces of the | 
|  | // object that fit into registers from the parameter save area. | 
|  | for (unsigned j=0; j<Size; j+=PtrByteSize) { | 
|  | SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); | 
|  | SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); | 
|  | if (GPR_idx != NumGPRs) { | 
|  | SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | ArgOffset += PtrByteSize; | 
|  | } else { | 
|  | ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; | 
|  | break; | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (Arg.getSimpleValueType().SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected ValueType for argument!"); | 
|  | case MVT::i1: | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | // These can be scalar arguments or elements of an integer array type | 
|  | // passed directly.  Clang may use those instead of "byval" aggregate | 
|  | // types to avoid forcing arguments to memory unnecessarily. | 
|  | if (GPR_idx != NumGPRs) { | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Arg)); | 
|  | } else { | 
|  | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | 
|  | true, isTailCall, false, MemOpChains, | 
|  | TailCallArguments, dl); | 
|  | } | 
|  | ArgOffset += PtrByteSize; | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: { | 
|  | // These can be scalar arguments or elements of a float array type | 
|  | // passed directly.  The latter are used to implement ELFv2 homogenous | 
|  | // float aggregates. | 
|  |  | 
|  | // Named arguments go into FPRs first, and once they overflow, the | 
|  | // remaining arguments go into GPRs and then the parameter save area. | 
|  | // Unnamed arguments for vararg functions always go to GPRs and | 
|  | // then the parameter save area.  For now, put all arguments to vararg | 
|  | // routines always in both locations (FPR *and* GPR or stack slot). | 
|  | bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; | 
|  |  | 
|  | // First load the argument into the next available FPR. | 
|  | if (FPR_idx != NumFPRs) | 
|  | RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); | 
|  |  | 
|  | // Next, load the argument into GPR or stack slot if needed. | 
|  | if (!NeedGPROrStack) | 
|  | ; | 
|  | else if (GPR_idx != NumGPRs) { | 
|  | // In the non-vararg case, this can only ever happen in the | 
|  | // presence of f32 array types, since otherwise we never run | 
|  | // out of FPRs before running out of GPRs. | 
|  | SDValue ArgVal; | 
|  |  | 
|  | // Double values are always passed in a single GPR. | 
|  | if (Arg.getValueType() != MVT::f32) { | 
|  | ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); | 
|  |  | 
|  | // Non-array float values are extended and passed in a GPR. | 
|  | } else if (!Flags.isInConsecutiveRegs()) { | 
|  | ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); | 
|  | ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); | 
|  |  | 
|  | // If we have an array of floats, we collect every odd element | 
|  | // together with its predecessor into one GPR. | 
|  | } else if (ArgOffset % PtrByteSize != 0) { | 
|  | SDValue Lo, Hi; | 
|  | Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); | 
|  | Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); | 
|  | if (!isLittleEndian) | 
|  | std::swap(Lo, Hi); | 
|  | ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); | 
|  |  | 
|  | // The final element, if even, goes into the first half of a GPR. | 
|  | } else if (Flags.isInConsecutiveRegsLast()) { | 
|  | ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); | 
|  | ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); | 
|  | if (!isLittleEndian) | 
|  | ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, | 
|  | DAG.getConstant(32, MVT::i32)); | 
|  |  | 
|  | // Non-final even elements are skipped; they will be handled | 
|  | // together the with subsequent argument on the next go-around. | 
|  | } else | 
|  | ArgVal = SDValue(); | 
|  |  | 
|  | if (ArgVal.getNode()) | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx], ArgVal)); | 
|  | } else { | 
|  | // Single-precision floating-point values are mapped to the | 
|  | // second (rightmost) word of the stack doubleword. | 
|  | if (Arg.getValueType() == MVT::f32 && | 
|  | !isLittleEndian && !Flags.isInConsecutiveRegs()) { | 
|  | SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); | 
|  | } | 
|  |  | 
|  | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | 
|  | true, isTailCall, false, MemOpChains, | 
|  | TailCallArguments, dl); | 
|  | } | 
|  | // When passing an array of floats, the array occupies consecutive | 
|  | // space in the argument area; only round up to the next doubleword | 
|  | // at the end of the array.  Otherwise, each float takes 8 bytes. | 
|  | ArgOffset += (Arg.getValueType() == MVT::f32 && | 
|  | Flags.isInConsecutiveRegs()) ? 4 : 8; | 
|  | if (Flags.isInConsecutiveRegsLast()) | 
|  | ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | 
|  | break; | 
|  | } | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | case MVT::v2f64: | 
|  | case MVT::v2i64: | 
|  | // These can be scalar arguments or elements of a vector array type | 
|  | // passed directly.  The latter are used to implement ELFv2 homogenous | 
|  | // vector aggregates. | 
|  |  | 
|  | // For a varargs call, named arguments go into VRs or on the stack as | 
|  | // usual; unnamed arguments always go to the stack or the corresponding | 
|  | // GPRs when within range.  For now, we always put the value in both | 
|  | // locations (or even all three). | 
|  | if (isVarArg) { | 
|  | // We could elide this store in the case where the object fits | 
|  | // entirely in R registers.  Maybe later. | 
|  | SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  | MemOpChains.push_back(Store); | 
|  | if (VR_idx != NumVRs) { | 
|  | SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  |  | 
|  | unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || | 
|  | Arg.getSimpleValueType() == MVT::v2i64) ? | 
|  | VSRH[VR_idx] : VR[VR_idx]; | 
|  | ++VR_idx; | 
|  |  | 
|  | RegsToPass.push_back(std::make_pair(VReg, Load)); | 
|  | } | 
|  | ArgOffset += 16; | 
|  | for (unsigned i=0; i<16; i+=PtrByteSize) { | 
|  | if (GPR_idx == NumGPRs) | 
|  | break; | 
|  | SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, | 
|  | DAG.getConstant(i, PtrVT)); | 
|  | SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Non-varargs Altivec params go into VRs or on the stack. | 
|  | if (VR_idx != NumVRs) { | 
|  | unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || | 
|  | Arg.getSimpleValueType() == MVT::v2i64) ? | 
|  | VSRH[VR_idx] : VR[VR_idx]; | 
|  | ++VR_idx; | 
|  |  | 
|  | RegsToPass.push_back(std::make_pair(VReg, Arg)); | 
|  | } else { | 
|  | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | 
|  | true, isTailCall, true, MemOpChains, | 
|  | TailCallArguments, dl); | 
|  | } | 
|  | ArgOffset += 16; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(NumBytesActuallyUsed == ArgOffset); | 
|  | (void)NumBytesActuallyUsed; | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); | 
|  |  | 
|  | // Check if this is an indirect call (MTCTR/BCTRL). | 
|  | // See PrepareCall() for more information about calls through function | 
|  | // pointers in the 64-bit SVR4 ABI. | 
|  | if (!isTailCall && | 
|  | !dyn_cast<GlobalAddressSDNode>(Callee) && | 
|  | !dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | // Load r2 into a virtual register and store it to the TOC save area. | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); | 
|  | // TOC save area offset. | 
|  | unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset(isELFv2ABI); | 
|  | SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset); | 
|  | SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); | 
|  | Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | // In the ELFv2 ABI, R12 must contain the address of an indirect callee. | 
|  | // This does not mean the MTCTR instruction must use R12; it's easier | 
|  | // to model this as an extra parameter, so do that. | 
|  | if (isELFv2ABI) | 
|  | RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); | 
|  | } | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into the appropriate regs. | 
|  | SDValue InFlag; | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | if (isTailCall) | 
|  | PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, | 
|  | FPOp, true, TailCallArguments); | 
|  |  | 
|  | return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, | 
|  | RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, | 
|  | Ins, InVals); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | bool isTailCall, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  |  | 
|  | unsigned NumOps = Outs.size(); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | bool isPPC64 = PtrVT == MVT::i64; | 
|  | unsigned PtrByteSize = isPPC64 ? 8 : 4; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | // Mark this function as potentially containing a function that contains a | 
|  | // tail call. As a consequence the frame pointer will be used for dynamicalloc | 
|  | // and restoring the callers stack pointer in this functions epilog. This is | 
|  | // done because by tail calling the called function might overwrite the value | 
|  | // in this function's (MF) stack pointer stack slot 0(SP). | 
|  | if (getTargetMachine().Options.GuaranteedTailCallOpt && | 
|  | CallConv == CallingConv::Fast) | 
|  | MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); | 
|  |  | 
|  | // Count how many bytes are to be pushed on the stack, including the linkage | 
|  | // area, and parameter passing area.  We start with 24/48 bytes, which is | 
|  | // prereserved space for [SP][CR][LR][3 x unused]. | 
|  | unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true, | 
|  | false); | 
|  | unsigned NumBytes = LinkageSize; | 
|  |  | 
|  | // Add up all the space actually used. | 
|  | // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually | 
|  | // they all go in registers, but we must reserve stack space for them for | 
|  | // possible use by the caller.  In varargs or 64-bit calls, parameters are | 
|  | // assigned stack space in order, with padding so Altivec parameters are | 
|  | // 16-byte aligned. | 
|  | unsigned nAltivecParamsAtEnd = 0; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | EVT ArgVT = Outs[i].VT; | 
|  | // Varargs Altivec parameters are padded to a 16 byte boundary. | 
|  | if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || | 
|  | ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || | 
|  | ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { | 
|  | if (!isVarArg && !isPPC64) { | 
|  | // Non-varargs Altivec parameters go after all the non-Altivec | 
|  | // parameters; handle those later so we know how much padding we need. | 
|  | nAltivecParamsAtEnd++; | 
|  | continue; | 
|  | } | 
|  | // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. | 
|  | NumBytes = ((NumBytes+15)/16)*16; | 
|  | } | 
|  | NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); | 
|  | } | 
|  |  | 
|  | // Allow for Altivec parameters at the end, if needed. | 
|  | if (nAltivecParamsAtEnd) { | 
|  | NumBytes = ((NumBytes+15)/16)*16; | 
|  | NumBytes += 16*nAltivecParamsAtEnd; | 
|  | } | 
|  |  | 
|  | // The prolog code of the callee may store up to 8 GPR argument registers to | 
|  | // the stack, allowing va_start to index over them in memory if its varargs. | 
|  | // Because we cannot tell if this is needed on the caller side, we have to | 
|  | // conservatively assume that it is needed.  As such, make sure we have at | 
|  | // least enough stack space for the caller to store the 8 GPRs. | 
|  | NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); | 
|  |  | 
|  | // Tail call needs the stack to be aligned. | 
|  | if (getTargetMachine().Options.GuaranteedTailCallOpt && | 
|  | CallConv == CallingConv::Fast) | 
|  | NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes); | 
|  |  | 
|  | // Calculate by how many bytes the stack has to be adjusted in case of tail | 
|  | // call optimization. | 
|  | int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); | 
|  |  | 
|  | // To protect arguments on the stack from being clobbered in a tail call, | 
|  | // force all the loads to happen before doing any other lowering. | 
|  | if (isTailCall) | 
|  | Chain = DAG.getStackArgumentTokenFactor(Chain); | 
|  |  | 
|  | // Adjust the stack pointer for the new arguments... | 
|  | // These operations are automatically eliminated by the prolog/epilog pass | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), | 
|  | dl); | 
|  | SDValue CallSeqStart = Chain; | 
|  |  | 
|  | // Load the return address and frame pointer so it can be move somewhere else | 
|  | // later. | 
|  | SDValue LROp, FPOp; | 
|  | Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, | 
|  | dl); | 
|  |  | 
|  | // Set up a copy of the stack pointer for use loading and storing any | 
|  | // arguments that may not fit in the registers available for argument | 
|  | // passing. | 
|  | SDValue StackPtr; | 
|  | if (isPPC64) | 
|  | StackPtr = DAG.getRegister(PPC::X1, MVT::i64); | 
|  | else | 
|  | StackPtr = DAG.getRegister(PPC::R1, MVT::i32); | 
|  |  | 
|  | // Figure out which arguments are going to go in registers, and which in | 
|  | // memory.  Also, if this is a vararg function, floating point operations | 
|  | // must be stored to our stack, and loaded into integer regs as well, if | 
|  | // any integer regs are available for argument passing. | 
|  | unsigned ArgOffset = LinkageSize; | 
|  | unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; | 
|  |  | 
|  | static const MCPhysReg GPR_32[] = {           // 32-bit registers. | 
|  | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | 
|  | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | 
|  | }; | 
|  | static const MCPhysReg GPR_64[] = {           // 64-bit registers. | 
|  | PPC::X3, PPC::X4, PPC::X5, PPC::X6, | 
|  | PPC::X7, PPC::X8, PPC::X9, PPC::X10, | 
|  | }; | 
|  | static const MCPhysReg *FPR = GetFPR(); | 
|  |  | 
|  | static const MCPhysReg VR[] = { | 
|  | PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, | 
|  | PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 | 
|  | }; | 
|  | const unsigned NumGPRs = array_lengthof(GPR_32); | 
|  | const unsigned NumFPRs = 13; | 
|  | const unsigned NumVRs  = array_lengthof(VR); | 
|  |  | 
|  | const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; | 
|  |  | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  | SmallVector<TailCallArgumentInfo, 8> TailCallArguments; | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | SDValue Arg = OutVals[i]; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  |  | 
|  | // PtrOff will be used to store the current argument to the stack if a | 
|  | // register cannot be found for it. | 
|  | SDValue PtrOff; | 
|  |  | 
|  | PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); | 
|  |  | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); | 
|  |  | 
|  | // On PPC64, promote integers to 64-bit values. | 
|  | if (isPPC64 && Arg.getValueType() == MVT::i32) { | 
|  | // FIXME: Should this use ANY_EXTEND if neither sext nor zext? | 
|  | unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); | 
|  | } | 
|  |  | 
|  | // FIXME memcpy is used way more than necessary.  Correctness first. | 
|  | // Note: "by value" is code for passing a structure by value, not | 
|  | // basic types. | 
|  | if (Flags.isByVal()) { | 
|  | unsigned Size = Flags.getByValSize(); | 
|  | // Very small objects are passed right-justified.  Everything else is | 
|  | // passed left-justified. | 
|  | if (Size==1 || Size==2) { | 
|  | EVT VT = (Size==1) ? MVT::i8 : MVT::i16; | 
|  | if (GPR_idx != NumGPRs) { | 
|  | SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, | 
|  | MachinePointerInfo(), VT, | 
|  | false, false, false, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  |  | 
|  | ArgOffset += PtrByteSize; | 
|  | } else { | 
|  | SDValue Const = DAG.getConstant(PtrByteSize - Size, | 
|  | PtrOff.getValueType()); | 
|  | SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); | 
|  | Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, | 
|  | CallSeqStart, | 
|  | Flags, DAG, dl); | 
|  | ArgOffset += PtrByteSize; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | // Copy entire object into memory.  There are cases where gcc-generated | 
|  | // code assumes it is there, even if it could be put entirely into | 
|  | // registers.  (This is not what the doc says.) | 
|  | Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, | 
|  | CallSeqStart, | 
|  | Flags, DAG, dl); | 
|  |  | 
|  | // For small aggregates (Darwin only) and aggregates >= PtrByteSize, | 
|  | // copy the pieces of the object that fit into registers from the | 
|  | // parameter save area. | 
|  | for (unsigned j=0; j<Size; j+=PtrByteSize) { | 
|  | SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); | 
|  | SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); | 
|  | if (GPR_idx != NumGPRs) { | 
|  | SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | ArgOffset += PtrByteSize; | 
|  | } else { | 
|  | ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; | 
|  | break; | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (Arg.getSimpleValueType().SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected ValueType for argument!"); | 
|  | case MVT::i1: | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | if (GPR_idx != NumGPRs) { | 
|  | if (Arg.getValueType() == MVT::i1) | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); | 
|  |  | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); | 
|  | } else { | 
|  | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | 
|  | isPPC64, isTailCall, false, MemOpChains, | 
|  | TailCallArguments, dl); | 
|  | } | 
|  | ArgOffset += PtrByteSize; | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | if (FPR_idx != NumFPRs) { | 
|  | RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); | 
|  |  | 
|  | if (isVarArg) { | 
|  | SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  | MemOpChains.push_back(Store); | 
|  |  | 
|  | // Float varargs are always shadowed in available integer registers | 
|  | if (GPR_idx != NumGPRs) { | 
|  | SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, | 
|  | MachinePointerInfo(), false, false, | 
|  | false, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | } | 
|  | if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ | 
|  | SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); | 
|  | SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | } | 
|  | } else { | 
|  | // If we have any FPRs remaining, we may also have GPRs remaining. | 
|  | // Args passed in FPRs consume either 1 (f32) or 2 (f64) available | 
|  | // GPRs. | 
|  | if (GPR_idx != NumGPRs) | 
|  | ++GPR_idx; | 
|  | if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && | 
|  | !isPPC64)  // PPC64 has 64-bit GPR's obviously :) | 
|  | ++GPR_idx; | 
|  | } | 
|  | } else | 
|  | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | 
|  | isPPC64, isTailCall, false, MemOpChains, | 
|  | TailCallArguments, dl); | 
|  | if (isPPC64) | 
|  | ArgOffset += 8; | 
|  | else | 
|  | ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; | 
|  | break; | 
|  | case MVT::v4f32: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | if (isVarArg) { | 
|  | // These go aligned on the stack, or in the corresponding R registers | 
|  | // when within range.  The Darwin PPC ABI doc claims they also go in | 
|  | // V registers; in fact gcc does this only for arguments that are | 
|  | // prototyped, not for those that match the ...  We do it for all | 
|  | // arguments, seems to work. | 
|  | while (ArgOffset % 16 !=0) { | 
|  | ArgOffset += PtrByteSize; | 
|  | if (GPR_idx != NumGPRs) | 
|  | GPR_idx++; | 
|  | } | 
|  | // We could elide this store in the case where the object fits | 
|  | // entirely in R registers.  Maybe later. | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, | 
|  | DAG.getConstant(ArgOffset, PtrVT)); | 
|  | SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  | MemOpChains.push_back(Store); | 
|  | if (VR_idx != NumVRs) { | 
|  | SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); | 
|  | } | 
|  | ArgOffset += 16; | 
|  | for (unsigned i=0; i<16; i+=PtrByteSize) { | 
|  | if (GPR_idx == NumGPRs) | 
|  | break; | 
|  | SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, | 
|  | DAG.getConstant(i, PtrVT)); | 
|  | SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | MemOpChains.push_back(Load.getValue(1)); | 
|  | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Non-varargs Altivec params generally go in registers, but have | 
|  | // stack space allocated at the end. | 
|  | if (VR_idx != NumVRs) { | 
|  | // Doesn't have GPR space allocated. | 
|  | RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); | 
|  | } else if (nAltivecParamsAtEnd==0) { | 
|  | // We are emitting Altivec params in order. | 
|  | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | 
|  | isPPC64, isTailCall, true, MemOpChains, | 
|  | TailCallArguments, dl); | 
|  | ArgOffset += 16; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If all Altivec parameters fit in registers, as they usually do, | 
|  | // they get stack space following the non-Altivec parameters.  We | 
|  | // don't track this here because nobody below needs it. | 
|  | // If there are more Altivec parameters than fit in registers emit | 
|  | // the stores here. | 
|  | if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { | 
|  | unsigned j = 0; | 
|  | // Offset is aligned; skip 1st 12 params which go in V registers. | 
|  | ArgOffset = ((ArgOffset+15)/16)*16; | 
|  | ArgOffset += 12*16; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | SDValue Arg = OutVals[i]; | 
|  | EVT ArgType = Outs[i].VT; | 
|  | if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || | 
|  | ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { | 
|  | if (++j > NumVRs) { | 
|  | SDValue PtrOff; | 
|  | // We are emitting Altivec params in order. | 
|  | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | 
|  | isPPC64, isTailCall, true, MemOpChains, | 
|  | TailCallArguments, dl); | 
|  | ArgOffset += 16; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); | 
|  |  | 
|  | // On Darwin, R12 must contain the address of an indirect callee.  This does | 
|  | // not mean the MTCTR instruction must use R12; it's easier to model this as | 
|  | // an extra parameter, so do that. | 
|  | if (!isTailCall && | 
|  | !dyn_cast<GlobalAddressSDNode>(Callee) && | 
|  | !dyn_cast<ExternalSymbolSDNode>(Callee) && | 
|  | !isBLACompatibleAddress(Callee, DAG)) | 
|  | RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : | 
|  | PPC::R12), Callee)); | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into the appropriate regs. | 
|  | SDValue InFlag; | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | if (isTailCall) | 
|  | PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, | 
|  | FPOp, true, TailCallArguments); | 
|  |  | 
|  | return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, | 
|  | RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, | 
|  | Ins, InVals); | 
|  | } | 
|  |  | 
|  | bool | 
|  | PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, | 
|  | MachineFunction &MF, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | LLVMContext &Context) const { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); | 
|  | return CCInfo.CheckReturn(Outs, RetCC_PPC); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::LowerReturn(SDValue Chain, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | SDLoc dl, SelectionDAG &DAG) const { | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  | CCInfo.AnalyzeReturn(Outs, RetCC_PPC); | 
|  |  | 
|  | SDValue Flag; | 
|  | SmallVector<SDValue, 4> RetOps(1, Chain); | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  |  | 
|  | SDValue Arg = OutVals[i]; | 
|  |  | 
|  | switch (VA.getLocInfo()) { | 
|  | default: llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: break; | 
|  | case CCValAssign::AExt: | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | 
|  | } | 
|  |  | 
|  | RetOps[0] = Chain;  // Update chain. | 
|  |  | 
|  | // Add the flag if we have it. | 
|  | if (Flag.getNode()) | 
|  | RetOps.push_back(Flag); | 
|  |  | 
|  | return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, | 
|  | const PPCSubtarget &Subtarget) const { | 
|  | // When we pop the dynamic allocation we need to restore the SP link. | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // Get the corect type for pointers. | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  |  | 
|  | // Construct the stack pointer operand. | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; | 
|  | SDValue StackPtr = DAG.getRegister(SP, PtrVT); | 
|  |  | 
|  | // Get the operands for the STACKRESTORE. | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue SaveSP = Op.getOperand(1); | 
|  |  | 
|  | // Load the old link SP. | 
|  | SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  |  | 
|  | // Restore the stack pointer. | 
|  | Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); | 
|  |  | 
|  | // Store the old link SP. | 
|  | return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | bool isDarwinABI = Subtarget.isDarwinABI(); | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  |  | 
|  | // Get current frame pointer save index.  The users of this index will be | 
|  | // primarily DYNALLOC instructions. | 
|  | PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); | 
|  | int RASI = FI->getReturnAddrSaveIndex(); | 
|  |  | 
|  | // If the frame pointer save index hasn't been defined yet. | 
|  | if (!RASI) { | 
|  | // Find out what the fix offset of the frame pointer save area. | 
|  | int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); | 
|  | // Allocate the frame index for frame pointer save area. | 
|  | RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); | 
|  | // Save the result. | 
|  | FI->setReturnAddrSaveIndex(RASI); | 
|  | } | 
|  | return DAG.getFrameIndex(RASI, PtrVT); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | bool isDarwinABI = Subtarget.isDarwinABI(); | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  |  | 
|  | // Get current frame pointer save index.  The users of this index will be | 
|  | // primarily DYNALLOC instructions. | 
|  | PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); | 
|  | int FPSI = FI->getFramePointerSaveIndex(); | 
|  |  | 
|  | // If the frame pointer save index hasn't been defined yet. | 
|  | if (!FPSI) { | 
|  | // Find out what the fix offset of the frame pointer save area. | 
|  | int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, | 
|  | isDarwinABI); | 
|  |  | 
|  | // Allocate the frame index for frame pointer save area. | 
|  | FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); | 
|  | // Save the result. | 
|  | FI->setFramePointerSaveIndex(FPSI); | 
|  | } | 
|  | return DAG.getFrameIndex(FPSI, PtrVT); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | 
|  | SelectionDAG &DAG, | 
|  | const PPCSubtarget &Subtarget) const { | 
|  | // Get the inputs. | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Size  = Op.getOperand(1); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // Get the corect type for pointers. | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | // Negate the size. | 
|  | SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, | 
|  | DAG.getConstant(0, PtrVT), Size); | 
|  | // Construct a node for the frame pointer save index. | 
|  | SDValue FPSIdx = getFramePointerFrameIndex(DAG); | 
|  | // Build a DYNALLOC node. | 
|  | SDValue Ops[3] = { Chain, NegSize, FPSIdx }; | 
|  | SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); | 
|  | return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, | 
|  | DAG.getVTList(MVT::i32, MVT::Other), | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Op.getValueType() == MVT::i1 && | 
|  | "Custom lowering only for i1 loads"); | 
|  |  | 
|  | // First, load 8 bits into 32 bits, then truncate to 1 bit. | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op); | 
|  |  | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue BasePtr = LD->getBasePtr(); | 
|  | MachineMemOperand *MMO = LD->getMemOperand(); | 
|  |  | 
|  | SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain, | 
|  | BasePtr, MVT::i8, MMO); | 
|  | SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); | 
|  |  | 
|  | SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; | 
|  | return DAG.getMergeValues(Ops, dl); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Op.getOperand(1).getValueType() == MVT::i1 && | 
|  | "Custom lowering only for i1 stores"); | 
|  |  | 
|  | // First, zero extend to 32 bits, then use a truncating store to 8 bits. | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | StoreSDNode *ST = cast<StoreSDNode>(Op); | 
|  |  | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue BasePtr = ST->getBasePtr(); | 
|  | SDValue Value = ST->getValue(); | 
|  | MachineMemOperand *MMO = ST->getMemOperand(); | 
|  |  | 
|  | Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value); | 
|  | return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); | 
|  | } | 
|  |  | 
|  | // FIXME: Remove this once the ANDI glue bug is fixed: | 
|  | SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Op.getValueType() == MVT::i1 && | 
|  | "Custom lowering only for i1 results"); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, | 
|  | Op.getOperand(0)); | 
|  | } | 
|  |  | 
|  | /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when | 
|  | /// possible. | 
|  | SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { | 
|  | // Not FP? Not a fsel. | 
|  | if (!Op.getOperand(0).getValueType().isFloatingPoint() || | 
|  | !Op.getOperand(2).getValueType().isFloatingPoint()) | 
|  | return Op; | 
|  |  | 
|  | // We might be able to do better than this under some circumstances, but in | 
|  | // general, fsel-based lowering of select is a finite-math-only optimization. | 
|  | // For more information, see section F.3 of the 2.06 ISA specification. | 
|  | if (!DAG.getTarget().Options.NoInfsFPMath || | 
|  | !DAG.getTarget().Options.NoNaNsFPMath) | 
|  | return Op; | 
|  |  | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); | 
|  |  | 
|  | EVT ResVT = Op.getValueType(); | 
|  | EVT CmpVT = Op.getOperand(0).getValueType(); | 
|  | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  | SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // If the RHS of the comparison is a 0.0, we don't need to do the | 
|  | // subtraction at all. | 
|  | SDValue Sel1; | 
|  | if (isFloatingPointZero(RHS)) | 
|  | switch (CC) { | 
|  | default: break;       // SETUO etc aren't handled by fsel. | 
|  | case ISD::SETNE: | 
|  | std::swap(TV, FV); | 
|  | case ISD::SETEQ: | 
|  | if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); | 
|  | Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); | 
|  | if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, | 
|  | DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT: | 
|  | std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE: | 
|  | if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT: | 
|  | std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETLE: | 
|  | if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, | 
|  | DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); | 
|  | } | 
|  |  | 
|  | SDValue Cmp; | 
|  | switch (CC) { | 
|  | default: break;       // SETUO etc aren't handled by fsel. | 
|  | case ISD::SETNE: | 
|  | std::swap(TV, FV); | 
|  | case ISD::SETEQ: | 
|  | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | 
|  | Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); | 
|  | if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, | 
|  | DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT: | 
|  | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE: | 
|  | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT: | 
|  | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETLE: | 
|  | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // FIXME: Split this code up when LegalizeDAGTypes lands. | 
|  | SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, | 
|  | SDLoc dl) const { | 
|  | assert(Op.getOperand(0).getValueType().isFloatingPoint()); | 
|  | SDValue Src = Op.getOperand(0); | 
|  | if (Src.getValueType() == MVT::f32) | 
|  | Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); | 
|  |  | 
|  | SDValue Tmp; | 
|  | switch (Op.getSimpleValueType().SimpleTy) { | 
|  | default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); | 
|  | case MVT::i32: | 
|  | Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : | 
|  | (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : | 
|  | PPCISD::FCTIDZ), | 
|  | dl, MVT::f64, Src); | 
|  | break; | 
|  | case MVT::i64: | 
|  | assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && | 
|  | "i64 FP_TO_UINT is supported only with FPCVT"); | 
|  | Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : | 
|  | PPCISD::FCTIDUZ, | 
|  | dl, MVT::f64, Src); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Convert the FP value to an int value through memory. | 
|  | bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && | 
|  | (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); | 
|  | SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); | 
|  | int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); | 
|  | MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI); | 
|  |  | 
|  | // Emit a store to the stack slot. | 
|  | SDValue Chain; | 
|  | if (i32Stack) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); | 
|  | SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; | 
|  | Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, | 
|  | DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); | 
|  | } else | 
|  | Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, | 
|  | MPI, false, false, 0); | 
|  |  | 
|  | // Result is a load from the stack slot.  If loading 4 bytes, make sure to | 
|  | // add in a bias. | 
|  | if (Op.getValueType() == MVT::i32 && !i32Stack) { | 
|  | FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, | 
|  | DAG.getConstant(4, FIPtr.getValueType())); | 
|  | MPI = MachinePointerInfo(); | 
|  | } | 
|  |  | 
|  | return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI, | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | // Don't handle ppc_fp128 here; let it be lowered to a libcall. | 
|  | if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Op.getOperand(0).getValueType() == MVT::i1) | 
|  | return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), | 
|  | DAG.getConstantFP(1.0, Op.getValueType()), | 
|  | DAG.getConstantFP(0.0, Op.getValueType())); | 
|  |  | 
|  | assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && | 
|  | "UINT_TO_FP is supported only with FPCVT"); | 
|  |  | 
|  | // If we have FCFIDS, then use it when converting to single-precision. | 
|  | // Otherwise, convert to double-precision and then round. | 
|  | unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ? | 
|  | (Op.getOpcode() == ISD::UINT_TO_FP ? | 
|  | PPCISD::FCFIDUS : PPCISD::FCFIDS) : | 
|  | (Op.getOpcode() == ISD::UINT_TO_FP ? | 
|  | PPCISD::FCFIDU : PPCISD::FCFID); | 
|  | MVT      FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ? | 
|  | MVT::f32 : MVT::f64; | 
|  |  | 
|  | if (Op.getOperand(0).getValueType() == MVT::i64) { | 
|  | SDValue SINT = Op.getOperand(0); | 
|  | // When converting to single-precision, we actually need to convert | 
|  | // to double-precision first and then round to single-precision. | 
|  | // To avoid double-rounding effects during that operation, we have | 
|  | // to prepare the input operand.  Bits that might be truncated when | 
|  | // converting to double-precision are replaced by a bit that won't | 
|  | // be lost at this stage, but is below the single-precision rounding | 
|  | // position. | 
|  | // | 
|  | // However, if -enable-unsafe-fp-math is in effect, accept double | 
|  | // rounding to avoid the extra overhead. | 
|  | if (Op.getValueType() == MVT::f32 && | 
|  | !Subtarget.hasFPCVT() && | 
|  | !DAG.getTarget().Options.UnsafeFPMath) { | 
|  |  | 
|  | // Twiddle input to make sure the low 11 bits are zero.  (If this | 
|  | // is the case, we are guaranteed the value will fit into the 53 bit | 
|  | // mantissa of an IEEE double-precision value without rounding.) | 
|  | // If any of those low 11 bits were not zero originally, make sure | 
|  | // bit 12 (value 2048) is set instead, so that the final rounding | 
|  | // to single-precision gets the correct result. | 
|  | SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, | 
|  | SINT, DAG.getConstant(2047, MVT::i64)); | 
|  | Round = DAG.getNode(ISD::ADD, dl, MVT::i64, | 
|  | Round, DAG.getConstant(2047, MVT::i64)); | 
|  | Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); | 
|  | Round = DAG.getNode(ISD::AND, dl, MVT::i64, | 
|  | Round, DAG.getConstant(-2048, MVT::i64)); | 
|  |  | 
|  | // However, we cannot use that value unconditionally: if the magnitude | 
|  | // of the input value is small, the bit-twiddling we did above might | 
|  | // end up visibly changing the output.  Fortunately, in that case, we | 
|  | // don't need to twiddle bits since the original input will convert | 
|  | // exactly to double-precision floating-point already.  Therefore, | 
|  | // construct a conditional to use the original value if the top 11 | 
|  | // bits are all sign-bit copies, and use the rounded value computed | 
|  | // above otherwise. | 
|  | SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, | 
|  | SINT, DAG.getConstant(53, MVT::i32)); | 
|  | Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, | 
|  | Cond, DAG.getConstant(1, MVT::i64)); | 
|  | Cond = DAG.getSetCC(dl, MVT::i32, | 
|  | Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT); | 
|  |  | 
|  | SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); | 
|  | } | 
|  |  | 
|  | SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); | 
|  | SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); | 
|  |  | 
|  | if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) | 
|  | FP = DAG.getNode(ISD::FP_ROUND, dl, | 
|  | MVT::f32, FP, DAG.getIntPtrConstant(0)); | 
|  | return FP; | 
|  | } | 
|  |  | 
|  | assert(Op.getOperand(0).getValueType() == MVT::i32 && | 
|  | "Unhandled INT_TO_FP type in custom expander!"); | 
|  | // Since we only generate this in 64-bit mode, we can take advantage of | 
|  | // 64-bit registers.  In particular, sign extend the input value into the | 
|  | // 64-bit register with extsw, store the WHOLE 64-bit value into the stack | 
|  | // then lfd it and fcfid it. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *FrameInfo = MF.getFrameInfo(); | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  |  | 
|  | SDValue Ld; | 
|  | if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { | 
|  | int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); | 
|  | SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); | 
|  |  | 
|  | SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, | 
|  | MachinePointerInfo::getFixedStack(FrameIdx), | 
|  | false, false, 0); | 
|  |  | 
|  | assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && | 
|  | "Expected an i32 store"); | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), | 
|  | MachineMemOperand::MOLoad, 4, 4); | 
|  | SDValue Ops[] = { Store, FIdx }; | 
|  | Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? | 
|  | PPCISD::LFIWZX : PPCISD::LFIWAX, | 
|  | dl, DAG.getVTList(MVT::f64, MVT::Other), | 
|  | Ops, MVT::i32, MMO); | 
|  | } else { | 
|  | assert(Subtarget.isPPC64() && | 
|  | "i32->FP without LFIWAX supported only on PPC64"); | 
|  |  | 
|  | int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); | 
|  | SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); | 
|  |  | 
|  | SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, | 
|  | Op.getOperand(0)); | 
|  |  | 
|  | // STD the extended value into the stack slot. | 
|  | SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx, | 
|  | MachinePointerInfo::getFixedStack(FrameIdx), | 
|  | false, false, 0); | 
|  |  | 
|  | // Load the value as a double. | 
|  | Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, | 
|  | MachinePointerInfo::getFixedStack(FrameIdx), | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | // FCFID it and return it. | 
|  | SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); | 
|  | if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) | 
|  | FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); | 
|  | return FP; | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | /* | 
|  | The rounding mode is in bits 30:31 of FPSR, and has the following | 
|  | settings: | 
|  | 00 Round to nearest | 
|  | 01 Round to 0 | 
|  | 10 Round to +inf | 
|  | 11 Round to -inf | 
|  |  | 
|  | FLT_ROUNDS, on the other hand, expects the following: | 
|  | -1 Undefined | 
|  | 0 Round to 0 | 
|  | 1 Round to nearest | 
|  | 2 Round to +inf | 
|  | 3 Round to -inf | 
|  |  | 
|  | To perform the conversion, we do: | 
|  | ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) | 
|  | */ | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  |  | 
|  | // Save FP Control Word to register | 
|  | EVT NodeTys[] = { | 
|  | MVT::f64,    // return register | 
|  | MVT::Glue    // unused in this context | 
|  | }; | 
|  | SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); | 
|  |  | 
|  | // Save FP register to stack slot | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); | 
|  | SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, | 
|  | StackSlot, MachinePointerInfo(), false, false,0); | 
|  |  | 
|  | // Load FP Control Word from low 32 bits of stack slot. | 
|  | SDValue Four = DAG.getConstant(4, PtrVT); | 
|  | SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); | 
|  | SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  |  | 
|  | // Transform as necessary | 
|  | SDValue CWD1 = | 
|  | DAG.getNode(ISD::AND, dl, MVT::i32, | 
|  | CWD, DAG.getConstant(3, MVT::i32)); | 
|  | SDValue CWD2 = | 
|  | DAG.getNode(ISD::SRL, dl, MVT::i32, | 
|  | DAG.getNode(ISD::AND, dl, MVT::i32, | 
|  | DAG.getNode(ISD::XOR, dl, MVT::i32, | 
|  | CWD, DAG.getConstant(3, MVT::i32)), | 
|  | DAG.getConstant(3, MVT::i32)), | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  |  | 
|  | SDValue RetVal = | 
|  | DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); | 
|  |  | 
|  | return DAG.getNode((VT.getSizeInBits() < 16 ? | 
|  | ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  | SDLoc dl(Op); | 
|  | assert(Op.getNumOperands() == 3 && | 
|  | VT == Op.getOperand(1).getValueType() && | 
|  | "Unexpected SHL!"); | 
|  |  | 
|  | // Expand into a bunch of logical ops.  Note that these ops | 
|  | // depend on the PPC behavior for oversized shift amounts. | 
|  | SDValue Lo = Op.getOperand(0); | 
|  | SDValue Hi = Op.getOperand(1); | 
|  | SDValue Amt = Op.getOperand(2); | 
|  | EVT AmtVT = Amt.getValueType(); | 
|  |  | 
|  | SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, | 
|  | DAG.getConstant(BitWidth, AmtVT), Amt); | 
|  | SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); | 
|  | SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); | 
|  | SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); | 
|  | SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, | 
|  | DAG.getConstant(-BitWidth, AmtVT)); | 
|  | SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); | 
|  | SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); | 
|  | SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); | 
|  | SDValue OutOps[] = { OutLo, OutHi }; | 
|  | return DAG.getMergeValues(OutOps, dl); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc dl(Op); | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  | assert(Op.getNumOperands() == 3 && | 
|  | VT == Op.getOperand(1).getValueType() && | 
|  | "Unexpected SRL!"); | 
|  |  | 
|  | // Expand into a bunch of logical ops.  Note that these ops | 
|  | // depend on the PPC behavior for oversized shift amounts. | 
|  | SDValue Lo = Op.getOperand(0); | 
|  | SDValue Hi = Op.getOperand(1); | 
|  | SDValue Amt = Op.getOperand(2); | 
|  | EVT AmtVT = Amt.getValueType(); | 
|  |  | 
|  | SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, | 
|  | DAG.getConstant(BitWidth, AmtVT), Amt); | 
|  | SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); | 
|  | SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); | 
|  | SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); | 
|  | SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, | 
|  | DAG.getConstant(-BitWidth, AmtVT)); | 
|  | SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); | 
|  | SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); | 
|  | SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); | 
|  | SDValue OutOps[] = { OutLo, OutHi }; | 
|  | return DAG.getMergeValues(OutOps, dl); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  | assert(Op.getNumOperands() == 3 && | 
|  | VT == Op.getOperand(1).getValueType() && | 
|  | "Unexpected SRA!"); | 
|  |  | 
|  | // Expand into a bunch of logical ops, followed by a select_cc. | 
|  | SDValue Lo = Op.getOperand(0); | 
|  | SDValue Hi = Op.getOperand(1); | 
|  | SDValue Amt = Op.getOperand(2); | 
|  | EVT AmtVT = Amt.getValueType(); | 
|  |  | 
|  | SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, | 
|  | DAG.getConstant(BitWidth, AmtVT), Amt); | 
|  | SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); | 
|  | SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); | 
|  | SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); | 
|  | SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, | 
|  | DAG.getConstant(-BitWidth, AmtVT)); | 
|  | SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); | 
|  | SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); | 
|  | SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), | 
|  | Tmp4, Tmp6, ISD::SETLE); | 
|  | SDValue OutOps[] = { OutLo, OutHi }; | 
|  | return DAG.getMergeValues(OutOps, dl); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Vector related lowering. | 
|  | // | 
|  |  | 
|  | /// BuildSplatI - Build a canonical splati of Val with an element size of | 
|  | /// SplatSize.  Cast the result to VT. | 
|  | static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, | 
|  | SelectionDAG &DAG, SDLoc dl) { | 
|  | assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); | 
|  |  | 
|  | static const EVT VTys[] = { // canonical VT to use for each size. | 
|  | MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 | 
|  | }; | 
|  |  | 
|  | EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; | 
|  |  | 
|  | // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. | 
|  | if (Val == -1) | 
|  | SplatSize = 1; | 
|  |  | 
|  | EVT CanonicalVT = VTys[SplatSize-1]; | 
|  |  | 
|  | // Build a canonical splat for this value. | 
|  | SDValue Elt = DAG.getConstant(Val, MVT::i32); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.assign(CanonicalVT.getVectorNumElements(), Elt); | 
|  | SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops); | 
|  | return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); | 
|  | } | 
|  |  | 
|  | /// BuildIntrinsicOp - Return a unary operator intrinsic node with the | 
|  | /// specified intrinsic ID. | 
|  | static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, | 
|  | SelectionDAG &DAG, SDLoc dl, | 
|  | EVT DestVT = MVT::Other) { | 
|  | if (DestVT == MVT::Other) DestVT = Op.getValueType(); | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, | 
|  | DAG.getConstant(IID, MVT::i32), Op); | 
|  | } | 
|  |  | 
|  | /// BuildIntrinsicOp - Return a binary operator intrinsic node with the | 
|  | /// specified intrinsic ID. | 
|  | static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, | 
|  | SelectionDAG &DAG, SDLoc dl, | 
|  | EVT DestVT = MVT::Other) { | 
|  | if (DestVT == MVT::Other) DestVT = LHS.getValueType(); | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, | 
|  | DAG.getConstant(IID, MVT::i32), LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the | 
|  | /// specified intrinsic ID. | 
|  | static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, | 
|  | SDValue Op2, SelectionDAG &DAG, | 
|  | SDLoc dl, EVT DestVT = MVT::Other) { | 
|  | if (DestVT == MVT::Other) DestVT = Op0.getValueType(); | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, | 
|  | DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified | 
|  | /// amount.  The result has the specified value type. | 
|  | static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, | 
|  | EVT VT, SelectionDAG &DAG, SDLoc dl) { | 
|  | // Force LHS/RHS to be the right type. | 
|  | LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); | 
|  | RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); | 
|  |  | 
|  | int Ops[16]; | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | Ops[i] = i + Amt; | 
|  | SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, T); | 
|  | } | 
|  |  | 
|  | // If this is a case we can't handle, return null and let the default | 
|  | // expansion code take care of it.  If we CAN select this case, and if it | 
|  | // selects to a single instruction, return Op.  Otherwise, if we can codegen | 
|  | // this case more efficiently than a constant pool load, lower it to the | 
|  | // sequence of ops that should be used. | 
|  | SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); | 
|  | assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); | 
|  |  | 
|  | // Check if this is a splat of a constant value. | 
|  | APInt APSplatBits, APSplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, | 
|  | HasAnyUndefs, 0, true) || SplatBitSize > 32) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned SplatBits = APSplatBits.getZExtValue(); | 
|  | unsigned SplatUndef = APSplatUndef.getZExtValue(); | 
|  | unsigned SplatSize = SplatBitSize / 8; | 
|  |  | 
|  | // First, handle single instruction cases. | 
|  |  | 
|  | // All zeros? | 
|  | if (SplatBits == 0) { | 
|  | // Canonicalize all zero vectors to be v4i32. | 
|  | if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { | 
|  | SDValue Z = DAG.getConstant(0, MVT::i32); | 
|  | Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); | 
|  | Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. | 
|  | int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> | 
|  | (32-SplatBitSize)); | 
|  | if (SextVal >= -16 && SextVal <= 15) | 
|  | return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); | 
|  |  | 
|  |  | 
|  | // Two instruction sequences. | 
|  |  | 
|  | // If this value is in the range [-32,30] and is even, use: | 
|  | //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) | 
|  | // If this value is in the range [17,31] and is odd, use: | 
|  | //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) | 
|  | // If this value is in the range [-31,-17] and is odd, use: | 
|  | //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) | 
|  | // Note the last two are three-instruction sequences. | 
|  | if (SextVal >= -32 && SextVal <= 31) { | 
|  | // To avoid having these optimizations undone by constant folding, | 
|  | // we convert to a pseudo that will be expanded later into one of | 
|  | // the above forms. | 
|  | SDValue Elt = DAG.getConstant(SextVal, MVT::i32); | 
|  | EVT VT = (SplatSize == 1 ? MVT::v16i8 : | 
|  | (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); | 
|  | SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32); | 
|  | SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); | 
|  | if (VT == Op.getValueType()) | 
|  | return RetVal; | 
|  | else | 
|  | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); | 
|  | } | 
|  |  | 
|  | // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is | 
|  | // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important | 
|  | // for fneg/fabs. | 
|  | if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { | 
|  | // Make -1 and vspltisw -1: | 
|  | SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); | 
|  |  | 
|  | // Make the VSLW intrinsic, computing 0x8000_0000. | 
|  | SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, | 
|  | OnesV, DAG, dl); | 
|  |  | 
|  | // xor by OnesV to invert it. | 
|  | Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); | 
|  | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // The remaining cases assume either big endian element order or | 
|  | // a splat-size that equates to the element size of the vector | 
|  | // to be built.  An example that doesn't work for little endian is | 
|  | // {0, -1, 0, -1, 0, -1, 0, -1} which has a splat size of 32 bits | 
|  | // and a vector element size of 16 bits.  The code below will | 
|  | // produce the vector in big endian element order, which for little | 
|  | // endian is {-1, 0, -1, 0, -1, 0, -1, 0}. | 
|  |  | 
|  | // For now, just avoid these optimizations in that case. | 
|  | // FIXME: Develop correct optimizations for LE with mismatched | 
|  | // splat and element sizes. | 
|  |  | 
|  | if (Subtarget.isLittleEndian() && | 
|  | SplatSize != Op.getValueType().getVectorElementType().getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check to see if this is a wide variety of vsplti*, binop self cases. | 
|  | static const signed char SplatCsts[] = { | 
|  | -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, | 
|  | -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 | 
|  | }; | 
|  |  | 
|  | for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { | 
|  | // Indirect through the SplatCsts array so that we favor 'vsplti -1' for | 
|  | // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1' | 
|  | int i = SplatCsts[idx]; | 
|  |  | 
|  | // Figure out what shift amount will be used by altivec if shifted by i in | 
|  | // this splat size. | 
|  | unsigned TypeShiftAmt = i & (SplatBitSize-1); | 
|  |  | 
|  | // vsplti + shl self. | 
|  | if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { | 
|  | SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, | 
|  | Intrinsic::ppc_altivec_vslw | 
|  | }; | 
|  | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); | 
|  | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // vsplti + srl self. | 
|  | if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { | 
|  | SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, | 
|  | Intrinsic::ppc_altivec_vsrw | 
|  | }; | 
|  | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); | 
|  | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // vsplti + sra self. | 
|  | if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { | 
|  | SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, | 
|  | Intrinsic::ppc_altivec_vsraw | 
|  | }; | 
|  | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); | 
|  | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // vsplti + rol self. | 
|  | if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | | 
|  | ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { | 
|  | SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, | 
|  | Intrinsic::ppc_altivec_vrlw | 
|  | }; | 
|  | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); | 
|  | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // t = vsplti c, result = vsldoi t, t, 1 | 
|  | if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { | 
|  | SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); | 
|  | return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); | 
|  | } | 
|  | // t = vsplti c, result = vsldoi t, t, 2 | 
|  | if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { | 
|  | SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); | 
|  | return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); | 
|  | } | 
|  | // t = vsplti c, result = vsldoi t, t, 3 | 
|  | if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { | 
|  | SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); | 
|  | return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit | 
|  | /// the specified operations to build the shuffle. | 
|  | static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, | 
|  | SDValue RHS, SelectionDAG &DAG, | 
|  | SDLoc dl) { | 
|  | unsigned OpNum = (PFEntry >> 26) & 0x0F; | 
|  | unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); | 
|  | unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1); | 
|  |  | 
|  | enum { | 
|  | OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> | 
|  | OP_VMRGHW, | 
|  | OP_VMRGLW, | 
|  | OP_VSPLTISW0, | 
|  | OP_VSPLTISW1, | 
|  | OP_VSPLTISW2, | 
|  | OP_VSPLTISW3, | 
|  | OP_VSLDOI4, | 
|  | OP_VSLDOI8, | 
|  | OP_VSLDOI12 | 
|  | }; | 
|  |  | 
|  | if (OpNum == OP_COPY) { | 
|  | if (LHSID == (1*9+2)*9+3) return LHS; | 
|  | assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); | 
|  | return RHS; | 
|  | } | 
|  |  | 
|  | SDValue OpLHS, OpRHS; | 
|  | OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); | 
|  | OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); | 
|  |  | 
|  | int ShufIdxs[16]; | 
|  | switch (OpNum) { | 
|  | default: llvm_unreachable("Unknown i32 permute!"); | 
|  | case OP_VMRGHW: | 
|  | ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3; | 
|  | ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; | 
|  | ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7; | 
|  | ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; | 
|  | break; | 
|  | case OP_VMRGLW: | 
|  | ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; | 
|  | ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; | 
|  | ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; | 
|  | ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; | 
|  | break; | 
|  | case OP_VSPLTISW0: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+0; | 
|  | break; | 
|  | case OP_VSPLTISW1: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+4; | 
|  | break; | 
|  | case OP_VSPLTISW2: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+8; | 
|  | break; | 
|  | case OP_VSPLTISW3: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+12; | 
|  | break; | 
|  | case OP_VSLDOI4: | 
|  | return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); | 
|  | case OP_VSLDOI8: | 
|  | return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); | 
|  | case OP_VSLDOI12: | 
|  | return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); | 
|  | } | 
|  | EVT VT = OpLHS.getValueType(); | 
|  | OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); | 
|  | OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); | 
|  | SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, T); | 
|  | } | 
|  |  | 
|  | /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this | 
|  | /// is a shuffle we can handle in a single instruction, return it.  Otherwise, | 
|  | /// return the code it can be lowered into.  Worst case, it can always be | 
|  | /// lowered into a vperm. | 
|  | SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | bool isLittleEndian = Subtarget.isLittleEndian(); | 
|  |  | 
|  | // Cases that are handled by instructions that take permute immediates | 
|  | // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be | 
|  | // selected by the instruction selector. | 
|  | if (V2.getOpcode() == ISD::UNDEF) { | 
|  | if (PPC::isSplatShuffleMask(SVOp, 1) || | 
|  | PPC::isSplatShuffleMask(SVOp, 2) || | 
|  | PPC::isSplatShuffleMask(SVOp, 4) || | 
|  | PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || | 
|  | PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || | 
|  | PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || | 
|  | PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || | 
|  | PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || | 
|  | PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || | 
|  | PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || | 
|  | PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || | 
|  | PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG)) { | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Altivec has a variety of "shuffle immediates" that take two vector inputs | 
|  | // and produce a fixed permutation.  If any of these match, do not lower to | 
|  | // VPERM. | 
|  | unsigned int ShuffleKind = isLittleEndian ? 2 : 0; | 
|  | if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || | 
|  | PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || | 
|  | PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || | 
|  | PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || | 
|  | PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || | 
|  | PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || | 
|  | PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || | 
|  | PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || | 
|  | PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG)) | 
|  | return Op; | 
|  |  | 
|  | // Check to see if this is a shuffle of 4-byte values.  If so, we can use our | 
|  | // perfect shuffle table to emit an optimal matching sequence. | 
|  | ArrayRef<int> PermMask = SVOp->getMask(); | 
|  |  | 
|  | unsigned PFIndexes[4]; | 
|  | bool isFourElementShuffle = true; | 
|  | for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number | 
|  | unsigned EltNo = 8;   // Start out undef. | 
|  | for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte. | 
|  | if (PermMask[i*4+j] < 0) | 
|  | continue;   // Undef, ignore it. | 
|  |  | 
|  | unsigned ByteSource = PermMask[i*4+j]; | 
|  | if ((ByteSource & 3) != j) { | 
|  | isFourElementShuffle = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (EltNo == 8) { | 
|  | EltNo = ByteSource/4; | 
|  | } else if (EltNo != ByteSource/4) { | 
|  | isFourElementShuffle = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | PFIndexes[i] = EltNo; | 
|  | } | 
|  |  | 
|  | // If this shuffle can be expressed as a shuffle of 4-byte elements, use the | 
|  | // perfect shuffle vector to determine if it is cost effective to do this as | 
|  | // discrete instructions, or whether we should use a vperm. | 
|  | // For now, we skip this for little endian until such time as we have a | 
|  | // little-endian perfect shuffle table. | 
|  | if (isFourElementShuffle && !isLittleEndian) { | 
|  | // Compute the index in the perfect shuffle table. | 
|  | unsigned PFTableIndex = | 
|  | PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; | 
|  |  | 
|  | unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; | 
|  | unsigned Cost  = (PFEntry >> 30); | 
|  |  | 
|  | // Determining when to avoid vperm is tricky.  Many things affect the cost | 
|  | // of vperm, particularly how many times the perm mask needs to be computed. | 
|  | // For example, if the perm mask can be hoisted out of a loop or is already | 
|  | // used (perhaps because there are multiple permutes with the same shuffle | 
|  | // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of | 
|  | // the loop requires an extra register. | 
|  | // | 
|  | // As a compromise, we only emit discrete instructions if the shuffle can be | 
|  | // generated in 3 or fewer operations.  When we have loop information | 
|  | // available, if this block is within a loop, we should avoid using vperm | 
|  | // for 3-operation perms and use a constant pool load instead. | 
|  | if (Cost < 3) | 
|  | return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); | 
|  | } | 
|  |  | 
|  | // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant | 
|  | // vector that will get spilled to the constant pool. | 
|  | if (V2.getOpcode() == ISD::UNDEF) V2 = V1; | 
|  |  | 
|  | // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except | 
|  | // that it is in input element units, not in bytes.  Convert now. | 
|  |  | 
|  | // For little endian, the order of the input vectors is reversed, and | 
|  | // the permutation mask is complemented with respect to 31.  This is | 
|  | // necessary to produce proper semantics with the big-endian-biased vperm | 
|  | // instruction. | 
|  | EVT EltVT = V1.getValueType().getVectorElementType(); | 
|  | unsigned BytesPerElement = EltVT.getSizeInBits()/8; | 
|  |  | 
|  | SmallVector<SDValue, 16> ResultMask; | 
|  | for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { | 
|  | unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; | 
|  |  | 
|  | for (unsigned j = 0; j != BytesPerElement; ++j) | 
|  | if (isLittleEndian) | 
|  | ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j), | 
|  | MVT::i32)); | 
|  | else | 
|  | ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, | 
|  | MVT::i32)); | 
|  | } | 
|  |  | 
|  | SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, | 
|  | ResultMask); | 
|  | if (isLittleEndian) | 
|  | return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), | 
|  | V2, V1, VPermMask); | 
|  | else | 
|  | return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), | 
|  | V1, V2, VPermMask); | 
|  | } | 
|  |  | 
|  | /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an | 
|  | /// altivec comparison.  If it is, return true and fill in Opc/isDot with | 
|  | /// information about the intrinsic. | 
|  | static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, | 
|  | bool &isDot) { | 
|  | unsigned IntrinsicID = | 
|  | cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); | 
|  | CompareOpc = -1; | 
|  | isDot = false; | 
|  | switch (IntrinsicID) { | 
|  | default: return false; | 
|  | // Comparison predicates. | 
|  | case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; | 
|  |  | 
|  | // Normal Comparisons. | 
|  | case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom | 
|  | /// lower, do it, otherwise return null. | 
|  | SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // If this is a lowered altivec predicate compare, CompareOpc is set to the | 
|  | // opcode number of the comparison. | 
|  | SDLoc dl(Op); | 
|  | int CompareOpc; | 
|  | bool isDot; | 
|  | if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) | 
|  | return SDValue();    // Don't custom lower most intrinsics. | 
|  |  | 
|  | // If this is a non-dot comparison, make the VCMP node and we are done. | 
|  | if (!isDot) { | 
|  | SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2), | 
|  | DAG.getConstant(CompareOpc, MVT::i32)); | 
|  | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); | 
|  | } | 
|  |  | 
|  | // Create the PPCISD altivec 'dot' comparison node. | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(2),  // LHS | 
|  | Op.getOperand(3),  // RHS | 
|  | DAG.getConstant(CompareOpc, MVT::i32) | 
|  | }; | 
|  | EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; | 
|  | SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); | 
|  |  | 
|  | // Now that we have the comparison, emit a copy from the CR to a GPR. | 
|  | // This is flagged to the above dot comparison. | 
|  | SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, | 
|  | DAG.getRegister(PPC::CR6, MVT::i32), | 
|  | CompNode.getValue(1)); | 
|  |  | 
|  | // Unpack the result based on how the target uses it. | 
|  | unsigned BitNo;   // Bit # of CR6. | 
|  | bool InvertBit;   // Invert result? | 
|  | switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { | 
|  | default:  // Can't happen, don't crash on invalid number though. | 
|  | case 0:   // Return the value of the EQ bit of CR6. | 
|  | BitNo = 0; InvertBit = false; | 
|  | break; | 
|  | case 1:   // Return the inverted value of the EQ bit of CR6. | 
|  | BitNo = 0; InvertBit = true; | 
|  | break; | 
|  | case 2:   // Return the value of the LT bit of CR6. | 
|  | BitNo = 2; InvertBit = false; | 
|  | break; | 
|  | case 3:   // Return the inverted value of the LT bit of CR6. | 
|  | BitNo = 2; InvertBit = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Shift the bit into the low position. | 
|  | Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, | 
|  | DAG.getConstant(8-(3-BitNo), MVT::i32)); | 
|  | // Isolate the bit. | 
|  | Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  |  | 
|  | // If we are supposed to, toggle the bit. | 
|  | if (InvertBit) | 
|  | Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int | 
|  | // instructions), but for smaller types, we need to first extend up to v2i32 | 
|  | // before doing going farther. | 
|  | if (Op.getValueType() == MVT::v2i64) { | 
|  | EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | if (ExtVT != MVT::v2i32) { | 
|  | Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); | 
|  | Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, | 
|  | DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), | 
|  | ExtVT.getVectorElementType(), 4))); | 
|  | Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); | 
|  | Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, | 
|  | DAG.getValueType(MVT::v2i32)); | 
|  | } | 
|  |  | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | // Create a stack slot that is 16-byte aligned. | 
|  | MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); | 
|  | int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); | 
|  | EVT PtrVT = getPointerTy(); | 
|  | SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); | 
|  |  | 
|  | // Store the input value into Value#0 of the stack slot. | 
|  | SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, | 
|  | Op.getOperand(0), FIdx, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | // Load it out. | 
|  | return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | if (Op.getValueType() == MVT::v4i32) { | 
|  | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  |  | 
|  | SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl); | 
|  | SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. | 
|  |  | 
|  | SDValue RHSSwap =   // = vrlw RHS, 16 | 
|  | BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); | 
|  |  | 
|  | // Shrinkify inputs to v8i16. | 
|  | LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); | 
|  | RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); | 
|  | RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); | 
|  |  | 
|  | // Low parts multiplied together, generating 32-bit results (we ignore the | 
|  | // top parts). | 
|  | SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, | 
|  | LHS, RHS, DAG, dl, MVT::v4i32); | 
|  |  | 
|  | SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, | 
|  | LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); | 
|  | // Shift the high parts up 16 bits. | 
|  | HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, | 
|  | Neg16, DAG, dl); | 
|  | return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); | 
|  | } else if (Op.getValueType() == MVT::v8i16) { | 
|  | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  |  | 
|  | SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); | 
|  |  | 
|  | return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, | 
|  | LHS, RHS, Zero, DAG, dl); | 
|  | } else if (Op.getValueType() == MVT::v16i8) { | 
|  | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  | bool isLittleEndian = Subtarget.isLittleEndian(); | 
|  |  | 
|  | // Multiply the even 8-bit parts, producing 16-bit sums. | 
|  | SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, | 
|  | LHS, RHS, DAG, dl, MVT::v8i16); | 
|  | EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); | 
|  |  | 
|  | // Multiply the odd 8-bit parts, producing 16-bit sums. | 
|  | SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, | 
|  | LHS, RHS, DAG, dl, MVT::v8i16); | 
|  | OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); | 
|  |  | 
|  | // Merge the results together.  Because vmuleub and vmuloub are | 
|  | // instructions with a big-endian bias, we must reverse the | 
|  | // element numbering and reverse the meaning of "odd" and "even" | 
|  | // when generating little endian code. | 
|  | int Ops[16]; | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | if (isLittleEndian) { | 
|  | Ops[i*2  ] = 2*i; | 
|  | Ops[i*2+1] = 2*i+16; | 
|  | } else { | 
|  | Ops[i*2  ] = 2*i+1; | 
|  | Ops[i*2+1] = 2*i+1+16; | 
|  | } | 
|  | } | 
|  | if (isLittleEndian) | 
|  | return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); | 
|  | else | 
|  | return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); | 
|  | } else { | 
|  | llvm_unreachable("Unknown mul to lower!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Wasn't expecting to be able to lower this!"); | 
|  | case ISD::ConstantPool:       return LowerConstantPool(Op, DAG); | 
|  | case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG); | 
|  | case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG); | 
|  | case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG); | 
|  | case ISD::JumpTable:          return LowerJumpTable(Op, DAG); | 
|  | case ISD::SETCC:              return LowerSETCC(Op, DAG); | 
|  | case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG); | 
|  | case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG); | 
|  | case ISD::VASTART: | 
|  | return LowerVASTART(Op, DAG, Subtarget); | 
|  |  | 
|  | case ISD::VAARG: | 
|  | return LowerVAARG(Op, DAG, Subtarget); | 
|  |  | 
|  | case ISD::VACOPY: | 
|  | return LowerVACOPY(Op, DAG, Subtarget); | 
|  |  | 
|  | case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, Subtarget); | 
|  | case ISD::DYNAMIC_STACKALLOC: | 
|  | return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); | 
|  |  | 
|  | case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG); | 
|  | case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG); | 
|  |  | 
|  | case ISD::LOAD:               return LowerLOAD(Op, DAG); | 
|  | case ISD::STORE:              return LowerSTORE(Op, DAG); | 
|  | case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG); | 
|  | case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG); | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, | 
|  | SDLoc(Op)); | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG); | 
|  | case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG); | 
|  |  | 
|  | // Lower 64-bit shifts. | 
|  | case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG); | 
|  | case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG); | 
|  | case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG); | 
|  |  | 
|  | // Vector-related lowering. | 
|  | case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG); | 
|  | case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG); | 
|  | case ISD::MUL:                return LowerMUL(Op, DAG); | 
|  |  | 
|  | // For counter-based loop handling. | 
|  | case ISD::INTRINSIC_W_CHAIN:  return SDValue(); | 
|  |  | 
|  | // Frame & Return address. | 
|  | case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG); | 
|  | case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | void PPCTargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue>&Results, | 
|  | SelectionDAG &DAG) const { | 
|  | const TargetMachine &TM = getTargetMachine(); | 
|  | SDLoc dl(N); | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Do not know how to custom type legalize this operation!"); | 
|  | case ISD::INTRINSIC_W_CHAIN: { | 
|  | if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != | 
|  | Intrinsic::ppc_is_decremented_ctr_nonzero) | 
|  | break; | 
|  |  | 
|  | assert(N->getValueType(0) == MVT::i1 && | 
|  | "Unexpected result type for CTR decrement intrinsic"); | 
|  | EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0)); | 
|  | SDVTList VTs = DAG.getVTList(SVT, MVT::Other); | 
|  | SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), | 
|  | N->getOperand(1)); | 
|  |  | 
|  | Results.push_back(NewInt); | 
|  | Results.push_back(NewInt.getValue(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::VAARG: { | 
|  | if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI() | 
|  | || TM.getSubtarget<PPCSubtarget>().isPPC64()) | 
|  | return; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (VT == MVT::i64) { | 
|  | SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); | 
|  |  | 
|  | Results.push_back(NewNode); | 
|  | Results.push_back(NewNode.getValue(1)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | case ISD::FP_ROUND_INREG: { | 
|  | assert(N->getValueType(0) == MVT::ppcf128); | 
|  | assert(N->getOperand(0).getValueType() == MVT::ppcf128); | 
|  | SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, | 
|  | MVT::f64, N->getOperand(0), | 
|  | DAG.getIntPtrConstant(0)); | 
|  | SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, | 
|  | MVT::f64, N->getOperand(0), | 
|  | DAG.getIntPtrConstant(1)); | 
|  |  | 
|  | // Add the two halves of the long double in round-to-zero mode. | 
|  | SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); | 
|  |  | 
|  | // We know the low half is about to be thrown away, so just use something | 
|  | // convenient. | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, | 
|  | FPreg, FPreg)); | 
|  | return; | 
|  | } | 
|  | case ISD::FP_TO_SINT: | 
|  | // LowerFP_TO_INT() can only handle f32 and f64. | 
|  | if (N->getOperand(0).getValueType() == MVT::ppcf128) | 
|  | return; | 
|  | Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Other Lowering Code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | MachineBasicBlock * | 
|  | PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, | 
|  | bool is64bit, unsigned BinOpcode) const { | 
|  | // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. | 
|  | const TargetInstrInfo *TII = | 
|  | getTargetMachine().getSubtargetImpl()->getInstrInfo(); | 
|  |  | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineFunction::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | unsigned dest = MI->getOperand(0).getReg(); | 
|  | unsigned ptrA = MI->getOperand(1).getReg(); | 
|  | unsigned ptrB = MI->getOperand(2).getReg(); | 
|  | unsigned incr = MI->getOperand(3).getReg(); | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  |  | 
|  | MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, loopMBB); | 
|  | F->insert(It, exitMBB); | 
|  | exitMBB->splice(exitMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | 
|  | exitMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = F->getRegInfo(); | 
|  | unsigned TmpReg = (!BinOpcode) ? incr : | 
|  | RegInfo.createVirtualRegister( | 
|  | is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : | 
|  | (const TargetRegisterClass *) &PPC::GPRCRegClass); | 
|  |  | 
|  | //  thisMBB: | 
|  | //   ... | 
|  | //   fallthrough --> loopMBB | 
|  | BB->addSuccessor(loopMBB); | 
|  |  | 
|  | //  loopMBB: | 
|  | //   l[wd]arx dest, ptr | 
|  | //   add r0, dest, incr | 
|  | //   st[wd]cx. r0, ptr | 
|  | //   bne- loopMBB | 
|  | //   fallthrough --> exitMBB | 
|  | BB = loopMBB; | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) | 
|  | .addReg(ptrA).addReg(ptrB); | 
|  | if (BinOpcode) | 
|  | BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) | 
|  | .addReg(TmpReg).addReg(ptrA).addReg(ptrB); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); | 
|  | BB->addSuccessor(loopMBB); | 
|  | BB->addSuccessor(exitMBB); | 
|  |  | 
|  | //  exitMBB: | 
|  | //   ... | 
|  | BB = exitMBB; | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, | 
|  | MachineBasicBlock *BB, | 
|  | bool is8bit,    // operation | 
|  | unsigned BinOpcode) const { | 
|  | // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. | 
|  | const TargetInstrInfo *TII = | 
|  | getTargetMachine().getSubtargetImpl()->getInstrInfo(); | 
|  | // In 64 bit mode we have to use 64 bits for addresses, even though the | 
|  | // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address | 
|  | // registers without caring whether they're 32 or 64, but here we're | 
|  | // doing actual arithmetic on the addresses. | 
|  | bool is64bit = Subtarget.isPPC64(); | 
|  | unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; | 
|  |  | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineFunction::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | unsigned dest = MI->getOperand(0).getReg(); | 
|  | unsigned ptrA = MI->getOperand(1).getReg(); | 
|  | unsigned ptrB = MI->getOperand(2).getReg(); | 
|  | unsigned incr = MI->getOperand(3).getReg(); | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  |  | 
|  | MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, loopMBB); | 
|  | F->insert(It, exitMBB); | 
|  | exitMBB->splice(exitMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | 
|  | exitMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = F->getRegInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : | 
|  | (const TargetRegisterClass *) &PPC::GPRCRegClass; | 
|  | unsigned PtrReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned ShiftReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned MaskReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Ptr1Reg; | 
|  | unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); | 
|  |  | 
|  | //  thisMBB: | 
|  | //   ... | 
|  | //   fallthrough --> loopMBB | 
|  | BB->addSuccessor(loopMBB); | 
|  |  | 
|  | // The 4-byte load must be aligned, while a char or short may be | 
|  | // anywhere in the word.  Hence all this nasty bookkeeping code. | 
|  | //   add ptr1, ptrA, ptrB [copy if ptrA==0] | 
|  | //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] | 
|  | //   xori shift, shift1, 24 [16] | 
|  | //   rlwinm ptr, ptr1, 0, 0, 29 | 
|  | //   slw incr2, incr, shift | 
|  | //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] | 
|  | //   slw mask, mask2, shift | 
|  | //  loopMBB: | 
|  | //   lwarx tmpDest, ptr | 
|  | //   add tmp, tmpDest, incr2 | 
|  | //   andc tmp2, tmpDest, mask | 
|  | //   and tmp3, tmp, mask | 
|  | //   or tmp4, tmp3, tmp2 | 
|  | //   stwcx. tmp4, ptr | 
|  | //   bne- loopMBB | 
|  | //   fallthrough --> exitMBB | 
|  | //   srw dest, tmpDest, shift | 
|  | if (ptrA != ZeroReg) { | 
|  | Ptr1Reg = RegInfo.createVirtualRegister(RC); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) | 
|  | .addReg(ptrA).addReg(ptrB); | 
|  | } else { | 
|  | Ptr1Reg = ptrB; | 
|  | } | 
|  | BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) | 
|  | .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) | 
|  | .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); | 
|  | if (is64bit) | 
|  | BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) | 
|  | .addReg(Ptr1Reg).addImm(0).addImm(61); | 
|  | else | 
|  | BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) | 
|  | .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); | 
|  | BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) | 
|  | .addReg(incr).addReg(ShiftReg); | 
|  | if (is8bit) | 
|  | BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); | 
|  | else { | 
|  | BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); | 
|  | BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); | 
|  | } | 
|  | BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) | 
|  | .addReg(Mask2Reg).addReg(ShiftReg); | 
|  |  | 
|  | BB = loopMBB; | 
|  | BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) | 
|  | .addReg(ZeroReg).addReg(PtrReg); | 
|  | if (BinOpcode) | 
|  | BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) | 
|  | .addReg(Incr2Reg).addReg(TmpDestReg); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) | 
|  | .addReg(TmpDestReg).addReg(MaskReg); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) | 
|  | .addReg(TmpReg).addReg(MaskReg); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) | 
|  | .addReg(Tmp3Reg).addReg(Tmp2Reg); | 
|  | BuildMI(BB, dl, TII->get(PPC::STWCX)) | 
|  | .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); | 
|  | BB->addSuccessor(loopMBB); | 
|  | BB->addSuccessor(exitMBB); | 
|  |  | 
|  | //  exitMBB: | 
|  | //   ... | 
|  | BB = exitMBB; | 
|  | BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) | 
|  | .addReg(ShiftReg); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | llvm::MachineBasicBlock* | 
|  | PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | const TargetInstrInfo *TII = | 
|  | getTargetMachine().getSubtargetImpl()->getInstrInfo(); | 
|  |  | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | const BasicBlock *BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator I = MBB; | 
|  | ++I; | 
|  |  | 
|  | // Memory Reference | 
|  | MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); | 
|  | MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); | 
|  |  | 
|  | unsigned DstReg = MI->getOperand(0).getReg(); | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(DstReg); | 
|  | assert(RC->hasType(MVT::i32) && "Invalid destination!"); | 
|  | unsigned mainDstReg = MRI.createVirtualRegister(RC); | 
|  | unsigned restoreDstReg = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | MVT PVT = getPointerTy(); | 
|  | assert((PVT == MVT::i64 || PVT == MVT::i32) && | 
|  | "Invalid Pointer Size!"); | 
|  | // For v = setjmp(buf), we generate | 
|  | // | 
|  | // thisMBB: | 
|  | //  SjLjSetup mainMBB | 
|  | //  bl mainMBB | 
|  | //  v_restore = 1 | 
|  | //  b sinkMBB | 
|  | // | 
|  | // mainMBB: | 
|  | //  buf[LabelOffset] = LR | 
|  | //  v_main = 0 | 
|  | // | 
|  | // sinkMBB: | 
|  | //  v = phi(main, restore) | 
|  | // | 
|  |  | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MF->insert(I, mainMBB); | 
|  | MF->insert(I, sinkMBB); | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), MBB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); | 
|  |  | 
|  | // Note that the structure of the jmp_buf used here is not compatible | 
|  | // with that used by libc, and is not designed to be. Specifically, it | 
|  | // stores only those 'reserved' registers that LLVM does not otherwise | 
|  | // understand how to spill. Also, by convention, by the time this | 
|  | // intrinsic is called, Clang has already stored the frame address in the | 
|  | // first slot of the buffer and stack address in the third. Following the | 
|  | // X86 target code, we'll store the jump address in the second slot. We also | 
|  | // need to save the TOC pointer (R2) to handle jumps between shared | 
|  | // libraries, and that will be stored in the fourth slot. The thread | 
|  | // identifier (R13) is not affected. | 
|  |  | 
|  | // thisMBB: | 
|  | const int64_t LabelOffset = 1 * PVT.getStoreSize(); | 
|  | const int64_t TOCOffset   = 3 * PVT.getStoreSize(); | 
|  | const int64_t BPOffset    = 4 * PVT.getStoreSize(); | 
|  |  | 
|  | // Prepare IP either in reg. | 
|  | const TargetRegisterClass *PtrRC = getRegClassFor(PVT); | 
|  | unsigned LabelReg = MRI.createVirtualRegister(PtrRC); | 
|  | unsigned BufReg = MI->getOperand(1).getReg(); | 
|  |  | 
|  | if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { | 
|  | MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) | 
|  | .addReg(PPC::X2) | 
|  | .addImm(TOCOffset) | 
|  | .addReg(BufReg); | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  | } | 
|  |  | 
|  | // Naked functions never have a base pointer, and so we use r1. For all | 
|  | // other functions, this decision must be delayed until during PEI. | 
|  | unsigned BaseReg; | 
|  | if (MF->getFunction()->getAttributes().hasAttribute( | 
|  | AttributeSet::FunctionIndex, Attribute::Naked)) | 
|  | BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; | 
|  | else | 
|  | BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; | 
|  |  | 
|  | MIB = BuildMI(*thisMBB, MI, DL, | 
|  | TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) | 
|  | .addReg(BaseReg) | 
|  | .addImm(BPOffset) | 
|  | .addReg(BufReg); | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Setup | 
|  | MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); | 
|  | const PPCRegisterInfo *TRI = | 
|  | getTargetMachine().getSubtarget<PPCSubtarget>().getRegisterInfo(); | 
|  | MIB.addRegMask(TRI->getNoPreservedMask()); | 
|  |  | 
|  | BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); | 
|  |  | 
|  | MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) | 
|  | .addMBB(mainMBB); | 
|  | MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); | 
|  |  | 
|  | thisMBB->addSuccessor(mainMBB, /* weight */ 0); | 
|  | thisMBB->addSuccessor(sinkMBB, /* weight */ 1); | 
|  |  | 
|  | // mainMBB: | 
|  | //  mainDstReg = 0 | 
|  | MIB = BuildMI(mainMBB, DL, | 
|  | TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); | 
|  |  | 
|  | // Store IP | 
|  | if (Subtarget.isPPC64()) { | 
|  | MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) | 
|  | .addReg(LabelReg) | 
|  | .addImm(LabelOffset) | 
|  | .addReg(BufReg); | 
|  | } else { | 
|  | MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) | 
|  | .addReg(LabelReg) | 
|  | .addImm(LabelOffset) | 
|  | .addReg(BufReg); | 
|  | } | 
|  |  | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); | 
|  | mainMBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // sinkMBB: | 
|  | BuildMI(*sinkMBB, sinkMBB->begin(), DL, | 
|  | TII->get(PPC::PHI), DstReg) | 
|  | .addReg(mainDstReg).addMBB(mainMBB) | 
|  | .addReg(restoreDstReg).addMBB(thisMBB); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return sinkMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | const TargetInstrInfo *TII = | 
|  | getTargetMachine().getSubtargetImpl()->getInstrInfo(); | 
|  |  | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | // Memory Reference | 
|  | MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); | 
|  | MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); | 
|  |  | 
|  | MVT PVT = getPointerTy(); | 
|  | assert((PVT == MVT::i64 || PVT == MVT::i32) && | 
|  | "Invalid Pointer Size!"); | 
|  |  | 
|  | const TargetRegisterClass *RC = | 
|  | (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; | 
|  | unsigned Tmp = MRI.createVirtualRegister(RC); | 
|  | // Since FP is only updated here but NOT referenced, it's treated as GPR. | 
|  | unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; | 
|  | unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; | 
|  | unsigned BP  = (PVT == MVT::i64) ? PPC::X30 : | 
|  | (Subtarget.isSVR4ABI() && | 
|  | MF->getTarget().getRelocationModel() == Reloc::PIC_ ? | 
|  | PPC::R29 : PPC::R30); | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  |  | 
|  | const int64_t LabelOffset = 1 * PVT.getStoreSize(); | 
|  | const int64_t SPOffset    = 2 * PVT.getStoreSize(); | 
|  | const int64_t TOCOffset   = 3 * PVT.getStoreSize(); | 
|  | const int64_t BPOffset    = 4 * PVT.getStoreSize(); | 
|  |  | 
|  | unsigned BufReg = MI->getOperand(0).getReg(); | 
|  |  | 
|  | // Reload FP (the jumped-to function may not have had a | 
|  | // frame pointer, and if so, then its r31 will be restored | 
|  | // as necessary). | 
|  | if (PVT == MVT::i64) { | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) | 
|  | .addImm(0) | 
|  | .addReg(BufReg); | 
|  | } else { | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) | 
|  | .addImm(0) | 
|  | .addReg(BufReg); | 
|  | } | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Reload IP | 
|  | if (PVT == MVT::i64) { | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) | 
|  | .addImm(LabelOffset) | 
|  | .addReg(BufReg); | 
|  | } else { | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) | 
|  | .addImm(LabelOffset) | 
|  | .addReg(BufReg); | 
|  | } | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Reload SP | 
|  | if (PVT == MVT::i64) { | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) | 
|  | .addImm(SPOffset) | 
|  | .addReg(BufReg); | 
|  | } else { | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) | 
|  | .addImm(SPOffset) | 
|  | .addReg(BufReg); | 
|  | } | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Reload BP | 
|  | if (PVT == MVT::i64) { | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) | 
|  | .addImm(BPOffset) | 
|  | .addReg(BufReg); | 
|  | } else { | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) | 
|  | .addImm(BPOffset) | 
|  | .addReg(BufReg); | 
|  | } | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Reload TOC | 
|  | if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) | 
|  | .addImm(TOCOffset) | 
|  | .addReg(BufReg); | 
|  |  | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  | } | 
|  |  | 
|  | // Jump | 
|  | BuildMI(*MBB, MI, DL, | 
|  | TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); | 
|  | BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || | 
|  | MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { | 
|  | return emitEHSjLjSetJmp(MI, BB); | 
|  | } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || | 
|  | MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { | 
|  | return emitEHSjLjLongJmp(MI, BB); | 
|  | } | 
|  |  | 
|  | const TargetInstrInfo *TII = | 
|  | getTargetMachine().getSubtargetImpl()->getInstrInfo(); | 
|  |  | 
|  | // To "insert" these instructions we actually have to insert their | 
|  | // control-flow patterns. | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | MachineFunction *F = BB->getParent(); | 
|  |  | 
|  | if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_I8 || | 
|  | MI->getOpcode() == PPC::SELECT_I4 || | 
|  | MI->getOpcode() == PPC::SELECT_I8)) { | 
|  | SmallVector<MachineOperand, 2> Cond; | 
|  | if (MI->getOpcode() == PPC::SELECT_CC_I4 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_I8) | 
|  | Cond.push_back(MI->getOperand(4)); | 
|  | else | 
|  | Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); | 
|  | Cond.push_back(MI->getOperand(1)); | 
|  |  | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | const TargetInstrInfo *TII = | 
|  | getTargetMachine().getSubtargetImpl()->getInstrInfo(); | 
|  | TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), | 
|  | Cond, MI->getOperand(2).getReg(), | 
|  | MI->getOperand(3).getReg()); | 
|  | } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_I8 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_F4 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_F8 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_VRRC || | 
|  | MI->getOpcode() == PPC::SELECT_I4 || | 
|  | MI->getOpcode() == PPC::SELECT_I8 || | 
|  | MI->getOpcode() == PPC::SELECT_F4 || | 
|  | MI->getOpcode() == PPC::SELECT_F8 || | 
|  | MI->getOpcode() == PPC::SELECT_VRRC) { | 
|  | // The incoming instruction knows the destination vreg to set, the | 
|  | // condition code register to branch on, the true/false values to | 
|  | // select between, and a branch opcode to use. | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   cmpTY ccX, r1, r2 | 
|  | //   bCC copy1MBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | F->insert(It, copy0MBB); | 
|  | F->insert(It, sinkMBB); | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | // Next, add the true and fallthrough blocks as its successors. | 
|  | BB->addSuccessor(copy0MBB); | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | if (MI->getOpcode() == PPC::SELECT_I4 || | 
|  | MI->getOpcode() == PPC::SELECT_I8 || | 
|  | MI->getOpcode() == PPC::SELECT_F4 || | 
|  | MI->getOpcode() == PPC::SELECT_F8 || | 
|  | MI->getOpcode() == PPC::SELECT_VRRC) { | 
|  | BuildMI(BB, dl, TII->get(PPC::BC)) | 
|  | .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); | 
|  | } else { | 
|  | unsigned SelectPred = MI->getOperand(4).getImm(); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); | 
|  | } | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | BB = copy0MBB; | 
|  |  | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
|  | //  ... | 
|  | BB = sinkMBB; | 
|  | BuildMI(*BB, BB->begin(), dl, | 
|  | TII->get(PPC::PHI), MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) | 
|  | .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); | 
|  | } | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, PPC::AND); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, PPC::OR); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, PPC::NAND); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, true, 0); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) | 
|  | BB = EmitPartwordAtomicBinary(MI, BB, false, 0); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) | 
|  | BB = EmitAtomicBinary(MI, BB, false, 0); | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) | 
|  | BB = EmitAtomicBinary(MI, BB, true, 0); | 
|  |  | 
|  | else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || | 
|  | MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { | 
|  | bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; | 
|  |  | 
|  | unsigned dest   = MI->getOperand(0).getReg(); | 
|  | unsigned ptrA   = MI->getOperand(1).getReg(); | 
|  | unsigned ptrB   = MI->getOperand(2).getReg(); | 
|  | unsigned oldval = MI->getOperand(3).getReg(); | 
|  | unsigned newval = MI->getOperand(4).getReg(); | 
|  | DebugLoc dl     = MI->getDebugLoc(); | 
|  |  | 
|  | MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, loop1MBB); | 
|  | F->insert(It, loop2MBB); | 
|  | F->insert(It, midMBB); | 
|  | F->insert(It, exitMBB); | 
|  | exitMBB->splice(exitMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | 
|  | exitMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | //  thisMBB: | 
|  | //   ... | 
|  | //   fallthrough --> loopMBB | 
|  | BB->addSuccessor(loop1MBB); | 
|  |  | 
|  | // loop1MBB: | 
|  | //   l[wd]arx dest, ptr | 
|  | //   cmp[wd] dest, oldval | 
|  | //   bne- midMBB | 
|  | // loop2MBB: | 
|  | //   st[wd]cx. newval, ptr | 
|  | //   bne- loopMBB | 
|  | //   b exitBB | 
|  | // midMBB: | 
|  | //   st[wd]cx. dest, ptr | 
|  | // exitBB: | 
|  | BB = loop1MBB; | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) | 
|  | .addReg(ptrA).addReg(ptrB); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) | 
|  | .addReg(oldval).addReg(dest); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); | 
|  | BB->addSuccessor(loop2MBB); | 
|  | BB->addSuccessor(midMBB); | 
|  |  | 
|  | BB = loop2MBB; | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) | 
|  | .addReg(newval).addReg(ptrA).addReg(ptrB); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); | 
|  | BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); | 
|  | BB->addSuccessor(loop1MBB); | 
|  | BB->addSuccessor(exitMBB); | 
|  |  | 
|  | BB = midMBB; | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) | 
|  | .addReg(dest).addReg(ptrA).addReg(ptrB); | 
|  | BB->addSuccessor(exitMBB); | 
|  |  | 
|  | //  exitMBB: | 
|  | //   ... | 
|  | BB = exitMBB; | 
|  | } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || | 
|  | MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { | 
|  | // We must use 64-bit registers for addresses when targeting 64-bit, | 
|  | // since we're actually doing arithmetic on them.  Other registers | 
|  | // can be 32-bit. | 
|  | bool is64bit = Subtarget.isPPC64(); | 
|  | bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; | 
|  |  | 
|  | unsigned dest   = MI->getOperand(0).getReg(); | 
|  | unsigned ptrA   = MI->getOperand(1).getReg(); | 
|  | unsigned ptrB   = MI->getOperand(2).getReg(); | 
|  | unsigned oldval = MI->getOperand(3).getReg(); | 
|  | unsigned newval = MI->getOperand(4).getReg(); | 
|  | DebugLoc dl     = MI->getDebugLoc(); | 
|  |  | 
|  | MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, loop1MBB); | 
|  | F->insert(It, loop2MBB); | 
|  | F->insert(It, midMBB); | 
|  | F->insert(It, exitMBB); | 
|  | exitMBB->splice(exitMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | 
|  | exitMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = F->getRegInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : | 
|  | (const TargetRegisterClass *) &PPC::GPRCRegClass; | 
|  | unsigned PtrReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned ShiftReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned MaskReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Ptr1Reg; | 
|  | unsigned TmpReg = RegInfo.createVirtualRegister(RC); | 
|  | unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; | 
|  | //  thisMBB: | 
|  | //   ... | 
|  | //   fallthrough --> loopMBB | 
|  | BB->addSuccessor(loop1MBB); | 
|  |  | 
|  | // The 4-byte load must be aligned, while a char or short may be | 
|  | // anywhere in the word.  Hence all this nasty bookkeeping code. | 
|  | //   add ptr1, ptrA, ptrB [copy if ptrA==0] | 
|  | //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] | 
|  | //   xori shift, shift1, 24 [16] | 
|  | //   rlwinm ptr, ptr1, 0, 0, 29 | 
|  | //   slw newval2, newval, shift | 
|  | //   slw oldval2, oldval,shift | 
|  | //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] | 
|  | //   slw mask, mask2, shift | 
|  | //   and newval3, newval2, mask | 
|  | //   and oldval3, oldval2, mask | 
|  | // loop1MBB: | 
|  | //   lwarx tmpDest, ptr | 
|  | //   and tmp, tmpDest, mask | 
|  | //   cmpw tmp, oldval3 | 
|  | //   bne- midMBB | 
|  | // loop2MBB: | 
|  | //   andc tmp2, tmpDest, mask | 
|  | //   or tmp4, tmp2, newval3 | 
|  | //   stwcx. tmp4, ptr | 
|  | //   bne- loop1MBB | 
|  | //   b exitBB | 
|  | // midMBB: | 
|  | //   stwcx. tmpDest, ptr | 
|  | // exitBB: | 
|  | //   srw dest, tmpDest, shift | 
|  | if (ptrA != ZeroReg) { | 
|  | Ptr1Reg = RegInfo.createVirtualRegister(RC); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) | 
|  | .addReg(ptrA).addReg(ptrB); | 
|  | } else { | 
|  | Ptr1Reg = ptrB; | 
|  | } | 
|  | BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) | 
|  | .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); | 
|  | BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) | 
|  | .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); | 
|  | if (is64bit) | 
|  | BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) | 
|  | .addReg(Ptr1Reg).addImm(0).addImm(61); | 
|  | else | 
|  | BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) | 
|  | .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); | 
|  | BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) | 
|  | .addReg(newval).addReg(ShiftReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) | 
|  | .addReg(oldval).addReg(ShiftReg); | 
|  | if (is8bit) | 
|  | BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); | 
|  | else { | 
|  | BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); | 
|  | BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) | 
|  | .addReg(Mask3Reg).addImm(65535); | 
|  | } | 
|  | BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) | 
|  | .addReg(Mask2Reg).addReg(ShiftReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) | 
|  | .addReg(NewVal2Reg).addReg(MaskReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) | 
|  | .addReg(OldVal2Reg).addReg(MaskReg); | 
|  |  | 
|  | BB = loop1MBB; | 
|  | BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) | 
|  | .addReg(ZeroReg).addReg(PtrReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) | 
|  | .addReg(TmpDestReg).addReg(MaskReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) | 
|  | .addReg(TmpReg).addReg(OldVal3Reg); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); | 
|  | BB->addSuccessor(loop2MBB); | 
|  | BB->addSuccessor(midMBB); | 
|  |  | 
|  | BB = loop2MBB; | 
|  | BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) | 
|  | .addReg(TmpDestReg).addReg(MaskReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) | 
|  | .addReg(Tmp2Reg).addReg(NewVal3Reg); | 
|  | BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) | 
|  | .addReg(ZeroReg).addReg(PtrReg); | 
|  | BuildMI(BB, dl, TII->get(PPC::BCC)) | 
|  | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); | 
|  | BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); | 
|  | BB->addSuccessor(loop1MBB); | 
|  | BB->addSuccessor(exitMBB); | 
|  |  | 
|  | BB = midMBB; | 
|  | BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) | 
|  | .addReg(ZeroReg).addReg(PtrReg); | 
|  | BB->addSuccessor(exitMBB); | 
|  |  | 
|  | //  exitMBB: | 
|  | //   ... | 
|  | BB = exitMBB; | 
|  | BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) | 
|  | .addReg(ShiftReg); | 
|  | } else if (MI->getOpcode() == PPC::FADDrtz) { | 
|  | // This pseudo performs an FADD with rounding mode temporarily forced | 
|  | // to round-to-zero.  We emit this via custom inserter since the FPSCR | 
|  | // is not modeled at the SelectionDAG level. | 
|  | unsigned Dest = MI->getOperand(0).getReg(); | 
|  | unsigned Src1 = MI->getOperand(1).getReg(); | 
|  | unsigned Src2 = MI->getOperand(2).getReg(); | 
|  | DebugLoc dl   = MI->getDebugLoc(); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = F->getRegInfo(); | 
|  | unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); | 
|  |  | 
|  | // Save FPSCR value. | 
|  | BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); | 
|  |  | 
|  | // Set rounding mode to round-to-zero. | 
|  | BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); | 
|  | BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); | 
|  |  | 
|  | // Perform addition. | 
|  | BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); | 
|  |  | 
|  | // Restore FPSCR value. | 
|  | BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg); | 
|  | } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || | 
|  | MI->getOpcode() == PPC::ANDIo_1_GT_BIT || | 
|  | MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || | 
|  | MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { | 
|  | unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || | 
|  | MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? | 
|  | PPC::ANDIo8 : PPC::ANDIo; | 
|  | bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || | 
|  | MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = F->getRegInfo(); | 
|  | unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? | 
|  | &PPC::GPRCRegClass : | 
|  | &PPC::G8RCRegClass); | 
|  |  | 
|  | DebugLoc dl   = MI->getDebugLoc(); | 
|  | BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) | 
|  | .addReg(MI->getOperand(1).getReg()).addImm(1); | 
|  | BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), | 
|  | MI->getOperand(0).getReg()) | 
|  | .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); | 
|  | } else { | 
|  | llvm_unreachable("Unexpected instr type to insert"); | 
|  | } | 
|  |  | 
|  | MI->eraseFromParent();   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Target Optimization Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (DCI.isAfterLegalizeVectorOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | if ((VT == MVT::f32 && Subtarget.hasFRES()) || | 
|  | (VT == MVT::f64 && Subtarget.hasFRE())  || | 
|  | (VT == MVT::v4f32 && Subtarget.hasAltivec()) || | 
|  | (VT == MVT::v2f64 && Subtarget.hasVSX())) { | 
|  |  | 
|  | // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | 
|  | // For the reciprocal, we need to find the zero of the function: | 
|  | //   F(X) = A X - 1 [which has a zero at X = 1/A] | 
|  | //     => | 
|  | //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form | 
|  | //     does not require additional intermediate precision] | 
|  |  | 
|  | // Convergence is quadratic, so we essentially double the number of digits | 
|  | // correct after every iteration. The minimum architected relative | 
|  | // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has | 
|  | // 23 digits and double has 52 digits. | 
|  | int Iterations = Subtarget.hasRecipPrec() ? 1 : 3; | 
|  | if (VT.getScalarType() == MVT::f64) | 
|  | ++Iterations; | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | SDValue FPOne = | 
|  | DAG.getConstantFP(1.0, VT.getScalarType()); | 
|  | if (VT.isVector()) { | 
|  | assert(VT.getVectorNumElements() == 4 && | 
|  | "Unknown vector type"); | 
|  | FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, | 
|  | FPOne, FPOne, FPOne, FPOne); | 
|  | } | 
|  |  | 
|  | SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op); | 
|  | DCI.AddToWorklist(Est.getNode()); | 
|  |  | 
|  | // Newton iterations: Est = Est + Est (1 - Arg * Est) | 
|  | for (int i = 0; i < Iterations; ++i) { | 
|  | SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est); | 
|  | DCI.AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst); | 
|  | DCI.AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst); | 
|  | DCI.AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst); | 
|  | DCI.AddToWorklist(Est.getNode()); | 
|  | } | 
|  |  | 
|  | return Est; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (DCI.isAfterLegalizeVectorOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || | 
|  | (VT == MVT::f64 && Subtarget.hasFRSQRTE())  || | 
|  | (VT == MVT::v4f32 && Subtarget.hasAltivec()) || | 
|  | (VT == MVT::v2f64 && Subtarget.hasVSX())) { | 
|  |  | 
|  | // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | 
|  | // For the reciprocal sqrt, we need to find the zero of the function: | 
|  | //   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] | 
|  | //     => | 
|  | //   X_{i+1} = X_i (1.5 - A X_i^2 / 2) | 
|  | // As a result, we precompute A/2 prior to the iteration loop. | 
|  |  | 
|  | // Convergence is quadratic, so we essentially double the number of digits | 
|  | // correct after every iteration. The minimum architected relative | 
|  | // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has | 
|  | // 23 digits and double has 52 digits. | 
|  | int Iterations = Subtarget.hasRecipPrec() ? 1 : 3; | 
|  | if (VT.getScalarType() == MVT::f64) | 
|  | ++Iterations; | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | SDValue FPThreeHalves = | 
|  | DAG.getConstantFP(1.5, VT.getScalarType()); | 
|  | if (VT.isVector()) { | 
|  | assert(VT.getVectorNumElements() == 4 && | 
|  | "Unknown vector type"); | 
|  | FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, | 
|  | FPThreeHalves, FPThreeHalves, | 
|  | FPThreeHalves, FPThreeHalves); | 
|  | } | 
|  |  | 
|  | SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op); | 
|  | DCI.AddToWorklist(Est.getNode()); | 
|  |  | 
|  | // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that | 
|  | // this entire sequence requires only one FP constant. | 
|  | SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op); | 
|  | DCI.AddToWorklist(HalfArg.getNode()); | 
|  |  | 
|  | HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op); | 
|  | DCI.AddToWorklist(HalfArg.getNode()); | 
|  |  | 
|  | // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) | 
|  | for (int i = 0; i < Iterations; ++i) { | 
|  | SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est); | 
|  | DCI.AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst); | 
|  | DCI.AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst); | 
|  | DCI.AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst); | 
|  | DCI.AddToWorklist(Est.getNode()); | 
|  | } | 
|  |  | 
|  | return Est; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, | 
|  | unsigned Bytes, int Dist, | 
|  | SelectionDAG &DAG) { | 
|  | if (VT.getSizeInBits() / 8 != Bytes) | 
|  | return false; | 
|  |  | 
|  | SDValue BaseLoc = Base->getBasePtr(); | 
|  | if (Loc.getOpcode() == ISD::FrameIndex) { | 
|  | if (BaseLoc.getOpcode() != ISD::FrameIndex) | 
|  | return false; | 
|  | const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | int FI  = cast<FrameIndexSDNode>(Loc)->getIndex(); | 
|  | int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); | 
|  | int FS  = MFI->getObjectSize(FI); | 
|  | int BFS = MFI->getObjectSize(BFI); | 
|  | if (FS != BFS || FS != (int)Bytes) return false; | 
|  | return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); | 
|  | } | 
|  |  | 
|  | // Handle X+C | 
|  | if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc && | 
|  | cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes) | 
|  | return true; | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | const GlobalValue *GV1 = nullptr; | 
|  | const GlobalValue *GV2 = nullptr; | 
|  | int64_t Offset1 = 0; | 
|  | int64_t Offset2 = 0; | 
|  | bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); | 
|  | bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); | 
|  | if (isGA1 && isGA2 && GV1 == GV2) | 
|  | return Offset1 == (Offset2 + Dist*Bytes); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does | 
|  | // not enforce equality of the chain operands. | 
|  | static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, | 
|  | unsigned Bytes, int Dist, | 
|  | SelectionDAG &DAG) { | 
|  | if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { | 
|  | EVT VT = LS->getMemoryVT(); | 
|  | SDValue Loc = LS->getBasePtr(); | 
|  | return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); | 
|  | } | 
|  |  | 
|  | if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { | 
|  | EVT VT; | 
|  | switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { | 
|  | default: return false; | 
|  | case Intrinsic::ppc_altivec_lvx: | 
|  | case Intrinsic::ppc_altivec_lvxl: | 
|  | VT = MVT::v4i32; | 
|  | break; | 
|  | case Intrinsic::ppc_altivec_lvebx: | 
|  | VT = MVT::i8; | 
|  | break; | 
|  | case Intrinsic::ppc_altivec_lvehx: | 
|  | VT = MVT::i16; | 
|  | break; | 
|  | case Intrinsic::ppc_altivec_lvewx: | 
|  | VT = MVT::i32; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); | 
|  | } | 
|  |  | 
|  | if (N->getOpcode() == ISD::INTRINSIC_VOID) { | 
|  | EVT VT; | 
|  | switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { | 
|  | default: return false; | 
|  | case Intrinsic::ppc_altivec_stvx: | 
|  | case Intrinsic::ppc_altivec_stvxl: | 
|  | VT = MVT::v4i32; | 
|  | break; | 
|  | case Intrinsic::ppc_altivec_stvebx: | 
|  | VT = MVT::i8; | 
|  | break; | 
|  | case Intrinsic::ppc_altivec_stvehx: | 
|  | VT = MVT::i16; | 
|  | break; | 
|  | case Intrinsic::ppc_altivec_stvewx: | 
|  | VT = MVT::i32; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true is there is a nearyby consecutive load to the one provided | 
|  | // (regardless of alignment). We search up and down the chain, looking though | 
|  | // token factors and other loads (but nothing else). As a result, a true result | 
|  | // indicates that it is safe to create a new consecutive load adjacent to the | 
|  | // load provided. | 
|  | static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { | 
|  | SDValue Chain = LD->getChain(); | 
|  | EVT VT = LD->getMemoryVT(); | 
|  |  | 
|  | SmallSet<SDNode *, 16> LoadRoots; | 
|  | SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); | 
|  | SmallSet<SDNode *, 16> Visited; | 
|  |  | 
|  | // First, search up the chain, branching to follow all token-factor operands. | 
|  | // If we find a consecutive load, then we're done, otherwise, record all | 
|  | // nodes just above the top-level loads and token factors. | 
|  | while (!Queue.empty()) { | 
|  | SDNode *ChainNext = Queue.pop_back_val(); | 
|  | if (!Visited.insert(ChainNext)) | 
|  | continue; | 
|  |  | 
|  | if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { | 
|  | if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) | 
|  | return true; | 
|  |  | 
|  | if (!Visited.count(ChainLD->getChain().getNode())) | 
|  | Queue.push_back(ChainLD->getChain().getNode()); | 
|  | } else if (ChainNext->getOpcode() == ISD::TokenFactor) { | 
|  | for (const SDUse &O : ChainNext->ops()) | 
|  | if (!Visited.count(O.getNode())) | 
|  | Queue.push_back(O.getNode()); | 
|  | } else | 
|  | LoadRoots.insert(ChainNext); | 
|  | } | 
|  |  | 
|  | // Second, search down the chain, starting from the top-level nodes recorded | 
|  | // in the first phase. These top-level nodes are the nodes just above all | 
|  | // loads and token factors. Starting with their uses, recursively look though | 
|  | // all loads (just the chain uses) and token factors to find a consecutive | 
|  | // load. | 
|  | Visited.clear(); | 
|  | Queue.clear(); | 
|  |  | 
|  | for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), | 
|  | IE = LoadRoots.end(); I != IE; ++I) { | 
|  | Queue.push_back(*I); | 
|  |  | 
|  | while (!Queue.empty()) { | 
|  | SDNode *LoadRoot = Queue.pop_back_val(); | 
|  | if (!Visited.insert(LoadRoot)) | 
|  | continue; | 
|  |  | 
|  | if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) | 
|  | if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) | 
|  | return true; | 
|  |  | 
|  | for (SDNode::use_iterator UI = LoadRoot->use_begin(), | 
|  | UE = LoadRoot->use_end(); UI != UE; ++UI) | 
|  | if (((isa<MemSDNode>(*UI) && | 
|  | cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || | 
|  | UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) | 
|  | Queue.push_back(*UI); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc dl(N); | 
|  |  | 
|  | assert(Subtarget.useCRBits() && | 
|  | "Expecting to be tracking CR bits"); | 
|  | // If we're tracking CR bits, we need to be careful that we don't have: | 
|  | //   trunc(binary-ops(zext(x), zext(y))) | 
|  | // or | 
|  | //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) | 
|  | // such that we're unnecessarily moving things into GPRs when it would be | 
|  | // better to keep them in CR bits. | 
|  |  | 
|  | // Note that trunc here can be an actual i1 trunc, or can be the effective | 
|  | // truncation that comes from a setcc or select_cc. | 
|  | if (N->getOpcode() == ISD::TRUNCATE && | 
|  | N->getValueType(0) != MVT::i1) | 
|  | return SDValue(); | 
|  |  | 
|  | if (N->getOperand(0).getValueType() != MVT::i32 && | 
|  | N->getOperand(0).getValueType() != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | if (N->getOpcode() == ISD::SETCC || | 
|  | N->getOpcode() == ISD::SELECT_CC) { | 
|  | // If we're looking at a comparison, then we need to make sure that the | 
|  | // high bits (all except for the first) don't matter the result. | 
|  | ISD::CondCode CC = | 
|  | cast<CondCodeSDNode>(N->getOperand( | 
|  | N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); | 
|  | unsigned OpBits = N->getOperand(0).getValueSizeInBits(); | 
|  |  | 
|  | if (ISD::isSignedIntSetCC(CC)) { | 
|  | if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || | 
|  | DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) | 
|  | return SDValue(); | 
|  | } else if (ISD::isUnsignedIntSetCC(CC)) { | 
|  | if (!DAG.MaskedValueIsZero(N->getOperand(0), | 
|  | APInt::getHighBitsSet(OpBits, OpBits-1)) || | 
|  | !DAG.MaskedValueIsZero(N->getOperand(1), | 
|  | APInt::getHighBitsSet(OpBits, OpBits-1))) | 
|  | return SDValue(); | 
|  | } else { | 
|  | // This is neither a signed nor an unsigned comparison, just make sure | 
|  | // that the high bits are equal. | 
|  | APInt Op1Zero, Op1One; | 
|  | APInt Op2Zero, Op2One; | 
|  | DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); | 
|  | DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); | 
|  |  | 
|  | // We don't really care about what is known about the first bit (if | 
|  | // anything), so clear it in all masks prior to comparing them. | 
|  | Op1Zero.clearBit(0); Op1One.clearBit(0); | 
|  | Op2Zero.clearBit(0); Op2One.clearBit(0); | 
|  |  | 
|  | if (Op1Zero != Op2Zero || Op1One != Op2One) | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We now know that the higher-order bits are irrelevant, we just need to | 
|  | // make sure that all of the intermediate operations are bit operations, and | 
|  | // all inputs are extensions. | 
|  | if (N->getOperand(0).getOpcode() != ISD::AND && | 
|  | N->getOperand(0).getOpcode() != ISD::OR  && | 
|  | N->getOperand(0).getOpcode() != ISD::XOR && | 
|  | N->getOperand(0).getOpcode() != ISD::SELECT && | 
|  | N->getOperand(0).getOpcode() != ISD::SELECT_CC && | 
|  | N->getOperand(0).getOpcode() != ISD::TRUNCATE && | 
|  | N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && | 
|  | N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && | 
|  | N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) | 
|  | return SDValue(); | 
|  |  | 
|  | if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && | 
|  | N->getOperand(1).getOpcode() != ISD::AND && | 
|  | N->getOperand(1).getOpcode() != ISD::OR  && | 
|  | N->getOperand(1).getOpcode() != ISD::XOR && | 
|  | N->getOperand(1).getOpcode() != ISD::SELECT && | 
|  | N->getOperand(1).getOpcode() != ISD::SELECT_CC && | 
|  | N->getOperand(1).getOpcode() != ISD::TRUNCATE && | 
|  | N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && | 
|  | N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && | 
|  | N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<SDValue, 4> Inputs; | 
|  | SmallVector<SDValue, 8> BinOps, PromOps; | 
|  | SmallPtrSet<SDNode *, 16> Visited; | 
|  |  | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || | 
|  | N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || | 
|  | N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && | 
|  | N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || | 
|  | isa<ConstantSDNode>(N->getOperand(i))) | 
|  | Inputs.push_back(N->getOperand(i)); | 
|  | else | 
|  | BinOps.push_back(N->getOperand(i)); | 
|  |  | 
|  | if (N->getOpcode() == ISD::TRUNCATE) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Visit all inputs, collect all binary operations (and, or, xor and | 
|  | // select) that are all fed by extensions. | 
|  | while (!BinOps.empty()) { | 
|  | SDValue BinOp = BinOps.back(); | 
|  | BinOps.pop_back(); | 
|  |  | 
|  | if (!Visited.insert(BinOp.getNode())) | 
|  | continue; | 
|  |  | 
|  | PromOps.push_back(BinOp); | 
|  |  | 
|  | for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { | 
|  | // The condition of the select is not promoted. | 
|  | if (BinOp.getOpcode() == ISD::SELECT && i == 0) | 
|  | continue; | 
|  | if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) | 
|  | continue; | 
|  |  | 
|  | if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && | 
|  | BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || | 
|  | isa<ConstantSDNode>(BinOp.getOperand(i))) { | 
|  | Inputs.push_back(BinOp.getOperand(i)); | 
|  | } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::OR  || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::XOR || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::SELECT || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { | 
|  | BinOps.push_back(BinOp.getOperand(i)); | 
|  | } else { | 
|  | // We have an input that is not an extension or another binary | 
|  | // operation; we'll abort this transformation. | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure that this is a self-contained cluster of operations (which | 
|  | // is not quite the same thing as saying that everything has only one | 
|  | // use). | 
|  | for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { | 
|  | if (isa<ConstantSDNode>(Inputs[i])) | 
|  | continue; | 
|  |  | 
|  | for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), | 
|  | UE = Inputs[i].getNode()->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User != N && !Visited.count(User)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure that we're not going to promote the non-output-value | 
|  | // operand(s) or SELECT or SELECT_CC. | 
|  | // FIXME: Although we could sometimes handle this, and it does occur in | 
|  | // practice that one of the condition inputs to the select is also one of | 
|  | // the outputs, we currently can't deal with this. | 
|  | if (User->getOpcode() == ISD::SELECT) { | 
|  | if (User->getOperand(0) == Inputs[i]) | 
|  | return SDValue(); | 
|  | } else if (User->getOpcode() == ISD::SELECT_CC) { | 
|  | if (User->getOperand(0) == Inputs[i] || | 
|  | User->getOperand(1) == Inputs[i]) | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { | 
|  | for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), | 
|  | UE = PromOps[i].getNode()->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User != N && !Visited.count(User)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure that we're not going to promote the non-output-value | 
|  | // operand(s) or SELECT or SELECT_CC. | 
|  | // FIXME: Although we could sometimes handle this, and it does occur in | 
|  | // practice that one of the condition inputs to the select is also one of | 
|  | // the outputs, we currently can't deal with this. | 
|  | if (User->getOpcode() == ISD::SELECT) { | 
|  | if (User->getOperand(0) == PromOps[i]) | 
|  | return SDValue(); | 
|  | } else if (User->getOpcode() == ISD::SELECT_CC) { | 
|  | if (User->getOperand(0) == PromOps[i] || | 
|  | User->getOperand(1) == PromOps[i]) | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Replace all inputs with the extension operand. | 
|  | for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { | 
|  | // Constants may have users outside the cluster of to-be-promoted nodes, | 
|  | // and so we need to replace those as we do the promotions. | 
|  | if (isa<ConstantSDNode>(Inputs[i])) | 
|  | continue; | 
|  | else | 
|  | DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); | 
|  | } | 
|  |  | 
|  | // Replace all operations (these are all the same, but have a different | 
|  | // (i1) return type). DAG.getNode will validate that the types of | 
|  | // a binary operator match, so go through the list in reverse so that | 
|  | // we've likely promoted both operands first. Any intermediate truncations or | 
|  | // extensions disappear. | 
|  | while (!PromOps.empty()) { | 
|  | SDValue PromOp = PromOps.back(); | 
|  | PromOps.pop_back(); | 
|  |  | 
|  | if (PromOp.getOpcode() == ISD::TRUNCATE || | 
|  | PromOp.getOpcode() == ISD::SIGN_EXTEND || | 
|  | PromOp.getOpcode() == ISD::ZERO_EXTEND || | 
|  | PromOp.getOpcode() == ISD::ANY_EXTEND) { | 
|  | if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && | 
|  | PromOp.getOperand(0).getValueType() != MVT::i1) { | 
|  | // The operand is not yet ready (see comment below). | 
|  | PromOps.insert(PromOps.begin(), PromOp); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDValue RepValue = PromOp.getOperand(0); | 
|  | if (isa<ConstantSDNode>(RepValue)) | 
|  | RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); | 
|  |  | 
|  | DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | unsigned C; | 
|  | switch (PromOp.getOpcode()) { | 
|  | default:             C = 0; break; | 
|  | case ISD::SELECT:    C = 1; break; | 
|  | case ISD::SELECT_CC: C = 2; break; | 
|  | } | 
|  |  | 
|  | if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && | 
|  | PromOp.getOperand(C).getValueType() != MVT::i1) || | 
|  | (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && | 
|  | PromOp.getOperand(C+1).getValueType() != MVT::i1)) { | 
|  | // The to-be-promoted operands of this node have not yet been | 
|  | // promoted (this should be rare because we're going through the | 
|  | // list backward, but if one of the operands has several users in | 
|  | // this cluster of to-be-promoted nodes, it is possible). | 
|  | PromOps.insert(PromOps.begin(), PromOp); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), | 
|  | PromOp.getNode()->op_end()); | 
|  |  | 
|  | // If there are any constant inputs, make sure they're replaced now. | 
|  | for (unsigned i = 0; i < 2; ++i) | 
|  | if (isa<ConstantSDNode>(Ops[C+i])) | 
|  | Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); | 
|  |  | 
|  | DAG.ReplaceAllUsesOfValueWith(PromOp, | 
|  | DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); | 
|  | } | 
|  |  | 
|  | // Now we're left with the initial truncation itself. | 
|  | if (N->getOpcode() == ISD::TRUNCATE) | 
|  | return N->getOperand(0); | 
|  |  | 
|  | // Otherwise, this is a comparison. The operands to be compared have just | 
|  | // changed type (to i1), but everything else is the same. | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // If we're tracking CR bits, we need to be careful that we don't have: | 
|  | //   zext(binary-ops(trunc(x), trunc(y))) | 
|  | // or | 
|  | //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) | 
|  | // such that we're unnecessarily moving things into CR bits that can more | 
|  | // efficiently stay in GPRs. Note that if we're not certain that the high | 
|  | // bits are set as required by the final extension, we still may need to do | 
|  | // some masking to get the proper behavior. | 
|  |  | 
|  | // This same functionality is important on PPC64 when dealing with | 
|  | // 32-to-64-bit extensions; these occur often when 32-bit values are used as | 
|  | // the return values of functions. Because it is so similar, it is handled | 
|  | // here as well. | 
|  |  | 
|  | if (N->getValueType(0) != MVT::i32 && | 
|  | N->getValueType(0) != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!((N->getOperand(0).getValueType() == MVT::i1 && | 
|  | Subtarget.useCRBits()) || | 
|  | (N->getOperand(0).getValueType() == MVT::i32 && | 
|  | Subtarget.isPPC64()))) | 
|  | return SDValue(); | 
|  |  | 
|  | if (N->getOperand(0).getOpcode() != ISD::AND && | 
|  | N->getOperand(0).getOpcode() != ISD::OR  && | 
|  | N->getOperand(0).getOpcode() != ISD::XOR && | 
|  | N->getOperand(0).getOpcode() != ISD::SELECT && | 
|  | N->getOperand(0).getOpcode() != ISD::SELECT_CC) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<SDValue, 4> Inputs; | 
|  | SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; | 
|  | SmallPtrSet<SDNode *, 16> Visited; | 
|  |  | 
|  | // Visit all inputs, collect all binary operations (and, or, xor and | 
|  | // select) that are all fed by truncations. | 
|  | while (!BinOps.empty()) { | 
|  | SDValue BinOp = BinOps.back(); | 
|  | BinOps.pop_back(); | 
|  |  | 
|  | if (!Visited.insert(BinOp.getNode())) | 
|  | continue; | 
|  |  | 
|  | PromOps.push_back(BinOp); | 
|  |  | 
|  | for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { | 
|  | // The condition of the select is not promoted. | 
|  | if (BinOp.getOpcode() == ISD::SELECT && i == 0) | 
|  | continue; | 
|  | if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) | 
|  | continue; | 
|  |  | 
|  | if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || | 
|  | isa<ConstantSDNode>(BinOp.getOperand(i))) { | 
|  | Inputs.push_back(BinOp.getOperand(i)); | 
|  | } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::OR  || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::XOR || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::SELECT || | 
|  | BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { | 
|  | BinOps.push_back(BinOp.getOperand(i)); | 
|  | } else { | 
|  | // We have an input that is not a truncation or another binary | 
|  | // operation; we'll abort this transformation. | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure that this is a self-contained cluster of operations (which | 
|  | // is not quite the same thing as saying that everything has only one | 
|  | // use). | 
|  | for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { | 
|  | if (isa<ConstantSDNode>(Inputs[i])) | 
|  | continue; | 
|  |  | 
|  | for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), | 
|  | UE = Inputs[i].getNode()->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User != N && !Visited.count(User)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure that we're not going to promote the non-output-value | 
|  | // operand(s) or SELECT or SELECT_CC. | 
|  | // FIXME: Although we could sometimes handle this, and it does occur in | 
|  | // practice that one of the condition inputs to the select is also one of | 
|  | // the outputs, we currently can't deal with this. | 
|  | if (User->getOpcode() == ISD::SELECT) { | 
|  | if (User->getOperand(0) == Inputs[i]) | 
|  | return SDValue(); | 
|  | } else if (User->getOpcode() == ISD::SELECT_CC) { | 
|  | if (User->getOperand(0) == Inputs[i] || | 
|  | User->getOperand(1) == Inputs[i]) | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { | 
|  | for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), | 
|  | UE = PromOps[i].getNode()->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User != N && !Visited.count(User)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure that we're not going to promote the non-output-value | 
|  | // operand(s) or SELECT or SELECT_CC. | 
|  | // FIXME: Although we could sometimes handle this, and it does occur in | 
|  | // practice that one of the condition inputs to the select is also one of | 
|  | // the outputs, we currently can't deal with this. | 
|  | if (User->getOpcode() == ISD::SELECT) { | 
|  | if (User->getOperand(0) == PromOps[i]) | 
|  | return SDValue(); | 
|  | } else if (User->getOpcode() == ISD::SELECT_CC) { | 
|  | if (User->getOperand(0) == PromOps[i] || | 
|  | User->getOperand(1) == PromOps[i]) | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned PromBits = N->getOperand(0).getValueSizeInBits(); | 
|  | bool ReallyNeedsExt = false; | 
|  | if (N->getOpcode() != ISD::ANY_EXTEND) { | 
|  | // If all of the inputs are not already sign/zero extended, then | 
|  | // we'll still need to do that at the end. | 
|  | for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { | 
|  | if (isa<ConstantSDNode>(Inputs[i])) | 
|  | continue; | 
|  |  | 
|  | unsigned OpBits = | 
|  | Inputs[i].getOperand(0).getValueSizeInBits(); | 
|  | assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); | 
|  |  | 
|  | if ((N->getOpcode() == ISD::ZERO_EXTEND && | 
|  | !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), | 
|  | APInt::getHighBitsSet(OpBits, | 
|  | OpBits-PromBits))) || | 
|  | (N->getOpcode() == ISD::SIGN_EXTEND && | 
|  | DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < | 
|  | (OpBits-(PromBits-1)))) { | 
|  | ReallyNeedsExt = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Replace all inputs, either with the truncation operand, or a | 
|  | // truncation or extension to the final output type. | 
|  | for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { | 
|  | // Constant inputs need to be replaced with the to-be-promoted nodes that | 
|  | // use them because they might have users outside of the cluster of | 
|  | // promoted nodes. | 
|  | if (isa<ConstantSDNode>(Inputs[i])) | 
|  | continue; | 
|  |  | 
|  | SDValue InSrc = Inputs[i].getOperand(0); | 
|  | if (Inputs[i].getValueType() == N->getValueType(0)) | 
|  | DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); | 
|  | else if (N->getOpcode() == ISD::SIGN_EXTEND) | 
|  | DAG.ReplaceAllUsesOfValueWith(Inputs[i], | 
|  | DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); | 
|  | else if (N->getOpcode() == ISD::ZERO_EXTEND) | 
|  | DAG.ReplaceAllUsesOfValueWith(Inputs[i], | 
|  | DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); | 
|  | else | 
|  | DAG.ReplaceAllUsesOfValueWith(Inputs[i], | 
|  | DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); | 
|  | } | 
|  |  | 
|  | // Replace all operations (these are all the same, but have a different | 
|  | // (promoted) return type). DAG.getNode will validate that the types of | 
|  | // a binary operator match, so go through the list in reverse so that | 
|  | // we've likely promoted both operands first. | 
|  | while (!PromOps.empty()) { | 
|  | SDValue PromOp = PromOps.back(); | 
|  | PromOps.pop_back(); | 
|  |  | 
|  | unsigned C; | 
|  | switch (PromOp.getOpcode()) { | 
|  | default:             C = 0; break; | 
|  | case ISD::SELECT:    C = 1; break; | 
|  | case ISD::SELECT_CC: C = 2; break; | 
|  | } | 
|  |  | 
|  | if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && | 
|  | PromOp.getOperand(C).getValueType() != N->getValueType(0)) || | 
|  | (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && | 
|  | PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { | 
|  | // The to-be-promoted operands of this node have not yet been | 
|  | // promoted (this should be rare because we're going through the | 
|  | // list backward, but if one of the operands has several users in | 
|  | // this cluster of to-be-promoted nodes, it is possible). | 
|  | PromOps.insert(PromOps.begin(), PromOp); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), | 
|  | PromOp.getNode()->op_end()); | 
|  |  | 
|  | // If this node has constant inputs, then they'll need to be promoted here. | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | if (!isa<ConstantSDNode>(Ops[C+i])) | 
|  | continue; | 
|  | if (Ops[C+i].getValueType() == N->getValueType(0)) | 
|  | continue; | 
|  |  | 
|  | if (N->getOpcode() == ISD::SIGN_EXTEND) | 
|  | Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); | 
|  | else if (N->getOpcode() == ISD::ZERO_EXTEND) | 
|  | Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); | 
|  | else | 
|  | Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | DAG.ReplaceAllUsesOfValueWith(PromOp, | 
|  | DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); | 
|  | } | 
|  |  | 
|  | // Now we're left with the initial extension itself. | 
|  | if (!ReallyNeedsExt) | 
|  | return N->getOperand(0); | 
|  |  | 
|  | // To zero extend, just mask off everything except for the first bit (in the | 
|  | // i1 case). | 
|  | if (N->getOpcode() == ISD::ZERO_EXTEND) | 
|  | return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), | 
|  | DAG.getConstant(APInt::getLowBitsSet( | 
|  | N->getValueSizeInBits(0), PromBits), | 
|  | N->getValueType(0))); | 
|  |  | 
|  | assert(N->getOpcode() == ISD::SIGN_EXTEND && | 
|  | "Invalid extension type"); | 
|  | EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0)); | 
|  | SDValue ShiftCst = | 
|  | DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy); | 
|  | return DAG.getNode(ISD::SRA, dl, N->getValueType(0), | 
|  | DAG.getNode(ISD::SHL, dl, N->getValueType(0), | 
|  | N->getOperand(0), ShiftCst), ShiftCst); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | const TargetMachine &TM = getTargetMachine(); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc dl(N); | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case PPCISD::SHL: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { | 
|  | if (C->isNullValue())   // 0 << V -> 0. | 
|  | return N->getOperand(0); | 
|  | } | 
|  | break; | 
|  | case PPCISD::SRL: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { | 
|  | if (C->isNullValue())   // 0 >>u V -> 0. | 
|  | return N->getOperand(0); | 
|  | } | 
|  | break; | 
|  | case PPCISD::SRA: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { | 
|  | if (C->isNullValue() ||   //  0 >>s V -> 0. | 
|  | C->isAllOnesValue())    // -1 >>s V -> -1. | 
|  | return N->getOperand(0); | 
|  | } | 
|  | break; | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | return DAGCombineExtBoolTrunc(N, DCI); | 
|  | case ISD::TRUNCATE: | 
|  | case ISD::SETCC: | 
|  | case ISD::SELECT_CC: | 
|  | return DAGCombineTruncBoolExt(N, DCI); | 
|  | case ISD::FDIV: { | 
|  | assert(TM.Options.UnsafeFPMath && | 
|  | "Reciprocal estimates require UnsafeFPMath"); | 
|  |  | 
|  | if (N->getOperand(1).getOpcode() == ISD::FSQRT) { | 
|  | SDValue RV = | 
|  | DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI); | 
|  | if (RV.getNode()) { | 
|  | DCI.AddToWorklist(RV.getNode()); | 
|  | return DAG.getNode(ISD::FMUL, dl, N->getValueType(0), | 
|  | N->getOperand(0), RV); | 
|  | } | 
|  | } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND && | 
|  | N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) { | 
|  | SDValue RV = | 
|  | DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0), | 
|  | DCI); | 
|  | if (RV.getNode()) { | 
|  | DCI.AddToWorklist(RV.getNode()); | 
|  | RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)), | 
|  | N->getValueType(0), RV); | 
|  | DCI.AddToWorklist(RV.getNode()); | 
|  | return DAG.getNode(ISD::FMUL, dl, N->getValueType(0), | 
|  | N->getOperand(0), RV); | 
|  | } | 
|  | } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND && | 
|  | N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) { | 
|  | SDValue RV = | 
|  | DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0), | 
|  | DCI); | 
|  | if (RV.getNode()) { | 
|  | DCI.AddToWorklist(RV.getNode()); | 
|  | RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)), | 
|  | N->getValueType(0), RV, | 
|  | N->getOperand(1).getOperand(1)); | 
|  | DCI.AddToWorklist(RV.getNode()); | 
|  | return DAG.getNode(ISD::FMUL, dl, N->getValueType(0), | 
|  | N->getOperand(0), RV); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI); | 
|  | if (RV.getNode()) { | 
|  | DCI.AddToWorklist(RV.getNode()); | 
|  | return DAG.getNode(ISD::FMUL, dl, N->getValueType(0), | 
|  | N->getOperand(0), RV); | 
|  | } | 
|  |  | 
|  | } | 
|  | break; | 
|  | case ISD::FSQRT: { | 
|  | assert(TM.Options.UnsafeFPMath && | 
|  | "Reciprocal estimates require UnsafeFPMath"); | 
|  |  | 
|  | // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the | 
|  | // reciprocal sqrt. | 
|  | SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI); | 
|  | if (RV.getNode()) { | 
|  | DCI.AddToWorklist(RV.getNode()); | 
|  | RV = DAGCombineFastRecip(RV, DCI); | 
|  | if (RV.getNode()) { | 
|  | // Unfortunately, RV is now NaN if the input was exactly 0. Select out | 
|  | // this case and force the answer to 0. | 
|  |  | 
|  | EVT VT = RV.getValueType(); | 
|  |  | 
|  | SDValue Zero = DAG.getConstantFP(0.0, VT.getScalarType()); | 
|  | if (VT.isVector()) { | 
|  | assert(VT.getVectorNumElements() == 4 && "Unknown vector type"); | 
|  | Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Zero, Zero, Zero, Zero); | 
|  | } | 
|  |  | 
|  | SDValue ZeroCmp = | 
|  | DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), VT), | 
|  | N->getOperand(0), Zero, ISD::SETEQ); | 
|  | DCI.AddToWorklist(ZeroCmp.getNode()); | 
|  | DCI.AddToWorklist(RV.getNode()); | 
|  |  | 
|  | RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, dl, VT, | 
|  | ZeroCmp, Zero, RV); | 
|  | return RV; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  | break; | 
|  | case ISD::SINT_TO_FP: | 
|  | if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { | 
|  | if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { | 
|  | // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. | 
|  | // We allow the src/dst to be either f32/f64, but the intermediate | 
|  | // type must be i64. | 
|  | if (N->getOperand(0).getValueType() == MVT::i64 && | 
|  | N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { | 
|  | SDValue Val = N->getOperand(0).getOperand(0); | 
|  | if (Val.getValueType() == MVT::f32) { | 
|  | Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  | } | 
|  |  | 
|  | Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  | Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  | if (N->getValueType(0) == MVT::f32) { | 
|  | Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  | } | 
|  | return Val; | 
|  | } else if (N->getOperand(0).getValueType() == MVT::i32) { | 
|  | // If the intermediate type is i32, we can avoid the load/store here | 
|  | // too. | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::STORE: | 
|  | // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). | 
|  | if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && | 
|  | !cast<StoreSDNode>(N)->isTruncatingStore() && | 
|  | N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && | 
|  | N->getOperand(1).getValueType() == MVT::i32 && | 
|  | N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { | 
|  | SDValue Val = N->getOperand(1).getOperand(0); | 
|  | if (Val.getValueType() == MVT::f32) { | 
|  | Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  | } | 
|  | Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | N->getOperand(0), Val, N->getOperand(2), | 
|  | DAG.getValueType(N->getOperand(1).getValueType()) | 
|  | }; | 
|  |  | 
|  | Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, | 
|  | DAG.getVTList(MVT::Other), Ops, | 
|  | cast<StoreSDNode>(N)->getMemoryVT(), | 
|  | cast<StoreSDNode>(N)->getMemOperand()); | 
|  | DCI.AddToWorklist(Val.getNode()); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | // Turn STORE (BSWAP) -> sthbrx/stwbrx. | 
|  | if (cast<StoreSDNode>(N)->isUnindexed() && | 
|  | N->getOperand(1).getOpcode() == ISD::BSWAP && | 
|  | N->getOperand(1).getNode()->hasOneUse() && | 
|  | (N->getOperand(1).getValueType() == MVT::i32 || | 
|  | N->getOperand(1).getValueType() == MVT::i16 || | 
|  | (TM.getSubtarget<PPCSubtarget>().hasLDBRX() && | 
|  | TM.getSubtarget<PPCSubtarget>().isPPC64() && | 
|  | N->getOperand(1).getValueType() == MVT::i64))) { | 
|  | SDValue BSwapOp = N->getOperand(1).getOperand(0); | 
|  | // Do an any-extend to 32-bits if this is a half-word input. | 
|  | if (BSwapOp.getValueType() == MVT::i16) | 
|  | BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | N->getOperand(0), BSwapOp, N->getOperand(2), | 
|  | DAG.getValueType(N->getOperand(1).getValueType()) | 
|  | }; | 
|  | return | 
|  | DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), | 
|  | Ops, cast<StoreSDNode>(N)->getMemoryVT(), | 
|  | cast<StoreSDNode>(N)->getMemOperand()); | 
|  | } | 
|  | break; | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | EVT VT = LD->getValueType(0); | 
|  | Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); | 
|  | unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty); | 
|  | if (ISD::isNON_EXTLoad(N) && VT.isVector() && | 
|  | TM.getSubtarget<PPCSubtarget>().hasAltivec() && | 
|  | (VT == MVT::v16i8 || VT == MVT::v8i16 || | 
|  | VT == MVT::v4i32 || VT == MVT::v4f32) && | 
|  | LD->getAlignment() < ABIAlignment) { | 
|  | // This is a type-legal unaligned Altivec load. | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Ptr = LD->getBasePtr(); | 
|  | bool isLittleEndian = Subtarget.isLittleEndian(); | 
|  |  | 
|  | // This implements the loading of unaligned vectors as described in | 
|  | // the venerable Apple Velocity Engine overview. Specifically: | 
|  | // https://developer.apple.com/hardwaredrivers/ve/alignment.html | 
|  | // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html | 
|  | // | 
|  | // The general idea is to expand a sequence of one or more unaligned | 
|  | // loads into an alignment-based permutation-control instruction (lvsl | 
|  | // or lvsr), a series of regular vector loads (which always truncate | 
|  | // their input address to an aligned address), and a series of | 
|  | // permutations.  The results of these permutations are the requested | 
|  | // loaded values.  The trick is that the last "extra" load is not taken | 
|  | // from the address you might suspect (sizeof(vector) bytes after the | 
|  | // last requested load), but rather sizeof(vector) - 1 bytes after the | 
|  | // last requested vector. The point of this is to avoid a page fault if | 
|  | // the base address happened to be aligned. This works because if the | 
|  | // base address is aligned, then adding less than a full vector length | 
|  | // will cause the last vector in the sequence to be (re)loaded. | 
|  | // Otherwise, the next vector will be fetched as you might suspect was | 
|  | // necessary. | 
|  |  | 
|  | // We might be able to reuse the permutation generation from | 
|  | // a different base address offset from this one by an aligned amount. | 
|  | // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this | 
|  | // optimization later. | 
|  | Intrinsic::ID Intr = (isLittleEndian ? | 
|  | Intrinsic::ppc_altivec_lvsr : | 
|  | Intrinsic::ppc_altivec_lvsl); | 
|  | SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, MVT::v16i8); | 
|  |  | 
|  | // Create the new MMO for the new base load. It is like the original MMO, | 
|  | // but represents an area in memory almost twice the vector size centered | 
|  | // on the original address. If the address is unaligned, we might start | 
|  | // reading up to (sizeof(vector)-1) bytes below the address of the | 
|  | // original unaligned load. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineMemOperand *BaseMMO = | 
|  | MF.getMachineMemOperand(LD->getMemOperand(), | 
|  | -LD->getMemoryVT().getStoreSize()+1, | 
|  | 2*LD->getMemoryVT().getStoreSize()-1); | 
|  |  | 
|  | // Create the new base load. | 
|  | SDValue LDXIntID = DAG.getTargetConstant(Intrinsic::ppc_altivec_lvx, | 
|  | getPointerTy()); | 
|  | SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; | 
|  | SDValue BaseLoad = | 
|  | DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, | 
|  | DAG.getVTList(MVT::v4i32, MVT::Other), | 
|  | BaseLoadOps, MVT::v4i32, BaseMMO); | 
|  |  | 
|  | // Note that the value of IncOffset (which is provided to the next | 
|  | // load's pointer info offset value, and thus used to calculate the | 
|  | // alignment), and the value of IncValue (which is actually used to | 
|  | // increment the pointer value) are different! This is because we | 
|  | // require the next load to appear to be aligned, even though it | 
|  | // is actually offset from the base pointer by a lesser amount. | 
|  | int IncOffset = VT.getSizeInBits() / 8; | 
|  | int IncValue = IncOffset; | 
|  |  | 
|  | // Walk (both up and down) the chain looking for another load at the real | 
|  | // (aligned) offset (the alignment of the other load does not matter in | 
|  | // this case). If found, then do not use the offset reduction trick, as | 
|  | // that will prevent the loads from being later combined (as they would | 
|  | // otherwise be duplicates). | 
|  | if (!findConsecutiveLoad(LD, DAG)) | 
|  | --IncValue; | 
|  |  | 
|  | SDValue Increment = DAG.getConstant(IncValue, getPointerTy()); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); | 
|  |  | 
|  | MachineMemOperand *ExtraMMO = | 
|  | MF.getMachineMemOperand(LD->getMemOperand(), | 
|  | 1, 2*LD->getMemoryVT().getStoreSize()-1); | 
|  | SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; | 
|  | SDValue ExtraLoad = | 
|  | DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, | 
|  | DAG.getVTList(MVT::v4i32, MVT::Other), | 
|  | ExtraLoadOps, MVT::v4i32, ExtraMMO); | 
|  |  | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | BaseLoad.getValue(1), ExtraLoad.getValue(1)); | 
|  |  | 
|  | // Because vperm has a big-endian bias, we must reverse the order | 
|  | // of the input vectors and complement the permute control vector | 
|  | // when generating little endian code.  We have already handled the | 
|  | // latter by using lvsr instead of lvsl, so just reverse BaseLoad | 
|  | // and ExtraLoad here. | 
|  | SDValue Perm; | 
|  | if (isLittleEndian) | 
|  | Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm, | 
|  | ExtraLoad, BaseLoad, PermCntl, DAG, dl); | 
|  | else | 
|  | Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm, | 
|  | BaseLoad, ExtraLoad, PermCntl, DAG, dl); | 
|  |  | 
|  | if (VT != MVT::v4i32) | 
|  | Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm); | 
|  |  | 
|  | // The output of the permutation is our loaded result, the TokenFactor is | 
|  | // our new chain. | 
|  | DCI.CombineTo(N, Perm, TF); | 
|  | return SDValue(N, 0); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | bool isLittleEndian = Subtarget.isLittleEndian(); | 
|  | Intrinsic::ID Intr = (isLittleEndian ? | 
|  | Intrinsic::ppc_altivec_lvsr : | 
|  | Intrinsic::ppc_altivec_lvsl); | 
|  | if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() == Intr && | 
|  | N->getOperand(1)->getOpcode() == ISD::ADD) { | 
|  | SDValue Add = N->getOperand(1); | 
|  |  | 
|  | if (DAG.MaskedValueIsZero(Add->getOperand(1), | 
|  | APInt::getAllOnesValue(4 /* 16 byte alignment */).zext( | 
|  | Add.getValueType().getScalarType().getSizeInBits()))) { | 
|  | SDNode *BasePtr = Add->getOperand(0).getNode(); | 
|  | for (SDNode::use_iterator UI = BasePtr->use_begin(), | 
|  | UE = BasePtr->use_end(); UI != UE; ++UI) { | 
|  | if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && | 
|  | cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == | 
|  | Intr) { | 
|  | // We've found another LVSL/LVSR, and this address is an aligned | 
|  | // multiple of that one. The results will be the same, so use the | 
|  | // one we've just found instead. | 
|  |  | 
|  | return SDValue(*UI, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | case ISD::BSWAP: | 
|  | // Turn BSWAP (LOAD) -> lhbrx/lwbrx. | 
|  | if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && | 
|  | N->getOperand(0).hasOneUse() && | 
|  | (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || | 
|  | (TM.getSubtarget<PPCSubtarget>().hasLDBRX() && | 
|  | TM.getSubtarget<PPCSubtarget>().isPPC64() && | 
|  | N->getValueType(0) == MVT::i64))) { | 
|  | SDValue Load = N->getOperand(0); | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Load); | 
|  | // Create the byte-swapping load. | 
|  | SDValue Ops[] = { | 
|  | LD->getChain(),    // Chain | 
|  | LD->getBasePtr(),  // Ptr | 
|  | DAG.getValueType(N->getValueType(0)) // VT | 
|  | }; | 
|  | SDValue BSLoad = | 
|  | DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, | 
|  | DAG.getVTList(N->getValueType(0) == MVT::i64 ? | 
|  | MVT::i64 : MVT::i32, MVT::Other), | 
|  | Ops, LD->getMemoryVT(), LD->getMemOperand()); | 
|  |  | 
|  | // If this is an i16 load, insert the truncate. | 
|  | SDValue ResVal = BSLoad; | 
|  | if (N->getValueType(0) == MVT::i16) | 
|  | ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); | 
|  |  | 
|  | // First, combine the bswap away.  This makes the value produced by the | 
|  | // load dead. | 
|  | DCI.CombineTo(N, ResVal); | 
|  |  | 
|  | // Next, combine the load away, we give it a bogus result value but a real | 
|  | // chain result.  The result value is dead because the bswap is dead. | 
|  | DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); | 
|  |  | 
|  | // Return N so it doesn't get rechecked! | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | break; | 
|  | case PPCISD::VCMP: { | 
|  | // If a VCMPo node already exists with exactly the same operands as this | 
|  | // node, use its result instead of this node (VCMPo computes both a CR6 and | 
|  | // a normal output). | 
|  | // | 
|  | if (!N->getOperand(0).hasOneUse() && | 
|  | !N->getOperand(1).hasOneUse() && | 
|  | !N->getOperand(2).hasOneUse()) { | 
|  |  | 
|  | // Scan all of the users of the LHS, looking for VCMPo's that match. | 
|  | SDNode *VCMPoNode = nullptr; | 
|  |  | 
|  | SDNode *LHSN = N->getOperand(0).getNode(); | 
|  | for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); | 
|  | UI != E; ++UI) | 
|  | if (UI->getOpcode() == PPCISD::VCMPo && | 
|  | UI->getOperand(1) == N->getOperand(1) && | 
|  | UI->getOperand(2) == N->getOperand(2) && | 
|  | UI->getOperand(0) == N->getOperand(0)) { | 
|  | VCMPoNode = *UI; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If there is no VCMPo node, or if the flag value has a single use, don't | 
|  | // transform this. | 
|  | if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) | 
|  | break; | 
|  |  | 
|  | // Look at the (necessarily single) use of the flag value.  If it has a | 
|  | // chain, this transformation is more complex.  Note that multiple things | 
|  | // could use the value result, which we should ignore. | 
|  | SDNode *FlagUser = nullptr; | 
|  | for (SDNode::use_iterator UI = VCMPoNode->use_begin(); | 
|  | FlagUser == nullptr; ++UI) { | 
|  | assert(UI != VCMPoNode->use_end() && "Didn't find user!"); | 
|  | SDNode *User = *UI; | 
|  | for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { | 
|  | if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { | 
|  | FlagUser = User; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the user is a MFOCRF instruction, we know this is safe. | 
|  | // Otherwise we give up for right now. | 
|  | if (FlagUser->getOpcode() == PPCISD::MFOCRF) | 
|  | return SDValue(VCMPoNode, 0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::BRCOND: { | 
|  | SDValue Cond = N->getOperand(1); | 
|  | SDValue Target = N->getOperand(2); | 
|  |  | 
|  | if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && | 
|  | cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == | 
|  | Intrinsic::ppc_is_decremented_ctr_nonzero) { | 
|  |  | 
|  | // We now need to make the intrinsic dead (it cannot be instruction | 
|  | // selected). | 
|  | DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); | 
|  | assert(Cond.getNode()->hasOneUse() && | 
|  | "Counter decrement has more than one use"); | 
|  |  | 
|  | return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, | 
|  | N->getOperand(0), Target); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::BR_CC: { | 
|  | // If this is a branch on an altivec predicate comparison, lower this so | 
|  | // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This | 
|  | // lowering is done pre-legalize, because the legalizer lowers the predicate | 
|  | // compare down to code that is difficult to reassemble. | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); | 
|  | SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); | 
|  |  | 
|  | // Sometimes the promoted value of the intrinsic is ANDed by some non-zero | 
|  | // value. If so, pass-through the AND to get to the intrinsic. | 
|  | if (LHS.getOpcode() == ISD::AND && | 
|  | LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && | 
|  | cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == | 
|  | Intrinsic::ppc_is_decremented_ctr_nonzero && | 
|  | isa<ConstantSDNode>(LHS.getOperand(1)) && | 
|  | !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()-> | 
|  | isZero()) | 
|  | LHS = LHS.getOperand(0); | 
|  |  | 
|  | if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && | 
|  | cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == | 
|  | Intrinsic::ppc_is_decremented_ctr_nonzero && | 
|  | isa<ConstantSDNode>(RHS)) { | 
|  | assert((CC == ISD::SETEQ || CC == ISD::SETNE) && | 
|  | "Counter decrement comparison is not EQ or NE"); | 
|  |  | 
|  | unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); | 
|  | bool isBDNZ = (CC == ISD::SETEQ && Val) || | 
|  | (CC == ISD::SETNE && !Val); | 
|  |  | 
|  | // We now need to make the intrinsic dead (it cannot be instruction | 
|  | // selected). | 
|  | DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); | 
|  | assert(LHS.getNode()->hasOneUse() && | 
|  | "Counter decrement has more than one use"); | 
|  |  | 
|  | return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, | 
|  | N->getOperand(0), N->getOperand(4)); | 
|  | } | 
|  |  | 
|  | int CompareOpc; | 
|  | bool isDot; | 
|  |  | 
|  | if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && | 
|  | isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && | 
|  | getAltivecCompareInfo(LHS, CompareOpc, isDot)) { | 
|  | assert(isDot && "Can't compare against a vector result!"); | 
|  |  | 
|  | // If this is a comparison against something other than 0/1, then we know | 
|  | // that the condition is never/always true. | 
|  | unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); | 
|  | if (Val != 0 && Val != 1) { | 
|  | if (CC == ISD::SETEQ)      // Cond never true, remove branch. | 
|  | return N->getOperand(0); | 
|  | // Always !=, turn it into an unconditional branch. | 
|  | return DAG.getNode(ISD::BR, dl, MVT::Other, | 
|  | N->getOperand(0), N->getOperand(4)); | 
|  | } | 
|  |  | 
|  | bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); | 
|  |  | 
|  | // Create the PPCISD altivec 'dot' comparison node. | 
|  | SDValue Ops[] = { | 
|  | LHS.getOperand(2),  // LHS of compare | 
|  | LHS.getOperand(3),  // RHS of compare | 
|  | DAG.getConstant(CompareOpc, MVT::i32) | 
|  | }; | 
|  | EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; | 
|  | SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); | 
|  |  | 
|  | // Unpack the result based on how the target uses it. | 
|  | PPC::Predicate CompOpc; | 
|  | switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { | 
|  | default:  // Can't happen, don't crash on invalid number though. | 
|  | case 0:   // Branch on the value of the EQ bit of CR6. | 
|  | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; | 
|  | break; | 
|  | case 1:   // Branch on the inverted value of the EQ bit of CR6. | 
|  | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; | 
|  | break; | 
|  | case 2:   // Branch on the value of the LT bit of CR6. | 
|  | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; | 
|  | break; | 
|  | case 3:   // Branch on the inverted value of the LT bit of CR6. | 
|  | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), | 
|  | DAG.getConstant(CompOpc, MVT::i32), | 
|  | DAG.getRegister(PPC::CR6, MVT::i32), | 
|  | N->getOperand(4), CompNode.getValue(1)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, | 
|  | APInt &KnownZero, | 
|  | APInt &KnownOne, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); | 
|  | switch (Op.getOpcode()) { | 
|  | default: break; | 
|  | case PPCISD::LBRX: { | 
|  | // lhbrx is known to have the top bits cleared out. | 
|  | if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) | 
|  | KnownZero = 0xFFFF0000; | 
|  | break; | 
|  | } | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { | 
|  | default: break; | 
|  | case Intrinsic::ppc_altivec_vcmpbfp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpeqfp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpequb_p: | 
|  | case Intrinsic::ppc_altivec_vcmpequh_p: | 
|  | case Intrinsic::ppc_altivec_vcmpequw_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgefp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtfp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtsb_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtsh_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtsw_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtub_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtuh_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtuw_p: | 
|  | KnownZero = ~1U;  // All bits but the low one are known to be zero. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getConstraintType - Given a constraint, return the type of | 
|  | /// constraint it is for this target. | 
|  | PPCTargetLowering::ConstraintType | 
|  | PPCTargetLowering::getConstraintType(const std::string &Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | case 'b': | 
|  | case 'r': | 
|  | case 'f': | 
|  | case 'v': | 
|  | case 'y': | 
|  | return C_RegisterClass; | 
|  | case 'Z': | 
|  | // FIXME: While Z does indicate a memory constraint, it specifically | 
|  | // indicates an r+r address (used in conjunction with the 'y' modifier | 
|  | // in the replacement string). Currently, we're forcing the base | 
|  | // register to be r0 in the asm printer (which is interpreted as zero) | 
|  | // and forming the complete address in the second register. This is | 
|  | // suboptimal. | 
|  | return C_Memory; | 
|  | } | 
|  | } else if (Constraint == "wc") { // individual CR bits. | 
|  | return C_RegisterClass; | 
|  | } else if (Constraint == "wa" || Constraint == "wd" || | 
|  | Constraint == "wf" || Constraint == "ws") { | 
|  | return C_RegisterClass; // VSX registers. | 
|  | } | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | /// Examine constraint type and operand type and determine a weight value. | 
|  | /// This object must already have been set up with the operand type | 
|  | /// and the current alternative constraint selected. | 
|  | TargetLowering::ConstraintWeight | 
|  | PPCTargetLowering::getSingleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, const char *constraint) const { | 
|  | ConstraintWeight weight = CW_Invalid; | 
|  | Value *CallOperandVal = info.CallOperandVal; | 
|  | // If we don't have a value, we can't do a match, | 
|  | // but allow it at the lowest weight. | 
|  | if (!CallOperandVal) | 
|  | return CW_Default; | 
|  | Type *type = CallOperandVal->getType(); | 
|  |  | 
|  | // Look at the constraint type. | 
|  | if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) | 
|  | return CW_Register; // an individual CR bit. | 
|  | else if ((StringRef(constraint) == "wa" || | 
|  | StringRef(constraint) == "wd" || | 
|  | StringRef(constraint) == "wf") && | 
|  | type->isVectorTy()) | 
|  | return CW_Register; | 
|  | else if (StringRef(constraint) == "ws" && type->isDoubleTy()) | 
|  | return CW_Register; | 
|  |  | 
|  | switch (*constraint) { | 
|  | default: | 
|  | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); | 
|  | break; | 
|  | case 'b': | 
|  | if (type->isIntegerTy()) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'f': | 
|  | if (type->isFloatTy()) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'd': | 
|  | if (type->isDoubleTy()) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'v': | 
|  | if (type->isVectorTy()) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'y': | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'Z': | 
|  | weight = CW_Memory; | 
|  | break; | 
|  | } | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass*> | 
|  | PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, | 
|  | MVT VT) const { | 
|  | if (Constraint.size() == 1) { | 
|  | // GCC RS6000 Constraint Letters | 
|  | switch (Constraint[0]) { | 
|  | case 'b':   // R1-R31 | 
|  | if (VT == MVT::i64 && Subtarget.isPPC64()) | 
|  | return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); | 
|  | return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); | 
|  | case 'r':   // R0-R31 | 
|  | if (VT == MVT::i64 && Subtarget.isPPC64()) | 
|  | return std::make_pair(0U, &PPC::G8RCRegClass); | 
|  | return std::make_pair(0U, &PPC::GPRCRegClass); | 
|  | case 'f': | 
|  | if (VT == MVT::f32 || VT == MVT::i32) | 
|  | return std::make_pair(0U, &PPC::F4RCRegClass); | 
|  | if (VT == MVT::f64 || VT == MVT::i64) | 
|  | return std::make_pair(0U, &PPC::F8RCRegClass); | 
|  | break; | 
|  | case 'v': | 
|  | return std::make_pair(0U, &PPC::VRRCRegClass); | 
|  | case 'y':   // crrc | 
|  | return std::make_pair(0U, &PPC::CRRCRegClass); | 
|  | } | 
|  | } else if (Constraint == "wc") { // an individual CR bit. | 
|  | return std::make_pair(0U, &PPC::CRBITRCRegClass); | 
|  | } else if (Constraint == "wa" || Constraint == "wd" || | 
|  | Constraint == "wf") { | 
|  | return std::make_pair(0U, &PPC::VSRCRegClass); | 
|  | } else if (Constraint == "ws") { | 
|  | return std::make_pair(0U, &PPC::VSFRCRegClass); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass*> R = | 
|  | TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); | 
|  |  | 
|  | // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers | 
|  | // (which we call X[0-9]+). If a 64-bit value has been requested, and a | 
|  | // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent | 
|  | // register. | 
|  | // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use | 
|  | // the AsmName field from *RegisterInfo.td, then this would not be necessary. | 
|  | if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && | 
|  | PPC::GPRCRegClass.contains(R.first)) { | 
|  | const TargetRegisterInfo *TRI = | 
|  | getTargetMachine().getSubtargetImpl()->getRegisterInfo(); | 
|  | return std::make_pair(TRI->getMatchingSuperReg(R.first, | 
|  | PPC::sub_32, &PPC::G8RCRegClass), | 
|  | &PPC::G8RCRegClass); | 
|  | } | 
|  |  | 
|  | return R; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
|  | /// vector.  If it is invalid, don't add anything to Ops. | 
|  | void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, | 
|  | std::string &Constraint, | 
|  | std::vector<SDValue>&Ops, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Result; | 
|  |  | 
|  | // Only support length 1 constraints. | 
|  | if (Constraint.length() > 1) return; | 
|  |  | 
|  | char Letter = Constraint[0]; | 
|  | switch (Letter) { | 
|  | default: break; | 
|  | case 'I': | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | case 'O': | 
|  | case 'P': { | 
|  | ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); | 
|  | if (!CST) return; // Must be an immediate to match. | 
|  | unsigned Value = CST->getZExtValue(); | 
|  | switch (Letter) { | 
|  | default: llvm_unreachable("Unknown constraint letter!"); | 
|  | case 'I':  // "I" is a signed 16-bit constant. | 
|  | if ((short)Value == (int)Value) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'J':  // "J" is a constant with only the high-order 16 bits nonzero. | 
|  | case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits. | 
|  | if ((short)Value == 0) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'K':  // "K" is a constant with only the low-order 16 bits nonzero. | 
|  | if ((Value >> 16) == 0) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'M':  // "M" is a constant that is greater than 31. | 
|  | if (Value > 31) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'N':  // "N" is a positive constant that is an exact power of two. | 
|  | if ((int)Value > 0 && isPowerOf2_32(Value)) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'O':  // "O" is the constant zero. | 
|  | if (Value == 0) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | case 'P':  // "P" is a constant whose negation is a signed 16-bit constant. | 
|  | if ((short)-Value == (int)-Value) | 
|  | Result = DAG.getTargetConstant(Value, Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Result.getNode()) { | 
|  | Ops.push_back(Result); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle standard constraint letters. | 
|  | TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); | 
|  | } | 
|  |  | 
|  | // isLegalAddressingMode - Return true if the addressing mode represented | 
|  | // by AM is legal for this target, for a load/store of the specified type. | 
|  | bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, | 
|  | Type *Ty) const { | 
|  | // FIXME: PPC does not allow r+i addressing modes for vectors! | 
|  |  | 
|  | // PPC allows a sign-extended 16-bit immediate field. | 
|  | if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) | 
|  | return false; | 
|  |  | 
|  | // No global is ever allowed as a base. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | // PPC only support r+r, | 
|  | switch (AM.Scale) { | 
|  | case 0:  // "r+i" or just "i", depending on HasBaseReg. | 
|  | break; | 
|  | case 1: | 
|  | if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed. | 
|  | return false; | 
|  | // Otherwise we have r+r or r+i. | 
|  | break; | 
|  | case 2: | 
|  | if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed. | 
|  | return false; | 
|  | // Allow 2*r as r+r. | 
|  | break; | 
|  | default: | 
|  | // No other scales are supported. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | MFI->setReturnAddressIsTaken(true); | 
|  |  | 
|  | if (verifyReturnAddressArgumentIsConstant(Op, DAG)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  |  | 
|  | // Make sure the function does not optimize away the store of the RA to | 
|  | // the stack. | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  | FuncInfo->setLRStoreRequired(); | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | bool isDarwinABI = Subtarget.isDarwinABI(); | 
|  |  | 
|  | if (Depth > 0) { | 
|  | SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); | 
|  | SDValue Offset = | 
|  |  | 
|  | DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), | 
|  | isPPC64? MVT::i64 : MVT::i32); | 
|  | return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), | 
|  | DAG.getNode(ISD::ADD, dl, getPointerTy(), | 
|  | FrameAddr, Offset), | 
|  | MachinePointerInfo(), false, false, false, 0); | 
|  | } | 
|  |  | 
|  | // Just load the return address off the stack. | 
|  | SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); | 
|  | return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), | 
|  | RetAddrFI, MachinePointerInfo(), false, false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  |  | 
|  | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | bool isPPC64 = PtrVT == MVT::i64; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | MFI->setFrameAddressIsTaken(true); | 
|  |  | 
|  | // Naked functions never have a frame pointer, and so we use r1. For all | 
|  | // other functions, this decision must be delayed until during PEI. | 
|  | unsigned FrameReg; | 
|  | if (MF.getFunction()->getAttributes().hasAttribute( | 
|  | AttributeSet::FunctionIndex, Attribute::Naked)) | 
|  | FrameReg = isPPC64 ? PPC::X1 : PPC::R1; | 
|  | else | 
|  | FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; | 
|  |  | 
|  | SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, | 
|  | PtrVT); | 
|  | while (Depth--) | 
|  | FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), | 
|  | FrameAddr, MachinePointerInfo(), false, false, | 
|  | false, 0); | 
|  | return FrameAddr; | 
|  | } | 
|  |  | 
|  | // FIXME? Maybe this could be a TableGen attribute on some registers and | 
|  | // this table could be generated automatically from RegInfo. | 
|  | unsigned PPCTargetLowering::getRegisterByName(const char* RegName, | 
|  | EVT VT) const { | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | bool isDarwinABI = Subtarget.isDarwinABI(); | 
|  |  | 
|  | if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || | 
|  | (!isPPC64 && VT != MVT::i32)) | 
|  | report_fatal_error("Invalid register global variable type"); | 
|  |  | 
|  | bool is64Bit = isPPC64 && VT == MVT::i64; | 
|  | unsigned Reg = StringSwitch<unsigned>(RegName) | 
|  | .Case("r1", is64Bit ? PPC::X1 : PPC::R1) | 
|  | .Case("r2", isDarwinABI ? 0 : (is64Bit ? PPC::X2 : PPC::R2)) | 
|  | .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : | 
|  | (is64Bit ? PPC::X13 : PPC::R13)) | 
|  | .Default(0); | 
|  |  | 
|  | if (Reg) | 
|  | return Reg; | 
|  | report_fatal_error("Invalid register name global variable"); | 
|  | } | 
|  |  | 
|  | bool | 
|  | PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { | 
|  | // The PowerPC target isn't yet aware of offsets. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getOptimalMemOpType - Returns the target specific optimal type for load | 
|  | /// and store operations as a result of memset, memcpy, and memmove | 
|  | /// lowering. If DstAlign is zero that means it's safe to destination | 
|  | /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it | 
|  | /// means there isn't a need to check it against alignment requirement, | 
|  | /// probably because the source does not need to be loaded. If 'IsMemset' is | 
|  | /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that | 
|  | /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy | 
|  | /// source is constant so it does not need to be loaded. | 
|  | /// It returns EVT::Other if the type should be determined using generic | 
|  | /// target-independent logic. | 
|  | EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, | 
|  | unsigned DstAlign, unsigned SrcAlign, | 
|  | bool IsMemset, bool ZeroMemset, | 
|  | bool MemcpyStrSrc, | 
|  | MachineFunction &MF) const { | 
|  | if (Subtarget.isPPC64()) { | 
|  | return MVT::i64; | 
|  | } else { | 
|  | return MVT::i32; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Returns true if it is beneficial to convert a load of a constant | 
|  | /// to just the constant itself. | 
|  | bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, | 
|  | Type *Ty) const { | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | if (BitSize == 0 || BitSize > 64) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { | 
|  | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) | 
|  | return false; | 
|  | unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); | 
|  | unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); | 
|  | return NumBits1 == 64 && NumBits2 == 32; | 
|  | } | 
|  |  | 
|  | bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { | 
|  | if (!VT1.isInteger() || !VT2.isInteger()) | 
|  | return false; | 
|  | unsigned NumBits1 = VT1.getSizeInBits(); | 
|  | unsigned NumBits2 = VT2.getSizeInBits(); | 
|  | return NumBits1 == 64 && NumBits2 == 32; | 
|  | } | 
|  |  | 
|  | bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { | 
|  | return isInt<16>(Imm) || isUInt<16>(Imm); | 
|  | } | 
|  |  | 
|  | bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { | 
|  | return isInt<16>(Imm) || isUInt<16>(Imm); | 
|  | } | 
|  |  | 
|  | bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, | 
|  | unsigned, | 
|  | unsigned, | 
|  | bool *Fast) const { | 
|  | if (DisablePPCUnaligned) | 
|  | return false; | 
|  |  | 
|  | // PowerPC supports unaligned memory access for simple non-vector types. | 
|  | // Although accessing unaligned addresses is not as efficient as accessing | 
|  | // aligned addresses, it is generally more efficient than manual expansion, | 
|  | // and generally only traps for software emulation when crossing page | 
|  | // boundaries. | 
|  |  | 
|  | if (!VT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | if (VT.getSimpleVT().isVector()) { | 
|  | if (Subtarget.hasVSX()) { | 
|  | if (VT != MVT::v2f64 && VT != MVT::v2i64) | 
|  | return false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VT == MVT::ppcf128) | 
|  | return false; | 
|  |  | 
|  | if (Fast) | 
|  | *Fast = true; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { | 
|  | VT = VT.getScalarType(); | 
|  |  | 
|  | if (!VT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | PPCTargetLowering::shouldExpandBuildVectorWithShuffles( | 
|  | EVT VT , unsigned DefinedValues) const { | 
|  | if (VT == MVT::v2i64) | 
|  | return false; | 
|  |  | 
|  | return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); | 
|  | } | 
|  |  | 
|  | Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { | 
|  | if (DisableILPPref || Subtarget.enableMachineScheduler()) | 
|  | return TargetLowering::getSchedulingPreference(N); | 
|  |  | 
|  | return Sched::ILP; | 
|  | } | 
|  |  | 
|  | // Create a fast isel object. | 
|  | FastISel * | 
|  | PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, | 
|  | const TargetLibraryInfo *LibInfo) const { | 
|  | return PPC::createFastISel(FuncInfo, LibInfo); | 
|  | } |