|  | //===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the pass that performs some optimizations with LEA | 
|  | // instructions in order to improve performance and code size. | 
|  | // Currently, it does two things: | 
|  | // 1) If there are two LEA instructions calculating addresses which only differ | 
|  | //    by displacement inside a basic block, one of them is removed. | 
|  | // 2) Address calculations in load and store instructions are replaced by | 
|  | //    existing LEA def registers where possible. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86.h" | 
|  | #include "X86InstrInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "x86-optimize-LEAs" | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden, | 
|  | cl::desc("X86: Disable LEA optimizations."), | 
|  | cl::init(false)); | 
|  |  | 
|  | STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); | 
|  | STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed"); | 
|  |  | 
|  | /// \brief Returns true if two machine operands are identical and they are not | 
|  | /// physical registers. | 
|  | static inline bool isIdenticalOp(const MachineOperand &MO1, | 
|  | const MachineOperand &MO2); | 
|  |  | 
|  | /// \brief Returns true if two address displacement operands are of the same | 
|  | /// type and use the same symbol/index/address regardless of the offset. | 
|  | static bool isSimilarDispOp(const MachineOperand &MO1, | 
|  | const MachineOperand &MO2); | 
|  |  | 
|  | /// \brief Returns true if the instruction is LEA. | 
|  | static inline bool isLEA(const MachineInstr &MI); | 
|  |  | 
|  | namespace { | 
|  | /// A key based on instruction's memory operands. | 
|  | class MemOpKey { | 
|  | public: | 
|  | MemOpKey(const MachineOperand *Base, const MachineOperand *Scale, | 
|  | const MachineOperand *Index, const MachineOperand *Segment, | 
|  | const MachineOperand *Disp) | 
|  | : Disp(Disp) { | 
|  | Operands[0] = Base; | 
|  | Operands[1] = Scale; | 
|  | Operands[2] = Index; | 
|  | Operands[3] = Segment; | 
|  | } | 
|  |  | 
|  | bool operator==(const MemOpKey &Other) const { | 
|  | // Addresses' bases, scales, indices and segments must be identical. | 
|  | for (int i = 0; i < 4; ++i) | 
|  | if (!isIdenticalOp(*Operands[i], *Other.Operands[i])) | 
|  | return false; | 
|  |  | 
|  | // Addresses' displacements don't have to be exactly the same. It only | 
|  | // matters that they use the same symbol/index/address. Immediates' or | 
|  | // offsets' differences will be taken care of during instruction | 
|  | // substitution. | 
|  | return isSimilarDispOp(*Disp, *Other.Disp); | 
|  | } | 
|  |  | 
|  | // Address' base, scale, index and segment operands. | 
|  | const MachineOperand *Operands[4]; | 
|  |  | 
|  | // Address' displacement operand. | 
|  | const MachineOperand *Disp; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Provide DenseMapInfo for MemOpKey. | 
|  | namespace llvm { | 
|  | template <> struct DenseMapInfo<MemOpKey> { | 
|  | typedef DenseMapInfo<const MachineOperand *> PtrInfo; | 
|  |  | 
|  | static inline MemOpKey getEmptyKey() { | 
|  | return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), | 
|  | PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), | 
|  | PtrInfo::getEmptyKey()); | 
|  | } | 
|  |  | 
|  | static inline MemOpKey getTombstoneKey() { | 
|  | return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), | 
|  | PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), | 
|  | PtrInfo::getTombstoneKey()); | 
|  | } | 
|  |  | 
|  | static unsigned getHashValue(const MemOpKey &Val) { | 
|  | // Checking any field of MemOpKey is enough to determine if the key is | 
|  | // empty or tombstone. | 
|  | assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key"); | 
|  | assert(Val.Disp != PtrInfo::getTombstoneKey() && | 
|  | "Cannot hash the tombstone key"); | 
|  |  | 
|  | hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1], | 
|  | *Val.Operands[2], *Val.Operands[3]); | 
|  |  | 
|  | // If the address displacement is an immediate, it should not affect the | 
|  | // hash so that memory operands which differ only be immediate displacement | 
|  | // would have the same hash. If the address displacement is something else, | 
|  | // we should reflect symbol/index/address in the hash. | 
|  | switch (Val.Disp->getType()) { | 
|  | case MachineOperand::MO_Immediate: | 
|  | break; | 
|  | case MachineOperand::MO_ConstantPoolIndex: | 
|  | case MachineOperand::MO_JumpTableIndex: | 
|  | Hash = hash_combine(Hash, Val.Disp->getIndex()); | 
|  | break; | 
|  | case MachineOperand::MO_ExternalSymbol: | 
|  | Hash = hash_combine(Hash, Val.Disp->getSymbolName()); | 
|  | break; | 
|  | case MachineOperand::MO_GlobalAddress: | 
|  | Hash = hash_combine(Hash, Val.Disp->getGlobal()); | 
|  | break; | 
|  | case MachineOperand::MO_BlockAddress: | 
|  | Hash = hash_combine(Hash, Val.Disp->getBlockAddress()); | 
|  | break; | 
|  | case MachineOperand::MO_MCSymbol: | 
|  | Hash = hash_combine(Hash, Val.Disp->getMCSymbol()); | 
|  | break; | 
|  | case MachineOperand::MO_MachineBasicBlock: | 
|  | Hash = hash_combine(Hash, Val.Disp->getMBB()); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Invalid address displacement operand"); | 
|  | } | 
|  |  | 
|  | return (unsigned)Hash; | 
|  | } | 
|  |  | 
|  | static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) { | 
|  | // Checking any field of MemOpKey is enough to determine if the key is | 
|  | // empty or tombstone. | 
|  | if (RHS.Disp == PtrInfo::getEmptyKey()) | 
|  | return LHS.Disp == PtrInfo::getEmptyKey(); | 
|  | if (RHS.Disp == PtrInfo::getTombstoneKey()) | 
|  | return LHS.Disp == PtrInfo::getTombstoneKey(); | 
|  | return LHS == RHS; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// \brief Returns a hash table key based on memory operands of \p MI. The | 
|  | /// number of the first memory operand of \p MI is specified through \p N. | 
|  | static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) { | 
|  | assert((isLEA(MI) || MI.mayLoadOrStore()) && | 
|  | "The instruction must be a LEA, a load or a store"); | 
|  | return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg), | 
|  | &MI.getOperand(N + X86::AddrScaleAmt), | 
|  | &MI.getOperand(N + X86::AddrIndexReg), | 
|  | &MI.getOperand(N + X86::AddrSegmentReg), | 
|  | &MI.getOperand(N + X86::AddrDisp)); | 
|  | } | 
|  |  | 
|  | static inline bool isIdenticalOp(const MachineOperand &MO1, | 
|  | const MachineOperand &MO2) { | 
|  | return MO1.isIdenticalTo(MO2) && | 
|  | (!MO1.isReg() || | 
|  | !TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static bool isValidDispOp(const MachineOperand &MO) { | 
|  | return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() || | 
|  | MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static bool isSimilarDispOp(const MachineOperand &MO1, | 
|  | const MachineOperand &MO2) { | 
|  | assert(isValidDispOp(MO1) && isValidDispOp(MO2) && | 
|  | "Address displacement operand is not valid"); | 
|  | return (MO1.isImm() && MO2.isImm()) || | 
|  | (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) || | 
|  | (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) || | 
|  | (MO1.isSymbol() && MO2.isSymbol() && | 
|  | MO1.getSymbolName() == MO2.getSymbolName()) || | 
|  | (MO1.isGlobal() && MO2.isGlobal() && | 
|  | MO1.getGlobal() == MO2.getGlobal()) || | 
|  | (MO1.isBlockAddress() && MO2.isBlockAddress() && | 
|  | MO1.getBlockAddress() == MO2.getBlockAddress()) || | 
|  | (MO1.isMCSymbol() && MO2.isMCSymbol() && | 
|  | MO1.getMCSymbol() == MO2.getMCSymbol()) || | 
|  | (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB()); | 
|  | } | 
|  |  | 
|  | static inline bool isLEA(const MachineInstr &MI) { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | return Opcode == X86::LEA16r || Opcode == X86::LEA32r || | 
|  | Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class OptimizeLEAPass : public MachineFunctionPass { | 
|  | public: | 
|  | OptimizeLEAPass() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | StringRef getPassName() const override { return "X86 LEA Optimize"; } | 
|  |  | 
|  | /// \brief Loop over all of the basic blocks, replacing address | 
|  | /// calculations in load and store instructions, if it's already | 
|  | /// been calculated by LEA. Also, remove redundant LEAs. | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | private: | 
|  | typedef DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>> MemOpMap; | 
|  |  | 
|  | /// \brief Returns a distance between two instructions inside one basic block. | 
|  | /// Negative result means, that instructions occur in reverse order. | 
|  | int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); | 
|  |  | 
|  | /// \brief Choose the best \p LEA instruction from the \p List to replace | 
|  | /// address calculation in \p MI instruction. Return the address displacement | 
|  | /// and the distance between \p MI and the chosen \p BestLEA in | 
|  | /// \p AddrDispShift and \p Dist. | 
|  | bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, | 
|  | const MachineInstr &MI, MachineInstr *&BestLEA, | 
|  | int64_t &AddrDispShift, int &Dist); | 
|  |  | 
|  | /// \brief Returns the difference between addresses' displacements of \p MI1 | 
|  | /// and \p MI2. The numbers of the first memory operands for the instructions | 
|  | /// are specified through \p N1 and \p N2. | 
|  | int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1, | 
|  | const MachineInstr &MI2, unsigned N2) const; | 
|  |  | 
|  | /// \brief Returns true if the \p Last LEA instruction can be replaced by the | 
|  | /// \p First. The difference between displacements of the addresses calculated | 
|  | /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper | 
|  | /// replacement of the \p Last LEA's uses with the \p First's def register. | 
|  | bool isReplaceable(const MachineInstr &First, const MachineInstr &Last, | 
|  | int64_t &AddrDispShift) const; | 
|  |  | 
|  | /// \brief Find all LEA instructions in the basic block. Also, assign position | 
|  | /// numbers to all instructions in the basic block to speed up calculation of | 
|  | /// distance between them. | 
|  | void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs); | 
|  |  | 
|  | /// \brief Removes redundant address calculations. | 
|  | bool removeRedundantAddrCalc(MemOpMap &LEAs); | 
|  |  | 
|  | /// \brief Removes LEAs which calculate similar addresses. | 
|  | bool removeRedundantLEAs(MemOpMap &LEAs); | 
|  |  | 
|  | DenseMap<const MachineInstr *, unsigned> InstrPos; | 
|  |  | 
|  | MachineRegisterInfo *MRI; | 
|  | const X86InstrInfo *TII; | 
|  | const X86RegisterInfo *TRI; | 
|  |  | 
|  | static char ID; | 
|  | }; | 
|  | char OptimizeLEAPass::ID = 0; | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); } | 
|  |  | 
|  | int OptimizeLEAPass::calcInstrDist(const MachineInstr &First, | 
|  | const MachineInstr &Last) { | 
|  | // Both instructions must be in the same basic block and they must be | 
|  | // presented in InstrPos. | 
|  | assert(Last.getParent() == First.getParent() && | 
|  | "Instructions are in different basic blocks"); | 
|  | assert(InstrPos.find(&First) != InstrPos.end() && | 
|  | InstrPos.find(&Last) != InstrPos.end() && | 
|  | "Instructions' positions are undefined"); | 
|  |  | 
|  | return InstrPos[&Last] - InstrPos[&First]; | 
|  | } | 
|  |  | 
|  | // Find the best LEA instruction in the List to replace address recalculation in | 
|  | // MI. Such LEA must meet these requirements: | 
|  | // 1) The address calculated by the LEA differs only by the displacement from | 
|  | //    the address used in MI. | 
|  | // 2) The register class of the definition of the LEA is compatible with the | 
|  | //    register class of the address base register of MI. | 
|  | // 3) Displacement of the new memory operand should fit in 1 byte if possible. | 
|  | // 4) The LEA should be as close to MI as possible, and prior to it if | 
|  | //    possible. | 
|  | bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, | 
|  | const MachineInstr &MI, | 
|  | MachineInstr *&BestLEA, | 
|  | int64_t &AddrDispShift, int &Dist) { | 
|  | const MachineFunction *MF = MI.getParent()->getParent(); | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) + | 
|  | X86II::getOperandBias(Desc); | 
|  |  | 
|  | BestLEA = nullptr; | 
|  |  | 
|  | // Loop over all LEA instructions. | 
|  | for (auto DefMI : List) { | 
|  | // Get new address displacement. | 
|  | int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1); | 
|  |  | 
|  | // Make sure address displacement fits 4 bytes. | 
|  | if (!isInt<32>(AddrDispShiftTemp)) | 
|  | continue; | 
|  |  | 
|  | // Check that LEA def register can be used as MI address base. Some | 
|  | // instructions can use a limited set of registers as address base, for | 
|  | // example MOV8mr_NOREX. We could constrain the register class of the LEA | 
|  | // def to suit MI, however since this case is very rare and hard to | 
|  | // reproduce in a test it's just more reliable to skip the LEA. | 
|  | if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != | 
|  | MRI->getRegClass(DefMI->getOperand(0).getReg())) | 
|  | continue; | 
|  |  | 
|  | // Choose the closest LEA instruction from the list, prior to MI if | 
|  | // possible. Note that we took into account resulting address displacement | 
|  | // as well. Also note that the list is sorted by the order in which the LEAs | 
|  | // occur, so the break condition is pretty simple. | 
|  | int DistTemp = calcInstrDist(*DefMI, MI); | 
|  | assert(DistTemp != 0 && | 
|  | "The distance between two different instructions cannot be zero"); | 
|  | if (DistTemp > 0 || BestLEA == nullptr) { | 
|  | // Do not update return LEA, if the current one provides a displacement | 
|  | // which fits in 1 byte, while the new candidate does not. | 
|  | if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) && | 
|  | isInt<8>(AddrDispShift)) | 
|  | continue; | 
|  |  | 
|  | BestLEA = DefMI; | 
|  | AddrDispShift = AddrDispShiftTemp; | 
|  | Dist = DistTemp; | 
|  | } | 
|  |  | 
|  | // FIXME: Maybe we should not always stop at the first LEA after MI. | 
|  | if (DistTemp < 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return BestLEA != nullptr; | 
|  | } | 
|  |  | 
|  | // Get the difference between the addresses' displacements of the two | 
|  | // instructions \p MI1 and \p MI2. The numbers of the first memory operands are | 
|  | // passed through \p N1 and \p N2. | 
|  | int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1, | 
|  | const MachineInstr &MI2, | 
|  | unsigned N2) const { | 
|  | const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp); | 
|  | const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp); | 
|  |  | 
|  | assert(isSimilarDispOp(Op1, Op2) && | 
|  | "Address displacement operands are not compatible"); | 
|  |  | 
|  | // After the assert above we can be sure that both operands are of the same | 
|  | // valid type and use the same symbol/index/address, thus displacement shift | 
|  | // calculation is rather simple. | 
|  | if (Op1.isJTI()) | 
|  | return 0; | 
|  | return Op1.isImm() ? Op1.getImm() - Op2.getImm() | 
|  | : Op1.getOffset() - Op2.getOffset(); | 
|  | } | 
|  |  | 
|  | // Check that the Last LEA can be replaced by the First LEA. To be so, | 
|  | // these requirements must be met: | 
|  | // 1) Addresses calculated by LEAs differ only by displacement. | 
|  | // 2) Def registers of LEAs belong to the same class. | 
|  | // 3) All uses of the Last LEA def register are replaceable, thus the | 
|  | //    register is used only as address base. | 
|  | bool OptimizeLEAPass::isReplaceable(const MachineInstr &First, | 
|  | const MachineInstr &Last, | 
|  | int64_t &AddrDispShift) const { | 
|  | assert(isLEA(First) && isLEA(Last) && | 
|  | "The function works only with LEA instructions"); | 
|  |  | 
|  | // Get new address displacement. | 
|  | AddrDispShift = getAddrDispShift(Last, 1, First, 1); | 
|  |  | 
|  | // Make sure that LEA def registers belong to the same class. There may be | 
|  | // instructions (like MOV8mr_NOREX) which allow a limited set of registers to | 
|  | // be used as their operands, so we must be sure that replacing one LEA | 
|  | // with another won't lead to putting a wrong register in the instruction. | 
|  | if (MRI->getRegClass(First.getOperand(0).getReg()) != | 
|  | MRI->getRegClass(Last.getOperand(0).getReg())) | 
|  | return false; | 
|  |  | 
|  | // Loop over all uses of the Last LEA to check that its def register is | 
|  | // used only as address base for memory accesses. If so, it can be | 
|  | // replaced, otherwise - no. | 
|  | for (auto &MO : MRI->use_operands(Last.getOperand(0).getReg())) { | 
|  | MachineInstr &MI = *MO.getParent(); | 
|  |  | 
|  | // Get the number of the first memory operand. | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  |  | 
|  | // If the use instruction has no memory operand - the LEA is not | 
|  | // replaceable. | 
|  | if (MemOpNo < 0) | 
|  | return false; | 
|  |  | 
|  | MemOpNo += X86II::getOperandBias(Desc); | 
|  |  | 
|  | // If the address base of the use instruction is not the LEA def register - | 
|  | // the LEA is not replaceable. | 
|  | if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO)) | 
|  | return false; | 
|  |  | 
|  | // If the LEA def register is used as any other operand of the use | 
|  | // instruction - the LEA is not replaceable. | 
|  | for (unsigned i = 0; i < MI.getNumOperands(); i++) | 
|  | if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) && | 
|  | isIdenticalOp(MI.getOperand(i), MO)) | 
|  | return false; | 
|  |  | 
|  | // Check that the new address displacement will fit 4 bytes. | 
|  | if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() && | 
|  | !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() + | 
|  | AddrDispShift)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) { | 
|  | unsigned Pos = 0; | 
|  | for (auto &MI : MBB) { | 
|  | // Assign the position number to the instruction. Note that we are going to | 
|  | // move some instructions during the optimization however there will never | 
|  | // be a need to move two instructions before any selected instruction. So to | 
|  | // avoid multiple positions' updates during moves we just increase position | 
|  | // counter by two leaving a free space for instructions which will be moved. | 
|  | InstrPos[&MI] = Pos += 2; | 
|  |  | 
|  | if (isLEA(MI)) | 
|  | LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to find load and store instructions which recalculate addresses already | 
|  | // calculated by some LEA and replace their memory operands with its def | 
|  | // register. | 
|  | bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) { | 
|  | bool Changed = false; | 
|  |  | 
|  | assert(!LEAs.empty()); | 
|  | MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent(); | 
|  |  | 
|  | // Process all instructions in basic block. | 
|  | for (auto I = MBB->begin(), E = MBB->end(); I != E;) { | 
|  | MachineInstr &MI = *I++; | 
|  |  | 
|  | // Instruction must be load or store. | 
|  | if (!MI.mayLoadOrStore()) | 
|  | continue; | 
|  |  | 
|  | // Get the number of the first memory operand. | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  |  | 
|  | // If instruction has no memory operand - skip it. | 
|  | if (MemOpNo < 0) | 
|  | continue; | 
|  |  | 
|  | MemOpNo += X86II::getOperandBias(Desc); | 
|  |  | 
|  | // Get the best LEA instruction to replace address calculation. | 
|  | MachineInstr *DefMI; | 
|  | int64_t AddrDispShift; | 
|  | int Dist; | 
|  | if (!chooseBestLEA(LEAs[getMemOpKey(MI, MemOpNo)], MI, DefMI, AddrDispShift, | 
|  | Dist)) | 
|  | continue; | 
|  |  | 
|  | // If LEA occurs before current instruction, we can freely replace | 
|  | // the instruction. If LEA occurs after, we can lift LEA above the | 
|  | // instruction and this way to be able to replace it. Since LEA and the | 
|  | // instruction have similar memory operands (thus, the same def | 
|  | // instructions for these operands), we can always do that, without | 
|  | // worries of using registers before their defs. | 
|  | if (Dist < 0) { | 
|  | DefMI->removeFromParent(); | 
|  | MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); | 
|  | InstrPos[DefMI] = InstrPos[&MI] - 1; | 
|  |  | 
|  | // Make sure the instructions' position numbers are sane. | 
|  | assert(((InstrPos[DefMI] == 1 && | 
|  | MachineBasicBlock::iterator(DefMI) == MBB->begin()) || | 
|  | InstrPos[DefMI] > | 
|  | InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) && | 
|  | "Instruction positioning is broken"); | 
|  | } | 
|  |  | 
|  | // Since we can possibly extend register lifetime, clear kill flags. | 
|  | MRI->clearKillFlags(DefMI->getOperand(0).getReg()); | 
|  |  | 
|  | ++NumSubstLEAs; | 
|  | DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); | 
|  |  | 
|  | // Change instruction operands. | 
|  | MI.getOperand(MemOpNo + X86::AddrBaseReg) | 
|  | .ChangeToRegister(DefMI->getOperand(0).getReg(), false); | 
|  | MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); | 
|  | MI.getOperand(MemOpNo + X86::AddrIndexReg) | 
|  | .ChangeToRegister(X86::NoRegister, false); | 
|  | MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); | 
|  | MI.getOperand(MemOpNo + X86::AddrSegmentReg) | 
|  | .ChangeToRegister(X86::NoRegister, false); | 
|  |  | 
|  | DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); | 
|  |  | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Try to find similar LEAs in the list and replace one with another. | 
|  | bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // Loop over all entries in the table. | 
|  | for (auto &E : LEAs) { | 
|  | auto &List = E.second; | 
|  |  | 
|  | // Loop over all LEA pairs. | 
|  | auto I1 = List.begin(); | 
|  | while (I1 != List.end()) { | 
|  | MachineInstr &First = **I1; | 
|  | auto I2 = std::next(I1); | 
|  | while (I2 != List.end()) { | 
|  | MachineInstr &Last = **I2; | 
|  | int64_t AddrDispShift; | 
|  |  | 
|  | // LEAs should be in occurrence order in the list, so we can freely | 
|  | // replace later LEAs with earlier ones. | 
|  | assert(calcInstrDist(First, Last) > 0 && | 
|  | "LEAs must be in occurrence order in the list"); | 
|  |  | 
|  | // Check that the Last LEA instruction can be replaced by the First. | 
|  | if (!isReplaceable(First, Last, AddrDispShift)) { | 
|  | ++I2; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Loop over all uses of the Last LEA and update their operands. Note | 
|  | // that the correctness of this has already been checked in the | 
|  | // isReplaceable function. | 
|  | for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()), | 
|  | UE = MRI->use_end(); | 
|  | UI != UE;) { | 
|  | MachineOperand &MO = *UI++; | 
|  | MachineInstr &MI = *MO.getParent(); | 
|  |  | 
|  | // Get the number of the first memory operand. | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | int MemOpNo = | 
|  | X86II::getMemoryOperandNo(Desc.TSFlags) + | 
|  | X86II::getOperandBias(Desc); | 
|  |  | 
|  | // Update address base. | 
|  | MO.setReg(First.getOperand(0).getReg()); | 
|  |  | 
|  | // Update address disp. | 
|  | MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp); | 
|  | if (Op.isImm()) | 
|  | Op.setImm(Op.getImm() + AddrDispShift); | 
|  | else if (!Op.isJTI()) | 
|  | Op.setOffset(Op.getOffset() + AddrDispShift); | 
|  | } | 
|  |  | 
|  | // Since we can possibly extend register lifetime, clear kill flags. | 
|  | MRI->clearKillFlags(First.getOperand(0).getReg()); | 
|  |  | 
|  | ++NumRedundantLEAs; | 
|  | DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump();); | 
|  |  | 
|  | // By this moment, all of the Last LEA's uses must be replaced. So we | 
|  | // can freely remove it. | 
|  | assert(MRI->use_empty(Last.getOperand(0).getReg()) && | 
|  | "The LEA's def register must have no uses"); | 
|  | Last.eraseFromParent(); | 
|  |  | 
|  | // Erase removed LEA from the list. | 
|  | I2 = List.erase(I2); | 
|  |  | 
|  | Changed = true; | 
|  | } | 
|  | ++I1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { | 
|  | bool Changed = false; | 
|  |  | 
|  | if (DisableX86LEAOpt || skipFunction(*MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | MRI = &MF.getRegInfo(); | 
|  | TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); | 
|  | TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); | 
|  |  | 
|  | // Process all basic blocks. | 
|  | for (auto &MBB : MF) { | 
|  | MemOpMap LEAs; | 
|  | InstrPos.clear(); | 
|  |  | 
|  | // Find all LEA instructions in basic block. | 
|  | findLEAs(MBB, LEAs); | 
|  |  | 
|  | // If current basic block has no LEAs, move on to the next one. | 
|  | if (LEAs.empty()) | 
|  | continue; | 
|  |  | 
|  | // Remove redundant LEA instructions. | 
|  | Changed |= removeRedundantLEAs(LEAs); | 
|  |  | 
|  | // Remove redundant address calculations. Do it only for -Os/-Oz since only | 
|  | // a code size gain is expected from this part of the pass. | 
|  | if (MF.getFunction()->optForSize()) | 
|  | Changed |= removeRedundantAddrCalc(LEAs); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } |