|  | //===- StratifiedSets.h - Abstract stratified sets implementation. --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_ADT_STRATIFIEDSETS_H | 
|  | #define LLVM_ADT_STRATIFIEDSETS_H | 
|  |  | 
|  | #include "AliasAnalysisSummary.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include <bitset> | 
|  | #include <cassert> | 
|  | #include <cmath> | 
|  | #include <type_traits> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | namespace llvm { | 
|  | namespace cflaa { | 
|  | /// An index into Stratified Sets. | 
|  | typedef unsigned StratifiedIndex; | 
|  | /// NOTE: ^ This can't be a short -- bootstrapping clang has a case where | 
|  | /// ~1M sets exist. | 
|  |  | 
|  | // \brief Container of information related to a value in a StratifiedSet. | 
|  | struct StratifiedInfo { | 
|  | StratifiedIndex Index; | 
|  | /// For field sensitivity, etc. we can tack fields on here. | 
|  | }; | 
|  |  | 
|  | /// A "link" between two StratifiedSets. | 
|  | struct StratifiedLink { | 
|  | /// \brief This is a value used to signify "does not exist" where the | 
|  | /// StratifiedIndex type is used. | 
|  | /// | 
|  | /// This is used instead of Optional<StratifiedIndex> because | 
|  | /// Optional<StratifiedIndex> would eat up a considerable amount of extra | 
|  | /// memory, after struct padding/alignment is taken into account. | 
|  | static const StratifiedIndex SetSentinel; | 
|  |  | 
|  | /// The index for the set "above" current | 
|  | StratifiedIndex Above; | 
|  |  | 
|  | /// The link for the set "below" current | 
|  | StratifiedIndex Below; | 
|  |  | 
|  | /// Attributes for these StratifiedSets. | 
|  | AliasAttrs Attrs; | 
|  |  | 
|  | StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {} | 
|  |  | 
|  | bool hasBelow() const { return Below != SetSentinel; } | 
|  | bool hasAbove() const { return Above != SetSentinel; } | 
|  |  | 
|  | void clearBelow() { Below = SetSentinel; } | 
|  | void clearAbove() { Above = SetSentinel; } | 
|  | }; | 
|  |  | 
|  | /// \brief These are stratified sets, as described in "Fast algorithms for | 
|  | /// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M | 
|  | /// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets | 
|  | /// of Value*s. If two Value*s are in the same set, or if both sets have | 
|  | /// overlapping attributes, then the Value*s are said to alias. | 
|  | /// | 
|  | /// Sets may be related by position, meaning that one set may be considered as | 
|  | /// above or below another. In CFL Alias Analysis, this gives us an indication | 
|  | /// of how two variables are related; if the set of variable A is below a set | 
|  | /// containing variable B, then at some point, a variable that has interacted | 
|  | /// with B (or B itself) was either used in order to extract the variable A, or | 
|  | /// was used as storage of variable A. | 
|  | /// | 
|  | /// Sets may also have attributes (as noted above). These attributes are | 
|  | /// generally used for noting whether a variable in the set has interacted with | 
|  | /// a variable whose origins we don't quite know (i.e. globals/arguments), or if | 
|  | /// the variable may have had operations performed on it (modified in a function | 
|  | /// call). All attributes that exist in a set A must exist in all sets marked as | 
|  | /// below set A. | 
|  | template <typename T> class StratifiedSets { | 
|  | public: | 
|  | StratifiedSets() = default; | 
|  | StratifiedSets(StratifiedSets &&) = default; | 
|  | StratifiedSets &operator=(StratifiedSets &&) = default; | 
|  |  | 
|  | StratifiedSets(DenseMap<T, StratifiedInfo> Map, | 
|  | std::vector<StratifiedLink> Links) | 
|  | : Values(std::move(Map)), Links(std::move(Links)) {} | 
|  |  | 
|  | Optional<StratifiedInfo> find(const T &Elem) const { | 
|  | auto Iter = Values.find(Elem); | 
|  | if (Iter == Values.end()) | 
|  | return None; | 
|  | return Iter->second; | 
|  | } | 
|  |  | 
|  | const StratifiedLink &getLink(StratifiedIndex Index) const { | 
|  | assert(inbounds(Index)); | 
|  | return Links[Index]; | 
|  | } | 
|  |  | 
|  | private: | 
|  | DenseMap<T, StratifiedInfo> Values; | 
|  | std::vector<StratifiedLink> Links; | 
|  |  | 
|  | bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); } | 
|  | }; | 
|  |  | 
|  | /// Generic Builder class that produces StratifiedSets instances. | 
|  | /// | 
|  | /// The goal of this builder is to efficiently produce correct StratifiedSets | 
|  | /// instances. To this end, we use a few tricks: | 
|  | ///   > Set chains (A method for linking sets together) | 
|  | ///   > Set remaps (A method for marking a set as an alias [irony?] of another) | 
|  | /// | 
|  | /// ==== Set chains ==== | 
|  | /// This builder has a notion of some value A being above, below, or with some | 
|  | /// other value B: | 
|  | ///   > The `A above B` relationship implies that there is a reference edge | 
|  | ///   going from A to B. Namely, it notes that A can store anything in B's set. | 
|  | ///   > The `A below B` relationship is the opposite of `A above B`. It implies | 
|  | ///   that there's a dereference edge going from A to B. | 
|  | ///   > The `A with B` relationship states that there's an assignment edge going | 
|  | ///   from A to B, and that A and B should be treated as equals. | 
|  | /// | 
|  | /// As an example, take the following code snippet: | 
|  | /// | 
|  | /// %a = alloca i32, align 4 | 
|  | /// %ap = alloca i32*, align 8 | 
|  | /// %app = alloca i32**, align 8 | 
|  | /// store %a, %ap | 
|  | /// store %ap, %app | 
|  | /// %aw = getelementptr %ap, i32 0 | 
|  | /// | 
|  | /// Given this, the following relations exist: | 
|  | ///   - %a below %ap & %ap above %a | 
|  | ///   - %ap below %app & %app above %ap | 
|  | ///   - %aw with %ap & %ap with %aw | 
|  | /// | 
|  | /// These relations produce the following sets: | 
|  | ///   [{%a}, {%ap, %aw}, {%app}] | 
|  | /// | 
|  | /// ...Which state that the only MayAlias relationship in the above program is | 
|  | /// between %ap and %aw. | 
|  | /// | 
|  | /// Because LLVM allows arbitrary casts, code like the following needs to be | 
|  | /// supported: | 
|  | ///   %ip = alloca i64, align 8 | 
|  | ///   %ipp = alloca i64*, align 8 | 
|  | ///   %i = bitcast i64** ipp to i64 | 
|  | ///   store i64* %ip, i64** %ipp | 
|  | ///   store i64 %i, i64* %ip | 
|  | /// | 
|  | /// Which, because %ipp ends up *both* above and below %ip, is fun. | 
|  | /// | 
|  | /// This is solved by merging %i and %ipp into a single set (...which is the | 
|  | /// only way to solve this, since their bit patterns are equivalent). Any sets | 
|  | /// that ended up in between %i and %ipp at the time of merging (in this case, | 
|  | /// the set containing %ip) also get conservatively merged into the set of %i | 
|  | /// and %ipp. In short, the resulting StratifiedSet from the above code would be | 
|  | /// {%ip, %ipp, %i}. | 
|  | /// | 
|  | /// ==== Set remaps ==== | 
|  | /// More of an implementation detail than anything -- when merging sets, we need | 
|  | /// to update the numbers of all of the elements mapped to those sets. Rather | 
|  | /// than doing this at each merge, we note in the BuilderLink structure that a | 
|  | /// remap has occurred, and use this information so we can defer renumbering set | 
|  | /// elements until build time. | 
|  | template <typename T> class StratifiedSetsBuilder { | 
|  | /// \brief Represents a Stratified Set, with information about the Stratified | 
|  | /// Set above it, the set below it, and whether the current set has been | 
|  | /// remapped to another. | 
|  | struct BuilderLink { | 
|  | const StratifiedIndex Number; | 
|  |  | 
|  | BuilderLink(StratifiedIndex N) : Number(N) { | 
|  | Remap = StratifiedLink::SetSentinel; | 
|  | } | 
|  |  | 
|  | bool hasAbove() const { | 
|  | assert(!isRemapped()); | 
|  | return Link.hasAbove(); | 
|  | } | 
|  |  | 
|  | bool hasBelow() const { | 
|  | assert(!isRemapped()); | 
|  | return Link.hasBelow(); | 
|  | } | 
|  |  | 
|  | void setBelow(StratifiedIndex I) { | 
|  | assert(!isRemapped()); | 
|  | Link.Below = I; | 
|  | } | 
|  |  | 
|  | void setAbove(StratifiedIndex I) { | 
|  | assert(!isRemapped()); | 
|  | Link.Above = I; | 
|  | } | 
|  |  | 
|  | void clearBelow() { | 
|  | assert(!isRemapped()); | 
|  | Link.clearBelow(); | 
|  | } | 
|  |  | 
|  | void clearAbove() { | 
|  | assert(!isRemapped()); | 
|  | Link.clearAbove(); | 
|  | } | 
|  |  | 
|  | StratifiedIndex getBelow() const { | 
|  | assert(!isRemapped()); | 
|  | assert(hasBelow()); | 
|  | return Link.Below; | 
|  | } | 
|  |  | 
|  | StratifiedIndex getAbove() const { | 
|  | assert(!isRemapped()); | 
|  | assert(hasAbove()); | 
|  | return Link.Above; | 
|  | } | 
|  |  | 
|  | AliasAttrs getAttrs() { | 
|  | assert(!isRemapped()); | 
|  | return Link.Attrs; | 
|  | } | 
|  |  | 
|  | void setAttrs(AliasAttrs Other) { | 
|  | assert(!isRemapped()); | 
|  | Link.Attrs |= Other; | 
|  | } | 
|  |  | 
|  | bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; } | 
|  |  | 
|  | /// For initial remapping to another set | 
|  | void remapTo(StratifiedIndex Other) { | 
|  | assert(!isRemapped()); | 
|  | Remap = Other; | 
|  | } | 
|  |  | 
|  | StratifiedIndex getRemapIndex() const { | 
|  | assert(isRemapped()); | 
|  | return Remap; | 
|  | } | 
|  |  | 
|  | /// Should only be called when we're already remapped. | 
|  | void updateRemap(StratifiedIndex Other) { | 
|  | assert(isRemapped()); | 
|  | Remap = Other; | 
|  | } | 
|  |  | 
|  | /// Prefer the above functions to calling things directly on what's returned | 
|  | /// from this -- they guard against unexpected calls when the current | 
|  | /// BuilderLink is remapped. | 
|  | const StratifiedLink &getLink() const { return Link; } | 
|  |  | 
|  | private: | 
|  | StratifiedLink Link; | 
|  | StratifiedIndex Remap; | 
|  | }; | 
|  |  | 
|  | /// \brief This function performs all of the set unioning/value renumbering | 
|  | /// that we've been putting off, and generates a vector<StratifiedLink> that | 
|  | /// may be placed in a StratifiedSets instance. | 
|  | void finalizeSets(std::vector<StratifiedLink> &StratLinks) { | 
|  | DenseMap<StratifiedIndex, StratifiedIndex> Remaps; | 
|  | for (auto &Link : Links) { | 
|  | if (Link.isRemapped()) | 
|  | continue; | 
|  |  | 
|  | StratifiedIndex Number = StratLinks.size(); | 
|  | Remaps.insert(std::make_pair(Link.Number, Number)); | 
|  | StratLinks.push_back(Link.getLink()); | 
|  | } | 
|  |  | 
|  | for (auto &Link : StratLinks) { | 
|  | if (Link.hasAbove()) { | 
|  | auto &Above = linksAt(Link.Above); | 
|  | auto Iter = Remaps.find(Above.Number); | 
|  | assert(Iter != Remaps.end()); | 
|  | Link.Above = Iter->second; | 
|  | } | 
|  |  | 
|  | if (Link.hasBelow()) { | 
|  | auto &Below = linksAt(Link.Below); | 
|  | auto Iter = Remaps.find(Below.Number); | 
|  | assert(Iter != Remaps.end()); | 
|  | Link.Below = Iter->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (auto &Pair : Values) { | 
|  | auto &Info = Pair.second; | 
|  | auto &Link = linksAt(Info.Index); | 
|  | auto Iter = Remaps.find(Link.Number); | 
|  | assert(Iter != Remaps.end()); | 
|  | Info.Index = Iter->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief There's a guarantee in StratifiedLink where all bits set in a | 
|  | /// Link.externals will be set in all Link.externals "below" it. | 
|  | static void propagateAttrs(std::vector<StratifiedLink> &Links) { | 
|  | const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) { | 
|  | const auto *Link = &Links[Idx]; | 
|  | while (Link->hasAbove()) { | 
|  | Idx = Link->Above; | 
|  | Link = &Links[Idx]; | 
|  | } | 
|  | return Idx; | 
|  | }; | 
|  |  | 
|  | SmallSet<StratifiedIndex, 16> Visited; | 
|  | for (unsigned I = 0, E = Links.size(); I < E; ++I) { | 
|  | auto CurrentIndex = getHighestParentAbove(I); | 
|  | if (!Visited.insert(CurrentIndex).second) | 
|  | continue; | 
|  |  | 
|  | while (Links[CurrentIndex].hasBelow()) { | 
|  | auto &CurrentBits = Links[CurrentIndex].Attrs; | 
|  | auto NextIndex = Links[CurrentIndex].Below; | 
|  | auto &NextBits = Links[NextIndex].Attrs; | 
|  | NextBits |= CurrentBits; | 
|  | CurrentIndex = NextIndex; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// Builds a StratifiedSet from the information we've been given since either | 
|  | /// construction or the prior build() call. | 
|  | StratifiedSets<T> build() { | 
|  | std::vector<StratifiedLink> StratLinks; | 
|  | finalizeSets(StratLinks); | 
|  | propagateAttrs(StratLinks); | 
|  | Links.clear(); | 
|  | return StratifiedSets<T>(std::move(Values), std::move(StratLinks)); | 
|  | } | 
|  |  | 
|  | bool has(const T &Elem) const { return get(Elem).hasValue(); } | 
|  |  | 
|  | bool add(const T &Main) { | 
|  | if (get(Main).hasValue()) | 
|  | return false; | 
|  |  | 
|  | auto NewIndex = getNewUnlinkedIndex(); | 
|  | return addAtMerging(Main, NewIndex); | 
|  | } | 
|  |  | 
|  | /// \brief Restructures the stratified sets as necessary to make "ToAdd" in a | 
|  | /// set above "Main". There are some cases where this is not possible (see | 
|  | /// above), so we merge them such that ToAdd and Main are in the same set. | 
|  | bool addAbove(const T &Main, const T &ToAdd) { | 
|  | assert(has(Main)); | 
|  | auto Index = *indexOf(Main); | 
|  | if (!linksAt(Index).hasAbove()) | 
|  | addLinkAbove(Index); | 
|  |  | 
|  | auto Above = linksAt(Index).getAbove(); | 
|  | return addAtMerging(ToAdd, Above); | 
|  | } | 
|  |  | 
|  | /// \brief Restructures the stratified sets as necessary to make "ToAdd" in a | 
|  | /// set below "Main". There are some cases where this is not possible (see | 
|  | /// above), so we merge them such that ToAdd and Main are in the same set. | 
|  | bool addBelow(const T &Main, const T &ToAdd) { | 
|  | assert(has(Main)); | 
|  | auto Index = *indexOf(Main); | 
|  | if (!linksAt(Index).hasBelow()) | 
|  | addLinkBelow(Index); | 
|  |  | 
|  | auto Below = linksAt(Index).getBelow(); | 
|  | return addAtMerging(ToAdd, Below); | 
|  | } | 
|  |  | 
|  | bool addWith(const T &Main, const T &ToAdd) { | 
|  | assert(has(Main)); | 
|  | auto MainIndex = *indexOf(Main); | 
|  | return addAtMerging(ToAdd, MainIndex); | 
|  | } | 
|  |  | 
|  | void noteAttributes(const T &Main, AliasAttrs NewAttrs) { | 
|  | assert(has(Main)); | 
|  | auto *Info = *get(Main); | 
|  | auto &Link = linksAt(Info->Index); | 
|  | Link.setAttrs(NewAttrs); | 
|  | } | 
|  |  | 
|  | private: | 
|  | DenseMap<T, StratifiedInfo> Values; | 
|  | std::vector<BuilderLink> Links; | 
|  |  | 
|  | /// Adds the given element at the given index, merging sets if necessary. | 
|  | bool addAtMerging(const T &ToAdd, StratifiedIndex Index) { | 
|  | StratifiedInfo Info = {Index}; | 
|  | auto Pair = Values.insert(std::make_pair(ToAdd, Info)); | 
|  | if (Pair.second) | 
|  | return true; | 
|  |  | 
|  | auto &Iter = Pair.first; | 
|  | auto &IterSet = linksAt(Iter->second.Index); | 
|  | auto &ReqSet = linksAt(Index); | 
|  |  | 
|  | // Failed to add where we wanted to. Merge the sets. | 
|  | if (&IterSet != &ReqSet) | 
|  | merge(IterSet.Number, ReqSet.Number); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Gets the BuilderLink at the given index, taking set remapping into | 
|  | /// account. | 
|  | BuilderLink &linksAt(StratifiedIndex Index) { | 
|  | auto *Start = &Links[Index]; | 
|  | if (!Start->isRemapped()) | 
|  | return *Start; | 
|  |  | 
|  | auto *Current = Start; | 
|  | while (Current->isRemapped()) | 
|  | Current = &Links[Current->getRemapIndex()]; | 
|  |  | 
|  | auto NewRemap = Current->Number; | 
|  |  | 
|  | // Run through everything that has yet to be updated, and update them to | 
|  | // remap to NewRemap | 
|  | Current = Start; | 
|  | while (Current->isRemapped()) { | 
|  | auto *Next = &Links[Current->getRemapIndex()]; | 
|  | Current->updateRemap(NewRemap); | 
|  | Current = Next; | 
|  | } | 
|  |  | 
|  | return *Current; | 
|  | } | 
|  |  | 
|  | /// \brief Merges two sets into one another. Assumes that these sets are not | 
|  | /// already one in the same. | 
|  | void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) { | 
|  | assert(inbounds(Idx1) && inbounds(Idx2)); | 
|  | assert(&linksAt(Idx1) != &linksAt(Idx2) && | 
|  | "Merging a set into itself is not allowed"); | 
|  |  | 
|  | // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge | 
|  | // both the | 
|  | // given sets, and all sets between them, into one. | 
|  | if (tryMergeUpwards(Idx1, Idx2)) | 
|  | return; | 
|  |  | 
|  | if (tryMergeUpwards(Idx2, Idx1)) | 
|  | return; | 
|  |  | 
|  | // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`. | 
|  | // We therefore need to merge the two chains together. | 
|  | mergeDirect(Idx1, Idx2); | 
|  | } | 
|  |  | 
|  | /// \brief Merges two sets assuming that the set at `Idx1` is unreachable from | 
|  | /// traversing above or below the set at `Idx2`. | 
|  | void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) { | 
|  | assert(inbounds(Idx1) && inbounds(Idx2)); | 
|  |  | 
|  | auto *LinksInto = &linksAt(Idx1); | 
|  | auto *LinksFrom = &linksAt(Idx2); | 
|  | // Merging everything above LinksInto then proceeding to merge everything | 
|  | // below LinksInto becomes problematic, so we go as far "up" as possible! | 
|  | while (LinksInto->hasAbove() && LinksFrom->hasAbove()) { | 
|  | LinksInto = &linksAt(LinksInto->getAbove()); | 
|  | LinksFrom = &linksAt(LinksFrom->getAbove()); | 
|  | } | 
|  |  | 
|  | if (LinksFrom->hasAbove()) { | 
|  | LinksInto->setAbove(LinksFrom->getAbove()); | 
|  | auto &NewAbove = linksAt(LinksInto->getAbove()); | 
|  | NewAbove.setBelow(LinksInto->Number); | 
|  | } | 
|  |  | 
|  | // Merging strategy: | 
|  | //  > If neither has links below, stop. | 
|  | //  > If only `LinksInto` has links below, stop. | 
|  | //  > If only `LinksFrom` has links below, reset `LinksInto.Below` to | 
|  | //  match `LinksFrom.Below` | 
|  | //  > If both have links above, deal with those next. | 
|  | while (LinksInto->hasBelow() && LinksFrom->hasBelow()) { | 
|  | auto FromAttrs = LinksFrom->getAttrs(); | 
|  | LinksInto->setAttrs(FromAttrs); | 
|  |  | 
|  | // Remap needs to happen after getBelow(), but before | 
|  | // assignment of LinksFrom | 
|  | auto *NewLinksFrom = &linksAt(LinksFrom->getBelow()); | 
|  | LinksFrom->remapTo(LinksInto->Number); | 
|  | LinksFrom = NewLinksFrom; | 
|  | LinksInto = &linksAt(LinksInto->getBelow()); | 
|  | } | 
|  |  | 
|  | if (LinksFrom->hasBelow()) { | 
|  | LinksInto->setBelow(LinksFrom->getBelow()); | 
|  | auto &NewBelow = linksAt(LinksInto->getBelow()); | 
|  | NewBelow.setAbove(LinksInto->Number); | 
|  | } | 
|  |  | 
|  | LinksInto->setAttrs(LinksFrom->getAttrs()); | 
|  | LinksFrom->remapTo(LinksInto->Number); | 
|  | } | 
|  |  | 
|  | /// Checks to see if lowerIndex is at a level lower than upperIndex. If so, it | 
|  | /// will merge lowerIndex with upperIndex (and all of the sets between) and | 
|  | /// return true. Otherwise, it will return false. | 
|  | bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) { | 
|  | assert(inbounds(LowerIndex) && inbounds(UpperIndex)); | 
|  | auto *Lower = &linksAt(LowerIndex); | 
|  | auto *Upper = &linksAt(UpperIndex); | 
|  | if (Lower == Upper) | 
|  | return true; | 
|  |  | 
|  | SmallVector<BuilderLink *, 8> Found; | 
|  | auto *Current = Lower; | 
|  | auto Attrs = Current->getAttrs(); | 
|  | while (Current->hasAbove() && Current != Upper) { | 
|  | Found.push_back(Current); | 
|  | Attrs |= Current->getAttrs(); | 
|  | Current = &linksAt(Current->getAbove()); | 
|  | } | 
|  |  | 
|  | if (Current != Upper) | 
|  | return false; | 
|  |  | 
|  | Upper->setAttrs(Attrs); | 
|  |  | 
|  | if (Lower->hasBelow()) { | 
|  | auto NewBelowIndex = Lower->getBelow(); | 
|  | Upper->setBelow(NewBelowIndex); | 
|  | auto &NewBelow = linksAt(NewBelowIndex); | 
|  | NewBelow.setAbove(UpperIndex); | 
|  | } else { | 
|  | Upper->clearBelow(); | 
|  | } | 
|  |  | 
|  | for (const auto &Ptr : Found) | 
|  | Ptr->remapTo(Upper->Number); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Optional<const StratifiedInfo *> get(const T &Val) const { | 
|  | auto Result = Values.find(Val); | 
|  | if (Result == Values.end()) | 
|  | return None; | 
|  | return &Result->second; | 
|  | } | 
|  |  | 
|  | Optional<StratifiedInfo *> get(const T &Val) { | 
|  | auto Result = Values.find(Val); | 
|  | if (Result == Values.end()) | 
|  | return None; | 
|  | return &Result->second; | 
|  | } | 
|  |  | 
|  | Optional<StratifiedIndex> indexOf(const T &Val) { | 
|  | auto MaybeVal = get(Val); | 
|  | if (!MaybeVal.hasValue()) | 
|  | return None; | 
|  | auto *Info = *MaybeVal; | 
|  | auto &Link = linksAt(Info->Index); | 
|  | return Link.Number; | 
|  | } | 
|  |  | 
|  | StratifiedIndex addLinkBelow(StratifiedIndex Set) { | 
|  | auto At = addLinks(); | 
|  | Links[Set].setBelow(At); | 
|  | Links[At].setAbove(Set); | 
|  | return At; | 
|  | } | 
|  |  | 
|  | StratifiedIndex addLinkAbove(StratifiedIndex Set) { | 
|  | auto At = addLinks(); | 
|  | Links[At].setBelow(Set); | 
|  | Links[Set].setAbove(At); | 
|  | return At; | 
|  | } | 
|  |  | 
|  | StratifiedIndex getNewUnlinkedIndex() { return addLinks(); } | 
|  |  | 
|  | StratifiedIndex addLinks() { | 
|  | auto Link = Links.size(); | 
|  | Links.push_back(BuilderLink(Link)); | 
|  | return Link; | 
|  | } | 
|  |  | 
|  | bool inbounds(StratifiedIndex N) const { return N < Links.size(); } | 
|  | }; | 
|  | } | 
|  | } | 
|  | #endif // LLVM_ADT_STRATIFIEDSETS_H |