|  | //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// \file | 
|  | /// | 
|  | /// Provide a pass which mitigates speculative execution attacks which operate | 
|  | /// by speculating incorrectly past some predicate (a type check, bounds check, | 
|  | /// or other condition) to reach a load with invalid inputs and leak the data | 
|  | /// accessed by that load using a side channel out of the speculative domain. | 
|  | /// | 
|  | /// For details on the attacks, see the first variant in both the Project Zero | 
|  | /// writeup and the Spectre paper: | 
|  | /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html | 
|  | /// https://spectreattack.com/spectre.pdf | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86InstrInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/ScopeExit.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/SparseBitVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/MachineSSAUpdater.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSchedule.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/MC/MCSchedule.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define PASS_KEY "x86-slh" | 
|  | #define DEBUG_TYPE PASS_KEY | 
|  |  | 
|  | STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced"); | 
|  | STATISTIC(NumBranchesUntraced, "Number of branches unable to trace"); | 
|  | STATISTIC(NumAddrRegsHardened, | 
|  | "Number of address mode used registers hardaned"); | 
|  | STATISTIC(NumPostLoadRegsHardened, | 
|  | "Number of post-load register values hardened"); | 
|  | STATISTIC(NumCallsOrJumpsHardened, | 
|  | "Number of calls or jumps requiring extra hardening"); | 
|  | STATISTIC(NumInstsInserted, "Number of instructions inserted"); | 
|  | STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted"); | 
|  |  | 
|  | static cl::opt<bool> EnableSpeculativeLoadHardening( | 
|  | "x86-speculative-load-hardening", | 
|  | cl::desc("Force enable speculative load hardening"), cl::init(false), | 
|  | cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> HardenEdgesWithLFENCE( | 
|  | PASS_KEY "-lfence", | 
|  | cl::desc( | 
|  | "Use LFENCE along each conditional edge to harden against speculative " | 
|  | "loads rather than conditional movs and poisoned pointers."), | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> EnablePostLoadHardening( | 
|  | PASS_KEY "-post-load", | 
|  | cl::desc("Harden the value loaded *after* it is loaded by " | 
|  | "flushing the loaded bits to 1. This is hard to do " | 
|  | "in general but can be done easily for GPRs."), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> FenceCallAndRet( | 
|  | PASS_KEY "-fence-call-and-ret", | 
|  | cl::desc("Use a full speculation fence to harden both call and ret edges " | 
|  | "rather than a lighter weight mitigation."), | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> HardenInterprocedurally( | 
|  | PASS_KEY "-ip", | 
|  | cl::desc("Harden interprocedurally by passing our state in and out of " | 
|  | "functions in the high bits of the stack pointer."), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | HardenLoads(PASS_KEY "-loads", | 
|  | cl::desc("Sanitize loads from memory. When disable, no " | 
|  | "significant security is provided."), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> HardenIndirectCallsAndJumps( | 
|  | PASS_KEY "-indirect", | 
|  | cl::desc("Harden indirect calls and jumps against using speculatively " | 
|  | "stored attacker controlled addresses. This is designed to " | 
|  | "mitigate Spectre v1.2 style attacks."), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class X86SpeculativeLoadHardeningPass : public MachineFunctionPass { | 
|  | public: | 
|  | X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { | 
|  | initializeX86SpeculativeLoadHardeningPassPass( | 
|  | *PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "X86 speculative load hardening"; | 
|  | } | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override; | 
|  |  | 
|  | /// Pass identification, replacement for typeid. | 
|  | static char ID; | 
|  |  | 
|  | private: | 
|  | /// The information about a block's conditional terminators needed to trace | 
|  | /// our predicate state through the exiting edges. | 
|  | struct BlockCondInfo { | 
|  | MachineBasicBlock *MBB; | 
|  |  | 
|  | // We mostly have one conditional branch, and in extremely rare cases have | 
|  | // two. Three and more are so rare as to be unimportant for compile time. | 
|  | SmallVector<MachineInstr *, 2> CondBrs; | 
|  |  | 
|  | MachineInstr *UncondBr; | 
|  | }; | 
|  |  | 
|  | /// Manages the predicate state traced through the program. | 
|  | struct PredState { | 
|  | unsigned InitialReg; | 
|  | unsigned PoisonReg; | 
|  |  | 
|  | const TargetRegisterClass *RC; | 
|  | MachineSSAUpdater SSA; | 
|  |  | 
|  | PredState(MachineFunction &MF, const TargetRegisterClass *RC) | 
|  | : RC(RC), SSA(MF) {} | 
|  | }; | 
|  |  | 
|  | const X86Subtarget *Subtarget; | 
|  | MachineRegisterInfo *MRI; | 
|  | const X86InstrInfo *TII; | 
|  | const TargetRegisterInfo *TRI; | 
|  |  | 
|  | Optional<PredState> PS; | 
|  |  | 
|  | void hardenEdgesWithLFENCE(MachineFunction &MF); | 
|  |  | 
|  | SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF); | 
|  |  | 
|  | SmallVector<MachineInstr *, 16> | 
|  | tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos); | 
|  |  | 
|  | void unfoldCallAndJumpLoads(MachineFunction &MF); | 
|  |  | 
|  | SmallVector<MachineInstr *, 16> | 
|  | tracePredStateThroughIndirectBranches(MachineFunction &MF); | 
|  |  | 
|  | void tracePredStateThroughBlocksAndHarden(MachineFunction &MF); | 
|  |  | 
|  | unsigned saveEFLAGS(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator InsertPt, DebugLoc Loc); | 
|  | void restoreEFLAGS(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator InsertPt, DebugLoc Loc, | 
|  | unsigned OFReg); | 
|  |  | 
|  | void mergePredStateIntoSP(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator InsertPt, DebugLoc Loc, | 
|  | unsigned PredStateReg); | 
|  | unsigned extractPredStateFromSP(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | DebugLoc Loc); | 
|  |  | 
|  | void | 
|  | hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO, | 
|  | MachineOperand &IndexMO, | 
|  | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); | 
|  | MachineInstr * | 
|  | sinkPostLoadHardenedInst(MachineInstr &MI, | 
|  | SmallPtrSetImpl<MachineInstr *> &HardenedInstrs); | 
|  | bool canHardenRegister(unsigned Reg); | 
|  | unsigned hardenValueInRegister(unsigned Reg, MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | DebugLoc Loc); | 
|  | unsigned hardenPostLoad(MachineInstr &MI); | 
|  | void hardenReturnInstr(MachineInstr &MI); | 
|  | void tracePredStateThroughCall(MachineInstr &MI); | 
|  | void hardenIndirectCallOrJumpInstr( | 
|  | MachineInstr &MI, | 
|  | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char X86SpeculativeLoadHardeningPass::ID = 0; | 
|  |  | 
|  | void X86SpeculativeLoadHardeningPass::getAnalysisUsage( | 
|  | AnalysisUsage &AU) const { | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock &Succ, int SuccCount, | 
|  | MachineInstr *Br, MachineInstr *&UncondBr, | 
|  | const X86InstrInfo &TII) { | 
|  | assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!"); | 
|  |  | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  |  | 
|  | MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); | 
|  |  | 
|  | // We have to insert the new block immediately after the current one as we | 
|  | // don't know what layout-successor relationships the successor has and we | 
|  | // may not be able to (and generally don't want to) try to fix those up. | 
|  | MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); | 
|  |  | 
|  | // Update the branch instruction if necessary. | 
|  | if (Br) { | 
|  | assert(Br->getOperand(0).getMBB() == &Succ && | 
|  | "Didn't start with the right target!"); | 
|  | Br->getOperand(0).setMBB(&NewMBB); | 
|  |  | 
|  | // If this successor was reached through a branch rather than fallthrough, | 
|  | // we might have *broken* fallthrough and so need to inject a new | 
|  | // unconditional branch. | 
|  | if (!UncondBr) { | 
|  | MachineBasicBlock &OldLayoutSucc = | 
|  | *std::next(MachineFunction::iterator(&NewMBB)); | 
|  | assert(MBB.isSuccessor(&OldLayoutSucc) && | 
|  | "Without an unconditional branch, the old layout successor should " | 
|  | "be an actual successor!"); | 
|  | auto BrBuilder = | 
|  | BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc); | 
|  | // Update the unconditional branch now that we've added one. | 
|  | UncondBr = &*BrBuilder; | 
|  | } | 
|  |  | 
|  | // Insert unconditional "jump Succ" instruction in the new block if | 
|  | // necessary. | 
|  | if (!NewMBB.isLayoutSuccessor(&Succ)) { | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc()); | 
|  | } | 
|  | } else { | 
|  | assert(!UncondBr && | 
|  | "Cannot have a branchless successor and an unconditional branch!"); | 
|  | assert(NewMBB.isLayoutSuccessor(&Succ) && | 
|  | "A non-branch successor must have been a layout successor before " | 
|  | "and now is a layout successor of the new block."); | 
|  | } | 
|  |  | 
|  | // If this is the only edge to the successor, we can just replace it in the | 
|  | // CFG. Otherwise we need to add a new entry in the CFG for the new | 
|  | // successor. | 
|  | if (SuccCount == 1) { | 
|  | MBB.replaceSuccessor(&Succ, &NewMBB); | 
|  | } else { | 
|  | MBB.splitSuccessor(&Succ, &NewMBB); | 
|  | } | 
|  |  | 
|  | // Hook up the edge from the new basic block to the old successor in the CFG. | 
|  | NewMBB.addSuccessor(&Succ); | 
|  |  | 
|  | // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB. | 
|  | for (MachineInstr &MI : Succ) { | 
|  | if (!MI.isPHI()) | 
|  | break; | 
|  | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; | 
|  | OpIdx += 2) { | 
|  | MachineOperand &OpV = MI.getOperand(OpIdx); | 
|  | MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); | 
|  | assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!"); | 
|  | if (OpMBB.getMBB() != &MBB) | 
|  | continue; | 
|  |  | 
|  | // If this is the last edge to the succesor, just replace MBB in the PHI | 
|  | if (SuccCount == 1) { | 
|  | OpMBB.setMBB(&NewMBB); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, append a new pair of operands for the new incoming edge. | 
|  | MI.addOperand(MF, OpV); | 
|  | MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Inherit live-ins from the successor | 
|  | for (auto &LI : Succ.liveins()) | 
|  | NewMBB.addLiveIn(LI); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Split edge from '" << MBB.getName() << "' to '" | 
|  | << Succ.getName() << "'.\n"); | 
|  | return NewMBB; | 
|  | } | 
|  |  | 
|  | /// Removing duplicate PHI operands to leave the PHI in a canonical and | 
|  | /// predictable form. | 
|  | /// | 
|  | /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR | 
|  | /// isn't what you might expect. We may have multiple entries in PHI nodes for | 
|  | /// a single predecessor. This makes CFG-updating extremely complex, so here we | 
|  | /// simplify all PHI nodes to a model even simpler than the IR's model: exactly | 
|  | /// one entry per predecessor, regardless of how many edges there are. | 
|  | static void canonicalizePHIOperands(MachineFunction &MF) { | 
|  | SmallPtrSet<MachineBasicBlock *, 4> Preds; | 
|  | SmallVector<int, 4> DupIndices; | 
|  | for (auto &MBB : MF) | 
|  | for (auto &MI : MBB) { | 
|  | if (!MI.isPHI()) | 
|  | break; | 
|  |  | 
|  | // First we scan the operands of the PHI looking for duplicate entries | 
|  | // a particular predecessor. We retain the operand index of each duplicate | 
|  | // entry found. | 
|  | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; | 
|  | OpIdx += 2) | 
|  | if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second) | 
|  | DupIndices.push_back(OpIdx); | 
|  |  | 
|  | // Now walk the duplicate indices, removing both the block and value. Note | 
|  | // that these are stored as a vector making this element-wise removal | 
|  | // :w | 
|  | // potentially quadratic. | 
|  | // | 
|  | // FIXME: It is really frustrating that we have to use a quadratic | 
|  | // removal algorithm here. There should be a better way, but the use-def | 
|  | // updates required make that impossible using the public API. | 
|  | // | 
|  | // Note that we have to process these backwards so that we don't | 
|  | // invalidate other indices with each removal. | 
|  | while (!DupIndices.empty()) { | 
|  | int OpIdx = DupIndices.pop_back_val(); | 
|  | // Remove both the block and value operand, again in reverse order to | 
|  | // preserve indices. | 
|  | MI.RemoveOperand(OpIdx + 1); | 
|  | MI.RemoveOperand(OpIdx); | 
|  | } | 
|  |  | 
|  | Preds.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Helper to scan a function for loads vulnerable to misspeculation that we | 
|  | /// want to harden. | 
|  | /// | 
|  | /// We use this to avoid making changes to functions where there is nothing we | 
|  | /// need to do to harden against misspeculation. | 
|  | static bool hasVulnerableLoad(MachineFunction &MF) { | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | for (MachineInstr &MI : MBB) { | 
|  | // Loads within this basic block after an LFENCE are not at risk of | 
|  | // speculatively executing with invalid predicates from prior control | 
|  | // flow. So break out of this block but continue scanning the function. | 
|  | if (MI.getOpcode() == X86::LFENCE) | 
|  | break; | 
|  |  | 
|  | // Looking for loads only. | 
|  | if (!MI.mayLoad()) | 
|  | continue; | 
|  |  | 
|  | // An MFENCE is modeled as a load but isn't vulnerable to misspeculation. | 
|  | if (MI.getOpcode() == X86::MFENCE) | 
|  | continue; | 
|  |  | 
|  | // We found a load. | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // No loads found. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86SpeculativeLoadHardeningPass::runOnMachineFunction( | 
|  | MachineFunction &MF) { | 
|  | LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() | 
|  | << " **********\n"); | 
|  |  | 
|  | // Only run if this pass is forced enabled or we detect the relevant function | 
|  | // attribute requesting SLH. | 
|  | if (!EnableSpeculativeLoadHardening && | 
|  | !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) | 
|  | return false; | 
|  |  | 
|  | Subtarget = &MF.getSubtarget<X86Subtarget>(); | 
|  | MRI = &MF.getRegInfo(); | 
|  | TII = Subtarget->getInstrInfo(); | 
|  | TRI = Subtarget->getRegisterInfo(); | 
|  |  | 
|  | // FIXME: Support for 32-bit. | 
|  | PS.emplace(MF, &X86::GR64_NOSPRegClass); | 
|  |  | 
|  | if (MF.begin() == MF.end()) | 
|  | // Nothing to do for a degenerate empty function... | 
|  | return false; | 
|  |  | 
|  | // We support an alternative hardening technique based on a debug flag. | 
|  | if (HardenEdgesWithLFENCE) { | 
|  | hardenEdgesWithLFENCE(MF); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Create a dummy debug loc to use for all the generated code here. | 
|  | DebugLoc Loc; | 
|  |  | 
|  | MachineBasicBlock &Entry = *MF.begin(); | 
|  | auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin()); | 
|  |  | 
|  | // Do a quick scan to see if we have any checkable loads. | 
|  | bool HasVulnerableLoad = hasVulnerableLoad(MF); | 
|  |  | 
|  | // See if we have any conditional branching blocks that we will need to trace | 
|  | // predicate state through. | 
|  | SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF); | 
|  |  | 
|  | // If we have no interesting conditions or loads, nothing to do here. | 
|  | if (!HasVulnerableLoad && Infos.empty()) | 
|  | return true; | 
|  |  | 
|  | // The poison value is required to be an all-ones value for many aspects of | 
|  | // this mitigation. | 
|  | const int PoisonVal = -1; | 
|  | PS->PoisonReg = MRI->createVirtualRegister(PS->RC); | 
|  | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg) | 
|  | .addImm(PoisonVal); | 
|  | ++NumInstsInserted; | 
|  |  | 
|  | // If we have loads being hardened and we've asked for call and ret edges to | 
|  | // get a full fence-based mitigation, inject that fence. | 
|  | if (HasVulnerableLoad && FenceCallAndRet) { | 
|  | // We need to insert an LFENCE at the start of the function to suspend any | 
|  | // incoming misspeculation from the caller. This helps two-fold: the caller | 
|  | // may not have been protected as this code has been, and this code gets to | 
|  | // not take any specific action to protect across calls. | 
|  | // FIXME: We could skip this for functions which unconditionally return | 
|  | // a constant. | 
|  | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE)); | 
|  | ++NumInstsInserted; | 
|  | ++NumLFENCEsInserted; | 
|  | } | 
|  |  | 
|  | // If we guarded the entry with an LFENCE and have no conditionals to protect | 
|  | // in blocks, then we're done. | 
|  | if (FenceCallAndRet && Infos.empty()) | 
|  | // We may have changed the function's code at this point to insert fences. | 
|  | return true; | 
|  |  | 
|  | // For every basic block in the function which can b | 
|  | if (HardenInterprocedurally && !FenceCallAndRet) { | 
|  | // Set up the predicate state by extracting it from the incoming stack | 
|  | // pointer so we pick up any misspeculation in our caller. | 
|  | PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc); | 
|  | } else { | 
|  | // Otherwise, just build the predicate state itself by zeroing a register | 
|  | // as we don't need any initial state. | 
|  | PS->InitialReg = MRI->createVirtualRegister(PS->RC); | 
|  | unsigned PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass); | 
|  | auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0), | 
|  | PredStateSubReg); | 
|  | ++NumInstsInserted; | 
|  | MachineOperand *ZeroEFLAGSDefOp = | 
|  | ZeroI->findRegisterDefOperand(X86::EFLAGS); | 
|  | assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() && | 
|  | "Must have an implicit def of EFLAGS!"); | 
|  | ZeroEFLAGSDefOp->setIsDead(true); | 
|  | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG), | 
|  | PS->InitialReg) | 
|  | .addImm(0) | 
|  | .addReg(PredStateSubReg) | 
|  | .addImm(X86::sub_32bit); | 
|  | } | 
|  |  | 
|  | // We're going to need to trace predicate state throughout the function's | 
|  | // CFG. Prepare for this by setting up our initial state of PHIs with unique | 
|  | // predecessor entries and all the initial predicate state. | 
|  | canonicalizePHIOperands(MF); | 
|  |  | 
|  | // Track the updated values in an SSA updater to rewrite into SSA form at the | 
|  | // end. | 
|  | PS->SSA.Initialize(PS->InitialReg); | 
|  | PS->SSA.AddAvailableValue(&Entry, PS->InitialReg); | 
|  |  | 
|  | // Trace through the CFG. | 
|  | auto CMovs = tracePredStateThroughCFG(MF, Infos); | 
|  |  | 
|  | // We may also enter basic blocks in this function via exception handling | 
|  | // control flow. Here, if we are hardening interprocedurally, we need to | 
|  | // re-capture the predicate state from the throwing code. In the Itanium ABI, | 
|  | // the throw will always look like a call to __cxa_throw and will have the | 
|  | // predicate state in the stack pointer, so extract fresh predicate state from | 
|  | // the stack pointer and make it available in SSA. | 
|  | // FIXME: Handle non-itanium ABI EH models. | 
|  | if (HardenInterprocedurally) { | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!"); | 
|  | assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!"); | 
|  | assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!"); | 
|  | if (!MBB.isEHPad()) | 
|  | continue; | 
|  | PS->SSA.AddAvailableValue( | 
|  | &MBB, | 
|  | extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HardenIndirectCallsAndJumps) { | 
|  | // If we are going to harden calls and jumps we need to unfold their memory | 
|  | // operands. | 
|  | unfoldCallAndJumpLoads(MF); | 
|  |  | 
|  | // Then we trace predicate state through the indirect branches. | 
|  | auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF); | 
|  | CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end()); | 
|  | } | 
|  |  | 
|  | // Now that we have the predicate state available at the start of each block | 
|  | // in the CFG, trace it through each block, hardening vulnerable instructions | 
|  | // as we go. | 
|  | tracePredStateThroughBlocksAndHarden(MF); | 
|  |  | 
|  | // Now rewrite all the uses of the pred state using the SSA updater to insert | 
|  | // PHIs connecting the state between blocks along the CFG edges. | 
|  | for (MachineInstr *CMovI : CMovs) | 
|  | for (MachineOperand &Op : CMovI->operands()) { | 
|  | if (!Op.isReg() || Op.getReg() != PS->InitialReg) | 
|  | continue; | 
|  |  | 
|  | PS->SSA.RewriteUse(Op); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump(); | 
|  | dbgs() << "\n"; MF.verify(this)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Implements the naive hardening approach of putting an LFENCE after every | 
|  | /// potentially mis-predicted control flow construct. | 
|  | /// | 
|  | /// We include this as an alternative mostly for the purpose of comparison. The | 
|  | /// performance impact of this is expected to be extremely severe and not | 
|  | /// practical for any real-world users. | 
|  | void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE( | 
|  | MachineFunction &MF) { | 
|  | // First, we scan the function looking for blocks that are reached along edges | 
|  | // that we might want to harden. | 
|  | SmallSetVector<MachineBasicBlock *, 8> Blocks; | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | // If there are no or only one successor, nothing to do here. | 
|  | if (MBB.succ_size() <= 1) | 
|  | continue; | 
|  |  | 
|  | // Skip blocks unless their terminators start with a branch. Other | 
|  | // terminators don't seem interesting for guarding against misspeculation. | 
|  | auto TermIt = MBB.getFirstTerminator(); | 
|  | if (TermIt == MBB.end() || !TermIt->isBranch()) | 
|  | continue; | 
|  |  | 
|  | // Add all the non-EH-pad succossors to the blocks we want to harden. We | 
|  | // skip EH pads because there isn't really a condition of interest on | 
|  | // entering. | 
|  | for (MachineBasicBlock *SuccMBB : MBB.successors()) | 
|  | if (!SuccMBB->isEHPad()) | 
|  | Blocks.insert(SuccMBB); | 
|  | } | 
|  |  | 
|  | for (MachineBasicBlock *MBB : Blocks) { | 
|  | auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin()); | 
|  | BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE)); | 
|  | ++NumInstsInserted; | 
|  | ++NumLFENCEsInserted; | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16> | 
|  | X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) { | 
|  | SmallVector<BlockCondInfo, 16> Infos; | 
|  |  | 
|  | // Walk the function and build up a summary for each block's conditions that | 
|  | // we need to trace through. | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | // If there are no or only one successor, nothing to do here. | 
|  | if (MBB.succ_size() <= 1) | 
|  | continue; | 
|  |  | 
|  | // We want to reliably handle any conditional branch terminators in the | 
|  | // MBB, so we manually analyze the branch. We can handle all of the | 
|  | // permutations here, including ones that analyze branch cannot. | 
|  | // | 
|  | // The approach is to walk backwards across the terminators, resetting at | 
|  | // any unconditional non-indirect branch, and track all conditional edges | 
|  | // to basic blocks as well as the fallthrough or unconditional successor | 
|  | // edge. For each conditional edge, we track the target and the opposite | 
|  | // condition code in order to inject a "no-op" cmov into that successor | 
|  | // that will harden the predicate. For the fallthrough/unconditional | 
|  | // edge, we inject a separate cmov for each conditional branch with | 
|  | // matching condition codes. This effectively implements an "and" of the | 
|  | // condition flags, even if there isn't a single condition flag that would | 
|  | // directly implement that. We don't bother trying to optimize either of | 
|  | // these cases because if such an optimization is possible, LLVM should | 
|  | // have optimized the conditional *branches* in that way already to reduce | 
|  | // instruction count. This late, we simply assume the minimal number of | 
|  | // branch instructions is being emitted and use that to guide our cmov | 
|  | // insertion. | 
|  |  | 
|  | BlockCondInfo Info = {&MBB, {}, nullptr}; | 
|  |  | 
|  | // Now walk backwards through the terminators and build up successors they | 
|  | // reach and the conditions. | 
|  | for (MachineInstr &MI : llvm::reverse(MBB)) { | 
|  | // Once we've handled all the terminators, we're done. | 
|  | if (!MI.isTerminator()) | 
|  | break; | 
|  |  | 
|  | // If we see a non-branch terminator, we can't handle anything so bail. | 
|  | if (!MI.isBranch()) { | 
|  | Info.CondBrs.clear(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we see an unconditional branch, reset our state, clear any | 
|  | // fallthrough, and set this is the "else" successor. | 
|  | if (MI.getOpcode() == X86::JMP_1) { | 
|  | Info.CondBrs.clear(); | 
|  | Info.UncondBr = &MI; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we get an invalid condition, we have an indirect branch or some | 
|  | // other unanalyzable "fallthrough" case. We model this as a nullptr for | 
|  | // the destination so we can still guard any conditional successors. | 
|  | // Consider code sequences like: | 
|  | // ``` | 
|  | //   jCC L1 | 
|  | //   jmpq *%rax | 
|  | // ``` | 
|  | // We still want to harden the edge to `L1`. | 
|  | if (X86::getCondFromBranchOpc(MI.getOpcode()) == X86::COND_INVALID) { | 
|  | Info.CondBrs.clear(); | 
|  | Info.UncondBr = &MI; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We have a vanilla conditional branch, add it to our list. | 
|  | Info.CondBrs.push_back(&MI); | 
|  | } | 
|  | if (Info.CondBrs.empty()) { | 
|  | ++NumBranchesUntraced; | 
|  | LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n"; | 
|  | MBB.dump()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Infos.push_back(Info); | 
|  | } | 
|  |  | 
|  | return Infos; | 
|  | } | 
|  |  | 
|  | /// Trace the predicate state through the CFG, instrumenting each conditional | 
|  | /// branch such that misspeculation through an edge will poison the predicate | 
|  | /// state. | 
|  | /// | 
|  | /// Returns the list of inserted CMov instructions so that they can have their | 
|  | /// uses of the predicate state rewritten into proper SSA form once it is | 
|  | /// complete. | 
|  | SmallVector<MachineInstr *, 16> | 
|  | X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG( | 
|  | MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) { | 
|  | // Collect the inserted cmov instructions so we can rewrite their uses of the | 
|  | // predicate state into SSA form. | 
|  | SmallVector<MachineInstr *, 16> CMovs; | 
|  |  | 
|  | // Now walk all of the basic blocks looking for ones that end in conditional | 
|  | // jumps where we need to update this register along each edge. | 
|  | for (const BlockCondInfo &Info : Infos) { | 
|  | MachineBasicBlock &MBB = *Info.MBB; | 
|  | const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs; | 
|  | MachineInstr *UncondBr = Info.UncondBr; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName() | 
|  | << "\n"); | 
|  | ++NumCondBranchesTraced; | 
|  |  | 
|  | // Compute the non-conditional successor as either the target of any | 
|  | // unconditional branch or the layout successor. | 
|  | MachineBasicBlock *UncondSucc = | 
|  | UncondBr ? (UncondBr->getOpcode() == X86::JMP_1 | 
|  | ? UncondBr->getOperand(0).getMBB() | 
|  | : nullptr) | 
|  | : &*std::next(MachineFunction::iterator(&MBB)); | 
|  |  | 
|  | // Count how many edges there are to any given successor. | 
|  | SmallDenseMap<MachineBasicBlock *, int> SuccCounts; | 
|  | if (UncondSucc) | 
|  | ++SuccCounts[UncondSucc]; | 
|  | for (auto *CondBr : CondBrs) | 
|  | ++SuccCounts[CondBr->getOperand(0).getMBB()]; | 
|  |  | 
|  | // A lambda to insert cmov instructions into a block checking all of the | 
|  | // condition codes in a sequence. | 
|  | auto BuildCheckingBlockForSuccAndConds = | 
|  | [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount, | 
|  | MachineInstr *Br, MachineInstr *&UncondBr, | 
|  | ArrayRef<X86::CondCode> Conds) { | 
|  | // First, we split the edge to insert the checking block into a safe | 
|  | // location. | 
|  | auto &CheckingMBB = | 
|  | (SuccCount == 1 && Succ.pred_size() == 1) | 
|  | ? Succ | 
|  | : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII); | 
|  |  | 
|  | bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS); | 
|  | if (!LiveEFLAGS) | 
|  | CheckingMBB.addLiveIn(X86::EFLAGS); | 
|  |  | 
|  | // Now insert the cmovs to implement the checks. | 
|  | auto InsertPt = CheckingMBB.begin(); | 
|  | assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) && | 
|  | "Should never have a PHI in the initial checking block as it " | 
|  | "always has a single predecessor!"); | 
|  |  | 
|  | // We will wire each cmov to each other, but need to start with the | 
|  | // incoming pred state. | 
|  | unsigned CurStateReg = PS->InitialReg; | 
|  |  | 
|  | for (X86::CondCode Cond : Conds) { | 
|  | int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; | 
|  | auto CMovOp = X86::getCMovFromCond(Cond, PredStateSizeInBytes); | 
|  |  | 
|  | unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC); | 
|  | // Note that we intentionally use an empty debug location so that | 
|  | // this picks up the preceding location. | 
|  | auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(), | 
|  | TII->get(CMovOp), UpdatedStateReg) | 
|  | .addReg(CurStateReg) | 
|  | .addReg(PS->PoisonReg); | 
|  | // If this is the last cmov and the EFLAGS weren't originally | 
|  | // live-in, mark them as killed. | 
|  | if (!LiveEFLAGS && Cond == Conds.back()) | 
|  | CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); | 
|  |  | 
|  | ++NumInstsInserted; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); | 
|  | dbgs() << "\n"); | 
|  |  | 
|  | // The first one of the cmovs will be using the top level | 
|  | // `PredStateReg` and need to get rewritten into SSA form. | 
|  | if (CurStateReg == PS->InitialReg) | 
|  | CMovs.push_back(&*CMovI); | 
|  |  | 
|  | // The next cmov should start from this one's def. | 
|  | CurStateReg = UpdatedStateReg; | 
|  | } | 
|  |  | 
|  | // And put the last one into the available values for SSA form of our | 
|  | // predicate state. | 
|  | PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg); | 
|  | }; | 
|  |  | 
|  | std::vector<X86::CondCode> UncondCodeSeq; | 
|  | for (auto *CondBr : CondBrs) { | 
|  | MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB(); | 
|  | int &SuccCount = SuccCounts[&Succ]; | 
|  |  | 
|  | X86::CondCode Cond = X86::getCondFromBranchOpc(CondBr->getOpcode()); | 
|  | X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond); | 
|  | UncondCodeSeq.push_back(Cond); | 
|  |  | 
|  | BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr, | 
|  | {InvCond}); | 
|  |  | 
|  | // Decrement the successor count now that we've split one of the edges. | 
|  | // We need to keep the count of edges to the successor accurate in order | 
|  | // to know above when to *replace* the successor in the CFG vs. just | 
|  | // adding the new successor. | 
|  | --SuccCount; | 
|  | } | 
|  |  | 
|  | // Since we may have split edges and changed the number of successors, | 
|  | // normalize the probabilities. This avoids doing it each time we split an | 
|  | // edge. | 
|  | MBB.normalizeSuccProbs(); | 
|  |  | 
|  | // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we | 
|  | // need to intersect the other condition codes. We can do this by just | 
|  | // doing a cmov for each one. | 
|  | if (!UncondSucc) | 
|  | // If we have no fallthrough to protect (perhaps it is an indirect jump?) | 
|  | // just skip this and continue. | 
|  | continue; | 
|  |  | 
|  | assert(SuccCounts[UncondSucc] == 1 && | 
|  | "We should never have more than one edge to the unconditional " | 
|  | "successor at this point because every other edge must have been " | 
|  | "split above!"); | 
|  |  | 
|  | // Sort and unique the codes to minimize them. | 
|  | llvm::sort(UncondCodeSeq); | 
|  | UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()), | 
|  | UncondCodeSeq.end()); | 
|  |  | 
|  | // Build a checking version of the successor. | 
|  | BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1, | 
|  | UncondBr, UncondBr, UncondCodeSeq); | 
|  | } | 
|  |  | 
|  | return CMovs; | 
|  | } | 
|  |  | 
|  | /// Compute the register class for the unfolded load. | 
|  | /// | 
|  | /// FIXME: This should probably live in X86InstrInfo, potentially by adding | 
|  | /// a way to unfold into a newly created vreg rather than requiring a register | 
|  | /// input. | 
|  | static const TargetRegisterClass * | 
|  | getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII, | 
|  | unsigned Opcode) { | 
|  | unsigned Index; | 
|  | unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold( | 
|  | Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index); | 
|  | const MCInstrDesc &MCID = TII.get(UnfoldedOpc); | 
|  | return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF); | 
|  | } | 
|  |  | 
|  | void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads( | 
|  | MachineFunction &MF) { | 
|  | for (MachineBasicBlock &MBB : MF) | 
|  | for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) { | 
|  | // Grab a reference and increment the iterator so we can remove this | 
|  | // instruction if needed without disturbing the iteration. | 
|  | MachineInstr &MI = *MII++; | 
|  |  | 
|  | // Must either be a call or a branch. | 
|  | if (!MI.isCall() && !MI.isBranch()) | 
|  | continue; | 
|  | // We only care about loading variants of these instructions. | 
|  | if (!MI.mayLoad()) | 
|  | continue; | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "ERROR: Found an unexpected loading branch or call " | 
|  | "instruction:\n"; | 
|  | MI.dump(); dbgs() << "\n"); | 
|  | report_fatal_error("Unexpected loading branch or call!"); | 
|  | } | 
|  |  | 
|  | case X86::FARCALL16m: | 
|  | case X86::FARCALL32m: | 
|  | case X86::FARCALL64: | 
|  | case X86::FARJMP16m: | 
|  | case X86::FARJMP32m: | 
|  | case X86::FARJMP64: | 
|  | // We cannot mitigate far jumps or calls, but we also don't expect them | 
|  | // to be vulnerable to Spectre v1.2 style attacks. | 
|  | continue; | 
|  |  | 
|  | case X86::CALL16m: | 
|  | case X86::CALL16m_NT: | 
|  | case X86::CALL32m: | 
|  | case X86::CALL32m_NT: | 
|  | case X86::CALL64m: | 
|  | case X86::CALL64m_NT: | 
|  | case X86::JMP16m: | 
|  | case X86::JMP16m_NT: | 
|  | case X86::JMP32m: | 
|  | case X86::JMP32m_NT: | 
|  | case X86::JMP64m: | 
|  | case X86::JMP64m_NT: | 
|  | case X86::TAILJMPm64: | 
|  | case X86::TAILJMPm64_REX: | 
|  | case X86::TAILJMPm: | 
|  | case X86::TCRETURNmi64: | 
|  | case X86::TCRETURNmi: { | 
|  | // Use the generic unfold logic now that we know we're dealing with | 
|  | // expected instructions. | 
|  | // FIXME: We don't have test coverage for all of these! | 
|  | auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode()); | 
|  | if (!UnfoldedRC) { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "ERROR: Unable to unfold load from instruction:\n"; | 
|  | MI.dump(); dbgs() << "\n"); | 
|  | report_fatal_error("Unable to unfold load!"); | 
|  | } | 
|  | unsigned Reg = MRI->createVirtualRegister(UnfoldedRC); | 
|  | SmallVector<MachineInstr *, 2> NewMIs; | 
|  | // If we were able to compute an unfolded reg class, any failure here | 
|  | // is just a programming error so just assert. | 
|  | bool Unfolded = | 
|  | TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true, | 
|  | /*UnfoldStore*/ false, NewMIs); | 
|  | (void)Unfolded; | 
|  | assert(Unfolded && | 
|  | "Computed unfolded register class but failed to unfold"); | 
|  | // Now stitch the new instructions into place and erase the old one. | 
|  | for (auto *NewMI : NewMIs) | 
|  | MBB.insert(MI.getIterator(), NewMI); | 
|  | MI.eraseFromParent(); | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Unfolded load successfully into:\n"; | 
|  | for (auto *NewMI : NewMIs) { | 
|  | NewMI->dump(); | 
|  | dbgs() << "\n"; | 
|  | } | 
|  | }); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Escaped switch with default!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Trace the predicate state through indirect branches, instrumenting them to | 
|  | /// poison the state if a target is reached that does not match the expected | 
|  | /// target. | 
|  | /// | 
|  | /// This is designed to mitigate Spectre variant 1 attacks where an indirect | 
|  | /// branch is trained to predict a particular target and then mispredicts that | 
|  | /// target in a way that can leak data. Despite using an indirect branch, this | 
|  | /// is really a variant 1 style attack: it does not steer execution to an | 
|  | /// arbitrary or attacker controlled address, and it does not require any | 
|  | /// special code executing next to the victim. This attack can also be mitigated | 
|  | /// through retpolines, but those require either replacing indirect branches | 
|  | /// with conditional direct branches or lowering them through a device that | 
|  | /// blocks speculation. This mitigation can replace these retpoline-style | 
|  | /// mitigations for jump tables and other indirect branches within a function | 
|  | /// when variant 2 isn't a risk while allowing limited speculation. Indirect | 
|  | /// calls, however, cannot be mitigated through this technique without changing | 
|  | /// the ABI in a fundamental way. | 
|  | SmallVector<MachineInstr *, 16> | 
|  | X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches( | 
|  | MachineFunction &MF) { | 
|  | // We use the SSAUpdater to insert PHI nodes for the target addresses of | 
|  | // indirect branches. We don't actually need the full power of the SSA updater | 
|  | // in this particular case as we always have immediately available values, but | 
|  | // this avoids us having to re-implement the PHI construction logic. | 
|  | MachineSSAUpdater TargetAddrSSA(MF); | 
|  | TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass)); | 
|  |  | 
|  | // Track which blocks were terminated with an indirect branch. | 
|  | SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs; | 
|  |  | 
|  | // We need to know what blocks end up reached via indirect branches. We | 
|  | // expect this to be a subset of those whose address is taken and so track it | 
|  | // directly via the CFG. | 
|  | SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs; | 
|  |  | 
|  | // Walk all the blocks which end in an indirect branch and make the | 
|  | // target address available. | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | // Find the last terminator. | 
|  | auto MII = MBB.instr_rbegin(); | 
|  | while (MII != MBB.instr_rend() && MII->isDebugInstr()) | 
|  | ++MII; | 
|  | if (MII == MBB.instr_rend()) | 
|  | continue; | 
|  | MachineInstr &TI = *MII; | 
|  | if (!TI.isTerminator() || !TI.isBranch()) | 
|  | // No terminator or non-branch terminator. | 
|  | continue; | 
|  |  | 
|  | unsigned TargetReg; | 
|  |  | 
|  | switch (TI.getOpcode()) { | 
|  | default: | 
|  | // Direct branch or conditional branch (leading to fallthrough). | 
|  | continue; | 
|  |  | 
|  | case X86::FARJMP16m: | 
|  | case X86::FARJMP32m: | 
|  | case X86::FARJMP64: | 
|  | // We cannot mitigate far jumps or calls, but we also don't expect them | 
|  | // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks. | 
|  | continue; | 
|  |  | 
|  | case X86::JMP16m: | 
|  | case X86::JMP16m_NT: | 
|  | case X86::JMP32m: | 
|  | case X86::JMP32m_NT: | 
|  | case X86::JMP64m: | 
|  | case X86::JMP64m_NT: | 
|  | // Mostly as documentation. | 
|  | report_fatal_error("Memory operand jumps should have been unfolded!"); | 
|  |  | 
|  | case X86::JMP16r: | 
|  | report_fatal_error( | 
|  | "Support for 16-bit indirect branches is not implemented."); | 
|  | case X86::JMP32r: | 
|  | report_fatal_error( | 
|  | "Support for 32-bit indirect branches is not implemented."); | 
|  |  | 
|  | case X86::JMP64r: | 
|  | TargetReg = TI.getOperand(0).getReg(); | 
|  | } | 
|  |  | 
|  | // We have definitely found an indirect  branch. Verify that there are no | 
|  | // preceding conditional branches as we don't yet support that. | 
|  | if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) { | 
|  | return !OtherTI.isDebugInstr() && &OtherTI != &TI; | 
|  | })) { | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "ERROR: Found other terminators in a block with an indirect " | 
|  | "branch! This is not yet supported! Terminator sequence:\n"; | 
|  | for (MachineInstr &MI : MBB.terminators()) { | 
|  | MI.dump(); | 
|  | dbgs() << '\n'; | 
|  | } | 
|  | }); | 
|  | report_fatal_error("Unimplemented terminator sequence!"); | 
|  | } | 
|  |  | 
|  | // Make the target register an available value for this block. | 
|  | TargetAddrSSA.AddAvailableValue(&MBB, TargetReg); | 
|  | IndirectTerminatedMBBs.insert(&MBB); | 
|  |  | 
|  | // Add all the successors to our target candidates. | 
|  | for (MachineBasicBlock *Succ : MBB.successors()) | 
|  | IndirectTargetMBBs.insert(Succ); | 
|  | } | 
|  |  | 
|  | // Keep track of the cmov instructions we insert so we can return them. | 
|  | SmallVector<MachineInstr *, 16> CMovs; | 
|  |  | 
|  | // If we didn't find any indirect branches with targets, nothing to do here. | 
|  | if (IndirectTargetMBBs.empty()) | 
|  | return CMovs; | 
|  |  | 
|  | // We found indirect branches and targets that need to be instrumented to | 
|  | // harden loads within them. Walk the blocks of the function (to get a stable | 
|  | // ordering) and instrument each target of an indirect branch. | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | // Skip the blocks that aren't candidate targets. | 
|  | if (!IndirectTargetMBBs.count(&MBB)) | 
|  | continue; | 
|  |  | 
|  | // We don't expect EH pads to ever be reached via an indirect branch. If | 
|  | // this is desired for some reason, we could simply skip them here rather | 
|  | // than asserting. | 
|  | assert(!MBB.isEHPad() && | 
|  | "Unexpected EH pad as target of an indirect branch!"); | 
|  |  | 
|  | // We should never end up threading EFLAGS into a block to harden | 
|  | // conditional jumps as there would be an additional successor via the | 
|  | // indirect branch. As a consequence, all such edges would be split before | 
|  | // reaching here, and the inserted block will handle the EFLAGS-based | 
|  | // hardening. | 
|  | assert(!MBB.isLiveIn(X86::EFLAGS) && | 
|  | "Cannot check within a block that already has live-in EFLAGS!"); | 
|  |  | 
|  | // We can't handle having non-indirect edges into this block unless this is | 
|  | // the only successor and we can synthesize the necessary target address. | 
|  | for (MachineBasicBlock *Pred : MBB.predecessors()) { | 
|  | // If we've already handled this by extracting the target directly, | 
|  | // nothing to do. | 
|  | if (IndirectTerminatedMBBs.count(Pred)) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, we have to be the only successor. We generally expect this | 
|  | // to be true as conditional branches should have had a critical edge | 
|  | // split already. We don't however need to worry about EH pad successors | 
|  | // as they'll happily ignore the target and their hardening strategy is | 
|  | // resilient to all ways in which they could be reached speculatively. | 
|  | if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) { | 
|  | return Succ->isEHPad() || Succ == &MBB; | 
|  | })) { | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "ERROR: Found conditional entry to target of indirect " | 
|  | "branch!\n"; | 
|  | Pred->dump(); | 
|  | MBB.dump(); | 
|  | }); | 
|  | report_fatal_error("Cannot harden a conditional entry to a target of " | 
|  | "an indirect branch!"); | 
|  | } | 
|  |  | 
|  | // Now we need to compute the address of this block and install it as a | 
|  | // synthetic target in the predecessor. We do this at the bottom of the | 
|  | // predecessor. | 
|  | auto InsertPt = Pred->getFirstTerminator(); | 
|  | unsigned TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass); | 
|  | if (MF.getTarget().getCodeModel() == CodeModel::Small && | 
|  | !Subtarget->isPositionIndependent()) { | 
|  | // Directly materialize it into an immediate. | 
|  | auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), | 
|  | TII->get(X86::MOV64ri32), TargetReg) | 
|  | .addMBB(&MBB); | 
|  | ++NumInstsInserted; | 
|  | (void)AddrI; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting mov: "; AddrI->dump(); | 
|  | dbgs() << "\n"); | 
|  | } else { | 
|  | auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r), | 
|  | TargetReg) | 
|  | .addReg(/*Base*/ X86::RIP) | 
|  | .addImm(/*Scale*/ 1) | 
|  | .addReg(/*Index*/ 0) | 
|  | .addMBB(&MBB) | 
|  | .addReg(/*Segment*/ 0); | 
|  | ++NumInstsInserted; | 
|  | (void)AddrI; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump(); | 
|  | dbgs() << "\n"); | 
|  | } | 
|  | // And make this available. | 
|  | TargetAddrSSA.AddAvailableValue(Pred, TargetReg); | 
|  | } | 
|  |  | 
|  | // Materialize the needed SSA value of the target. Note that we need the | 
|  | // middle of the block as this block might at the bottom have an indirect | 
|  | // branch back to itself. We can do this here because at this point, every | 
|  | // predecessor of this block has an available value. This is basically just | 
|  | // automating the construction of a PHI node for this target. | 
|  | unsigned TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB); | 
|  |  | 
|  | // Insert a comparison of the incoming target register with this block's | 
|  | // address. This also requires us to mark the block as having its address | 
|  | // taken explicitly. | 
|  | MBB.setHasAddressTaken(); | 
|  | auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin()); | 
|  | if (MF.getTarget().getCodeModel() == CodeModel::Small && | 
|  | !Subtarget->isPositionIndependent()) { | 
|  | // Check directly against a relocated immediate when we can. | 
|  | auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32)) | 
|  | .addReg(TargetReg, RegState::Kill) | 
|  | .addMBB(&MBB); | 
|  | ++NumInstsInserted; | 
|  | (void)CheckI; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n"); | 
|  | } else { | 
|  | // Otherwise compute the address into a register first. | 
|  | unsigned AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass); | 
|  | auto AddrI = | 
|  | BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg) | 
|  | .addReg(/*Base*/ X86::RIP) | 
|  | .addImm(/*Scale*/ 1) | 
|  | .addReg(/*Index*/ 0) | 
|  | .addMBB(&MBB) | 
|  | .addReg(/*Segment*/ 0); | 
|  | ++NumInstsInserted; | 
|  | (void)AddrI; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump(); dbgs() << "\n"); | 
|  | auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr)) | 
|  | .addReg(TargetReg, RegState::Kill) | 
|  | .addReg(AddrReg, RegState::Kill); | 
|  | ++NumInstsInserted; | 
|  | (void)CheckI; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n"); | 
|  | } | 
|  |  | 
|  | // Now cmov over the predicate if the comparison wasn't equal. | 
|  | int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; | 
|  | auto CMovOp = X86::getCMovFromCond(X86::COND_NE, PredStateSizeInBytes); | 
|  | unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC); | 
|  | auto CMovI = | 
|  | BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg) | 
|  | .addReg(PS->InitialReg) | 
|  | .addReg(PS->PoisonReg); | 
|  | CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); | 
|  | ++NumInstsInserted; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); | 
|  | CMovs.push_back(&*CMovI); | 
|  |  | 
|  | // And put the new value into the available values for SSA form of our | 
|  | // predicate state. | 
|  | PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); | 
|  | } | 
|  |  | 
|  | // Return all the newly inserted cmov instructions of the predicate state. | 
|  | return CMovs; | 
|  | } | 
|  |  | 
|  | /// Returns true if the instruction has no behavior (specified or otherwise) | 
|  | /// that is based on the value of any of its register operands | 
|  | /// | 
|  | /// A classical example of something that is inherently not data invariant is an | 
|  | /// indirect jump -- the destination is loaded into icache based on the bits set | 
|  | /// in the jump destination register. | 
|  | /// | 
|  | /// FIXME: This should become part of our instruction tables. | 
|  | static bool isDataInvariant(MachineInstr &MI) { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | // By default, assume that the instruction is not data invariant. | 
|  | return false; | 
|  |  | 
|  | // Some target-independent operations that trivially lower to data-invariant | 
|  | // instructions. | 
|  | case TargetOpcode::COPY: | 
|  | case TargetOpcode::INSERT_SUBREG: | 
|  | case TargetOpcode::SUBREG_TO_REG: | 
|  | return true; | 
|  |  | 
|  | // On x86 it is believed that imul is constant time w.r.t. the loaded data. | 
|  | // However, they set flags and are perhaps the most surprisingly constant | 
|  | // time operations so we call them out here separately. | 
|  | case X86::IMUL16rr: | 
|  | case X86::IMUL16rri8: | 
|  | case X86::IMUL16rri: | 
|  | case X86::IMUL32rr: | 
|  | case X86::IMUL32rri8: | 
|  | case X86::IMUL32rri: | 
|  | case X86::IMUL64rr: | 
|  | case X86::IMUL64rri32: | 
|  | case X86::IMUL64rri8: | 
|  |  | 
|  | // Bit scanning and counting instructions that are somewhat surprisingly | 
|  | // constant time as they scan across bits and do other fairly complex | 
|  | // operations like popcnt, but are believed to be constant time on x86. | 
|  | // However, these set flags. | 
|  | case X86::BSF16rr: | 
|  | case X86::BSF32rr: | 
|  | case X86::BSF64rr: | 
|  | case X86::BSR16rr: | 
|  | case X86::BSR32rr: | 
|  | case X86::BSR64rr: | 
|  | case X86::LZCNT16rr: | 
|  | case X86::LZCNT32rr: | 
|  | case X86::LZCNT64rr: | 
|  | case X86::POPCNT16rr: | 
|  | case X86::POPCNT32rr: | 
|  | case X86::POPCNT64rr: | 
|  | case X86::TZCNT16rr: | 
|  | case X86::TZCNT32rr: | 
|  | case X86::TZCNT64rr: | 
|  |  | 
|  | // Bit manipulation instructions are effectively combinations of basic | 
|  | // arithmetic ops, and should still execute in constant time. These also | 
|  | // set flags. | 
|  | case X86::BLCFILL32rr: | 
|  | case X86::BLCFILL64rr: | 
|  | case X86::BLCI32rr: | 
|  | case X86::BLCI64rr: | 
|  | case X86::BLCIC32rr: | 
|  | case X86::BLCIC64rr: | 
|  | case X86::BLCMSK32rr: | 
|  | case X86::BLCMSK64rr: | 
|  | case X86::BLCS32rr: | 
|  | case X86::BLCS64rr: | 
|  | case X86::BLSFILL32rr: | 
|  | case X86::BLSFILL64rr: | 
|  | case X86::BLSI32rr: | 
|  | case X86::BLSI64rr: | 
|  | case X86::BLSIC32rr: | 
|  | case X86::BLSIC64rr: | 
|  | case X86::BLSMSK32rr: | 
|  | case X86::BLSMSK64rr: | 
|  | case X86::BLSR32rr: | 
|  | case X86::BLSR64rr: | 
|  | case X86::TZMSK32rr: | 
|  | case X86::TZMSK64rr: | 
|  |  | 
|  | // Bit extracting and clearing instructions should execute in constant time, | 
|  | // and set flags. | 
|  | case X86::BEXTR32rr: | 
|  | case X86::BEXTR64rr: | 
|  | case X86::BEXTRI32ri: | 
|  | case X86::BEXTRI64ri: | 
|  | case X86::BZHI32rr: | 
|  | case X86::BZHI64rr: | 
|  |  | 
|  | // Shift and rotate. | 
|  | case X86::ROL8r1:  case X86::ROL16r1:  case X86::ROL32r1:  case X86::ROL64r1: | 
|  | case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL: | 
|  | case X86::ROL8ri:  case X86::ROL16ri:  case X86::ROL32ri:  case X86::ROL64ri: | 
|  | case X86::ROR8r1:  case X86::ROR16r1:  case X86::ROR32r1:  case X86::ROR64r1: | 
|  | case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL: | 
|  | case X86::ROR8ri:  case X86::ROR16ri:  case X86::ROR32ri:  case X86::ROR64ri: | 
|  | case X86::SAR8r1:  case X86::SAR16r1:  case X86::SAR32r1:  case X86::SAR64r1: | 
|  | case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL: | 
|  | case X86::SAR8ri:  case X86::SAR16ri:  case X86::SAR32ri:  case X86::SAR64ri: | 
|  | case X86::SHL8r1:  case X86::SHL16r1:  case X86::SHL32r1:  case X86::SHL64r1: | 
|  | case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL: | 
|  | case X86::SHL8ri:  case X86::SHL16ri:  case X86::SHL32ri:  case X86::SHL64ri: | 
|  | case X86::SHR8r1:  case X86::SHR16r1:  case X86::SHR32r1:  case X86::SHR64r1: | 
|  | case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL: | 
|  | case X86::SHR8ri:  case X86::SHR16ri:  case X86::SHR32ri:  case X86::SHR64ri: | 
|  | case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL: | 
|  | case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8: | 
|  | case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL: | 
|  | case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8: | 
|  |  | 
|  | // Basic arithmetic is constant time on the input but does set flags. | 
|  | case X86::ADC8rr:   case X86::ADC8ri: | 
|  | case X86::ADC16rr:  case X86::ADC16ri:   case X86::ADC16ri8: | 
|  | case X86::ADC32rr:  case X86::ADC32ri:   case X86::ADC32ri8: | 
|  | case X86::ADC64rr:  case X86::ADC64ri8:  case X86::ADC64ri32: | 
|  | case X86::ADD8rr:   case X86::ADD8ri: | 
|  | case X86::ADD16rr:  case X86::ADD16ri:   case X86::ADD16ri8: | 
|  | case X86::ADD32rr:  case X86::ADD32ri:   case X86::ADD32ri8: | 
|  | case X86::ADD64rr:  case X86::ADD64ri8:  case X86::ADD64ri32: | 
|  | case X86::AND8rr:   case X86::AND8ri: | 
|  | case X86::AND16rr:  case X86::AND16ri:   case X86::AND16ri8: | 
|  | case X86::AND32rr:  case X86::AND32ri:   case X86::AND32ri8: | 
|  | case X86::AND64rr:  case X86::AND64ri8:  case X86::AND64ri32: | 
|  | case X86::OR8rr:    case X86::OR8ri: | 
|  | case X86::OR16rr:   case X86::OR16ri:    case X86::OR16ri8: | 
|  | case X86::OR32rr:   case X86::OR32ri:    case X86::OR32ri8: | 
|  | case X86::OR64rr:   case X86::OR64ri8:   case X86::OR64ri32: | 
|  | case X86::SBB8rr:   case X86::SBB8ri: | 
|  | case X86::SBB16rr:  case X86::SBB16ri:   case X86::SBB16ri8: | 
|  | case X86::SBB32rr:  case X86::SBB32ri:   case X86::SBB32ri8: | 
|  | case X86::SBB64rr:  case X86::SBB64ri8:  case X86::SBB64ri32: | 
|  | case X86::SUB8rr:   case X86::SUB8ri: | 
|  | case X86::SUB16rr:  case X86::SUB16ri:   case X86::SUB16ri8: | 
|  | case X86::SUB32rr:  case X86::SUB32ri:   case X86::SUB32ri8: | 
|  | case X86::SUB64rr:  case X86::SUB64ri8:  case X86::SUB64ri32: | 
|  | case X86::XOR8rr:   case X86::XOR8ri: | 
|  | case X86::XOR16rr:  case X86::XOR16ri:   case X86::XOR16ri8: | 
|  | case X86::XOR32rr:  case X86::XOR32ri:   case X86::XOR32ri8: | 
|  | case X86::XOR64rr:  case X86::XOR64ri8:  case X86::XOR64ri32: | 
|  | // Arithmetic with just 32-bit and 64-bit variants and no immediates. | 
|  | case X86::ADCX32rr: case X86::ADCX64rr: | 
|  | case X86::ADOX32rr: case X86::ADOX64rr: | 
|  | case X86::ANDN32rr: case X86::ANDN64rr: | 
|  | // Unary arithmetic operations. | 
|  | case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r: | 
|  | case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r: | 
|  | case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: | 
|  | // Check whether the EFLAGS implicit-def is dead. We assume that this will | 
|  | // always find the implicit-def because this code should only be reached | 
|  | // for instructions that do in fact implicitly def this. | 
|  | if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { | 
|  | // If we would clobber EFLAGS that are used, just bail for now. | 
|  | LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: "; | 
|  | MI.dump(); dbgs() << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, fallthrough to handle these the same as instructions that | 
|  | // don't set EFLAGS. | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | // Unlike other arithmetic, NOT doesn't set EFLAGS. | 
|  | case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r: | 
|  |  | 
|  | // Various move instructions used to zero or sign extend things. Note that we | 
|  | // intentionally don't support the _NOREX variants as we can't handle that | 
|  | // register constraint anyways. | 
|  | case X86::MOVSX16rr8: | 
|  | case X86::MOVSX32rr8: case X86::MOVSX32rr16: | 
|  | case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32: | 
|  | case X86::MOVZX16rr8: | 
|  | case X86::MOVZX32rr8: case X86::MOVZX32rr16: | 
|  | case X86::MOVZX64rr8: case X86::MOVZX64rr16: | 
|  | case X86::MOV32rr: | 
|  |  | 
|  | // Arithmetic instructions that are both constant time and don't set flags. | 
|  | case X86::RORX32ri: | 
|  | case X86::RORX64ri: | 
|  | case X86::SARX32rr: | 
|  | case X86::SARX64rr: | 
|  | case X86::SHLX32rr: | 
|  | case X86::SHLX64rr: | 
|  | case X86::SHRX32rr: | 
|  | case X86::SHRX64rr: | 
|  |  | 
|  | // LEA doesn't actually access memory, and its arithmetic is constant time. | 
|  | case X86::LEA16r: | 
|  | case X86::LEA32r: | 
|  | case X86::LEA64_32r: | 
|  | case X86::LEA64r: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns true if the instruction has no behavior (specified or otherwise) | 
|  | /// that is based on the value loaded from memory or the value of any | 
|  | /// non-address register operands. | 
|  | /// | 
|  | /// For example, if the latency of the instruction is dependent on the | 
|  | /// particular bits set in any of the registers *or* any of the bits loaded from | 
|  | /// memory. | 
|  | /// | 
|  | /// A classical example of something that is inherently not data invariant is an | 
|  | /// indirect jump -- the destination is loaded into icache based on the bits set | 
|  | /// in the jump destination register. | 
|  | /// | 
|  | /// FIXME: This should become part of our instruction tables. | 
|  | static bool isDataInvariantLoad(MachineInstr &MI) { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | // By default, assume that the load will immediately leak. | 
|  | return false; | 
|  |  | 
|  | // On x86 it is believed that imul is constant time w.r.t. the loaded data. | 
|  | // However, they set flags and are perhaps the most surprisingly constant | 
|  | // time operations so we call them out here separately. | 
|  | case X86::IMUL16rm: | 
|  | case X86::IMUL16rmi8: | 
|  | case X86::IMUL16rmi: | 
|  | case X86::IMUL32rm: | 
|  | case X86::IMUL32rmi8: | 
|  | case X86::IMUL32rmi: | 
|  | case X86::IMUL64rm: | 
|  | case X86::IMUL64rmi32: | 
|  | case X86::IMUL64rmi8: | 
|  |  | 
|  | // Bit scanning and counting instructions that are somewhat surprisingly | 
|  | // constant time as they scan across bits and do other fairly complex | 
|  | // operations like popcnt, but are believed to be constant time on x86. | 
|  | // However, these set flags. | 
|  | case X86::BSF16rm: | 
|  | case X86::BSF32rm: | 
|  | case X86::BSF64rm: | 
|  | case X86::BSR16rm: | 
|  | case X86::BSR32rm: | 
|  | case X86::BSR64rm: | 
|  | case X86::LZCNT16rm: | 
|  | case X86::LZCNT32rm: | 
|  | case X86::LZCNT64rm: | 
|  | case X86::POPCNT16rm: | 
|  | case X86::POPCNT32rm: | 
|  | case X86::POPCNT64rm: | 
|  | case X86::TZCNT16rm: | 
|  | case X86::TZCNT32rm: | 
|  | case X86::TZCNT64rm: | 
|  |  | 
|  | // Bit manipulation instructions are effectively combinations of basic | 
|  | // arithmetic ops, and should still execute in constant time. These also | 
|  | // set flags. | 
|  | case X86::BLCFILL32rm: | 
|  | case X86::BLCFILL64rm: | 
|  | case X86::BLCI32rm: | 
|  | case X86::BLCI64rm: | 
|  | case X86::BLCIC32rm: | 
|  | case X86::BLCIC64rm: | 
|  | case X86::BLCMSK32rm: | 
|  | case X86::BLCMSK64rm: | 
|  | case X86::BLCS32rm: | 
|  | case X86::BLCS64rm: | 
|  | case X86::BLSFILL32rm: | 
|  | case X86::BLSFILL64rm: | 
|  | case X86::BLSI32rm: | 
|  | case X86::BLSI64rm: | 
|  | case X86::BLSIC32rm: | 
|  | case X86::BLSIC64rm: | 
|  | case X86::BLSMSK32rm: | 
|  | case X86::BLSMSK64rm: | 
|  | case X86::BLSR32rm: | 
|  | case X86::BLSR64rm: | 
|  | case X86::TZMSK32rm: | 
|  | case X86::TZMSK64rm: | 
|  |  | 
|  | // Bit extracting and clearing instructions should execute in constant time, | 
|  | // and set flags. | 
|  | case X86::BEXTR32rm: | 
|  | case X86::BEXTR64rm: | 
|  | case X86::BEXTRI32mi: | 
|  | case X86::BEXTRI64mi: | 
|  | case X86::BZHI32rm: | 
|  | case X86::BZHI64rm: | 
|  |  | 
|  | // Basic arithmetic is constant time on the input but does set flags. | 
|  | case X86::ADC8rm: | 
|  | case X86::ADC16rm: | 
|  | case X86::ADC32rm: | 
|  | case X86::ADC64rm: | 
|  | case X86::ADCX32rm: | 
|  | case X86::ADCX64rm: | 
|  | case X86::ADD8rm: | 
|  | case X86::ADD16rm: | 
|  | case X86::ADD32rm: | 
|  | case X86::ADD64rm: | 
|  | case X86::ADOX32rm: | 
|  | case X86::ADOX64rm: | 
|  | case X86::AND8rm: | 
|  | case X86::AND16rm: | 
|  | case X86::AND32rm: | 
|  | case X86::AND64rm: | 
|  | case X86::ANDN32rm: | 
|  | case X86::ANDN64rm: | 
|  | case X86::OR8rm: | 
|  | case X86::OR16rm: | 
|  | case X86::OR32rm: | 
|  | case X86::OR64rm: | 
|  | case X86::SBB8rm: | 
|  | case X86::SBB16rm: | 
|  | case X86::SBB32rm: | 
|  | case X86::SBB64rm: | 
|  | case X86::SUB8rm: | 
|  | case X86::SUB16rm: | 
|  | case X86::SUB32rm: | 
|  | case X86::SUB64rm: | 
|  | case X86::XOR8rm: | 
|  | case X86::XOR16rm: | 
|  | case X86::XOR32rm: | 
|  | case X86::XOR64rm: | 
|  | // Check whether the EFLAGS implicit-def is dead. We assume that this will | 
|  | // always find the implicit-def because this code should only be reached | 
|  | // for instructions that do in fact implicitly def this. | 
|  | if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { | 
|  | // If we would clobber EFLAGS that are used, just bail for now. | 
|  | LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: "; | 
|  | MI.dump(); dbgs() << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, fallthrough to handle these the same as instructions that | 
|  | // don't set EFLAGS. | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | // Integer multiply w/o affecting flags is still believed to be constant | 
|  | // time on x86. Called out separately as this is among the most surprising | 
|  | // instructions to exhibit that behavior. | 
|  | case X86::MULX32rm: | 
|  | case X86::MULX64rm: | 
|  |  | 
|  | // Arithmetic instructions that are both constant time and don't set flags. | 
|  | case X86::RORX32mi: | 
|  | case X86::RORX64mi: | 
|  | case X86::SARX32rm: | 
|  | case X86::SARX64rm: | 
|  | case X86::SHLX32rm: | 
|  | case X86::SHLX64rm: | 
|  | case X86::SHRX32rm: | 
|  | case X86::SHRX64rm: | 
|  |  | 
|  | // Conversions are believed to be constant time and don't set flags. | 
|  | case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm: | 
|  | case X86::CVTTSD2SIrm:   case X86::VCVTTSD2SIrm:   case X86::VCVTTSD2SIZrm: | 
|  | case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm: | 
|  | case X86::CVTTSS2SIrm:   case X86::VCVTTSS2SIrm:   case X86::VCVTTSS2SIZrm: | 
|  | case X86::CVTSI2SDrm:    case X86::VCVTSI2SDrm:    case X86::VCVTSI2SDZrm: | 
|  | case X86::CVTSI2SSrm:    case X86::VCVTSI2SSrm:    case X86::VCVTSI2SSZrm: | 
|  | case X86::CVTSI642SDrm:  case X86::VCVTSI642SDrm:  case X86::VCVTSI642SDZrm: | 
|  | case X86::CVTSI642SSrm:  case X86::VCVTSI642SSrm:  case X86::VCVTSI642SSZrm: | 
|  | case X86::CVTSS2SDrm:    case X86::VCVTSS2SDrm:    case X86::VCVTSS2SDZrm: | 
|  | case X86::CVTSD2SSrm:    case X86::VCVTSD2SSrm:    case X86::VCVTSD2SSZrm: | 
|  | // AVX512 added unsigned integer conversions. | 
|  | case X86::VCVTTSD2USI64Zrm: | 
|  | case X86::VCVTTSD2USIZrm: | 
|  | case X86::VCVTTSS2USI64Zrm: | 
|  | case X86::VCVTTSS2USIZrm: | 
|  | case X86::VCVTUSI2SDZrm: | 
|  | case X86::VCVTUSI642SDZrm: | 
|  | case X86::VCVTUSI2SSZrm: | 
|  | case X86::VCVTUSI642SSZrm: | 
|  |  | 
|  | // Loads to register don't set flags. | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV8rm_NOREX: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::MOVSX16rm8: | 
|  | case X86::MOVSX32rm16: | 
|  | case X86::MOVSX32rm8: | 
|  | case X86::MOVSX32rm8_NOREX: | 
|  | case X86::MOVSX64rm16: | 
|  | case X86::MOVSX64rm32: | 
|  | case X86::MOVSX64rm8: | 
|  | case X86::MOVZX16rm8: | 
|  | case X86::MOVZX32rm16: | 
|  | case X86::MOVZX32rm8: | 
|  | case X86::MOVZX32rm8_NOREX: | 
|  | case X86::MOVZX64rm16: | 
|  | case X86::MOVZX64rm8: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | // Check if EFLAGS are alive by seeing if there is a def of them or they | 
|  | // live-in, and then seeing if that def is in turn used. | 
|  | for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) { | 
|  | if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) { | 
|  | // If the def is dead, then EFLAGS is not live. | 
|  | if (DefOp->isDead()) | 
|  | return false; | 
|  |  | 
|  | // Otherwise we've def'ed it, and it is live. | 
|  | return true; | 
|  | } | 
|  | // While at this instruction, also check if we use and kill EFLAGS | 
|  | // which means it isn't live. | 
|  | if (MI.killsRegister(X86::EFLAGS, &TRI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we didn't find anything conclusive (neither definitely alive or | 
|  | // definitely dead) return whether it lives into the block. | 
|  | return MBB.isLiveIn(X86::EFLAGS); | 
|  | } | 
|  |  | 
|  | /// Trace the predicate state through each of the blocks in the function, | 
|  | /// hardening everything necessary along the way. | 
|  | /// | 
|  | /// We call this routine once the initial predicate state has been established | 
|  | /// for each basic block in the function in the SSA updater. This routine traces | 
|  | /// it through the instructions within each basic block, and for non-returning | 
|  | /// blocks informs the SSA updater about the final state that lives out of the | 
|  | /// block. Along the way, it hardens any vulnerable instruction using the | 
|  | /// currently valid predicate state. We have to do these two things together | 
|  | /// because the SSA updater only works across blocks. Within a block, we track | 
|  | /// the current predicate state directly and update it as it changes. | 
|  | /// | 
|  | /// This operates in two passes over each block. First, we analyze the loads in | 
|  | /// the block to determine which strategy will be used to harden them: hardening | 
|  | /// the address or hardening the loaded value when loaded into a register | 
|  | /// amenable to hardening. We have to process these first because the two | 
|  | /// strategies may interact -- later hardening may change what strategy we wish | 
|  | /// to use. We also will analyze data dependencies between loads and avoid | 
|  | /// hardening those loads that are data dependent on a load with a hardened | 
|  | /// address. We also skip hardening loads already behind an LFENCE as that is | 
|  | /// sufficient to harden them against misspeculation. | 
|  | /// | 
|  | /// Second, we actively trace the predicate state through the block, applying | 
|  | /// the hardening steps we determined necessary in the first pass as we go. | 
|  | /// | 
|  | /// These two passes are applied to each basic block. We operate one block at a | 
|  | /// time to simplify reasoning about reachability and sequencing. | 
|  | void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden( | 
|  | MachineFunction &MF) { | 
|  | SmallPtrSet<MachineInstr *, 16> HardenPostLoad; | 
|  | SmallPtrSet<MachineInstr *, 16> HardenLoadAddr; | 
|  |  | 
|  | SmallSet<unsigned, 16> HardenedAddrRegs; | 
|  |  | 
|  | SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg; | 
|  |  | 
|  | // Track the set of load-dependent registers through the basic block. Because | 
|  | // the values of these registers have an existing data dependency on a loaded | 
|  | // value which we would have checked, we can omit any checks on them. | 
|  | SparseBitVector<> LoadDepRegs; | 
|  |  | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | // The first pass over the block: collect all the loads which can have their | 
|  | // loaded value hardened and all the loads that instead need their address | 
|  | // hardened. During this walk we propagate load dependence for address | 
|  | // hardened loads and also look for LFENCE to stop hardening wherever | 
|  | // possible. When deciding whether or not to harden the loaded value or not, | 
|  | // we check to see if any registers used in the address will have been | 
|  | // hardened at this point and if so, harden any remaining address registers | 
|  | // as that often successfully re-uses hardened addresses and minimizes | 
|  | // instructions. | 
|  | // | 
|  | // FIXME: We should consider an aggressive mode where we continue to keep as | 
|  | // many loads value hardened even when some address register hardening would | 
|  | // be free (due to reuse). | 
|  | // | 
|  | // Note that we only need this pass if we are actually hardening loads. | 
|  | if (HardenLoads) | 
|  | for (MachineInstr &MI : MBB) { | 
|  | // We naively assume that all def'ed registers of an instruction have | 
|  | // a data dependency on all of their operands. | 
|  | // FIXME: Do a more careful analysis of x86 to build a conservative | 
|  | // model here. | 
|  | if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) { | 
|  | return Op.isReg() && LoadDepRegs.test(Op.getReg()); | 
|  | })) | 
|  | for (MachineOperand &Def : MI.defs()) | 
|  | if (Def.isReg()) | 
|  | LoadDepRegs.set(Def.getReg()); | 
|  |  | 
|  | // Both Intel and AMD are guiding that they will change the semantics of | 
|  | // LFENCE to be a speculation barrier, so if we see an LFENCE, there is | 
|  | // no more need to guard things in this block. | 
|  | if (MI.getOpcode() == X86::LFENCE) | 
|  | break; | 
|  |  | 
|  | // If this instruction cannot load, nothing to do. | 
|  | if (!MI.mayLoad()) | 
|  | continue; | 
|  |  | 
|  | // Some instructions which "load" are trivially safe or unimportant. | 
|  | if (MI.getOpcode() == X86::MFENCE) | 
|  | continue; | 
|  |  | 
|  | // Extract the memory operand information about this instruction. | 
|  | // FIXME: This doesn't handle loading pseudo instructions which we often | 
|  | // could handle with similarly generic logic. We probably need to add an | 
|  | // MI-layer routine similar to the MC-layer one we use here which maps | 
|  | // pseudos much like this maps real instructions. | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  | if (MemRefBeginIdx < 0) { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "WARNING: unable to harden loading instruction: "; | 
|  | MI.dump()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | MemRefBeginIdx += X86II::getOperandBias(Desc); | 
|  |  | 
|  | MachineOperand &BaseMO = | 
|  | MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); | 
|  | MachineOperand &IndexMO = | 
|  | MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); | 
|  |  | 
|  | // If we have at least one (non-frame-index, non-RIP) register operand, | 
|  | // and neither operand is load-dependent, we need to check the load. | 
|  | unsigned BaseReg = 0, IndexReg = 0; | 
|  | if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP && | 
|  | BaseMO.getReg() != X86::NoRegister) | 
|  | BaseReg = BaseMO.getReg(); | 
|  | if (IndexMO.getReg() != X86::NoRegister) | 
|  | IndexReg = IndexMO.getReg(); | 
|  |  | 
|  | if (!BaseReg && !IndexReg) | 
|  | // No register operands! | 
|  | continue; | 
|  |  | 
|  | // If any register operand is dependent, this load is dependent and we | 
|  | // needn't check it. | 
|  | // FIXME: Is this true in the case where we are hardening loads after | 
|  | // they complete? Unclear, need to investigate. | 
|  | if ((BaseReg && LoadDepRegs.test(BaseReg)) || | 
|  | (IndexReg && LoadDepRegs.test(IndexReg))) | 
|  | continue; | 
|  |  | 
|  | // If post-load hardening is enabled, this load is compatible with | 
|  | // post-load hardening, and we aren't already going to harden one of the | 
|  | // address registers, queue it up to be hardened post-load. Notably, | 
|  | // even once hardened this won't introduce a useful dependency that | 
|  | // could prune out subsequent loads. | 
|  | if (EnablePostLoadHardening && isDataInvariantLoad(MI) && | 
|  | MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() && | 
|  | canHardenRegister(MI.getOperand(0).getReg()) && | 
|  | !HardenedAddrRegs.count(BaseReg) && | 
|  | !HardenedAddrRegs.count(IndexReg)) { | 
|  | HardenPostLoad.insert(&MI); | 
|  | HardenedAddrRegs.insert(MI.getOperand(0).getReg()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Record this instruction for address hardening and record its register | 
|  | // operands as being address-hardened. | 
|  | HardenLoadAddr.insert(&MI); | 
|  | if (BaseReg) | 
|  | HardenedAddrRegs.insert(BaseReg); | 
|  | if (IndexReg) | 
|  | HardenedAddrRegs.insert(IndexReg); | 
|  |  | 
|  | for (MachineOperand &Def : MI.defs()) | 
|  | if (Def.isReg()) | 
|  | LoadDepRegs.set(Def.getReg()); | 
|  | } | 
|  |  | 
|  | // Now re-walk the instructions in the basic block, and apply whichever | 
|  | // hardening strategy we have elected. Note that we do this in a second | 
|  | // pass specifically so that we have the complete set of instructions for | 
|  | // which we will do post-load hardening and can defer it in certain | 
|  | // circumstances. | 
|  | for (MachineInstr &MI : MBB) { | 
|  | if (HardenLoads) { | 
|  | // We cannot both require hardening the def of a load and its address. | 
|  | assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) && | 
|  | "Requested to harden both the address and def of a load!"); | 
|  |  | 
|  | // Check if this is a load whose address needs to be hardened. | 
|  | if (HardenLoadAddr.erase(&MI)) { | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  | assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!"); | 
|  |  | 
|  | MemRefBeginIdx += X86II::getOperandBias(Desc); | 
|  |  | 
|  | MachineOperand &BaseMO = | 
|  | MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); | 
|  | MachineOperand &IndexMO = | 
|  | MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); | 
|  | hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Test if this instruction is one of our post load instructions (and | 
|  | // remove it from the set if so). | 
|  | if (HardenPostLoad.erase(&MI)) { | 
|  | assert(!MI.isCall() && "Must not try to post-load harden a call!"); | 
|  |  | 
|  | // If this is a data-invariant load, we want to try and sink any | 
|  | // hardening as far as possible. | 
|  | if (isDataInvariantLoad(MI)) { | 
|  | // Sink the instruction we'll need to harden as far as we can down | 
|  | // the graph. | 
|  | MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad); | 
|  |  | 
|  | // If we managed to sink this instruction, update everything so we | 
|  | // harden that instruction when we reach it in the instruction | 
|  | // sequence. | 
|  | if (SunkMI != &MI) { | 
|  | // If in sinking there was no instruction needing to be hardened, | 
|  | // we're done. | 
|  | if (!SunkMI) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, add this to the set of defs we harden. | 
|  | HardenPostLoad.insert(SunkMI); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned HardenedReg = hardenPostLoad(MI); | 
|  |  | 
|  | // Mark the resulting hardened register as such so we don't re-harden. | 
|  | AddrRegToHardenedReg[HardenedReg] = HardenedReg; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check for an indirect call or branch that may need its input hardened | 
|  | // even if we couldn't find the specific load used, or were able to | 
|  | // avoid hardening it for some reason. Note that here we cannot break | 
|  | // out afterward as we may still need to handle any call aspect of this | 
|  | // instruction. | 
|  | if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps) | 
|  | hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg); | 
|  | } | 
|  |  | 
|  | // After we finish hardening loads we handle interprocedural hardening if | 
|  | // enabled and relevant for this instruction. | 
|  | if (!HardenInterprocedurally) | 
|  | continue; | 
|  | if (!MI.isCall() && !MI.isReturn()) | 
|  | continue; | 
|  |  | 
|  | // If this is a direct return (IE, not a tail call) just directly harden | 
|  | // it. | 
|  | if (MI.isReturn() && !MI.isCall()) { | 
|  | hardenReturnInstr(MI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise we have a call. We need to handle transferring the predicate | 
|  | // state into a call and recovering it after the call returns (unless this | 
|  | // is a tail call). | 
|  | assert(MI.isCall() && "Should only reach here for calls!"); | 
|  | tracePredStateThroughCall(MI); | 
|  | } | 
|  |  | 
|  | HardenPostLoad.clear(); | 
|  | HardenLoadAddr.clear(); | 
|  | HardenedAddrRegs.clear(); | 
|  | AddrRegToHardenedReg.clear(); | 
|  |  | 
|  | // Currently, we only track data-dependent loads within a basic block. | 
|  | // FIXME: We should see if this is necessary or if we could be more | 
|  | // aggressive here without opening up attack avenues. | 
|  | LoadDepRegs.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Save EFLAGS into the returned GPR. This can in turn be restored with | 
|  | /// `restoreEFLAGS`. | 
|  | /// | 
|  | /// Note that LLVM can only lower very simple patterns of saved and restored | 
|  | /// EFLAGS registers. The restore should always be within the same basic block | 
|  | /// as the save so that no PHI nodes are inserted. | 
|  | unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, | 
|  | DebugLoc Loc) { | 
|  | // FIXME: Hard coding this to a 32-bit register class seems weird, but matches | 
|  | // what instruction selection does. | 
|  | unsigned Reg = MRI->createVirtualRegister(&X86::GR32RegClass); | 
|  | // We directly copy the FLAGS register and rely on later lowering to clean | 
|  | // this up into the appropriate setCC instructions. | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS); | 
|  | ++NumInstsInserted; | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | /// Restore EFLAGS from the provided GPR. This should be produced by | 
|  | /// `saveEFLAGS`. | 
|  | /// | 
|  | /// This must be done within the same basic block as the save in order to | 
|  | /// reliably lower. | 
|  | void X86SpeculativeLoadHardeningPass::restoreEFLAGS( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, | 
|  | unsigned Reg) { | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg); | 
|  | ++NumInstsInserted; | 
|  | } | 
|  |  | 
|  | /// Takes the current predicate state (in a register) and merges it into the | 
|  | /// stack pointer. The state is essentially a single bit, but we merge this in | 
|  | /// a way that won't form non-canonical pointers and also will be preserved | 
|  | /// across normal stack adjustments. | 
|  | void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, | 
|  | unsigned PredStateReg) { | 
|  | unsigned TmpReg = MRI->createVirtualRegister(PS->RC); | 
|  | // FIXME: This hard codes a shift distance based on the number of bits needed | 
|  | // to stay canonical on 64-bit. We should compute this somehow and support | 
|  | // 32-bit as part of that. | 
|  | auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg) | 
|  | .addReg(PredStateReg, RegState::Kill) | 
|  | .addImm(47); | 
|  | ShiftI->addRegisterDead(X86::EFLAGS, TRI); | 
|  | ++NumInstsInserted; | 
|  | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP) | 
|  | .addReg(X86::RSP) | 
|  | .addReg(TmpReg, RegState::Kill); | 
|  | OrI->addRegisterDead(X86::EFLAGS, TRI); | 
|  | ++NumInstsInserted; | 
|  | } | 
|  |  | 
|  | /// Extracts the predicate state stored in the high bits of the stack pointer. | 
|  | unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, | 
|  | DebugLoc Loc) { | 
|  | unsigned PredStateReg = MRI->createVirtualRegister(PS->RC); | 
|  | unsigned TmpReg = MRI->createVirtualRegister(PS->RC); | 
|  |  | 
|  | // We know that the stack pointer will have any preserved predicate state in | 
|  | // its high bit. We just want to smear this across the other bits. Turns out, | 
|  | // this is exactly what an arithmetic right shift does. | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg) | 
|  | .addReg(X86::RSP); | 
|  | auto ShiftI = | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg) | 
|  | .addReg(TmpReg, RegState::Kill) | 
|  | .addImm(TRI->getRegSizeInBits(*PS->RC) - 1); | 
|  | ShiftI->addRegisterDead(X86::EFLAGS, TRI); | 
|  | ++NumInstsInserted; | 
|  |  | 
|  | return PredStateReg; | 
|  | } | 
|  |  | 
|  | void X86SpeculativeLoadHardeningPass::hardenLoadAddr( | 
|  | MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO, | 
|  | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | DebugLoc Loc = MI.getDebugLoc(); | 
|  |  | 
|  | // Check if EFLAGS are alive by seeing if there is a def of them or they | 
|  | // live-in, and then seeing if that def is in turn used. | 
|  | bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI); | 
|  |  | 
|  | SmallVector<MachineOperand *, 2> HardenOpRegs; | 
|  |  | 
|  | if (BaseMO.isFI()) { | 
|  | // A frame index is never a dynamically controllable load, so only | 
|  | // harden it if we're covering fixed address loads as well. | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "  Skipping hardening base of explicit stack frame load: "; | 
|  | MI.dump(); dbgs() << "\n"); | 
|  | } else if (BaseMO.getReg() == X86::RIP || | 
|  | BaseMO.getReg() == X86::NoRegister) { | 
|  | // For both RIP-relative addressed loads or absolute loads, we cannot | 
|  | // meaningfully harden them because the address being loaded has no | 
|  | // dynamic component. | 
|  | // | 
|  | // FIXME: When using a segment base (like TLS does) we end up with the | 
|  | // dynamic address being the base plus -1 because we can't mutate the | 
|  | // segment register here. This allows the signed 32-bit offset to point at | 
|  | // valid segment-relative addresses and load them successfully. | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "  Cannot harden base of " | 
|  | << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base") | 
|  | << " address in a load!"); | 
|  | } else { | 
|  | assert(BaseMO.isReg() && | 
|  | "Only allowed to have a frame index or register base."); | 
|  | HardenOpRegs.push_back(&BaseMO); | 
|  | } | 
|  |  | 
|  | if (IndexMO.getReg() != X86::NoRegister && | 
|  | (HardenOpRegs.empty() || | 
|  | HardenOpRegs.front()->getReg() != IndexMO.getReg())) | 
|  | HardenOpRegs.push_back(&IndexMO); | 
|  |  | 
|  | assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) && | 
|  | "Should have exactly one or two registers to harden!"); | 
|  | assert((HardenOpRegs.size() == 1 || | 
|  | HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) && | 
|  | "Should not have two of the same registers!"); | 
|  |  | 
|  | // Remove any registers that have alreaded been checked. | 
|  | llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) { | 
|  | // See if this operand's register has already been checked. | 
|  | auto It = AddrRegToHardenedReg.find(Op->getReg()); | 
|  | if (It == AddrRegToHardenedReg.end()) | 
|  | // Not checked, so retain this one. | 
|  | return false; | 
|  |  | 
|  | // Otherwise, we can directly update this operand and remove it. | 
|  | Op->setReg(It->second); | 
|  | return true; | 
|  | }); | 
|  | // If there are none left, we're done. | 
|  | if (HardenOpRegs.empty()) | 
|  | return; | 
|  |  | 
|  | // Compute the current predicate state. | 
|  | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); | 
|  |  | 
|  | auto InsertPt = MI.getIterator(); | 
|  |  | 
|  | // If EFLAGS are live and we don't have access to instructions that avoid | 
|  | // clobbering EFLAGS we need to save and restore them. This in turn makes | 
|  | // the EFLAGS no longer live. | 
|  | unsigned FlagsReg = 0; | 
|  | if (EFLAGSLive && !Subtarget->hasBMI2()) { | 
|  | EFLAGSLive = false; | 
|  | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); | 
|  | } | 
|  |  | 
|  | for (MachineOperand *Op : HardenOpRegs) { | 
|  | unsigned OpReg = Op->getReg(); | 
|  | auto *OpRC = MRI->getRegClass(OpReg); | 
|  | unsigned TmpReg = MRI->createVirtualRegister(OpRC); | 
|  |  | 
|  | // If this is a vector register, we'll need somewhat custom logic to handle | 
|  | // hardening it. | 
|  | if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) || | 
|  | OpRC->hasSuperClassEq(&X86::VR256RegClass))) { | 
|  | assert(Subtarget->hasAVX2() && "AVX2-specific register classes!"); | 
|  | bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass); | 
|  |  | 
|  | // Move our state into a vector register. | 
|  | // FIXME: We could skip this at the cost of longer encodings with AVX-512 | 
|  | // but that doesn't seem likely worth it. | 
|  | unsigned VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass); | 
|  | auto MovI = | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg) | 
|  | .addReg(StateReg); | 
|  | (void)MovI; | 
|  | ++NumInstsInserted; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting mov: "; MovI->dump(); dbgs() << "\n"); | 
|  |  | 
|  | // Broadcast it across the vector register. | 
|  | unsigned VBStateReg = MRI->createVirtualRegister(OpRC); | 
|  | auto BroadcastI = BuildMI(MBB, InsertPt, Loc, | 
|  | TII->get(Is128Bit ? X86::VPBROADCASTQrr | 
|  | : X86::VPBROADCASTQYrr), | 
|  | VBStateReg) | 
|  | .addReg(VStateReg); | 
|  | (void)BroadcastI; | 
|  | ++NumInstsInserted; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump(); | 
|  | dbgs() << "\n"); | 
|  |  | 
|  | // Merge our potential poison state into the value with a vector or. | 
|  | auto OrI = | 
|  | BuildMI(MBB, InsertPt, Loc, | 
|  | TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg) | 
|  | .addReg(VBStateReg) | 
|  | .addReg(OpReg); | 
|  | (void)OrI; | 
|  | ++NumInstsInserted; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n"); | 
|  | } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) || | 
|  | OpRC->hasSuperClassEq(&X86::VR256XRegClass) || | 
|  | OpRC->hasSuperClassEq(&X86::VR512RegClass)) { | 
|  | assert(Subtarget->hasAVX512() && "AVX512-specific register classes!"); | 
|  | bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass); | 
|  | bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass); | 
|  | if (Is128Bit || Is256Bit) | 
|  | assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!"); | 
|  |  | 
|  | // Broadcast our state into a vector register. | 
|  | unsigned VStateReg = MRI->createVirtualRegister(OpRC); | 
|  | unsigned BroadcastOp = | 
|  | Is128Bit ? X86::VPBROADCASTQrZ128r | 
|  | : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr; | 
|  | auto BroadcastI = | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg) | 
|  | .addReg(StateReg); | 
|  | (void)BroadcastI; | 
|  | ++NumInstsInserted; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump(); | 
|  | dbgs() << "\n"); | 
|  |  | 
|  | // Merge our potential poison state into the value with a vector or. | 
|  | unsigned OrOp = Is128Bit ? X86::VPORQZ128rr | 
|  | : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr; | 
|  | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg) | 
|  | .addReg(VStateReg) | 
|  | .addReg(OpReg); | 
|  | (void)OrI; | 
|  | ++NumInstsInserted; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n"); | 
|  | } else { | 
|  | // FIXME: Need to support GR32 here for 32-bit code. | 
|  | assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) && | 
|  | "Not a supported register class for address hardening!"); | 
|  |  | 
|  | if (!EFLAGSLive) { | 
|  | // Merge our potential poison state into the value with an or. | 
|  | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg) | 
|  | .addReg(StateReg) | 
|  | .addReg(OpReg); | 
|  | OrI->addRegisterDead(X86::EFLAGS, TRI); | 
|  | ++NumInstsInserted; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n"); | 
|  | } else { | 
|  | // We need to avoid touching EFLAGS so shift out all but the least | 
|  | // significant bit using the instruction that doesn't update flags. | 
|  | auto ShiftI = | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg) | 
|  | .addReg(OpReg) | 
|  | .addReg(StateReg); | 
|  | (void)ShiftI; | 
|  | ++NumInstsInserted; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting shrx: "; ShiftI->dump(); | 
|  | dbgs() << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Record this register as checked and update the operand. | 
|  | assert(!AddrRegToHardenedReg.count(Op->getReg()) && | 
|  | "Should not have checked this register yet!"); | 
|  | AddrRegToHardenedReg[Op->getReg()] = TmpReg; | 
|  | Op->setReg(TmpReg); | 
|  | ++NumAddrRegsHardened; | 
|  | } | 
|  |  | 
|  | // And restore the flags if needed. | 
|  | if (FlagsReg) | 
|  | restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); | 
|  | } | 
|  |  | 
|  | MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst( | 
|  | MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) { | 
|  | assert(isDataInvariantLoad(InitialMI) && | 
|  | "Cannot get here with a non-invariant load!"); | 
|  |  | 
|  | // See if we can sink hardening the loaded value. | 
|  | auto SinkCheckToSingleUse = | 
|  | [&](MachineInstr &MI) -> Optional<MachineInstr *> { | 
|  | unsigned DefReg = MI.getOperand(0).getReg(); | 
|  |  | 
|  | // We need to find a single use which we can sink the check. We can | 
|  | // primarily do this because many uses may already end up checked on their | 
|  | // own. | 
|  | MachineInstr *SingleUseMI = nullptr; | 
|  | for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) { | 
|  | // If we're already going to harden this use, it is data invariant and | 
|  | // within our block. | 
|  | if (HardenedInstrs.count(&UseMI)) { | 
|  | if (!isDataInvariantLoad(UseMI)) { | 
|  | // If we've already decided to harden a non-load, we must have sunk | 
|  | // some other post-load hardened instruction to it and it must itself | 
|  | // be data-invariant. | 
|  | assert(isDataInvariant(UseMI) && | 
|  | "Data variant instruction being hardened!"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is a load and the load component can't be data | 
|  | // invariant so check how this register is being used. | 
|  | const MCInstrDesc &Desc = UseMI.getDesc(); | 
|  | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  | assert(MemRefBeginIdx >= 0 && | 
|  | "Should always have mem references here!"); | 
|  | MemRefBeginIdx += X86II::getOperandBias(Desc); | 
|  |  | 
|  | MachineOperand &BaseMO = | 
|  | UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); | 
|  | MachineOperand &IndexMO = | 
|  | UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); | 
|  | if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) || | 
|  | (IndexMO.isReg() && IndexMO.getReg() == DefReg)) | 
|  | // The load uses the register as part of its address making it not | 
|  | // invariant. | 
|  | return {}; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (SingleUseMI) | 
|  | // We already have a single use, this would make two. Bail. | 
|  | return {}; | 
|  |  | 
|  | // If this single use isn't data invariant, isn't in this block, or has | 
|  | // interfering EFLAGS, we can't sink the hardening to it. | 
|  | if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent()) | 
|  | return {}; | 
|  |  | 
|  | // If this instruction defines multiple registers bail as we won't harden | 
|  | // all of them. | 
|  | if (UseMI.getDesc().getNumDefs() > 1) | 
|  | return {}; | 
|  |  | 
|  | // If this register isn't a virtual register we can't walk uses of sanely, | 
|  | // just bail. Also check that its register class is one of the ones we | 
|  | // can harden. | 
|  | unsigned UseDefReg = UseMI.getOperand(0).getReg(); | 
|  | if (!TRI->isVirtualRegister(UseDefReg) || | 
|  | !canHardenRegister(UseDefReg)) | 
|  | return {}; | 
|  |  | 
|  | SingleUseMI = &UseMI; | 
|  | } | 
|  |  | 
|  | // If SingleUseMI is still null, there is no use that needs its own | 
|  | // checking. Otherwise, it is the single use that needs checking. | 
|  | return {SingleUseMI}; | 
|  | }; | 
|  |  | 
|  | MachineInstr *MI = &InitialMI; | 
|  | while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) { | 
|  | // Update which MI we're checking now. | 
|  | MI = *SingleUse; | 
|  | if (!MI) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) { | 
|  | auto *RC = MRI->getRegClass(Reg); | 
|  | int RegBytes = TRI->getRegSizeInBits(*RC) / 8; | 
|  | if (RegBytes > 8) | 
|  | // We don't support post-load hardening of vectors. | 
|  | return false; | 
|  |  | 
|  | // If this register class is explicitly constrained to a class that doesn't | 
|  | // require REX prefix, we may not be able to satisfy that constraint when | 
|  | // emitting the hardening instructions, so bail out here. | 
|  | // FIXME: This seems like a pretty lame hack. The way this comes up is when we | 
|  | // end up both with a NOREX and REX-only register as operands to the hardening | 
|  | // instructions. It would be better to fix that code to handle this situation | 
|  | // rather than hack around it in this way. | 
|  | const TargetRegisterClass *NOREXRegClasses[] = { | 
|  | &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass, | 
|  | &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass}; | 
|  | if (RC == NOREXRegClasses[Log2_32(RegBytes)]) | 
|  | return false; | 
|  |  | 
|  | const TargetRegisterClass *GPRRegClasses[] = { | 
|  | &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass, | 
|  | &X86::GR64RegClass}; | 
|  | return RC->hasSuperClassEq(GPRRegClasses[Log2_32(RegBytes)]); | 
|  | } | 
|  |  | 
|  | /// Harden a value in a register. | 
|  | /// | 
|  | /// This is the low-level logic to fully harden a value sitting in a register | 
|  | /// against leaking during speculative execution. | 
|  | /// | 
|  | /// Unlike hardening an address that is used by a load, this routine is required | 
|  | /// to hide *all* incoming bits in the register. | 
|  | /// | 
|  | /// `Reg` must be a virtual register. Currently, it is required to be a GPR no | 
|  | /// larger than the predicate state register. FIXME: We should support vector | 
|  | /// registers here by broadcasting the predicate state. | 
|  | /// | 
|  | /// The new, hardened virtual register is returned. It will have the same | 
|  | /// register class as `Reg`. | 
|  | unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister( | 
|  | unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, | 
|  | DebugLoc Loc) { | 
|  | assert(canHardenRegister(Reg) && "Cannot harden this register!"); | 
|  | assert(TRI->isVirtualRegister(Reg) && "Cannot harden a physical register!"); | 
|  |  | 
|  | auto *RC = MRI->getRegClass(Reg); | 
|  | int Bytes = TRI->getRegSizeInBits(*RC) / 8; | 
|  |  | 
|  | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); | 
|  |  | 
|  | // FIXME: Need to teach this about 32-bit mode. | 
|  | if (Bytes != 8) { | 
|  | unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit}; | 
|  | unsigned SubRegImm = SubRegImms[Log2_32(Bytes)]; | 
|  | unsigned NarrowStateReg = MRI->createVirtualRegister(RC); | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg) | 
|  | .addReg(StateReg, 0, SubRegImm); | 
|  | StateReg = NarrowStateReg; | 
|  | } | 
|  |  | 
|  | unsigned FlagsReg = 0; | 
|  | if (isEFLAGSLive(MBB, InsertPt, *TRI)) | 
|  | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); | 
|  |  | 
|  | unsigned NewReg = MRI->createVirtualRegister(RC); | 
|  | unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr}; | 
|  | unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)]; | 
|  | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg) | 
|  | .addReg(StateReg) | 
|  | .addReg(Reg); | 
|  | OrI->addRegisterDead(X86::EFLAGS, TRI); | 
|  | ++NumInstsInserted; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n"); | 
|  |  | 
|  | if (FlagsReg) | 
|  | restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); | 
|  |  | 
|  | return NewReg; | 
|  | } | 
|  |  | 
|  | /// Harden a load by hardening the loaded value in the defined register. | 
|  | /// | 
|  | /// We can harden a non-leaking load into a register without touching the | 
|  | /// address by just hiding all of the loaded bits during misspeculation. We use | 
|  | /// an `or` instruction to do this because we set up our poison value as all | 
|  | /// ones. And the goal is just for the loaded bits to not be exposed to | 
|  | /// execution and coercing them to one is sufficient. | 
|  | /// | 
|  | /// Returns the newly hardened register. | 
|  | unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) { | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | DebugLoc Loc = MI.getDebugLoc(); | 
|  |  | 
|  | auto &DefOp = MI.getOperand(0); | 
|  | unsigned OldDefReg = DefOp.getReg(); | 
|  | auto *DefRC = MRI->getRegClass(OldDefReg); | 
|  |  | 
|  | // Because we want to completely replace the uses of this def'ed value with | 
|  | // the hardened value, create a dedicated new register that will only be used | 
|  | // to communicate the unhardened value to the hardening. | 
|  | unsigned UnhardenedReg = MRI->createVirtualRegister(DefRC); | 
|  | DefOp.setReg(UnhardenedReg); | 
|  |  | 
|  | // Now harden this register's value, getting a hardened reg that is safe to | 
|  | // use. Note that we insert the instructions to compute this *after* the | 
|  | // defining instruction, not before it. | 
|  | unsigned HardenedReg = hardenValueInRegister( | 
|  | UnhardenedReg, MBB, std::next(MI.getIterator()), Loc); | 
|  |  | 
|  | // Finally, replace the old register (which now only has the uses of the | 
|  | // original def) with the hardened register. | 
|  | MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg); | 
|  |  | 
|  | ++NumPostLoadRegsHardened; | 
|  | return HardenedReg; | 
|  | } | 
|  |  | 
|  | /// Harden a return instruction. | 
|  | /// | 
|  | /// Returns implicitly perform a load which we need to harden. Without hardening | 
|  | /// this load, an attacker my speculatively write over the return address to | 
|  | /// steer speculation of the return to an attacker controlled address. This is | 
|  | /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in | 
|  | /// this paper: | 
|  | /// https://people.csail.mit.edu/vlk/spectre11.pdf | 
|  | /// | 
|  | /// We can harden this by introducing an LFENCE that will delay any load of the | 
|  | /// return address until prior instructions have retired (and thus are not being | 
|  | /// speculated), or we can harden the address used by the implicit load: the | 
|  | /// stack pointer. | 
|  | /// | 
|  | /// If we are not using an LFENCE, hardening the stack pointer has an additional | 
|  | /// benefit: it allows us to pass the predicate state accumulated in this | 
|  | /// function back to the caller. In the absence of a BCBS attack on the return, | 
|  | /// the caller will typically be resumed and speculatively executed due to the | 
|  | /// Return Stack Buffer (RSB) prediction which is very accurate and has a high | 
|  | /// priority. It is possible that some code from the caller will be executed | 
|  | /// speculatively even during a BCBS-attacked return until the steering takes | 
|  | /// effect. Whenever this happens, the caller can recover the (poisoned) | 
|  | /// predicate state from the stack pointer and continue to harden loads. | 
|  | void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) { | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | DebugLoc Loc = MI.getDebugLoc(); | 
|  | auto InsertPt = MI.getIterator(); | 
|  |  | 
|  | if (FenceCallAndRet) | 
|  | // No need to fence here as we'll fence at the return site itself. That | 
|  | // handles more cases than we can handle here. | 
|  | return; | 
|  |  | 
|  | // Take our predicate state, shift it to the high 17 bits (so that we keep | 
|  | // pointers canonical) and merge it into RSP. This will allow the caller to | 
|  | // extract it when we return (speculatively). | 
|  | mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB)); | 
|  | } | 
|  |  | 
|  | /// Trace the predicate state through a call. | 
|  | /// | 
|  | /// There are several layers of this needed to handle the full complexity of | 
|  | /// calls. | 
|  | /// | 
|  | /// First, we need to send the predicate state into the called function. We do | 
|  | /// this by merging it into the high bits of the stack pointer. | 
|  | /// | 
|  | /// For tail calls, this is all we need to do. | 
|  | /// | 
|  | /// For calls where we might return and resume the control flow, we need to | 
|  | /// extract the predicate state from the high bits of the stack pointer after | 
|  | /// control returns from the called function. | 
|  | /// | 
|  | /// We also need to verify that we intended to return to this location in the | 
|  | /// code. An attacker might arrange for the processor to mispredict the return | 
|  | /// to this valid but incorrect return address in the program rather than the | 
|  | /// correct one. See the paper on this attack, called "ret2spec" by the | 
|  | /// researchers, here: | 
|  | /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf | 
|  | /// | 
|  | /// The way we verify that we returned to the correct location is by preserving | 
|  | /// the expected return address across the call. One technique involves taking | 
|  | /// advantage of the red-zone to load the return address from `8(%rsp)` where it | 
|  | /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can | 
|  | /// directly save the address into a register that will be preserved across the | 
|  | /// call. We compare this intended return address against the address | 
|  | /// immediately following the call (the observed return address). If these | 
|  | /// mismatch, we have detected misspeculation and can poison our predicate | 
|  | /// state. | 
|  | void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall( | 
|  | MachineInstr &MI) { | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | auto InsertPt = MI.getIterator(); | 
|  | DebugLoc Loc = MI.getDebugLoc(); | 
|  |  | 
|  | if (FenceCallAndRet) { | 
|  | if (MI.isReturn()) | 
|  | // Tail call, we don't return to this function. | 
|  | // FIXME: We should also handle noreturn calls. | 
|  | return; | 
|  |  | 
|  | // We don't need to fence before the call because the function should fence | 
|  | // in its entry. However, we do need to fence after the call returns. | 
|  | // Fencing before the return doesn't correctly handle cases where the return | 
|  | // itself is mispredicted. | 
|  | BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE)); | 
|  | ++NumInstsInserted; | 
|  | ++NumLFENCEsInserted; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // First, we transfer the predicate state into the called function by merging | 
|  | // it into the stack pointer. This will kill the current def of the state. | 
|  | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); | 
|  | mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg); | 
|  |  | 
|  | // If this call is also a return, it is a tail call and we don't need anything | 
|  | // else to handle it so just return. Also, if there are no further | 
|  | // instructions and no successors, this call does not return so we can also | 
|  | // bail. | 
|  | if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty())) | 
|  | return; | 
|  |  | 
|  | // Create a symbol to track the return address and attach it to the call | 
|  | // machine instruction. We will lower extra symbols attached to call | 
|  | // instructions as label immediately following the call. | 
|  | MCSymbol *RetSymbol = | 
|  | MF.getContext().createTempSymbol("slh_ret_addr", | 
|  | /*AlwaysAddSuffix*/ true); | 
|  | MI.setPostInstrSymbol(MF, RetSymbol); | 
|  |  | 
|  | const TargetRegisterClass *AddrRC = &X86::GR64RegClass; | 
|  | unsigned ExpectedRetAddrReg = 0; | 
|  |  | 
|  | // If we have no red zones or if the function returns twice (possibly without | 
|  | // using the `ret` instruction) like setjmp, we need to save the expected | 
|  | // return address prior to the call. | 
|  | if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone) || | 
|  | MF.exposesReturnsTwice()) { | 
|  | // If we don't have red zones, we need to compute the expected return | 
|  | // address prior to the call and store it in a register that lives across | 
|  | // the call. | 
|  | // | 
|  | // In some ways, this is doubly satisfying as a mitigation because it will | 
|  | // also successfully detect stack smashing bugs in some cases (typically, | 
|  | // when a callee-saved register is used and the callee doesn't push it onto | 
|  | // the stack). But that isn't our primary goal, so we only use it as | 
|  | // a fallback. | 
|  | // | 
|  | // FIXME: It isn't clear that this is reliable in the face of | 
|  | // rematerialization in the register allocator. We somehow need to force | 
|  | // that to not occur for this particular instruction, and instead to spill | 
|  | // or otherwise preserve the value computed *prior* to the call. | 
|  | // | 
|  | // FIXME: It is even less clear why MachineCSE can't just fold this when we | 
|  | // end up having to use identical instructions both before and after the | 
|  | // call to feed the comparison. | 
|  | ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); | 
|  | if (MF.getTarget().getCodeModel() == CodeModel::Small && | 
|  | !Subtarget->isPositionIndependent()) { | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg) | 
|  | .addSym(RetSymbol); | 
|  | } else { | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg) | 
|  | .addReg(/*Base*/ X86::RIP) | 
|  | .addImm(/*Scale*/ 1) | 
|  | .addReg(/*Index*/ 0) | 
|  | .addSym(RetSymbol) | 
|  | .addReg(/*Segment*/ 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Step past the call to handle when it returns. | 
|  | ++InsertPt; | 
|  |  | 
|  | // If we didn't pre-compute the expected return address into a register, then | 
|  | // red zones are enabled and the return address is still available on the | 
|  | // stack immediately after the call. As the very first instruction, we load it | 
|  | // into a register. | 
|  | if (!ExpectedRetAddrReg) { | 
|  | ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg) | 
|  | .addReg(/*Base*/ X86::RSP) | 
|  | .addImm(/*Scale*/ 1) | 
|  | .addReg(/*Index*/ 0) | 
|  | .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so | 
|  | // the return address is 8-bytes past it. | 
|  | .addReg(/*Segment*/ 0); | 
|  | } | 
|  |  | 
|  | // Now we extract the callee's predicate state from the stack pointer. | 
|  | unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc); | 
|  |  | 
|  | // Test the expected return address against our actual address. If we can | 
|  | // form this basic block's address as an immediate, this is easy. Otherwise | 
|  | // we compute it. | 
|  | if (MF.getTarget().getCodeModel() == CodeModel::Small && | 
|  | !Subtarget->isPositionIndependent()) { | 
|  | // FIXME: Could we fold this with the load? It would require careful EFLAGS | 
|  | // management. | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32)) | 
|  | .addReg(ExpectedRetAddrReg, RegState::Kill) | 
|  | .addSym(RetSymbol); | 
|  | } else { | 
|  | unsigned ActualRetAddrReg = MRI->createVirtualRegister(AddrRC); | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg) | 
|  | .addReg(/*Base*/ X86::RIP) | 
|  | .addImm(/*Scale*/ 1) | 
|  | .addReg(/*Index*/ 0) | 
|  | .addSym(RetSymbol) | 
|  | .addReg(/*Segment*/ 0); | 
|  | BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr)) | 
|  | .addReg(ExpectedRetAddrReg, RegState::Kill) | 
|  | .addReg(ActualRetAddrReg, RegState::Kill); | 
|  | } | 
|  |  | 
|  | // Now conditionally update the predicate state we just extracted if we ended | 
|  | // up at a different return address than expected. | 
|  | int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; | 
|  | auto CMovOp = X86::getCMovFromCond(X86::COND_NE, PredStateSizeInBytes); | 
|  |  | 
|  | unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC); | 
|  | auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg) | 
|  | .addReg(NewStateReg, RegState::Kill) | 
|  | .addReg(PS->PoisonReg); | 
|  | CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); | 
|  | ++NumInstsInserted; | 
|  | LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); | 
|  |  | 
|  | PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); | 
|  | } | 
|  |  | 
|  | /// An attacker may speculatively store over a value that is then speculatively | 
|  | /// loaded and used as the target of an indirect call or jump instruction. This | 
|  | /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described | 
|  | /// in this paper: | 
|  | /// https://people.csail.mit.edu/vlk/spectre11.pdf | 
|  | /// | 
|  | /// When this happens, the speculative execution of the call or jump will end up | 
|  | /// being steered to this attacker controlled address. While most such loads | 
|  | /// will be adequately hardened already, we want to ensure that they are | 
|  | /// definitively treated as needing post-load hardening. While address hardening | 
|  | /// is sufficient to prevent secret data from leaking to the attacker, it may | 
|  | /// not be sufficient to prevent an attacker from steering speculative | 
|  | /// execution. We forcibly unfolded all relevant loads above and so will always | 
|  | /// have an opportunity to post-load harden here, we just need to scan for cases | 
|  | /// not already flagged and add them. | 
|  | void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr( | 
|  | MachineInstr &MI, | 
|  | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::FARCALL16m: | 
|  | case X86::FARCALL32m: | 
|  | case X86::FARCALL64: | 
|  | case X86::FARJMP16m: | 
|  | case X86::FARJMP32m: | 
|  | case X86::FARJMP64: | 
|  | // We don't need to harden either far calls or far jumps as they are | 
|  | // safe from Spectre. | 
|  | return; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We should never see a loading instruction at this point, as those should | 
|  | // have been unfolded. | 
|  | assert(!MI.mayLoad() && "Found a lingering loading instruction!"); | 
|  |  | 
|  | // If the first operand isn't a register, this is a branch or call | 
|  | // instruction with an immediate operand which doesn't need to be hardened. | 
|  | if (!MI.getOperand(0).isReg()) | 
|  | return; | 
|  |  | 
|  | // For all of these, the target register is the first operand of the | 
|  | // instruction. | 
|  | auto &TargetOp = MI.getOperand(0); | 
|  | unsigned OldTargetReg = TargetOp.getReg(); | 
|  |  | 
|  | // Try to lookup a hardened version of this register. We retain a reference | 
|  | // here as we want to update the map to track any newly computed hardened | 
|  | // register. | 
|  | unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg]; | 
|  |  | 
|  | // If we don't have a hardened register yet, compute one. Otherwise, just use | 
|  | // the already hardened register. | 
|  | // | 
|  | // FIXME: It is a little suspect that we use partially hardened registers that | 
|  | // only feed addresses. The complexity of partial hardening with SHRX | 
|  | // continues to pile up. Should definitively measure its value and consider | 
|  | // eliminating it. | 
|  | if (!HardenedTargetReg) | 
|  | HardenedTargetReg = hardenValueInRegister( | 
|  | OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc()); | 
|  |  | 
|  | // Set the target operand to the hardened register. | 
|  | TargetOp.setReg(HardenedTargetReg); | 
|  |  | 
|  | ++NumCallsOrJumpsHardened; | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY, | 
|  | "X86 speculative load hardener", false, false) | 
|  | INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY, | 
|  | "X86 speculative load hardener", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() { | 
|  | return new X86SpeculativeLoadHardeningPass(); | 
|  | } |