|  | //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Implementation of the LiveRangeCalc class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "LiveRangeCalc.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "regalloc" | 
|  |  | 
|  | void LiveRangeCalc::resetLiveOutMap() { | 
|  | unsigned NumBlocks = MF->getNumBlockIDs(); | 
|  | Seen.clear(); | 
|  | Seen.resize(NumBlocks); | 
|  | EntryInfoMap.clear(); | 
|  | Map.resize(NumBlocks); | 
|  | } | 
|  |  | 
|  | void LiveRangeCalc::reset(const MachineFunction *mf, | 
|  | SlotIndexes *SI, | 
|  | MachineDominatorTree *MDT, | 
|  | VNInfo::Allocator *VNIA) { | 
|  | MF = mf; | 
|  | MRI = &MF->getRegInfo(); | 
|  | Indexes = SI; | 
|  | DomTree = MDT; | 
|  | Alloc = VNIA; | 
|  | resetLiveOutMap(); | 
|  | LiveIn.clear(); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, | 
|  | LiveRange &LR, const MachineOperand &MO) { | 
|  | const MachineInstr &MI = *MO.getParent(); | 
|  | SlotIndex DefIdx = | 
|  | Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber()); | 
|  |  | 
|  | // Create the def in LR. This may find an existing def. | 
|  | LR.createDeadDef(DefIdx, Alloc); | 
|  | } | 
|  |  | 
|  | void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) { | 
|  | assert(MRI && Indexes && "call reset() first"); | 
|  |  | 
|  | // Step 1: Create minimal live segments for every definition of Reg. | 
|  | // Visit all def operands. If the same instruction has multiple defs of Reg, | 
|  | // createDeadDef() will deduplicate. | 
|  | const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); | 
|  | unsigned Reg = LI.reg; | 
|  | for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { | 
|  | if (!MO.isDef() && !MO.readsReg()) | 
|  | continue; | 
|  |  | 
|  | unsigned SubReg = MO.getSubReg(); | 
|  | if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) { | 
|  | LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) | 
|  | : MRI->getMaxLaneMaskForVReg(Reg); | 
|  | // If this is the first time we see a subregister def, initialize | 
|  | // subranges by creating a copy of the main range. | 
|  | if (!LI.hasSubRanges() && !LI.empty()) { | 
|  | LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg); | 
|  | LI.createSubRangeFrom(*Alloc, ClassMask, LI); | 
|  | } | 
|  |  | 
|  | LI.refineSubRanges(*Alloc, SubMask, | 
|  | [&MO, this](LiveInterval::SubRange &SR) { | 
|  | if (MO.isDef()) | 
|  | createDeadDef(*Indexes, *Alloc, SR, MO); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Create the def in the main liverange. We do not have to do this if | 
|  | // subranges are tracked as we recreate the main range later in this case. | 
|  | if (MO.isDef() && !LI.hasSubRanges()) | 
|  | createDeadDef(*Indexes, *Alloc, LI, MO); | 
|  | } | 
|  |  | 
|  | // We may have created empty live ranges for partially undefined uses, we | 
|  | // can't keep them because we won't find defs in them later. | 
|  | LI.removeEmptySubRanges(); | 
|  |  | 
|  | // Step 2: Extend live segments to all uses, constructing SSA form as | 
|  | // necessary. | 
|  | if (LI.hasSubRanges()) { | 
|  | for (LiveInterval::SubRange &S : LI.subranges()) { | 
|  | LiveRangeCalc SubLRC; | 
|  | SubLRC.reset(MF, Indexes, DomTree, Alloc); | 
|  | SubLRC.extendToUses(S, Reg, S.LaneMask, &LI); | 
|  | } | 
|  | LI.clear(); | 
|  | constructMainRangeFromSubranges(LI); | 
|  | } else { | 
|  | resetLiveOutMap(); | 
|  | extendToUses(LI, Reg, LaneBitmask::getAll()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) { | 
|  | // First create dead defs at all defs found in subranges. | 
|  | LiveRange &MainRange = LI; | 
|  | assert(MainRange.segments.empty() && MainRange.valnos.empty() && | 
|  | "Expect empty main liverange"); | 
|  |  | 
|  | for (const LiveInterval::SubRange &SR : LI.subranges()) { | 
|  | for (const VNInfo *VNI : SR.valnos) { | 
|  | if (!VNI->isUnused() && !VNI->isPHIDef()) | 
|  | MainRange.createDeadDef(VNI->def, *Alloc); | 
|  | } | 
|  | } | 
|  | resetLiveOutMap(); | 
|  | extendToUses(MainRange, LI.reg, LaneBitmask::getAll(), &LI); | 
|  | } | 
|  |  | 
|  | void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { | 
|  | assert(MRI && Indexes && "call reset() first"); | 
|  |  | 
|  | // Visit all def operands. If the same instruction has multiple defs of Reg, | 
|  | // LR.createDeadDef() will deduplicate. | 
|  | for (MachineOperand &MO : MRI->def_operands(Reg)) | 
|  | createDeadDef(*Indexes, *Alloc, LR, MO); | 
|  | } | 
|  |  | 
|  |  | 
|  | void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask, | 
|  | LiveInterval *LI) { | 
|  | SmallVector<SlotIndex, 4> Undefs; | 
|  | if (LI != nullptr) | 
|  | LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes); | 
|  |  | 
|  | // Visit all operands that read Reg. This may include partial defs. | 
|  | bool IsSubRange = !Mask.all(); | 
|  | const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); | 
|  | for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { | 
|  | // Clear all kill flags. They will be reinserted after register allocation | 
|  | // by LiveIntervalAnalysis::addKillFlags(). | 
|  | if (MO.isUse()) | 
|  | MO.setIsKill(false); | 
|  | // MO::readsReg returns "true" for subregister defs. This is for keeping | 
|  | // liveness of the entire register (i.e. for the main range of the live | 
|  | // interval). For subranges, definitions of non-overlapping subregisters | 
|  | // do not count as uses. | 
|  | if (!MO.readsReg() || (IsSubRange && MO.isDef())) | 
|  | continue; | 
|  |  | 
|  | unsigned SubReg = MO.getSubReg(); | 
|  | if (SubReg != 0) { | 
|  | LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg); | 
|  | if (MO.isDef()) | 
|  | SLM = ~SLM; | 
|  | // Ignore uses not reading the current (sub)range. | 
|  | if ((SLM & Mask).none()) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Determine the actual place of the use. | 
|  | const MachineInstr *MI = MO.getParent(); | 
|  | unsigned OpNo = (&MO - &MI->getOperand(0)); | 
|  | SlotIndex UseIdx; | 
|  | if (MI->isPHI()) { | 
|  | assert(!MO.isDef() && "Cannot handle PHI def of partial register."); | 
|  | // The actual place where a phi operand is used is the end of the pred | 
|  | // MBB. PHI operands are paired: (Reg, PredMBB). | 
|  | UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB()); | 
|  | } else { | 
|  | // Check for early-clobber redefs. | 
|  | bool isEarlyClobber = false; | 
|  | unsigned DefIdx; | 
|  | if (MO.isDef()) | 
|  | isEarlyClobber = MO.isEarlyClobber(); | 
|  | else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { | 
|  | // FIXME: This would be a lot easier if tied early-clobber uses also | 
|  | // had an early-clobber flag. | 
|  | isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); | 
|  | } | 
|  | UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber); | 
|  | } | 
|  |  | 
|  | // MI is reading Reg. We may have visited MI before if it happens to be | 
|  | // reading Reg multiple times. That is OK, extend() is idempotent. | 
|  | extend(LR, UseIdx, Reg, Undefs); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void LiveRangeCalc::updateFromLiveIns() { | 
|  | LiveRangeUpdater Updater; | 
|  | for (const LiveInBlock &I : LiveIn) { | 
|  | if (!I.DomNode) | 
|  | continue; | 
|  | MachineBasicBlock *MBB = I.DomNode->getBlock(); | 
|  | assert(I.Value && "No live-in value found"); | 
|  | SlotIndex Start, End; | 
|  | std::tie(Start, End) = Indexes->getMBBRange(MBB); | 
|  |  | 
|  | if (I.Kill.isValid()) | 
|  | // Value is killed inside this block. | 
|  | End = I.Kill; | 
|  | else { | 
|  | // The value is live-through, update LiveOut as well. | 
|  | // Defer the Domtree lookup until it is needed. | 
|  | assert(Seen.test(MBB->getNumber())); | 
|  | Map[MBB] = LiveOutPair(I.Value, nullptr); | 
|  | } | 
|  | Updater.setDest(&I.LR); | 
|  | Updater.add(Start, End, I.Value); | 
|  | } | 
|  | LiveIn.clear(); | 
|  | } | 
|  |  | 
|  | void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg, | 
|  | ArrayRef<SlotIndex> Undefs) { | 
|  | assert(Use.isValid() && "Invalid SlotIndex"); | 
|  | assert(Indexes && "Missing SlotIndexes"); | 
|  | assert(DomTree && "Missing dominator tree"); | 
|  |  | 
|  | MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot()); | 
|  | assert(UseMBB && "No MBB at Use"); | 
|  |  | 
|  | // Is there a def in the same MBB we can extend? | 
|  | auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use); | 
|  | if (EP.first != nullptr || EP.second) | 
|  | return; | 
|  |  | 
|  | // Find the single reaching def, or determine if Use is jointly dominated by | 
|  | // multiple values, and we may need to create even more phi-defs to preserve | 
|  | // VNInfo SSA form.  Perform a search for all predecessor blocks where we | 
|  | // know the dominating VNInfo. | 
|  | if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs)) | 
|  | return; | 
|  |  | 
|  | // When there were multiple different values, we may need new PHIs. | 
|  | calculateValues(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // This function is called by a client after using the low-level API to add | 
|  | // live-out and live-in blocks.  The unique value optimization is not | 
|  | // available, SplitEditor::transferValues handles that case directly anyway. | 
|  | void LiveRangeCalc::calculateValues() { | 
|  | assert(Indexes && "Missing SlotIndexes"); | 
|  | assert(DomTree && "Missing dominator tree"); | 
|  | updateSSA(); | 
|  | updateFromLiveIns(); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs, | 
|  | MachineBasicBlock &MBB, BitVector &DefOnEntry, | 
|  | BitVector &UndefOnEntry) { | 
|  | unsigned BN = MBB.getNumber(); | 
|  | if (DefOnEntry[BN]) | 
|  | return true; | 
|  | if (UndefOnEntry[BN]) | 
|  | return false; | 
|  |  | 
|  | auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool { | 
|  | for (MachineBasicBlock *S : B.successors()) | 
|  | DefOnEntry[S->getNumber()] = true; | 
|  | DefOnEntry[BN] = true; | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | SetVector<unsigned> WorkList; | 
|  | // Checking if the entry of MBB is reached by some def: add all predecessors | 
|  | // that are potentially defined-on-exit to the work list. | 
|  | for (MachineBasicBlock *P : MBB.predecessors()) | 
|  | WorkList.insert(P->getNumber()); | 
|  |  | 
|  | for (unsigned i = 0; i != WorkList.size(); ++i) { | 
|  | // Determine if the exit from the block is reached by some def. | 
|  | unsigned N = WorkList[i]; | 
|  | MachineBasicBlock &B = *MF->getBlockNumbered(N); | 
|  | if (Seen[N] && Map[&B].first != nullptr) | 
|  | return MarkDefined(B); | 
|  | SlotIndex Begin, End; | 
|  | std::tie(Begin, End) = Indexes->getMBBRange(&B); | 
|  | // Treat End as not belonging to B. | 
|  | // If LR has a segment S that starts at the next block, i.e. [End, ...), | 
|  | // std::upper_bound will return the segment following S. Instead, | 
|  | // S should be treated as the first segment that does not overlap B. | 
|  | LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(), | 
|  | End.getPrevSlot()); | 
|  | if (UB != LR.begin()) { | 
|  | LiveRange::Segment &Seg = *std::prev(UB); | 
|  | if (Seg.end > Begin) { | 
|  | // There is a segment that overlaps B. If the range is not explicitly | 
|  | // undefined between the end of the segment and the end of the block, | 
|  | // treat the block as defined on exit. If it is, go to the next block | 
|  | // on the work list. | 
|  | if (LR.isUndefIn(Undefs, Seg.end, End)) | 
|  | continue; | 
|  | return MarkDefined(B); | 
|  | } | 
|  | } | 
|  |  | 
|  | // No segment overlaps with this block. If this block is not defined on | 
|  | // entry, or it undefines the range, do not process its predecessors. | 
|  | if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) { | 
|  | UndefOnEntry[N] = true; | 
|  | continue; | 
|  | } | 
|  | if (DefOnEntry[N]) | 
|  | return MarkDefined(B); | 
|  |  | 
|  | // Still don't know: add all predecessors to the work list. | 
|  | for (MachineBasicBlock *P : B.predecessors()) | 
|  | WorkList.insert(P->getNumber()); | 
|  | } | 
|  |  | 
|  | UndefOnEntry[BN] = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB, | 
|  | SlotIndex Use, unsigned PhysReg, | 
|  | ArrayRef<SlotIndex> Undefs) { | 
|  | unsigned UseMBBNum = UseMBB.getNumber(); | 
|  |  | 
|  | // Block numbers where LR should be live-in. | 
|  | SmallVector<unsigned, 16> WorkList(1, UseMBBNum); | 
|  |  | 
|  | // Remember if we have seen more than one value. | 
|  | bool UniqueVNI = true; | 
|  | VNInfo *TheVNI = nullptr; | 
|  |  | 
|  | bool FoundUndef = false; | 
|  |  | 
|  | // Using Seen as a visited set, perform a BFS for all reaching defs. | 
|  | for (unsigned i = 0; i != WorkList.size(); ++i) { | 
|  | MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | if (MBB->pred_empty()) { | 
|  | MBB->getParent()->verify(); | 
|  | errs() << "Use of " << PrintReg(PhysReg) | 
|  | << " does not have a corresponding definition on every path:\n"; | 
|  | const MachineInstr *MI = Indexes->getInstructionFromIndex(Use); | 
|  | if (MI != nullptr) | 
|  | errs() << Use << " " << *MI; | 
|  | report_fatal_error("Use not jointly dominated by defs."); | 
|  | } | 
|  |  | 
|  | if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && | 
|  | !MBB->isLiveIn(PhysReg)) { | 
|  | MBB->getParent()->verify(); | 
|  | const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); | 
|  | errs() << "The register " << PrintReg(PhysReg, TRI) | 
|  | << " needs to be live in to BB#" << MBB->getNumber() | 
|  | << ", but is missing from the live-in list.\n"; | 
|  | report_fatal_error("Invalid global physical register"); | 
|  | } | 
|  | #endif | 
|  | FoundUndef |= MBB->pred_empty(); | 
|  |  | 
|  | for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), | 
|  | PE = MBB->pred_end(); PI != PE; ++PI) { | 
|  | MachineBasicBlock *Pred = *PI; | 
|  |  | 
|  | // Is this a known live-out block? | 
|  | if (Seen.test(Pred->getNumber())) { | 
|  | if (VNInfo *VNI = Map[Pred].first) { | 
|  | if (TheVNI && TheVNI != VNI) | 
|  | UniqueVNI = false; | 
|  | TheVNI = VNI; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SlotIndex Start, End; | 
|  | std::tie(Start, End) = Indexes->getMBBRange(Pred); | 
|  |  | 
|  | // First time we see Pred.  Try to determine the live-out value, but set | 
|  | // it as null if Pred is live-through with an unknown value. | 
|  | auto EP = LR.extendInBlock(Undefs, Start, End); | 
|  | VNInfo *VNI = EP.first; | 
|  | FoundUndef |= EP.second; | 
|  | setLiveOutValue(Pred, VNI); | 
|  | if (VNI) { | 
|  | if (TheVNI && TheVNI != VNI) | 
|  | UniqueVNI = false; | 
|  | TheVNI = VNI; | 
|  | } | 
|  | if (VNI || EP.second) | 
|  | continue; | 
|  |  | 
|  | // No, we need a live-in value for Pred as well | 
|  | if (Pred != &UseMBB) | 
|  | WorkList.push_back(Pred->getNumber()); | 
|  | else | 
|  | // Loopback to UseMBB, so value is really live through. | 
|  | Use = SlotIndex(); | 
|  | } | 
|  | } | 
|  |  | 
|  | LiveIn.clear(); | 
|  | FoundUndef |= (TheVNI == nullptr); | 
|  | if (Undefs.size() > 0 && FoundUndef) | 
|  | UniqueVNI = false; | 
|  |  | 
|  | // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but | 
|  | // neither require it. Skip the sorting overhead for small updates. | 
|  | if (WorkList.size() > 4) | 
|  | array_pod_sort(WorkList.begin(), WorkList.end()); | 
|  |  | 
|  | // If a unique reaching def was found, blit in the live ranges immediately. | 
|  | if (UniqueVNI) { | 
|  | assert(TheVNI != nullptr); | 
|  | LiveRangeUpdater Updater(&LR); | 
|  | for (unsigned BN : WorkList) { | 
|  | SlotIndex Start, End; | 
|  | std::tie(Start, End) = Indexes->getMBBRange(BN); | 
|  | // Trim the live range in UseMBB. | 
|  | if (BN == UseMBBNum && Use.isValid()) | 
|  | End = Use; | 
|  | else | 
|  | Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr); | 
|  | Updater.add(Start, End, TheVNI); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Prepare the defined/undefined bit vectors. | 
|  | auto EF = EntryInfoMap.find(&LR); | 
|  | if (EF == EntryInfoMap.end()) { | 
|  | unsigned N = MF->getNumBlockIDs(); | 
|  | EF = EntryInfoMap.insert({&LR, {BitVector(), BitVector()}}).first; | 
|  | EF->second.first.resize(N); | 
|  | EF->second.second.resize(N); | 
|  | } | 
|  | BitVector &DefOnEntry = EF->second.first; | 
|  | BitVector &UndefOnEntry = EF->second.second; | 
|  |  | 
|  | // Multiple values were found, so transfer the work list to the LiveIn array | 
|  | // where UpdateSSA will use it as a work list. | 
|  | LiveIn.reserve(WorkList.size()); | 
|  | for (unsigned BN : WorkList) { | 
|  | MachineBasicBlock *MBB = MF->getBlockNumbered(BN); | 
|  | if (Undefs.size() > 0 && !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry)) | 
|  | continue; | 
|  | addLiveInBlock(LR, DomTree->getNode(MBB)); | 
|  | if (MBB == &UseMBB) | 
|  | LiveIn.back().Kill = Use; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // This is essentially the same iterative algorithm that SSAUpdater uses, | 
|  | // except we already have a dominator tree, so we don't have to recompute it. | 
|  | void LiveRangeCalc::updateSSA() { | 
|  | assert(Indexes && "Missing SlotIndexes"); | 
|  | assert(DomTree && "Missing dominator tree"); | 
|  |  | 
|  | // Interate until convergence. | 
|  | unsigned Changes; | 
|  | do { | 
|  | Changes = 0; | 
|  | // Propagate live-out values down the dominator tree, inserting phi-defs | 
|  | // when necessary. | 
|  | for (LiveInBlock &I : LiveIn) { | 
|  | MachineDomTreeNode *Node = I.DomNode; | 
|  | // Skip block if the live-in value has already been determined. | 
|  | if (!Node) | 
|  | continue; | 
|  | MachineBasicBlock *MBB = Node->getBlock(); | 
|  | MachineDomTreeNode *IDom = Node->getIDom(); | 
|  | LiveOutPair IDomValue; | 
|  |  | 
|  | // We need a live-in value to a block with no immediate dominator? | 
|  | // This is probably an unreachable block that has survived somehow. | 
|  | bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber()); | 
|  |  | 
|  | // IDom dominates all of our predecessors, but it may not be their | 
|  | // immediate dominator. Check if any of them have live-out values that are | 
|  | // properly dominated by IDom. If so, we need a phi-def here. | 
|  | if (!needPHI) { | 
|  | IDomValue = Map[IDom->getBlock()]; | 
|  |  | 
|  | // Cache the DomTree node that defined the value. | 
|  | if (IDomValue.first && !IDomValue.second) | 
|  | Map[IDom->getBlock()].second = IDomValue.second = | 
|  | DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def)); | 
|  |  | 
|  | for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), | 
|  | PE = MBB->pred_end(); PI != PE; ++PI) { | 
|  | LiveOutPair &Value = Map[*PI]; | 
|  | if (!Value.first || Value.first == IDomValue.first) | 
|  | continue; | 
|  |  | 
|  | // Cache the DomTree node that defined the value. | 
|  | if (!Value.second) | 
|  | Value.second = | 
|  | DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def)); | 
|  |  | 
|  | // This predecessor is carrying something other than IDomValue. | 
|  | // It could be because IDomValue hasn't propagated yet, or it could be | 
|  | // because MBB is in the dominance frontier of that value. | 
|  | if (DomTree->dominates(IDom, Value.second)) { | 
|  | needPHI = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The value may be live-through even if Kill is set, as can happen when | 
|  | // we are called from extendRange. In that case LiveOutSeen is true, and | 
|  | // LiveOut indicates a foreign or missing value. | 
|  | LiveOutPair &LOP = Map[MBB]; | 
|  |  | 
|  | // Create a phi-def if required. | 
|  | if (needPHI) { | 
|  | ++Changes; | 
|  | assert(Alloc && "Need VNInfo allocator to create PHI-defs"); | 
|  | SlotIndex Start, End; | 
|  | std::tie(Start, End) = Indexes->getMBBRange(MBB); | 
|  | LiveRange &LR = I.LR; | 
|  | VNInfo *VNI = LR.getNextValue(Start, *Alloc); | 
|  | I.Value = VNI; | 
|  | // This block is done, we know the final value. | 
|  | I.DomNode = nullptr; | 
|  |  | 
|  | // Add liveness since updateFromLiveIns now skips this node. | 
|  | if (I.Kill.isValid()) { | 
|  | if (VNI) | 
|  | LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI)); | 
|  | } else { | 
|  | if (VNI) | 
|  | LR.addSegment(LiveInterval::Segment(Start, End, VNI)); | 
|  | LOP = LiveOutPair(VNI, Node); | 
|  | } | 
|  | } else if (IDomValue.first) { | 
|  | // No phi-def here. Remember incoming value. | 
|  | I.Value = IDomValue.first; | 
|  |  | 
|  | // If the IDomValue is killed in the block, don't propagate through. | 
|  | if (I.Kill.isValid()) | 
|  | continue; | 
|  |  | 
|  | // Propagate IDomValue if it isn't killed: | 
|  | // MBB is live-out and doesn't define its own value. | 
|  | if (LOP.first == IDomValue.first) | 
|  | continue; | 
|  | ++Changes; | 
|  | LOP = IDomValue; | 
|  | } | 
|  | } | 
|  | } while (Changes); | 
|  | } |