|  | //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Peephole optimize the CFG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetOperations.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/EHPersonalities.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/NoFolder.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <climits> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <map> | 
|  | #include <set> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "simplifycfg" | 
|  |  | 
|  | // Chosen as 2 so as to be cheap, but still to have enough power to fold | 
|  | // a select, so the "clamp" idiom (of a min followed by a max) will be caught. | 
|  | // To catch this, we need to fold a compare and a select, hence '2' being the | 
|  | // minimum reasonable default. | 
|  | static cl::opt<unsigned> PHINodeFoldingThreshold( | 
|  | "phi-node-folding-threshold", cl::Hidden, cl::init(2), | 
|  | cl::desc( | 
|  | "Control the amount of phi node folding to perform (default = 2)")); | 
|  |  | 
|  | static cl::opt<bool> DupRet( | 
|  | "simplifycfg-dup-ret", cl::Hidden, cl::init(false), | 
|  | cl::desc("Duplicate return instructions into unconditional branches")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), | 
|  | cl::desc("Sink common instructions down to the end block")); | 
|  |  | 
|  | static cl::opt<bool> HoistCondStores( | 
|  | "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), | 
|  | cl::desc("Hoist conditional stores if an unconditional store precedes")); | 
|  |  | 
|  | static cl::opt<bool> MergeCondStores( | 
|  | "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), | 
|  | cl::desc("Hoist conditional stores even if an unconditional store does not " | 
|  | "precede - hoist multiple conditional stores into a single " | 
|  | "predicated store")); | 
|  |  | 
|  | static cl::opt<bool> MergeCondStoresAggressively( | 
|  | "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), | 
|  | cl::desc("When merging conditional stores, do so even if the resultant " | 
|  | "basic blocks are unlikely to be if-converted as a result")); | 
|  |  | 
|  | static cl::opt<bool> SpeculateOneExpensiveInst( | 
|  | "speculate-one-expensive-inst", cl::Hidden, cl::init(true), | 
|  | cl::desc("Allow exactly one expensive instruction to be speculatively " | 
|  | "executed")); | 
|  |  | 
|  | static cl::opt<unsigned> MaxSpeculationDepth( | 
|  | "max-speculation-depth", cl::Hidden, cl::init(10), | 
|  | cl::desc("Limit maximum recursion depth when calculating costs of " | 
|  | "speculatively executed instructions")); | 
|  |  | 
|  | STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); | 
|  | STATISTIC(NumLinearMaps, | 
|  | "Number of switch instructions turned into linear mapping"); | 
|  | STATISTIC(NumLookupTables, | 
|  | "Number of switch instructions turned into lookup tables"); | 
|  | STATISTIC( | 
|  | NumLookupTablesHoles, | 
|  | "Number of switch instructions turned into lookup tables (holes checked)"); | 
|  | STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); | 
|  | STATISTIC(NumSinkCommons, | 
|  | "Number of common instructions sunk down to the end block"); | 
|  | STATISTIC(NumSpeculations, "Number of speculative executed instructions"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // The first field contains the value that the switch produces when a certain | 
|  | // case group is selected, and the second field is a vector containing the | 
|  | // cases composing the case group. | 
|  | using SwitchCaseResultVectorTy = | 
|  | SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; | 
|  |  | 
|  | // The first field contains the phi node that generates a result of the switch | 
|  | // and the second field contains the value generated for a certain case in the | 
|  | // switch for that PHI. | 
|  | using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; | 
|  |  | 
|  | /// ValueEqualityComparisonCase - Represents a case of a switch. | 
|  | struct ValueEqualityComparisonCase { | 
|  | ConstantInt *Value; | 
|  | BasicBlock *Dest; | 
|  |  | 
|  | ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) | 
|  | : Value(Value), Dest(Dest) {} | 
|  |  | 
|  | bool operator<(ValueEqualityComparisonCase RHS) const { | 
|  | // Comparing pointers is ok as we only rely on the order for uniquing. | 
|  | return Value < RHS.Value; | 
|  | } | 
|  |  | 
|  | bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } | 
|  | }; | 
|  |  | 
|  | class SimplifyCFGOpt { | 
|  | const TargetTransformInfo &TTI; | 
|  | const DataLayout &DL; | 
|  | SmallPtrSetImpl<BasicBlock *> *LoopHeaders; | 
|  | const SimplifyCFGOptions &Options; | 
|  |  | 
|  | Value *isValueEqualityComparison(TerminatorInst *TI); | 
|  | BasicBlock *GetValueEqualityComparisonCases( | 
|  | TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); | 
|  | bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, | 
|  | BasicBlock *Pred, | 
|  | IRBuilder<> &Builder); | 
|  | bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, | 
|  | IRBuilder<> &Builder); | 
|  |  | 
|  | bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); | 
|  | bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); | 
|  | bool SimplifySingleResume(ResumeInst *RI); | 
|  | bool SimplifyCommonResume(ResumeInst *RI); | 
|  | bool SimplifyCleanupReturn(CleanupReturnInst *RI); | 
|  | bool SimplifyUnreachable(UnreachableInst *UI); | 
|  | bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); | 
|  | bool SimplifyIndirectBr(IndirectBrInst *IBI); | 
|  | bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); | 
|  | bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); | 
|  |  | 
|  | public: | 
|  | SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, | 
|  | SmallPtrSetImpl<BasicBlock *> *LoopHeaders, | 
|  | const SimplifyCFGOptions &Opts) | 
|  | : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} | 
|  |  | 
|  | bool run(BasicBlock *BB); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Return true if it is safe to merge these two | 
|  | /// terminator instructions together. | 
|  | static bool | 
|  | SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, | 
|  | SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { | 
|  | if (SI1 == SI2) | 
|  | return false; // Can't merge with self! | 
|  |  | 
|  | // It is not safe to merge these two switch instructions if they have a common | 
|  | // successor, and if that successor has a PHI node, and if *that* PHI node has | 
|  | // conflicting incoming values from the two switch blocks. | 
|  | BasicBlock *SI1BB = SI1->getParent(); | 
|  | BasicBlock *SI2BB = SI2->getParent(); | 
|  |  | 
|  | SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); | 
|  | bool Fail = false; | 
|  | for (BasicBlock *Succ : successors(SI2BB)) | 
|  | if (SI1Succs.count(Succ)) | 
|  | for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { | 
|  | PHINode *PN = cast<PHINode>(BBI); | 
|  | if (PN->getIncomingValueForBlock(SI1BB) != | 
|  | PN->getIncomingValueForBlock(SI2BB)) { | 
|  | if (FailBlocks) | 
|  | FailBlocks->insert(Succ); | 
|  | Fail = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return !Fail; | 
|  | } | 
|  |  | 
|  | /// Return true if it is safe and profitable to merge these two terminator | 
|  | /// instructions together, where SI1 is an unconditional branch. PhiNodes will | 
|  | /// store all PHI nodes in common successors. | 
|  | static bool | 
|  | isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, | 
|  | Instruction *Cond, | 
|  | SmallVectorImpl<PHINode *> &PhiNodes) { | 
|  | if (SI1 == SI2) | 
|  | return false; // Can't merge with self! | 
|  | assert(SI1->isUnconditional() && SI2->isConditional()); | 
|  |  | 
|  | // We fold the unconditional branch if we can easily update all PHI nodes in | 
|  | // common successors: | 
|  | // 1> We have a constant incoming value for the conditional branch; | 
|  | // 2> We have "Cond" as the incoming value for the unconditional branch; | 
|  | // 3> SI2->getCondition() and Cond have same operands. | 
|  | CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); | 
|  | if (!Ci2) | 
|  | return false; | 
|  | if (!(Cond->getOperand(0) == Ci2->getOperand(0) && | 
|  | Cond->getOperand(1) == Ci2->getOperand(1)) && | 
|  | !(Cond->getOperand(0) == Ci2->getOperand(1) && | 
|  | Cond->getOperand(1) == Ci2->getOperand(0))) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *SI1BB = SI1->getParent(); | 
|  | BasicBlock *SI2BB = SI2->getParent(); | 
|  | SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); | 
|  | for (BasicBlock *Succ : successors(SI2BB)) | 
|  | if (SI1Succs.count(Succ)) | 
|  | for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { | 
|  | PHINode *PN = cast<PHINode>(BBI); | 
|  | if (PN->getIncomingValueForBlock(SI1BB) != Cond || | 
|  | !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) | 
|  | return false; | 
|  | PhiNodes.push_back(PN); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Update PHI nodes in Succ to indicate that there will now be entries in it | 
|  | /// from the 'NewPred' block. The values that will be flowing into the PHI nodes | 
|  | /// will be the same as those coming in from ExistPred, an existing predecessor | 
|  | /// of Succ. | 
|  | static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, | 
|  | BasicBlock *ExistPred) { | 
|  | for (PHINode &PN : Succ->phis()) | 
|  | PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); | 
|  | } | 
|  |  | 
|  | /// Compute an abstract "cost" of speculating the given instruction, | 
|  | /// which is assumed to be safe to speculate. TCC_Free means cheap, | 
|  | /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively | 
|  | /// expensive. | 
|  | static unsigned ComputeSpeculationCost(const User *I, | 
|  | const TargetTransformInfo &TTI) { | 
|  | assert(isSafeToSpeculativelyExecute(I) && | 
|  | "Instruction is not safe to speculatively execute!"); | 
|  | return TTI.getUserCost(I); | 
|  | } | 
|  |  | 
|  | /// If we have a merge point of an "if condition" as accepted above, | 
|  | /// return true if the specified value dominates the block.  We | 
|  | /// don't handle the true generality of domination here, just a special case | 
|  | /// which works well enough for us. | 
|  | /// | 
|  | /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to | 
|  | /// see if V (which must be an instruction) and its recursive operands | 
|  | /// that do not dominate BB have a combined cost lower than CostRemaining and | 
|  | /// are non-trapping.  If both are true, the instruction is inserted into the | 
|  | /// set and true is returned. | 
|  | /// | 
|  | /// The cost for most non-trapping instructions is defined as 1 except for | 
|  | /// Select whose cost is 2. | 
|  | /// | 
|  | /// After this function returns, CostRemaining is decreased by the cost of | 
|  | /// V plus its non-dominating operands.  If that cost is greater than | 
|  | /// CostRemaining, false is returned and CostRemaining is undefined. | 
|  | static bool DominatesMergePoint(Value *V, BasicBlock *BB, | 
|  | SmallPtrSetImpl<Instruction *> *AggressiveInsts, | 
|  | unsigned &CostRemaining, | 
|  | const TargetTransformInfo &TTI, | 
|  | unsigned Depth = 0) { | 
|  | // It is possible to hit a zero-cost cycle (phi/gep instructions for example), | 
|  | // so limit the recursion depth. | 
|  | // TODO: While this recursion limit does prevent pathological behavior, it | 
|  | // would be better to track visited instructions to avoid cycles. | 
|  | if (Depth == MaxSpeculationDepth) | 
|  | return false; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) { | 
|  | // Non-instructions all dominate instructions, but not all constantexprs | 
|  | // can be executed unconditionally. | 
|  | if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) | 
|  | if (C->canTrap()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | BasicBlock *PBB = I->getParent(); | 
|  |  | 
|  | // We don't want to allow weird loops that might have the "if condition" in | 
|  | // the bottom of this block. | 
|  | if (PBB == BB) | 
|  | return false; | 
|  |  | 
|  | // If this instruction is defined in a block that contains an unconditional | 
|  | // branch to BB, then it must be in the 'conditional' part of the "if | 
|  | // statement".  If not, it definitely dominates the region. | 
|  | BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); | 
|  | if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) | 
|  | return true; | 
|  |  | 
|  | // If we aren't allowing aggressive promotion anymore, then don't consider | 
|  | // instructions in the 'if region'. | 
|  | if (!AggressiveInsts) | 
|  | return false; | 
|  |  | 
|  | // If we have seen this instruction before, don't count it again. | 
|  | if (AggressiveInsts->count(I)) | 
|  | return true; | 
|  |  | 
|  | // Okay, it looks like the instruction IS in the "condition".  Check to | 
|  | // see if it's a cheap instruction to unconditionally compute, and if it | 
|  | // only uses stuff defined outside of the condition.  If so, hoist it out. | 
|  | if (!isSafeToSpeculativelyExecute(I)) | 
|  | return false; | 
|  |  | 
|  | unsigned Cost = ComputeSpeculationCost(I, TTI); | 
|  |  | 
|  | // Allow exactly one instruction to be speculated regardless of its cost | 
|  | // (as long as it is safe to do so). | 
|  | // This is intended to flatten the CFG even if the instruction is a division | 
|  | // or other expensive operation. The speculation of an expensive instruction | 
|  | // is expected to be undone in CodeGenPrepare if the speculation has not | 
|  | // enabled further IR optimizations. | 
|  | if (Cost > CostRemaining && | 
|  | (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) | 
|  | return false; | 
|  |  | 
|  | // Avoid unsigned wrap. | 
|  | CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; | 
|  |  | 
|  | // Okay, we can only really hoist these out if their operands do | 
|  | // not take us over the cost threshold. | 
|  | for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) | 
|  | if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, | 
|  | Depth + 1)) | 
|  | return false; | 
|  | // Okay, it's safe to do this!  Remember this instruction. | 
|  | AggressiveInsts->insert(I); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Extract ConstantInt from value, looking through IntToPtr | 
|  | /// and PointerNullValue. Return NULL if value is not a constant int. | 
|  | static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { | 
|  | // Normal constant int. | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(V); | 
|  | if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) | 
|  | return CI; | 
|  |  | 
|  | // This is some kind of pointer constant. Turn it into a pointer-sized | 
|  | // ConstantInt if possible. | 
|  | IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); | 
|  |  | 
|  | // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). | 
|  | if (isa<ConstantPointerNull>(V)) | 
|  | return ConstantInt::get(PtrTy, 0); | 
|  |  | 
|  | // IntToPtr const int. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) | 
|  | if (CE->getOpcode() == Instruction::IntToPtr) | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { | 
|  | // The constant is very likely to have the right type already. | 
|  | if (CI->getType() == PtrTy) | 
|  | return CI; | 
|  | else | 
|  | return cast<ConstantInt>( | 
|  | ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Given a chain of or (||) or and (&&) comparison of a value against a | 
|  | /// constant, this will try to recover the information required for a switch | 
|  | /// structure. | 
|  | /// It will depth-first traverse the chain of comparison, seeking for patterns | 
|  | /// like %a == 12 or %a < 4 and combine them to produce a set of integer | 
|  | /// representing the different cases for the switch. | 
|  | /// Note that if the chain is composed of '||' it will build the set of elements | 
|  | /// that matches the comparisons (i.e. any of this value validate the chain) | 
|  | /// while for a chain of '&&' it will build the set elements that make the test | 
|  | /// fail. | 
|  | struct ConstantComparesGatherer { | 
|  | const DataLayout &DL; | 
|  |  | 
|  | /// Value found for the switch comparison | 
|  | Value *CompValue = nullptr; | 
|  |  | 
|  | /// Extra clause to be checked before the switch | 
|  | Value *Extra = nullptr; | 
|  |  | 
|  | /// Set of integers to match in switch | 
|  | SmallVector<ConstantInt *, 8> Vals; | 
|  |  | 
|  | /// Number of comparisons matched in the and/or chain | 
|  | unsigned UsedICmps = 0; | 
|  |  | 
|  | /// Construct and compute the result for the comparison instruction Cond | 
|  | ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { | 
|  | gather(Cond); | 
|  | } | 
|  |  | 
|  | ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; | 
|  | ConstantComparesGatherer & | 
|  | operator=(const ConstantComparesGatherer &) = delete; | 
|  |  | 
|  | private: | 
|  | /// Try to set the current value used for the comparison, it succeeds only if | 
|  | /// it wasn't set before or if the new value is the same as the old one | 
|  | bool setValueOnce(Value *NewVal) { | 
|  | if (CompValue && CompValue != NewVal) | 
|  | return false; | 
|  | CompValue = NewVal; | 
|  | return (CompValue != nullptr); | 
|  | } | 
|  |  | 
|  | /// Try to match Instruction "I" as a comparison against a constant and | 
|  | /// populates the array Vals with the set of values that match (or do not | 
|  | /// match depending on isEQ). | 
|  | /// Return false on failure. On success, the Value the comparison matched | 
|  | /// against is placed in CompValue. | 
|  | /// If CompValue is already set, the function is expected to fail if a match | 
|  | /// is found but the value compared to is different. | 
|  | bool matchInstruction(Instruction *I, bool isEQ) { | 
|  | // If this is an icmp against a constant, handle this as one of the cases. | 
|  | ICmpInst *ICI; | 
|  | ConstantInt *C; | 
|  | if (!((ICI = dyn_cast<ICmpInst>(I)) && | 
|  | (C = GetConstantInt(I->getOperand(1), DL)))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Value *RHSVal; | 
|  | const APInt *RHSC; | 
|  |  | 
|  | // Pattern match a special case | 
|  | // (x & ~2^z) == y --> x == y || x == y|2^z | 
|  | // This undoes a transformation done by instcombine to fuse 2 compares. | 
|  | if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { | 
|  | // It's a little bit hard to see why the following transformations are | 
|  | // correct. Here is a CVC3 program to verify them for 64-bit values: | 
|  |  | 
|  | /* | 
|  | ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); | 
|  | x    : BITVECTOR(64); | 
|  | y    : BITVECTOR(64); | 
|  | z    : BITVECTOR(64); | 
|  | mask : BITVECTOR(64) = BVSHL(ONE, z); | 
|  | QUERY( (y & ~mask = y) => | 
|  | ((x & ~mask = y) <=> (x = y OR x = (y |  mask))) | 
|  | ); | 
|  | QUERY( (y |  mask = y) => | 
|  | ((x |  mask = y) <=> (x = y OR x = (y & ~mask))) | 
|  | ); | 
|  | */ | 
|  |  | 
|  | // Please note that each pattern must be a dual implication (<--> or | 
|  | // iff). One directional implication can create spurious matches. If the | 
|  | // implication is only one-way, an unsatisfiable condition on the left | 
|  | // side can imply a satisfiable condition on the right side. Dual | 
|  | // implication ensures that satisfiable conditions are transformed to | 
|  | // other satisfiable conditions and unsatisfiable conditions are | 
|  | // transformed to other unsatisfiable conditions. | 
|  |  | 
|  | // Here is a concrete example of a unsatisfiable condition on the left | 
|  | // implying a satisfiable condition on the right: | 
|  | // | 
|  | // mask = (1 << z) | 
|  | // (x & ~mask) == y  --> (x == y || x == (y | mask)) | 
|  | // | 
|  | // Substituting y = 3, z = 0 yields: | 
|  | // (x & -2) == 3 --> (x == 3 || x == 2) | 
|  |  | 
|  | // Pattern match a special case: | 
|  | /* | 
|  | QUERY( (y & ~mask = y) => | 
|  | ((x & ~mask = y) <=> (x = y OR x = (y |  mask))) | 
|  | ); | 
|  | */ | 
|  | if (match(ICI->getOperand(0), | 
|  | m_And(m_Value(RHSVal), m_APInt(RHSC)))) { | 
|  | APInt Mask = ~*RHSC; | 
|  | if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { | 
|  | // If we already have a value for the switch, it has to match! | 
|  | if (!setValueOnce(RHSVal)) | 
|  | return false; | 
|  |  | 
|  | Vals.push_back(C); | 
|  | Vals.push_back( | 
|  | ConstantInt::get(C->getContext(), | 
|  | C->getValue() | Mask)); | 
|  | UsedICmps++; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pattern match a special case: | 
|  | /* | 
|  | QUERY( (y |  mask = y) => | 
|  | ((x |  mask = y) <=> (x = y OR x = (y & ~mask))) | 
|  | ); | 
|  | */ | 
|  | if (match(ICI->getOperand(0), | 
|  | m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { | 
|  | APInt Mask = *RHSC; | 
|  | if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { | 
|  | // If we already have a value for the switch, it has to match! | 
|  | if (!setValueOnce(RHSVal)) | 
|  | return false; | 
|  |  | 
|  | Vals.push_back(C); | 
|  | Vals.push_back(ConstantInt::get(C->getContext(), | 
|  | C->getValue() & ~Mask)); | 
|  | UsedICmps++; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we already have a value for the switch, it has to match! | 
|  | if (!setValueOnce(ICI->getOperand(0))) | 
|  | return false; | 
|  |  | 
|  | UsedICmps++; | 
|  | Vals.push_back(C); | 
|  | return ICI->getOperand(0); | 
|  | } | 
|  |  | 
|  | // If we have "x ult 3", for example, then we can add 0,1,2 to the set. | 
|  | ConstantRange Span = ConstantRange::makeAllowedICmpRegion( | 
|  | ICI->getPredicate(), C->getValue()); | 
|  |  | 
|  | // Shift the range if the compare is fed by an add. This is the range | 
|  | // compare idiom as emitted by instcombine. | 
|  | Value *CandidateVal = I->getOperand(0); | 
|  | if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { | 
|  | Span = Span.subtract(*RHSC); | 
|  | CandidateVal = RHSVal; | 
|  | } | 
|  |  | 
|  | // If this is an and/!= check, then we are looking to build the set of | 
|  | // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into | 
|  | // x != 0 && x != 1. | 
|  | if (!isEQ) | 
|  | Span = Span.inverse(); | 
|  |  | 
|  | // If there are a ton of values, we don't want to make a ginormous switch. | 
|  | if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we already have a value for the switch, it has to match! | 
|  | if (!setValueOnce(CandidateVal)) | 
|  | return false; | 
|  |  | 
|  | // Add all values from the range to the set | 
|  | for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) | 
|  | Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); | 
|  |  | 
|  | UsedICmps++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Given a potentially 'or'd or 'and'd together collection of icmp | 
|  | /// eq/ne/lt/gt instructions that compare a value against a constant, extract | 
|  | /// the value being compared, and stick the list constants into the Vals | 
|  | /// vector. | 
|  | /// One "Extra" case is allowed to differ from the other. | 
|  | void gather(Value *V) { | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | bool isEQ = (I->getOpcode() == Instruction::Or); | 
|  |  | 
|  | // Keep a stack (SmallVector for efficiency) for depth-first traversal | 
|  | SmallVector<Value *, 8> DFT; | 
|  | SmallPtrSet<Value *, 8> Visited; | 
|  |  | 
|  | // Initialize | 
|  | Visited.insert(V); | 
|  | DFT.push_back(V); | 
|  |  | 
|  | while (!DFT.empty()) { | 
|  | V = DFT.pop_back_val(); | 
|  |  | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | // If it is a || (or && depending on isEQ), process the operands. | 
|  | if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { | 
|  | if (Visited.insert(I->getOperand(1)).second) | 
|  | DFT.push_back(I->getOperand(1)); | 
|  | if (Visited.insert(I->getOperand(0)).second) | 
|  | DFT.push_back(I->getOperand(0)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Try to match the current instruction | 
|  | if (matchInstruction(I, isEQ)) | 
|  | // Match succeed, continue the loop | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // One element of the sequence of || (or &&) could not be match as a | 
|  | // comparison against the same value as the others. | 
|  | // We allow only one "Extra" case to be checked before the switch | 
|  | if (!Extra) { | 
|  | Extra = V; | 
|  | continue; | 
|  | } | 
|  | // Failed to parse a proper sequence, abort now | 
|  | CompValue = nullptr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { | 
|  | Instruction *Cond = nullptr; | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | Cond = dyn_cast<Instruction>(SI->getCondition()); | 
|  | } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (BI->isConditional()) | 
|  | Cond = dyn_cast<Instruction>(BI->getCondition()); | 
|  | } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { | 
|  | Cond = dyn_cast<Instruction>(IBI->getAddress()); | 
|  | } | 
|  |  | 
|  | TI->eraseFromParent(); | 
|  | if (Cond) | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Cond); | 
|  | } | 
|  |  | 
|  | /// Return true if the specified terminator checks | 
|  | /// to see if a value is equal to constant integer value. | 
|  | Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { | 
|  | Value *CV = nullptr; | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | // Do not permit merging of large switch instructions into their | 
|  | // predecessors unless there is only one predecessor. | 
|  | if (SI->getNumSuccessors() * pred_size(SI->getParent()) <= 128) | 
|  | CV = SI->getCondition(); | 
|  | } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) | 
|  | if (BI->isConditional() && BI->getCondition()->hasOneUse()) | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { | 
|  | if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) | 
|  | CV = ICI->getOperand(0); | 
|  | } | 
|  |  | 
|  | // Unwrap any lossless ptrtoint cast. | 
|  | if (CV) { | 
|  | if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { | 
|  | Value *Ptr = PTII->getPointerOperand(); | 
|  | if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) | 
|  | CV = Ptr; | 
|  | } | 
|  | } | 
|  | return CV; | 
|  | } | 
|  |  | 
|  | /// Given a value comparison instruction, | 
|  | /// decode all of the 'cases' that it represents and return the 'default' block. | 
|  | BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( | 
|  | TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | Cases.reserve(SI->getNumCases()); | 
|  | for (auto Case : SI->cases()) | 
|  | Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), | 
|  | Case.getCaseSuccessor())); | 
|  | return SI->getDefaultDest(); | 
|  | } | 
|  |  | 
|  | BranchInst *BI = cast<BranchInst>(TI); | 
|  | ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); | 
|  | BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); | 
|  | Cases.push_back(ValueEqualityComparisonCase( | 
|  | GetConstantInt(ICI->getOperand(1), DL), Succ)); | 
|  | return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); | 
|  | } | 
|  |  | 
|  | /// Given a vector of bb/value pairs, remove any entries | 
|  | /// in the list that match the specified block. | 
|  | static void | 
|  | EliminateBlockCases(BasicBlock *BB, | 
|  | std::vector<ValueEqualityComparisonCase> &Cases) { | 
|  | Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); | 
|  | } | 
|  |  | 
|  | /// Return true if there are any keys in C1 that exist in C2 as well. | 
|  | static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, | 
|  | std::vector<ValueEqualityComparisonCase> &C2) { | 
|  | std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; | 
|  |  | 
|  | // Make V1 be smaller than V2. | 
|  | if (V1->size() > V2->size()) | 
|  | std::swap(V1, V2); | 
|  |  | 
|  | if (V1->empty()) | 
|  | return false; | 
|  | if (V1->size() == 1) { | 
|  | // Just scan V2. | 
|  | ConstantInt *TheVal = (*V1)[0].Value; | 
|  | for (unsigned i = 0, e = V2->size(); i != e; ++i) | 
|  | if (TheVal == (*V2)[i].Value) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, just sort both lists and compare element by element. | 
|  | array_pod_sort(V1->begin(), V1->end()); | 
|  | array_pod_sort(V2->begin(), V2->end()); | 
|  | unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); | 
|  | while (i1 != e1 && i2 != e2) { | 
|  | if ((*V1)[i1].Value == (*V2)[i2].Value) | 
|  | return true; | 
|  | if ((*V1)[i1].Value < (*V2)[i2].Value) | 
|  | ++i1; | 
|  | else | 
|  | ++i2; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Set branch weights on SwitchInst. This sets the metadata if there is at | 
|  | // least one non-zero weight. | 
|  | static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { | 
|  | // Check that there is at least one non-zero weight. Otherwise, pass | 
|  | // nullptr to setMetadata which will erase the existing metadata. | 
|  | MDNode *N = nullptr; | 
|  | if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) | 
|  | N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); | 
|  | SI->setMetadata(LLVMContext::MD_prof, N); | 
|  | } | 
|  |  | 
|  | // Similar to the above, but for branch and select instructions that take | 
|  | // exactly 2 weights. | 
|  | static void setBranchWeights(Instruction *I, uint32_t TrueWeight, | 
|  | uint32_t FalseWeight) { | 
|  | assert(isa<BranchInst>(I) || isa<SelectInst>(I)); | 
|  | // Check that there is at least one non-zero weight. Otherwise, pass | 
|  | // nullptr to setMetadata which will erase the existing metadata. | 
|  | MDNode *N = nullptr; | 
|  | if (TrueWeight || FalseWeight) | 
|  | N = MDBuilder(I->getParent()->getContext()) | 
|  | .createBranchWeights(TrueWeight, FalseWeight); | 
|  | I->setMetadata(LLVMContext::MD_prof, N); | 
|  | } | 
|  |  | 
|  | /// If TI is known to be a terminator instruction and its block is known to | 
|  | /// only have a single predecessor block, check to see if that predecessor is | 
|  | /// also a value comparison with the same value, and if that comparison | 
|  | /// determines the outcome of this comparison. If so, simplify TI. This does a | 
|  | /// very limited form of jump threading. | 
|  | bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( | 
|  | TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { | 
|  | Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); | 
|  | if (!PredVal) | 
|  | return false; // Not a value comparison in predecessor. | 
|  |  | 
|  | Value *ThisVal = isValueEqualityComparison(TI); | 
|  | assert(ThisVal && "This isn't a value comparison!!"); | 
|  | if (ThisVal != PredVal) | 
|  | return false; // Different predicates. | 
|  |  | 
|  | // TODO: Preserve branch weight metadata, similarly to how | 
|  | // FoldValueComparisonIntoPredecessors preserves it. | 
|  |  | 
|  | // Find out information about when control will move from Pred to TI's block. | 
|  | std::vector<ValueEqualityComparisonCase> PredCases; | 
|  | BasicBlock *PredDef = | 
|  | GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); | 
|  | EliminateBlockCases(PredDef, PredCases); // Remove default from cases. | 
|  |  | 
|  | // Find information about how control leaves this block. | 
|  | std::vector<ValueEqualityComparisonCase> ThisCases; | 
|  | BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); | 
|  | EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. | 
|  |  | 
|  | // If TI's block is the default block from Pred's comparison, potentially | 
|  | // simplify TI based on this knowledge. | 
|  | if (PredDef == TI->getParent()) { | 
|  | // If we are here, we know that the value is none of those cases listed in | 
|  | // PredCases.  If there are any cases in ThisCases that are in PredCases, we | 
|  | // can simplify TI. | 
|  | if (!ValuesOverlap(PredCases, ThisCases)) | 
|  | return false; | 
|  |  | 
|  | if (isa<BranchInst>(TI)) { | 
|  | // Okay, one of the successors of this condbr is dead.  Convert it to a | 
|  | // uncond br. | 
|  | assert(ThisCases.size() == 1 && "Branch can only have one case!"); | 
|  | // Insert the new branch. | 
|  | Instruction *NI = Builder.CreateBr(ThisDef); | 
|  | (void)NI; | 
|  |  | 
|  | // Remove PHI node entries for the dead edge. | 
|  | ThisCases[0].Dest->removePredecessor(TI->getParent()); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() | 
|  | << "Through successor TI: " << *TI << "Leaving: " << *NI | 
|  | << "\n"); | 
|  |  | 
|  | EraseTerminatorInstAndDCECond(TI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SwitchInst *SI = cast<SwitchInst>(TI); | 
|  | // Okay, TI has cases that are statically dead, prune them away. | 
|  | SmallPtrSet<Constant *, 16> DeadCases; | 
|  | for (unsigned i = 0, e = PredCases.size(); i != e; ++i) | 
|  | DeadCases.insert(PredCases[i].Value); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() | 
|  | << "Through successor TI: " << *TI); | 
|  |  | 
|  | // Collect branch weights into a vector. | 
|  | SmallVector<uint32_t, 8> Weights; | 
|  | MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); | 
|  | bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); | 
|  | if (HasWeight) | 
|  | for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; | 
|  | ++MD_i) { | 
|  | ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); | 
|  | Weights.push_back(CI->getValue().getZExtValue()); | 
|  | } | 
|  | for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { | 
|  | --i; | 
|  | if (DeadCases.count(i->getCaseValue())) { | 
|  | if (HasWeight) { | 
|  | std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); | 
|  | Weights.pop_back(); | 
|  | } | 
|  | i->getCaseSuccessor()->removePredecessor(TI->getParent()); | 
|  | SI->removeCase(i); | 
|  | } | 
|  | } | 
|  | if (HasWeight && Weights.size() >= 2) | 
|  | setBranchWeights(SI, Weights); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, TI's block must correspond to some matched value.  Find out | 
|  | // which value (or set of values) this is. | 
|  | ConstantInt *TIV = nullptr; | 
|  | BasicBlock *TIBB = TI->getParent(); | 
|  | for (unsigned i = 0, e = PredCases.size(); i != e; ++i) | 
|  | if (PredCases[i].Dest == TIBB) { | 
|  | if (TIV) | 
|  | return false; // Cannot handle multiple values coming to this block. | 
|  | TIV = PredCases[i].Value; | 
|  | } | 
|  | assert(TIV && "No edge from pred to succ?"); | 
|  |  | 
|  | // Okay, we found the one constant that our value can be if we get into TI's | 
|  | // BB.  Find out which successor will unconditionally be branched to. | 
|  | BasicBlock *TheRealDest = nullptr; | 
|  | for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) | 
|  | if (ThisCases[i].Value == TIV) { | 
|  | TheRealDest = ThisCases[i].Dest; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If not handled by any explicit cases, it is handled by the default case. | 
|  | if (!TheRealDest) | 
|  | TheRealDest = ThisDef; | 
|  |  | 
|  | // Remove PHI node entries for dead edges. | 
|  | BasicBlock *CheckEdge = TheRealDest; | 
|  | for (BasicBlock *Succ : successors(TIBB)) | 
|  | if (Succ != CheckEdge) | 
|  | Succ->removePredecessor(TIBB); | 
|  | else | 
|  | CheckEdge = nullptr; | 
|  |  | 
|  | // Insert the new branch. | 
|  | Instruction *NI = Builder.CreateBr(TheRealDest); | 
|  | (void)NI; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() | 
|  | << "Through successor TI: " << *TI << "Leaving: " << *NI | 
|  | << "\n"); | 
|  |  | 
|  | EraseTerminatorInstAndDCECond(TI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// This class implements a stable ordering of constant | 
|  | /// integers that does not depend on their address.  This is important for | 
|  | /// applications that sort ConstantInt's to ensure uniqueness. | 
|  | struct ConstantIntOrdering { | 
|  | bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { | 
|  | return LHS->getValue().ult(RHS->getValue()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static int ConstantIntSortPredicate(ConstantInt *const *P1, | 
|  | ConstantInt *const *P2) { | 
|  | const ConstantInt *LHS = *P1; | 
|  | const ConstantInt *RHS = *P2; | 
|  | if (LHS == RHS) | 
|  | return 0; | 
|  | return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; | 
|  | } | 
|  |  | 
|  | static inline bool HasBranchWeights(const Instruction *I) { | 
|  | MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); | 
|  | if (ProfMD && ProfMD->getOperand(0)) | 
|  | if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) | 
|  | return MDS->getString().equals("branch_weights"); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Get Weights of a given TerminatorInst, the default weight is at the front | 
|  | /// of the vector. If TI is a conditional eq, we need to swap the branch-weight | 
|  | /// metadata. | 
|  | static void GetBranchWeights(TerminatorInst *TI, | 
|  | SmallVectorImpl<uint64_t> &Weights) { | 
|  | MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); | 
|  | assert(MD); | 
|  | for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { | 
|  | ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); | 
|  | Weights.push_back(CI->getValue().getZExtValue()); | 
|  | } | 
|  |  | 
|  | // If TI is a conditional eq, the default case is the false case, | 
|  | // and the corresponding branch-weight data is at index 2. We swap the | 
|  | // default weight to be the first entry. | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | assert(Weights.size() == 2); | 
|  | ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_EQ) | 
|  | std::swap(Weights.front(), Weights.back()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Keep halving the weights until all can fit in uint32_t. | 
|  | static void FitWeights(MutableArrayRef<uint64_t> Weights) { | 
|  | uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); | 
|  | if (Max > UINT_MAX) { | 
|  | unsigned Offset = 32 - countLeadingZeros(Max); | 
|  | for (uint64_t &I : Weights) | 
|  | I >>= Offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// The specified terminator is a value equality comparison instruction | 
|  | /// (either a switch or a branch on "X == c"). | 
|  | /// See if any of the predecessors of the terminator block are value comparisons | 
|  | /// on the same value.  If so, and if safe to do so, fold them together. | 
|  | bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, | 
|  | IRBuilder<> &Builder) { | 
|  | BasicBlock *BB = TI->getParent(); | 
|  | Value *CV = isValueEqualityComparison(TI); // CondVal | 
|  | assert(CV && "Not a comparison?"); | 
|  | bool Changed = false; | 
|  |  | 
|  | SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); | 
|  | while (!Preds.empty()) { | 
|  | BasicBlock *Pred = Preds.pop_back_val(); | 
|  |  | 
|  | // See if the predecessor is a comparison with the same value. | 
|  | TerminatorInst *PTI = Pred->getTerminator(); | 
|  | Value *PCV = isValueEqualityComparison(PTI); // PredCondVal | 
|  |  | 
|  | if (PCV == CV && TI != PTI) { | 
|  | SmallSetVector<BasicBlock*, 4> FailBlocks; | 
|  | if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { | 
|  | for (auto *Succ : FailBlocks) { | 
|  | if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Figure out which 'cases' to copy from SI to PSI. | 
|  | std::vector<ValueEqualityComparisonCase> BBCases; | 
|  | BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); | 
|  |  | 
|  | std::vector<ValueEqualityComparisonCase> PredCases; | 
|  | BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); | 
|  |  | 
|  | // Based on whether the default edge from PTI goes to BB or not, fill in | 
|  | // PredCases and PredDefault with the new switch cases we would like to | 
|  | // build. | 
|  | SmallVector<BasicBlock *, 8> NewSuccessors; | 
|  |  | 
|  | // Update the branch weight metadata along the way | 
|  | SmallVector<uint64_t, 8> Weights; | 
|  | bool PredHasWeights = HasBranchWeights(PTI); | 
|  | bool SuccHasWeights = HasBranchWeights(TI); | 
|  |  | 
|  | if (PredHasWeights) { | 
|  | GetBranchWeights(PTI, Weights); | 
|  | // branch-weight metadata is inconsistent here. | 
|  | if (Weights.size() != 1 + PredCases.size()) | 
|  | PredHasWeights = SuccHasWeights = false; | 
|  | } else if (SuccHasWeights) | 
|  | // If there are no predecessor weights but there are successor weights, | 
|  | // populate Weights with 1, which will later be scaled to the sum of | 
|  | // successor's weights | 
|  | Weights.assign(1 + PredCases.size(), 1); | 
|  |  | 
|  | SmallVector<uint64_t, 8> SuccWeights; | 
|  | if (SuccHasWeights) { | 
|  | GetBranchWeights(TI, SuccWeights); | 
|  | // branch-weight metadata is inconsistent here. | 
|  | if (SuccWeights.size() != 1 + BBCases.size()) | 
|  | PredHasWeights = SuccHasWeights = false; | 
|  | } else if (PredHasWeights) | 
|  | SuccWeights.assign(1 + BBCases.size(), 1); | 
|  |  | 
|  | if (PredDefault == BB) { | 
|  | // If this is the default destination from PTI, only the edges in TI | 
|  | // that don't occur in PTI, or that branch to BB will be activated. | 
|  | std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; | 
|  | for (unsigned i = 0, e = PredCases.size(); i != e; ++i) | 
|  | if (PredCases[i].Dest != BB) | 
|  | PTIHandled.insert(PredCases[i].Value); | 
|  | else { | 
|  | // The default destination is BB, we don't need explicit targets. | 
|  | std::swap(PredCases[i], PredCases.back()); | 
|  |  | 
|  | if (PredHasWeights || SuccHasWeights) { | 
|  | // Increase weight for the default case. | 
|  | Weights[0] += Weights[i + 1]; | 
|  | std::swap(Weights[i + 1], Weights.back()); | 
|  | Weights.pop_back(); | 
|  | } | 
|  |  | 
|  | PredCases.pop_back(); | 
|  | --i; | 
|  | --e; | 
|  | } | 
|  |  | 
|  | // Reconstruct the new switch statement we will be building. | 
|  | if (PredDefault != BBDefault) { | 
|  | PredDefault->removePredecessor(Pred); | 
|  | PredDefault = BBDefault; | 
|  | NewSuccessors.push_back(BBDefault); | 
|  | } | 
|  |  | 
|  | unsigned CasesFromPred = Weights.size(); | 
|  | uint64_t ValidTotalSuccWeight = 0; | 
|  | for (unsigned i = 0, e = BBCases.size(); i != e; ++i) | 
|  | if (!PTIHandled.count(BBCases[i].Value) && | 
|  | BBCases[i].Dest != BBDefault) { | 
|  | PredCases.push_back(BBCases[i]); | 
|  | NewSuccessors.push_back(BBCases[i].Dest); | 
|  | if (SuccHasWeights || PredHasWeights) { | 
|  | // The default weight is at index 0, so weight for the ith case | 
|  | // should be at index i+1. Scale the cases from successor by | 
|  | // PredDefaultWeight (Weights[0]). | 
|  | Weights.push_back(Weights[0] * SuccWeights[i + 1]); | 
|  | ValidTotalSuccWeight += SuccWeights[i + 1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SuccHasWeights || PredHasWeights) { | 
|  | ValidTotalSuccWeight += SuccWeights[0]; | 
|  | // Scale the cases from predecessor by ValidTotalSuccWeight. | 
|  | for (unsigned i = 1; i < CasesFromPred; ++i) | 
|  | Weights[i] *= ValidTotalSuccWeight; | 
|  | // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). | 
|  | Weights[0] *= SuccWeights[0]; | 
|  | } | 
|  | } else { | 
|  | // If this is not the default destination from PSI, only the edges | 
|  | // in SI that occur in PSI with a destination of BB will be | 
|  | // activated. | 
|  | std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; | 
|  | std::map<ConstantInt *, uint64_t> WeightsForHandled; | 
|  | for (unsigned i = 0, e = PredCases.size(); i != e; ++i) | 
|  | if (PredCases[i].Dest == BB) { | 
|  | PTIHandled.insert(PredCases[i].Value); | 
|  |  | 
|  | if (PredHasWeights || SuccHasWeights) { | 
|  | WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; | 
|  | std::swap(Weights[i + 1], Weights.back()); | 
|  | Weights.pop_back(); | 
|  | } | 
|  |  | 
|  | std::swap(PredCases[i], PredCases.back()); | 
|  | PredCases.pop_back(); | 
|  | --i; | 
|  | --e; | 
|  | } | 
|  |  | 
|  | // Okay, now we know which constants were sent to BB from the | 
|  | // predecessor.  Figure out where they will all go now. | 
|  | for (unsigned i = 0, e = BBCases.size(); i != e; ++i) | 
|  | if (PTIHandled.count(BBCases[i].Value)) { | 
|  | // If this is one we are capable of getting... | 
|  | if (PredHasWeights || SuccHasWeights) | 
|  | Weights.push_back(WeightsForHandled[BBCases[i].Value]); | 
|  | PredCases.push_back(BBCases[i]); | 
|  | NewSuccessors.push_back(BBCases[i].Dest); | 
|  | PTIHandled.erase( | 
|  | BBCases[i].Value); // This constant is taken care of | 
|  | } | 
|  |  | 
|  | // If there are any constants vectored to BB that TI doesn't handle, | 
|  | // they must go to the default destination of TI. | 
|  | for (ConstantInt *I : PTIHandled) { | 
|  | if (PredHasWeights || SuccHasWeights) | 
|  | Weights.push_back(WeightsForHandled[I]); | 
|  | PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); | 
|  | NewSuccessors.push_back(BBDefault); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, at this point, we know which new successor Pred will get.  Make | 
|  | // sure we update the number of entries in the PHI nodes for these | 
|  | // successors. | 
|  | for (BasicBlock *NewSuccessor : NewSuccessors) | 
|  | AddPredecessorToBlock(NewSuccessor, Pred, BB); | 
|  |  | 
|  | Builder.SetInsertPoint(PTI); | 
|  | // Convert pointer to int before we switch. | 
|  | if (CV->getType()->isPointerTy()) { | 
|  | CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), | 
|  | "magicptr"); | 
|  | } | 
|  |  | 
|  | // Now that the successors are updated, create the new Switch instruction. | 
|  | SwitchInst *NewSI = | 
|  | Builder.CreateSwitch(CV, PredDefault, PredCases.size()); | 
|  | NewSI->setDebugLoc(PTI->getDebugLoc()); | 
|  | for (ValueEqualityComparisonCase &V : PredCases) | 
|  | NewSI->addCase(V.Value, V.Dest); | 
|  |  | 
|  | if (PredHasWeights || SuccHasWeights) { | 
|  | // Halve the weights if any of them cannot fit in an uint32_t | 
|  | FitWeights(Weights); | 
|  |  | 
|  | SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); | 
|  |  | 
|  | setBranchWeights(NewSI, MDWeights); | 
|  | } | 
|  |  | 
|  | EraseTerminatorInstAndDCECond(PTI); | 
|  |  | 
|  | // Okay, last check.  If BB is still a successor of PSI, then we must | 
|  | // have an infinite loop case.  If so, add an infinitely looping block | 
|  | // to handle the case to preserve the behavior of the code. | 
|  | BasicBlock *InfLoopBlock = nullptr; | 
|  | for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) | 
|  | if (NewSI->getSuccessor(i) == BB) { | 
|  | if (!InfLoopBlock) { | 
|  | // Insert it at the end of the function, because it's either code, | 
|  | // or it won't matter if it's hot. :) | 
|  | InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", | 
|  | BB->getParent()); | 
|  | BranchInst::Create(InfLoopBlock, InfLoopBlock); | 
|  | } | 
|  | NewSI->setSuccessor(i, InfLoopBlock); | 
|  | } | 
|  |  | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // If we would need to insert a select that uses the value of this invoke | 
|  | // (comments in HoistThenElseCodeToIf explain why we would need to do this), we | 
|  | // can't hoist the invoke, as there is nowhere to put the select in this case. | 
|  | static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, | 
|  | Instruction *I1, Instruction *I2) { | 
|  | for (BasicBlock *Succ : successors(BB1)) { | 
|  | for (const PHINode &PN : Succ->phis()) { | 
|  | Value *BB1V = PN.getIncomingValueForBlock(BB1); | 
|  | Value *BB2V = PN.getIncomingValueForBlock(BB2); | 
|  | if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); | 
|  |  | 
|  | /// Given a conditional branch that goes to BB1 and BB2, hoist any common code | 
|  | /// in the two blocks up into the branch block. The caller of this function | 
|  | /// guarantees that BI's block dominates BB1 and BB2. | 
|  | static bool HoistThenElseCodeToIf(BranchInst *BI, | 
|  | const TargetTransformInfo &TTI) { | 
|  | // This does very trivial matching, with limited scanning, to find identical | 
|  | // instructions in the two blocks.  In particular, we don't want to get into | 
|  | // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As | 
|  | // such, we currently just scan for obviously identical instructions in an | 
|  | // identical order. | 
|  | BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. | 
|  | BasicBlock *BB2 = BI->getSuccessor(1); // The false destination | 
|  |  | 
|  | BasicBlock::iterator BB1_Itr = BB1->begin(); | 
|  | BasicBlock::iterator BB2_Itr = BB2->begin(); | 
|  |  | 
|  | Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; | 
|  | // Skip debug info if it is not identical. | 
|  | DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); | 
|  | DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); | 
|  | if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { | 
|  | while (isa<DbgInfoIntrinsic>(I1)) | 
|  | I1 = &*BB1_Itr++; | 
|  | while (isa<DbgInfoIntrinsic>(I2)) | 
|  | I2 = &*BB2_Itr++; | 
|  | } | 
|  | if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || | 
|  | (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *BIParent = BI->getParent(); | 
|  |  | 
|  | bool Changed = false; | 
|  | do { | 
|  | // If we are hoisting the terminator instruction, don't move one (making a | 
|  | // broken BB), instead clone it, and remove BI. | 
|  | if (I1->isTerminator()) | 
|  | goto HoistTerminator; | 
|  |  | 
|  | // If we're going to hoist a call, make sure that the two instructions we're | 
|  | // commoning/hoisting are both marked with musttail, or neither of them is | 
|  | // marked as such. Otherwise, we might end up in a situation where we hoist | 
|  | // from a block where the terminator is a `ret` to a block where the terminator | 
|  | // is a `br`, and `musttail` calls expect to be followed by a return. | 
|  | auto *C1 = dyn_cast<CallInst>(I1); | 
|  | auto *C2 = dyn_cast<CallInst>(I2); | 
|  | if (C1 && C2) | 
|  | if (C1->isMustTailCall() != C2->isMustTailCall()) | 
|  | return Changed; | 
|  |  | 
|  | if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) | 
|  | return Changed; | 
|  |  | 
|  | if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { | 
|  | assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); | 
|  | // The debug location is an integral part of a debug info intrinsic | 
|  | // and can't be separated from it or replaced.  Instead of attempting | 
|  | // to merge locations, simply hoist both copies of the intrinsic. | 
|  | BIParent->getInstList().splice(BI->getIterator(), | 
|  | BB1->getInstList(), I1); | 
|  | BIParent->getInstList().splice(BI->getIterator(), | 
|  | BB2->getInstList(), I2); | 
|  | Changed = true; | 
|  | } else { | 
|  | // For a normal instruction, we just move one to right before the branch, | 
|  | // then replace all uses of the other with the first.  Finally, we remove | 
|  | // the now redundant second instruction. | 
|  | BIParent->getInstList().splice(BI->getIterator(), | 
|  | BB1->getInstList(), I1); | 
|  | if (!I2->use_empty()) | 
|  | I2->replaceAllUsesWith(I1); | 
|  | I1->andIRFlags(I2); | 
|  | unsigned KnownIDs[] = {LLVMContext::MD_tbaa, | 
|  | LLVMContext::MD_range, | 
|  | LLVMContext::MD_fpmath, | 
|  | LLVMContext::MD_invariant_load, | 
|  | LLVMContext::MD_nonnull, | 
|  | LLVMContext::MD_invariant_group, | 
|  | LLVMContext::MD_align, | 
|  | LLVMContext::MD_dereferenceable, | 
|  | LLVMContext::MD_dereferenceable_or_null, | 
|  | LLVMContext::MD_mem_parallel_loop_access}; | 
|  | combineMetadata(I1, I2, KnownIDs, true); | 
|  |  | 
|  | // I1 and I2 are being combined into a single instruction.  Its debug | 
|  | // location is the merged locations of the original instructions. | 
|  | I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); | 
|  |  | 
|  | I2->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | I1 = &*BB1_Itr++; | 
|  | I2 = &*BB2_Itr++; | 
|  | // Skip debug info if it is not identical. | 
|  | DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); | 
|  | DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); | 
|  | if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { | 
|  | while (isa<DbgInfoIntrinsic>(I1)) | 
|  | I1 = &*BB1_Itr++; | 
|  | while (isa<DbgInfoIntrinsic>(I2)) | 
|  | I2 = &*BB2_Itr++; | 
|  | } | 
|  | } while (I1->isIdenticalToWhenDefined(I2)); | 
|  |  | 
|  | return true; | 
|  |  | 
|  | HoistTerminator: | 
|  | // It may not be possible to hoist an invoke. | 
|  | if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) | 
|  | return Changed; | 
|  |  | 
|  | for (BasicBlock *Succ : successors(BB1)) { | 
|  | for (PHINode &PN : Succ->phis()) { | 
|  | Value *BB1V = PN.getIncomingValueForBlock(BB1); | 
|  | Value *BB2V = PN.getIncomingValueForBlock(BB2); | 
|  | if (BB1V == BB2V) | 
|  | continue; | 
|  |  | 
|  | // Check for passingValueIsAlwaysUndefined here because we would rather | 
|  | // eliminate undefined control flow then converting it to a select. | 
|  | if (passingValueIsAlwaysUndefined(BB1V, &PN) || | 
|  | passingValueIsAlwaysUndefined(BB2V, &PN)) | 
|  | return Changed; | 
|  |  | 
|  | if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) | 
|  | return Changed; | 
|  | if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) | 
|  | return Changed; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, it is safe to hoist the terminator. | 
|  | Instruction *NT = I1->clone(); | 
|  | BIParent->getInstList().insert(BI->getIterator(), NT); | 
|  | if (!NT->getType()->isVoidTy()) { | 
|  | I1->replaceAllUsesWith(NT); | 
|  | I2->replaceAllUsesWith(NT); | 
|  | NT->takeName(I1); | 
|  | } | 
|  |  | 
|  | IRBuilder<NoFolder> Builder(NT); | 
|  | // Hoisting one of the terminators from our successor is a great thing. | 
|  | // Unfortunately, the successors of the if/else blocks may have PHI nodes in | 
|  | // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI | 
|  | // nodes, so we insert select instruction to compute the final result. | 
|  | std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; | 
|  | for (BasicBlock *Succ : successors(BB1)) { | 
|  | for (PHINode &PN : Succ->phis()) { | 
|  | Value *BB1V = PN.getIncomingValueForBlock(BB1); | 
|  | Value *BB2V = PN.getIncomingValueForBlock(BB2); | 
|  | if (BB1V == BB2V) | 
|  | continue; | 
|  |  | 
|  | // These values do not agree.  Insert a select instruction before NT | 
|  | // that determines the right value. | 
|  | SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; | 
|  | if (!SI) | 
|  | SI = cast<SelectInst>( | 
|  | Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, | 
|  | BB1V->getName() + "." + BB2V->getName(), BI)); | 
|  |  | 
|  | // Make the PHI node use the select for all incoming values for BB1/BB2 | 
|  | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) | 
|  | if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) | 
|  | PN.setIncomingValue(i, SI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update any PHI nodes in our new successors. | 
|  | for (BasicBlock *Succ : successors(BB1)) | 
|  | AddPredecessorToBlock(Succ, BIParent, BB1); | 
|  |  | 
|  | EraseTerminatorInstAndDCECond(BI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // All instructions in Insts belong to different blocks that all unconditionally | 
|  | // branch to a common successor. Analyze each instruction and return true if it | 
|  | // would be possible to sink them into their successor, creating one common | 
|  | // instruction instead. For every value that would be required to be provided by | 
|  | // PHI node (because an operand varies in each input block), add to PHIOperands. | 
|  | static bool canSinkInstructions( | 
|  | ArrayRef<Instruction *> Insts, | 
|  | DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { | 
|  | // Prune out obviously bad instructions to move. Any non-store instruction | 
|  | // must have exactly one use, and we check later that use is by a single, | 
|  | // common PHI instruction in the successor. | 
|  | for (auto *I : Insts) { | 
|  | // These instructions may change or break semantics if moved. | 
|  | if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || | 
|  | I->getType()->isTokenTy()) | 
|  | return false; | 
|  |  | 
|  | // Conservatively return false if I is an inline-asm instruction. Sinking | 
|  | // and merging inline-asm instructions can potentially create arguments | 
|  | // that cannot satisfy the inline-asm constraints. | 
|  | if (const auto *C = dyn_cast<CallInst>(I)) | 
|  | if (C->isInlineAsm()) | 
|  | return false; | 
|  |  | 
|  | // Everything must have only one use too, apart from stores which | 
|  | // have no uses. | 
|  | if (!isa<StoreInst>(I) && !I->hasOneUse()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const Instruction *I0 = Insts.front(); | 
|  | for (auto *I : Insts) | 
|  | if (!I->isSameOperationAs(I0)) | 
|  | return false; | 
|  |  | 
|  | // All instructions in Insts are known to be the same opcode. If they aren't | 
|  | // stores, check the only user of each is a PHI or in the same block as the | 
|  | // instruction, because if a user is in the same block as an instruction | 
|  | // we're contemplating sinking, it must already be determined to be sinkable. | 
|  | if (!isa<StoreInst>(I0)) { | 
|  | auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); | 
|  | auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); | 
|  | if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { | 
|  | auto *U = cast<Instruction>(*I->user_begin()); | 
|  | return (PNUse && | 
|  | PNUse->getParent() == Succ && | 
|  | PNUse->getIncomingValueForBlock(I->getParent()) == I) || | 
|  | U->getParent() == I->getParent(); | 
|  | })) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Because SROA can't handle speculating stores of selects, try not | 
|  | // to sink loads or stores of allocas when we'd have to create a PHI for | 
|  | // the address operand. Also, because it is likely that loads or stores | 
|  | // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. | 
|  | // This can cause code churn which can have unintended consequences down | 
|  | // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. | 
|  | // FIXME: This is a workaround for a deficiency in SROA - see | 
|  | // https://llvm.org/bugs/show_bug.cgi?id=30188 | 
|  | if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { | 
|  | return isa<AllocaInst>(I->getOperand(1)); | 
|  | })) | 
|  | return false; | 
|  | if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { | 
|  | return isa<AllocaInst>(I->getOperand(0)); | 
|  | })) | 
|  | return false; | 
|  |  | 
|  | for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { | 
|  | if (I0->getOperand(OI)->getType()->isTokenTy()) | 
|  | // Don't touch any operand of token type. | 
|  | return false; | 
|  |  | 
|  | auto SameAsI0 = [&I0, OI](const Instruction *I) { | 
|  | assert(I->getNumOperands() == I0->getNumOperands()); | 
|  | return I->getOperand(OI) == I0->getOperand(OI); | 
|  | }; | 
|  | if (!all_of(Insts, SameAsI0)) { | 
|  | if (!canReplaceOperandWithVariable(I0, OI)) | 
|  | // We can't create a PHI from this GEP. | 
|  | return false; | 
|  | // Don't create indirect calls! The called value is the final operand. | 
|  | if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { | 
|  | // FIXME: if the call was *already* indirect, we should do this. | 
|  | return false; | 
|  | } | 
|  | for (auto *I : Insts) | 
|  | PHIOperands[I].push_back(I->getOperand(OI)); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last | 
|  | // instruction of every block in Blocks to their common successor, commoning | 
|  | // into one instruction. | 
|  | static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { | 
|  | auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); | 
|  |  | 
|  | // canSinkLastInstruction returning true guarantees that every block has at | 
|  | // least one non-terminator instruction. | 
|  | SmallVector<Instruction*,4> Insts; | 
|  | for (auto *BB : Blocks) { | 
|  | Instruction *I = BB->getTerminator(); | 
|  | do { | 
|  | I = I->getPrevNode(); | 
|  | } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); | 
|  | if (!isa<DbgInfoIntrinsic>(I)) | 
|  | Insts.push_back(I); | 
|  | } | 
|  |  | 
|  | // The only checking we need to do now is that all users of all instructions | 
|  | // are the same PHI node. canSinkLastInstruction should have checked this but | 
|  | // it is slightly over-aggressive - it gets confused by commutative instructions | 
|  | // so double-check it here. | 
|  | Instruction *I0 = Insts.front(); | 
|  | if (!isa<StoreInst>(I0)) { | 
|  | auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); | 
|  | if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { | 
|  | auto *U = cast<Instruction>(*I->user_begin()); | 
|  | return U == PNUse; | 
|  | })) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We don't need to do any more checking here; canSinkLastInstruction should | 
|  | // have done it all for us. | 
|  | SmallVector<Value*, 4> NewOperands; | 
|  | for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { | 
|  | // This check is different to that in canSinkLastInstruction. There, we | 
|  | // cared about the global view once simplifycfg (and instcombine) have | 
|  | // completed - it takes into account PHIs that become trivially | 
|  | // simplifiable.  However here we need a more local view; if an operand | 
|  | // differs we create a PHI and rely on instcombine to clean up the very | 
|  | // small mess we may make. | 
|  | bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { | 
|  | return I->getOperand(O) != I0->getOperand(O); | 
|  | }); | 
|  | if (!NeedPHI) { | 
|  | NewOperands.push_back(I0->getOperand(O)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Create a new PHI in the successor block and populate it. | 
|  | auto *Op = I0->getOperand(O); | 
|  | assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); | 
|  | auto *PN = PHINode::Create(Op->getType(), Insts.size(), | 
|  | Op->getName() + ".sink", &BBEnd->front()); | 
|  | for (auto *I : Insts) | 
|  | PN->addIncoming(I->getOperand(O), I->getParent()); | 
|  | NewOperands.push_back(PN); | 
|  | } | 
|  |  | 
|  | // Arbitrarily use I0 as the new "common" instruction; remap its operands | 
|  | // and move it to the start of the successor block. | 
|  | for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) | 
|  | I0->getOperandUse(O).set(NewOperands[O]); | 
|  | I0->moveBefore(&*BBEnd->getFirstInsertionPt()); | 
|  |  | 
|  | // Update metadata and IR flags, and merge debug locations. | 
|  | for (auto *I : Insts) | 
|  | if (I != I0) { | 
|  | // The debug location for the "common" instruction is the merged locations | 
|  | // of all the commoned instructions.  We start with the original location | 
|  | // of the "common" instruction and iteratively merge each location in the | 
|  | // loop below. | 
|  | // This is an N-way merge, which will be inefficient if I0 is a CallInst. | 
|  | // However, as N-way merge for CallInst is rare, so we use simplified API | 
|  | // instead of using complex API for N-way merge. | 
|  | I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); | 
|  | combineMetadataForCSE(I0, I, true); | 
|  | I0->andIRFlags(I); | 
|  | } | 
|  |  | 
|  | if (!isa<StoreInst>(I0)) { | 
|  | // canSinkLastInstruction checked that all instructions were used by | 
|  | // one and only one PHI node. Find that now, RAUW it to our common | 
|  | // instruction and nuke it. | 
|  | assert(I0->hasOneUse()); | 
|  | auto *PN = cast<PHINode>(*I0->user_begin()); | 
|  | PN->replaceAllUsesWith(I0); | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Finally nuke all instructions apart from the common instruction. | 
|  | for (auto *I : Insts) | 
|  | if (I != I0) | 
|  | I->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // LockstepReverseIterator - Iterates through instructions | 
|  | // in a set of blocks in reverse order from the first non-terminator. | 
|  | // For example (assume all blocks have size n): | 
|  | //   LockstepReverseIterator I([B1, B2, B3]); | 
|  | //   *I-- = [B1[n], B2[n], B3[n]]; | 
|  | //   *I-- = [B1[n-1], B2[n-1], B3[n-1]]; | 
|  | //   *I-- = [B1[n-2], B2[n-2], B3[n-2]]; | 
|  | //   ... | 
|  | class LockstepReverseIterator { | 
|  | ArrayRef<BasicBlock*> Blocks; | 
|  | SmallVector<Instruction*,4> Insts; | 
|  | bool Fail; | 
|  |  | 
|  | public: | 
|  | LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { | 
|  | reset(); | 
|  | } | 
|  |  | 
|  | void reset() { | 
|  | Fail = false; | 
|  | Insts.clear(); | 
|  | for (auto *BB : Blocks) { | 
|  | Instruction *Inst = BB->getTerminator(); | 
|  | for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) | 
|  | Inst = Inst->getPrevNode(); | 
|  | if (!Inst) { | 
|  | // Block wasn't big enough. | 
|  | Fail = true; | 
|  | return; | 
|  | } | 
|  | Insts.push_back(Inst); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool isValid() const { | 
|  | return !Fail; | 
|  | } | 
|  |  | 
|  | void operator--() { | 
|  | if (Fail) | 
|  | return; | 
|  | for (auto *&Inst : Insts) { | 
|  | for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) | 
|  | Inst = Inst->getPrevNode(); | 
|  | // Already at beginning of block. | 
|  | if (!Inst) { | 
|  | Fail = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ArrayRef<Instruction*> operator * () const { | 
|  | return Insts; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Check whether BB's predecessors end with unconditional branches. If it is | 
|  | /// true, sink any common code from the predecessors to BB. | 
|  | /// We also allow one predecessor to end with conditional branch (but no more | 
|  | /// than one). | 
|  | static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { | 
|  | // We support two situations: | 
|  | //   (1) all incoming arcs are unconditional | 
|  | //   (2) one incoming arc is conditional | 
|  | // | 
|  | // (2) is very common in switch defaults and | 
|  | // else-if patterns; | 
|  | // | 
|  | //   if (a) f(1); | 
|  | //   else if (b) f(2); | 
|  | // | 
|  | // produces: | 
|  | // | 
|  | //       [if] | 
|  | //      /    \ | 
|  | //    [f(1)] [if] | 
|  | //      |     | \ | 
|  | //      |     |  | | 
|  | //      |  [f(2)]| | 
|  | //       \    | / | 
|  | //        [ end ] | 
|  | // | 
|  | // [end] has two unconditional predecessor arcs and one conditional. The | 
|  | // conditional refers to the implicit empty 'else' arc. This conditional | 
|  | // arc can also be caused by an empty default block in a switch. | 
|  | // | 
|  | // In this case, we attempt to sink code from all *unconditional* arcs. | 
|  | // If we can sink instructions from these arcs (determined during the scan | 
|  | // phase below) we insert a common successor for all unconditional arcs and | 
|  | // connect that to [end], to enable sinking: | 
|  | // | 
|  | //       [if] | 
|  | //      /    \ | 
|  | //    [x(1)] [if] | 
|  | //      |     | \ | 
|  | //      |     |  \ | 
|  | //      |  [x(2)] | | 
|  | //       \   /    | | 
|  | //   [sink.split] | | 
|  | //         \     / | 
|  | //         [ end ] | 
|  | // | 
|  | SmallVector<BasicBlock*,4> UnconditionalPreds; | 
|  | Instruction *Cond = nullptr; | 
|  | for (auto *B : predecessors(BB)) { | 
|  | auto *T = B->getTerminator(); | 
|  | if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) | 
|  | UnconditionalPreds.push_back(B); | 
|  | else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) | 
|  | Cond = T; | 
|  | else | 
|  | return false; | 
|  | } | 
|  | if (UnconditionalPreds.size() < 2) | 
|  | return false; | 
|  |  | 
|  | bool Changed = false; | 
|  | // We take a two-step approach to tail sinking. First we scan from the end of | 
|  | // each block upwards in lockstep. If the n'th instruction from the end of each | 
|  | // block can be sunk, those instructions are added to ValuesToSink and we | 
|  | // carry on. If we can sink an instruction but need to PHI-merge some operands | 
|  | // (because they're not identical in each instruction) we add these to | 
|  | // PHIOperands. | 
|  | unsigned ScanIdx = 0; | 
|  | SmallPtrSet<Value*,4> InstructionsToSink; | 
|  | DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; | 
|  | LockstepReverseIterator LRI(UnconditionalPreds); | 
|  | while (LRI.isValid() && | 
|  | canSinkInstructions(*LRI, PHIOperands)) { | 
|  | LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] | 
|  | << "\n"); | 
|  | InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); | 
|  | ++ScanIdx; | 
|  | --LRI; | 
|  | } | 
|  |  | 
|  | auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { | 
|  | unsigned NumPHIdValues = 0; | 
|  | for (auto *I : *LRI) | 
|  | for (auto *V : PHIOperands[I]) | 
|  | if (InstructionsToSink.count(V) == 0) | 
|  | ++NumPHIdValues; | 
|  | LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); | 
|  | unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); | 
|  | if ((NumPHIdValues % UnconditionalPreds.size()) != 0) | 
|  | NumPHIInsts++; | 
|  |  | 
|  | return NumPHIInsts <= 1; | 
|  | }; | 
|  |  | 
|  | if (ScanIdx > 0 && Cond) { | 
|  | // Check if we would actually sink anything first! This mutates the CFG and | 
|  | // adds an extra block. The goal in doing this is to allow instructions that | 
|  | // couldn't be sunk before to be sunk - obviously, speculatable instructions | 
|  | // (such as trunc, add) can be sunk and predicated already. So we check that | 
|  | // we're going to sink at least one non-speculatable instruction. | 
|  | LRI.reset(); | 
|  | unsigned Idx = 0; | 
|  | bool Profitable = false; | 
|  | while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { | 
|  | if (!isSafeToSpeculativelyExecute((*LRI)[0])) { | 
|  | Profitable = true; | 
|  | break; | 
|  | } | 
|  | --LRI; | 
|  | ++Idx; | 
|  | } | 
|  | if (!Profitable) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); | 
|  | // We have a conditional edge and we're going to sink some instructions. | 
|  | // Insert a new block postdominating all blocks we're going to sink from. | 
|  | if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) | 
|  | // Edges couldn't be split. | 
|  | return false; | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // Now that we've analyzed all potential sinking candidates, perform the | 
|  | // actual sink. We iteratively sink the last non-terminator of the source | 
|  | // blocks into their common successor unless doing so would require too | 
|  | // many PHI instructions to be generated (currently only one PHI is allowed | 
|  | // per sunk instruction). | 
|  | // | 
|  | // We can use InstructionsToSink to discount values needing PHI-merging that will | 
|  | // actually be sunk in a later iteration. This allows us to be more | 
|  | // aggressive in what we sink. This does allow a false positive where we | 
|  | // sink presuming a later value will also be sunk, but stop half way through | 
|  | // and never actually sink it which means we produce more PHIs than intended. | 
|  | // This is unlikely in practice though. | 
|  | for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { | 
|  | LLVM_DEBUG(dbgs() << "SINK: Sink: " | 
|  | << *UnconditionalPreds[0]->getTerminator()->getPrevNode() | 
|  | << "\n"); | 
|  |  | 
|  | // Because we've sunk every instruction in turn, the current instruction to | 
|  | // sink is always at index 0. | 
|  | LRI.reset(); | 
|  | if (!ProfitableToSinkInstruction(LRI)) { | 
|  | // Too many PHIs would be created. | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!sinkLastInstruction(UnconditionalPreds)) | 
|  | return Changed; | 
|  | NumSinkCommons++; | 
|  | Changed = true; | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Determine if we can hoist sink a sole store instruction out of a | 
|  | /// conditional block. | 
|  | /// | 
|  | /// We are looking for code like the following: | 
|  | ///   BrBB: | 
|  | ///     store i32 %add, i32* %arrayidx2 | 
|  | ///     ... // No other stores or function calls (we could be calling a memory | 
|  | ///     ... // function). | 
|  | ///     %cmp = icmp ult %x, %y | 
|  | ///     br i1 %cmp, label %EndBB, label %ThenBB | 
|  | ///   ThenBB: | 
|  | ///     store i32 %add5, i32* %arrayidx2 | 
|  | ///     br label EndBB | 
|  | ///   EndBB: | 
|  | ///     ... | 
|  | ///   We are going to transform this into: | 
|  | ///   BrBB: | 
|  | ///     store i32 %add, i32* %arrayidx2 | 
|  | ///     ... // | 
|  | ///     %cmp = icmp ult %x, %y | 
|  | ///     %add.add5 = select i1 %cmp, i32 %add, %add5 | 
|  | ///     store i32 %add.add5, i32* %arrayidx2 | 
|  | ///     ... | 
|  | /// | 
|  | /// \return The pointer to the value of the previous store if the store can be | 
|  | ///         hoisted into the predecessor block. 0 otherwise. | 
|  | static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, | 
|  | BasicBlock *StoreBB, BasicBlock *EndBB) { | 
|  | StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); | 
|  | if (!StoreToHoist) | 
|  | return nullptr; | 
|  |  | 
|  | // Volatile or atomic. | 
|  | if (!StoreToHoist->isSimple()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *StorePtr = StoreToHoist->getPointerOperand(); | 
|  |  | 
|  | // Look for a store to the same pointer in BrBB. | 
|  | unsigned MaxNumInstToLookAt = 9; | 
|  | for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { | 
|  | if (!MaxNumInstToLookAt) | 
|  | break; | 
|  | --MaxNumInstToLookAt; | 
|  |  | 
|  | // Could be calling an instruction that affects memory like free(). | 
|  | if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) | 
|  | return nullptr; | 
|  |  | 
|  | if (auto *SI = dyn_cast<StoreInst>(&CurI)) { | 
|  | // Found the previous store make sure it stores to the same location. | 
|  | if (SI->getPointerOperand() == StorePtr) | 
|  | // Found the previous store, return its value operand. | 
|  | return SI->getValueOperand(); | 
|  | return nullptr; // Unknown store. | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Speculate a conditional basic block flattening the CFG. | 
|  | /// | 
|  | /// Note that this is a very risky transform currently. Speculating | 
|  | /// instructions like this is most often not desirable. Instead, there is an MI | 
|  | /// pass which can do it with full awareness of the resource constraints. | 
|  | /// However, some cases are "obvious" and we should do directly. An example of | 
|  | /// this is speculating a single, reasonably cheap instruction. | 
|  | /// | 
|  | /// There is only one distinct advantage to flattening the CFG at the IR level: | 
|  | /// it makes very common but simplistic optimizations such as are common in | 
|  | /// instcombine and the DAG combiner more powerful by removing CFG edges and | 
|  | /// modeling their effects with easier to reason about SSA value graphs. | 
|  | /// | 
|  | /// | 
|  | /// An illustration of this transform is turning this IR: | 
|  | /// \code | 
|  | ///   BB: | 
|  | ///     %cmp = icmp ult %x, %y | 
|  | ///     br i1 %cmp, label %EndBB, label %ThenBB | 
|  | ///   ThenBB: | 
|  | ///     %sub = sub %x, %y | 
|  | ///     br label BB2 | 
|  | ///   EndBB: | 
|  | ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] | 
|  | ///     ... | 
|  | /// \endcode | 
|  | /// | 
|  | /// Into this IR: | 
|  | /// \code | 
|  | ///   BB: | 
|  | ///     %cmp = icmp ult %x, %y | 
|  | ///     %sub = sub %x, %y | 
|  | ///     %cond = select i1 %cmp, 0, %sub | 
|  | ///     ... | 
|  | /// \endcode | 
|  | /// | 
|  | /// \returns true if the conditional block is removed. | 
|  | static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, | 
|  | const TargetTransformInfo &TTI) { | 
|  | // Be conservative for now. FP select instruction can often be expensive. | 
|  | Value *BrCond = BI->getCondition(); | 
|  | if (isa<FCmpInst>(BrCond)) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *BB = BI->getParent(); | 
|  | BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); | 
|  |  | 
|  | // If ThenBB is actually on the false edge of the conditional branch, remember | 
|  | // to swap the select operands later. | 
|  | bool Invert = false; | 
|  | if (ThenBB != BI->getSuccessor(0)) { | 
|  | assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); | 
|  | Invert = true; | 
|  | } | 
|  | assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); | 
|  |  | 
|  | // Keep a count of how many times instructions are used within ThenBB when | 
|  | // they are candidates for sinking into ThenBB. Specifically: | 
|  | // - They are defined in BB, and | 
|  | // - They have no side effects, and | 
|  | // - All of their uses are in ThenBB. | 
|  | SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; | 
|  |  | 
|  | SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; | 
|  |  | 
|  | unsigned SpeculationCost = 0; | 
|  | Value *SpeculatedStoreValue = nullptr; | 
|  | StoreInst *SpeculatedStore = nullptr; | 
|  | for (BasicBlock::iterator BBI = ThenBB->begin(), | 
|  | BBE = std::prev(ThenBB->end()); | 
|  | BBI != BBE; ++BBI) { | 
|  | Instruction *I = &*BBI; | 
|  | // Skip debug info. | 
|  | if (isa<DbgInfoIntrinsic>(I)) { | 
|  | SpeculatedDbgIntrinsics.push_back(I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Only speculatively execute a single instruction (not counting the | 
|  | // terminator) for now. | 
|  | ++SpeculationCost; | 
|  | if (SpeculationCost > 1) | 
|  | return false; | 
|  |  | 
|  | // Don't hoist the instruction if it's unsafe or expensive. | 
|  | if (!isSafeToSpeculativelyExecute(I) && | 
|  | !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( | 
|  | I, BB, ThenBB, EndBB)))) | 
|  | return false; | 
|  | if (!SpeculatedStoreValue && | 
|  | ComputeSpeculationCost(I, TTI) > | 
|  | PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) | 
|  | return false; | 
|  |  | 
|  | // Store the store speculation candidate. | 
|  | if (SpeculatedStoreValue) | 
|  | SpeculatedStore = cast<StoreInst>(I); | 
|  |  | 
|  | // Do not hoist the instruction if any of its operands are defined but not | 
|  | // used in BB. The transformation will prevent the operand from | 
|  | // being sunk into the use block. | 
|  | for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { | 
|  | Instruction *OpI = dyn_cast<Instruction>(*i); | 
|  | if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) | 
|  | continue; // Not a candidate for sinking. | 
|  |  | 
|  | ++SinkCandidateUseCounts[OpI]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Consider any sink candidates which are only used in ThenBB as costs for | 
|  | // speculation. Note, while we iterate over a DenseMap here, we are summing | 
|  | // and so iteration order isn't significant. | 
|  | for (SmallDenseMap<Instruction *, unsigned, 4>::iterator | 
|  | I = SinkCandidateUseCounts.begin(), | 
|  | E = SinkCandidateUseCounts.end(); | 
|  | I != E; ++I) | 
|  | if (I->first->hasNUses(I->second)) { | 
|  | ++SpeculationCost; | 
|  | if (SpeculationCost > 1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that the PHI nodes can be converted to selects. | 
|  | bool HaveRewritablePHIs = false; | 
|  | for (PHINode &PN : EndBB->phis()) { | 
|  | Value *OrigV = PN.getIncomingValueForBlock(BB); | 
|  | Value *ThenV = PN.getIncomingValueForBlock(ThenBB); | 
|  |  | 
|  | // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. | 
|  | // Skip PHIs which are trivial. | 
|  | if (ThenV == OrigV) | 
|  | continue; | 
|  |  | 
|  | // Don't convert to selects if we could remove undefined behavior instead. | 
|  | if (passingValueIsAlwaysUndefined(OrigV, &PN) || | 
|  | passingValueIsAlwaysUndefined(ThenV, &PN)) | 
|  | return false; | 
|  |  | 
|  | HaveRewritablePHIs = true; | 
|  | ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); | 
|  | ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); | 
|  | if (!OrigCE && !ThenCE) | 
|  | continue; // Known safe and cheap. | 
|  |  | 
|  | if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || | 
|  | (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) | 
|  | return false; | 
|  | unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; | 
|  | unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; | 
|  | unsigned MaxCost = | 
|  | 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; | 
|  | if (OrigCost + ThenCost > MaxCost) | 
|  | return false; | 
|  |  | 
|  | // Account for the cost of an unfolded ConstantExpr which could end up | 
|  | // getting expanded into Instructions. | 
|  | // FIXME: This doesn't account for how many operations are combined in the | 
|  | // constant expression. | 
|  | ++SpeculationCost; | 
|  | if (SpeculationCost > 1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If there are no PHIs to process, bail early. This helps ensure idempotence | 
|  | // as well. | 
|  | if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) | 
|  | return false; | 
|  |  | 
|  | // If we get here, we can hoist the instruction and if-convert. | 
|  | LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); | 
|  |  | 
|  | // Insert a select of the value of the speculated store. | 
|  | if (SpeculatedStoreValue) { | 
|  | IRBuilder<NoFolder> Builder(BI); | 
|  | Value *TrueV = SpeculatedStore->getValueOperand(); | 
|  | Value *FalseV = SpeculatedStoreValue; | 
|  | if (Invert) | 
|  | std::swap(TrueV, FalseV); | 
|  | Value *S = Builder.CreateSelect( | 
|  | BrCond, TrueV, FalseV, "spec.store.select", BI); | 
|  | SpeculatedStore->setOperand(0, S); | 
|  | SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), | 
|  | SpeculatedStore->getDebugLoc()); | 
|  | } | 
|  |  | 
|  | // Metadata can be dependent on the condition we are hoisting above. | 
|  | // Conservatively strip all metadata on the instruction. | 
|  | for (auto &I : *ThenBB) | 
|  | I.dropUnknownNonDebugMetadata(); | 
|  |  | 
|  | // Hoist the instructions. | 
|  | BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), | 
|  | ThenBB->begin(), std::prev(ThenBB->end())); | 
|  |  | 
|  | // Insert selects and rewrite the PHI operands. | 
|  | IRBuilder<NoFolder> Builder(BI); | 
|  | for (PHINode &PN : EndBB->phis()) { | 
|  | unsigned OrigI = PN.getBasicBlockIndex(BB); | 
|  | unsigned ThenI = PN.getBasicBlockIndex(ThenBB); | 
|  | Value *OrigV = PN.getIncomingValue(OrigI); | 
|  | Value *ThenV = PN.getIncomingValue(ThenI); | 
|  |  | 
|  | // Skip PHIs which are trivial. | 
|  | if (OrigV == ThenV) | 
|  | continue; | 
|  |  | 
|  | // Create a select whose true value is the speculatively executed value and | 
|  | // false value is the preexisting value. Swap them if the branch | 
|  | // destinations were inverted. | 
|  | Value *TrueV = ThenV, *FalseV = OrigV; | 
|  | if (Invert) | 
|  | std::swap(TrueV, FalseV); | 
|  | Value *V = Builder.CreateSelect( | 
|  | BrCond, TrueV, FalseV, "spec.select", BI); | 
|  | PN.setIncomingValue(OrigI, V); | 
|  | PN.setIncomingValue(ThenI, V); | 
|  | } | 
|  |  | 
|  | // Remove speculated dbg intrinsics. | 
|  | // FIXME: Is it possible to do this in a more elegant way? Moving/merging the | 
|  | // dbg value for the different flows and inserting it after the select. | 
|  | for (Instruction *I : SpeculatedDbgIntrinsics) | 
|  | I->eraseFromParent(); | 
|  |  | 
|  | ++NumSpeculations; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if we can thread a branch across this block. | 
|  | static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { | 
|  | unsigned Size = 0; | 
|  |  | 
|  | for (Instruction &I : BB->instructionsWithoutDebug()) { | 
|  | if (Size > 10) | 
|  | return false; // Don't clone large BB's. | 
|  | ++Size; | 
|  |  | 
|  | // We can only support instructions that do not define values that are | 
|  | // live outside of the current basic block. | 
|  | for (User *U : I.users()) { | 
|  | Instruction *UI = cast<Instruction>(U); | 
|  | if (UI->getParent() != BB || isa<PHINode>(UI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Looks ok, continue checking. | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If we have a conditional branch on a PHI node value that is defined in the | 
|  | /// same block as the branch and if any PHI entries are constants, thread edges | 
|  | /// corresponding to that entry to be branches to their ultimate destination. | 
|  | static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, | 
|  | AssumptionCache *AC) { | 
|  | BasicBlock *BB = BI->getParent(); | 
|  | PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); | 
|  | // NOTE: we currently cannot transform this case if the PHI node is used | 
|  | // outside of the block. | 
|  | if (!PN || PN->getParent() != BB || !PN->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Degenerate case of a single entry PHI. | 
|  | if (PN->getNumIncomingValues() == 1) { | 
|  | FoldSingleEntryPHINodes(PN->getParent()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Now we know that this block has multiple preds and two succs. | 
|  | if (!BlockIsSimpleEnoughToThreadThrough(BB)) | 
|  | return false; | 
|  |  | 
|  | // Can't fold blocks that contain noduplicate or convergent calls. | 
|  | if (any_of(*BB, [](const Instruction &I) { | 
|  | const CallInst *CI = dyn_cast<CallInst>(&I); | 
|  | return CI && (CI->cannotDuplicate() || CI->isConvergent()); | 
|  | })) | 
|  | return false; | 
|  |  | 
|  | // Okay, this is a simple enough basic block.  See if any phi values are | 
|  | // constants. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); | 
|  | if (!CB || !CB->getType()->isIntegerTy(1)) | 
|  | continue; | 
|  |  | 
|  | // Okay, we now know that all edges from PredBB should be revectored to | 
|  | // branch to RealDest. | 
|  | BasicBlock *PredBB = PN->getIncomingBlock(i); | 
|  | BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); | 
|  |  | 
|  | if (RealDest == BB) | 
|  | continue; // Skip self loops. | 
|  | // Skip if the predecessor's terminator is an indirect branch. | 
|  | if (isa<IndirectBrInst>(PredBB->getTerminator())) | 
|  | continue; | 
|  |  | 
|  | // The dest block might have PHI nodes, other predecessors and other | 
|  | // difficult cases.  Instead of being smart about this, just insert a new | 
|  | // block that jumps to the destination block, effectively splitting | 
|  | // the edge we are about to create. | 
|  | BasicBlock *EdgeBB = | 
|  | BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", | 
|  | RealDest->getParent(), RealDest); | 
|  | BranchInst::Create(RealDest, EdgeBB); | 
|  |  | 
|  | // Update PHI nodes. | 
|  | AddPredecessorToBlock(RealDest, EdgeBB, BB); | 
|  |  | 
|  | // BB may have instructions that are being threaded over.  Clone these | 
|  | // instructions into EdgeBB.  We know that there will be no uses of the | 
|  | // cloned instructions outside of EdgeBB. | 
|  | BasicBlock::iterator InsertPt = EdgeBB->begin(); | 
|  | DenseMap<Value *, Value *> TranslateMap; // Track translated values. | 
|  | for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { | 
|  | if (PHINode *PN = dyn_cast<PHINode>(BBI)) { | 
|  | TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); | 
|  | continue; | 
|  | } | 
|  | // Clone the instruction. | 
|  | Instruction *N = BBI->clone(); | 
|  | if (BBI->hasName()) | 
|  | N->setName(BBI->getName() + ".c"); | 
|  |  | 
|  | // Update operands due to translation. | 
|  | for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { | 
|  | DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); | 
|  | if (PI != TranslateMap.end()) | 
|  | *i = PI->second; | 
|  | } | 
|  |  | 
|  | // Check for trivial simplification. | 
|  | if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { | 
|  | if (!BBI->use_empty()) | 
|  | TranslateMap[&*BBI] = V; | 
|  | if (!N->mayHaveSideEffects()) { | 
|  | N->deleteValue(); // Instruction folded away, don't need actual inst | 
|  | N = nullptr; | 
|  | } | 
|  | } else { | 
|  | if (!BBI->use_empty()) | 
|  | TranslateMap[&*BBI] = N; | 
|  | } | 
|  | // Insert the new instruction into its new home. | 
|  | if (N) | 
|  | EdgeBB->getInstList().insert(InsertPt, N); | 
|  |  | 
|  | // Register the new instruction with the assumption cache if necessary. | 
|  | if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) | 
|  | if (II->getIntrinsicID() == Intrinsic::assume) | 
|  | AC->registerAssumption(II); | 
|  | } | 
|  |  | 
|  | // Loop over all of the edges from PredBB to BB, changing them to branch | 
|  | // to EdgeBB instead. | 
|  | TerminatorInst *PredBBTI = PredBB->getTerminator(); | 
|  | for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) | 
|  | if (PredBBTI->getSuccessor(i) == BB) { | 
|  | BB->removePredecessor(PredBB); | 
|  | PredBBTI->setSuccessor(i, EdgeBB); | 
|  | } | 
|  |  | 
|  | // Recurse, simplifying any other constants. | 
|  | return FoldCondBranchOnPHI(BI, DL, AC) || true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Given a BB that starts with the specified two-entry PHI node, | 
|  | /// see if we can eliminate it. | 
|  | static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, | 
|  | const DataLayout &DL) { | 
|  | // Ok, this is a two entry PHI node.  Check to see if this is a simple "if | 
|  | // statement", which has a very simple dominance structure.  Basically, we | 
|  | // are trying to find the condition that is being branched on, which | 
|  | // subsequently causes this merge to happen.  We really want control | 
|  | // dependence information for this check, but simplifycfg can't keep it up | 
|  | // to date, and this catches most of the cases we care about anyway. | 
|  | BasicBlock *BB = PN->getParent(); | 
|  | const Function *Fn = BB->getParent(); | 
|  | if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *IfTrue, *IfFalse; | 
|  | Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); | 
|  | if (!IfCond || | 
|  | // Don't bother if the branch will be constant folded trivially. | 
|  | isa<ConstantInt>(IfCond)) | 
|  | return false; | 
|  |  | 
|  | // Okay, we found that we can merge this two-entry phi node into a select. | 
|  | // Doing so would require us to fold *all* two entry phi nodes in this block. | 
|  | // At some point this becomes non-profitable (particularly if the target | 
|  | // doesn't support cmov's).  Only do this transformation if there are two or | 
|  | // fewer PHI nodes in this block. | 
|  | unsigned NumPhis = 0; | 
|  | for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) | 
|  | if (NumPhis > 2) | 
|  | return false; | 
|  |  | 
|  | // Loop over the PHI's seeing if we can promote them all to select | 
|  | // instructions.  While we are at it, keep track of the instructions | 
|  | // that need to be moved to the dominating block. | 
|  | SmallPtrSet<Instruction *, 4> AggressiveInsts; | 
|  | unsigned MaxCostVal0 = PHINodeFoldingThreshold, | 
|  | MaxCostVal1 = PHINodeFoldingThreshold; | 
|  | MaxCostVal0 *= TargetTransformInfo::TCC_Basic; | 
|  | MaxCostVal1 *= TargetTransformInfo::TCC_Basic; | 
|  |  | 
|  | for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { | 
|  | PHINode *PN = cast<PHINode>(II++); | 
|  | if (Value *V = SimplifyInstruction(PN, {DL, PN})) { | 
|  | PN->replaceAllUsesWith(V); | 
|  | PN->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, | 
|  | MaxCostVal0, TTI) || | 
|  | !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, | 
|  | MaxCostVal1, TTI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we folded the first phi, PN dangles at this point.  Refresh it.  If | 
|  | // we ran out of PHIs then we simplified them all. | 
|  | PN = dyn_cast<PHINode>(BB->begin()); | 
|  | if (!PN) | 
|  | return true; | 
|  |  | 
|  | // Don't fold i1 branches on PHIs which contain binary operators.  These can | 
|  | // often be turned into switches and other things. | 
|  | if (PN->getType()->isIntegerTy(1) && | 
|  | (isa<BinaryOperator>(PN->getIncomingValue(0)) || | 
|  | isa<BinaryOperator>(PN->getIncomingValue(1)) || | 
|  | isa<BinaryOperator>(IfCond))) | 
|  | return false; | 
|  |  | 
|  | // If all PHI nodes are promotable, check to make sure that all instructions | 
|  | // in the predecessor blocks can be promoted as well. If not, we won't be able | 
|  | // to get rid of the control flow, so it's not worth promoting to select | 
|  | // instructions. | 
|  | BasicBlock *DomBlock = nullptr; | 
|  | BasicBlock *IfBlock1 = PN->getIncomingBlock(0); | 
|  | BasicBlock *IfBlock2 = PN->getIncomingBlock(1); | 
|  | if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { | 
|  | IfBlock1 = nullptr; | 
|  | } else { | 
|  | DomBlock = *pred_begin(IfBlock1); | 
|  | for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) | 
|  | if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { | 
|  | // This is not an aggressive instruction that we can promote. | 
|  | // Because of this, we won't be able to get rid of the control flow, so | 
|  | // the xform is not worth it. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { | 
|  | IfBlock2 = nullptr; | 
|  | } else { | 
|  | DomBlock = *pred_begin(IfBlock2); | 
|  | for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) | 
|  | if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { | 
|  | // This is not an aggressive instruction that we can promote. | 
|  | // Because of this, we won't be able to get rid of the control flow, so | 
|  | // the xform is not worth it. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond | 
|  | << "  T: " << IfTrue->getName() | 
|  | << "  F: " << IfFalse->getName() << "\n"); | 
|  |  | 
|  | // If we can still promote the PHI nodes after this gauntlet of tests, | 
|  | // do all of the PHI's now. | 
|  | Instruction *InsertPt = DomBlock->getTerminator(); | 
|  | IRBuilder<NoFolder> Builder(InsertPt); | 
|  |  | 
|  | // Move all 'aggressive' instructions, which are defined in the | 
|  | // conditional parts of the if's up to the dominating block. | 
|  | if (IfBlock1) { | 
|  | for (auto &I : *IfBlock1) { | 
|  | I.dropUnknownNonDebugMetadata(); | 
|  | dropDebugUsers(I); | 
|  | } | 
|  | DomBlock->getInstList().splice(InsertPt->getIterator(), | 
|  | IfBlock1->getInstList(), IfBlock1->begin(), | 
|  | IfBlock1->getTerminator()->getIterator()); | 
|  | } | 
|  | if (IfBlock2) { | 
|  | for (auto &I : *IfBlock2) { | 
|  | I.dropUnknownNonDebugMetadata(); | 
|  | dropDebugUsers(I); | 
|  | } | 
|  | DomBlock->getInstList().splice(InsertPt->getIterator(), | 
|  | IfBlock2->getInstList(), IfBlock2->begin(), | 
|  | IfBlock2->getTerminator()->getIterator()); | 
|  | } | 
|  |  | 
|  | while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { | 
|  | // Change the PHI node into a select instruction. | 
|  | Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); | 
|  | Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); | 
|  |  | 
|  | Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); | 
|  | PN->replaceAllUsesWith(Sel); | 
|  | Sel->takeName(PN); | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement | 
|  | // has been flattened.  Change DomBlock to jump directly to our new block to | 
|  | // avoid other simplifycfg's kicking in on the diamond. | 
|  | TerminatorInst *OldTI = DomBlock->getTerminator(); | 
|  | Builder.SetInsertPoint(OldTI); | 
|  | Builder.CreateBr(BB); | 
|  | OldTI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If we found a conditional branch that goes to two returning blocks, | 
|  | /// try to merge them together into one return, | 
|  | /// introducing a select if the return values disagree. | 
|  | static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, | 
|  | IRBuilder<> &Builder) { | 
|  | assert(BI->isConditional() && "Must be a conditional branch"); | 
|  | BasicBlock *TrueSucc = BI->getSuccessor(0); | 
|  | BasicBlock *FalseSucc = BI->getSuccessor(1); | 
|  | ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); | 
|  | ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); | 
|  |  | 
|  | // Check to ensure both blocks are empty (just a return) or optionally empty | 
|  | // with PHI nodes.  If there are other instructions, merging would cause extra | 
|  | // computation on one path or the other. | 
|  | if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) | 
|  | return false; | 
|  | if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) | 
|  | return false; | 
|  |  | 
|  | Builder.SetInsertPoint(BI); | 
|  | // Okay, we found a branch that is going to two return nodes.  If | 
|  | // there is no return value for this function, just change the | 
|  | // branch into a return. | 
|  | if (FalseRet->getNumOperands() == 0) { | 
|  | TrueSucc->removePredecessor(BI->getParent()); | 
|  | FalseSucc->removePredecessor(BI->getParent()); | 
|  | Builder.CreateRetVoid(); | 
|  | EraseTerminatorInstAndDCECond(BI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, figure out what the true and false return values are | 
|  | // so we can insert a new select instruction. | 
|  | Value *TrueValue = TrueRet->getReturnValue(); | 
|  | Value *FalseValue = FalseRet->getReturnValue(); | 
|  |  | 
|  | // Unwrap any PHI nodes in the return blocks. | 
|  | if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) | 
|  | if (TVPN->getParent() == TrueSucc) | 
|  | TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); | 
|  | if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) | 
|  | if (FVPN->getParent() == FalseSucc) | 
|  | FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); | 
|  |  | 
|  | // In order for this transformation to be safe, we must be able to | 
|  | // unconditionally execute both operands to the return.  This is | 
|  | // normally the case, but we could have a potentially-trapping | 
|  | // constant expression that prevents this transformation from being | 
|  | // safe. | 
|  | if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) | 
|  | if (TCV->canTrap()) | 
|  | return false; | 
|  | if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) | 
|  | if (FCV->canTrap()) | 
|  | return false; | 
|  |  | 
|  | // Okay, we collected all the mapped values and checked them for sanity, and | 
|  | // defined to really do this transformation.  First, update the CFG. | 
|  | TrueSucc->removePredecessor(BI->getParent()); | 
|  | FalseSucc->removePredecessor(BI->getParent()); | 
|  |  | 
|  | // Insert select instructions where needed. | 
|  | Value *BrCond = BI->getCondition(); | 
|  | if (TrueValue) { | 
|  | // Insert a select if the results differ. | 
|  | if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { | 
|  | } else if (isa<UndefValue>(TrueValue)) { | 
|  | TrueValue = FalseValue; | 
|  | } else { | 
|  | TrueValue = | 
|  | Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *RI = | 
|  | !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); | 
|  |  | 
|  | (void)RI; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" | 
|  | << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " | 
|  | << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); | 
|  |  | 
|  | EraseTerminatorInstAndDCECond(BI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the given instruction is available | 
|  | /// in its predecessor block. If yes, the instruction will be removed. | 
|  | static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { | 
|  | if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) | 
|  | return false; | 
|  | for (Instruction &I : *PB) { | 
|  | Instruction *PBI = &I; | 
|  | // Check whether Inst and PBI generate the same value. | 
|  | if (Inst->isIdenticalTo(PBI)) { | 
|  | Inst->replaceAllUsesWith(PBI); | 
|  | Inst->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if either PBI or BI has branch weight available, and store | 
|  | /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does | 
|  | /// not have branch weight, use 1:1 as its weight. | 
|  | static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, | 
|  | uint64_t &PredTrueWeight, | 
|  | uint64_t &PredFalseWeight, | 
|  | uint64_t &SuccTrueWeight, | 
|  | uint64_t &SuccFalseWeight) { | 
|  | bool PredHasWeights = | 
|  | PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); | 
|  | bool SuccHasWeights = | 
|  | BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); | 
|  | if (PredHasWeights || SuccHasWeights) { | 
|  | if (!PredHasWeights) | 
|  | PredTrueWeight = PredFalseWeight = 1; | 
|  | if (!SuccHasWeights) | 
|  | SuccTrueWeight = SuccFalseWeight = 1; | 
|  | return true; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If this basic block is simple enough, and if a predecessor branches to us | 
|  | /// and one of our successors, fold the block into the predecessor and use | 
|  | /// logical operations to pick the right destination. | 
|  | bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { | 
|  | BasicBlock *BB = BI->getParent(); | 
|  |  | 
|  | const unsigned PredCount = pred_size(BB); | 
|  |  | 
|  | Instruction *Cond = nullptr; | 
|  | if (BI->isConditional()) | 
|  | Cond = dyn_cast<Instruction>(BI->getCondition()); | 
|  | else { | 
|  | // For unconditional branch, check for a simple CFG pattern, where | 
|  | // BB has a single predecessor and BB's successor is also its predecessor's | 
|  | // successor. If such pattern exists, check for CSE between BB and its | 
|  | // predecessor. | 
|  | if (BasicBlock *PB = BB->getSinglePredecessor()) | 
|  | if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) | 
|  | if (PBI->isConditional() && | 
|  | (BI->getSuccessor(0) == PBI->getSuccessor(0) || | 
|  | BI->getSuccessor(0) == PBI->getSuccessor(1))) { | 
|  | for (auto I = BB->instructionsWithoutDebug().begin(), | 
|  | E = BB->instructionsWithoutDebug().end(); | 
|  | I != E;) { | 
|  | Instruction *Curr = &*I++; | 
|  | if (isa<CmpInst>(Curr)) { | 
|  | Cond = Curr; | 
|  | break; | 
|  | } | 
|  | // Quit if we can't remove this instruction. | 
|  | if (!tryCSEWithPredecessor(Curr, PB)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Cond) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || | 
|  | Cond->getParent() != BB || !Cond->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Make sure the instruction after the condition is the cond branch. | 
|  | BasicBlock::iterator CondIt = ++Cond->getIterator(); | 
|  |  | 
|  | // Ignore dbg intrinsics. | 
|  | while (isa<DbgInfoIntrinsic>(CondIt)) | 
|  | ++CondIt; | 
|  |  | 
|  | if (&*CondIt != BI) | 
|  | return false; | 
|  |  | 
|  | // Only allow this transformation if computing the condition doesn't involve | 
|  | // too many instructions and these involved instructions can be executed | 
|  | // unconditionally. We denote all involved instructions except the condition | 
|  | // as "bonus instructions", and only allow this transformation when the | 
|  | // number of the bonus instructions we'll need to create when cloning into | 
|  | // each predecessor does not exceed a certain threshold. | 
|  | unsigned NumBonusInsts = 0; | 
|  | for (auto I = BB->begin(); Cond != &*I; ++I) { | 
|  | // Ignore dbg intrinsics. | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | continue; | 
|  | if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) | 
|  | return false; | 
|  | // I has only one use and can be executed unconditionally. | 
|  | Instruction *User = dyn_cast<Instruction>(I->user_back()); | 
|  | if (User == nullptr || User->getParent() != BB) | 
|  | return false; | 
|  | // I is used in the same BB. Since BI uses Cond and doesn't have more slots | 
|  | // to use any other instruction, User must be an instruction between next(I) | 
|  | // and Cond. | 
|  |  | 
|  | // Account for the cost of duplicating this instruction into each | 
|  | // predecessor. | 
|  | NumBonusInsts += PredCount; | 
|  | // Early exits once we reach the limit. | 
|  | if (NumBonusInsts > BonusInstThreshold) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Cond is known to be a compare or binary operator.  Check to make sure that | 
|  | // neither operand is a potentially-trapping constant expression. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) | 
|  | if (CE->canTrap()) | 
|  | return false; | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) | 
|  | if (CE->canTrap()) | 
|  | return false; | 
|  |  | 
|  | // Finally, don't infinitely unroll conditional loops. | 
|  | BasicBlock *TrueDest = BI->getSuccessor(0); | 
|  | BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; | 
|  | if (TrueDest == BB || FalseDest == BB) | 
|  | return false; | 
|  |  | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | BasicBlock *PredBlock = *PI; | 
|  | BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); | 
|  |  | 
|  | // Check that we have two conditional branches.  If there is a PHI node in | 
|  | // the common successor, verify that the same value flows in from both | 
|  | // blocks. | 
|  | SmallVector<PHINode *, 4> PHIs; | 
|  | if (!PBI || PBI->isUnconditional() || | 
|  | (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || | 
|  | (!BI->isConditional() && | 
|  | !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) | 
|  | continue; | 
|  |  | 
|  | // Determine if the two branches share a common destination. | 
|  | Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; | 
|  | bool InvertPredCond = false; | 
|  |  | 
|  | if (BI->isConditional()) { | 
|  | if (PBI->getSuccessor(0) == TrueDest) { | 
|  | Opc = Instruction::Or; | 
|  | } else if (PBI->getSuccessor(1) == FalseDest) { | 
|  | Opc = Instruction::And; | 
|  | } else if (PBI->getSuccessor(0) == FalseDest) { | 
|  | Opc = Instruction::And; | 
|  | InvertPredCond = true; | 
|  | } else if (PBI->getSuccessor(1) == TrueDest) { | 
|  | Opc = Instruction::Or; | 
|  | InvertPredCond = true; | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); | 
|  | IRBuilder<> Builder(PBI); | 
|  |  | 
|  | // If we need to invert the condition in the pred block to match, do so now. | 
|  | if (InvertPredCond) { | 
|  | Value *NewCond = PBI->getCondition(); | 
|  |  | 
|  | if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { | 
|  | CmpInst *CI = cast<CmpInst>(NewCond); | 
|  | CI->setPredicate(CI->getInversePredicate()); | 
|  | } else { | 
|  | NewCond = | 
|  | Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); | 
|  | } | 
|  |  | 
|  | PBI->setCondition(NewCond); | 
|  | PBI->swapSuccessors(); | 
|  | } | 
|  |  | 
|  | // If we have bonus instructions, clone them into the predecessor block. | 
|  | // Note that there may be multiple predecessor blocks, so we cannot move | 
|  | // bonus instructions to a predecessor block. | 
|  | ValueToValueMapTy VMap; // maps original values to cloned values | 
|  | // We already make sure Cond is the last instruction before BI. Therefore, | 
|  | // all instructions before Cond other than DbgInfoIntrinsic are bonus | 
|  | // instructions. | 
|  | for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { | 
|  | if (isa<DbgInfoIntrinsic>(BonusInst)) | 
|  | continue; | 
|  | Instruction *NewBonusInst = BonusInst->clone(); | 
|  | RemapInstruction(NewBonusInst, VMap, | 
|  | RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); | 
|  | VMap[&*BonusInst] = NewBonusInst; | 
|  |  | 
|  | // If we moved a load, we cannot any longer claim any knowledge about | 
|  | // its potential value. The previous information might have been valid | 
|  | // only given the branch precondition. | 
|  | // For an analogous reason, we must also drop all the metadata whose | 
|  | // semantics we don't understand. | 
|  | NewBonusInst->dropUnknownNonDebugMetadata(); | 
|  |  | 
|  | PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); | 
|  | NewBonusInst->takeName(&*BonusInst); | 
|  | BonusInst->setName(BonusInst->getName() + ".old"); | 
|  | } | 
|  |  | 
|  | // Clone Cond into the predecessor basic block, and or/and the | 
|  | // two conditions together. | 
|  | Instruction *CondInPred = Cond->clone(); | 
|  | RemapInstruction(CondInPred, VMap, | 
|  | RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); | 
|  | PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); | 
|  | CondInPred->takeName(Cond); | 
|  | Cond->setName(CondInPred->getName() + ".old"); | 
|  |  | 
|  | if (BI->isConditional()) { | 
|  | Instruction *NewCond = cast<Instruction>( | 
|  | Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); | 
|  | PBI->setCondition(NewCond); | 
|  |  | 
|  | uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; | 
|  | bool HasWeights = | 
|  | extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, | 
|  | SuccTrueWeight, SuccFalseWeight); | 
|  | SmallVector<uint64_t, 8> NewWeights; | 
|  |  | 
|  | if (PBI->getSuccessor(0) == BB) { | 
|  | if (HasWeights) { | 
|  | // PBI: br i1 %x, BB, FalseDest | 
|  | // BI:  br i1 %y, TrueDest, FalseDest | 
|  | // TrueWeight is TrueWeight for PBI * TrueWeight for BI. | 
|  | NewWeights.push_back(PredTrueWeight * SuccTrueWeight); | 
|  | // FalseWeight is FalseWeight for PBI * TotalWeight for BI + | 
|  | //               TrueWeight for PBI * FalseWeight for BI. | 
|  | // We assume that total weights of a BranchInst can fit into 32 bits. | 
|  | // Therefore, we will not have overflow using 64-bit arithmetic. | 
|  | NewWeights.push_back(PredFalseWeight * | 
|  | (SuccFalseWeight + SuccTrueWeight) + | 
|  | PredTrueWeight * SuccFalseWeight); | 
|  | } | 
|  | AddPredecessorToBlock(TrueDest, PredBlock, BB); | 
|  | PBI->setSuccessor(0, TrueDest); | 
|  | } | 
|  | if (PBI->getSuccessor(1) == BB) { | 
|  | if (HasWeights) { | 
|  | // PBI: br i1 %x, TrueDest, BB | 
|  | // BI:  br i1 %y, TrueDest, FalseDest | 
|  | // TrueWeight is TrueWeight for PBI * TotalWeight for BI + | 
|  | //              FalseWeight for PBI * TrueWeight for BI. | 
|  | NewWeights.push_back(PredTrueWeight * | 
|  | (SuccFalseWeight + SuccTrueWeight) + | 
|  | PredFalseWeight * SuccTrueWeight); | 
|  | // FalseWeight is FalseWeight for PBI * FalseWeight for BI. | 
|  | NewWeights.push_back(PredFalseWeight * SuccFalseWeight); | 
|  | } | 
|  | AddPredecessorToBlock(FalseDest, PredBlock, BB); | 
|  | PBI->setSuccessor(1, FalseDest); | 
|  | } | 
|  | if (NewWeights.size() == 2) { | 
|  | // Halve the weights if any of them cannot fit in an uint32_t | 
|  | FitWeights(NewWeights); | 
|  |  | 
|  | SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), | 
|  | NewWeights.end()); | 
|  | setBranchWeights(PBI, MDWeights[0], MDWeights[1]); | 
|  | } else | 
|  | PBI->setMetadata(LLVMContext::MD_prof, nullptr); | 
|  | } else { | 
|  | // Update PHI nodes in the common successors. | 
|  | for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { | 
|  | ConstantInt *PBI_C = cast<ConstantInt>( | 
|  | PHIs[i]->getIncomingValueForBlock(PBI->getParent())); | 
|  | assert(PBI_C->getType()->isIntegerTy(1)); | 
|  | Instruction *MergedCond = nullptr; | 
|  | if (PBI->getSuccessor(0) == TrueDest) { | 
|  | // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) | 
|  | // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) | 
|  | //       is false: !PBI_Cond and BI_Value | 
|  | Instruction *NotCond = cast<Instruction>( | 
|  | Builder.CreateNot(PBI->getCondition(), "not.cond")); | 
|  | MergedCond = cast<Instruction>( | 
|  | Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, | 
|  | "and.cond")); | 
|  | if (PBI_C->isOne()) | 
|  | MergedCond = cast<Instruction>(Builder.CreateBinOp( | 
|  | Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); | 
|  | } else { | 
|  | // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) | 
|  | // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) | 
|  | //       is false: PBI_Cond and BI_Value | 
|  | MergedCond = cast<Instruction>(Builder.CreateBinOp( | 
|  | Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); | 
|  | if (PBI_C->isOne()) { | 
|  | Instruction *NotCond = cast<Instruction>( | 
|  | Builder.CreateNot(PBI->getCondition(), "not.cond")); | 
|  | MergedCond = cast<Instruction>(Builder.CreateBinOp( | 
|  | Instruction::Or, NotCond, MergedCond, "or.cond")); | 
|  | } | 
|  | } | 
|  | // Update PHI Node. | 
|  | PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), | 
|  | MergedCond); | 
|  | } | 
|  | // Change PBI from Conditional to Unconditional. | 
|  | BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); | 
|  | EraseTerminatorInstAndDCECond(PBI); | 
|  | PBI = New_PBI; | 
|  | } | 
|  |  | 
|  | // If BI was a loop latch, it may have had associated loop metadata. | 
|  | // We need to copy it to the new latch, that is, PBI. | 
|  | if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) | 
|  | PBI->setMetadata(LLVMContext::MD_loop, LoopMD); | 
|  |  | 
|  | // TODO: If BB is reachable from all paths through PredBlock, then we | 
|  | // could replace PBI's branch probabilities with BI's. | 
|  |  | 
|  | // Copy any debug value intrinsics into the end of PredBlock. | 
|  | for (Instruction &I : *BB) | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | I.clone()->insertBefore(PBI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If there is only one store in BB1 and BB2, return it, otherwise return | 
|  | // nullptr. | 
|  | static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { | 
|  | StoreInst *S = nullptr; | 
|  | for (auto *BB : {BB1, BB2}) { | 
|  | if (!BB) | 
|  | continue; | 
|  | for (auto &I : *BB) | 
|  | if (auto *SI = dyn_cast<StoreInst>(&I)) { | 
|  | if (S) | 
|  | // Multiple stores seen. | 
|  | return nullptr; | 
|  | else | 
|  | S = SI; | 
|  | } | 
|  | } | 
|  | return S; | 
|  | } | 
|  |  | 
|  | static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, | 
|  | Value *AlternativeV = nullptr) { | 
|  | // PHI is going to be a PHI node that allows the value V that is defined in | 
|  | // BB to be referenced in BB's only successor. | 
|  | // | 
|  | // If AlternativeV is nullptr, the only value we care about in PHI is V. It | 
|  | // doesn't matter to us what the other operand is (it'll never get used). We | 
|  | // could just create a new PHI with an undef incoming value, but that could | 
|  | // increase register pressure if EarlyCSE/InstCombine can't fold it with some | 
|  | // other PHI. So here we directly look for some PHI in BB's successor with V | 
|  | // as an incoming operand. If we find one, we use it, else we create a new | 
|  | // one. | 
|  | // | 
|  | // If AlternativeV is not nullptr, we care about both incoming values in PHI. | 
|  | // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] | 
|  | // where OtherBB is the single other predecessor of BB's only successor. | 
|  | PHINode *PHI = nullptr; | 
|  | BasicBlock *Succ = BB->getSingleSuccessor(); | 
|  |  | 
|  | for (auto I = Succ->begin(); isa<PHINode>(I); ++I) | 
|  | if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { | 
|  | PHI = cast<PHINode>(I); | 
|  | if (!AlternativeV) | 
|  | break; | 
|  |  | 
|  | assert(pred_size(Succ) == 2); | 
|  | auto PredI = pred_begin(Succ); | 
|  | BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; | 
|  | if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) | 
|  | break; | 
|  | PHI = nullptr; | 
|  | } | 
|  | if (PHI) | 
|  | return PHI; | 
|  |  | 
|  | // If V is not an instruction defined in BB, just return it. | 
|  | if (!AlternativeV && | 
|  | (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) | 
|  | return V; | 
|  |  | 
|  | PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); | 
|  | PHI->addIncoming(V, BB); | 
|  | for (BasicBlock *PredBB : predecessors(Succ)) | 
|  | if (PredBB != BB) | 
|  | PHI->addIncoming( | 
|  | AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); | 
|  | return PHI; | 
|  | } | 
|  |  | 
|  | static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, | 
|  | BasicBlock *QTB, BasicBlock *QFB, | 
|  | BasicBlock *PostBB, Value *Address, | 
|  | bool InvertPCond, bool InvertQCond, | 
|  | const DataLayout &DL) { | 
|  | auto IsaBitcastOfPointerType = [](const Instruction &I) { | 
|  | return Operator::getOpcode(&I) == Instruction::BitCast && | 
|  | I.getType()->isPointerTy(); | 
|  | }; | 
|  |  | 
|  | // If we're not in aggressive mode, we only optimize if we have some | 
|  | // confidence that by optimizing we'll allow P and/or Q to be if-converted. | 
|  | auto IsWorthwhile = [&](BasicBlock *BB) { | 
|  | if (!BB) | 
|  | return true; | 
|  | // Heuristic: if the block can be if-converted/phi-folded and the | 
|  | // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to | 
|  | // thread this store. | 
|  | unsigned N = 0; | 
|  | for (auto &I : BB->instructionsWithoutDebug()) { | 
|  | // Cheap instructions viable for folding. | 
|  | if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || | 
|  | isa<StoreInst>(I)) | 
|  | ++N; | 
|  | // Free instructions. | 
|  | else if (I.isTerminator() || IsaBitcastOfPointerType(I)) | 
|  | continue; | 
|  | else | 
|  | return false; | 
|  | } | 
|  | // The store we want to merge is counted in N, so add 1 to make sure | 
|  | // we're counting the instructions that would be left. | 
|  | return N <= (PHINodeFoldingThreshold + 1); | 
|  | }; | 
|  |  | 
|  | if (!MergeCondStoresAggressively && | 
|  | (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || | 
|  | !IsWorthwhile(QFB))) | 
|  | return false; | 
|  |  | 
|  | // For every pointer, there must be exactly two stores, one coming from | 
|  | // PTB or PFB, and the other from QTB or QFB. We don't support more than one | 
|  | // store (to any address) in PTB,PFB or QTB,QFB. | 
|  | // FIXME: We could relax this restriction with a bit more work and performance | 
|  | // testing. | 
|  | StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); | 
|  | StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); | 
|  | if (!PStore || !QStore) | 
|  | return false; | 
|  |  | 
|  | // Now check the stores are compatible. | 
|  | if (!QStore->isUnordered() || !PStore->isUnordered()) | 
|  | return false; | 
|  |  | 
|  | // Check that sinking the store won't cause program behavior changes. Sinking | 
|  | // the store out of the Q blocks won't change any behavior as we're sinking | 
|  | // from a block to its unconditional successor. But we're moving a store from | 
|  | // the P blocks down through the middle block (QBI) and past both QFB and QTB. | 
|  | // So we need to check that there are no aliasing loads or stores in | 
|  | // QBI, QTB and QFB. We also need to check there are no conflicting memory | 
|  | // operations between PStore and the end of its parent block. | 
|  | // | 
|  | // The ideal way to do this is to query AliasAnalysis, but we don't | 
|  | // preserve AA currently so that is dangerous. Be super safe and just | 
|  | // check there are no other memory operations at all. | 
|  | for (auto &I : *QFB->getSinglePredecessor()) | 
|  | if (I.mayReadOrWriteMemory()) | 
|  | return false; | 
|  | for (auto &I : *QFB) | 
|  | if (&I != QStore && I.mayReadOrWriteMemory()) | 
|  | return false; | 
|  | if (QTB) | 
|  | for (auto &I : *QTB) | 
|  | if (&I != QStore && I.mayReadOrWriteMemory()) | 
|  | return false; | 
|  | for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); | 
|  | I != E; ++I) | 
|  | if (&*I != PStore && I->mayReadOrWriteMemory()) | 
|  | return false; | 
|  |  | 
|  | // If PostBB has more than two predecessors, we need to split it so we can | 
|  | // sink the store. | 
|  | if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { | 
|  | // We know that QFB's only successor is PostBB. And QFB has a single | 
|  | // predecessor. If QTB exists, then its only successor is also PostBB. | 
|  | // If QTB does not exist, then QFB's only predecessor has a conditional | 
|  | // branch to QFB and PostBB. | 
|  | BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); | 
|  | BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, | 
|  | "condstore.split"); | 
|  | if (!NewBB) | 
|  | return false; | 
|  | PostBB = NewBB; | 
|  | } | 
|  |  | 
|  | // OK, we're going to sink the stores to PostBB. The store has to be | 
|  | // conditional though, so first create the predicate. | 
|  | Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) | 
|  | ->getCondition(); | 
|  | Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) | 
|  | ->getCondition(); | 
|  |  | 
|  | Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), | 
|  | PStore->getParent()); | 
|  | Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), | 
|  | QStore->getParent(), PPHI); | 
|  |  | 
|  | IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); | 
|  |  | 
|  | Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); | 
|  | Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); | 
|  |  | 
|  | if (InvertPCond) | 
|  | PPred = QB.CreateNot(PPred); | 
|  | if (InvertQCond) | 
|  | QPred = QB.CreateNot(QPred); | 
|  | Value *CombinedPred = QB.CreateOr(PPred, QPred); | 
|  |  | 
|  | auto *T = | 
|  | SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); | 
|  | QB.SetInsertPoint(T); | 
|  | StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); | 
|  | AAMDNodes AAMD; | 
|  | PStore->getAAMetadata(AAMD, /*Merge=*/false); | 
|  | PStore->getAAMetadata(AAMD, /*Merge=*/true); | 
|  | SI->setAAMetadata(AAMD); | 
|  | unsigned PAlignment = PStore->getAlignment(); | 
|  | unsigned QAlignment = QStore->getAlignment(); | 
|  | unsigned TypeAlignment = | 
|  | DL.getABITypeAlignment(SI->getValueOperand()->getType()); | 
|  | unsigned MinAlignment; | 
|  | unsigned MaxAlignment; | 
|  | std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); | 
|  | // Choose the minimum alignment. If we could prove both stores execute, we | 
|  | // could use biggest one.  In this case, though, we only know that one of the | 
|  | // stores executes.  And we don't know it's safe to take the alignment from a | 
|  | // store that doesn't execute. | 
|  | if (MinAlignment != 0) { | 
|  | // Choose the minimum of all non-zero alignments. | 
|  | SI->setAlignment(MinAlignment); | 
|  | } else if (MaxAlignment != 0) { | 
|  | // Choose the minimal alignment between the non-zero alignment and the ABI | 
|  | // default alignment for the type of the stored value. | 
|  | SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); | 
|  | } else { | 
|  | // If both alignments are zero, use ABI default alignment for the type of | 
|  | // the stored value. | 
|  | SI->setAlignment(TypeAlignment); | 
|  | } | 
|  |  | 
|  | QStore->eraseFromParent(); | 
|  | PStore->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, | 
|  | const DataLayout &DL) { | 
|  | // The intention here is to find diamonds or triangles (see below) where each | 
|  | // conditional block contains a store to the same address. Both of these | 
|  | // stores are conditional, so they can't be unconditionally sunk. But it may | 
|  | // be profitable to speculatively sink the stores into one merged store at the | 
|  | // end, and predicate the merged store on the union of the two conditions of | 
|  | // PBI and QBI. | 
|  | // | 
|  | // This can reduce the number of stores executed if both of the conditions are | 
|  | // true, and can allow the blocks to become small enough to be if-converted. | 
|  | // This optimization will also chain, so that ladders of test-and-set | 
|  | // sequences can be if-converted away. | 
|  | // | 
|  | // We only deal with simple diamonds or triangles: | 
|  | // | 
|  | //     PBI       or      PBI        or a combination of the two | 
|  | //    /   \               | \ | 
|  | //   PTB  PFB             |  PFB | 
|  | //    \   /               | / | 
|  | //     QBI                QBI | 
|  | //    /  \                | \ | 
|  | //   QTB  QFB             |  QFB | 
|  | //    \  /                | / | 
|  | //    PostBB            PostBB | 
|  | // | 
|  | // We model triangles as a type of diamond with a nullptr "true" block. | 
|  | // Triangles are canonicalized so that the fallthrough edge is represented by | 
|  | // a true condition, as in the diagram above. | 
|  | BasicBlock *PTB = PBI->getSuccessor(0); | 
|  | BasicBlock *PFB = PBI->getSuccessor(1); | 
|  | BasicBlock *QTB = QBI->getSuccessor(0); | 
|  | BasicBlock *QFB = QBI->getSuccessor(1); | 
|  | BasicBlock *PostBB = QFB->getSingleSuccessor(); | 
|  |  | 
|  | // Make sure we have a good guess for PostBB. If QTB's only successor is | 
|  | // QFB, then QFB is a better PostBB. | 
|  | if (QTB->getSingleSuccessor() == QFB) | 
|  | PostBB = QFB; | 
|  |  | 
|  | // If we couldn't find a good PostBB, stop. | 
|  | if (!PostBB) | 
|  | return false; | 
|  |  | 
|  | bool InvertPCond = false, InvertQCond = false; | 
|  | // Canonicalize fallthroughs to the true branches. | 
|  | if (PFB == QBI->getParent()) { | 
|  | std::swap(PFB, PTB); | 
|  | InvertPCond = true; | 
|  | } | 
|  | if (QFB == PostBB) { | 
|  | std::swap(QFB, QTB); | 
|  | InvertQCond = true; | 
|  | } | 
|  |  | 
|  | // From this point on we can assume PTB or QTB may be fallthroughs but PFB | 
|  | // and QFB may not. Model fallthroughs as a nullptr block. | 
|  | if (PTB == QBI->getParent()) | 
|  | PTB = nullptr; | 
|  | if (QTB == PostBB) | 
|  | QTB = nullptr; | 
|  |  | 
|  | // Legality bailouts. We must have at least the non-fallthrough blocks and | 
|  | // the post-dominating block, and the non-fallthroughs must only have one | 
|  | // predecessor. | 
|  | auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { | 
|  | return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; | 
|  | }; | 
|  | if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || | 
|  | !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) | 
|  | return false; | 
|  | if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || | 
|  | (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) | 
|  | return false; | 
|  | if (!QBI->getParent()->hasNUses(2)) | 
|  | return false; | 
|  |  | 
|  | // OK, this is a sequence of two diamonds or triangles. | 
|  | // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. | 
|  | SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; | 
|  | for (auto *BB : {PTB, PFB}) { | 
|  | if (!BB) | 
|  | continue; | 
|  | for (auto &I : *BB) | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(&I)) | 
|  | PStoreAddresses.insert(SI->getPointerOperand()); | 
|  | } | 
|  | for (auto *BB : {QTB, QFB}) { | 
|  | if (!BB) | 
|  | continue; | 
|  | for (auto &I : *BB) | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(&I)) | 
|  | QStoreAddresses.insert(SI->getPointerOperand()); | 
|  | } | 
|  |  | 
|  | set_intersect(PStoreAddresses, QStoreAddresses); | 
|  | // set_intersect mutates PStoreAddresses in place. Rename it here to make it | 
|  | // clear what it contains. | 
|  | auto &CommonAddresses = PStoreAddresses; | 
|  |  | 
|  | bool Changed = false; | 
|  | for (auto *Address : CommonAddresses) | 
|  | Changed |= mergeConditionalStoreToAddress( | 
|  | PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// If we have a conditional branch as a predecessor of another block, | 
|  | /// this function tries to simplify it.  We know | 
|  | /// that PBI and BI are both conditional branches, and BI is in one of the | 
|  | /// successor blocks of PBI - PBI branches to BI. | 
|  | static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, | 
|  | const DataLayout &DL) { | 
|  | assert(PBI->isConditional() && BI->isConditional()); | 
|  | BasicBlock *BB = BI->getParent(); | 
|  |  | 
|  | // If this block ends with a branch instruction, and if there is a | 
|  | // predecessor that ends on a branch of the same condition, make | 
|  | // this conditional branch redundant. | 
|  | if (PBI->getCondition() == BI->getCondition() && | 
|  | PBI->getSuccessor(0) != PBI->getSuccessor(1)) { | 
|  | // Okay, the outcome of this conditional branch is statically | 
|  | // knowable.  If this block had a single pred, handle specially. | 
|  | if (BB->getSinglePredecessor()) { | 
|  | // Turn this into a branch on constant. | 
|  | bool CondIsTrue = PBI->getSuccessor(0) == BB; | 
|  | BI->setCondition( | 
|  | ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); | 
|  | return true; // Nuke the branch on constant. | 
|  | } | 
|  |  | 
|  | // Otherwise, if there are multiple predecessors, insert a PHI that merges | 
|  | // in the constant and simplify the block result.  Subsequent passes of | 
|  | // simplifycfg will thread the block. | 
|  | if (BlockIsSimpleEnoughToThreadThrough(BB)) { | 
|  | pred_iterator PB = pred_begin(BB), PE = pred_end(BB); | 
|  | PHINode *NewPN = PHINode::Create( | 
|  | Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), | 
|  | BI->getCondition()->getName() + ".pr", &BB->front()); | 
|  | // Okay, we're going to insert the PHI node.  Since PBI is not the only | 
|  | // predecessor, compute the PHI'd conditional value for all of the preds. | 
|  | // Any predecessor where the condition is not computable we keep symbolic. | 
|  | for (pred_iterator PI = PB; PI != PE; ++PI) { | 
|  | BasicBlock *P = *PI; | 
|  | if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && | 
|  | PBI->isConditional() && PBI->getCondition() == BI->getCondition() && | 
|  | PBI->getSuccessor(0) != PBI->getSuccessor(1)) { | 
|  | bool CondIsTrue = PBI->getSuccessor(0) == BB; | 
|  | NewPN->addIncoming( | 
|  | ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), | 
|  | P); | 
|  | } else { | 
|  | NewPN->addIncoming(BI->getCondition(), P); | 
|  | } | 
|  | } | 
|  |  | 
|  | BI->setCondition(NewPN); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) | 
|  | if (CE->canTrap()) | 
|  | return false; | 
|  |  | 
|  | // If both branches are conditional and both contain stores to the same | 
|  | // address, remove the stores from the conditionals and create a conditional | 
|  | // merged store at the end. | 
|  | if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) | 
|  | return true; | 
|  |  | 
|  | // If this is a conditional branch in an empty block, and if any | 
|  | // predecessors are a conditional branch to one of our destinations, | 
|  | // fold the conditions into logical ops and one cond br. | 
|  |  | 
|  | // Ignore dbg intrinsics. | 
|  | if (&*BB->instructionsWithoutDebug().begin() != BI) | 
|  | return false; | 
|  |  | 
|  | int PBIOp, BIOp; | 
|  | if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { | 
|  | PBIOp = 0; | 
|  | BIOp = 0; | 
|  | } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { | 
|  | PBIOp = 0; | 
|  | BIOp = 1; | 
|  | } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { | 
|  | PBIOp = 1; | 
|  | BIOp = 0; | 
|  | } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { | 
|  | PBIOp = 1; | 
|  | BIOp = 1; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check to make sure that the other destination of this branch | 
|  | // isn't BB itself.  If so, this is an infinite loop that will | 
|  | // keep getting unwound. | 
|  | if (PBI->getSuccessor(PBIOp) == BB) | 
|  | return false; | 
|  |  | 
|  | // Do not perform this transformation if it would require | 
|  | // insertion of a large number of select instructions. For targets | 
|  | // without predication/cmovs, this is a big pessimization. | 
|  |  | 
|  | // Also do not perform this transformation if any phi node in the common | 
|  | // destination block can trap when reached by BB or PBB (PR17073). In that | 
|  | // case, it would be unsafe to hoist the operation into a select instruction. | 
|  |  | 
|  | BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); | 
|  | unsigned NumPhis = 0; | 
|  | for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); | 
|  | ++II, ++NumPhis) { | 
|  | if (NumPhis > 2) // Disable this xform. | 
|  | return false; | 
|  |  | 
|  | PHINode *PN = cast<PHINode>(II); | 
|  | Value *BIV = PN->getIncomingValueForBlock(BB); | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) | 
|  | if (CE->canTrap()) | 
|  | return false; | 
|  |  | 
|  | unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); | 
|  | Value *PBIV = PN->getIncomingValue(PBBIdx); | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) | 
|  | if (CE->canTrap()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Finally, if everything is ok, fold the branches to logical ops. | 
|  | BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() | 
|  | << "AND: " << *BI->getParent()); | 
|  |  | 
|  | // If OtherDest *is* BB, then BB is a basic block with a single conditional | 
|  | // branch in it, where one edge (OtherDest) goes back to itself but the other | 
|  | // exits.  We don't *know* that the program avoids the infinite loop | 
|  | // (even though that seems likely).  If we do this xform naively, we'll end up | 
|  | // recursively unpeeling the loop.  Since we know that (after the xform is | 
|  | // done) that the block *is* infinite if reached, we just make it an obviously | 
|  | // infinite loop with no cond branch. | 
|  | if (OtherDest == BB) { | 
|  | // Insert it at the end of the function, because it's either code, | 
|  | // or it won't matter if it's hot. :) | 
|  | BasicBlock *InfLoopBlock = | 
|  | BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); | 
|  | BranchInst::Create(InfLoopBlock, InfLoopBlock); | 
|  | OtherDest = InfLoopBlock; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); | 
|  |  | 
|  | // BI may have other predecessors.  Because of this, we leave | 
|  | // it alone, but modify PBI. | 
|  |  | 
|  | // Make sure we get to CommonDest on True&True directions. | 
|  | Value *PBICond = PBI->getCondition(); | 
|  | IRBuilder<NoFolder> Builder(PBI); | 
|  | if (PBIOp) | 
|  | PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); | 
|  |  | 
|  | Value *BICond = BI->getCondition(); | 
|  | if (BIOp) | 
|  | BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); | 
|  |  | 
|  | // Merge the conditions. | 
|  | Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); | 
|  |  | 
|  | // Modify PBI to branch on the new condition to the new dests. | 
|  | PBI->setCondition(Cond); | 
|  | PBI->setSuccessor(0, CommonDest); | 
|  | PBI->setSuccessor(1, OtherDest); | 
|  |  | 
|  | // Update branch weight for PBI. | 
|  | uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; | 
|  | uint64_t PredCommon, PredOther, SuccCommon, SuccOther; | 
|  | bool HasWeights = | 
|  | extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, | 
|  | SuccTrueWeight, SuccFalseWeight); | 
|  | if (HasWeights) { | 
|  | PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; | 
|  | PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; | 
|  | SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; | 
|  | SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; | 
|  | // The weight to CommonDest should be PredCommon * SuccTotal + | 
|  | //                                    PredOther * SuccCommon. | 
|  | // The weight to OtherDest should be PredOther * SuccOther. | 
|  | uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + | 
|  | PredOther * SuccCommon, | 
|  | PredOther * SuccOther}; | 
|  | // Halve the weights if any of them cannot fit in an uint32_t | 
|  | FitWeights(NewWeights); | 
|  |  | 
|  | setBranchWeights(PBI, NewWeights[0], NewWeights[1]); | 
|  | } | 
|  |  | 
|  | // OtherDest may have phi nodes.  If so, add an entry from PBI's | 
|  | // block that are identical to the entries for BI's block. | 
|  | AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); | 
|  |  | 
|  | // We know that the CommonDest already had an edge from PBI to | 
|  | // it.  If it has PHIs though, the PHIs may have different | 
|  | // entries for BB and PBI's BB.  If so, insert a select to make | 
|  | // them agree. | 
|  | for (PHINode &PN : CommonDest->phis()) { | 
|  | Value *BIV = PN.getIncomingValueForBlock(BB); | 
|  | unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); | 
|  | Value *PBIV = PN.getIncomingValue(PBBIdx); | 
|  | if (BIV != PBIV) { | 
|  | // Insert a select in PBI to pick the right value. | 
|  | SelectInst *NV = cast<SelectInst>( | 
|  | Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); | 
|  | PN.setIncomingValue(PBBIdx, NV); | 
|  | // Although the select has the same condition as PBI, the original branch | 
|  | // weights for PBI do not apply to the new select because the select's | 
|  | // 'logical' edges are incoming edges of the phi that is eliminated, not | 
|  | // the outgoing edges of PBI. | 
|  | if (HasWeights) { | 
|  | uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; | 
|  | uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; | 
|  | uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; | 
|  | uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; | 
|  | // The weight to PredCommonDest should be PredCommon * SuccTotal. | 
|  | // The weight to PredOtherDest should be PredOther * SuccCommon. | 
|  | uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), | 
|  | PredOther * SuccCommon}; | 
|  |  | 
|  | FitWeights(NewWeights); | 
|  |  | 
|  | setBranchWeights(NV, NewWeights[0], NewWeights[1]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); | 
|  | LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); | 
|  |  | 
|  | // This basic block is probably dead.  We know it has at least | 
|  | // one fewer predecessor. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is | 
|  | // true or to FalseBB if Cond is false. | 
|  | // Takes care of updating the successors and removing the old terminator. | 
|  | // Also makes sure not to introduce new successors by assuming that edges to | 
|  | // non-successor TrueBBs and FalseBBs aren't reachable. | 
|  | static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, | 
|  | BasicBlock *TrueBB, BasicBlock *FalseBB, | 
|  | uint32_t TrueWeight, | 
|  | uint32_t FalseWeight) { | 
|  | // Remove any superfluous successor edges from the CFG. | 
|  | // First, figure out which successors to preserve. | 
|  | // If TrueBB and FalseBB are equal, only try to preserve one copy of that | 
|  | // successor. | 
|  | BasicBlock *KeepEdge1 = TrueBB; | 
|  | BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; | 
|  |  | 
|  | // Then remove the rest. | 
|  | for (BasicBlock *Succ : successors(OldTerm)) { | 
|  | // Make sure only to keep exactly one copy of each edge. | 
|  | if (Succ == KeepEdge1) | 
|  | KeepEdge1 = nullptr; | 
|  | else if (Succ == KeepEdge2) | 
|  | KeepEdge2 = nullptr; | 
|  | else | 
|  | Succ->removePredecessor(OldTerm->getParent(), | 
|  | /*DontDeleteUselessPHIs=*/true); | 
|  | } | 
|  |  | 
|  | IRBuilder<> Builder(OldTerm); | 
|  | Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); | 
|  |  | 
|  | // Insert an appropriate new terminator. | 
|  | if (!KeepEdge1 && !KeepEdge2) { | 
|  | if (TrueBB == FalseBB) | 
|  | // We were only looking for one successor, and it was present. | 
|  | // Create an unconditional branch to it. | 
|  | Builder.CreateBr(TrueBB); | 
|  | else { | 
|  | // We found both of the successors we were looking for. | 
|  | // Create a conditional branch sharing the condition of the select. | 
|  | BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); | 
|  | if (TrueWeight != FalseWeight) | 
|  | setBranchWeights(NewBI, TrueWeight, FalseWeight); | 
|  | } | 
|  | } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { | 
|  | // Neither of the selected blocks were successors, so this | 
|  | // terminator must be unreachable. | 
|  | new UnreachableInst(OldTerm->getContext(), OldTerm); | 
|  | } else { | 
|  | // One of the selected values was a successor, but the other wasn't. | 
|  | // Insert an unconditional branch to the one that was found; | 
|  | // the edge to the one that wasn't must be unreachable. | 
|  | if (!KeepEdge1) | 
|  | // Only TrueBB was found. | 
|  | Builder.CreateBr(TrueBB); | 
|  | else | 
|  | // Only FalseBB was found. | 
|  | Builder.CreateBr(FalseBB); | 
|  | } | 
|  |  | 
|  | EraseTerminatorInstAndDCECond(OldTerm); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Replaces | 
|  | //   (switch (select cond, X, Y)) on constant X, Y | 
|  | // with a branch - conditional if X and Y lead to distinct BBs, | 
|  | // unconditional otherwise. | 
|  | static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { | 
|  | // Check for constant integer values in the select. | 
|  | ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); | 
|  | ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); | 
|  | if (!TrueVal || !FalseVal) | 
|  | return false; | 
|  |  | 
|  | // Find the relevant condition and destinations. | 
|  | Value *Condition = Select->getCondition(); | 
|  | BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); | 
|  | BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); | 
|  |  | 
|  | // Get weight for TrueBB and FalseBB. | 
|  | uint32_t TrueWeight = 0, FalseWeight = 0; | 
|  | SmallVector<uint64_t, 8> Weights; | 
|  | bool HasWeights = HasBranchWeights(SI); | 
|  | if (HasWeights) { | 
|  | GetBranchWeights(SI, Weights); | 
|  | if (Weights.size() == 1 + SI->getNumCases()) { | 
|  | TrueWeight = | 
|  | (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; | 
|  | FalseWeight = | 
|  | (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Perform the actual simplification. | 
|  | return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, | 
|  | FalseWeight); | 
|  | } | 
|  |  | 
|  | // Replaces | 
|  | //   (indirectbr (select cond, blockaddress(@fn, BlockA), | 
|  | //                             blockaddress(@fn, BlockB))) | 
|  | // with | 
|  | //   (br cond, BlockA, BlockB). | 
|  | static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { | 
|  | // Check that both operands of the select are block addresses. | 
|  | BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); | 
|  | BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); | 
|  | if (!TBA || !FBA) | 
|  | return false; | 
|  |  | 
|  | // Extract the actual blocks. | 
|  | BasicBlock *TrueBB = TBA->getBasicBlock(); | 
|  | BasicBlock *FalseBB = FBA->getBasicBlock(); | 
|  |  | 
|  | // Perform the actual simplification. | 
|  | return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | /// This is called when we find an icmp instruction | 
|  | /// (a seteq/setne with a constant) as the only instruction in a | 
|  | /// block that ends with an uncond branch.  We are looking for a very specific | 
|  | /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In | 
|  | /// this case, we merge the first two "or's of icmp" into a switch, but then the | 
|  | /// default value goes to an uncond block with a seteq in it, we get something | 
|  | /// like: | 
|  | /// | 
|  | ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ] | 
|  | /// DEFAULT: | 
|  | ///   %tmp = icmp eq i8 %A, 92 | 
|  | ///   br label %end | 
|  | /// end: | 
|  | ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] | 
|  | /// | 
|  | /// We prefer to split the edge to 'end' so that there is a true/false entry to | 
|  | /// the PHI, merging the third icmp into the switch. | 
|  | static bool tryToSimplifyUncondBranchWithICmpInIt( | 
|  | ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, | 
|  | const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) { | 
|  | BasicBlock *BB = ICI->getParent(); | 
|  |  | 
|  | // If the block has any PHIs in it or the icmp has multiple uses, it is too | 
|  | // complex. | 
|  | if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | Value *V = ICI->getOperand(0); | 
|  | ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); | 
|  |  | 
|  | // The pattern we're looking for is where our only predecessor is a switch on | 
|  | // 'V' and this block is the default case for the switch.  In this case we can | 
|  | // fold the compared value into the switch to simplify things. | 
|  | BasicBlock *Pred = BB->getSinglePredecessor(); | 
|  | if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) | 
|  | return false; | 
|  |  | 
|  | SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); | 
|  | if (SI->getCondition() != V) | 
|  | return false; | 
|  |  | 
|  | // If BB is reachable on a non-default case, then we simply know the value of | 
|  | // V in this block.  Substitute it and constant fold the icmp instruction | 
|  | // away. | 
|  | if (SI->getDefaultDest() != BB) { | 
|  | ConstantInt *VVal = SI->findCaseDest(BB); | 
|  | assert(VVal && "Should have a unique destination value"); | 
|  | ICI->setOperand(0, VVal); | 
|  |  | 
|  | if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { | 
|  | ICI->replaceAllUsesWith(V); | 
|  | ICI->eraseFromParent(); | 
|  | } | 
|  | // BB is now empty, so it is likely to simplify away. | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  | } | 
|  |  | 
|  | // Ok, the block is reachable from the default dest.  If the constant we're | 
|  | // comparing exists in one of the other edges, then we can constant fold ICI | 
|  | // and zap it. | 
|  | if (SI->findCaseValue(Cst) != SI->case_default()) { | 
|  | Value *V; | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_EQ) | 
|  | V = ConstantInt::getFalse(BB->getContext()); | 
|  | else | 
|  | V = ConstantInt::getTrue(BB->getContext()); | 
|  |  | 
|  | ICI->replaceAllUsesWith(V); | 
|  | ICI->eraseFromParent(); | 
|  | // BB is now empty, so it is likely to simplify away. | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  | } | 
|  |  | 
|  | // The use of the icmp has to be in the 'end' block, by the only PHI node in | 
|  | // the block. | 
|  | BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); | 
|  | PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); | 
|  | if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || | 
|  | isa<PHINode>(++BasicBlock::iterator(PHIUse))) | 
|  | return false; | 
|  |  | 
|  | // If the icmp is a SETEQ, then the default dest gets false, the new edge gets | 
|  | // true in the PHI. | 
|  | Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); | 
|  | Constant *NewCst = ConstantInt::getFalse(BB->getContext()); | 
|  |  | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_EQ) | 
|  | std::swap(DefaultCst, NewCst); | 
|  |  | 
|  | // Replace ICI (which is used by the PHI for the default value) with true or | 
|  | // false depending on if it is EQ or NE. | 
|  | ICI->replaceAllUsesWith(DefaultCst); | 
|  | ICI->eraseFromParent(); | 
|  |  | 
|  | // Okay, the switch goes to this block on a default value.  Add an edge from | 
|  | // the switch to the merge point on the compared value. | 
|  | BasicBlock *NewBB = | 
|  | BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); | 
|  | SmallVector<uint64_t, 8> Weights; | 
|  | bool HasWeights = HasBranchWeights(SI); | 
|  | if (HasWeights) { | 
|  | GetBranchWeights(SI, Weights); | 
|  | if (Weights.size() == 1 + SI->getNumCases()) { | 
|  | // Split weight for default case to case for "Cst". | 
|  | Weights[0] = (Weights[0] + 1) >> 1; | 
|  | Weights.push_back(Weights[0]); | 
|  |  | 
|  | SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); | 
|  | setBranchWeights(SI, MDWeights); | 
|  | } | 
|  | } | 
|  | SI->addCase(Cst, NewBB); | 
|  |  | 
|  | // NewBB branches to the phi block, add the uncond branch and the phi entry. | 
|  | Builder.SetInsertPoint(NewBB); | 
|  | Builder.SetCurrentDebugLocation(SI->getDebugLoc()); | 
|  | Builder.CreateBr(SuccBlock); | 
|  | PHIUse->addIncoming(NewCst, NewBB); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// The specified branch is a conditional branch. | 
|  | /// Check to see if it is branching on an or/and chain of icmp instructions, and | 
|  | /// fold it into a switch instruction if so. | 
|  | static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, | 
|  | const DataLayout &DL) { | 
|  | Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); | 
|  | if (!Cond) | 
|  | return false; | 
|  |  | 
|  | // Change br (X == 0 | X == 1), T, F into a switch instruction. | 
|  | // If this is a bunch of seteq's or'd together, or if it's a bunch of | 
|  | // 'setne's and'ed together, collect them. | 
|  |  | 
|  | // Try to gather values from a chain of and/or to be turned into a switch | 
|  | ConstantComparesGatherer ConstantCompare(Cond, DL); | 
|  | // Unpack the result | 
|  | SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; | 
|  | Value *CompVal = ConstantCompare.CompValue; | 
|  | unsigned UsedICmps = ConstantCompare.UsedICmps; | 
|  | Value *ExtraCase = ConstantCompare.Extra; | 
|  |  | 
|  | // If we didn't have a multiply compared value, fail. | 
|  | if (!CompVal) | 
|  | return false; | 
|  |  | 
|  | // Avoid turning single icmps into a switch. | 
|  | if (UsedICmps <= 1) | 
|  | return false; | 
|  |  | 
|  | bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); | 
|  |  | 
|  | // There might be duplicate constants in the list, which the switch | 
|  | // instruction can't handle, remove them now. | 
|  | array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); | 
|  | Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); | 
|  |  | 
|  | // If Extra was used, we require at least two switch values to do the | 
|  | // transformation.  A switch with one value is just a conditional branch. | 
|  | if (ExtraCase && Values.size() < 2) | 
|  | return false; | 
|  |  | 
|  | // TODO: Preserve branch weight metadata, similarly to how | 
|  | // FoldValueComparisonIntoPredecessors preserves it. | 
|  |  | 
|  | // Figure out which block is which destination. | 
|  | BasicBlock *DefaultBB = BI->getSuccessor(1); | 
|  | BasicBlock *EdgeBB = BI->getSuccessor(0); | 
|  | if (!TrueWhenEqual) | 
|  | std::swap(DefaultBB, EdgeBB); | 
|  |  | 
|  | BasicBlock *BB = BI->getParent(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() | 
|  | << " cases into SWITCH.  BB is:\n" | 
|  | << *BB); | 
|  |  | 
|  | // If there are any extra values that couldn't be folded into the switch | 
|  | // then we evaluate them with an explicit branch first.  Split the block | 
|  | // right before the condbr to handle it. | 
|  | if (ExtraCase) { | 
|  | BasicBlock *NewBB = | 
|  | BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); | 
|  | // Remove the uncond branch added to the old block. | 
|  | TerminatorInst *OldTI = BB->getTerminator(); | 
|  | Builder.SetInsertPoint(OldTI); | 
|  |  | 
|  | if (TrueWhenEqual) | 
|  | Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); | 
|  | else | 
|  | Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); | 
|  |  | 
|  | OldTI->eraseFromParent(); | 
|  |  | 
|  | // If there are PHI nodes in EdgeBB, then we need to add a new entry to them | 
|  | // for the edge we just added. | 
|  | AddPredecessorToBlock(EdgeBB, BB, NewBB); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase | 
|  | << "\nEXTRABB = " << *BB); | 
|  | BB = NewBB; | 
|  | } | 
|  |  | 
|  | Builder.SetInsertPoint(BI); | 
|  | // Convert pointer to int before we switch. | 
|  | if (CompVal->getType()->isPointerTy()) { | 
|  | CompVal = Builder.CreatePtrToInt( | 
|  | CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); | 
|  | } | 
|  |  | 
|  | // Create the new switch instruction now. | 
|  | SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); | 
|  |  | 
|  | // Add all of the 'cases' to the switch instruction. | 
|  | for (unsigned i = 0, e = Values.size(); i != e; ++i) | 
|  | New->addCase(Values[i], EdgeBB); | 
|  |  | 
|  | // We added edges from PI to the EdgeBB.  As such, if there were any | 
|  | // PHI nodes in EdgeBB, they need entries to be added corresponding to | 
|  | // the number of edges added. | 
|  | for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { | 
|  | PHINode *PN = cast<PHINode>(BBI); | 
|  | Value *InVal = PN->getIncomingValueForBlock(BB); | 
|  | for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) | 
|  | PN->addIncoming(InVal, BB); | 
|  | } | 
|  |  | 
|  | // Erase the old branch instruction. | 
|  | EraseTerminatorInstAndDCECond(BI); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n'); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { | 
|  | if (isa<PHINode>(RI->getValue())) | 
|  | return SimplifyCommonResume(RI); | 
|  | else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && | 
|  | RI->getValue() == RI->getParent()->getFirstNonPHI()) | 
|  | // The resume must unwind the exception that caused control to branch here. | 
|  | return SimplifySingleResume(RI); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Simplify resume that is shared by several landing pads (phi of landing pad). | 
|  | bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { | 
|  | BasicBlock *BB = RI->getParent(); | 
|  |  | 
|  | // Check that there are no other instructions except for debug intrinsics | 
|  | // between the phi of landing pads (RI->getValue()) and resume instruction. | 
|  | BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), | 
|  | E = RI->getIterator(); | 
|  | while (++I != E) | 
|  | if (!isa<DbgInfoIntrinsic>(I)) | 
|  | return false; | 
|  |  | 
|  | SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; | 
|  | auto *PhiLPInst = cast<PHINode>(RI->getValue()); | 
|  |  | 
|  | // Check incoming blocks to see if any of them are trivial. | 
|  | for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; | 
|  | Idx++) { | 
|  | auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); | 
|  | auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); | 
|  |  | 
|  | // If the block has other successors, we can not delete it because | 
|  | // it has other dependents. | 
|  | if (IncomingBB->getUniqueSuccessor() != BB) | 
|  | continue; | 
|  |  | 
|  | auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); | 
|  | // Not the landing pad that caused the control to branch here. | 
|  | if (IncomingValue != LandingPad) | 
|  | continue; | 
|  |  | 
|  | bool isTrivial = true; | 
|  |  | 
|  | I = IncomingBB->getFirstNonPHI()->getIterator(); | 
|  | E = IncomingBB->getTerminator()->getIterator(); | 
|  | while (++I != E) | 
|  | if (!isa<DbgInfoIntrinsic>(I)) { | 
|  | isTrivial = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (isTrivial) | 
|  | TrivialUnwindBlocks.insert(IncomingBB); | 
|  | } | 
|  |  | 
|  | // If no trivial unwind blocks, don't do any simplifications. | 
|  | if (TrivialUnwindBlocks.empty()) | 
|  | return false; | 
|  |  | 
|  | // Turn all invokes that unwind here into calls. | 
|  | for (auto *TrivialBB : TrivialUnwindBlocks) { | 
|  | // Blocks that will be simplified should be removed from the phi node. | 
|  | // Note there could be multiple edges to the resume block, and we need | 
|  | // to remove them all. | 
|  | while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) | 
|  | BB->removePredecessor(TrivialBB, true); | 
|  |  | 
|  | for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); | 
|  | PI != PE;) { | 
|  | BasicBlock *Pred = *PI++; | 
|  | removeUnwindEdge(Pred); | 
|  | } | 
|  |  | 
|  | // In each SimplifyCFG run, only the current processed block can be erased. | 
|  | // Otherwise, it will break the iteration of SimplifyCFG pass. So instead | 
|  | // of erasing TrivialBB, we only remove the branch to the common resume | 
|  | // block so that we can later erase the resume block since it has no | 
|  | // predecessors. | 
|  | TrivialBB->getTerminator()->eraseFromParent(); | 
|  | new UnreachableInst(RI->getContext(), TrivialBB); | 
|  | } | 
|  |  | 
|  | // Delete the resume block if all its predecessors have been removed. | 
|  | if (pred_empty(BB)) | 
|  | BB->eraseFromParent(); | 
|  |  | 
|  | return !TrivialUnwindBlocks.empty(); | 
|  | } | 
|  |  | 
|  | // Simplify resume that is only used by a single (non-phi) landing pad. | 
|  | bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { | 
|  | BasicBlock *BB = RI->getParent(); | 
|  | LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); | 
|  | assert(RI->getValue() == LPInst && | 
|  | "Resume must unwind the exception that caused control to here"); | 
|  |  | 
|  | // Check that there are no other instructions except for debug intrinsics. | 
|  | BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); | 
|  | while (++I != E) | 
|  | if (!isa<DbgInfoIntrinsic>(I)) | 
|  | return false; | 
|  |  | 
|  | // Turn all invokes that unwind here into calls and delete the basic block. | 
|  | for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { | 
|  | BasicBlock *Pred = *PI++; | 
|  | removeUnwindEdge(Pred); | 
|  | } | 
|  |  | 
|  | // The landingpad is now unreachable.  Zap it. | 
|  | if (LoopHeaders) | 
|  | LoopHeaders->erase(BB); | 
|  | BB->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool removeEmptyCleanup(CleanupReturnInst *RI) { | 
|  | // If this is a trivial cleanup pad that executes no instructions, it can be | 
|  | // eliminated.  If the cleanup pad continues to the caller, any predecessor | 
|  | // that is an EH pad will be updated to continue to the caller and any | 
|  | // predecessor that terminates with an invoke instruction will have its invoke | 
|  | // instruction converted to a call instruction.  If the cleanup pad being | 
|  | // simplified does not continue to the caller, each predecessor will be | 
|  | // updated to continue to the unwind destination of the cleanup pad being | 
|  | // simplified. | 
|  | BasicBlock *BB = RI->getParent(); | 
|  | CleanupPadInst *CPInst = RI->getCleanupPad(); | 
|  | if (CPInst->getParent() != BB) | 
|  | // This isn't an empty cleanup. | 
|  | return false; | 
|  |  | 
|  | // We cannot kill the pad if it has multiple uses.  This typically arises | 
|  | // from unreachable basic blocks. | 
|  | if (!CPInst->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Check that there are no other instructions except for benign intrinsics. | 
|  | BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); | 
|  | while (++I != E) { | 
|  | auto *II = dyn_cast<IntrinsicInst>(I); | 
|  | if (!II) | 
|  | return false; | 
|  |  | 
|  | Intrinsic::ID IntrinsicID = II->getIntrinsicID(); | 
|  | switch (IntrinsicID) { | 
|  | case Intrinsic::dbg_declare: | 
|  | case Intrinsic::dbg_value: | 
|  | case Intrinsic::dbg_label: | 
|  | case Intrinsic::lifetime_end: | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the cleanup return we are simplifying unwinds to the caller, this will | 
|  | // set UnwindDest to nullptr. | 
|  | BasicBlock *UnwindDest = RI->getUnwindDest(); | 
|  | Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; | 
|  |  | 
|  | // We're about to remove BB from the control flow.  Before we do, sink any | 
|  | // PHINodes into the unwind destination.  Doing this before changing the | 
|  | // control flow avoids some potentially slow checks, since we can currently | 
|  | // be certain that UnwindDest and BB have no common predecessors (since they | 
|  | // are both EH pads). | 
|  | if (UnwindDest) { | 
|  | // First, go through the PHI nodes in UnwindDest and update any nodes that | 
|  | // reference the block we are removing | 
|  | for (BasicBlock::iterator I = UnwindDest->begin(), | 
|  | IE = DestEHPad->getIterator(); | 
|  | I != IE; ++I) { | 
|  | PHINode *DestPN = cast<PHINode>(I); | 
|  |  | 
|  | int Idx = DestPN->getBasicBlockIndex(BB); | 
|  | // Since BB unwinds to UnwindDest, it has to be in the PHI node. | 
|  | assert(Idx != -1); | 
|  | // This PHI node has an incoming value that corresponds to a control | 
|  | // path through the cleanup pad we are removing.  If the incoming | 
|  | // value is in the cleanup pad, it must be a PHINode (because we | 
|  | // verified above that the block is otherwise empty).  Otherwise, the | 
|  | // value is either a constant or a value that dominates the cleanup | 
|  | // pad being removed. | 
|  | // | 
|  | // Because BB and UnwindDest are both EH pads, all of their | 
|  | // predecessors must unwind to these blocks, and since no instruction | 
|  | // can have multiple unwind destinations, there will be no overlap in | 
|  | // incoming blocks between SrcPN and DestPN. | 
|  | Value *SrcVal = DestPN->getIncomingValue(Idx); | 
|  | PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); | 
|  |  | 
|  | // Remove the entry for the block we are deleting. | 
|  | DestPN->removeIncomingValue(Idx, false); | 
|  |  | 
|  | if (SrcPN && SrcPN->getParent() == BB) { | 
|  | // If the incoming value was a PHI node in the cleanup pad we are | 
|  | // removing, we need to merge that PHI node's incoming values into | 
|  | // DestPN. | 
|  | for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); | 
|  | SrcIdx != SrcE; ++SrcIdx) { | 
|  | DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), | 
|  | SrcPN->getIncomingBlock(SrcIdx)); | 
|  | } | 
|  | } else { | 
|  | // Otherwise, the incoming value came from above BB and | 
|  | // so we can just reuse it.  We must associate all of BB's | 
|  | // predecessors with this value. | 
|  | for (auto *pred : predecessors(BB)) { | 
|  | DestPN->addIncoming(SrcVal, pred); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Sink any remaining PHI nodes directly into UnwindDest. | 
|  | Instruction *InsertPt = DestEHPad; | 
|  | for (BasicBlock::iterator I = BB->begin(), | 
|  | IE = BB->getFirstNonPHI()->getIterator(); | 
|  | I != IE;) { | 
|  | // The iterator must be incremented here because the instructions are | 
|  | // being moved to another block. | 
|  | PHINode *PN = cast<PHINode>(I++); | 
|  | if (PN->use_empty()) | 
|  | // If the PHI node has no uses, just leave it.  It will be erased | 
|  | // when we erase BB below. | 
|  | continue; | 
|  |  | 
|  | // Otherwise, sink this PHI node into UnwindDest. | 
|  | // Any predecessors to UnwindDest which are not already represented | 
|  | // must be back edges which inherit the value from the path through | 
|  | // BB.  In this case, the PHI value must reference itself. | 
|  | for (auto *pred : predecessors(UnwindDest)) | 
|  | if (pred != BB) | 
|  | PN->addIncoming(PN, pred); | 
|  | PN->moveBefore(InsertPt); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { | 
|  | // The iterator must be updated here because we are removing this pred. | 
|  | BasicBlock *PredBB = *PI++; | 
|  | if (UnwindDest == nullptr) { | 
|  | removeUnwindEdge(PredBB); | 
|  | } else { | 
|  | TerminatorInst *TI = PredBB->getTerminator(); | 
|  | TI->replaceUsesOfWith(BB, UnwindDest); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The cleanup pad is now unreachable.  Zap it. | 
|  | BB->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to merge two cleanuppads together. | 
|  | static bool mergeCleanupPad(CleanupReturnInst *RI) { | 
|  | // Skip any cleanuprets which unwind to caller, there is nothing to merge | 
|  | // with. | 
|  | BasicBlock *UnwindDest = RI->getUnwindDest(); | 
|  | if (!UnwindDest) | 
|  | return false; | 
|  |  | 
|  | // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't | 
|  | // be safe to merge without code duplication. | 
|  | if (UnwindDest->getSinglePredecessor() != RI->getParent()) | 
|  | return false; | 
|  |  | 
|  | // Verify that our cleanuppad's unwind destination is another cleanuppad. | 
|  | auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); | 
|  | if (!SuccessorCleanupPad) | 
|  | return false; | 
|  |  | 
|  | CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); | 
|  | // Replace any uses of the successor cleanupad with the predecessor pad | 
|  | // The only cleanuppad uses should be this cleanupret, it's cleanupret and | 
|  | // funclet bundle operands. | 
|  | SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); | 
|  | // Remove the old cleanuppad. | 
|  | SuccessorCleanupPad->eraseFromParent(); | 
|  | // Now, we simply replace the cleanupret with a branch to the unwind | 
|  | // destination. | 
|  | BranchInst::Create(UnwindDest, RI->getParent()); | 
|  | RI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { | 
|  | // It is possible to transiantly have an undef cleanuppad operand because we | 
|  | // have deleted some, but not all, dead blocks. | 
|  | // Eventually, this block will be deleted. | 
|  | if (isa<UndefValue>(RI->getOperand(0))) | 
|  | return false; | 
|  |  | 
|  | if (mergeCleanupPad(RI)) | 
|  | return true; | 
|  |  | 
|  | if (removeEmptyCleanup(RI)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { | 
|  | BasicBlock *BB = RI->getParent(); | 
|  | if (!BB->getFirstNonPHIOrDbg()->isTerminator()) | 
|  | return false; | 
|  |  | 
|  | // Find predecessors that end with branches. | 
|  | SmallVector<BasicBlock *, 8> UncondBranchPreds; | 
|  | SmallVector<BranchInst *, 8> CondBranchPreds; | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | BasicBlock *P = *PI; | 
|  | TerminatorInst *PTI = P->getTerminator(); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { | 
|  | if (BI->isUnconditional()) | 
|  | UncondBranchPreds.push_back(P); | 
|  | else | 
|  | CondBranchPreds.push_back(BI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we found some, do the transformation! | 
|  | if (!UncondBranchPreds.empty() && DupRet) { | 
|  | while (!UncondBranchPreds.empty()) { | 
|  | BasicBlock *Pred = UncondBranchPreds.pop_back_val(); | 
|  | LLVM_DEBUG(dbgs() << "FOLDING: " << *BB | 
|  | << "INTO UNCOND BRANCH PRED: " << *Pred); | 
|  | (void)FoldReturnIntoUncondBranch(RI, BB, Pred); | 
|  | } | 
|  |  | 
|  | // If we eliminated all predecessors of the block, delete the block now. | 
|  | if (pred_empty(BB)) { | 
|  | // We know there are no successors, so just nuke the block. | 
|  | if (LoopHeaders) | 
|  | LoopHeaders->erase(BB); | 
|  | BB->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check out all of the conditional branches going to this return | 
|  | // instruction.  If any of them just select between returns, change the | 
|  | // branch itself into a select/return pair. | 
|  | while (!CondBranchPreds.empty()) { | 
|  | BranchInst *BI = CondBranchPreds.pop_back_val(); | 
|  |  | 
|  | // Check to see if the non-BB successor is also a return block. | 
|  | if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && | 
|  | isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && | 
|  | SimplifyCondBranchToTwoReturns(BI, Builder)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { | 
|  | BasicBlock *BB = UI->getParent(); | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | // If there are any instructions immediately before the unreachable that can | 
|  | // be removed, do so. | 
|  | while (UI->getIterator() != BB->begin()) { | 
|  | BasicBlock::iterator BBI = UI->getIterator(); | 
|  | --BBI; | 
|  | // Do not delete instructions that can have side effects which might cause | 
|  | // the unreachable to not be reachable; specifically, calls and volatile | 
|  | // operations may have this effect. | 
|  | if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) | 
|  | break; | 
|  |  | 
|  | if (BBI->mayHaveSideEffects()) { | 
|  | if (auto *SI = dyn_cast<StoreInst>(BBI)) { | 
|  | if (SI->isVolatile()) | 
|  | break; | 
|  | } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { | 
|  | if (LI->isVolatile()) | 
|  | break; | 
|  | } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { | 
|  | if (RMWI->isVolatile()) | 
|  | break; | 
|  | } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { | 
|  | if (CXI->isVolatile()) | 
|  | break; | 
|  | } else if (isa<CatchPadInst>(BBI)) { | 
|  | // A catchpad may invoke exception object constructors and such, which | 
|  | // in some languages can be arbitrary code, so be conservative by | 
|  | // default. | 
|  | // For CoreCLR, it just involves a type test, so can be removed. | 
|  | if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != | 
|  | EHPersonality::CoreCLR) | 
|  | break; | 
|  | } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && | 
|  | !isa<LandingPadInst>(BBI)) { | 
|  | break; | 
|  | } | 
|  | // Note that deleting LandingPad's here is in fact okay, although it | 
|  | // involves a bit of subtle reasoning. If this inst is a LandingPad, | 
|  | // all the predecessors of this block will be the unwind edges of Invokes, | 
|  | // and we can therefore guarantee this block will be erased. | 
|  | } | 
|  |  | 
|  | // Delete this instruction (any uses are guaranteed to be dead) | 
|  | if (!BBI->use_empty()) | 
|  | BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); | 
|  | BBI->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // If the unreachable instruction is the first in the block, take a gander | 
|  | // at all of the predecessors of this instruction, and simplify them. | 
|  | if (&BB->front() != UI) | 
|  | return Changed; | 
|  |  | 
|  | SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); | 
|  | for (unsigned i = 0, e = Preds.size(); i != e; ++i) { | 
|  | TerminatorInst *TI = Preds[i]->getTerminator(); | 
|  | IRBuilder<> Builder(TI); | 
|  | if (auto *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (BI->isUnconditional()) { | 
|  | if (BI->getSuccessor(0) == BB) { | 
|  | new UnreachableInst(TI->getContext(), TI); | 
|  | TI->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  | } else { | 
|  | if (BI->getSuccessor(0) == BB) { | 
|  | Builder.CreateBr(BI->getSuccessor(1)); | 
|  | EraseTerminatorInstAndDCECond(BI); | 
|  | } else if (BI->getSuccessor(1) == BB) { | 
|  | Builder.CreateBr(BI->getSuccessor(0)); | 
|  | EraseTerminatorInstAndDCECond(BI); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { | 
|  | if (i->getCaseSuccessor() != BB) { | 
|  | ++i; | 
|  | continue; | 
|  | } | 
|  | BB->removePredecessor(SI->getParent()); | 
|  | i = SI->removeCase(i); | 
|  | e = SI->case_end(); | 
|  | Changed = true; | 
|  | } | 
|  | } else if (auto *II = dyn_cast<InvokeInst>(TI)) { | 
|  | if (II->getUnwindDest() == BB) { | 
|  | removeUnwindEdge(TI->getParent()); | 
|  | Changed = true; | 
|  | } | 
|  | } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { | 
|  | if (CSI->getUnwindDest() == BB) { | 
|  | removeUnwindEdge(TI->getParent()); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), | 
|  | E = CSI->handler_end(); | 
|  | I != E; ++I) { | 
|  | if (*I == BB) { | 
|  | CSI->removeHandler(I); | 
|  | --I; | 
|  | --E; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | if (CSI->getNumHandlers() == 0) { | 
|  | BasicBlock *CatchSwitchBB = CSI->getParent(); | 
|  | if (CSI->hasUnwindDest()) { | 
|  | // Redirect preds to the unwind dest | 
|  | CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); | 
|  | } else { | 
|  | // Rewrite all preds to unwind to caller (or from invoke to call). | 
|  | SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); | 
|  | for (BasicBlock *EHPred : EHPreds) | 
|  | removeUnwindEdge(EHPred); | 
|  | } | 
|  | // The catchswitch is no longer reachable. | 
|  | new UnreachableInst(CSI->getContext(), CSI); | 
|  | CSI->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  | } else if (isa<CleanupReturnInst>(TI)) { | 
|  | new UnreachableInst(TI->getContext(), TI); | 
|  | TI->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this block is now dead, remove it. | 
|  | if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { | 
|  | // We know there are no successors, so just nuke the block. | 
|  | if (LoopHeaders) | 
|  | LoopHeaders->erase(BB); | 
|  | BB->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { | 
|  | assert(Cases.size() >= 1); | 
|  |  | 
|  | array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); | 
|  | for (size_t I = 1, E = Cases.size(); I != E; ++I) { | 
|  | if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Turn a switch with two reachable destinations into an integer range | 
|  | /// comparison and branch. | 
|  | static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { | 
|  | assert(SI->getNumCases() > 1 && "Degenerate switch?"); | 
|  |  | 
|  | bool HasDefault = | 
|  | !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); | 
|  |  | 
|  | // Partition the cases into two sets with different destinations. | 
|  | BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; | 
|  | BasicBlock *DestB = nullptr; | 
|  | SmallVector<ConstantInt *, 16> CasesA; | 
|  | SmallVector<ConstantInt *, 16> CasesB; | 
|  |  | 
|  | for (auto Case : SI->cases()) { | 
|  | BasicBlock *Dest = Case.getCaseSuccessor(); | 
|  | if (!DestA) | 
|  | DestA = Dest; | 
|  | if (Dest == DestA) { | 
|  | CasesA.push_back(Case.getCaseValue()); | 
|  | continue; | 
|  | } | 
|  | if (!DestB) | 
|  | DestB = Dest; | 
|  | if (Dest == DestB) { | 
|  | CasesB.push_back(Case.getCaseValue()); | 
|  | continue; | 
|  | } | 
|  | return false; // More than two destinations. | 
|  | } | 
|  |  | 
|  | assert(DestA && DestB && | 
|  | "Single-destination switch should have been folded."); | 
|  | assert(DestA != DestB); | 
|  | assert(DestB != SI->getDefaultDest()); | 
|  | assert(!CasesB.empty() && "There must be non-default cases."); | 
|  | assert(!CasesA.empty() || HasDefault); | 
|  |  | 
|  | // Figure out if one of the sets of cases form a contiguous range. | 
|  | SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; | 
|  | BasicBlock *ContiguousDest = nullptr; | 
|  | BasicBlock *OtherDest = nullptr; | 
|  | if (!CasesA.empty() && CasesAreContiguous(CasesA)) { | 
|  | ContiguousCases = &CasesA; | 
|  | ContiguousDest = DestA; | 
|  | OtherDest = DestB; | 
|  | } else if (CasesAreContiguous(CasesB)) { | 
|  | ContiguousCases = &CasesB; | 
|  | ContiguousDest = DestB; | 
|  | OtherDest = DestA; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // Start building the compare and branch. | 
|  |  | 
|  | Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); | 
|  | Constant *NumCases = | 
|  | ConstantInt::get(Offset->getType(), ContiguousCases->size()); | 
|  |  | 
|  | Value *Sub = SI->getCondition(); | 
|  | if (!Offset->isNullValue()) | 
|  | Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); | 
|  |  | 
|  | Value *Cmp; | 
|  | // If NumCases overflowed, then all possible values jump to the successor. | 
|  | if (NumCases->isNullValue() && !ContiguousCases->empty()) | 
|  | Cmp = ConstantInt::getTrue(SI->getContext()); | 
|  | else | 
|  | Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); | 
|  | BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); | 
|  |  | 
|  | // Update weight for the newly-created conditional branch. | 
|  | if (HasBranchWeights(SI)) { | 
|  | SmallVector<uint64_t, 8> Weights; | 
|  | GetBranchWeights(SI, Weights); | 
|  | if (Weights.size() == 1 + SI->getNumCases()) { | 
|  | uint64_t TrueWeight = 0; | 
|  | uint64_t FalseWeight = 0; | 
|  | for (size_t I = 0, E = Weights.size(); I != E; ++I) { | 
|  | if (SI->getSuccessor(I) == ContiguousDest) | 
|  | TrueWeight += Weights[I]; | 
|  | else | 
|  | FalseWeight += Weights[I]; | 
|  | } | 
|  | while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { | 
|  | TrueWeight /= 2; | 
|  | FalseWeight /= 2; | 
|  | } | 
|  | setBranchWeights(NewBI, TrueWeight, FalseWeight); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prune obsolete incoming values off the successors' PHI nodes. | 
|  | for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { | 
|  | unsigned PreviousEdges = ContiguousCases->size(); | 
|  | if (ContiguousDest == SI->getDefaultDest()) | 
|  | ++PreviousEdges; | 
|  | for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) | 
|  | cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); | 
|  | } | 
|  | for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { | 
|  | unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); | 
|  | if (OtherDest == SI->getDefaultDest()) | 
|  | ++PreviousEdges; | 
|  | for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) | 
|  | cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); | 
|  | } | 
|  |  | 
|  | // Drop the switch. | 
|  | SI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Compute masked bits for the condition of a switch | 
|  | /// and use it to remove dead cases. | 
|  | static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, | 
|  | const DataLayout &DL) { | 
|  | Value *Cond = SI->getCondition(); | 
|  | unsigned Bits = Cond->getType()->getIntegerBitWidth(); | 
|  | KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); | 
|  |  | 
|  | // We can also eliminate cases by determining that their values are outside of | 
|  | // the limited range of the condition based on how many significant (non-sign) | 
|  | // bits are in the condition value. | 
|  | unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; | 
|  | unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; | 
|  |  | 
|  | // Gather dead cases. | 
|  | SmallVector<ConstantInt *, 8> DeadCases; | 
|  | for (auto &Case : SI->cases()) { | 
|  | const APInt &CaseVal = Case.getCaseValue()->getValue(); | 
|  | if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || | 
|  | (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { | 
|  | DeadCases.push_back(Case.getCaseValue()); | 
|  | LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal | 
|  | << " is dead.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can prove that the cases must cover all possible values, the | 
|  | // default destination becomes dead and we can remove it.  If we know some | 
|  | // of the bits in the value, we can use that to more precisely compute the | 
|  | // number of possible unique case values. | 
|  | bool HasDefault = | 
|  | !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); | 
|  | const unsigned NumUnknownBits = | 
|  | Bits - (Known.Zero | Known.One).countPopulation(); | 
|  | assert(NumUnknownBits <= Bits); | 
|  | if (HasDefault && DeadCases.empty() && | 
|  | NumUnknownBits < 64 /* avoid overflow */ && | 
|  | SI->getNumCases() == (1ULL << NumUnknownBits)) { | 
|  | LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); | 
|  | BasicBlock *NewDefault = | 
|  | SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); | 
|  | SI->setDefaultDest(&*NewDefault); | 
|  | SplitBlock(&*NewDefault, &NewDefault->front()); | 
|  | auto *OldTI = NewDefault->getTerminator(); | 
|  | new UnreachableInst(SI->getContext(), OldTI); | 
|  | EraseTerminatorInstAndDCECond(OldTI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SmallVector<uint64_t, 8> Weights; | 
|  | bool HasWeight = HasBranchWeights(SI); | 
|  | if (HasWeight) { | 
|  | GetBranchWeights(SI, Weights); | 
|  | HasWeight = (Weights.size() == 1 + SI->getNumCases()); | 
|  | } | 
|  |  | 
|  | // Remove dead cases from the switch. | 
|  | for (ConstantInt *DeadCase : DeadCases) { | 
|  | SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); | 
|  | assert(CaseI != SI->case_default() && | 
|  | "Case was not found. Probably mistake in DeadCases forming."); | 
|  | if (HasWeight) { | 
|  | std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); | 
|  | Weights.pop_back(); | 
|  | } | 
|  |  | 
|  | // Prune unused values from PHI nodes. | 
|  | CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); | 
|  | SI->removeCase(CaseI); | 
|  | } | 
|  | if (HasWeight && Weights.size() >= 2) { | 
|  | SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); | 
|  | setBranchWeights(SI, MDWeights); | 
|  | } | 
|  |  | 
|  | return !DeadCases.empty(); | 
|  | } | 
|  |  | 
|  | /// If BB would be eligible for simplification by | 
|  | /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated | 
|  | /// by an unconditional branch), look at the phi node for BB in the successor | 
|  | /// block and see if the incoming value is equal to CaseValue. If so, return | 
|  | /// the phi node, and set PhiIndex to BB's index in the phi node. | 
|  | static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, | 
|  | BasicBlock *BB, int *PhiIndex) { | 
|  | if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) | 
|  | return nullptr; // BB must be empty to be a candidate for simplification. | 
|  | if (!BB->getSinglePredecessor()) | 
|  | return nullptr; // BB must be dominated by the switch. | 
|  |  | 
|  | BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); | 
|  | if (!Branch || !Branch->isUnconditional()) | 
|  | return nullptr; // Terminator must be unconditional branch. | 
|  |  | 
|  | BasicBlock *Succ = Branch->getSuccessor(0); | 
|  |  | 
|  | for (PHINode &PHI : Succ->phis()) { | 
|  | int Idx = PHI.getBasicBlockIndex(BB); | 
|  | assert(Idx >= 0 && "PHI has no entry for predecessor?"); | 
|  |  | 
|  | Value *InValue = PHI.getIncomingValue(Idx); | 
|  | if (InValue != CaseValue) | 
|  | continue; | 
|  |  | 
|  | *PhiIndex = Idx; | 
|  | return &PHI; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Try to forward the condition of a switch instruction to a phi node | 
|  | /// dominated by the switch, if that would mean that some of the destination | 
|  | /// blocks of the switch can be folded away. Return true if a change is made. | 
|  | static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { | 
|  | using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; | 
|  |  | 
|  | ForwardingNodesMap ForwardingNodes; | 
|  | BasicBlock *SwitchBlock = SI->getParent(); | 
|  | bool Changed = false; | 
|  | for (auto &Case : SI->cases()) { | 
|  | ConstantInt *CaseValue = Case.getCaseValue(); | 
|  | BasicBlock *CaseDest = Case.getCaseSuccessor(); | 
|  |  | 
|  | // Replace phi operands in successor blocks that are using the constant case | 
|  | // value rather than the switch condition variable: | 
|  | //   switchbb: | 
|  | //   switch i32 %x, label %default [ | 
|  | //     i32 17, label %succ | 
|  | //   ... | 
|  | //   succ: | 
|  | //     %r = phi i32 ... [ 17, %switchbb ] ... | 
|  | // --> | 
|  | //     %r = phi i32 ... [ %x, %switchbb ] ... | 
|  |  | 
|  | for (PHINode &Phi : CaseDest->phis()) { | 
|  | // This only works if there is exactly 1 incoming edge from the switch to | 
|  | // a phi. If there is >1, that means multiple cases of the switch map to 1 | 
|  | // value in the phi, and that phi value is not the switch condition. Thus, | 
|  | // this transform would not make sense (the phi would be invalid because | 
|  | // a phi can't have different incoming values from the same block). | 
|  | int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); | 
|  | if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && | 
|  | count(Phi.blocks(), SwitchBlock) == 1) { | 
|  | Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Collect phi nodes that are indirectly using this switch's case constants. | 
|  | int PhiIdx; | 
|  | if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) | 
|  | ForwardingNodes[Phi].push_back(PhiIdx); | 
|  | } | 
|  |  | 
|  | for (auto &ForwardingNode : ForwardingNodes) { | 
|  | PHINode *Phi = ForwardingNode.first; | 
|  | SmallVectorImpl<int> &Indexes = ForwardingNode.second; | 
|  | if (Indexes.size() < 2) | 
|  | continue; | 
|  |  | 
|  | for (int Index : Indexes) | 
|  | Phi->setIncomingValue(Index, SI->getCondition()); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Return true if the backend will be able to handle | 
|  | /// initializing an array of constants like C. | 
|  | static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { | 
|  | if (C->isThreadDependent()) | 
|  | return false; | 
|  | if (C->isDLLImportDependent()) | 
|  | return false; | 
|  |  | 
|  | if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && | 
|  | !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && | 
|  | !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) | 
|  | return false; | 
|  |  | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
|  | if (!CE->isGEPWithNoNotionalOverIndexing()) | 
|  | return false; | 
|  | if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!TTI.shouldBuildLookupTablesForConstant(C)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If V is a Constant, return it. Otherwise, try to look up | 
|  | /// its constant value in ConstantPool, returning 0 if it's not there. | 
|  | static Constant * | 
|  | LookupConstant(Value *V, | 
|  | const SmallDenseMap<Value *, Constant *> &ConstantPool) { | 
|  | if (Constant *C = dyn_cast<Constant>(V)) | 
|  | return C; | 
|  | return ConstantPool.lookup(V); | 
|  | } | 
|  |  | 
|  | /// Try to fold instruction I into a constant. This works for | 
|  | /// simple instructions such as binary operations where both operands are | 
|  | /// constant or can be replaced by constants from the ConstantPool. Returns the | 
|  | /// resulting constant on success, 0 otherwise. | 
|  | static Constant * | 
|  | ConstantFold(Instruction *I, const DataLayout &DL, | 
|  | const SmallDenseMap<Value *, Constant *> &ConstantPool) { | 
|  | if (SelectInst *Select = dyn_cast<SelectInst>(I)) { | 
|  | Constant *A = LookupConstant(Select->getCondition(), ConstantPool); | 
|  | if (!A) | 
|  | return nullptr; | 
|  | if (A->isAllOnesValue()) | 
|  | return LookupConstant(Select->getTrueValue(), ConstantPool); | 
|  | if (A->isNullValue()) | 
|  | return LookupConstant(Select->getFalseValue(), ConstantPool); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SmallVector<Constant *, 4> COps; | 
|  | for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { | 
|  | if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) | 
|  | COps.push_back(A); | 
|  | else | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { | 
|  | return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], | 
|  | COps[1], DL); | 
|  | } | 
|  |  | 
|  | return ConstantFoldInstOperands(I, COps, DL); | 
|  | } | 
|  |  | 
|  | /// Try to determine the resulting constant values in phi nodes | 
|  | /// at the common destination basic block, *CommonDest, for one of the case | 
|  | /// destionations CaseDest corresponding to value CaseVal (0 for the default | 
|  | /// case), of a switch instruction SI. | 
|  | static bool | 
|  | GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, | 
|  | BasicBlock **CommonDest, | 
|  | SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, | 
|  | const DataLayout &DL, const TargetTransformInfo &TTI) { | 
|  | // The block from which we enter the common destination. | 
|  | BasicBlock *Pred = SI->getParent(); | 
|  |  | 
|  | // If CaseDest is empty except for some side-effect free instructions through | 
|  | // which we can constant-propagate the CaseVal, continue to its successor. | 
|  | SmallDenseMap<Value *, Constant *> ConstantPool; | 
|  | ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); | 
|  | for (Instruction &I :CaseDest->instructionsWithoutDebug()) { | 
|  | if (TerminatorInst *T = dyn_cast<TerminatorInst>(&I)) { | 
|  | // If the terminator is a simple branch, continue to the next block. | 
|  | if (T->getNumSuccessors() != 1 || T->isExceptionalTerminator()) | 
|  | return false; | 
|  | Pred = CaseDest; | 
|  | CaseDest = T->getSuccessor(0); | 
|  | } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { | 
|  | // Instruction is side-effect free and constant. | 
|  |  | 
|  | // If the instruction has uses outside this block or a phi node slot for | 
|  | // the block, it is not safe to bypass the instruction since it would then | 
|  | // no longer dominate all its uses. | 
|  | for (auto &Use : I.uses()) { | 
|  | User *User = Use.getUser(); | 
|  | if (Instruction *I = dyn_cast<Instruction>(User)) | 
|  | if (I->getParent() == CaseDest) | 
|  | continue; | 
|  | if (PHINode *Phi = dyn_cast<PHINode>(User)) | 
|  | if (Phi->getIncomingBlock(Use) == CaseDest) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ConstantPool.insert(std::make_pair(&I, C)); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we did not have a CommonDest before, use the current one. | 
|  | if (!*CommonDest) | 
|  | *CommonDest = CaseDest; | 
|  | // If the destination isn't the common one, abort. | 
|  | if (CaseDest != *CommonDest) | 
|  | return false; | 
|  |  | 
|  | // Get the values for this case from phi nodes in the destination block. | 
|  | for (PHINode &PHI : (*CommonDest)->phis()) { | 
|  | int Idx = PHI.getBasicBlockIndex(Pred); | 
|  | if (Idx == -1) | 
|  | continue; | 
|  |  | 
|  | Constant *ConstVal = | 
|  | LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); | 
|  | if (!ConstVal) | 
|  | return false; | 
|  |  | 
|  | // Be conservative about which kinds of constants we support. | 
|  | if (!ValidLookupTableConstant(ConstVal, TTI)) | 
|  | return false; | 
|  |  | 
|  | Res.push_back(std::make_pair(&PHI, ConstVal)); | 
|  | } | 
|  |  | 
|  | return Res.size() > 0; | 
|  | } | 
|  |  | 
|  | // Helper function used to add CaseVal to the list of cases that generate | 
|  | // Result. Returns the updated number of cases that generate this result. | 
|  | static uintptr_t MapCaseToResult(ConstantInt *CaseVal, | 
|  | SwitchCaseResultVectorTy &UniqueResults, | 
|  | Constant *Result) { | 
|  | for (auto &I : UniqueResults) { | 
|  | if (I.first == Result) { | 
|  | I.second.push_back(CaseVal); | 
|  | return I.second.size(); | 
|  | } | 
|  | } | 
|  | UniqueResults.push_back( | 
|  | std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Helper function that initializes a map containing | 
|  | // results for the PHI node of the common destination block for a switch | 
|  | // instruction. Returns false if multiple PHI nodes have been found or if | 
|  | // there is not a common destination block for the switch. | 
|  | static bool | 
|  | InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, | 
|  | SwitchCaseResultVectorTy &UniqueResults, | 
|  | Constant *&DefaultResult, const DataLayout &DL, | 
|  | const TargetTransformInfo &TTI, | 
|  | uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { | 
|  | for (auto &I : SI->cases()) { | 
|  | ConstantInt *CaseVal = I.getCaseValue(); | 
|  |  | 
|  | // Resulting value at phi nodes for this case value. | 
|  | SwitchCaseResultsTy Results; | 
|  | if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, | 
|  | DL, TTI)) | 
|  | return false; | 
|  |  | 
|  | // Only one value per case is permitted. | 
|  | if (Results.size() > 1) | 
|  | return false; | 
|  |  | 
|  | // Add the case->result mapping to UniqueResults. | 
|  | const uintptr_t NumCasesForResult = | 
|  | MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); | 
|  |  | 
|  | // Early out if there are too many cases for this result. | 
|  | if (NumCasesForResult > MaxCasesPerResult) | 
|  | return false; | 
|  |  | 
|  | // Early out if there are too many unique results. | 
|  | if (UniqueResults.size() > MaxUniqueResults) | 
|  | return false; | 
|  |  | 
|  | // Check the PHI consistency. | 
|  | if (!PHI) | 
|  | PHI = Results[0].first; | 
|  | else if (PHI != Results[0].first) | 
|  | return false; | 
|  | } | 
|  | // Find the default result value. | 
|  | SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; | 
|  | BasicBlock *DefaultDest = SI->getDefaultDest(); | 
|  | GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, | 
|  | DL, TTI); | 
|  | // If the default value is not found abort unless the default destination | 
|  | // is unreachable. | 
|  | DefaultResult = | 
|  | DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; | 
|  | if ((!DefaultResult && | 
|  | !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Helper function that checks if it is possible to transform a switch with only | 
|  | // two cases (or two cases + default) that produces a result into a select. | 
|  | // Example: | 
|  | // switch (a) { | 
|  | //   case 10:                %0 = icmp eq i32 %a, 10 | 
|  | //     return 10;            %1 = select i1 %0, i32 10, i32 4 | 
|  | //   case 20:        ---->   %2 = icmp eq i32 %a, 20 | 
|  | //     return 2;             %3 = select i1 %2, i32 2, i32 %1 | 
|  | //   default: | 
|  | //     return 4; | 
|  | // } | 
|  | static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, | 
|  | Constant *DefaultResult, Value *Condition, | 
|  | IRBuilder<> &Builder) { | 
|  | assert(ResultVector.size() == 2 && | 
|  | "We should have exactly two unique results at this point"); | 
|  | // If we are selecting between only two cases transform into a simple | 
|  | // select or a two-way select if default is possible. | 
|  | if (ResultVector[0].second.size() == 1 && | 
|  | ResultVector[1].second.size() == 1) { | 
|  | ConstantInt *const FirstCase = ResultVector[0].second[0]; | 
|  | ConstantInt *const SecondCase = ResultVector[1].second[0]; | 
|  |  | 
|  | bool DefaultCanTrigger = DefaultResult; | 
|  | Value *SelectValue = ResultVector[1].first; | 
|  | if (DefaultCanTrigger) { | 
|  | Value *const ValueCompare = | 
|  | Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); | 
|  | SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, | 
|  | DefaultResult, "switch.select"); | 
|  | } | 
|  | Value *const ValueCompare = | 
|  | Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); | 
|  | return Builder.CreateSelect(ValueCompare, ResultVector[0].first, | 
|  | SelectValue, "switch.select"); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Helper function to cleanup a switch instruction that has been converted into | 
|  | // a select, fixing up PHI nodes and basic blocks. | 
|  | static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, | 
|  | Value *SelectValue, | 
|  | IRBuilder<> &Builder) { | 
|  | BasicBlock *SelectBB = SI->getParent(); | 
|  | while (PHI->getBasicBlockIndex(SelectBB) >= 0) | 
|  | PHI->removeIncomingValue(SelectBB); | 
|  | PHI->addIncoming(SelectValue, SelectBB); | 
|  |  | 
|  | Builder.CreateBr(PHI->getParent()); | 
|  |  | 
|  | // Remove the switch. | 
|  | for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { | 
|  | BasicBlock *Succ = SI->getSuccessor(i); | 
|  |  | 
|  | if (Succ == PHI->getParent()) | 
|  | continue; | 
|  | Succ->removePredecessor(SelectBB); | 
|  | } | 
|  | SI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | /// If the switch is only used to initialize one or more | 
|  | /// phi nodes in a common successor block with only two different | 
|  | /// constant values, replace the switch with select. | 
|  | static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, | 
|  | const DataLayout &DL, | 
|  | const TargetTransformInfo &TTI) { | 
|  | Value *const Cond = SI->getCondition(); | 
|  | PHINode *PHI = nullptr; | 
|  | BasicBlock *CommonDest = nullptr; | 
|  | Constant *DefaultResult; | 
|  | SwitchCaseResultVectorTy UniqueResults; | 
|  | // Collect all the cases that will deliver the same value from the switch. | 
|  | if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, | 
|  | DL, TTI, 2, 1)) | 
|  | return false; | 
|  | // Selects choose between maximum two values. | 
|  | if (UniqueResults.size() != 2) | 
|  | return false; | 
|  | assert(PHI != nullptr && "PHI for value select not found"); | 
|  |  | 
|  | Builder.SetInsertPoint(SI); | 
|  | Value *SelectValue = | 
|  | ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); | 
|  | if (SelectValue) { | 
|  | RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); | 
|  | return true; | 
|  | } | 
|  | // The switch couldn't be converted into a select. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// This class represents a lookup table that can be used to replace a switch. | 
|  | class SwitchLookupTable { | 
|  | public: | 
|  | /// Create a lookup table to use as a switch replacement with the contents | 
|  | /// of Values, using DefaultValue to fill any holes in the table. | 
|  | SwitchLookupTable( | 
|  | Module &M, uint64_t TableSize, ConstantInt *Offset, | 
|  | const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, | 
|  | Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); | 
|  |  | 
|  | /// Build instructions with Builder to retrieve the value at | 
|  | /// the position given by Index in the lookup table. | 
|  | Value *BuildLookup(Value *Index, IRBuilder<> &Builder); | 
|  |  | 
|  | /// Return true if a table with TableSize elements of | 
|  | /// type ElementType would fit in a target-legal register. | 
|  | static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, | 
|  | Type *ElementType); | 
|  |  | 
|  | private: | 
|  | // Depending on the contents of the table, it can be represented in | 
|  | // different ways. | 
|  | enum { | 
|  | // For tables where each element contains the same value, we just have to | 
|  | // store that single value and return it for each lookup. | 
|  | SingleValueKind, | 
|  |  | 
|  | // For tables where there is a linear relationship between table index | 
|  | // and values. We calculate the result with a simple multiplication | 
|  | // and addition instead of a table lookup. | 
|  | LinearMapKind, | 
|  |  | 
|  | // For small tables with integer elements, we can pack them into a bitmap | 
|  | // that fits into a target-legal register. Values are retrieved by | 
|  | // shift and mask operations. | 
|  | BitMapKind, | 
|  |  | 
|  | // The table is stored as an array of values. Values are retrieved by load | 
|  | // instructions from the table. | 
|  | ArrayKind | 
|  | } Kind; | 
|  |  | 
|  | // For SingleValueKind, this is the single value. | 
|  | Constant *SingleValue = nullptr; | 
|  |  | 
|  | // For BitMapKind, this is the bitmap. | 
|  | ConstantInt *BitMap = nullptr; | 
|  | IntegerType *BitMapElementTy = nullptr; | 
|  |  | 
|  | // For LinearMapKind, these are the constants used to derive the value. | 
|  | ConstantInt *LinearOffset = nullptr; | 
|  | ConstantInt *LinearMultiplier = nullptr; | 
|  |  | 
|  | // For ArrayKind, this is the array. | 
|  | GlobalVariable *Array = nullptr; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | SwitchLookupTable::SwitchLookupTable( | 
|  | Module &M, uint64_t TableSize, ConstantInt *Offset, | 
|  | const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, | 
|  | Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { | 
|  | assert(Values.size() && "Can't build lookup table without values!"); | 
|  | assert(TableSize >= Values.size() && "Can't fit values in table!"); | 
|  |  | 
|  | // If all values in the table are equal, this is that value. | 
|  | SingleValue = Values.begin()->second; | 
|  |  | 
|  | Type *ValueType = Values.begin()->second->getType(); | 
|  |  | 
|  | // Build up the table contents. | 
|  | SmallVector<Constant *, 64> TableContents(TableSize); | 
|  | for (size_t I = 0, E = Values.size(); I != E; ++I) { | 
|  | ConstantInt *CaseVal = Values[I].first; | 
|  | Constant *CaseRes = Values[I].second; | 
|  | assert(CaseRes->getType() == ValueType); | 
|  |  | 
|  | uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); | 
|  | TableContents[Idx] = CaseRes; | 
|  |  | 
|  | if (CaseRes != SingleValue) | 
|  | SingleValue = nullptr; | 
|  | } | 
|  |  | 
|  | // Fill in any holes in the table with the default result. | 
|  | if (Values.size() < TableSize) { | 
|  | assert(DefaultValue && | 
|  | "Need a default value to fill the lookup table holes."); | 
|  | assert(DefaultValue->getType() == ValueType); | 
|  | for (uint64_t I = 0; I < TableSize; ++I) { | 
|  | if (!TableContents[I]) | 
|  | TableContents[I] = DefaultValue; | 
|  | } | 
|  |  | 
|  | if (DefaultValue != SingleValue) | 
|  | SingleValue = nullptr; | 
|  | } | 
|  |  | 
|  | // If each element in the table contains the same value, we only need to store | 
|  | // that single value. | 
|  | if (SingleValue) { | 
|  | Kind = SingleValueKind; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check if we can derive the value with a linear transformation from the | 
|  | // table index. | 
|  | if (isa<IntegerType>(ValueType)) { | 
|  | bool LinearMappingPossible = true; | 
|  | APInt PrevVal; | 
|  | APInt DistToPrev; | 
|  | assert(TableSize >= 2 && "Should be a SingleValue table."); | 
|  | // Check if there is the same distance between two consecutive values. | 
|  | for (uint64_t I = 0; I < TableSize; ++I) { | 
|  | ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); | 
|  | if (!ConstVal) { | 
|  | // This is an undef. We could deal with it, but undefs in lookup tables | 
|  | // are very seldom. It's probably not worth the additional complexity. | 
|  | LinearMappingPossible = false; | 
|  | break; | 
|  | } | 
|  | const APInt &Val = ConstVal->getValue(); | 
|  | if (I != 0) { | 
|  | APInt Dist = Val - PrevVal; | 
|  | if (I == 1) { | 
|  | DistToPrev = Dist; | 
|  | } else if (Dist != DistToPrev) { | 
|  | LinearMappingPossible = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | PrevVal = Val; | 
|  | } | 
|  | if (LinearMappingPossible) { | 
|  | LinearOffset = cast<ConstantInt>(TableContents[0]); | 
|  | LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); | 
|  | Kind = LinearMapKind; | 
|  | ++NumLinearMaps; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the type is integer and the table fits in a register, build a bitmap. | 
|  | if (WouldFitInRegister(DL, TableSize, ValueType)) { | 
|  | IntegerType *IT = cast<IntegerType>(ValueType); | 
|  | APInt TableInt(TableSize * IT->getBitWidth(), 0); | 
|  | for (uint64_t I = TableSize; I > 0; --I) { | 
|  | TableInt <<= IT->getBitWidth(); | 
|  | // Insert values into the bitmap. Undef values are set to zero. | 
|  | if (!isa<UndefValue>(TableContents[I - 1])) { | 
|  | ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); | 
|  | TableInt |= Val->getValue().zext(TableInt.getBitWidth()); | 
|  | } | 
|  | } | 
|  | BitMap = ConstantInt::get(M.getContext(), TableInt); | 
|  | BitMapElementTy = IT; | 
|  | Kind = BitMapKind; | 
|  | ++NumBitMaps; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Store the table in an array. | 
|  | ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); | 
|  | Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); | 
|  |  | 
|  | Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, | 
|  | GlobalVariable::PrivateLinkage, Initializer, | 
|  | "switch.table." + FuncName); | 
|  | Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); | 
|  | // Set the alignment to that of an array items. We will be only loading one | 
|  | // value out of it. | 
|  | Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); | 
|  | Kind = ArrayKind; | 
|  | } | 
|  |  | 
|  | Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { | 
|  | switch (Kind) { | 
|  | case SingleValueKind: | 
|  | return SingleValue; | 
|  | case LinearMapKind: { | 
|  | // Derive the result value from the input value. | 
|  | Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), | 
|  | false, "switch.idx.cast"); | 
|  | if (!LinearMultiplier->isOne()) | 
|  | Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); | 
|  | if (!LinearOffset->isZero()) | 
|  | Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); | 
|  | return Result; | 
|  | } | 
|  | case BitMapKind: { | 
|  | // Type of the bitmap (e.g. i59). | 
|  | IntegerType *MapTy = BitMap->getType(); | 
|  |  | 
|  | // Cast Index to the same type as the bitmap. | 
|  | // Note: The Index is <= the number of elements in the table, so | 
|  | // truncating it to the width of the bitmask is safe. | 
|  | Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); | 
|  |  | 
|  | // Multiply the shift amount by the element width. | 
|  | ShiftAmt = Builder.CreateMul( | 
|  | ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), | 
|  | "switch.shiftamt"); | 
|  |  | 
|  | // Shift down. | 
|  | Value *DownShifted = | 
|  | Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); | 
|  | // Mask off. | 
|  | return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); | 
|  | } | 
|  | case ArrayKind: { | 
|  | // Make sure the table index will not overflow when treated as signed. | 
|  | IntegerType *IT = cast<IntegerType>(Index->getType()); | 
|  | uint64_t TableSize = | 
|  | Array->getInitializer()->getType()->getArrayNumElements(); | 
|  | if (TableSize > (1ULL << (IT->getBitWidth() - 1))) | 
|  | Index = Builder.CreateZExt( | 
|  | Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), | 
|  | "switch.tableidx.zext"); | 
|  |  | 
|  | Value *GEPIndices[] = {Builder.getInt32(0), Index}; | 
|  | Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, | 
|  | GEPIndices, "switch.gep"); | 
|  | return Builder.CreateLoad(GEP, "switch.load"); | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Unknown lookup table kind!"); | 
|  | } | 
|  |  | 
|  | bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, | 
|  | uint64_t TableSize, | 
|  | Type *ElementType) { | 
|  | auto *IT = dyn_cast<IntegerType>(ElementType); | 
|  | if (!IT) | 
|  | return false; | 
|  | // FIXME: If the type is wider than it needs to be, e.g. i8 but all values | 
|  | // are <= 15, we could try to narrow the type. | 
|  |  | 
|  | // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. | 
|  | if (TableSize >= UINT_MAX / IT->getBitWidth()) | 
|  | return false; | 
|  | return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); | 
|  | } | 
|  |  | 
|  | /// Determine whether a lookup table should be built for this switch, based on | 
|  | /// the number of cases, size of the table, and the types of the results. | 
|  | static bool | 
|  | ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, | 
|  | const TargetTransformInfo &TTI, const DataLayout &DL, | 
|  | const SmallDenseMap<PHINode *, Type *> &ResultTypes) { | 
|  | if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) | 
|  | return false; // TableSize overflowed, or mul below might overflow. | 
|  |  | 
|  | bool AllTablesFitInRegister = true; | 
|  | bool HasIllegalType = false; | 
|  | for (const auto &I : ResultTypes) { | 
|  | Type *Ty = I.second; | 
|  |  | 
|  | // Saturate this flag to true. | 
|  | HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); | 
|  |  | 
|  | // Saturate this flag to false. | 
|  | AllTablesFitInRegister = | 
|  | AllTablesFitInRegister && | 
|  | SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); | 
|  |  | 
|  | // If both flags saturate, we're done. NOTE: This *only* works with | 
|  | // saturating flags, and all flags have to saturate first due to the | 
|  | // non-deterministic behavior of iterating over a dense map. | 
|  | if (HasIllegalType && !AllTablesFitInRegister) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If each table would fit in a register, we should build it anyway. | 
|  | if (AllTablesFitInRegister) | 
|  | return true; | 
|  |  | 
|  | // Don't build a table that doesn't fit in-register if it has illegal types. | 
|  | if (HasIllegalType) | 
|  | return false; | 
|  |  | 
|  | // The table density should be at least 40%. This is the same criterion as for | 
|  | // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. | 
|  | // FIXME: Find the best cut-off. | 
|  | return SI->getNumCases() * 10 >= TableSize * 4; | 
|  | } | 
|  |  | 
|  | /// Try to reuse the switch table index compare. Following pattern: | 
|  | /// \code | 
|  | ///     if (idx < tablesize) | 
|  | ///        r = table[idx]; // table does not contain default_value | 
|  | ///     else | 
|  | ///        r = default_value; | 
|  | ///     if (r != default_value) | 
|  | ///        ... | 
|  | /// \endcode | 
|  | /// Is optimized to: | 
|  | /// \code | 
|  | ///     cond = idx < tablesize; | 
|  | ///     if (cond) | 
|  | ///        r = table[idx]; | 
|  | ///     else | 
|  | ///        r = default_value; | 
|  | ///     if (cond) | 
|  | ///        ... | 
|  | /// \endcode | 
|  | /// Jump threading will then eliminate the second if(cond). | 
|  | static void reuseTableCompare( | 
|  | User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, | 
|  | Constant *DefaultValue, | 
|  | const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { | 
|  | ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); | 
|  | if (!CmpInst) | 
|  | return; | 
|  |  | 
|  | // We require that the compare is in the same block as the phi so that jump | 
|  | // threading can do its work afterwards. | 
|  | if (CmpInst->getParent() != PhiBlock) | 
|  | return; | 
|  |  | 
|  | Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); | 
|  | if (!CmpOp1) | 
|  | return; | 
|  |  | 
|  | Value *RangeCmp = RangeCheckBranch->getCondition(); | 
|  | Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); | 
|  | Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); | 
|  |  | 
|  | // Check if the compare with the default value is constant true or false. | 
|  | Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), | 
|  | DefaultValue, CmpOp1, true); | 
|  | if (DefaultConst != TrueConst && DefaultConst != FalseConst) | 
|  | return; | 
|  |  | 
|  | // Check if the compare with the case values is distinct from the default | 
|  | // compare result. | 
|  | for (auto ValuePair : Values) { | 
|  | Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), | 
|  | ValuePair.second, CmpOp1, true); | 
|  | if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) | 
|  | return; | 
|  | assert((CaseConst == TrueConst || CaseConst == FalseConst) && | 
|  | "Expect true or false as compare result."); | 
|  | } | 
|  |  | 
|  | // Check if the branch instruction dominates the phi node. It's a simple | 
|  | // dominance check, but sufficient for our needs. | 
|  | // Although this check is invariant in the calling loops, it's better to do it | 
|  | // at this late stage. Practically we do it at most once for a switch. | 
|  | BasicBlock *BranchBlock = RangeCheckBranch->getParent(); | 
|  | for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { | 
|  | BasicBlock *Pred = *PI; | 
|  | if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (DefaultConst == FalseConst) { | 
|  | // The compare yields the same result. We can replace it. | 
|  | CmpInst->replaceAllUsesWith(RangeCmp); | 
|  | ++NumTableCmpReuses; | 
|  | } else { | 
|  | // The compare yields the same result, just inverted. We can replace it. | 
|  | Value *InvertedTableCmp = BinaryOperator::CreateXor( | 
|  | RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", | 
|  | RangeCheckBranch); | 
|  | CmpInst->replaceAllUsesWith(InvertedTableCmp); | 
|  | ++NumTableCmpReuses; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the switch is only used to initialize one or more phi nodes in a common | 
|  | /// successor block with different constant values, replace the switch with | 
|  | /// lookup tables. | 
|  | static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, | 
|  | const DataLayout &DL, | 
|  | const TargetTransformInfo &TTI) { | 
|  | assert(SI->getNumCases() > 1 && "Degenerate switch?"); | 
|  |  | 
|  | Function *Fn = SI->getParent()->getParent(); | 
|  | // Only build lookup table when we have a target that supports it or the | 
|  | // attribute is not set. | 
|  | if (!TTI.shouldBuildLookupTables() || | 
|  | (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) | 
|  | return false; | 
|  |  | 
|  | // FIXME: If the switch is too sparse for a lookup table, perhaps we could | 
|  | // split off a dense part and build a lookup table for that. | 
|  |  | 
|  | // FIXME: This creates arrays of GEPs to constant strings, which means each | 
|  | // GEP needs a runtime relocation in PIC code. We should just build one big | 
|  | // string and lookup indices into that. | 
|  |  | 
|  | // Ignore switches with less than three cases. Lookup tables will not make | 
|  | // them faster, so we don't analyze them. | 
|  | if (SI->getNumCases() < 3) | 
|  | return false; | 
|  |  | 
|  | // Figure out the corresponding result for each case value and phi node in the | 
|  | // common destination, as well as the min and max case values. | 
|  | assert(SI->case_begin() != SI->case_end()); | 
|  | SwitchInst::CaseIt CI = SI->case_begin(); | 
|  | ConstantInt *MinCaseVal = CI->getCaseValue(); | 
|  | ConstantInt *MaxCaseVal = CI->getCaseValue(); | 
|  |  | 
|  | BasicBlock *CommonDest = nullptr; | 
|  |  | 
|  | using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; | 
|  | SmallDenseMap<PHINode *, ResultListTy> ResultLists; | 
|  |  | 
|  | SmallDenseMap<PHINode *, Constant *> DefaultResults; | 
|  | SmallDenseMap<PHINode *, Type *> ResultTypes; | 
|  | SmallVector<PHINode *, 4> PHIs; | 
|  |  | 
|  | for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { | 
|  | ConstantInt *CaseVal = CI->getCaseValue(); | 
|  | if (CaseVal->getValue().slt(MinCaseVal->getValue())) | 
|  | MinCaseVal = CaseVal; | 
|  | if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) | 
|  | MaxCaseVal = CaseVal; | 
|  |  | 
|  | // Resulting value at phi nodes for this case value. | 
|  | using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; | 
|  | ResultsTy Results; | 
|  | if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, | 
|  | Results, DL, TTI)) | 
|  | return false; | 
|  |  | 
|  | // Append the result from this case to the list for each phi. | 
|  | for (const auto &I : Results) { | 
|  | PHINode *PHI = I.first; | 
|  | Constant *Value = I.second; | 
|  | if (!ResultLists.count(PHI)) | 
|  | PHIs.push_back(PHI); | 
|  | ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Keep track of the result types. | 
|  | for (PHINode *PHI : PHIs) { | 
|  | ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); | 
|  | } | 
|  |  | 
|  | uint64_t NumResults = ResultLists[PHIs[0]].size(); | 
|  | APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); | 
|  | uint64_t TableSize = RangeSpread.getLimitedValue() + 1; | 
|  | bool TableHasHoles = (NumResults < TableSize); | 
|  |  | 
|  | // If the table has holes, we need a constant result for the default case | 
|  | // or a bitmask that fits in a register. | 
|  | SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; | 
|  | bool HasDefaultResults = | 
|  | GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, | 
|  | DefaultResultsList, DL, TTI); | 
|  |  | 
|  | bool NeedMask = (TableHasHoles && !HasDefaultResults); | 
|  | if (NeedMask) { | 
|  | // As an extra penalty for the validity test we require more cases. | 
|  | if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). | 
|  | return false; | 
|  | if (!DL.fitsInLegalInteger(TableSize)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (const auto &I : DefaultResultsList) { | 
|  | PHINode *PHI = I.first; | 
|  | Constant *Result = I.second; | 
|  | DefaultResults[PHI] = Result; | 
|  | } | 
|  |  | 
|  | if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) | 
|  | return false; | 
|  |  | 
|  | // Create the BB that does the lookups. | 
|  | Module &Mod = *CommonDest->getParent()->getParent(); | 
|  | BasicBlock *LookupBB = BasicBlock::Create( | 
|  | Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); | 
|  |  | 
|  | // Compute the table index value. | 
|  | Builder.SetInsertPoint(SI); | 
|  | Value *TableIndex; | 
|  | if (MinCaseVal->isNullValue()) | 
|  | TableIndex = SI->getCondition(); | 
|  | else | 
|  | TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, | 
|  | "switch.tableidx"); | 
|  |  | 
|  | // Compute the maximum table size representable by the integer type we are | 
|  | // switching upon. | 
|  | unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); | 
|  | uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; | 
|  | assert(MaxTableSize >= TableSize && | 
|  | "It is impossible for a switch to have more entries than the max " | 
|  | "representable value of its input integer type's size."); | 
|  |  | 
|  | // If the default destination is unreachable, or if the lookup table covers | 
|  | // all values of the conditional variable, branch directly to the lookup table | 
|  | // BB. Otherwise, check that the condition is within the case range. | 
|  | const bool DefaultIsReachable = | 
|  | !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); | 
|  | const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); | 
|  | BranchInst *RangeCheckBranch = nullptr; | 
|  |  | 
|  | if (!DefaultIsReachable || GeneratingCoveredLookupTable) { | 
|  | Builder.CreateBr(LookupBB); | 
|  | // Note: We call removeProdecessor later since we need to be able to get the | 
|  | // PHI value for the default case in case we're using a bit mask. | 
|  | } else { | 
|  | Value *Cmp = Builder.CreateICmpULT( | 
|  | TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); | 
|  | RangeCheckBranch = | 
|  | Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); | 
|  | } | 
|  |  | 
|  | // Populate the BB that does the lookups. | 
|  | Builder.SetInsertPoint(LookupBB); | 
|  |  | 
|  | if (NeedMask) { | 
|  | // Before doing the lookup, we do the hole check. The LookupBB is therefore | 
|  | // re-purposed to do the hole check, and we create a new LookupBB. | 
|  | BasicBlock *MaskBB = LookupBB; | 
|  | MaskBB->setName("switch.hole_check"); | 
|  | LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", | 
|  | CommonDest->getParent(), CommonDest); | 
|  |  | 
|  | // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid | 
|  | // unnecessary illegal types. | 
|  | uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); | 
|  | APInt MaskInt(TableSizePowOf2, 0); | 
|  | APInt One(TableSizePowOf2, 1); | 
|  | // Build bitmask; fill in a 1 bit for every case. | 
|  | const ResultListTy &ResultList = ResultLists[PHIs[0]]; | 
|  | for (size_t I = 0, E = ResultList.size(); I != E; ++I) { | 
|  | uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) | 
|  | .getLimitedValue(); | 
|  | MaskInt |= One << Idx; | 
|  | } | 
|  | ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); | 
|  |  | 
|  | // Get the TableIndex'th bit of the bitmask. | 
|  | // If this bit is 0 (meaning hole) jump to the default destination, | 
|  | // else continue with table lookup. | 
|  | IntegerType *MapTy = TableMask->getType(); | 
|  | Value *MaskIndex = | 
|  | Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); | 
|  | Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); | 
|  | Value *LoBit = Builder.CreateTrunc( | 
|  | Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); | 
|  | Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); | 
|  |  | 
|  | Builder.SetInsertPoint(LookupBB); | 
|  | AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); | 
|  | } | 
|  |  | 
|  | if (!DefaultIsReachable || GeneratingCoveredLookupTable) { | 
|  | // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, | 
|  | // do not delete PHINodes here. | 
|  | SI->getDefaultDest()->removePredecessor(SI->getParent(), | 
|  | /*DontDeleteUselessPHIs=*/true); | 
|  | } | 
|  |  | 
|  | bool ReturnedEarly = false; | 
|  | for (PHINode *PHI : PHIs) { | 
|  | const ResultListTy &ResultList = ResultLists[PHI]; | 
|  |  | 
|  | // If using a bitmask, use any value to fill the lookup table holes. | 
|  | Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; | 
|  | StringRef FuncName = Fn->getName(); | 
|  | SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, | 
|  | FuncName); | 
|  |  | 
|  | Value *Result = Table.BuildLookup(TableIndex, Builder); | 
|  |  | 
|  | // If the result is used to return immediately from the function, we want to | 
|  | // do that right here. | 
|  | if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && | 
|  | PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { | 
|  | Builder.CreateRet(Result); | 
|  | ReturnedEarly = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Do a small peephole optimization: re-use the switch table compare if | 
|  | // possible. | 
|  | if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { | 
|  | BasicBlock *PhiBlock = PHI->getParent(); | 
|  | // Search for compare instructions which use the phi. | 
|  | for (auto *User : PHI->users()) { | 
|  | reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); | 
|  | } | 
|  | } | 
|  |  | 
|  | PHI->addIncoming(Result, LookupBB); | 
|  | } | 
|  |  | 
|  | if (!ReturnedEarly) | 
|  | Builder.CreateBr(CommonDest); | 
|  |  | 
|  | // Remove the switch. | 
|  | for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { | 
|  | BasicBlock *Succ = SI->getSuccessor(i); | 
|  |  | 
|  | if (Succ == SI->getDefaultDest()) | 
|  | continue; | 
|  | Succ->removePredecessor(SI->getParent()); | 
|  | } | 
|  | SI->eraseFromParent(); | 
|  |  | 
|  | ++NumLookupTables; | 
|  | if (NeedMask) | 
|  | ++NumLookupTablesHoles; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isSwitchDense(ArrayRef<int64_t> Values) { | 
|  | // See also SelectionDAGBuilder::isDense(), which this function was based on. | 
|  | uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); | 
|  | uint64_t Range = Diff + 1; | 
|  | uint64_t NumCases = Values.size(); | 
|  | // 40% is the default density for building a jump table in optsize/minsize mode. | 
|  | uint64_t MinDensity = 40; | 
|  |  | 
|  | return NumCases * 100 >= Range * MinDensity; | 
|  | } | 
|  |  | 
|  | /// Try to transform a switch that has "holes" in it to a contiguous sequence | 
|  | /// of cases. | 
|  | /// | 
|  | /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be | 
|  | /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. | 
|  | /// | 
|  | /// This converts a sparse switch into a dense switch which allows better | 
|  | /// lowering and could also allow transforming into a lookup table. | 
|  | static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, | 
|  | const DataLayout &DL, | 
|  | const TargetTransformInfo &TTI) { | 
|  | auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); | 
|  | if (CondTy->getIntegerBitWidth() > 64 || | 
|  | !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) | 
|  | return false; | 
|  | // Only bother with this optimization if there are more than 3 switch cases; | 
|  | // SDAG will only bother creating jump tables for 4 or more cases. | 
|  | if (SI->getNumCases() < 4) | 
|  | return false; | 
|  |  | 
|  | // This transform is agnostic to the signedness of the input or case values. We | 
|  | // can treat the case values as signed or unsigned. We can optimize more common | 
|  | // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values | 
|  | // as signed. | 
|  | SmallVector<int64_t,4> Values; | 
|  | for (auto &C : SI->cases()) | 
|  | Values.push_back(C.getCaseValue()->getValue().getSExtValue()); | 
|  | llvm::sort(Values); | 
|  |  | 
|  | // If the switch is already dense, there's nothing useful to do here. | 
|  | if (isSwitchDense(Values)) | 
|  | return false; | 
|  |  | 
|  | // First, transform the values such that they start at zero and ascend. | 
|  | int64_t Base = Values[0]; | 
|  | for (auto &V : Values) | 
|  | V -= (uint64_t)(Base); | 
|  |  | 
|  | // Now we have signed numbers that have been shifted so that, given enough | 
|  | // precision, there are no negative values. Since the rest of the transform | 
|  | // is bitwise only, we switch now to an unsigned representation. | 
|  | uint64_t GCD = 0; | 
|  | for (auto &V : Values) | 
|  | GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); | 
|  |  | 
|  | // This transform can be done speculatively because it is so cheap - it results | 
|  | // in a single rotate operation being inserted. This can only happen if the | 
|  | // factor extracted is a power of 2. | 
|  | // FIXME: If the GCD is an odd number we can multiply by the multiplicative | 
|  | // inverse of GCD and then perform this transform. | 
|  | // FIXME: It's possible that optimizing a switch on powers of two might also | 
|  | // be beneficial - flag values are often powers of two and we could use a CLZ | 
|  | // as the key function. | 
|  | if (GCD <= 1 || !isPowerOf2_64(GCD)) | 
|  | // No common divisor found or too expensive to compute key function. | 
|  | return false; | 
|  |  | 
|  | unsigned Shift = Log2_64(GCD); | 
|  | for (auto &V : Values) | 
|  | V = (int64_t)((uint64_t)V >> Shift); | 
|  |  | 
|  | if (!isSwitchDense(Values)) | 
|  | // Transform didn't create a dense switch. | 
|  | return false; | 
|  |  | 
|  | // The obvious transform is to shift the switch condition right and emit a | 
|  | // check that the condition actually cleanly divided by GCD, i.e. | 
|  | //   C & (1 << Shift - 1) == 0 | 
|  | // inserting a new CFG edge to handle the case where it didn't divide cleanly. | 
|  | // | 
|  | // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the | 
|  | // shift and puts the shifted-off bits in the uppermost bits. If any of these | 
|  | // are nonzero then the switch condition will be very large and will hit the | 
|  | // default case. | 
|  |  | 
|  | auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); | 
|  | Builder.SetInsertPoint(SI); | 
|  | auto *ShiftC = ConstantInt::get(Ty, Shift); | 
|  | auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); | 
|  | auto *LShr = Builder.CreateLShr(Sub, ShiftC); | 
|  | auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); | 
|  | auto *Rot = Builder.CreateOr(LShr, Shl); | 
|  | SI->replaceUsesOfWith(SI->getCondition(), Rot); | 
|  |  | 
|  | for (auto Case : SI->cases()) { | 
|  | auto *Orig = Case.getCaseValue(); | 
|  | auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); | 
|  | Case.setValue( | 
|  | cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { | 
|  | BasicBlock *BB = SI->getParent(); | 
|  |  | 
|  | if (isValueEqualityComparison(SI)) { | 
|  | // If we only have one predecessor, and if it is a branch on this value, | 
|  | // see if that predecessor totally determines the outcome of this switch. | 
|  | if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) | 
|  | if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | Value *Cond = SI->getCondition(); | 
|  | if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) | 
|  | if (SimplifySwitchOnSelect(SI, Select)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | // If the block only contains the switch, see if we can fold the block | 
|  | // away into any preds. | 
|  | if (SI == &*BB->instructionsWithoutDebug().begin()) | 
|  | if (FoldValueComparisonIntoPredecessors(SI, Builder)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  | } | 
|  |  | 
|  | // Try to transform the switch into an icmp and a branch. | 
|  | if (TurnSwitchRangeIntoICmp(SI, Builder)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | // Remove unreachable cases. | 
|  | if (eliminateDeadSwitchCases(SI, Options.AC, DL)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | if (switchToSelect(SI, Builder, DL, TTI)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | // The conversion from switch to lookup tables results in difficult-to-analyze | 
|  | // code and makes pruning branches much harder. This is a problem if the | 
|  | // switch expression itself can still be restricted as a result of inlining or | 
|  | // CVP. Therefore, only apply this transformation during late stages of the | 
|  | // optimisation pipeline. | 
|  | if (Options.ConvertSwitchToLookupTable && | 
|  | SwitchToLookupTable(SI, Builder, DL, TTI)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | if (ReduceSwitchRange(SI, Builder, DL, TTI)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { | 
|  | BasicBlock *BB = IBI->getParent(); | 
|  | bool Changed = false; | 
|  |  | 
|  | // Eliminate redundant destinations. | 
|  | SmallPtrSet<Value *, 8> Succs; | 
|  | for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { | 
|  | BasicBlock *Dest = IBI->getDestination(i); | 
|  | if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { | 
|  | Dest->removePredecessor(BB); | 
|  | IBI->removeDestination(i); | 
|  | --i; | 
|  | --e; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IBI->getNumDestinations() == 0) { | 
|  | // If the indirectbr has no successors, change it to unreachable. | 
|  | new UnreachableInst(IBI->getContext(), IBI); | 
|  | EraseTerminatorInstAndDCECond(IBI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (IBI->getNumDestinations() == 1) { | 
|  | // If the indirectbr has one successor, change it to a direct branch. | 
|  | BranchInst::Create(IBI->getDestination(0), IBI); | 
|  | EraseTerminatorInstAndDCECond(IBI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { | 
|  | if (SimplifyIndirectBrOnSelect(IBI, SI)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Given an block with only a single landing pad and a unconditional branch | 
|  | /// try to find another basic block which this one can be merged with.  This | 
|  | /// handles cases where we have multiple invokes with unique landing pads, but | 
|  | /// a shared handler. | 
|  | /// | 
|  | /// We specifically choose to not worry about merging non-empty blocks | 
|  | /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In | 
|  | /// practice, the optimizer produces empty landing pad blocks quite frequently | 
|  | /// when dealing with exception dense code.  (see: instcombine, gvn, if-else | 
|  | /// sinking in this file) | 
|  | /// | 
|  | /// This is primarily a code size optimization.  We need to avoid performing | 
|  | /// any transform which might inhibit optimization (such as our ability to | 
|  | /// specialize a particular handler via tail commoning).  We do this by not | 
|  | /// merging any blocks which require us to introduce a phi.  Since the same | 
|  | /// values are flowing through both blocks, we don't lose any ability to | 
|  | /// specialize.  If anything, we make such specialization more likely. | 
|  | /// | 
|  | /// TODO - This transformation could remove entries from a phi in the target | 
|  | /// block when the inputs in the phi are the same for the two blocks being | 
|  | /// merged.  In some cases, this could result in removal of the PHI entirely. | 
|  | static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, | 
|  | BasicBlock *BB) { | 
|  | auto Succ = BB->getUniqueSuccessor(); | 
|  | assert(Succ); | 
|  | // If there's a phi in the successor block, we'd likely have to introduce | 
|  | // a phi into the merged landing pad block. | 
|  | if (isa<PHINode>(*Succ->begin())) | 
|  | return false; | 
|  |  | 
|  | for (BasicBlock *OtherPred : predecessors(Succ)) { | 
|  | if (BB == OtherPred) | 
|  | continue; | 
|  | BasicBlock::iterator I = OtherPred->begin(); | 
|  | LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); | 
|  | if (!LPad2 || !LPad2->isIdenticalTo(LPad)) | 
|  | continue; | 
|  | for (++I; isa<DbgInfoIntrinsic>(I); ++I) | 
|  | ; | 
|  | BranchInst *BI2 = dyn_cast<BranchInst>(I); | 
|  | if (!BI2 || !BI2->isIdenticalTo(BI)) | 
|  | continue; | 
|  |  | 
|  | // We've found an identical block.  Update our predecessors to take that | 
|  | // path instead and make ourselves dead. | 
|  | SmallPtrSet<BasicBlock *, 16> Preds; | 
|  | Preds.insert(pred_begin(BB), pred_end(BB)); | 
|  | for (BasicBlock *Pred : Preds) { | 
|  | InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); | 
|  | assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && | 
|  | "unexpected successor"); | 
|  | II->setUnwindDest(OtherPred); | 
|  | } | 
|  |  | 
|  | // The debug info in OtherPred doesn't cover the merged control flow that | 
|  | // used to go through BB.  We need to delete it or update it. | 
|  | for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { | 
|  | Instruction &Inst = *I; | 
|  | I++; | 
|  | if (isa<DbgInfoIntrinsic>(Inst)) | 
|  | Inst.eraseFromParent(); | 
|  | } | 
|  |  | 
|  | SmallPtrSet<BasicBlock *, 16> Succs; | 
|  | Succs.insert(succ_begin(BB), succ_end(BB)); | 
|  | for (BasicBlock *Succ : Succs) { | 
|  | Succ->removePredecessor(BB); | 
|  | } | 
|  |  | 
|  | IRBuilder<> Builder(BI); | 
|  | Builder.CreateUnreachable(); | 
|  | BI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, | 
|  | IRBuilder<> &Builder) { | 
|  | BasicBlock *BB = BI->getParent(); | 
|  | BasicBlock *Succ = BI->getSuccessor(0); | 
|  |  | 
|  | // If the Terminator is the only non-phi instruction, simplify the block. | 
|  | // If LoopHeader is provided, check if the block or its successor is a loop | 
|  | // header. (This is for early invocations before loop simplify and | 
|  | // vectorization to keep canonical loop forms for nested loops. These blocks | 
|  | // can be eliminated when the pass is invoked later in the back-end.) | 
|  | // Note that if BB has only one predecessor then we do not introduce new | 
|  | // backedge, so we can eliminate BB. | 
|  | bool NeedCanonicalLoop = | 
|  | Options.NeedCanonicalLoop && | 
|  | (LoopHeaders && pred_size(BB) > 1 && | 
|  | (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); | 
|  | BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); | 
|  | if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && | 
|  | !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) | 
|  | return true; | 
|  |  | 
|  | // If the only instruction in the block is a seteq/setne comparison against a | 
|  | // constant, try to simplify the block. | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) | 
|  | if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { | 
|  | for (++I; isa<DbgInfoIntrinsic>(I); ++I) | 
|  | ; | 
|  | if (I->isTerminator() && | 
|  | tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // See if we can merge an empty landing pad block with another which is | 
|  | // equivalent. | 
|  | if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { | 
|  | for (++I; isa<DbgInfoIntrinsic>(I); ++I) | 
|  | ; | 
|  | if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this basic block is ONLY a compare and a branch, and if a predecessor | 
|  | // branches to us and our successor, fold the comparison into the | 
|  | // predecessor and use logical operations to update the incoming value | 
|  | // for PHI nodes in common successor. | 
|  | if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { | 
|  | BasicBlock *PredPred = nullptr; | 
|  | for (auto *P : predecessors(BB)) { | 
|  | BasicBlock *PPred = P->getSinglePredecessor(); | 
|  | if (!PPred || (PredPred && PredPred != PPred)) | 
|  | return nullptr; | 
|  | PredPred = PPred; | 
|  | } | 
|  | return PredPred; | 
|  | } | 
|  |  | 
|  | bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { | 
|  | BasicBlock *BB = BI->getParent(); | 
|  | const Function *Fn = BB->getParent(); | 
|  | if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) | 
|  | return false; | 
|  |  | 
|  | // Conditional branch | 
|  | if (isValueEqualityComparison(BI)) { | 
|  | // If we only have one predecessor, and if it is a branch on this value, | 
|  | // see if that predecessor totally determines the outcome of this | 
|  | // switch. | 
|  | if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) | 
|  | if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | // This block must be empty, except for the setcond inst, if it exists. | 
|  | // Ignore dbg intrinsics. | 
|  | auto I = BB->instructionsWithoutDebug().begin(); | 
|  | if (&*I == BI) { | 
|  | if (FoldValueComparisonIntoPredecessors(BI, Builder)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  | } else if (&*I == cast<Instruction>(BI->getCondition())) { | 
|  | ++I; | 
|  | if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. | 
|  | if (SimplifyBranchOnICmpChain(BI, Builder, DL)) | 
|  | return true; | 
|  |  | 
|  | // If this basic block has a single dominating predecessor block and the | 
|  | // dominating block's condition implies BI's condition, we know the direction | 
|  | // of the BI branch. | 
|  | if (BasicBlock *Dom = BB->getSinglePredecessor()) { | 
|  | auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); | 
|  | if (PBI && PBI->isConditional() && | 
|  | PBI->getSuccessor(0) != PBI->getSuccessor(1)) { | 
|  | assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB); | 
|  | bool CondIsTrue = PBI->getSuccessor(0) == BB; | 
|  | Optional<bool> Implication = isImpliedCondition( | 
|  | PBI->getCondition(), BI->getCondition(), DL, CondIsTrue); | 
|  | if (Implication) { | 
|  | // Turn this into a branch on constant. | 
|  | auto *OldCond = BI->getCondition(); | 
|  | ConstantInt *CI = *Implication | 
|  | ? ConstantInt::getTrue(BB->getContext()) | 
|  | : ConstantInt::getFalse(BB->getContext()); | 
|  | BI->setCondition(CI); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(OldCond); | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this basic block is ONLY a compare and a branch, and if a predecessor | 
|  | // branches to us and one of our successors, fold the comparison into the | 
|  | // predecessor and use logical operations to pick the right destination. | 
|  | if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | // We have a conditional branch to two blocks that are only reachable | 
|  | // from BI.  We know that the condbr dominates the two blocks, so see if | 
|  | // there is any identical code in the "then" and "else" blocks.  If so, we | 
|  | // can hoist it up to the branching block. | 
|  | if (BI->getSuccessor(0)->getSinglePredecessor()) { | 
|  | if (BI->getSuccessor(1)->getSinglePredecessor()) { | 
|  | if (HoistThenElseCodeToIf(BI, TTI)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  | } else { | 
|  | // If Successor #1 has multiple preds, we may be able to conditionally | 
|  | // execute Successor #0 if it branches to Successor #1. | 
|  | TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); | 
|  | if (Succ0TI->getNumSuccessors() == 1 && | 
|  | Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) | 
|  | if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  | } | 
|  | } else if (BI->getSuccessor(1)->getSinglePredecessor()) { | 
|  | // If Successor #0 has multiple preds, we may be able to conditionally | 
|  | // execute Successor #1 if it branches to Successor #0. | 
|  | TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); | 
|  | if (Succ1TI->getNumSuccessors() == 1 && | 
|  | Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) | 
|  | if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  | } | 
|  |  | 
|  | // If this is a branch on a phi node in the current block, thread control | 
|  | // through this block if any PHI node entries are constants. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) | 
|  | if (PN->getParent() == BI->getParent()) | 
|  | if (FoldCondBranchOnPHI(BI, DL, Options.AC)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | // Scan predecessor blocks for conditional branches. | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) | 
|  | if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) | 
|  | if (PBI != BI && PBI->isConditional()) | 
|  | if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | // Look for diamond patterns. | 
|  | if (MergeCondStores) | 
|  | if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) | 
|  | if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) | 
|  | if (PBI != BI && PBI->isConditional()) | 
|  | if (mergeConditionalStores(PBI, BI, DL)) | 
|  | return simplifyCFG(BB, TTI, Options) || true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check if passing a value to an instruction will cause undefined behavior. | 
|  | static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { | 
|  | Constant *C = dyn_cast<Constant>(V); | 
|  | if (!C) | 
|  | return false; | 
|  |  | 
|  | if (I->use_empty()) | 
|  | return false; | 
|  |  | 
|  | if (C->isNullValue() || isa<UndefValue>(C)) { | 
|  | // Only look at the first use, avoid hurting compile time with long uselists | 
|  | User *Use = *I->user_begin(); | 
|  |  | 
|  | // Now make sure that there are no instructions in between that can alter | 
|  | // control flow (eg. calls) | 
|  | for (BasicBlock::iterator | 
|  | i = ++BasicBlock::iterator(I), | 
|  | UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); | 
|  | i != UI; ++i) | 
|  | if (i == I->getParent()->end() || i->mayHaveSideEffects()) | 
|  | return false; | 
|  |  | 
|  | // Look through GEPs. A load from a GEP derived from NULL is still undefined | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) | 
|  | if (GEP->getPointerOperand() == I) | 
|  | return passingValueIsAlwaysUndefined(V, GEP); | 
|  |  | 
|  | // Look through bitcasts. | 
|  | if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) | 
|  | return passingValueIsAlwaysUndefined(V, BC); | 
|  |  | 
|  | // Load from null is undefined. | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(Use)) | 
|  | if (!LI->isVolatile()) | 
|  | return !NullPointerIsDefined(LI->getFunction(), | 
|  | LI->getPointerAddressSpace()); | 
|  |  | 
|  | // Store to null is undefined. | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(Use)) | 
|  | if (!SI->isVolatile()) | 
|  | return (!NullPointerIsDefined(SI->getFunction(), | 
|  | SI->getPointerAddressSpace())) && | 
|  | SI->getPointerOperand() == I; | 
|  |  | 
|  | // A call to null is undefined. | 
|  | if (auto CS = CallSite(Use)) | 
|  | return !NullPointerIsDefined(CS->getFunction()) && | 
|  | CS.getCalledValue() == I; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// If BB has an incoming value that will always trigger undefined behavior | 
|  | /// (eg. null pointer dereference), remove the branch leading here. | 
|  | static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { | 
|  | for (PHINode &PHI : BB->phis()) | 
|  | for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) | 
|  | if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { | 
|  | TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator(); | 
|  | IRBuilder<> Builder(T); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(T)) { | 
|  | BB->removePredecessor(PHI.getIncomingBlock(i)); | 
|  | // Turn uncoditional branches into unreachables and remove the dead | 
|  | // destination from conditional branches. | 
|  | if (BI->isUnconditional()) | 
|  | Builder.CreateUnreachable(); | 
|  | else | 
|  | Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) | 
|  | : BI->getSuccessor(0)); | 
|  | BI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | // TODO: SwitchInst. | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SimplifyCFGOpt::run(BasicBlock *BB) { | 
|  | bool Changed = false; | 
|  |  | 
|  | assert(BB && BB->getParent() && "Block not embedded in function!"); | 
|  | assert(BB->getTerminator() && "Degenerate basic block encountered!"); | 
|  |  | 
|  | // Remove basic blocks that have no predecessors (except the entry block)... | 
|  | // or that just have themself as a predecessor.  These are unreachable. | 
|  | if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || | 
|  | BB->getSinglePredecessor() == BB) { | 
|  | LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); | 
|  | DeleteDeadBlock(BB); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check to see if we can constant propagate this terminator instruction | 
|  | // away... | 
|  | Changed |= ConstantFoldTerminator(BB, true); | 
|  |  | 
|  | // Check for and eliminate duplicate PHI nodes in this block. | 
|  | Changed |= EliminateDuplicatePHINodes(BB); | 
|  |  | 
|  | // Check for and remove branches that will always cause undefined behavior. | 
|  | Changed |= removeUndefIntroducingPredecessor(BB); | 
|  |  | 
|  | // Merge basic blocks into their predecessor if there is only one distinct | 
|  | // pred, and if there is only one distinct successor of the predecessor, and | 
|  | // if there are no PHI nodes. | 
|  | if (MergeBlockIntoPredecessor(BB)) | 
|  | return true; | 
|  |  | 
|  | if (SinkCommon && Options.SinkCommonInsts) | 
|  | Changed |= SinkCommonCodeFromPredecessors(BB); | 
|  |  | 
|  | IRBuilder<> Builder(BB); | 
|  |  | 
|  | // If there is a trivial two-entry PHI node in this basic block, and we can | 
|  | // eliminate it, do so now. | 
|  | if (auto *PN = dyn_cast<PHINode>(BB->begin())) | 
|  | if (PN->getNumIncomingValues() == 2) | 
|  | Changed |= FoldTwoEntryPHINode(PN, TTI, DL); | 
|  |  | 
|  | Builder.SetInsertPoint(BB->getTerminator()); | 
|  | if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { | 
|  | if (BI->isUnconditional()) { | 
|  | if (SimplifyUncondBranch(BI, Builder)) | 
|  | return true; | 
|  | } else { | 
|  | if (SimplifyCondBranch(BI, Builder)) | 
|  | return true; | 
|  | } | 
|  | } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { | 
|  | if (SimplifyReturn(RI, Builder)) | 
|  | return true; | 
|  | } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { | 
|  | if (SimplifyResume(RI, Builder)) | 
|  | return true; | 
|  | } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { | 
|  | if (SimplifyCleanupReturn(RI)) | 
|  | return true; | 
|  | } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { | 
|  | if (SimplifySwitch(SI, Builder)) | 
|  | return true; | 
|  | } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { | 
|  | if (SimplifyUnreachable(UI)) | 
|  | return true; | 
|  | } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { | 
|  | if (SimplifyIndirectBr(IBI)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, | 
|  | const SimplifyCFGOptions &Options, | 
|  | SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { | 
|  | return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, | 
|  | Options) | 
|  | .run(BB); | 
|  | } |