|  | //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains small standalone helper functions and enum definitions for | 
|  | // the X86 target useful for the compiler back-end and the MC libraries. | 
|  | // As such, it deliberately does not include references to LLVM core | 
|  | // code gen types, passes, etc.. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef X86BASEINFO_H | 
|  | #define X86BASEINFO_H | 
|  |  | 
|  | #include "X86MCTargetDesc.h" | 
|  | #include "llvm/Support/DataTypes.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/MC/MCInstrInfo.h" | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | namespace X86 { | 
|  | // Enums for memory operand decoding.  Each memory operand is represented with | 
|  | // a 5 operand sequence in the form: | 
|  | //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment] | 
|  | // These enums help decode this. | 
|  | enum { | 
|  | AddrBaseReg = 0, | 
|  | AddrScaleAmt = 1, | 
|  | AddrIndexReg = 2, | 
|  | AddrDisp = 3, | 
|  |  | 
|  | /// AddrSegmentReg - The operand # of the segment in the memory operand. | 
|  | AddrSegmentReg = 4, | 
|  |  | 
|  | /// AddrNumOperands - Total number of operands in a memory reference. | 
|  | AddrNumOperands = 5 | 
|  | }; | 
|  | } // end namespace X86; | 
|  |  | 
|  | /// X86II - This namespace holds all of the target specific flags that | 
|  | /// instruction info tracks. | 
|  | /// | 
|  | namespace X86II { | 
|  | /// Target Operand Flag enum. | 
|  | enum TOF { | 
|  | //===------------------------------------------------------------------===// | 
|  | // X86 Specific MachineOperand flags. | 
|  |  | 
|  | MO_NO_FLAG, | 
|  |  | 
|  | /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a | 
|  | /// relocation of: | 
|  | ///    SYMBOL_LABEL + [. - PICBASELABEL] | 
|  | MO_GOT_ABSOLUTE_ADDRESS, | 
|  |  | 
|  | /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the | 
|  | /// immediate should get the value of the symbol minus the PIC base label: | 
|  | ///    SYMBOL_LABEL - PICBASELABEL | 
|  | MO_PIC_BASE_OFFSET, | 
|  |  | 
|  | /// MO_GOT - On a symbol operand this indicates that the immediate is the | 
|  | /// offset to the GOT entry for the symbol name from the base of the GOT. | 
|  | /// | 
|  | /// See the X86-64 ELF ABI supplement for more details. | 
|  | ///    SYMBOL_LABEL @GOT | 
|  | MO_GOT, | 
|  |  | 
|  | /// MO_GOTOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the offset to the location of the symbol name from the base of the GOT. | 
|  | /// | 
|  | /// See the X86-64 ELF ABI supplement for more details. | 
|  | ///    SYMBOL_LABEL @GOTOFF | 
|  | MO_GOTOFF, | 
|  |  | 
|  | /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is | 
|  | /// offset to the GOT entry for the symbol name from the current code | 
|  | /// location. | 
|  | /// | 
|  | /// See the X86-64 ELF ABI supplement for more details. | 
|  | ///    SYMBOL_LABEL @GOTPCREL | 
|  | MO_GOTPCREL, | 
|  |  | 
|  | /// MO_PLT - On a symbol operand this indicates that the immediate is | 
|  | /// offset to the PLT entry of symbol name from the current code location. | 
|  | /// | 
|  | /// See the X86-64 ELF ABI supplement for more details. | 
|  | ///    SYMBOL_LABEL @PLT | 
|  | MO_PLT, | 
|  |  | 
|  | /// MO_TLSGD - On a symbol operand this indicates that the immediate is | 
|  | /// the offset of the GOT entry with the TLS index structure that contains | 
|  | /// the module number and variable offset for the symbol. Used in the | 
|  | /// general dynamic TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @TLSGD | 
|  | MO_TLSGD, | 
|  |  | 
|  | /// MO_TLSLD - On a symbol operand this indicates that the immediate is | 
|  | /// the offset of the GOT entry with the TLS index for the module that | 
|  | /// contains the symbol. When this index is passed to a call to | 
|  | /// __tls_get_addr, the function will return the base address of the TLS | 
|  | /// block for the symbol. Used in the x86-64 local dynamic TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @TLSLD | 
|  | MO_TLSLD, | 
|  |  | 
|  | /// MO_TLSLDM - On a symbol operand this indicates that the immediate is | 
|  | /// the offset of the GOT entry with the TLS index for the module that | 
|  | /// contains the symbol. When this index is passed to a call to | 
|  | /// ___tls_get_addr, the function will return the base address of the TLS | 
|  | /// block for the symbol. Used in the IA32 local dynamic TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @TLSLDM | 
|  | MO_TLSLDM, | 
|  |  | 
|  | /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the offset of the GOT entry with the thread-pointer offset for the | 
|  | /// symbol. Used in the x86-64 initial exec TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @GOTTPOFF | 
|  | MO_GOTTPOFF, | 
|  |  | 
|  | /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the absolute address of the GOT entry with the negative thread-pointer | 
|  | /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access | 
|  | /// model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @INDNTPOFF | 
|  | MO_INDNTPOFF, | 
|  |  | 
|  | /// MO_TPOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the thread-pointer offset for the symbol. Used in the x86-64 local | 
|  | /// exec TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @TPOFF | 
|  | MO_TPOFF, | 
|  |  | 
|  | /// MO_DTPOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the offset of the GOT entry with the TLS offset of the symbol. Used | 
|  | /// in the local dynamic TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @DTPOFF | 
|  | MO_DTPOFF, | 
|  |  | 
|  | /// MO_NTPOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the negative thread-pointer offset for the symbol. Used in the IA32 | 
|  | /// local exec TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @NTPOFF | 
|  | MO_NTPOFF, | 
|  |  | 
|  | /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the offset of the GOT entry with the negative thread-pointer offset for | 
|  | /// the symbol. Used in the PIC IA32 initial exec TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @GOTNTPOFF | 
|  | MO_GOTNTPOFF, | 
|  |  | 
|  | /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the | 
|  | /// reference is actually to the "__imp_FOO" symbol.  This is used for | 
|  | /// dllimport linkage on windows. | 
|  | MO_DLLIMPORT, | 
|  |  | 
|  | /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the | 
|  | /// reference is actually to the "FOO$stub" symbol.  This is used for calls | 
|  | /// and jumps to external functions on Tiger and earlier. | 
|  | MO_DARWIN_STUB, | 
|  |  | 
|  | /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the | 
|  | /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a | 
|  | /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. | 
|  | MO_DARWIN_NONLAZY, | 
|  |  | 
|  | /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates | 
|  | /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is | 
|  | /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. | 
|  | MO_DARWIN_NONLAZY_PIC_BASE, | 
|  |  | 
|  | /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this | 
|  | /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE", | 
|  | /// which is a PIC-base-relative reference to a hidden dyld lazy pointer | 
|  | /// stub. | 
|  | MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE, | 
|  |  | 
|  | /// MO_TLVP - On a symbol operand this indicates that the immediate is | 
|  | /// some TLS offset. | 
|  | /// | 
|  | /// This is the TLS offset for the Darwin TLS mechanism. | 
|  | MO_TLVP, | 
|  |  | 
|  | /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate | 
|  | /// is some TLS offset from the picbase. | 
|  | /// | 
|  | /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. | 
|  | MO_TLVP_PIC_BASE, | 
|  |  | 
|  | /// MO_SECREL - On a symbol operand this indicates that the immediate is | 
|  | /// the offset from beginning of section. | 
|  | /// | 
|  | /// This is the TLS offset for the COFF/Windows TLS mechanism. | 
|  | MO_SECREL | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | //===------------------------------------------------------------------===// | 
|  | // Instruction encodings.  These are the standard/most common forms for X86 | 
|  | // instructions. | 
|  | // | 
|  |  | 
|  | // PseudoFrm - This represents an instruction that is a pseudo instruction | 
|  | // or one that has not been implemented yet.  It is illegal to code generate | 
|  | // it, but tolerated for intermediate implementation stages. | 
|  | Pseudo         = 0, | 
|  |  | 
|  | /// Raw - This form is for instructions that don't have any operands, so | 
|  | /// they are just a fixed opcode value, like 'leave'. | 
|  | RawFrm         = 1, | 
|  |  | 
|  | /// AddRegFrm - This form is used for instructions like 'push r32' that have | 
|  | /// their one register operand added to their opcode. | 
|  | AddRegFrm      = 2, | 
|  |  | 
|  | /// MRMDestReg - This form is used for instructions that use the Mod/RM byte | 
|  | /// to specify a destination, which in this case is a register. | 
|  | /// | 
|  | MRMDestReg     = 3, | 
|  |  | 
|  | /// MRMDestMem - This form is used for instructions that use the Mod/RM byte | 
|  | /// to specify a destination, which in this case is memory. | 
|  | /// | 
|  | MRMDestMem     = 4, | 
|  |  | 
|  | /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte | 
|  | /// to specify a source, which in this case is a register. | 
|  | /// | 
|  | MRMSrcReg      = 5, | 
|  |  | 
|  | /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte | 
|  | /// to specify a source, which in this case is memory. | 
|  | /// | 
|  | MRMSrcMem      = 6, | 
|  |  | 
|  | /// MRM[0-7][rm] - These forms are used to represent instructions that use | 
|  | /// a Mod/RM byte, and use the middle field to hold extended opcode | 
|  | /// information.  In the intel manual these are represented as /0, /1, ... | 
|  | /// | 
|  |  | 
|  | // First, instructions that operate on a register r/m operand... | 
|  | MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3 | 
|  | MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7 | 
|  |  | 
|  | // Next, instructions that operate on a memory r/m operand... | 
|  | MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3 | 
|  | MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7 | 
|  |  | 
|  | // MRMInitReg - This form is used for instructions whose source and | 
|  | // destinations are the same register. | 
|  | MRMInitReg = 32, | 
|  |  | 
|  | //// MRM_XX - A mod/rm byte of exactly 0xXX. | 
|  | MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35, MRM_C4 = 36, | 
|  | MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39, MRM_CB = 40, | 
|  | MRM_E8 = 41, MRM_F0 = 42, MRM_F8 = 45, MRM_F9 = 46, | 
|  | MRM_D0 = 47, MRM_D1 = 48, MRM_D4 = 49, MRM_D5 = 50, | 
|  | MRM_D6 = 51, MRM_D8 = 52, MRM_D9 = 53, MRM_DA = 54, | 
|  | MRM_DB = 55, MRM_DC = 56, MRM_DD = 57, MRM_DE = 58, | 
|  | MRM_DF = 59, | 
|  |  | 
|  | /// RawFrmImm8 - This is used for the ENTER instruction, which has two | 
|  | /// immediates, the first of which is a 16-bit immediate (specified by | 
|  | /// the imm encoding) and the second is a 8-bit fixed value. | 
|  | RawFrmImm8 = 43, | 
|  |  | 
|  | /// RawFrmImm16 - This is used for CALL FAR instructions, which have two | 
|  | /// immediates, the first of which is a 16 or 32-bit immediate (specified by | 
|  | /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD | 
|  | /// manual, this operand is described as pntr16:32 and pntr16:16 | 
|  | RawFrmImm16 = 44, | 
|  |  | 
|  | FormMask       = 63, | 
|  |  | 
|  | //===------------------------------------------------------------------===// | 
|  | // Actual flags... | 
|  |  | 
|  | // OpSize - Set if this instruction requires an operand size prefix (0x66), | 
|  | // which most often indicates that the instruction operates on 16 bit data | 
|  | // instead of 32 bit data. | 
|  | OpSize      = 1 << 6, | 
|  |  | 
|  | // AsSize - Set if this instruction requires an operand size prefix (0x67), | 
|  | // which most often indicates that the instruction address 16 bit address | 
|  | // instead of 32 bit address (or 32 bit address in 64 bit mode). | 
|  | AdSize      = 1 << 7, | 
|  |  | 
|  | //===------------------------------------------------------------------===// | 
|  | // Op0Mask - There are several prefix bytes that are used to form two byte | 
|  | // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is | 
|  | // used to obtain the setting of this field.  If no bits in this field is | 
|  | // set, there is no prefix byte for obtaining a multibyte opcode. | 
|  | // | 
|  | Op0Shift    = 8, | 
|  | Op0Mask     = 0x1F << Op0Shift, | 
|  |  | 
|  | // TB - TwoByte - Set if this instruction has a two byte opcode, which | 
|  | // starts with a 0x0F byte before the real opcode. | 
|  | TB          = 1 << Op0Shift, | 
|  |  | 
|  | // REP - The 0xF3 prefix byte indicating repetition of the following | 
|  | // instruction. | 
|  | REP         = 2 << Op0Shift, | 
|  |  | 
|  | // D8-DF - These escape opcodes are used by the floating point unit.  These | 
|  | // values must remain sequential. | 
|  | D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift, | 
|  | DA = 5 << Op0Shift,   DB = 6 << Op0Shift, | 
|  | DC = 7 << Op0Shift,   DD = 8 << Op0Shift, | 
|  | DE = 9 << Op0Shift,   DF = 10 << Op0Shift, | 
|  |  | 
|  | // XS, XD - These prefix codes are for single and double precision scalar | 
|  | // floating point operations performed in the SSE registers. | 
|  | XD = 11 << Op0Shift,  XS = 12 << Op0Shift, | 
|  |  | 
|  | // T8, TA, A6, A7 - Prefix after the 0x0F prefix. | 
|  | T8 = 13 << Op0Shift,  TA = 14 << Op0Shift, | 
|  | A6 = 15 << Op0Shift,  A7 = 16 << Op0Shift, | 
|  |  | 
|  | // T8XD - Prefix before and after 0x0F. Combination of T8 and XD. | 
|  | T8XD = 17 << Op0Shift, | 
|  |  | 
|  | // T8XS - Prefix before and after 0x0F. Combination of T8 and XS. | 
|  | T8XS = 18 << Op0Shift, | 
|  |  | 
|  | // TAXD - Prefix before and after 0x0F. Combination of TA and XD. | 
|  | TAXD = 19 << Op0Shift, | 
|  |  | 
|  | // XOP8 - Prefix to include use of imm byte. | 
|  | XOP8 = 20 << Op0Shift, | 
|  |  | 
|  | // XOP9 - Prefix to exclude use of imm byte. | 
|  | XOP9 = 21 << Op0Shift, | 
|  |  | 
|  | // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions. | 
|  | XOPA = 22 << Op0Shift, | 
|  |  | 
|  | //===------------------------------------------------------------------===// | 
|  | // REX_W - REX prefixes are instruction prefixes used in 64-bit mode. | 
|  | // They are used to specify GPRs and SSE registers, 64-bit operand size, | 
|  | // etc. We only cares about REX.W and REX.R bits and only the former is | 
|  | // statically determined. | 
|  | // | 
|  | REXShift    = Op0Shift + 5, | 
|  | REX_W       = 1 << REXShift, | 
|  |  | 
|  | //===------------------------------------------------------------------===// | 
|  | // This three-bit field describes the size of an immediate operand.  Zero is | 
|  | // unused so that we can tell if we forgot to set a value. | 
|  | ImmShift = REXShift + 1, | 
|  | ImmMask    = 7 << ImmShift, | 
|  | Imm8       = 1 << ImmShift, | 
|  | Imm8PCRel  = 2 << ImmShift, | 
|  | Imm16      = 3 << ImmShift, | 
|  | Imm16PCRel = 4 << ImmShift, | 
|  | Imm32      = 5 << ImmShift, | 
|  | Imm32PCRel = 6 << ImmShift, | 
|  | Imm64      = 7 << ImmShift, | 
|  |  | 
|  | //===------------------------------------------------------------------===// | 
|  | // FP Instruction Classification...  Zero is non-fp instruction. | 
|  |  | 
|  | // FPTypeMask - Mask for all of the FP types... | 
|  | FPTypeShift = ImmShift + 3, | 
|  | FPTypeMask  = 7 << FPTypeShift, | 
|  |  | 
|  | // NotFP - The default, set for instructions that do not use FP registers. | 
|  | NotFP      = 0 << FPTypeShift, | 
|  |  | 
|  | // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 | 
|  | ZeroArgFP  = 1 << FPTypeShift, | 
|  |  | 
|  | // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst | 
|  | OneArgFP   = 2 << FPTypeShift, | 
|  |  | 
|  | // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a | 
|  | // result back to ST(0).  For example, fcos, fsqrt, etc. | 
|  | // | 
|  | OneArgFPRW = 3 << FPTypeShift, | 
|  |  | 
|  | // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an | 
|  | // explicit argument, storing the result to either ST(0) or the implicit | 
|  | // argument.  For example: fadd, fsub, fmul, etc... | 
|  | TwoArgFP   = 4 << FPTypeShift, | 
|  |  | 
|  | // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an | 
|  | // explicit argument, but have no destination.  Example: fucom, fucomi, ... | 
|  | CompareFP  = 5 << FPTypeShift, | 
|  |  | 
|  | // CondMovFP - "2 operand" floating point conditional move instructions. | 
|  | CondMovFP  = 6 << FPTypeShift, | 
|  |  | 
|  | // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly. | 
|  | SpecialFP  = 7 << FPTypeShift, | 
|  |  | 
|  | // Lock prefix | 
|  | LOCKShift = FPTypeShift + 3, | 
|  | LOCK = 1 << LOCKShift, | 
|  |  | 
|  | // Segment override prefixes. Currently we just need ability to address | 
|  | // stuff in gs and fs segments. | 
|  | SegOvrShift = LOCKShift + 1, | 
|  | SegOvrMask  = 3 << SegOvrShift, | 
|  | FS          = 1 << SegOvrShift, | 
|  | GS          = 2 << SegOvrShift, | 
|  |  | 
|  | // Execution domain for SSE instructions in bits 23, 24. | 
|  | // 0 in bits 23-24 means normal, non-SSE instruction. | 
|  | SSEDomainShift = SegOvrShift + 2, | 
|  |  | 
|  | OpcodeShift   = SSEDomainShift + 2, | 
|  |  | 
|  | //===------------------------------------------------------------------===// | 
|  | /// VEX - The opcode prefix used by AVX instructions | 
|  | VEXShift = OpcodeShift + 8, | 
|  | VEX         = 1U << 0, | 
|  |  | 
|  | /// VEX_W - Has a opcode specific functionality, but is used in the same | 
|  | /// way as REX_W is for regular SSE instructions. | 
|  | VEX_W       = 1U << 1, | 
|  |  | 
|  | /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 | 
|  | /// address instructions in SSE are represented as 3 address ones in AVX | 
|  | /// and the additional register is encoded in VEX_VVVV prefix. | 
|  | VEX_4V      = 1U << 2, | 
|  |  | 
|  | /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode | 
|  | /// operand 3 with VEX.vvvv. | 
|  | VEX_4VOp3   = 1U << 3, | 
|  |  | 
|  | /// VEX_I8IMM - Specifies that the last register used in a AVX instruction, | 
|  | /// must be encoded in the i8 immediate field. This usually happens in | 
|  | /// instructions with 4 operands. | 
|  | VEX_I8IMM   = 1U << 4, | 
|  |  | 
|  | /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current | 
|  | /// instruction uses 256-bit wide registers. This is usually auto detected | 
|  | /// if a VR256 register is used, but some AVX instructions also have this | 
|  | /// field marked when using a f256 memory references. | 
|  | VEX_L       = 1U << 5, | 
|  |  | 
|  | // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX | 
|  | // prefix. Usually used for scalar instructions. Needed by disassembler. | 
|  | VEX_LIG     = 1U << 6, | 
|  |  | 
|  | // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field | 
|  | // with following encoding: | 
|  | // - 00 V128 | 
|  | // - 01 V256 | 
|  | // - 10 V512 | 
|  | // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros. | 
|  | // this will save 1 tsflag bit | 
|  |  | 
|  | // VEX_EVEX - Specifies that this instruction use EVEX form which provides | 
|  | // syntax support up to 32 512-bit register operands and up to 7 16-bit | 
|  | // mask operands as well as source operand data swizzling/memory operand | 
|  | // conversion, eviction hint, and rounding mode. | 
|  | EVEX        = 1U << 7, | 
|  |  | 
|  | // EVEX_K - Set if this instruction requires masking | 
|  | EVEX_K      = 1U << 8, | 
|  |  | 
|  | // EVEX_Z - Set if this instruction has EVEX.Z field set. | 
|  | EVEX_Z      = 1U << 9, | 
|  |  | 
|  | // EVEX_L2 - Set if this instruction has EVEX.L' field set. | 
|  | EVEX_L2     = 1U << 10, | 
|  |  | 
|  | // EVEX_B - Set if this instruction has EVEX.B field set. | 
|  | EVEX_B      = 1U << 11, | 
|  |  | 
|  | // EVEX_CD8E - compressed disp8 form, element-size | 
|  | EVEX_CD8EShift = VEXShift + 12, | 
|  | EVEX_CD8EMask = 3, | 
|  |  | 
|  | // EVEX_CD8V - compressed disp8 form, vector-width | 
|  | EVEX_CD8VShift = EVEX_CD8EShift + 2, | 
|  | EVEX_CD8VMask = 7, | 
|  |  | 
|  | /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the | 
|  | /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents | 
|  | /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction | 
|  | /// storing a classifier in the imm8 field.  To simplify our implementation, | 
|  | /// we handle this by storeing the classifier in the opcode field and using | 
|  | /// this flag to indicate that the encoder should do the wacky 3DNow! thing. | 
|  | Has3DNow0F0FOpcode = 1U << 17, | 
|  |  | 
|  | /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in | 
|  | /// ModRM or I8IMM. This is used for FMA4 and XOP instructions. | 
|  | MemOp4 = 1U << 18, | 
|  |  | 
|  | /// XOP - Opcode prefix used by XOP instructions. | 
|  | XOP = 1U << 19 | 
|  |  | 
|  | }; | 
|  |  | 
|  | // getBaseOpcodeFor - This function returns the "base" X86 opcode for the | 
|  | // specified machine instruction. | 
|  | // | 
|  | inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) { | 
|  | return TSFlags >> X86II::OpcodeShift; | 
|  | } | 
|  |  | 
|  | inline bool hasImm(uint64_t TSFlags) { | 
|  | return (TSFlags & X86II::ImmMask) != 0; | 
|  | } | 
|  |  | 
|  | /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field | 
|  | /// of the specified instruction. | 
|  | inline unsigned getSizeOfImm(uint64_t TSFlags) { | 
|  | switch (TSFlags & X86II::ImmMask) { | 
|  | default: llvm_unreachable("Unknown immediate size"); | 
|  | case X86II::Imm8: | 
|  | case X86II::Imm8PCRel:  return 1; | 
|  | case X86II::Imm16: | 
|  | case X86II::Imm16PCRel: return 2; | 
|  | case X86II::Imm32: | 
|  | case X86II::Imm32PCRel: return 4; | 
|  | case X86II::Imm64:      return 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isImmPCRel - Return true if the immediate of the specified instruction's | 
|  | /// TSFlags indicates that it is pc relative. | 
|  | inline unsigned isImmPCRel(uint64_t TSFlags) { | 
|  | switch (TSFlags & X86II::ImmMask) { | 
|  | default: llvm_unreachable("Unknown immediate size"); | 
|  | case X86II::Imm8PCRel: | 
|  | case X86II::Imm16PCRel: | 
|  | case X86II::Imm32PCRel: | 
|  | return true; | 
|  | case X86II::Imm8: | 
|  | case X86II::Imm16: | 
|  | case X86II::Imm32: | 
|  | case X86II::Imm64: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getOperandBias - compute any additional adjustment needed to | 
|  | ///                  the offset to the start of the memory operand | 
|  | ///                  in this instruction. | 
|  | /// If this is a two-address instruction,skip one of the register operands. | 
|  | /// FIXME: This should be handled during MCInst lowering. | 
|  | inline int getOperandBias(const MCInstrDesc& Desc) | 
|  | { | 
|  | unsigned NumOps = Desc.getNumOperands(); | 
|  | unsigned CurOp = 0; | 
|  | if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0) | 
|  | ++CurOp; | 
|  | else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && | 
|  | Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1) | 
|  | // Special case for AVX-512 GATHER with 2 TIED_TO operands | 
|  | // Skip the first 2 operands: dst, mask_wb | 
|  | CurOp += 2; | 
|  | else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && | 
|  | Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1) | 
|  | // Special case for GATHER with 2 TIED_TO operands | 
|  | // Skip the first 2 operands: dst, mask_wb | 
|  | CurOp += 2; | 
|  | else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0) | 
|  | // SCATTER | 
|  | ++CurOp; | 
|  | return CurOp; | 
|  | } | 
|  |  | 
|  | /// getMemoryOperandNo - The function returns the MCInst operand # for the | 
|  | /// first field of the memory operand.  If the instruction doesn't have a | 
|  | /// memory operand, this returns -1. | 
|  | /// | 
|  | /// Note that this ignores tied operands.  If there is a tied register which | 
|  | /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only | 
|  | /// counted as one operand. | 
|  | /// | 
|  | inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) { | 
|  | switch (TSFlags & X86II::FormMask) { | 
|  | case X86II::MRMInitReg: | 
|  | // FIXME: Remove this form. | 
|  | return -1; | 
|  | default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!"); | 
|  | case X86II::Pseudo: | 
|  | case X86II::RawFrm: | 
|  | case X86II::AddRegFrm: | 
|  | case X86II::MRMDestReg: | 
|  | case X86II::MRMSrcReg: | 
|  | case X86II::RawFrmImm8: | 
|  | case X86II::RawFrmImm16: | 
|  | return -1; | 
|  | case X86II::MRMDestMem: | 
|  | return 0; | 
|  | case X86II::MRMSrcMem: { | 
|  | bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; | 
|  | bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4; | 
|  | bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX; | 
|  | bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K); | 
|  | unsigned FirstMemOp = 1; | 
|  | if (HasVEX_4V) | 
|  | ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV). | 
|  | if (HasMemOp4) | 
|  | ++FirstMemOp;// Skip the register source (which is encoded in I8IMM). | 
|  | if (HasEVEX_K) | 
|  | ++FirstMemOp;// Skip the mask register | 
|  | // FIXME: Maybe lea should have its own form?  This is a horrible hack. | 
|  | //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || | 
|  | //    Opcode == X86::LEA16r || Opcode == X86::LEA32r) | 
|  | return FirstMemOp; | 
|  | } | 
|  | case X86II::MRM0r: case X86II::MRM1r: | 
|  | case X86II::MRM2r: case X86II::MRM3r: | 
|  | case X86II::MRM4r: case X86II::MRM5r: | 
|  | case X86II::MRM6r: case X86II::MRM7r: | 
|  | return -1; | 
|  | case X86II::MRM0m: case X86II::MRM1m: | 
|  | case X86II::MRM2m: case X86II::MRM3m: | 
|  | case X86II::MRM4m: case X86II::MRM5m: | 
|  | case X86II::MRM6m: case X86II::MRM7m: { | 
|  | bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; | 
|  | unsigned FirstMemOp = 0; | 
|  | if (HasVEX_4V) | 
|  | ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV). | 
|  | return FirstMemOp; | 
|  | } | 
|  | case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3: | 
|  | case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9: | 
|  | case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_E8: | 
|  | case X86II::MRM_F0: case X86II::MRM_F8: case X86II::MRM_F9: | 
|  | case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4: | 
|  | case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8: | 
|  | case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB: | 
|  | case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE: | 
|  | case X86II::MRM_DF: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or | 
|  | /// higher) register?  e.g. r8, xmm8, xmm13, etc. | 
|  | inline bool isX86_64ExtendedReg(unsigned RegNo) { | 
|  | if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) || | 
|  | (RegNo > X86::XMM23 && RegNo <= X86::XMM31) || | 
|  | (RegNo > X86::YMM7 && RegNo <= X86::YMM15) || | 
|  | (RegNo > X86::YMM23 && RegNo <= X86::YMM31) || | 
|  | (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) || | 
|  | (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31)) | 
|  | return true; | 
|  |  | 
|  | switch (RegNo) { | 
|  | default: break; | 
|  | case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11: | 
|  | case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15: | 
|  | case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D: | 
|  | case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D: | 
|  | case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W: | 
|  | case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W: | 
|  | case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B: | 
|  | case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B: | 
|  | case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11: | 
|  | case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher) | 
|  | /// registers? e.g. zmm21, etc. | 
|  | static inline bool is32ExtendedReg(unsigned RegNo) { | 
|  | return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) || | 
|  | (RegNo > X86::YMM15 && RegNo <= X86::YMM31) || | 
|  | (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31)); | 
|  | } | 
|  |  | 
|  |  | 
|  | inline bool isX86_64NonExtLowByteReg(unsigned reg) { | 
|  | return (reg == X86::SPL || reg == X86::BPL || | 
|  | reg == X86::SIL || reg == X86::DIL); | 
|  | } | 
|  | } | 
|  |  | 
|  | } // end namespace llvm; | 
|  |  | 
|  | #endif |