|  | //===- InstructionCombining.cpp - Combine multiple instructions -----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // InstructionCombining - Combine instructions to form fewer, simple | 
|  | // instructions.  This pass does not modify the CFG This pass is where algebraic | 
|  | // simplification happens. | 
|  | // | 
|  | // This pass combines things like: | 
|  | //    %Y = add int %X, 1 | 
|  | //    %Z = add int %Y, 1 | 
|  | // into: | 
|  | //    %Z = add int %X, 2 | 
|  | // | 
|  | // This is a simple worklist driven algorithm. | 
|  | // | 
|  | // This pass guarantees that the following canonicalizations are performed on | 
|  | // the program: | 
|  | //    1. If a binary operator has a constant operand, it is moved to the RHS | 
|  | //    2. Bitwise operators with constant operands are always grouped so that | 
|  | //       shifts are performed first, then or's, then and's, then xor's. | 
|  | //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible | 
|  | //    4. All cmp instructions on boolean values are replaced with logical ops | 
|  | //    5. add X, X is represented as (X*2) => (X << 1) | 
|  | //    6. Multiplies with a power-of-two constant argument are transformed into | 
|  | //       shifts. | 
|  | //   ... etc. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Support/CallSite.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/Support/InstVisitor.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/PatternMatch.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | STATISTIC(NumCombined , "Number of insts combined"); | 
|  | STATISTIC(NumConstProp, "Number of constant folds"); | 
|  | STATISTIC(NumDeadInst , "Number of dead inst eliminated"); | 
|  | STATISTIC(NumDeadStore, "Number of dead stores eliminated"); | 
|  | STATISTIC(NumSunkInst , "Number of instructions sunk"); | 
|  |  | 
|  | namespace { | 
|  | class VISIBILITY_HIDDEN InstCombiner | 
|  | : public FunctionPass, | 
|  | public InstVisitor<InstCombiner, Instruction*> { | 
|  | // Worklist of all of the instructions that need to be simplified. | 
|  | std::vector<Instruction*> WorkList; | 
|  | TargetData *TD; | 
|  |  | 
|  | /// AddUsersToWorkList - When an instruction is simplified, add all users of | 
|  | /// the instruction to the work lists because they might get more simplified | 
|  | /// now. | 
|  | /// | 
|  | void AddUsersToWorkList(Value &I) { | 
|  | for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); | 
|  | UI != UE; ++UI) | 
|  | WorkList.push_back(cast<Instruction>(*UI)); | 
|  | } | 
|  |  | 
|  | /// AddUsesToWorkList - When an instruction is simplified, add operands to | 
|  | /// the work lists because they might get more simplified now. | 
|  | /// | 
|  | void AddUsesToWorkList(Instruction &I) { | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) | 
|  | if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) | 
|  | WorkList.push_back(Op); | 
|  | } | 
|  |  | 
|  | /// AddSoonDeadInstToWorklist - The specified instruction is about to become | 
|  | /// dead.  Add all of its operands to the worklist, turning them into | 
|  | /// undef's to reduce the number of uses of those instructions. | 
|  | /// | 
|  | /// Return the specified operand before it is turned into an undef. | 
|  | /// | 
|  | Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) { | 
|  | Value *R = I.getOperand(op); | 
|  |  | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) | 
|  | if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) { | 
|  | WorkList.push_back(Op); | 
|  | // Set the operand to undef to drop the use. | 
|  | I.setOperand(i, UndefValue::get(Op->getType())); | 
|  | } | 
|  |  | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // removeFromWorkList - remove all instances of I from the worklist. | 
|  | void removeFromWorkList(Instruction *I); | 
|  | public: | 
|  | virtual bool runOnFunction(Function &F); | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<TargetData>(); | 
|  | AU.addPreservedID(LCSSAID); | 
|  | AU.setPreservesCFG(); | 
|  | } | 
|  |  | 
|  | TargetData &getTargetData() const { return *TD; } | 
|  |  | 
|  | // Visitation implementation - Implement instruction combining for different | 
|  | // instruction types.  The semantics are as follows: | 
|  | // Return Value: | 
|  | //    null        - No change was made | 
|  | //     I          - Change was made, I is still valid, I may be dead though | 
|  | //   otherwise    - Change was made, replace I with returned instruction | 
|  | // | 
|  | Instruction *visitAdd(BinaryOperator &I); | 
|  | Instruction *visitSub(BinaryOperator &I); | 
|  | Instruction *visitMul(BinaryOperator &I); | 
|  | Instruction *visitURem(BinaryOperator &I); | 
|  | Instruction *visitSRem(BinaryOperator &I); | 
|  | Instruction *visitFRem(BinaryOperator &I); | 
|  | Instruction *commonRemTransforms(BinaryOperator &I); | 
|  | Instruction *commonIRemTransforms(BinaryOperator &I); | 
|  | Instruction *commonDivTransforms(BinaryOperator &I); | 
|  | Instruction *commonIDivTransforms(BinaryOperator &I); | 
|  | Instruction *visitUDiv(BinaryOperator &I); | 
|  | Instruction *visitSDiv(BinaryOperator &I); | 
|  | Instruction *visitFDiv(BinaryOperator &I); | 
|  | Instruction *visitAnd(BinaryOperator &I); | 
|  | Instruction *visitOr (BinaryOperator &I); | 
|  | Instruction *visitXor(BinaryOperator &I); | 
|  | Instruction *visitFCmpInst(FCmpInst &I); | 
|  | Instruction *visitICmpInst(ICmpInst &I); | 
|  | Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI); | 
|  |  | 
|  | Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS, | 
|  | ICmpInst::Predicate Cond, Instruction &I); | 
|  | Instruction *visitShiftInst(ShiftInst &I); | 
|  | Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1, | 
|  | ShiftInst &I); | 
|  | Instruction *commonCastTransforms(CastInst &CI); | 
|  | Instruction *commonIntCastTransforms(CastInst &CI); | 
|  | Instruction *visitTrunc(CastInst &CI); | 
|  | Instruction *visitZExt(CastInst &CI); | 
|  | Instruction *visitSExt(CastInst &CI); | 
|  | Instruction *visitFPTrunc(CastInst &CI); | 
|  | Instruction *visitFPExt(CastInst &CI); | 
|  | Instruction *visitFPToUI(CastInst &CI); | 
|  | Instruction *visitFPToSI(CastInst &CI); | 
|  | Instruction *visitUIToFP(CastInst &CI); | 
|  | Instruction *visitSIToFP(CastInst &CI); | 
|  | Instruction *visitPtrToInt(CastInst &CI); | 
|  | Instruction *visitIntToPtr(CastInst &CI); | 
|  | Instruction *visitBitCast(CastInst &CI); | 
|  | Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, | 
|  | Instruction *FI); | 
|  | Instruction *visitSelectInst(SelectInst &CI); | 
|  | Instruction *visitCallInst(CallInst &CI); | 
|  | Instruction *visitInvokeInst(InvokeInst &II); | 
|  | Instruction *visitPHINode(PHINode &PN); | 
|  | Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); | 
|  | Instruction *visitAllocationInst(AllocationInst &AI); | 
|  | Instruction *visitFreeInst(FreeInst &FI); | 
|  | Instruction *visitLoadInst(LoadInst &LI); | 
|  | Instruction *visitStoreInst(StoreInst &SI); | 
|  | Instruction *visitBranchInst(BranchInst &BI); | 
|  | Instruction *visitSwitchInst(SwitchInst &SI); | 
|  | Instruction *visitInsertElementInst(InsertElementInst &IE); | 
|  | Instruction *visitExtractElementInst(ExtractElementInst &EI); | 
|  | Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); | 
|  |  | 
|  | // visitInstruction - Specify what to return for unhandled instructions... | 
|  | Instruction *visitInstruction(Instruction &I) { return 0; } | 
|  |  | 
|  | private: | 
|  | Instruction *visitCallSite(CallSite CS); | 
|  | bool transformConstExprCastCall(CallSite CS); | 
|  |  | 
|  | public: | 
|  | // InsertNewInstBefore - insert an instruction New before instruction Old | 
|  | // in the program.  Add the new instruction to the worklist. | 
|  | // | 
|  | Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { | 
|  | assert(New && New->getParent() == 0 && | 
|  | "New instruction already inserted into a basic block!"); | 
|  | BasicBlock *BB = Old.getParent(); | 
|  | BB->getInstList().insert(&Old, New);  // Insert inst | 
|  | WorkList.push_back(New);              // Add to worklist | 
|  | return New; | 
|  | } | 
|  |  | 
|  | /// InsertCastBefore - Insert a cast of V to TY before the instruction POS. | 
|  | /// This also adds the cast to the worklist.  Finally, this returns the | 
|  | /// cast. | 
|  | Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty, | 
|  | Instruction &Pos) { | 
|  | if (V->getType() == Ty) return V; | 
|  |  | 
|  | if (Constant *CV = dyn_cast<Constant>(V)) | 
|  | return ConstantExpr::getCast(opc, CV, Ty); | 
|  |  | 
|  | Instruction *C = CastInst::create(opc, V, Ty, V->getName(), &Pos); | 
|  | WorkList.push_back(C); | 
|  | return C; | 
|  | } | 
|  |  | 
|  | // ReplaceInstUsesWith - This method is to be used when an instruction is | 
|  | // found to be dead, replacable with another preexisting expression.  Here | 
|  | // we add all uses of I to the worklist, replace all uses of I with the new | 
|  | // value, then return I, so that the inst combiner will know that I was | 
|  | // modified. | 
|  | // | 
|  | Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) { | 
|  | AddUsersToWorkList(I);         // Add all modified instrs to worklist | 
|  | if (&I != V) { | 
|  | I.replaceAllUsesWith(V); | 
|  | return &I; | 
|  | } else { | 
|  | // If we are replacing the instruction with itself, this must be in a | 
|  | // segment of unreachable code, so just clobber the instruction. | 
|  | I.replaceAllUsesWith(UndefValue::get(I.getType())); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | // UpdateValueUsesWith - This method is to be used when an value is | 
|  | // found to be replacable with another preexisting expression or was | 
|  | // updated.  Here we add all uses of I to the worklist, replace all uses of | 
|  | // I with the new value (unless the instruction was just updated), then | 
|  | // return true, so that the inst combiner will know that I was modified. | 
|  | // | 
|  | bool UpdateValueUsesWith(Value *Old, Value *New) { | 
|  | AddUsersToWorkList(*Old);         // Add all modified instrs to worklist | 
|  | if (Old != New) | 
|  | Old->replaceAllUsesWith(New); | 
|  | if (Instruction *I = dyn_cast<Instruction>(Old)) | 
|  | WorkList.push_back(I); | 
|  | if (Instruction *I = dyn_cast<Instruction>(New)) | 
|  | WorkList.push_back(I); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // EraseInstFromFunction - When dealing with an instruction that has side | 
|  | // effects or produces a void value, we can't rely on DCE to delete the | 
|  | // instruction.  Instead, visit methods should return the value returned by | 
|  | // this function. | 
|  | Instruction *EraseInstFromFunction(Instruction &I) { | 
|  | assert(I.use_empty() && "Cannot erase instruction that is used!"); | 
|  | AddUsesToWorkList(I); | 
|  | removeFromWorkList(&I); | 
|  | I.eraseFromParent(); | 
|  | return 0;  // Don't do anything with FI | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the | 
|  | /// InsertBefore instruction.  This is specialized a bit to avoid inserting | 
|  | /// casts that are known to not do anything... | 
|  | /// | 
|  | Value *InsertOperandCastBefore(Instruction::CastOps opcode, | 
|  | Value *V, const Type *DestTy, | 
|  | Instruction *InsertBefore); | 
|  |  | 
|  | /// SimplifyCommutative - This performs a few simplifications for | 
|  | /// commutative operators. | 
|  | bool SimplifyCommutative(BinaryOperator &I); | 
|  |  | 
|  | /// SimplifyCompare - This reorders the operands of a CmpInst to get them in | 
|  | /// most-complex to least-complex order. | 
|  | bool SimplifyCompare(CmpInst &I); | 
|  |  | 
|  | bool SimplifyDemandedBits(Value *V, uint64_t Mask, | 
|  | uint64_t &KnownZero, uint64_t &KnownOne, | 
|  | unsigned Depth = 0); | 
|  |  | 
|  | Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts, | 
|  | uint64_t &UndefElts, unsigned Depth = 0); | 
|  |  | 
|  | // FoldOpIntoPhi - Given a binary operator or cast instruction which has a | 
|  | // PHI node as operand #0, see if we can fold the instruction into the PHI | 
|  | // (which is only possible if all operands to the PHI are constants). | 
|  | Instruction *FoldOpIntoPhi(Instruction &I); | 
|  |  | 
|  | // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" | 
|  | // operator and they all are only used by the PHI, PHI together their | 
|  | // inputs, and do the operation once, to the result of the PHI. | 
|  | Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); | 
|  | Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); | 
|  |  | 
|  |  | 
|  | Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS, | 
|  | ConstantInt *AndRHS, BinaryOperator &TheAnd); | 
|  |  | 
|  | Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask, | 
|  | bool isSub, Instruction &I); | 
|  | Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, | 
|  | bool isSigned, bool Inside, Instruction &IB); | 
|  | Instruction *PromoteCastOfAllocation(CastInst &CI, AllocationInst &AI); | 
|  | Instruction *MatchBSwap(BinaryOperator &I); | 
|  |  | 
|  | Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned); | 
|  | }; | 
|  |  | 
|  | RegisterPass<InstCombiner> X("instcombine", "Combine redundant instructions"); | 
|  | } | 
|  |  | 
|  | // getComplexity:  Assign a complexity or rank value to LLVM Values... | 
|  | //   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst | 
|  | static unsigned getComplexity(Value *V) { | 
|  | if (isa<Instruction>(V)) { | 
|  | if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V)) | 
|  | return 3; | 
|  | return 4; | 
|  | } | 
|  | if (isa<Argument>(V)) return 3; | 
|  | return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; | 
|  | } | 
|  |  | 
|  | // isOnlyUse - Return true if this instruction will be deleted if we stop using | 
|  | // it. | 
|  | static bool isOnlyUse(Value *V) { | 
|  | return V->hasOneUse() || isa<Constant>(V); | 
|  | } | 
|  |  | 
|  | // getPromotedType - Return the specified type promoted as it would be to pass | 
|  | // though a va_arg area... | 
|  | static const Type *getPromotedType(const Type *Ty) { | 
|  | if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { | 
|  | if (ITy->getBitWidth() < 32) | 
|  | return Type::Int32Ty; | 
|  | } else if (Ty == Type::FloatTy) | 
|  | return Type::DoubleTy; | 
|  | return Ty; | 
|  | } | 
|  |  | 
|  | /// getBitCastOperand - If the specified operand is a CastInst or a constant | 
|  | /// expression bitcast,  return the operand value, otherwise return null. | 
|  | static Value *getBitCastOperand(Value *V) { | 
|  | if (BitCastInst *I = dyn_cast<BitCastInst>(V)) | 
|  | return I->getOperand(0); | 
|  | else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) | 
|  | if (CE->getOpcode() == Instruction::BitCast) | 
|  | return CE->getOperand(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// This function is a wrapper around CastInst::isEliminableCastPair. It | 
|  | /// simply extracts arguments and returns what that function returns. | 
|  | /// @Determine if it is valid to eliminate a Convert pair | 
|  | static Instruction::CastOps | 
|  | isEliminableCastPair( | 
|  | const CastInst *CI, ///< The first cast instruction | 
|  | unsigned opcode,       ///< The opcode of the second cast instruction | 
|  | const Type *DstTy,     ///< The target type for the second cast instruction | 
|  | TargetData *TD         ///< The target data for pointer size | 
|  | ) { | 
|  |  | 
|  | const Type *SrcTy = CI->getOperand(0)->getType();   // A from above | 
|  | const Type *MidTy = CI->getType();                  // B from above | 
|  |  | 
|  | // Get the opcodes of the two Cast instructions | 
|  | Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); | 
|  | Instruction::CastOps secondOp = Instruction::CastOps(opcode); | 
|  |  | 
|  | return Instruction::CastOps( | 
|  | CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, | 
|  | DstTy, TD->getIntPtrType())); | 
|  | } | 
|  |  | 
|  | /// ValueRequiresCast - Return true if the cast from "V to Ty" actually results | 
|  | /// in any code being generated.  It does not require codegen if V is simple | 
|  | /// enough or if the cast can be folded into other casts. | 
|  | static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V, | 
|  | const Type *Ty, TargetData *TD) { | 
|  | if (V->getType() == Ty || isa<Constant>(V)) return false; | 
|  |  | 
|  | // If this is another cast that can be eliminated, it isn't codegen either. | 
|  | if (const CastInst *CI = dyn_cast<CastInst>(V)) | 
|  | if (isEliminableCastPair(CI, opcode, Ty, TD)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the | 
|  | /// InsertBefore instruction.  This is specialized a bit to avoid inserting | 
|  | /// casts that are known to not do anything... | 
|  | /// | 
|  | Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode, | 
|  | Value *V, const Type *DestTy, | 
|  | Instruction *InsertBefore) { | 
|  | if (V->getType() == DestTy) return V; | 
|  | if (Constant *C = dyn_cast<Constant>(V)) | 
|  | return ConstantExpr::getCast(opcode, C, DestTy); | 
|  |  | 
|  | return InsertCastBefore(opcode, V, DestTy, *InsertBefore); | 
|  | } | 
|  |  | 
|  | // SimplifyCommutative - This performs a few simplifications for commutative | 
|  | // operators: | 
|  | // | 
|  | //  1. Order operands such that they are listed from right (least complex) to | 
|  | //     left (most complex).  This puts constants before unary operators before | 
|  | //     binary operators. | 
|  | // | 
|  | //  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2)) | 
|  | //  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) | 
|  | // | 
|  | bool InstCombiner::SimplifyCommutative(BinaryOperator &I) { | 
|  | bool Changed = false; | 
|  | if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) | 
|  | Changed = !I.swapOperands(); | 
|  |  | 
|  | if (!I.isAssociative()) return Changed; | 
|  | Instruction::BinaryOps Opcode = I.getOpcode(); | 
|  | if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0))) | 
|  | if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) { | 
|  | if (isa<Constant>(I.getOperand(1))) { | 
|  | Constant *Folded = ConstantExpr::get(I.getOpcode(), | 
|  | cast<Constant>(I.getOperand(1)), | 
|  | cast<Constant>(Op->getOperand(1))); | 
|  | I.setOperand(0, Op->getOperand(0)); | 
|  | I.setOperand(1, Folded); | 
|  | return true; | 
|  | } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1))) | 
|  | if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) && | 
|  | isOnlyUse(Op) && isOnlyUse(Op1)) { | 
|  | Constant *C1 = cast<Constant>(Op->getOperand(1)); | 
|  | Constant *C2 = cast<Constant>(Op1->getOperand(1)); | 
|  |  | 
|  | // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) | 
|  | Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2); | 
|  | Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0), | 
|  | Op1->getOperand(0), | 
|  | Op1->getName(), &I); | 
|  | WorkList.push_back(New); | 
|  | I.setOperand(0, New); | 
|  | I.setOperand(1, Folded); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// SimplifyCompare - For a CmpInst this function just orders the operands | 
|  | /// so that theyare listed from right (least complex) to left (most complex). | 
|  | /// This puts constants before unary operators before binary operators. | 
|  | bool InstCombiner::SimplifyCompare(CmpInst &I) { | 
|  | if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1))) | 
|  | return false; | 
|  | I.swapOperands(); | 
|  | // Compare instructions are not associative so there's nothing else we can do. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction | 
|  | // if the LHS is a constant zero (which is the 'negate' form). | 
|  | // | 
|  | static inline Value *dyn_castNegVal(Value *V) { | 
|  | if (BinaryOperator::isNeg(V)) | 
|  | return BinaryOperator::getNegArgument(V); | 
|  |  | 
|  | // Constants can be considered to be negated values if they can be folded. | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(V)) | 
|  | return ConstantExpr::getNeg(C); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline Value *dyn_castNotVal(Value *V) { | 
|  | if (BinaryOperator::isNot(V)) | 
|  | return BinaryOperator::getNotArgument(V); | 
|  |  | 
|  | // Constants can be considered to be not'ed values... | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(V)) | 
|  | return ConstantExpr::getNot(C); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // dyn_castFoldableMul - If this value is a multiply that can be folded into | 
|  | // other computations (because it has a constant operand), return the | 
|  | // non-constant operand of the multiply, and set CST to point to the multiplier. | 
|  | // Otherwise, return null. | 
|  | // | 
|  | static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { | 
|  | if (V->hasOneUse() && V->getType()->isInteger()) | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | if (I->getOpcode() == Instruction::Mul) | 
|  | if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) | 
|  | return I->getOperand(0); | 
|  | if (I->getOpcode() == Instruction::Shl) | 
|  | if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) { | 
|  | // The multiplier is really 1 << CST. | 
|  | Constant *One = ConstantInt::get(V->getType(), 1); | 
|  | CST = cast<ConstantInt>(ConstantExpr::getShl(One, CST)); | 
|  | return I->getOperand(0); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// dyn_castGetElementPtr - If this is a getelementptr instruction or constant | 
|  | /// expression, return it. | 
|  | static User *dyn_castGetElementPtr(Value *V) { | 
|  | if (isa<GetElementPtrInst>(V)) return cast<User>(V); | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) | 
|  | return cast<User>(V); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // AddOne, SubOne - Add or subtract a constant one from an integer constant... | 
|  | static ConstantInt *AddOne(ConstantInt *C) { | 
|  | return cast<ConstantInt>(ConstantExpr::getAdd(C, | 
|  | ConstantInt::get(C->getType(), 1))); | 
|  | } | 
|  | static ConstantInt *SubOne(ConstantInt *C) { | 
|  | return cast<ConstantInt>(ConstantExpr::getSub(C, | 
|  | ConstantInt::get(C->getType(), 1))); | 
|  | } | 
|  |  | 
|  | /// ComputeMaskedBits - Determine which of the bits specified in Mask are | 
|  | /// known to be either zero or one and return them in the KnownZero/KnownOne | 
|  | /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit | 
|  | /// processing. | 
|  | static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero, | 
|  | uint64_t &KnownOne, unsigned Depth = 0) { | 
|  | // Note, we cannot consider 'undef' to be "IsZero" here.  The problem is that | 
|  | // we cannot optimize based on the assumption that it is zero without changing | 
|  | // it to be an explicit zero.  If we don't change it to zero, other code could | 
|  | // optimized based on the contradictory assumption that it is non-zero. | 
|  | // Because instcombine aggressively folds operations with undef args anyway, | 
|  | // this won't lose us code quality. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | // We know all of the bits for a constant! | 
|  | KnownOne = CI->getZExtValue() & Mask; | 
|  | KnownZero = ~KnownOne & Mask; | 
|  | return; | 
|  | } | 
|  |  | 
|  | KnownZero = KnownOne = 0;   // Don't know anything. | 
|  | if (Depth == 6 || Mask == 0) | 
|  | return;  // Limit search depth. | 
|  |  | 
|  | uint64_t KnownZero2, KnownOne2; | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return; | 
|  |  | 
|  | Mask &= cast<IntegerType>(V->getType())->getBitMask(); | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::And: | 
|  | // If either the LHS or the RHS are Zero, the result is zero. | 
|  | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
|  | Mask &= ~KnownZero; | 
|  | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Output known-1 bits are only known if set in both the LHS & RHS. | 
|  | KnownOne &= KnownOne2; | 
|  | // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
|  | KnownZero |= KnownZero2; | 
|  | return; | 
|  | case Instruction::Or: | 
|  | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
|  | Mask &= ~KnownOne; | 
|  | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Output known-0 bits are only known if clear in both the LHS & RHS. | 
|  | KnownZero &= KnownZero2; | 
|  | // Output known-1 are known to be set if set in either the LHS | RHS. | 
|  | KnownOne |= KnownOne2; | 
|  | return; | 
|  | case Instruction::Xor: { | 
|  | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); | 
|  | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); | 
|  | KnownZero = KnownZeroOut; | 
|  | return; | 
|  | } | 
|  | case Instruction::Select: | 
|  | ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1); | 
|  | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Only known if known in both the LHS and RHS. | 
|  | KnownOne &= KnownOne2; | 
|  | KnownZero &= KnownZero2; | 
|  | return; | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::IntToPtr: | 
|  | return; // Can't work with floating point or pointers | 
|  | case Instruction::Trunc: | 
|  | // All these have integer operands | 
|  | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); | 
|  | return; | 
|  | case Instruction::BitCast: { | 
|  | const Type *SrcTy = I->getOperand(0)->getType(); | 
|  | if (SrcTy->isInteger()) { | 
|  | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::ZExt:  { | 
|  | // Compute the bits in the result that are not present in the input. | 
|  | const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType()); | 
|  | uint64_t NotIn = ~SrcTy->getBitMask(); | 
|  | uint64_t NewBits = cast<IntegerType>(I->getType())->getBitMask() & NotIn; | 
|  |  | 
|  | Mask &= SrcTy->getBitMask(); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | // The top bits are known to be zero. | 
|  | KnownZero |= NewBits; | 
|  | return; | 
|  | } | 
|  | case Instruction::SExt: { | 
|  | // Compute the bits in the result that are not present in the input. | 
|  | const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType()); | 
|  | uint64_t NotIn = ~SrcTy->getBitMask(); | 
|  | uint64_t NewBits = cast<IntegerType>(I->getType())->getBitMask() & NotIn; | 
|  |  | 
|  | Mask &= SrcTy->getBitMask(); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the sign bit of the input is known set or clear, then we know the | 
|  | // top bits of the result. | 
|  | uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1); | 
|  | if (KnownZero & InSignBit) {          // Input sign bit known zero | 
|  | KnownZero |= NewBits; | 
|  | KnownOne &= ~NewBits; | 
|  | } else if (KnownOne & InSignBit) {    // Input sign bit known set | 
|  | KnownOne |= NewBits; | 
|  | KnownZero &= ~NewBits; | 
|  | } else {                              // Input sign bit unknown | 
|  | KnownZero &= ~NewBits; | 
|  | KnownOne &= ~NewBits; | 
|  | } | 
|  | return; | 
|  | } | 
|  | case Instruction::Shl: | 
|  | // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0 | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | uint64_t ShiftAmt = SA->getZExtValue(); | 
|  | Mask >>= ShiftAmt; | 
|  | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero <<= ShiftAmt; | 
|  | KnownOne  <<= ShiftAmt; | 
|  | KnownZero |= (1ULL << ShiftAmt)-1;  // low bits known zero. | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0 | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | // Compute the new bits that are at the top now. | 
|  | uint64_t ShiftAmt = SA->getZExtValue(); | 
|  | uint64_t HighBits = (1ULL << ShiftAmt)-1; | 
|  | HighBits <<= I->getType()->getPrimitiveSizeInBits()-ShiftAmt; | 
|  |  | 
|  | // Unsigned shift right. | 
|  | Mask <<= ShiftAmt; | 
|  | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); | 
|  | KnownZero >>= ShiftAmt; | 
|  | KnownOne  >>= ShiftAmt; | 
|  | KnownZero |= HighBits;  // high bits known zero. | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0 | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | // Compute the new bits that are at the top now. | 
|  | uint64_t ShiftAmt = SA->getZExtValue(); | 
|  | uint64_t HighBits = (1ULL << ShiftAmt)-1; | 
|  | HighBits <<= I->getType()->getPrimitiveSizeInBits()-ShiftAmt; | 
|  |  | 
|  | // Signed shift right. | 
|  | Mask <<= ShiftAmt; | 
|  | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); | 
|  | KnownZero >>= ShiftAmt; | 
|  | KnownOne  >>= ShiftAmt; | 
|  |  | 
|  | // Handle the sign bits. | 
|  | uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1); | 
|  | SignBit >>= ShiftAmt;  // Adjust to where it is now in the mask. | 
|  |  | 
|  | if (KnownZero & SignBit) {       // New bits are known zero. | 
|  | KnownZero |= HighBits; | 
|  | } else if (KnownOne & SignBit) { // New bits are known one. | 
|  | KnownOne |= HighBits; | 
|  | } | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use | 
|  | /// this predicate to simplify operations downstream.  Mask is known to be zero | 
|  | /// for bits that V cannot have. | 
|  | static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) { | 
|  | uint64_t KnownZero, KnownOne; | 
|  | ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | return (KnownZero & Mask) == Mask; | 
|  | } | 
|  |  | 
|  | /// ShrinkDemandedConstant - Check to see if the specified operand of the | 
|  | /// specified instruction is a constant integer.  If so, check to see if there | 
|  | /// are any bits set in the constant that are not demanded.  If so, shrink the | 
|  | /// constant and return true. | 
|  | static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, | 
|  | uint64_t Demanded) { | 
|  | ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); | 
|  | if (!OpC) return false; | 
|  |  | 
|  | // If there are no bits set that aren't demanded, nothing to do. | 
|  | if ((~Demanded & OpC->getZExtValue()) == 0) | 
|  | return false; | 
|  |  | 
|  | // This is producing any bits that are not needed, shrink the RHS. | 
|  | uint64_t Val = Demanded & OpC->getZExtValue(); | 
|  | I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Val)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a | 
|  | // set of known zero and one bits, compute the maximum and minimum values that | 
|  | // could have the specified known zero and known one bits, returning them in | 
|  | // min/max. | 
|  | static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty, | 
|  | uint64_t KnownZero, | 
|  | uint64_t KnownOne, | 
|  | int64_t &Min, int64_t &Max) { | 
|  | uint64_t TypeBits = cast<IntegerType>(Ty)->getBitMask(); | 
|  | uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits; | 
|  |  | 
|  | uint64_t SignBit = 1ULL << (Ty->getPrimitiveSizeInBits()-1); | 
|  |  | 
|  | // The minimum value is when all unknown bits are zeros, EXCEPT for the sign | 
|  | // bit if it is unknown. | 
|  | Min = KnownOne; | 
|  | Max = KnownOne|UnknownBits; | 
|  |  | 
|  | if (SignBit & UnknownBits) { // Sign bit is unknown | 
|  | Min |= SignBit; | 
|  | Max &= ~SignBit; | 
|  | } | 
|  |  | 
|  | // Sign extend the min/max values. | 
|  | int ShAmt = 64-Ty->getPrimitiveSizeInBits(); | 
|  | Min = (Min << ShAmt) >> ShAmt; | 
|  | Max = (Max << ShAmt) >> ShAmt; | 
|  | } | 
|  |  | 
|  | // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and | 
|  | // a set of known zero and one bits, compute the maximum and minimum values that | 
|  | // could have the specified known zero and known one bits, returning them in | 
|  | // min/max. | 
|  | static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty, | 
|  | uint64_t KnownZero, | 
|  | uint64_t KnownOne, | 
|  | uint64_t &Min, | 
|  | uint64_t &Max) { | 
|  | uint64_t TypeBits = cast<IntegerType>(Ty)->getBitMask(); | 
|  | uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits; | 
|  |  | 
|  | // The minimum value is when the unknown bits are all zeros. | 
|  | Min = KnownOne; | 
|  | // The maximum value is when the unknown bits are all ones. | 
|  | Max = KnownOne|UnknownBits; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SimplifyDemandedBits - Look at V.  At this point, we know that only the | 
|  | /// DemandedMask bits of the result of V are ever used downstream.  If we can | 
|  | /// use this information to simplify V, do so and return true.  Otherwise, | 
|  | /// analyze the expression and return a mask of KnownOne and KnownZero bits for | 
|  | /// the expression (used to simplify the caller).  The KnownZero/One bits may | 
|  | /// only be accurate for those bits in the DemandedMask. | 
|  | bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask, | 
|  | uint64_t &KnownZero, uint64_t &KnownOne, | 
|  | unsigned Depth) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | // We know all of the bits for a constant! | 
|  | KnownOne = CI->getZExtValue() & DemandedMask; | 
|  | KnownZero = ~KnownOne & DemandedMask; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | KnownZero = KnownOne = 0; | 
|  | if (!V->hasOneUse()) {    // Other users may use these bits. | 
|  | if (Depth != 0) {       // Not at the root. | 
|  | // Just compute the KnownZero/KnownOne bits to simplify things downstream. | 
|  | ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); | 
|  | return false; | 
|  | } | 
|  | // If this is the root being simplified, allow it to have multiple uses, | 
|  | // just set the DemandedMask to all bits. | 
|  | DemandedMask = cast<IntegerType>(V->getType())->getBitMask(); | 
|  | } else if (DemandedMask == 0) {   // Not demanding any bits from V. | 
|  | if (V != UndefValue::get(V->getType())) | 
|  | return UpdateValueUsesWith(V, UndefValue::get(V->getType())); | 
|  | return false; | 
|  | } else if (Depth == 6) {        // Limit search depth. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return false;        // Only analyze instructions. | 
|  |  | 
|  | DemandedMask &= cast<IntegerType>(V->getType())->getBitMask(); | 
|  |  | 
|  | uint64_t KnownZero2 = 0, KnownOne2 = 0; | 
|  | switch (I->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::And: | 
|  | // If either the LHS or the RHS are Zero, the result is zero. | 
|  | if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, | 
|  | KnownZero, KnownOne, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If something is known zero on the RHS, the bits aren't demanded on the | 
|  | // LHS. | 
|  | if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownZero, | 
|  | KnownZero2, KnownOne2, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If all of the demanded bits are known 1 on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'and'. | 
|  | if ((DemandedMask & ~KnownZero2 & KnownOne) == (DemandedMask & ~KnownZero2)) | 
|  | return UpdateValueUsesWith(I, I->getOperand(0)); | 
|  | if ((DemandedMask & ~KnownZero & KnownOne2) == (DemandedMask & ~KnownZero)) | 
|  | return UpdateValueUsesWith(I, I->getOperand(1)); | 
|  |  | 
|  | // If all of the demanded bits in the inputs are known zeros, return zero. | 
|  | if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask) | 
|  | return UpdateValueUsesWith(I, Constant::getNullValue(I->getType())); | 
|  |  | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | if (ShrinkDemandedConstant(I, 1, DemandedMask & ~KnownZero2)) | 
|  | return UpdateValueUsesWith(I, I); | 
|  |  | 
|  | // Output known-1 bits are only known if set in both the LHS & RHS. | 
|  | KnownOne &= KnownOne2; | 
|  | // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
|  | KnownZero |= KnownZero2; | 
|  | break; | 
|  | case Instruction::Or: | 
|  | if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, | 
|  | KnownZero, KnownOne, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownOne, | 
|  | KnownZero2, KnownOne2, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'or'. | 
|  | if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2)) | 
|  | return UpdateValueUsesWith(I, I->getOperand(0)); | 
|  | if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne)) | 
|  | return UpdateValueUsesWith(I, I->getOperand(1)); | 
|  |  | 
|  | // If all of the potentially set bits on one side are known to be set on | 
|  | // the other side, just use the 'other' side. | 
|  | if ((DemandedMask & (~KnownZero) & KnownOne2) == | 
|  | (DemandedMask & (~KnownZero))) | 
|  | return UpdateValueUsesWith(I, I->getOperand(0)); | 
|  | if ((DemandedMask & (~KnownZero2) & KnownOne) == | 
|  | (DemandedMask & (~KnownZero2))) | 
|  | return UpdateValueUsesWith(I, I->getOperand(1)); | 
|  |  | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | if (ShrinkDemandedConstant(I, 1, DemandedMask)) | 
|  | return UpdateValueUsesWith(I, I); | 
|  |  | 
|  | // Output known-0 bits are only known if clear in both the LHS & RHS. | 
|  | KnownZero &= KnownZero2; | 
|  | // Output known-1 are known to be set if set in either the LHS | RHS. | 
|  | KnownOne |= KnownOne2; | 
|  | break; | 
|  | case Instruction::Xor: { | 
|  | if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, | 
|  | KnownZero, KnownOne, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, | 
|  | KnownZero2, KnownOne2, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'xor'. | 
|  | if ((DemandedMask & KnownZero) == DemandedMask) | 
|  | return UpdateValueUsesWith(I, I->getOperand(0)); | 
|  | if ((DemandedMask & KnownZero2) == DemandedMask) | 
|  | return UpdateValueUsesWith(I, I->getOperand(1)); | 
|  |  | 
|  | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); | 
|  | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | uint64_t KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); | 
|  |  | 
|  | // If all of the demanded bits are known to be zero on one side or the | 
|  | // other, turn this into an *inclusive* or. | 
|  | //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 | 
|  | if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0) { | 
|  | Instruction *Or = | 
|  | BinaryOperator::createOr(I->getOperand(0), I->getOperand(1), | 
|  | I->getName()); | 
|  | InsertNewInstBefore(Or, *I); | 
|  | return UpdateValueUsesWith(I, Or); | 
|  | } | 
|  |  | 
|  | // If all of the demanded bits on one side are known, and all of the set | 
|  | // bits on that side are also known to be set on the other side, turn this | 
|  | // into an AND, as we know the bits will be cleared. | 
|  | //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 | 
|  | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known | 
|  | if ((KnownOne & KnownOne2) == KnownOne) { | 
|  | Constant *AndC = ConstantInt::get(I->getType(), | 
|  | ~KnownOne & DemandedMask); | 
|  | Instruction *And = | 
|  | BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp"); | 
|  | InsertNewInstBefore(And, *I); | 
|  | return UpdateValueUsesWith(I, And); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. | 
|  | if (ShrinkDemandedConstant(I, 1, DemandedMask)) | 
|  | return UpdateValueUsesWith(I, I); | 
|  |  | 
|  | KnownZero = KnownZeroOut; | 
|  | KnownOne  = KnownOneOut; | 
|  | break; | 
|  | } | 
|  | case Instruction::Select: | 
|  | if (SimplifyDemandedBits(I->getOperand(2), DemandedMask, | 
|  | KnownZero, KnownOne, Depth+1)) | 
|  | return true; | 
|  | if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, | 
|  | KnownZero2, KnownOne2, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the operands are constants, see if we can simplify them. | 
|  | if (ShrinkDemandedConstant(I, 1, DemandedMask)) | 
|  | return UpdateValueUsesWith(I, I); | 
|  | if (ShrinkDemandedConstant(I, 2, DemandedMask)) | 
|  | return UpdateValueUsesWith(I, I); | 
|  |  | 
|  | // Only known if known in both the LHS and RHS. | 
|  | KnownOne &= KnownOne2; | 
|  | KnownZero &= KnownZero2; | 
|  | break; | 
|  | case Instruction::Trunc: | 
|  | if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, | 
|  | KnownZero, KnownOne, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | case Instruction::BitCast: | 
|  | if (!I->getOperand(0)->getType()->isInteger()) | 
|  | return false; | 
|  |  | 
|  | if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, | 
|  | KnownZero, KnownOne, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | case Instruction::ZExt: { | 
|  | // Compute the bits in the result that are not present in the input. | 
|  | const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType()); | 
|  | uint64_t NotIn = ~SrcTy->getBitMask(); | 
|  | uint64_t NewBits = cast<IntegerType>(I->getType())->getBitMask() & NotIn; | 
|  |  | 
|  | DemandedMask &= SrcTy->getBitMask(); | 
|  | if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, | 
|  | KnownZero, KnownOne, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | // The top bits are known to be zero. | 
|  | KnownZero |= NewBits; | 
|  | break; | 
|  | } | 
|  | case Instruction::SExt: { | 
|  | // Compute the bits in the result that are not present in the input. | 
|  | const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType()); | 
|  | uint64_t NotIn = ~SrcTy->getBitMask(); | 
|  | uint64_t NewBits = cast<IntegerType>(I->getType())->getBitMask() & NotIn; | 
|  |  | 
|  | // Get the sign bit for the source type | 
|  | uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1); | 
|  | int64_t InputDemandedBits = DemandedMask & SrcTy->getBitMask(); | 
|  |  | 
|  | // If any of the sign extended bits are demanded, we know that the sign | 
|  | // bit is demanded. | 
|  | if (NewBits & DemandedMask) | 
|  | InputDemandedBits |= InSignBit; | 
|  |  | 
|  | if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits, | 
|  | KnownZero, KnownOne, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the sign bit of the input is known set or clear, then we know the | 
|  | // top bits of the result. | 
|  |  | 
|  | // If the input sign bit is known zero, or if the NewBits are not demanded | 
|  | // convert this into a zero extension. | 
|  | if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) { | 
|  | // Convert to ZExt cast | 
|  | CastInst *NewCast = CastInst::create( | 
|  | Instruction::ZExt, I->getOperand(0), I->getType(), I->getName(), I); | 
|  | return UpdateValueUsesWith(I, NewCast); | 
|  | } else if (KnownOne & InSignBit) {    // Input sign bit known set | 
|  | KnownOne |= NewBits; | 
|  | KnownZero &= ~NewBits; | 
|  | } else {                              // Input sign bit unknown | 
|  | KnownZero &= ~NewBits; | 
|  | KnownOne &= ~NewBits; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Add: | 
|  | // If there is a constant on the RHS, there are a variety of xformations | 
|  | // we can do. | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | // If null, this should be simplified elsewhere.  Some of the xforms here | 
|  | // won't work if the RHS is zero. | 
|  | if (RHS->isNullValue()) | 
|  | break; | 
|  |  | 
|  | // Figure out what the input bits are.  If the top bits of the and result | 
|  | // are not demanded, then the add doesn't demand them from its input | 
|  | // either. | 
|  |  | 
|  | // Shift the demanded mask up so that it's at the top of the uint64_t. | 
|  | unsigned BitWidth = I->getType()->getPrimitiveSizeInBits(); | 
|  | unsigned NLZ = CountLeadingZeros_64(DemandedMask << (64-BitWidth)); | 
|  |  | 
|  | // If the top bit of the output is demanded, demand everything from the | 
|  | // input.  Otherwise, we demand all the input bits except NLZ top bits. | 
|  | uint64_t InDemandedBits = ~0ULL >> (64-BitWidth+NLZ); | 
|  |  | 
|  | // Find information about known zero/one bits in the input. | 
|  | if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits, | 
|  | KnownZero2, KnownOne2, Depth+1)) | 
|  | return true; | 
|  |  | 
|  | // If the RHS of the add has bits set that can't affect the input, reduce | 
|  | // the constant. | 
|  | if (ShrinkDemandedConstant(I, 1, InDemandedBits)) | 
|  | return UpdateValueUsesWith(I, I); | 
|  |  | 
|  | // Avoid excess work. | 
|  | if (KnownZero2 == 0 && KnownOne2 == 0) | 
|  | break; | 
|  |  | 
|  | // Turn it into OR if input bits are zero. | 
|  | if ((KnownZero2 & RHS->getZExtValue()) == RHS->getZExtValue()) { | 
|  | Instruction *Or = | 
|  | BinaryOperator::createOr(I->getOperand(0), I->getOperand(1), | 
|  | I->getName()); | 
|  | InsertNewInstBefore(Or, *I); | 
|  | return UpdateValueUsesWith(I, Or); | 
|  | } | 
|  |  | 
|  | // We can say something about the output known-zero and known-one bits, | 
|  | // depending on potential carries from the input constant and the | 
|  | // unknowns.  For example if the LHS is known to have at most the 0x0F0F0 | 
|  | // bits set and the RHS constant is 0x01001, then we know we have a known | 
|  | // one mask of 0x00001 and a known zero mask of 0xE0F0E. | 
|  |  | 
|  | // To compute this, we first compute the potential carry bits.  These are | 
|  | // the bits which may be modified.  I'm not aware of a better way to do | 
|  | // this scan. | 
|  | uint64_t RHSVal = RHS->getZExtValue(); | 
|  |  | 
|  | bool CarryIn = false; | 
|  | uint64_t CarryBits = 0; | 
|  | uint64_t CurBit = 1; | 
|  | for (unsigned i = 0; i != BitWidth; ++i, CurBit <<= 1) { | 
|  | // Record the current carry in. | 
|  | if (CarryIn) CarryBits |= CurBit; | 
|  |  | 
|  | bool CarryOut; | 
|  |  | 
|  | // This bit has a carry out unless it is "zero + zero" or | 
|  | // "zero + anything" with no carry in. | 
|  | if ((KnownZero2 & CurBit) && ((RHSVal & CurBit) == 0)) { | 
|  | CarryOut = false;  // 0 + 0 has no carry out, even with carry in. | 
|  | } else if (!CarryIn && | 
|  | ((KnownZero2 & CurBit) || ((RHSVal & CurBit) == 0))) { | 
|  | CarryOut = false;  // 0 + anything has no carry out if no carry in. | 
|  | } else { | 
|  | // Otherwise, we have to assume we have a carry out. | 
|  | CarryOut = true; | 
|  | } | 
|  |  | 
|  | // This stage's carry out becomes the next stage's carry-in. | 
|  | CarryIn = CarryOut; | 
|  | } | 
|  |  | 
|  | // Now that we know which bits have carries, compute the known-1/0 sets. | 
|  |  | 
|  | // Bits are known one if they are known zero in one operand and one in the | 
|  | // other, and there is no input carry. | 
|  | KnownOne = ((KnownZero2 & RHSVal) | (KnownOne2 & ~RHSVal)) & ~CarryBits; | 
|  |  | 
|  | // Bits are known zero if they are known zero in both operands and there | 
|  | // is no input carry. | 
|  | KnownZero = KnownZero2 & ~RHSVal & ~CarryBits; | 
|  | } | 
|  | break; | 
|  | case Instruction::Shl: | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | uint64_t ShiftAmt = SA->getZExtValue(); | 
|  | if (SimplifyDemandedBits(I->getOperand(0), DemandedMask >> ShiftAmt, | 
|  | KnownZero, KnownOne, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero <<= ShiftAmt; | 
|  | KnownOne  <<= ShiftAmt; | 
|  | KnownZero |= (1ULL << ShiftAmt) - 1;  // low bits known zero. | 
|  | } | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | // For a logical shift right | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | unsigned ShiftAmt = SA->getZExtValue(); | 
|  |  | 
|  | // Compute the new bits that are at the top now. | 
|  | uint64_t HighBits = (1ULL << ShiftAmt)-1; | 
|  | HighBits <<= I->getType()->getPrimitiveSizeInBits() - ShiftAmt; | 
|  | uint64_t TypeMask = cast<IntegerType>(I->getType())->getBitMask(); | 
|  | // Unsigned shift right. | 
|  | if (SimplifyDemandedBits(I->getOperand(0), | 
|  | (DemandedMask << ShiftAmt) & TypeMask, | 
|  | KnownZero, KnownOne, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero &= TypeMask; | 
|  | KnownOne  &= TypeMask; | 
|  | KnownZero >>= ShiftAmt; | 
|  | KnownOne  >>= ShiftAmt; | 
|  | KnownZero |= HighBits;  // high bits known zero. | 
|  | } | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | // If this is an arithmetic shift right and only the low-bit is set, we can | 
|  | // always convert this into a logical shr, even if the shift amount is | 
|  | // variable.  The low bit of the shift cannot be an input sign bit unless | 
|  | // the shift amount is >= the size of the datatype, which is undefined. | 
|  | if (DemandedMask == 1) { | 
|  | // Perform the logical shift right. | 
|  | Value *NewVal = new ShiftInst(Instruction::LShr, I->getOperand(0), | 
|  | I->getOperand(1), I->getName()); | 
|  | InsertNewInstBefore(cast<Instruction>(NewVal), *I); | 
|  | return UpdateValueUsesWith(I, NewVal); | 
|  | } | 
|  |  | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | unsigned ShiftAmt = SA->getZExtValue(); | 
|  |  | 
|  | // Compute the new bits that are at the top now. | 
|  | uint64_t HighBits = (1ULL << ShiftAmt)-1; | 
|  | HighBits <<= I->getType()->getPrimitiveSizeInBits() - ShiftAmt; | 
|  | uint64_t TypeMask = cast<IntegerType>(I->getType())->getBitMask(); | 
|  | // Signed shift right. | 
|  | if (SimplifyDemandedBits(I->getOperand(0), | 
|  | (DemandedMask << ShiftAmt) & TypeMask, | 
|  | KnownZero, KnownOne, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero &= TypeMask; | 
|  | KnownOne  &= TypeMask; | 
|  | KnownZero >>= ShiftAmt; | 
|  | KnownOne  >>= ShiftAmt; | 
|  |  | 
|  | // Handle the sign bits. | 
|  | uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1); | 
|  | SignBit >>= ShiftAmt;  // Adjust to where it is now in the mask. | 
|  |  | 
|  | // If the input sign bit is known to be zero, or if none of the top bits | 
|  | // are demanded, turn this into an unsigned shift right. | 
|  | if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) { | 
|  | // Perform the logical shift right. | 
|  | Value *NewVal = new ShiftInst(Instruction::LShr, I->getOperand(0), | 
|  | SA, I->getName()); | 
|  | InsertNewInstBefore(cast<Instruction>(NewVal), *I); | 
|  | return UpdateValueUsesWith(I, NewVal); | 
|  | } else if (KnownOne & SignBit) { // New bits are known one. | 
|  | KnownOne |= HighBits; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the client is only demanding bits that we know, return the known | 
|  | // constant. | 
|  | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) | 
|  | return UpdateValueUsesWith(I, ConstantInt::get(I->getType(), KnownOne)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SimplifyDemandedVectorElts - The specified value producecs a vector with | 
|  | /// 64 or fewer elements.  DemandedElts contains the set of elements that are | 
|  | /// actually used by the caller.  This method analyzes which elements of the | 
|  | /// operand are undef and returns that information in UndefElts. | 
|  | /// | 
|  | /// If the information about demanded elements can be used to simplify the | 
|  | /// operation, the operation is simplified, then the resultant value is | 
|  | /// returned.  This returns null if no change was made. | 
|  | Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts, | 
|  | uint64_t &UndefElts, | 
|  | unsigned Depth) { | 
|  | unsigned VWidth = cast<PackedType>(V->getType())->getNumElements(); | 
|  | assert(VWidth <= 64 && "Vector too wide to analyze!"); | 
|  | uint64_t EltMask = ~0ULL >> (64-VWidth); | 
|  | assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 && | 
|  | "Invalid DemandedElts!"); | 
|  |  | 
|  | if (isa<UndefValue>(V)) { | 
|  | // If the entire vector is undefined, just return this info. | 
|  | UndefElts = EltMask; | 
|  | return 0; | 
|  | } else if (DemandedElts == 0) { // If nothing is demanded, provide undef. | 
|  | UndefElts = EltMask; | 
|  | return UndefValue::get(V->getType()); | 
|  | } | 
|  |  | 
|  | UndefElts = 0; | 
|  | if (ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) { | 
|  | const Type *EltTy = cast<PackedType>(V->getType())->getElementType(); | 
|  | Constant *Undef = UndefValue::get(EltTy); | 
|  |  | 
|  | std::vector<Constant*> Elts; | 
|  | for (unsigned i = 0; i != VWidth; ++i) | 
|  | if (!(DemandedElts & (1ULL << i))) {   // If not demanded, set to undef. | 
|  | Elts.push_back(Undef); | 
|  | UndefElts |= (1ULL << i); | 
|  | } else if (isa<UndefValue>(CP->getOperand(i))) {   // Already undef. | 
|  | Elts.push_back(Undef); | 
|  | UndefElts |= (1ULL << i); | 
|  | } else {                               // Otherwise, defined. | 
|  | Elts.push_back(CP->getOperand(i)); | 
|  | } | 
|  |  | 
|  | // If we changed the constant, return it. | 
|  | Constant *NewCP = ConstantPacked::get(Elts); | 
|  | return NewCP != CP ? NewCP : 0; | 
|  | } else if (isa<ConstantAggregateZero>(V)) { | 
|  | // Simplify the CAZ to a ConstantPacked where the non-demanded elements are | 
|  | // set to undef. | 
|  | const Type *EltTy = cast<PackedType>(V->getType())->getElementType(); | 
|  | Constant *Zero = Constant::getNullValue(EltTy); | 
|  | Constant *Undef = UndefValue::get(EltTy); | 
|  | std::vector<Constant*> Elts; | 
|  | for (unsigned i = 0; i != VWidth; ++i) | 
|  | Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef); | 
|  | UndefElts = DemandedElts ^ EltMask; | 
|  | return ConstantPacked::get(Elts); | 
|  | } | 
|  |  | 
|  | if (!V->hasOneUse()) {    // Other users may use these bits. | 
|  | if (Depth != 0) {       // Not at the root. | 
|  | // TODO: Just compute the UndefElts information recursively. | 
|  | return false; | 
|  | } | 
|  | return false; | 
|  | } else if (Depth == 10) {        // Limit search depth. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return false;        // Only analyze instructions. | 
|  |  | 
|  | bool MadeChange = false; | 
|  | uint64_t UndefElts2; | 
|  | Value *TmpV; | 
|  | switch (I->getOpcode()) { | 
|  | default: break; | 
|  |  | 
|  | case Instruction::InsertElement: { | 
|  | // If this is a variable index, we don't know which element it overwrites. | 
|  | // demand exactly the same input as we produce. | 
|  | ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); | 
|  | if (Idx == 0) { | 
|  | // Note that we can't propagate undef elt info, because we don't know | 
|  | // which elt is getting updated. | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, | 
|  | UndefElts2, Depth+1); | 
|  | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is inserting an element that isn't demanded, remove this | 
|  | // insertelement. | 
|  | unsigned IdxNo = Idx->getZExtValue(); | 
|  | if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0) | 
|  | return AddSoonDeadInstToWorklist(*I, 0); | 
|  |  | 
|  | // Otherwise, the element inserted overwrites whatever was there, so the | 
|  | // input demanded set is simpler than the output set. | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), | 
|  | DemandedElts & ~(1ULL << IdxNo), | 
|  | UndefElts, Depth+1); | 
|  | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
|  |  | 
|  | // The inserted element is defined. | 
|  | UndefElts |= 1ULL << IdxNo; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | // div/rem demand all inputs, because they don't want divide by zero. | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, | 
|  | UndefElts, Depth+1); | 
|  | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, | 
|  | UndefElts2, Depth+1); | 
|  | if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } | 
|  |  | 
|  | // Output elements are undefined if both are undefined.  Consider things | 
|  | // like undef&0.  The result is known zero, not undef. | 
|  | UndefElts &= UndefElts2; | 
|  | break; | 
|  |  | 
|  | case Instruction::Call: { | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); | 
|  | if (!II) break; | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  |  | 
|  | // Binary vector operations that work column-wise.  A dest element is a | 
|  | // function of the corresponding input elements from the two inputs. | 
|  | case Intrinsic::x86_sse_sub_ss: | 
|  | case Intrinsic::x86_sse_mul_ss: | 
|  | case Intrinsic::x86_sse_min_ss: | 
|  | case Intrinsic::x86_sse_max_ss: | 
|  | case Intrinsic::x86_sse2_sub_sd: | 
|  | case Intrinsic::x86_sse2_mul_sd: | 
|  | case Intrinsic::x86_sse2_min_sd: | 
|  | case Intrinsic::x86_sse2_max_sd: | 
|  | TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, | 
|  | UndefElts, Depth+1); | 
|  | if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; } | 
|  | TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts, | 
|  | UndefElts2, Depth+1); | 
|  | if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; } | 
|  |  | 
|  | // If only the low elt is demanded and this is a scalarizable intrinsic, | 
|  | // scalarize it now. | 
|  | if (DemandedElts == 1) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::x86_sse_sub_ss: | 
|  | case Intrinsic::x86_sse_mul_ss: | 
|  | case Intrinsic::x86_sse2_sub_sd: | 
|  | case Intrinsic::x86_sse2_mul_sd: | 
|  | // TODO: Lower MIN/MAX/ABS/etc | 
|  | Value *LHS = II->getOperand(1); | 
|  | Value *RHS = II->getOperand(2); | 
|  | // Extract the element as scalars. | 
|  | LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II); | 
|  | RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II); | 
|  |  | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: assert(0 && "Case stmts out of sync!"); | 
|  | case Intrinsic::x86_sse_sub_ss: | 
|  | case Intrinsic::x86_sse2_sub_sd: | 
|  | TmpV = InsertNewInstBefore(BinaryOperator::createSub(LHS, RHS, | 
|  | II->getName()), *II); | 
|  | break; | 
|  | case Intrinsic::x86_sse_mul_ss: | 
|  | case Intrinsic::x86_sse2_mul_sd: | 
|  | TmpV = InsertNewInstBefore(BinaryOperator::createMul(LHS, RHS, | 
|  | II->getName()), *II); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Instruction *New = | 
|  | new InsertElementInst(UndefValue::get(II->getType()), TmpV, 0U, | 
|  | II->getName()); | 
|  | InsertNewInstBefore(New, *II); | 
|  | AddSoonDeadInstToWorklist(*II, 0); | 
|  | return New; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Output elements are undefined if both are undefined.  Consider things | 
|  | // like undef&0.  The result is known zero, not undef. | 
|  | UndefElts &= UndefElts2; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | return MadeChange ? I : 0; | 
|  | } | 
|  |  | 
|  | /// @returns true if the specified compare instruction is | 
|  | /// true when both operands are equal... | 
|  | /// @brief Determine if the ICmpInst returns true if both operands are equal | 
|  | static bool isTrueWhenEqual(ICmpInst &ICI) { | 
|  | ICmpInst::Predicate pred = ICI.getPredicate(); | 
|  | return pred == ICmpInst::ICMP_EQ  || pred == ICmpInst::ICMP_UGE || | 
|  | pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE || | 
|  | pred == ICmpInst::ICMP_SLE; | 
|  | } | 
|  |  | 
|  | /// AssociativeOpt - Perform an optimization on an associative operator.  This | 
|  | /// function is designed to check a chain of associative operators for a | 
|  | /// potential to apply a certain optimization.  Since the optimization may be | 
|  | /// applicable if the expression was reassociated, this checks the chain, then | 
|  | /// reassociates the expression as necessary to expose the optimization | 
|  | /// opportunity.  This makes use of a special Functor, which must define | 
|  | /// 'shouldApply' and 'apply' methods. | 
|  | /// | 
|  | template<typename Functor> | 
|  | Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) { | 
|  | unsigned Opcode = Root.getOpcode(); | 
|  | Value *LHS = Root.getOperand(0); | 
|  |  | 
|  | // Quick check, see if the immediate LHS matches... | 
|  | if (F.shouldApply(LHS)) | 
|  | return F.apply(Root); | 
|  |  | 
|  | // Otherwise, if the LHS is not of the same opcode as the root, return. | 
|  | Instruction *LHSI = dyn_cast<Instruction>(LHS); | 
|  | while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) { | 
|  | // Should we apply this transform to the RHS? | 
|  | bool ShouldApply = F.shouldApply(LHSI->getOperand(1)); | 
|  |  | 
|  | // If not to the RHS, check to see if we should apply to the LHS... | 
|  | if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) { | 
|  | cast<BinaryOperator>(LHSI)->swapOperands();   // Make the LHS the RHS | 
|  | ShouldApply = true; | 
|  | } | 
|  |  | 
|  | // If the functor wants to apply the optimization to the RHS of LHSI, | 
|  | // reassociate the expression from ((? op A) op B) to (? op (A op B)) | 
|  | if (ShouldApply) { | 
|  | BasicBlock *BB = Root.getParent(); | 
|  |  | 
|  | // Now all of the instructions are in the current basic block, go ahead | 
|  | // and perform the reassociation. | 
|  | Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0)); | 
|  |  | 
|  | // First move the selected RHS to the LHS of the root... | 
|  | Root.setOperand(0, LHSI->getOperand(1)); | 
|  |  | 
|  | // Make what used to be the LHS of the root be the user of the root... | 
|  | Value *ExtraOperand = TmpLHSI->getOperand(1); | 
|  | if (&Root == TmpLHSI) { | 
|  | Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType())); | 
|  | return 0; | 
|  | } | 
|  | Root.replaceAllUsesWith(TmpLHSI);          // Users now use TmpLHSI | 
|  | TmpLHSI->setOperand(1, &Root);             // TmpLHSI now uses the root | 
|  | TmpLHSI->getParent()->getInstList().remove(TmpLHSI); | 
|  | BasicBlock::iterator ARI = &Root; ++ARI; | 
|  | BB->getInstList().insert(ARI, TmpLHSI);    // Move TmpLHSI to after Root | 
|  | ARI = Root; | 
|  |  | 
|  | // Now propagate the ExtraOperand down the chain of instructions until we | 
|  | // get to LHSI. | 
|  | while (TmpLHSI != LHSI) { | 
|  | Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0)); | 
|  | // Move the instruction to immediately before the chain we are | 
|  | // constructing to avoid breaking dominance properties. | 
|  | NextLHSI->getParent()->getInstList().remove(NextLHSI); | 
|  | BB->getInstList().insert(ARI, NextLHSI); | 
|  | ARI = NextLHSI; | 
|  |  | 
|  | Value *NextOp = NextLHSI->getOperand(1); | 
|  | NextLHSI->setOperand(1, ExtraOperand); | 
|  | TmpLHSI = NextLHSI; | 
|  | ExtraOperand = NextOp; | 
|  | } | 
|  |  | 
|  | // Now that the instructions are reassociated, have the functor perform | 
|  | // the transformation... | 
|  | return F.apply(Root); | 
|  | } | 
|  |  | 
|  | LHSI = dyn_cast<Instruction>(LHSI->getOperand(0)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // AddRHS - Implements: X + X --> X << 1 | 
|  | struct AddRHS { | 
|  | Value *RHS; | 
|  | AddRHS(Value *rhs) : RHS(rhs) {} | 
|  | bool shouldApply(Value *LHS) const { return LHS == RHS; } | 
|  | Instruction *apply(BinaryOperator &Add) const { | 
|  | return new ShiftInst(Instruction::Shl, Add.getOperand(0), | 
|  | ConstantInt::get(Type::Int8Ty, 1)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2) | 
|  | //                 iff C1&C2 == 0 | 
|  | struct AddMaskingAnd { | 
|  | Constant *C2; | 
|  | AddMaskingAnd(Constant *c) : C2(c) {} | 
|  | bool shouldApply(Value *LHS) const { | 
|  | ConstantInt *C1; | 
|  | return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) && | 
|  | ConstantExpr::getAnd(C1, C2)->isNullValue(); | 
|  | } | 
|  | Instruction *apply(BinaryOperator &Add) const { | 
|  | return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, | 
|  | InstCombiner *IC) { | 
|  | if (CastInst *CI = dyn_cast<CastInst>(&I)) { | 
|  | if (Constant *SOC = dyn_cast<Constant>(SO)) | 
|  | return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType()); | 
|  |  | 
|  | return IC->InsertNewInstBefore(CastInst::create( | 
|  | CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I); | 
|  | } | 
|  |  | 
|  | // Figure out if the constant is the left or the right argument. | 
|  | bool ConstIsRHS = isa<Constant>(I.getOperand(1)); | 
|  | Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); | 
|  |  | 
|  | if (Constant *SOC = dyn_cast<Constant>(SO)) { | 
|  | if (ConstIsRHS) | 
|  | return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); | 
|  | return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); | 
|  | } | 
|  |  | 
|  | Value *Op0 = SO, *Op1 = ConstOperand; | 
|  | if (!ConstIsRHS) | 
|  | std::swap(Op0, Op1); | 
|  | Instruction *New; | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) | 
|  | New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op"); | 
|  | else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) | 
|  | New = CmpInst::create(CI->getOpcode(), CI->getPredicate(), Op0, Op1, | 
|  | SO->getName()+".cmp"); | 
|  | else if (ShiftInst *SI = dyn_cast<ShiftInst>(&I)) | 
|  | New = new ShiftInst(SI->getOpcode(), Op0, Op1, SO->getName()+".sh"); | 
|  | else { | 
|  | assert(0 && "Unknown binary instruction type!"); | 
|  | abort(); | 
|  | } | 
|  | return IC->InsertNewInstBefore(New, I); | 
|  | } | 
|  |  | 
|  | // FoldOpIntoSelect - Given an instruction with a select as one operand and a | 
|  | // constant as the other operand, try to fold the binary operator into the | 
|  | // select arguments.  This also works for Cast instructions, which obviously do | 
|  | // not have a second operand. | 
|  | static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI, | 
|  | InstCombiner *IC) { | 
|  | // Don't modify shared select instructions | 
|  | if (!SI->hasOneUse()) return 0; | 
|  | Value *TV = SI->getOperand(1); | 
|  | Value *FV = SI->getOperand(2); | 
|  |  | 
|  | if (isa<Constant>(TV) || isa<Constant>(FV)) { | 
|  | // Bool selects with constant operands can be folded to logical ops. | 
|  | if (SI->getType() == Type::Int1Ty) return 0; | 
|  |  | 
|  | Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC); | 
|  | Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC); | 
|  |  | 
|  | return new SelectInst(SI->getCondition(), SelectTrueVal, | 
|  | SelectFalseVal); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI | 
|  | /// node as operand #0, see if we can fold the instruction into the PHI (which | 
|  | /// is only possible if all operands to the PHI are constants). | 
|  | Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { | 
|  | PHINode *PN = cast<PHINode>(I.getOperand(0)); | 
|  | unsigned NumPHIValues = PN->getNumIncomingValues(); | 
|  | if (!PN->hasOneUse() || NumPHIValues == 0) return 0; | 
|  |  | 
|  | // Check to see if all of the operands of the PHI are constants.  If there is | 
|  | // one non-constant value, remember the BB it is.  If there is more than one | 
|  | // bail out. | 
|  | BasicBlock *NonConstBB = 0; | 
|  | for (unsigned i = 0; i != NumPHIValues; ++i) | 
|  | if (!isa<Constant>(PN->getIncomingValue(i))) { | 
|  | if (NonConstBB) return 0;  // More than one non-const value. | 
|  | NonConstBB = PN->getIncomingBlock(i); | 
|  |  | 
|  | // If the incoming non-constant value is in I's block, we have an infinite | 
|  | // loop. | 
|  | if (NonConstBB == I.getParent()) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If there is exactly one non-constant value, we can insert a copy of the | 
|  | // operation in that block.  However, if this is a critical edge, we would be | 
|  | // inserting the computation one some other paths (e.g. inside a loop).  Only | 
|  | // do this if the pred block is unconditionally branching into the phi block. | 
|  | if (NonConstBB) { | 
|  | BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); | 
|  | if (!BI || !BI->isUnconditional()) return 0; | 
|  | } | 
|  |  | 
|  | // Okay, we can do the transformation: create the new PHI node. | 
|  | PHINode *NewPN = new PHINode(I.getType(), I.getName()); | 
|  | I.setName(""); | 
|  | NewPN->reserveOperandSpace(PN->getNumOperands()/2); | 
|  | InsertNewInstBefore(NewPN, *PN); | 
|  |  | 
|  | // Next, add all of the operands to the PHI. | 
|  | if (I.getNumOperands() == 2) { | 
|  | Constant *C = cast<Constant>(I.getOperand(1)); | 
|  | for (unsigned i = 0; i != NumPHIValues; ++i) { | 
|  | Value *InV; | 
|  | if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { | 
|  | if (CmpInst *CI = dyn_cast<CmpInst>(&I)) | 
|  | InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); | 
|  | else | 
|  | InV = ConstantExpr::get(I.getOpcode(), InC, C); | 
|  | } else { | 
|  | assert(PN->getIncomingBlock(i) == NonConstBB); | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) | 
|  | InV = BinaryOperator::create(BO->getOpcode(), | 
|  | PN->getIncomingValue(i), C, "phitmp", | 
|  | NonConstBB->getTerminator()); | 
|  | else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) | 
|  | InV = CmpInst::create(CI->getOpcode(), | 
|  | CI->getPredicate(), | 
|  | PN->getIncomingValue(i), C, "phitmp", | 
|  | NonConstBB->getTerminator()); | 
|  | else if (ShiftInst *SI = dyn_cast<ShiftInst>(&I)) | 
|  | InV = new ShiftInst(SI->getOpcode(), | 
|  | PN->getIncomingValue(i), C, "phitmp", | 
|  | NonConstBB->getTerminator()); | 
|  | else | 
|  | assert(0 && "Unknown binop!"); | 
|  |  | 
|  | WorkList.push_back(cast<Instruction>(InV)); | 
|  | } | 
|  | NewPN->addIncoming(InV, PN->getIncomingBlock(i)); | 
|  | } | 
|  | } else { | 
|  | CastInst *CI = cast<CastInst>(&I); | 
|  | const Type *RetTy = CI->getType(); | 
|  | for (unsigned i = 0; i != NumPHIValues; ++i) { | 
|  | Value *InV; | 
|  | if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { | 
|  | InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); | 
|  | } else { | 
|  | assert(PN->getIncomingBlock(i) == NonConstBB); | 
|  | InV = CastInst::create(CI->getOpcode(), PN->getIncomingValue(i), | 
|  | I.getType(), "phitmp", | 
|  | NonConstBB->getTerminator()); | 
|  | WorkList.push_back(cast<Instruction>(InV)); | 
|  | } | 
|  | NewPN->addIncoming(InV, PN->getIncomingBlock(i)); | 
|  | } | 
|  | } | 
|  | return ReplaceInstUsesWith(I, NewPN); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitAdd(BinaryOperator &I) { | 
|  | bool Changed = SimplifyCommutative(I); | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  |  | 
|  | if (Constant *RHSC = dyn_cast<Constant>(RHS)) { | 
|  | // X + undef -> undef | 
|  | if (isa<UndefValue>(RHS)) | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  |  | 
|  | // X + 0 --> X | 
|  | if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0. | 
|  | if (RHSC->isNullValue()) | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { | 
|  | if (CFP->isExactlyValue(-0.0)) | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | } | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) { | 
|  | // X + (signbit) --> X ^ signbit | 
|  | uint64_t Val = CI->getZExtValue(); | 
|  | if (Val == (1ULL << (CI->getType()->getPrimitiveSizeInBits()-1))) | 
|  | return BinaryOperator::createXor(LHS, RHS); | 
|  |  | 
|  | // See if SimplifyDemandedBits can simplify this.  This handles stuff like | 
|  | // (X & 254)+1 -> (X&254)|1 | 
|  | uint64_t KnownZero, KnownOne; | 
|  | if (!isa<PackedType>(I.getType()) && | 
|  | SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(), | 
|  | KnownZero, KnownOne)) | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | if (isa<PHINode>(LHS)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  |  | 
|  | ConstantInt *XorRHS = 0; | 
|  | Value *XorLHS = 0; | 
|  | if (isa<ConstantInt>(RHSC) && | 
|  | match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { | 
|  | unsigned TySizeBits = I.getType()->getPrimitiveSizeInBits(); | 
|  | int64_t  RHSSExt = cast<ConstantInt>(RHSC)->getSExtValue(); | 
|  | uint64_t RHSZExt = cast<ConstantInt>(RHSC)->getZExtValue(); | 
|  |  | 
|  | uint64_t C0080Val = 1ULL << 31; | 
|  | int64_t CFF80Val = -C0080Val; | 
|  | unsigned Size = 32; | 
|  | do { | 
|  | if (TySizeBits > Size) { | 
|  | bool Found = false; | 
|  | // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. | 
|  | // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. | 
|  | if (RHSSExt == CFF80Val) { | 
|  | if (XorRHS->getZExtValue() == C0080Val) | 
|  | Found = true; | 
|  | } else if (RHSZExt == C0080Val) { | 
|  | if (XorRHS->getSExtValue() == CFF80Val) | 
|  | Found = true; | 
|  | } | 
|  | if (Found) { | 
|  | // This is a sign extend if the top bits are known zero. | 
|  | uint64_t Mask = ~0ULL; | 
|  | Mask <<= 64-(TySizeBits-Size); | 
|  | Mask &= cast<IntegerType>(XorLHS->getType())->getBitMask(); | 
|  | if (!MaskedValueIsZero(XorLHS, Mask)) | 
|  | Size = 0;  // Not a sign ext, but can't be any others either. | 
|  | goto FoundSExt; | 
|  | } | 
|  | } | 
|  | Size >>= 1; | 
|  | C0080Val >>= Size; | 
|  | CFF80Val >>= Size; | 
|  | } while (Size >= 8); | 
|  |  | 
|  | FoundSExt: | 
|  | const Type *MiddleType = 0; | 
|  | switch (Size) { | 
|  | default: break; | 
|  | case 32: MiddleType = Type::Int32Ty; break; | 
|  | case 16: MiddleType = Type::Int16Ty; break; | 
|  | case 8:  MiddleType = Type::Int8Ty; break; | 
|  | } | 
|  | if (MiddleType) { | 
|  | Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext"); | 
|  | InsertNewInstBefore(NewTrunc, I); | 
|  | return new SExtInst(NewTrunc, I.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // X + X --> X << 1 | 
|  | if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) { | 
|  | if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result; | 
|  |  | 
|  | if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) { | 
|  | if (RHSI->getOpcode() == Instruction::Sub) | 
|  | if (LHS == RHSI->getOperand(1))                   // A + (B - A) --> B | 
|  | return ReplaceInstUsesWith(I, RHSI->getOperand(0)); | 
|  | } | 
|  | if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) { | 
|  | if (LHSI->getOpcode() == Instruction::Sub) | 
|  | if (RHS == LHSI->getOperand(1))                   // (B - A) + A --> B | 
|  | return ReplaceInstUsesWith(I, LHSI->getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // -A + B  -->  B - A | 
|  | if (Value *V = dyn_castNegVal(LHS)) | 
|  | return BinaryOperator::createSub(RHS, V); | 
|  |  | 
|  | // A + -B  -->  A - B | 
|  | if (!isa<Constant>(RHS)) | 
|  | if (Value *V = dyn_castNegVal(RHS)) | 
|  | return BinaryOperator::createSub(LHS, V); | 
|  |  | 
|  |  | 
|  | ConstantInt *C2; | 
|  | if (Value *X = dyn_castFoldableMul(LHS, C2)) { | 
|  | if (X == RHS)   // X*C + X --> X * (C+1) | 
|  | return BinaryOperator::createMul(RHS, AddOne(C2)); | 
|  |  | 
|  | // X*C1 + X*C2 --> X * (C1+C2) | 
|  | ConstantInt *C1; | 
|  | if (X == dyn_castFoldableMul(RHS, C1)) | 
|  | return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2)); | 
|  | } | 
|  |  | 
|  | // X + X*C --> X * (C+1) | 
|  | if (dyn_castFoldableMul(RHS, C2) == LHS) | 
|  | return BinaryOperator::createMul(LHS, AddOne(C2)); | 
|  |  | 
|  | // X + ~X --> -1   since   ~X = -X-1 | 
|  | if (dyn_castNotVal(LHS) == RHS || | 
|  | dyn_castNotVal(RHS) == LHS) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getAllOnesValue(I.getType())); | 
|  |  | 
|  |  | 
|  | // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0 | 
|  | if (match(RHS, m_And(m_Value(), m_ConstantInt(C2)))) | 
|  | if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) | 
|  | return R; | 
|  |  | 
|  | if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { | 
|  | Value *X = 0; | 
|  | if (match(LHS, m_Not(m_Value(X)))) {   // ~X + C --> (C-1) - X | 
|  | Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1)); | 
|  | return BinaryOperator::createSub(C, X); | 
|  | } | 
|  |  | 
|  | // (X & FF00) + xx00  -> (X+xx00) & FF00 | 
|  | if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) { | 
|  | Constant *Anded = ConstantExpr::getAnd(CRHS, C2); | 
|  | if (Anded == CRHS) { | 
|  | // See if all bits from the first bit set in the Add RHS up are included | 
|  | // in the mask.  First, get the rightmost bit. | 
|  | uint64_t AddRHSV = CRHS->getZExtValue(); | 
|  |  | 
|  | // Form a mask of all bits from the lowest bit added through the top. | 
|  | uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1); | 
|  | AddRHSHighBits &= C2->getType()->getBitMask(); | 
|  |  | 
|  | // See if the and mask includes all of these bits. | 
|  | uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getZExtValue(); | 
|  |  | 
|  | if (AddRHSHighBits == AddRHSHighBitsAnd) { | 
|  | // Okay, the xform is safe.  Insert the new add pronto. | 
|  | Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS, | 
|  | LHS->getName()), I); | 
|  | return BinaryOperator::createAnd(NewAdd, C2); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to fold constant add into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // add (cast *A to intptrtype) B -> | 
|  | //   cast (GEP (cast *A to sbyte*) B) -> | 
|  | //     intptrtype | 
|  | { | 
|  | CastInst *CI = dyn_cast<CastInst>(LHS); | 
|  | Value *Other = RHS; | 
|  | if (!CI) { | 
|  | CI = dyn_cast<CastInst>(RHS); | 
|  | Other = LHS; | 
|  | } | 
|  | if (CI && CI->getType()->isSized() && | 
|  | (CI->getType()->getPrimitiveSizeInBits() == | 
|  | TD->getIntPtrType()->getPrimitiveSizeInBits()) | 
|  | && isa<PointerType>(CI->getOperand(0)->getType())) { | 
|  | Value *I2 = InsertCastBefore(Instruction::BitCast, CI->getOperand(0), | 
|  | PointerType::get(Type::Int8Ty), I); | 
|  | I2 = InsertNewInstBefore(new GetElementPtrInst(I2, Other, "ctg2"), I); | 
|  | return new PtrToIntInst(I2, CI->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | // isSignBit - Return true if the value represented by the constant only has the | 
|  | // highest order bit set. | 
|  | static bool isSignBit(ConstantInt *CI) { | 
|  | unsigned NumBits = CI->getType()->getPrimitiveSizeInBits(); | 
|  | return (CI->getZExtValue() & (~0ULL >> (64-NumBits))) == (1ULL << (NumBits-1)); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSub(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Op0 == Op1)         // sub X, X  -> 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | // If this is a 'B = x-(-A)', change to B = x+A... | 
|  | if (Value *V = dyn_castNegVal(Op1)) | 
|  | return BinaryOperator::createAdd(Op0, V); | 
|  |  | 
|  | if (isa<UndefValue>(Op0)) | 
|  | return ReplaceInstUsesWith(I, Op0);    // undef - X -> undef | 
|  | if (isa<UndefValue>(Op1)) | 
|  | return ReplaceInstUsesWith(I, Op1);    // X - undef -> undef | 
|  |  | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { | 
|  | // Replace (-1 - A) with (~A)... | 
|  | if (C->isAllOnesValue()) | 
|  | return BinaryOperator::createNot(Op1); | 
|  |  | 
|  | // C - ~X == X + (1+C) | 
|  | Value *X = 0; | 
|  | if (match(Op1, m_Not(m_Value(X)))) | 
|  | return BinaryOperator::createAdd(X, | 
|  | ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1))); | 
|  | // -(X >>u 31) -> (X >>s 31) | 
|  | // -(X >>s 31) -> (X >>u 31) | 
|  | if (C->isNullValue()) { | 
|  | if (ShiftInst *SI = dyn_cast<ShiftInst>(Op1)) | 
|  | if (SI->getOpcode() == Instruction::LShr) { | 
|  | if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) { | 
|  | // Check to see if we are shifting out everything but the sign bit. | 
|  | if (CU->getZExtValue() == | 
|  | SI->getType()->getPrimitiveSizeInBits()-1) { | 
|  | // Ok, the transformation is safe.  Insert AShr. | 
|  | return new ShiftInst(Instruction::AShr, SI->getOperand(0), CU, | 
|  | SI->getName()); | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (SI->getOpcode() == Instruction::AShr) { | 
|  | if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) { | 
|  | // Check to see if we are shifting out everything but the sign bit. | 
|  | if (CU->getZExtValue() == | 
|  | SI->getType()->getPrimitiveSizeInBits()-1) { | 
|  | // Ok, the transformation is safe.  Insert LShr. | 
|  | return new ShiftInst(Instruction::LShr, SI->getOperand(0), CU, | 
|  | SI->getName()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to fold constant sub into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  |  | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) { | 
|  | if (Op1I->getOpcode() == Instruction::Add && | 
|  | !Op0->getType()->isFPOrFPVector()) { | 
|  | if (Op1I->getOperand(0) == Op0)              // X-(X+Y) == -Y | 
|  | return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName()); | 
|  | else if (Op1I->getOperand(1) == Op0)         // X-(Y+X) == -Y | 
|  | return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName()); | 
|  | else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) { | 
|  | if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1))) | 
|  | // C1-(X+C2) --> (C1-C2)-X | 
|  | return BinaryOperator::createSub(ConstantExpr::getSub(CI1, CI2), | 
|  | Op1I->getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op1I->hasOneUse()) { | 
|  | // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression | 
|  | // is not used by anyone else... | 
|  | // | 
|  | if (Op1I->getOpcode() == Instruction::Sub && | 
|  | !Op1I->getType()->isFPOrFPVector()) { | 
|  | // Swap the two operands of the subexpr... | 
|  | Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1); | 
|  | Op1I->setOperand(0, IIOp1); | 
|  | Op1I->setOperand(1, IIOp0); | 
|  |  | 
|  | // Create the new top level add instruction... | 
|  | return BinaryOperator::createAdd(Op0, Op1); | 
|  | } | 
|  |  | 
|  | // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)... | 
|  | // | 
|  | if (Op1I->getOpcode() == Instruction::And && | 
|  | (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) { | 
|  | Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0); | 
|  |  | 
|  | Value *NewNot = | 
|  | InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I); | 
|  | return BinaryOperator::createAnd(Op0, NewNot); | 
|  | } | 
|  |  | 
|  | // 0 - (X sdiv C)  -> (X sdiv -C) | 
|  | if (Op1I->getOpcode() == Instruction::SDiv) | 
|  | if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) | 
|  | if (CSI->isNullValue()) | 
|  | if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1))) | 
|  | return BinaryOperator::createSDiv(Op1I->getOperand(0), | 
|  | ConstantExpr::getNeg(DivRHS)); | 
|  |  | 
|  | // X - X*C --> X * (1-C) | 
|  | ConstantInt *C2 = 0; | 
|  | if (dyn_castFoldableMul(Op1I, C2) == Op0) { | 
|  | Constant *CP1 = | 
|  | ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2); | 
|  | return BinaryOperator::createMul(Op0, CP1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Op0->getType()->isFPOrFPVector()) | 
|  | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) | 
|  | if (Op0I->getOpcode() == Instruction::Add) { | 
|  | if (Op0I->getOperand(0) == Op1)             // (Y+X)-Y == X | 
|  | return ReplaceInstUsesWith(I, Op0I->getOperand(1)); | 
|  | else if (Op0I->getOperand(1) == Op1)        // (X+Y)-Y == X | 
|  | return ReplaceInstUsesWith(I, Op0I->getOperand(0)); | 
|  | } else if (Op0I->getOpcode() == Instruction::Sub) { | 
|  | if (Op0I->getOperand(0) == Op1)             // (X-Y)-X == -Y | 
|  | return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName()); | 
|  | } | 
|  |  | 
|  | ConstantInt *C1; | 
|  | if (Value *X = dyn_castFoldableMul(Op0, C1)) { | 
|  | if (X == Op1) { // X*C - X --> X * (C-1) | 
|  | Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1)); | 
|  | return BinaryOperator::createMul(Op1, CP1); | 
|  | } | 
|  |  | 
|  | ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2) | 
|  | if (X == dyn_castFoldableMul(Op1, C2)) | 
|  | return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// isSignBitCheck - Given an exploded icmp instruction, return true if it | 
|  | /// really just returns true if the most significant (sign) bit is set. | 
|  | static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS) { | 
|  | switch (pred) { | 
|  | case ICmpInst::ICMP_SLT: | 
|  | // True if LHS s< RHS and RHS == 0 | 
|  | return RHS->isNullValue(); | 
|  | case ICmpInst::ICMP_SLE: | 
|  | // True if LHS s<= RHS and RHS == -1 | 
|  | return RHS->isAllOnesValue(); | 
|  | case ICmpInst::ICMP_UGE: | 
|  | // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) | 
|  | return RHS->getZExtValue() == (1ULL << | 
|  | (RHS->getType()->getPrimitiveSizeInBits()-1)); | 
|  | case ICmpInst::ICMP_UGT: | 
|  | // True if LHS u> RHS and RHS == high-bit-mask - 1 | 
|  | return RHS->getZExtValue() == | 
|  | (1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1))-1; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitMul(BinaryOperator &I) { | 
|  | bool Changed = SimplifyCommutative(I); | 
|  | Value *Op0 = I.getOperand(0); | 
|  |  | 
|  | if (isa<UndefValue>(I.getOperand(1)))              // undef * X -> 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | // Simplify mul instructions with a constant RHS... | 
|  | if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  |  | 
|  | // ((X << C1)*C2) == (X * (C2 << C1)) | 
|  | if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0)) | 
|  | if (SI->getOpcode() == Instruction::Shl) | 
|  | if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1))) | 
|  | return BinaryOperator::createMul(SI->getOperand(0), | 
|  | ConstantExpr::getShl(CI, ShOp)); | 
|  |  | 
|  | if (CI->isNullValue()) | 
|  | return ReplaceInstUsesWith(I, Op1);  // X * 0  == 0 | 
|  | if (CI->equalsInt(1))                  // X * 1  == X | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  | if (CI->isAllOnesValue())              // X * -1 == 0 - X | 
|  | return BinaryOperator::createNeg(Op0, I.getName()); | 
|  |  | 
|  | int64_t Val = (int64_t)cast<ConstantInt>(CI)->getZExtValue(); | 
|  | if (isPowerOf2_64(Val)) {          // Replace X*(2^C) with X << C | 
|  | uint64_t C = Log2_64(Val); | 
|  | return new ShiftInst(Instruction::Shl, Op0, | 
|  | ConstantInt::get(Type::Int8Ty, C)); | 
|  | } | 
|  | } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) { | 
|  | if (Op1F->isNullValue()) | 
|  | return ReplaceInstUsesWith(I, Op1); | 
|  |  | 
|  | // "In IEEE floating point, x*1 is not equivalent to x for nans.  However, | 
|  | // ANSI says we can drop signals, so we can do this anyway." (from GCC) | 
|  | if (Op1F->getValue() == 1.0) | 
|  | return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0' | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) | 
|  | if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() && | 
|  | isa<ConstantInt>(Op0I->getOperand(1))) { | 
|  | // Canonicalize (X+C1)*C2 -> X*C2+C1*C2. | 
|  | Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0), | 
|  | Op1, "tmp"); | 
|  | InsertNewInstBefore(Add, I); | 
|  | Value *C1C2 = ConstantExpr::getMul(Op1, | 
|  | cast<Constant>(Op0I->getOperand(1))); | 
|  | return BinaryOperator::createAdd(Add, C1C2); | 
|  |  | 
|  | } | 
|  |  | 
|  | // Try to fold constant mul into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  |  | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y | 
|  | if (Value *Op1v = dyn_castNegVal(I.getOperand(1))) | 
|  | return BinaryOperator::createMul(Op0v, Op1v); | 
|  |  | 
|  | // If one of the operands of the multiply is a cast from a boolean value, then | 
|  | // we know the bool is either zero or one, so this is a 'masking' multiply. | 
|  | // See if we can simplify things based on how the boolean was originally | 
|  | // formed. | 
|  | CastInst *BoolCast = 0; | 
|  | if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(0))) | 
|  | if (CI->getOperand(0)->getType() == Type::Int1Ty) | 
|  | BoolCast = CI; | 
|  | if (!BoolCast) | 
|  | if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1))) | 
|  | if (CI->getOperand(0)->getType() == Type::Int1Ty) | 
|  | BoolCast = CI; | 
|  | if (BoolCast) { | 
|  | if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) { | 
|  | Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1); | 
|  | const Type *SCOpTy = SCIOp0->getType(); | 
|  |  | 
|  | // If the icmp is true iff the sign bit of X is set, then convert this | 
|  | // multiply into a shift/and combination. | 
|  | if (isa<ConstantInt>(SCIOp1) && | 
|  | isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1))) { | 
|  | // Shift the X value right to turn it into "all signbits". | 
|  | Constant *Amt = ConstantInt::get(Type::Int8Ty, | 
|  | SCOpTy->getPrimitiveSizeInBits()-1); | 
|  | Value *V = | 
|  | InsertNewInstBefore(new ShiftInst(Instruction::AShr, SCIOp0, Amt, | 
|  | BoolCast->getOperand(0)->getName()+ | 
|  | ".mask"), I); | 
|  |  | 
|  | // If the multiply type is not the same as the source type, sign extend | 
|  | // or truncate to the multiply type. | 
|  | if (I.getType() != V->getType()) { | 
|  | unsigned SrcBits = V->getType()->getPrimitiveSizeInBits(); | 
|  | unsigned DstBits = I.getType()->getPrimitiveSizeInBits(); | 
|  | Instruction::CastOps opcode = | 
|  | (SrcBits == DstBits ? Instruction::BitCast : | 
|  | (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc)); | 
|  | V = InsertCastBefore(opcode, V, I.getType(), I); | 
|  | } | 
|  |  | 
|  | Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0; | 
|  | return BinaryOperator::createAnd(V, OtherOp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | /// This function implements the transforms on div instructions that work | 
|  | /// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is | 
|  | /// used by the visitors to those instructions. | 
|  | /// @brief Transforms common to all three div instructions | 
|  | Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // undef / X -> 0 | 
|  | if (isa<UndefValue>(Op0)) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | // X / undef -> undef | 
|  | if (isa<UndefValue>(Op1)) | 
|  | return ReplaceInstUsesWith(I, Op1); | 
|  |  | 
|  | // Handle cases involving: div X, (select Cond, Y, Z) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) { | 
|  | // div X, (Cond ? 0 : Y) -> div X, Y.  If the div and the select are in the | 
|  | // same basic block, then we replace the select with Y, and the condition | 
|  | // of the select with false (if the cond value is in the same BB).  If the | 
|  | // select has uses other than the div, this allows them to be simplified | 
|  | // also. Note that div X, Y is just as good as div X, 0 (undef) | 
|  | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1))) | 
|  | if (ST->isNullValue()) { | 
|  | Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0)); | 
|  | if (CondI && CondI->getParent() == I.getParent()) | 
|  | UpdateValueUsesWith(CondI, ConstantInt::getFalse()); | 
|  | else if (I.getParent() != SI->getParent() || SI->hasOneUse()) | 
|  | I.setOperand(1, SI->getOperand(2)); | 
|  | else | 
|  | UpdateValueUsesWith(SI, SI->getOperand(2)); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // Likewise for: div X, (Cond ? Y : 0) -> div X, Y | 
|  | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2))) | 
|  | if (ST->isNullValue()) { | 
|  | Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0)); | 
|  | if (CondI && CondI->getParent() == I.getParent()) | 
|  | UpdateValueUsesWith(CondI, ConstantInt::getTrue()); | 
|  | else if (I.getParent() != SI->getParent() || SI->hasOneUse()) | 
|  | I.setOperand(1, SI->getOperand(1)); | 
|  | else | 
|  | UpdateValueUsesWith(SI, SI->getOperand(1)); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// This function implements the transforms common to both integer division | 
|  | /// instructions (udiv and sdiv). It is called by the visitors to those integer | 
|  | /// division instructions. | 
|  | /// @brief Common integer divide transforms | 
|  | Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Instruction *Common = commonDivTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // div X, 1 == X | 
|  | if (RHS->equalsInt(1)) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  |  | 
|  | // (X / C1) / C2  -> X / (C1*C2) | 
|  | if (Instruction *LHS = dyn_cast<Instruction>(Op0)) | 
|  | if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode()) | 
|  | if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) { | 
|  | return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0), | 
|  | ConstantExpr::getMul(RHS, LHSRHS)); | 
|  | } | 
|  |  | 
|  | if (!RHS->isNullValue()) { // avoid X udiv 0 | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  | } | 
|  |  | 
|  | // 0 / X == 0, we don't need to preserve faults! | 
|  | if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0)) | 
|  | if (LHS->equalsInt(0)) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // Handle the integer div common cases | 
|  | if (Instruction *Common = commonIDivTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | // X udiv C^2 -> X >> C | 
|  | // Check to see if this is an unsigned division with an exact power of 2, | 
|  | // if so, convert to a right shift. | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) { | 
|  | if (uint64_t Val = C->getZExtValue())    // Don't break X / 0 | 
|  | if (isPowerOf2_64(Val)) { | 
|  | uint64_t ShiftAmt = Log2_64(Val); | 
|  | return new ShiftInst(Instruction::LShr, Op0, | 
|  | ConstantInt::get(Type::Int8Ty, ShiftAmt)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2) | 
|  | if (ShiftInst *RHSI = dyn_cast<ShiftInst>(I.getOperand(1))) { | 
|  | if (RHSI->getOpcode() == Instruction::Shl && | 
|  | isa<ConstantInt>(RHSI->getOperand(0))) { | 
|  | uint64_t C1 = cast<ConstantInt>(RHSI->getOperand(0))->getZExtValue(); | 
|  | if (isPowerOf2_64(C1)) { | 
|  | Value *N = RHSI->getOperand(1); | 
|  | const Type *NTy = N->getType(); | 
|  | if (uint64_t C2 = Log2_64(C1)) { | 
|  | Constant *C2V = ConstantInt::get(NTy, C2); | 
|  | N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I); | 
|  | } | 
|  | return new ShiftInst(Instruction::LShr, Op0, N); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) | 
|  | // where C1&C2 are powers of two. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) { | 
|  | if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1))) | 
|  | if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) | 
|  | if (!STO->isNullValue() && !STO->isNullValue()) { | 
|  | uint64_t TVA = STO->getZExtValue(), FVA = SFO->getZExtValue(); | 
|  | if (isPowerOf2_64(TVA) && isPowerOf2_64(FVA)) { | 
|  | // Compute the shift amounts | 
|  | unsigned TSA = Log2_64(TVA), FSA = Log2_64(FVA); | 
|  | // Construct the "on true" case of the select | 
|  | Constant *TC = ConstantInt::get(Type::Int8Ty, TSA); | 
|  | Instruction *TSI = | 
|  | new ShiftInst(Instruction::LShr, Op0, TC, SI->getName()+".t"); | 
|  | TSI = InsertNewInstBefore(TSI, I); | 
|  |  | 
|  | // Construct the "on false" case of the select | 
|  | Constant *FC = ConstantInt::get(Type::Int8Ty, FSA); | 
|  | Instruction *FSI = | 
|  | new ShiftInst(Instruction::LShr, Op0, FC, SI->getName()+".f"); | 
|  | FSI = InsertNewInstBefore(FSI, I); | 
|  |  | 
|  | // construct the select instruction and return it. | 
|  | return new SelectInst(SI->getOperand(0), TSI, FSI, SI->getName()); | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // Handle the integer div common cases | 
|  | if (Instruction *Common = commonIDivTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // sdiv X, -1 == -X | 
|  | if (RHS->isAllOnesValue()) | 
|  | return BinaryOperator::createNeg(Op0); | 
|  |  | 
|  | // -X/C -> X/-C | 
|  | if (Value *LHSNeg = dyn_castNegVal(Op0)) | 
|  | return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS)); | 
|  | } | 
|  |  | 
|  | // If the sign bits of both operands are zero (i.e. we can prove they are | 
|  | // unsigned inputs), turn this into a udiv. | 
|  | if (I.getType()->isInteger()) { | 
|  | uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1); | 
|  | if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { | 
|  | return BinaryOperator::createUDiv(Op0, Op1, I.getName()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { | 
|  | return commonDivTransforms(I); | 
|  | } | 
|  |  | 
|  | /// GetFactor - If we can prove that the specified value is at least a multiple | 
|  | /// of some factor, return that factor. | 
|  | static Constant *GetFactor(Value *V) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) | 
|  | return CI; | 
|  |  | 
|  | // Unless we can be tricky, we know this is a multiple of 1. | 
|  | Constant *Result = ConstantInt::get(V->getType(), 1); | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return Result; | 
|  |  | 
|  | if (I->getOpcode() == Instruction::Mul) { | 
|  | // Handle multiplies by a constant, etc. | 
|  | return ConstantExpr::getMul(GetFactor(I->getOperand(0)), | 
|  | GetFactor(I->getOperand(1))); | 
|  | } else if (I->getOpcode() == Instruction::Shl) { | 
|  | // (X<<C) -> X * (1 << C) | 
|  | if (Constant *ShRHS = dyn_cast<Constant>(I->getOperand(1))) { | 
|  | ShRHS = ConstantExpr::getShl(Result, ShRHS); | 
|  | return ConstantExpr::getMul(GetFactor(I->getOperand(0)), ShRHS); | 
|  | } | 
|  | } else if (I->getOpcode() == Instruction::And) { | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | // X & 0xFFF0 is known to be a multiple of 16. | 
|  | unsigned Zeros = CountTrailingZeros_64(RHS->getZExtValue()); | 
|  | if (Zeros != V->getType()->getPrimitiveSizeInBits()) | 
|  | return ConstantExpr::getShl(Result, | 
|  | ConstantInt::get(Type::Int8Ty, Zeros)); | 
|  | } | 
|  | } else if (CastInst *CI = dyn_cast<CastInst>(I)) { | 
|  | // Only handle int->int casts. | 
|  | if (!CI->isIntegerCast()) | 
|  | return Result; | 
|  | Value *Op = CI->getOperand(0); | 
|  | return ConstantExpr::getCast(CI->getOpcode(), GetFactor(Op), V->getType()); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// This function implements the transforms on rem instructions that work | 
|  | /// regardless of the kind of rem instruction it is (urem, srem, or frem). It | 
|  | /// is used by the visitors to those instructions. | 
|  | /// @brief Transforms common to all three rem instructions | 
|  | Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // 0 % X == 0, we don't need to preserve faults! | 
|  | if (Constant *LHS = dyn_cast<Constant>(Op0)) | 
|  | if (LHS->isNullValue()) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | if (isa<UndefValue>(Op0))              // undef % X -> 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | if (isa<UndefValue>(Op1)) | 
|  | return ReplaceInstUsesWith(I, Op1);  // X % undef -> undef | 
|  |  | 
|  | // Handle cases involving: rem X, (select Cond, Y, Z) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) { | 
|  | // rem X, (Cond ? 0 : Y) -> rem X, Y.  If the rem and the select are in | 
|  | // the same basic block, then we replace the select with Y, and the | 
|  | // condition of the select with false (if the cond value is in the same | 
|  | // BB).  If the select has uses other than the div, this allows them to be | 
|  | // simplified also. | 
|  | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1))) | 
|  | if (ST->isNullValue()) { | 
|  | Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0)); | 
|  | if (CondI && CondI->getParent() == I.getParent()) | 
|  | UpdateValueUsesWith(CondI, ConstantInt::getFalse()); | 
|  | else if (I.getParent() != SI->getParent() || SI->hasOneUse()) | 
|  | I.setOperand(1, SI->getOperand(2)); | 
|  | else | 
|  | UpdateValueUsesWith(SI, SI->getOperand(2)); | 
|  | return &I; | 
|  | } | 
|  | // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y | 
|  | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2))) | 
|  | if (ST->isNullValue()) { | 
|  | Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0)); | 
|  | if (CondI && CondI->getParent() == I.getParent()) | 
|  | UpdateValueUsesWith(CondI, ConstantInt::getTrue()); | 
|  | else if (I.getParent() != SI->getParent() || SI->hasOneUse()) | 
|  | I.setOperand(1, SI->getOperand(1)); | 
|  | else | 
|  | UpdateValueUsesWith(SI, SI->getOperand(1)); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// This function implements the transforms common to both integer remainder | 
|  | /// instructions (urem and srem). It is called by the visitors to those integer | 
|  | /// remainder instructions. | 
|  | /// @brief Common integer remainder transforms | 
|  | Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Instruction *common = commonRemTransforms(I)) | 
|  | return common; | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // X % 0 == undef, we don't need to preserve faults! | 
|  | if (RHS->equalsInt(0)) | 
|  | return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); | 
|  |  | 
|  | if (RHS->equalsInt(1))  // X % 1 == 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | } else if (isa<PHINode>(Op0I)) { | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  | // (X * C1) % C2 --> 0  iff  C1 % C2 == 0 | 
|  | if (ConstantExpr::getSRem(GetFactor(Op0I), RHS)->isNullValue()) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitURem(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Instruction *common = commonIRemTransforms(I)) | 
|  | return common; | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // X urem C^2 -> X and C | 
|  | // Check to see if this is an unsigned remainder with an exact power of 2, | 
|  | // if so, convert to a bitwise and. | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(RHS)) | 
|  | if (isPowerOf2_64(C->getZExtValue())) | 
|  | return BinaryOperator::createAnd(Op0, SubOne(C)); | 
|  | } | 
|  |  | 
|  | if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) { | 
|  | // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) | 
|  | if (RHSI->getOpcode() == Instruction::Shl && | 
|  | isa<ConstantInt>(RHSI->getOperand(0))) { | 
|  | unsigned C1 = cast<ConstantInt>(RHSI->getOperand(0))->getZExtValue(); | 
|  | if (isPowerOf2_64(C1)) { | 
|  | Constant *N1 = ConstantInt::getAllOnesValue(I.getType()); | 
|  | Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1, | 
|  | "tmp"), I); | 
|  | return BinaryOperator::createAnd(Op0, Add); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2) | 
|  | // where C1&C2 are powers of two. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) { | 
|  | if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1))) | 
|  | if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) { | 
|  | // STO == 0 and SFO == 0 handled above. | 
|  | if (isPowerOf2_64(STO->getZExtValue()) && | 
|  | isPowerOf2_64(SFO->getZExtValue())) { | 
|  | Value *TrueAnd = InsertNewInstBefore( | 
|  | BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I); | 
|  | Value *FalseAnd = InsertNewInstBefore( | 
|  | BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I); | 
|  | return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSRem(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Instruction *common = commonIRemTransforms(I)) | 
|  | return common; | 
|  |  | 
|  | if (Value *RHSNeg = dyn_castNegVal(Op1)) | 
|  | if (!isa<ConstantInt>(RHSNeg) || | 
|  | cast<ConstantInt>(RHSNeg)->getSExtValue() > 0) { | 
|  | // X % -Y -> X % Y | 
|  | AddUsesToWorkList(I); | 
|  | I.setOperand(1, RHSNeg); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // If the top bits of both operands are zero (i.e. we can prove they are | 
|  | // unsigned inputs), turn this into a urem. | 
|  | uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1); | 
|  | if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { | 
|  | // X srem Y -> X urem Y, iff X and Y don't have sign bit set | 
|  | return BinaryOperator::createURem(Op0, Op1, I.getName()); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFRem(BinaryOperator &I) { | 
|  | return commonRemTransforms(I); | 
|  | } | 
|  |  | 
|  | // isMaxValueMinusOne - return true if this is Max-1 | 
|  | static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) { | 
|  | if (isSigned) { | 
|  | // Calculate 0111111111..11111 | 
|  | unsigned TypeBits = C->getType()->getPrimitiveSizeInBits(); | 
|  | int64_t Val = INT64_MAX;             // All ones | 
|  | Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits... | 
|  | return C->getSExtValue() == Val-1; | 
|  | } | 
|  | return C->getZExtValue() == C->getType()->getBitMask()-1; | 
|  | } | 
|  |  | 
|  | // isMinValuePlusOne - return true if this is Min+1 | 
|  | static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) { | 
|  | if (isSigned) { | 
|  | // Calculate 1111111111000000000000 | 
|  | unsigned TypeBits = C->getType()->getPrimitiveSizeInBits(); | 
|  | int64_t Val = -1;                    // All ones | 
|  | Val <<= TypeBits-1;                  // Shift over to the right spot | 
|  | return C->getSExtValue() == Val+1; | 
|  | } | 
|  | return C->getZExtValue() == 1; // unsigned | 
|  | } | 
|  |  | 
|  | // isOneBitSet - Return true if there is exactly one bit set in the specified | 
|  | // constant. | 
|  | static bool isOneBitSet(const ConstantInt *CI) { | 
|  | uint64_t V = CI->getZExtValue(); | 
|  | return V && (V & (V-1)) == 0; | 
|  | } | 
|  |  | 
|  | #if 0   // Currently unused | 
|  | // isLowOnes - Return true if the constant is of the form 0+1+. | 
|  | static bool isLowOnes(const ConstantInt *CI) { | 
|  | uint64_t V = CI->getZExtValue(); | 
|  |  | 
|  | // There won't be bits set in parts that the type doesn't contain. | 
|  | V &= ConstantInt::getAllOnesValue(CI->getType())->getZExtValue(); | 
|  |  | 
|  | uint64_t U = V+1;  // If it is low ones, this should be a power of two. | 
|  | return U && V && (U & V) == 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // isHighOnes - Return true if the constant is of the form 1+0+. | 
|  | // This is the same as lowones(~X). | 
|  | static bool isHighOnes(const ConstantInt *CI) { | 
|  | uint64_t V = ~CI->getZExtValue(); | 
|  | if (~V == 0) return false;  // 0's does not match "1+" | 
|  |  | 
|  | // There won't be bits set in parts that the type doesn't contain. | 
|  | V &= ConstantInt::getAllOnesValue(CI->getType())->getZExtValue(); | 
|  |  | 
|  | uint64_t U = V+1;  // If it is low ones, this should be a power of two. | 
|  | return U && V && (U & V) == 0; | 
|  | } | 
|  |  | 
|  | /// getICmpCode - Encode a icmp predicate into a three bit mask.  These bits | 
|  | /// are carefully arranged to allow folding of expressions such as: | 
|  | /// | 
|  | ///      (A < B) | (A > B) --> (A != B) | 
|  | /// | 
|  | /// Note that this is only valid if the first and second predicates have the | 
|  | /// same sign. Is illegal to do: (A u< B) | (A s> B) | 
|  | /// | 
|  | /// Three bits are used to represent the condition, as follows: | 
|  | ///   0  A > B | 
|  | ///   1  A == B | 
|  | ///   2  A < B | 
|  | /// | 
|  | /// <=>  Value  Definition | 
|  | /// 000     0   Always false | 
|  | /// 001     1   A >  B | 
|  | /// 010     2   A == B | 
|  | /// 011     3   A >= B | 
|  | /// 100     4   A <  B | 
|  | /// 101     5   A != B | 
|  | /// 110     6   A <= B | 
|  | /// 111     7   Always true | 
|  | /// | 
|  | static unsigned getICmpCode(const ICmpInst *ICI) { | 
|  | switch (ICI->getPredicate()) { | 
|  | // False -> 0 | 
|  | case ICmpInst::ICMP_UGT: return 1;  // 001 | 
|  | case ICmpInst::ICMP_SGT: return 1;  // 001 | 
|  | case ICmpInst::ICMP_EQ:  return 2;  // 010 | 
|  | case ICmpInst::ICMP_UGE: return 3;  // 011 | 
|  | case ICmpInst::ICMP_SGE: return 3;  // 011 | 
|  | case ICmpInst::ICMP_ULT: return 4;  // 100 | 
|  | case ICmpInst::ICMP_SLT: return 4;  // 100 | 
|  | case ICmpInst::ICMP_NE:  return 5;  // 101 | 
|  | case ICmpInst::ICMP_ULE: return 6;  // 110 | 
|  | case ICmpInst::ICMP_SLE: return 6;  // 110 | 
|  | // True -> 7 | 
|  | default: | 
|  | assert(0 && "Invalid ICmp predicate!"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getICmpValue - This is the complement of getICmpCode, which turns an | 
|  | /// opcode and two operands into either a constant true or false, or a brand | 
|  | /// new /// ICmp instruction. The sign is passed in to determine which kind | 
|  | /// of predicate to use in new icmp instructions. | 
|  | static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) { | 
|  | switch (code) { | 
|  | default: assert(0 && "Illegal ICmp code!"); | 
|  | case  0: return ConstantInt::getFalse(); | 
|  | case  1: | 
|  | if (sign) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS); | 
|  | else | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS); | 
|  | case  2: return new ICmpInst(ICmpInst::ICMP_EQ,  LHS, RHS); | 
|  | case  3: | 
|  | if (sign) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS); | 
|  | else | 
|  | return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS); | 
|  | case  4: | 
|  | if (sign) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS); | 
|  | else | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS); | 
|  | case  5: return new ICmpInst(ICmpInst::ICMP_NE,  LHS, RHS); | 
|  | case  6: | 
|  | if (sign) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS); | 
|  | else | 
|  | return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS); | 
|  | case  7: return ConstantInt::getTrue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) { | 
|  | return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) || | 
|  | (ICmpInst::isSignedPredicate(p1) && | 
|  | (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) || | 
|  | (ICmpInst::isSignedPredicate(p2) && | 
|  | (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE)); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) | 
|  | struct FoldICmpLogical { | 
|  | InstCombiner &IC; | 
|  | Value *LHS, *RHS; | 
|  | ICmpInst::Predicate pred; | 
|  | FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI) | 
|  | : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)), | 
|  | pred(ICI->getPredicate()) {} | 
|  | bool shouldApply(Value *V) const { | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(V)) | 
|  | if (PredicatesFoldable(pred, ICI->getPredicate())) | 
|  | return (ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS || | 
|  | ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS); | 
|  | return false; | 
|  | } | 
|  | Instruction *apply(Instruction &Log) const { | 
|  | ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0)); | 
|  | if (ICI->getOperand(0) != LHS) { | 
|  | assert(ICI->getOperand(1) == LHS); | 
|  | ICI->swapOperands();  // Swap the LHS and RHS of the ICmp | 
|  | } | 
|  |  | 
|  | unsigned LHSCode = getICmpCode(ICI); | 
|  | unsigned RHSCode = getICmpCode(cast<ICmpInst>(Log.getOperand(1))); | 
|  | unsigned Code; | 
|  | switch (Log.getOpcode()) { | 
|  | case Instruction::And: Code = LHSCode & RHSCode; break; | 
|  | case Instruction::Or:  Code = LHSCode | RHSCode; break; | 
|  | case Instruction::Xor: Code = LHSCode ^ RHSCode; break; | 
|  | default: assert(0 && "Illegal logical opcode!"); return 0; | 
|  | } | 
|  |  | 
|  | Value *RV = getICmpValue(ICmpInst::isSignedPredicate(pred), Code, LHS, RHS); | 
|  | if (Instruction *I = dyn_cast<Instruction>(RV)) | 
|  | return I; | 
|  | // Otherwise, it's a constant boolean value... | 
|  | return IC.ReplaceInstUsesWith(Log, RV); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where | 
|  | // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is | 
|  | // guaranteed to be either a shift instruction or a binary operator. | 
|  | Instruction *InstCombiner::OptAndOp(Instruction *Op, | 
|  | ConstantInt *OpRHS, | 
|  | ConstantInt *AndRHS, | 
|  | BinaryOperator &TheAnd) { | 
|  | Value *X = Op->getOperand(0); | 
|  | Constant *Together = 0; | 
|  | if (!isa<ShiftInst>(Op)) | 
|  | Together = ConstantExpr::getAnd(AndRHS, OpRHS); | 
|  |  | 
|  | switch (Op->getOpcode()) { | 
|  | case Instruction::Xor: | 
|  | if (Op->hasOneUse()) { | 
|  | // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) | 
|  | std::string OpName = Op->getName(); Op->setName(""); | 
|  | Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName); | 
|  | InsertNewInstBefore(And, TheAnd); | 
|  | return BinaryOperator::createXor(And, Together); | 
|  | } | 
|  | break; | 
|  | case Instruction::Or: | 
|  | if (Together == AndRHS) // (X | C) & C --> C | 
|  | return ReplaceInstUsesWith(TheAnd, AndRHS); | 
|  |  | 
|  | if (Op->hasOneUse() && Together != OpRHS) { | 
|  | // (X | C1) & C2 --> (X | (C1&C2)) & C2 | 
|  | std::string Op0Name = Op->getName(); Op->setName(""); | 
|  | Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name); | 
|  | InsertNewInstBefore(Or, TheAnd); | 
|  | return BinaryOperator::createAnd(Or, AndRHS); | 
|  | } | 
|  | break; | 
|  | case Instruction::Add: | 
|  | if (Op->hasOneUse()) { | 
|  | // Adding a one to a single bit bit-field should be turned into an XOR | 
|  | // of the bit.  First thing to check is to see if this AND is with a | 
|  | // single bit constant. | 
|  | uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getZExtValue(); | 
|  |  | 
|  | // Clear bits that are not part of the constant. | 
|  | AndRHSV &= AndRHS->getType()->getBitMask(); | 
|  |  | 
|  | // If there is only one bit set... | 
|  | if (isOneBitSet(cast<ConstantInt>(AndRHS))) { | 
|  | // Ok, at this point, we know that we are masking the result of the | 
|  | // ADD down to exactly one bit.  If the constant we are adding has | 
|  | // no bits set below this bit, then we can eliminate the ADD. | 
|  | uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getZExtValue(); | 
|  |  | 
|  | // Check to see if any bits below the one bit set in AndRHSV are set. | 
|  | if ((AddRHS & (AndRHSV-1)) == 0) { | 
|  | // If not, the only thing that can effect the output of the AND is | 
|  | // the bit specified by AndRHSV.  If that bit is set, the effect of | 
|  | // the XOR is to toggle the bit.  If it is clear, then the ADD has | 
|  | // no effect. | 
|  | if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop | 
|  | TheAnd.setOperand(0, X); | 
|  | return &TheAnd; | 
|  | } else { | 
|  | std::string Name = Op->getName(); Op->setName(""); | 
|  | // Pull the XOR out of the AND. | 
|  | Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name); | 
|  | InsertNewInstBefore(NewAnd, TheAnd); | 
|  | return BinaryOperator::createXor(NewAnd, AndRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Shl: { | 
|  | // We know that the AND will not produce any of the bits shifted in, so if | 
|  | // the anded constant includes them, clear them now! | 
|  | // | 
|  | Constant *AllOne = ConstantInt::getAllOnesValue(AndRHS->getType()); | 
|  | Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS); | 
|  | Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask); | 
|  |  | 
|  | if (CI == ShlMask) {   // Masking out bits that the shift already masks | 
|  | return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and. | 
|  | } else if (CI != AndRHS) {                  // Reducing bits set in and. | 
|  | TheAnd.setOperand(1, CI); | 
|  | return &TheAnd; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::LShr: | 
|  | { | 
|  | // We know that the AND will not produce any of the bits shifted in, so if | 
|  | // the anded constant includes them, clear them now!  This only applies to | 
|  | // unsigned shifts, because a signed shr may bring in set bits! | 
|  | // | 
|  | Constant *AllOne = ConstantInt::getAllOnesValue(AndRHS->getType()); | 
|  | Constant *ShrMask = ConstantExpr::getLShr(AllOne, OpRHS); | 
|  | Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask); | 
|  |  | 
|  | if (CI == ShrMask) {   // Masking out bits that the shift already masks. | 
|  | return ReplaceInstUsesWith(TheAnd, Op); | 
|  | } else if (CI != AndRHS) { | 
|  | TheAnd.setOperand(1, CI);  // Reduce bits set in and cst. | 
|  | return &TheAnd; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::AShr: | 
|  | // Signed shr. | 
|  | // See if this is shifting in some sign extension, then masking it out | 
|  | // with an and. | 
|  | if (Op->hasOneUse()) { | 
|  | Constant *AllOne = ConstantInt::getAllOnesValue(AndRHS->getType()); | 
|  | Constant *ShrMask = ConstantExpr::getLShr(AllOne, OpRHS); | 
|  | Constant *C = ConstantExpr::getAnd(AndRHS, ShrMask); | 
|  | if (C == AndRHS) {          // Masking out bits shifted in. | 
|  | // (Val ashr C1) & C2 -> (Val lshr C1) & C2 | 
|  | // Make the argument unsigned. | 
|  | Value *ShVal = Op->getOperand(0); | 
|  | ShVal = InsertNewInstBefore(new ShiftInst(Instruction::LShr, ShVal, | 
|  | OpRHS, Op->getName()), TheAnd); | 
|  | return BinaryOperator::createAnd(ShVal, AndRHS, TheAnd.getName()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is | 
|  | /// true, otherwise (V < Lo || V >= Hi).  In pratice, we emit the more efficient | 
|  | /// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates | 
|  | /// whether to treat the V, Lo and HI as signed or not. IB is the location to | 
|  | /// insert new instructions. | 
|  | Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, | 
|  | bool isSigned, bool Inside, | 
|  | Instruction &IB) { | 
|  | assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? | 
|  | ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() && | 
|  | "Lo is not <= Hi in range emission code!"); | 
|  |  | 
|  | if (Inside) { | 
|  | if (Lo == Hi)  // Trivially false. | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, V, V); | 
|  |  | 
|  | // V >= Min && V < Hi --> V < Hi | 
|  | if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { | 
|  | ICmpInst::Predicate pred = (isSigned ? | 
|  | ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT); | 
|  | return new ICmpInst(pred, V, Hi); | 
|  | } | 
|  |  | 
|  | // Emit V-Lo <u Hi-Lo | 
|  | Constant *NegLo = ConstantExpr::getNeg(Lo); | 
|  | Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off"); | 
|  | InsertNewInstBefore(Add, IB); | 
|  | Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi); | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound); | 
|  | } | 
|  |  | 
|  | if (Lo == Hi)  // Trivially true. | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, V, V); | 
|  |  | 
|  | // V < Min || V >= Hi ->'V > Hi-1' | 
|  | Hi = SubOne(cast<ConstantInt>(Hi)); | 
|  | if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { | 
|  | ICmpInst::Predicate pred = (isSigned ? | 
|  | ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); | 
|  | return new ICmpInst(pred, V, Hi); | 
|  | } | 
|  |  | 
|  | // Emit V-Lo > Hi-1-Lo | 
|  | Constant *NegLo = ConstantExpr::getNeg(Lo); | 
|  | Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off"); | 
|  | InsertNewInstBefore(Add, IB); | 
|  | Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi); | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound); | 
|  | } | 
|  |  | 
|  | // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with | 
|  | // any number of 0s on either side.  The 1s are allowed to wrap from LSB to | 
|  | // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is | 
|  | // not, since all 1s are not contiguous. | 
|  | static bool isRunOfOnes(ConstantInt *Val, unsigned &MB, unsigned &ME) { | 
|  | uint64_t V = Val->getZExtValue(); | 
|  | if (!isShiftedMask_64(V)) return false; | 
|  |  | 
|  | // look for the first zero bit after the run of ones | 
|  | MB = 64-CountLeadingZeros_64((V - 1) ^ V); | 
|  | // look for the first non-zero bit | 
|  | ME = 64-CountLeadingZeros_64(V); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask, | 
|  | /// where isSub determines whether the operator is a sub.  If we can fold one of | 
|  | /// the following xforms: | 
|  | /// | 
|  | /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask | 
|  | /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 | 
|  | /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 | 
|  | /// | 
|  | /// return (A +/- B). | 
|  | /// | 
|  | Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, | 
|  | ConstantInt *Mask, bool isSub, | 
|  | Instruction &I) { | 
|  | Instruction *LHSI = dyn_cast<Instruction>(LHS); | 
|  | if (!LHSI || LHSI->getNumOperands() != 2 || | 
|  | !isa<ConstantInt>(LHSI->getOperand(1))) return 0; | 
|  |  | 
|  | ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1)); | 
|  |  | 
|  | switch (LHSI->getOpcode()) { | 
|  | default: return 0; | 
|  | case Instruction::And: | 
|  | if (ConstantExpr::getAnd(N, Mask) == Mask) { | 
|  | // If the AndRHS is a power of two minus one (0+1+), this is simple. | 
|  | if ((Mask->getZExtValue() & Mask->getZExtValue()+1) == 0) | 
|  | break; | 
|  |  | 
|  | // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+ | 
|  | // part, we don't need any explicit masks to take them out of A.  If that | 
|  | // is all N is, ignore it. | 
|  | unsigned MB, ME; | 
|  | if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive | 
|  | uint64_t Mask = cast<IntegerType>(RHS->getType())->getBitMask(); | 
|  | Mask >>= 64-MB+1; | 
|  | if (MaskedValueIsZero(RHS, Mask)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0 | 
|  | if ((Mask->getZExtValue() & Mask->getZExtValue()+1) == 0 && | 
|  | ConstantExpr::getAnd(N, Mask)->isNullValue()) | 
|  | break; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *New; | 
|  | if (isSub) | 
|  | New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold"); | 
|  | else | 
|  | New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold"); | 
|  | return InsertNewInstBefore(New, I); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitAnd(BinaryOperator &I) { | 
|  | bool Changed = SimplifyCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (isa<UndefValue>(Op1))                         // X & undef -> 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | // and X, X = X | 
|  | if (Op0 == Op1) | 
|  | return ReplaceInstUsesWith(I, Op1); | 
|  |  | 
|  | // See if we can simplify any instructions used by the instruction whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | uint64_t KnownZero, KnownOne; | 
|  | if (!isa<PackedType>(I.getType())) { | 
|  | if (SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(), | 
|  | KnownZero, KnownOne)) | 
|  | return &I; | 
|  | } else { | 
|  | if (ConstantPacked *CP = dyn_cast<ConstantPacked>(Op1)) { | 
|  | if (CP->isAllOnesValue()) | 
|  | return ReplaceInstUsesWith(I, I.getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | uint64_t AndRHSMask = AndRHS->getZExtValue(); | 
|  | uint64_t TypeMask = cast<IntegerType>(Op0->getType())->getBitMask(); | 
|  | uint64_t NotAndRHS = AndRHSMask^TypeMask; | 
|  |  | 
|  | // Optimize a variety of ((val OP C1) & C2) combinations... | 
|  | if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) { | 
|  | Instruction *Op0I = cast<Instruction>(Op0); | 
|  | Value *Op0LHS = Op0I->getOperand(0); | 
|  | Value *Op0RHS = Op0I->getOperand(1); | 
|  | switch (Op0I->getOpcode()) { | 
|  | case Instruction::Xor: | 
|  | case Instruction::Or: | 
|  | // If the mask is only needed on one incoming arm, push it up. | 
|  | if (Op0I->hasOneUse()) { | 
|  | if (MaskedValueIsZero(Op0LHS, NotAndRHS)) { | 
|  | // Not masking anything out for the LHS, move to RHS. | 
|  | Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS, | 
|  | Op0RHS->getName()+".masked"); | 
|  | InsertNewInstBefore(NewRHS, I); | 
|  | return BinaryOperator::create( | 
|  | cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS); | 
|  | } | 
|  | if (!isa<Constant>(Op0RHS) && | 
|  | MaskedValueIsZero(Op0RHS, NotAndRHS)) { | 
|  | // Not masking anything out for the RHS, move to LHS. | 
|  | Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS, | 
|  | Op0LHS->getName()+".masked"); | 
|  | InsertNewInstBefore(NewLHS, I); | 
|  | return BinaryOperator::create( | 
|  | cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | case Instruction::Add: | 
|  | // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS. | 
|  | // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 | 
|  | // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 | 
|  | if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I)) | 
|  | return BinaryOperator::createAnd(V, AndRHS); | 
|  | if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I)) | 
|  | return BinaryOperator::createAnd(V, AndRHS);  // Add commutes | 
|  | break; | 
|  |  | 
|  | case Instruction::Sub: | 
|  | // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS. | 
|  | // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 | 
|  | // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 | 
|  | if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I)) | 
|  | return BinaryOperator::createAnd(V, AndRHS); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) | 
|  | if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) | 
|  | return Res; | 
|  | } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) { | 
|  | // If this is an integer truncation or change from signed-to-unsigned, and | 
|  | // if the source is an and/or with immediate, transform it.  This | 
|  | // frequently occurs for bitfield accesses. | 
|  | if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) { | 
|  | if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) && | 
|  | CastOp->getNumOperands() == 2) | 
|  | if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) | 
|  | if (CastOp->getOpcode() == Instruction::And) { | 
|  | // Change: and (cast (and X, C1) to T), C2 | 
|  | // into  : and (cast X to T), trunc_or_bitcast(C1)&C2 | 
|  | // This will fold the two constants together, which may allow | 
|  | // other simplifications. | 
|  | Instruction *NewCast = CastInst::createTruncOrBitCast( | 
|  | CastOp->getOperand(0), I.getType(), | 
|  | CastOp->getName()+".shrunk"); | 
|  | NewCast = InsertNewInstBefore(NewCast, I); | 
|  | // trunc_or_bitcast(C1)&C2 | 
|  | Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); | 
|  | C3 = ConstantExpr::getAnd(C3, AndRHS); | 
|  | return BinaryOperator::createAnd(NewCast, C3); | 
|  | } else if (CastOp->getOpcode() == Instruction::Or) { | 
|  | // Change: and (cast (or X, C1) to T), C2 | 
|  | // into  : trunc(C1)&C2 iff trunc(C1)&C2 == C2 | 
|  | Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); | 
|  | if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)   // trunc(C1)&C2 | 
|  | return ReplaceInstUsesWith(I, AndRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to fold constant and into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | Value *Op0NotVal = dyn_castNotVal(Op0); | 
|  | Value *Op1NotVal = dyn_castNotVal(Op1); | 
|  |  | 
|  | if (Op0NotVal == Op1 || Op1NotVal == Op0)  // A & ~A  == ~A & A == 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | // (~A & ~B) == (~(A | B)) - De Morgan's Law | 
|  | if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) { | 
|  | Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal, | 
|  | I.getName()+".demorgan"); | 
|  | InsertNewInstBefore(Or, I); | 
|  | return BinaryOperator::createNot(Or); | 
|  | } | 
|  |  | 
|  | { | 
|  | Value *A = 0, *B = 0; | 
|  | if (match(Op0, m_Or(m_Value(A), m_Value(B)))) | 
|  | if (A == Op1 || B == Op1)    // (A | ?) & A  --> A | 
|  | return ReplaceInstUsesWith(I, Op1); | 
|  | if (match(Op1, m_Or(m_Value(A), m_Value(B)))) | 
|  | if (A == Op0 || B == Op0)    // A & (A | ?)  --> A | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  |  | 
|  | if (Op0->hasOneUse() && | 
|  | match(Op0, m_Xor(m_Value(A), m_Value(B)))) { | 
|  | if (A == Op1) {                                // (A^B)&A -> A&(A^B) | 
|  | I.swapOperands();     // Simplify below | 
|  | std::swap(Op0, Op1); | 
|  | } else if (B == Op1) {                         // (A^B)&B -> B&(B^A) | 
|  | cast<BinaryOperator>(Op0)->swapOperands(); | 
|  | I.swapOperands();     // Simplify below | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  | } | 
|  | if (Op1->hasOneUse() && | 
|  | match(Op1, m_Xor(m_Value(A), m_Value(B)))) { | 
|  | if (B == Op0) {                                // B&(A^B) -> B&(B^A) | 
|  | cast<BinaryOperator>(Op1)->swapOperands(); | 
|  | std::swap(A, B); | 
|  | } | 
|  | if (A == Op0) {                                // A&(A^B) -> A & ~B | 
|  | Instruction *NotB = BinaryOperator::createNot(B, "tmp"); | 
|  | InsertNewInstBefore(NotB, I); | 
|  | return BinaryOperator::createAnd(A, NotB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) { | 
|  | // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) | 
|  | if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) | 
|  | return R; | 
|  |  | 
|  | Value *LHSVal, *RHSVal; | 
|  | ConstantInt *LHSCst, *RHSCst; | 
|  | ICmpInst::Predicate LHSCC, RHSCC; | 
|  | if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst)))) | 
|  | if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst)))) | 
|  | if (LHSVal == RHSVal &&    // Found (X icmp C1) & (X icmp C2) | 
|  | // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere. | 
|  | LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE && | 
|  | RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE && | 
|  | LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE && | 
|  | RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE) { | 
|  | // Ensure that the larger constant is on the RHS. | 
|  | ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ? | 
|  | ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | 
|  | Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst); | 
|  | ICmpInst *LHS = cast<ICmpInst>(Op0); | 
|  | if (cast<ConstantInt>(Cmp)->getZExtValue()) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(LHSCst, RHSCst); | 
|  | std::swap(LHSCC, RHSCC); | 
|  | } | 
|  |  | 
|  | // At this point, we know we have have two icmp instructions | 
|  | // comparing a value against two constants and and'ing the result | 
|  | // together.  Because of the above check, we know that we only have | 
|  | // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know | 
|  | // (from the FoldICmpLogical check above), that the two constants | 
|  | // are not equal and that the larger constant is on the RHS | 
|  | assert(LHSCst != RHSCst && "Compares not folded above?"); | 
|  |  | 
|  | switch (LHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | switch (RHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X == 13 & X == 15) -> false | 
|  | case ICmpInst::ICMP_UGT:        // (X == 13 & X >  15) -> false | 
|  | case ICmpInst::ICMP_SGT:        // (X == 13 & X >  15) -> false | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13 | 
|  | case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13 | 
|  | case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | } | 
|  | case ICmpInst::ICMP_NE: | 
|  | switch (RHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_ULT: | 
|  | if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13 | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst); | 
|  | break;                        // (X != 13 & X u< 15) -> no change | 
|  | case ICmpInst::ICMP_SLT: | 
|  | if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13 | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst); | 
|  | break;                        // (X != 13 & X s< 15) -> no change | 
|  | case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15 | 
|  | case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15 | 
|  | case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15 | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1 | 
|  | Constant *AddCST = ConstantExpr::getNeg(LHSCst); | 
|  | Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST, | 
|  | LHSVal->getName()+".off"); | 
|  | InsertNewInstBefore(Add, I); | 
|  | return new ICmpInst(ICmpInst::ICMP_UGT, Add, | 
|  | ConstantInt::get(Add->getType(), 1)); | 
|  | } | 
|  | break;                        // (X != 13 & X != 15) -> no change | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | switch (RHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false | 
|  | case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13 | 
|  | case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | switch (RHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X s< 13 & X == 15) -> false | 
|  | case ICmpInst::ICMP_SGT:        // (X s< 13 & X s> 15) -> false | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13 | 
|  | case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | switch (RHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X > 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15 | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14 | 
|  | return new ICmpInst(LHSCC, LHSVal, RHSCst); | 
|  | break;                        // (X u> 13 & X != 15) -> no change | 
|  | case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) ->(X-14) <u 1 | 
|  | return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false, | 
|  | true, I); | 
|  | case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | switch (RHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X s> 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15 | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14 | 
|  | return new ICmpInst(LHSCC, LHSVal, RHSCst); | 
|  | break;                        // (X s> 13 & X != 15) -> no change | 
|  | case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) ->(X-14) s< 1 | 
|  | return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true, | 
|  | true, I); | 
|  | case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (and (cast A), (cast B)) -> (cast (and A, B)) | 
|  | if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) | 
|  | if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) | 
|  | if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ? | 
|  | const Type *SrcTy = Op0C->getOperand(0)->getType(); | 
|  | if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && | 
|  | // Only do this if the casts both really cause code to be generated. | 
|  | ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), | 
|  | I.getType(), TD) && | 
|  | ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), | 
|  | I.getType(), TD)) { | 
|  | Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0), | 
|  | Op1C->getOperand(0), | 
|  | I.getName()); | 
|  | InsertNewInstBefore(NewOp, I); | 
|  | return CastInst::create(Op0C->getOpcode(), NewOp, I.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts. | 
|  | if (ShiftInst *SI1 = dyn_cast<ShiftInst>(Op1)) { | 
|  | if (ShiftInst *SI0 = dyn_cast<ShiftInst>(Op0)) | 
|  | if (SI0->getOpcode() == SI1->getOpcode() && | 
|  | SI0->getOperand(1) == SI1->getOperand(1) && | 
|  | (SI0->hasOneUse() || SI1->hasOneUse())) { | 
|  | Instruction *NewOp = | 
|  | InsertNewInstBefore(BinaryOperator::createAnd(SI0->getOperand(0), | 
|  | SI1->getOperand(0), | 
|  | SI0->getName()), I); | 
|  | return new ShiftInst(SI1->getOpcode(), NewOp, SI1->getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | /// CollectBSwapParts - Look to see if the specified value defines a single byte | 
|  | /// in the result.  If it does, and if the specified byte hasn't been filled in | 
|  | /// yet, fill it in and return false. | 
|  | static bool CollectBSwapParts(Value *V, std::vector<Value*> &ByteValues) { | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (I == 0) return true; | 
|  |  | 
|  | // If this is an or instruction, it is an inner node of the bswap. | 
|  | if (I->getOpcode() == Instruction::Or) | 
|  | return CollectBSwapParts(I->getOperand(0), ByteValues) || | 
|  | CollectBSwapParts(I->getOperand(1), ByteValues); | 
|  |  | 
|  | // If this is a shift by a constant int, and it is "24", then its operand | 
|  | // defines a byte.  We only handle unsigned types here. | 
|  | if (isa<ShiftInst>(I) && isa<ConstantInt>(I->getOperand(1))) { | 
|  | // Not shifting the entire input by N-1 bytes? | 
|  | if (cast<ConstantInt>(I->getOperand(1))->getZExtValue() != | 
|  | 8*(ByteValues.size()-1)) | 
|  | return true; | 
|  |  | 
|  | unsigned DestNo; | 
|  | if (I->getOpcode() == Instruction::Shl) { | 
|  | // X << 24 defines the top byte with the lowest of the input bytes. | 
|  | DestNo = ByteValues.size()-1; | 
|  | } else { | 
|  | // X >>u 24 defines the low byte with the highest of the input bytes. | 
|  | DestNo = 0; | 
|  | } | 
|  |  | 
|  | // If the destination byte value is already defined, the values are or'd | 
|  | // together, which isn't a bswap (unless it's an or of the same bits). | 
|  | if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0)) | 
|  | return true; | 
|  | ByteValues[DestNo] = I->getOperand(0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, we can only handle and(shift X, imm), imm).  Bail out of if we | 
|  | // don't have this. | 
|  | Value *Shift = 0, *ShiftLHS = 0; | 
|  | ConstantInt *AndAmt = 0, *ShiftAmt = 0; | 
|  | if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) || | 
|  | !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt)))) | 
|  | return true; | 
|  | Instruction *SI = cast<Instruction>(Shift); | 
|  |  | 
|  | // Make sure that the shift amount is by a multiple of 8 and isn't too big. | 
|  | if (ShiftAmt->getZExtValue() & 7 || | 
|  | ShiftAmt->getZExtValue() > 8*ByteValues.size()) | 
|  | return true; | 
|  |  | 
|  | // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc. | 
|  | unsigned DestByte; | 
|  | for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte) | 
|  | if (AndAmt->getZExtValue() == uint64_t(0xFF) << 8*DestByte) | 
|  | break; | 
|  | // Unknown mask for bswap. | 
|  | if (DestByte == ByteValues.size()) return true; | 
|  |  | 
|  | unsigned ShiftBytes = ShiftAmt->getZExtValue()/8; | 
|  | unsigned SrcByte; | 
|  | if (SI->getOpcode() == Instruction::Shl) | 
|  | SrcByte = DestByte - ShiftBytes; | 
|  | else | 
|  | SrcByte = DestByte + ShiftBytes; | 
|  |  | 
|  | // If the SrcByte isn't a bswapped value from the DestByte, reject it. | 
|  | if (SrcByte != ByteValues.size()-DestByte-1) | 
|  | return true; | 
|  |  | 
|  | // If the destination byte value is already defined, the values are or'd | 
|  | // together, which isn't a bswap (unless it's an or of the same bits). | 
|  | if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0)) | 
|  | return true; | 
|  | ByteValues[DestByte] = SI->getOperand(0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom. | 
|  | /// If so, insert the new bswap intrinsic and return it. | 
|  | Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) { | 
|  | // We can only handle bswap of unsigned integers, and cannot bswap one byte. | 
|  | if (I.getType() == Type::Int8Ty) | 
|  | return 0; | 
|  |  | 
|  | /// ByteValues - For each byte of the result, we keep track of which value | 
|  | /// defines each byte. | 
|  | std::vector<Value*> ByteValues; | 
|  | ByteValues.resize(TD->getTypeSize(I.getType())); | 
|  |  | 
|  | // Try to find all the pieces corresponding to the bswap. | 
|  | if (CollectBSwapParts(I.getOperand(0), ByteValues) || | 
|  | CollectBSwapParts(I.getOperand(1), ByteValues)) | 
|  | return 0; | 
|  |  | 
|  | // Check to see if all of the bytes come from the same value. | 
|  | Value *V = ByteValues[0]; | 
|  | if (V == 0) return 0;  // Didn't find a byte?  Must be zero. | 
|  |  | 
|  | // Check to make sure that all of the bytes come from the same value. | 
|  | for (unsigned i = 1, e = ByteValues.size(); i != e; ++i) | 
|  | if (ByteValues[i] != V) | 
|  | return 0; | 
|  |  | 
|  | // If they do then *success* we can turn this into a bswap.  Figure out what | 
|  | // bswap to make it into. | 
|  | Module *M = I.getParent()->getParent()->getParent(); | 
|  | const char *FnName = 0; | 
|  | if (I.getType() == Type::Int16Ty) | 
|  | FnName = "llvm.bswap.i16"; | 
|  | else if (I.getType() == Type::Int32Ty) | 
|  | FnName = "llvm.bswap.i32"; | 
|  | else if (I.getType() == Type::Int64Ty) | 
|  | FnName = "llvm.bswap.i64"; | 
|  | else | 
|  | assert(0 && "Unknown integer type!"); | 
|  | Constant *F = M->getOrInsertFunction(FnName, I.getType(), I.getType(), NULL); | 
|  | return new CallInst(F, V); | 
|  | } | 
|  |  | 
|  |  | 
|  | Instruction *InstCombiner::visitOr(BinaryOperator &I) { | 
|  | bool Changed = SimplifyCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (isa<UndefValue>(Op1)) | 
|  | return ReplaceInstUsesWith(I,                         // X | undef -> -1 | 
|  | ConstantInt::getAllOnesValue(I.getType())); | 
|  |  | 
|  | // or X, X = X | 
|  | if (Op0 == Op1) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  |  | 
|  | // See if we can simplify any instructions used by the instruction whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | uint64_t KnownZero, KnownOne; | 
|  | if (!isa<PackedType>(I.getType()) && | 
|  | SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(), | 
|  | KnownZero, KnownOne)) | 
|  | return &I; | 
|  |  | 
|  | // or X, -1 == -1 | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | ConstantInt *C1 = 0; Value *X = 0; | 
|  | // (X & C1) | C2 --> (X | C2) & (C1|C2) | 
|  | if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) { | 
|  | Instruction *Or = BinaryOperator::createOr(X, RHS, Op0->getName()); | 
|  | Op0->setName(""); | 
|  | InsertNewInstBefore(Or, I); | 
|  | return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1)); | 
|  | } | 
|  |  | 
|  | // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2) | 
|  | if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) { | 
|  | std::string Op0Name = Op0->getName(); Op0->setName(""); | 
|  | Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name); | 
|  | InsertNewInstBefore(Or, I); | 
|  | return BinaryOperator::createXor(Or, | 
|  | ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS))); | 
|  | } | 
|  |  | 
|  | // Try to fold constant and into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | Value *A = 0, *B = 0; | 
|  | ConstantInt *C1 = 0, *C2 = 0; | 
|  |  | 
|  | if (match(Op0, m_And(m_Value(A), m_Value(B)))) | 
|  | if (A == Op1 || B == Op1)    // (A & ?) | A  --> A | 
|  | return ReplaceInstUsesWith(I, Op1); | 
|  | if (match(Op1, m_And(m_Value(A), m_Value(B)))) | 
|  | if (A == Op0 || B == Op0)    // A | (A & ?)  --> A | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  |  | 
|  | // (A | B) | C  and  A | (B | C)                  -> bswap if possible. | 
|  | // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible. | 
|  | if (match(Op0, m_Or(m_Value(), m_Value())) || | 
|  | match(Op1, m_Or(m_Value(), m_Value())) || | 
|  | (match(Op0, m_Shift(m_Value(), m_Value())) && | 
|  | match(Op1, m_Shift(m_Value(), m_Value())))) { | 
|  | if (Instruction *BSwap = MatchBSwap(I)) | 
|  | return BSwap; | 
|  | } | 
|  |  | 
|  | // (X^C)|Y -> (X|Y)^C iff Y&C == 0 | 
|  | if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) && | 
|  | MaskedValueIsZero(Op1, C1->getZExtValue())) { | 
|  | Instruction *NOr = BinaryOperator::createOr(A, Op1, Op0->getName()); | 
|  | Op0->setName(""); | 
|  | return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1); | 
|  | } | 
|  |  | 
|  | // Y|(X^C) -> (X|Y)^C iff Y&C == 0 | 
|  | if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) && | 
|  | MaskedValueIsZero(Op0, C1->getZExtValue())) { | 
|  | Instruction *NOr = BinaryOperator::createOr(A, Op0, Op1->getName()); | 
|  | Op0->setName(""); | 
|  | return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1); | 
|  | } | 
|  |  | 
|  | // (A & C1)|(B & C2) | 
|  | if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) && | 
|  | match(Op1, m_And(m_Value(B), m_ConstantInt(C2)))) { | 
|  |  | 
|  | if (A == B)  // (A & C1)|(A & C2) == A & (C1|C2) | 
|  | return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2)); | 
|  |  | 
|  |  | 
|  | // If we have: ((V + N) & C1) | (V & C2) | 
|  | // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 | 
|  | // replace with V+N. | 
|  | if (C1 == ConstantExpr::getNot(C2)) { | 
|  | Value *V1 = 0, *V2 = 0; | 
|  | if ((C2->getZExtValue() & (C2->getZExtValue()+1)) == 0 && // C2 == 0+1+ | 
|  | match(A, m_Add(m_Value(V1), m_Value(V2)))) { | 
|  | // Add commutes, try both ways. | 
|  | if (V1 == B && MaskedValueIsZero(V2, C2->getZExtValue())) | 
|  | return ReplaceInstUsesWith(I, A); | 
|  | if (V2 == B && MaskedValueIsZero(V1, C2->getZExtValue())) | 
|  | return ReplaceInstUsesWith(I, A); | 
|  | } | 
|  | // Or commutes, try both ways. | 
|  | if ((C1->getZExtValue() & (C1->getZExtValue()+1)) == 0 && | 
|  | match(B, m_Add(m_Value(V1), m_Value(V2)))) { | 
|  | // Add commutes, try both ways. | 
|  | if (V1 == A && MaskedValueIsZero(V2, C1->getZExtValue())) | 
|  | return ReplaceInstUsesWith(I, B); | 
|  | if (V2 == A && MaskedValueIsZero(V1, C1->getZExtValue())) | 
|  | return ReplaceInstUsesWith(I, B); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts. | 
|  | if (ShiftInst *SI1 = dyn_cast<ShiftInst>(Op1)) { | 
|  | if (ShiftInst *SI0 = dyn_cast<ShiftInst>(Op0)) | 
|  | if (SI0->getOpcode() == SI1->getOpcode() && | 
|  | SI0->getOperand(1) == SI1->getOperand(1) && | 
|  | (SI0->hasOneUse() || SI1->hasOneUse())) { | 
|  | Instruction *NewOp = | 
|  | InsertNewInstBefore(BinaryOperator::createOr(SI0->getOperand(0), | 
|  | SI1->getOperand(0), | 
|  | SI0->getName()), I); | 
|  | return new ShiftInst(SI1->getOpcode(), NewOp, SI1->getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match(Op0, m_Not(m_Value(A)))) {   // ~A | Op1 | 
|  | if (A == Op1)   // ~A | A == -1 | 
|  | return ReplaceInstUsesWith(I, | 
|  | ConstantInt::getAllOnesValue(I.getType())); | 
|  | } else { | 
|  | A = 0; | 
|  | } | 
|  | // Note, A is still live here! | 
|  | if (match(Op1, m_Not(m_Value(B)))) {   // Op0 | ~B | 
|  | if (Op0 == B) | 
|  | return ReplaceInstUsesWith(I, | 
|  | ConstantInt::getAllOnesValue(I.getType())); | 
|  |  | 
|  | // (~A | ~B) == (~(A & B)) - De Morgan's Law | 
|  | if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) { | 
|  | Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B, | 
|  | I.getName()+".demorgan"), I); | 
|  | return BinaryOperator::createNot(And); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) | 
|  | if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) { | 
|  | if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) | 
|  | return R; | 
|  |  | 
|  | Value *LHSVal, *RHSVal; | 
|  | ConstantInt *LHSCst, *RHSCst; | 
|  | ICmpInst::Predicate LHSCC, RHSCC; | 
|  | if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst)))) | 
|  | if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst)))) | 
|  | if (LHSVal == RHSVal &&    // Found (X icmp C1) | (X icmp C2) | 
|  | // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere. | 
|  | LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE && | 
|  | RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE && | 
|  | LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE && | 
|  | RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE) { | 
|  | // Ensure that the larger constant is on the RHS. | 
|  | ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ? | 
|  | ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | 
|  | Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst); | 
|  | ICmpInst *LHS = cast<ICmpInst>(Op0); | 
|  | if (cast<ConstantInt>(Cmp)->getZExtValue()) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(LHSCst, RHSCst); | 
|  | std::swap(LHSCC, RHSCC); | 
|  | } | 
|  |  | 
|  | // At this point, we know we have have two icmp instructions | 
|  | // comparing a value against two constants and or'ing the result | 
|  | // together.  Because of the above check, we know that we only have | 
|  | // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the | 
|  | // FoldICmpLogical check above), that the two constants are not | 
|  | // equal. | 
|  | assert(LHSCst != RHSCst && "Compares not folded above?"); | 
|  |  | 
|  | switch (LHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | switch (RHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2 | 
|  | Constant *AddCST = ConstantExpr::getNeg(LHSCst); | 
|  | Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST, | 
|  | LHSVal->getName()+".off"); | 
|  | InsertNewInstBefore(Add, I); | 
|  | AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst); | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST); | 
|  | } | 
|  | break;                         // (X == 13 | X == 15) -> no change | 
|  | case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change | 
|  | case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15 | 
|  | case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15 | 
|  | case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15 | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | switch (RHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13 | 
|  | case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13 | 
|  | case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true | 
|  | case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true | 
|  | case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | switch (RHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) ->(X-13) u> 2 | 
|  | return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, | 
|  | false, I); | 
|  | case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15 | 
|  | case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15 | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | switch (RHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) ->(X-13) s> 2 | 
|  | return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true, | 
|  | false, I); | 
|  | case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15 | 
|  | case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15 | 
|  | return ReplaceInstUsesWith(I, RHS); | 
|  | case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | switch (RHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13 | 
|  | case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true | 
|  | case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | switch (RHSCC) { | 
|  | default: assert(0 && "Unknown integer condition code!"); | 
|  | case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13 | 
|  | case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13 | 
|  | return ReplaceInstUsesWith(I, LHS); | 
|  | case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change | 
|  | break; | 
|  | case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true | 
|  | case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (or (cast A), (cast B)) -> (cast (or A, B)) | 
|  | if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) | 
|  | if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) | 
|  | if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ? | 
|  | const Type *SrcTy = Op0C->getOperand(0)->getType(); | 
|  | if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && | 
|  | // Only do this if the casts both really cause code to be generated. | 
|  | ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), | 
|  | I.getType(), TD) && | 
|  | ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), | 
|  | I.getType(), TD)) { | 
|  | Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0), | 
|  | Op1C->getOperand(0), | 
|  | I.getName()); | 
|  | InsertNewInstBefore(NewOp, I); | 
|  | return CastInst::create(Op0C->getOpcode(), NewOp, I.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | // XorSelf - Implements: X ^ X --> 0 | 
|  | struct XorSelf { | 
|  | Value *RHS; | 
|  | XorSelf(Value *rhs) : RHS(rhs) {} | 
|  | bool shouldApply(Value *LHS) const { return LHS == RHS; } | 
|  | Instruction *apply(BinaryOperator &Xor) const { | 
|  | return &Xor; | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | Instruction *InstCombiner::visitXor(BinaryOperator &I) { | 
|  | bool Changed = SimplifyCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (isa<UndefValue>(Op1)) | 
|  | return ReplaceInstUsesWith(I, Op1);  // X ^ undef -> undef | 
|  |  | 
|  | // xor X, X = 0, even if X is nested in a sequence of Xor's. | 
|  | if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) { | 
|  | assert(Result == &I && "AssociativeOpt didn't work?"); | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | } | 
|  |  | 
|  | // See if we can simplify any instructions used by the instruction whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | uint64_t KnownZero, KnownOne; | 
|  | if (!isa<PackedType>(I.getType()) && | 
|  | SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(), | 
|  | KnownZero, KnownOne)) | 
|  | return &I; | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // xor (icmp A, B), true = not (icmp A, B) = !icmp A, B | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0)) | 
|  | if (RHS == ConstantInt::getTrue() && ICI->hasOneUse()) | 
|  | return new ICmpInst(ICI->getInversePredicate(), | 
|  | ICI->getOperand(0), ICI->getOperand(1)); | 
|  |  | 
|  | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { | 
|  | // ~(c-X) == X-c-1 == X+(-c-1) | 
|  | if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue()) | 
|  | if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) { | 
|  | Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C); | 
|  | Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C, | 
|  | ConstantInt::get(I.getType(), 1)); | 
|  | return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS); | 
|  | } | 
|  |  | 
|  | // ~(~X & Y) --> (X | ~Y) | 
|  | if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) { | 
|  | if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands(); | 
|  | if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) { | 
|  | Instruction *NotY = | 
|  | BinaryOperator::createNot(Op0I->getOperand(1), | 
|  | Op0I->getOperand(1)->getName()+".not"); | 
|  | InsertNewInstBefore(NotY, I); | 
|  | return BinaryOperator::createOr(Op0NotVal, NotY); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) | 
|  | if (Op0I->getOpcode() == Instruction::Add) { | 
|  | // ~(X-c) --> (-c-1)-X | 
|  | if (RHS->isAllOnesValue()) { | 
|  | Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI); | 
|  | return BinaryOperator::createSub( | 
|  | ConstantExpr::getSub(NegOp0CI, | 
|  | ConstantInt::get(I.getType(), 1)), | 
|  | Op0I->getOperand(0)); | 
|  | } | 
|  | } else if (Op0I->getOpcode() == Instruction::Or) { | 
|  | // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0 | 
|  | if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getZExtValue())) { | 
|  | Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS); | 
|  | // Anything in both C1 and C2 is known to be zero, remove it from | 
|  | // NewRHS. | 
|  | Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS); | 
|  | NewRHS = ConstantExpr::getAnd(NewRHS, | 
|  | ConstantExpr::getNot(CommonBits)); | 
|  | WorkList.push_back(Op0I); | 
|  | I.setOperand(0, Op0I->getOperand(0)); | 
|  | I.setOperand(1, NewRHS); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to fold constant and into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1 | 
|  | if (X == Op1) | 
|  | return ReplaceInstUsesWith(I, | 
|  | ConstantInt::getAllOnesValue(I.getType())); | 
|  |  | 
|  | if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1 | 
|  | if (X == Op0) | 
|  | return ReplaceInstUsesWith(I, | 
|  | ConstantInt::getAllOnesValue(I.getType())); | 
|  |  | 
|  | if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) | 
|  | if (Op1I->getOpcode() == Instruction::Or) { | 
|  | if (Op1I->getOperand(0) == Op0) {              // B^(B|A) == (A|B)^B | 
|  | Op1I->swapOperands(); | 
|  | I.swapOperands(); | 
|  | std::swap(Op0, Op1); | 
|  | } else if (Op1I->getOperand(1) == Op0) {       // B^(A|B) == (A|B)^B | 
|  | I.swapOperands();     // Simplified below. | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  | } else if (Op1I->getOpcode() == Instruction::Xor) { | 
|  | if (Op0 == Op1I->getOperand(0))                        // A^(A^B) == B | 
|  | return ReplaceInstUsesWith(I, Op1I->getOperand(1)); | 
|  | else if (Op0 == Op1I->getOperand(1))                   // A^(B^A) == B | 
|  | return ReplaceInstUsesWith(I, Op1I->getOperand(0)); | 
|  | } else if (Op1I->getOpcode() == Instruction::And && Op1I->hasOneUse()) { | 
|  | if (Op1I->getOperand(0) == Op0)                      // A^(A&B) -> A^(B&A) | 
|  | Op1I->swapOperands(); | 
|  | if (Op0 == Op1I->getOperand(1)) {                    // A^(B&A) -> (B&A)^A | 
|  | I.swapOperands();     // Simplified below. | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) | 
|  | if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) { | 
|  | if (Op0I->getOperand(0) == Op1)                // (B|A)^B == (A|B)^B | 
|  | Op0I->swapOperands(); | 
|  | if (Op0I->getOperand(1) == Op1) {              // (A|B)^B == A & ~B | 
|  | Instruction *NotB = BinaryOperator::createNot(Op1, "tmp"); | 
|  | InsertNewInstBefore(NotB, I); | 
|  | return BinaryOperator::createAnd(Op0I->getOperand(0), NotB); | 
|  | } | 
|  | } else if (Op0I->getOpcode() == Instruction::Xor) { | 
|  | if (Op1 == Op0I->getOperand(0))                        // (A^B)^A == B | 
|  | return ReplaceInstUsesWith(I, Op0I->getOperand(1)); | 
|  | else if (Op1 == Op0I->getOperand(1))                   // (B^A)^A == B | 
|  | return ReplaceInstUsesWith(I, Op0I->getOperand(0)); | 
|  | } else if (Op0I->getOpcode() == Instruction::And && Op0I->hasOneUse()) { | 
|  | if (Op0I->getOperand(0) == Op1)                      // (A&B)^A -> (B&A)^A | 
|  | Op0I->swapOperands(); | 
|  | if (Op0I->getOperand(1) == Op1 &&                    // (B&A)^A == ~B & A | 
|  | !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C | 
|  | Instruction *N = BinaryOperator::createNot(Op0I->getOperand(0), "tmp"); | 
|  | InsertNewInstBefore(N, I); | 
|  | return BinaryOperator::createAnd(N, Op1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) | 
|  | if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) | 
|  | if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) | 
|  | return R; | 
|  |  | 
|  | // fold (xor (cast A), (cast B)) -> (cast (xor A, B)) | 
|  | if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) | 
|  | if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) | 
|  | if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind? | 
|  | const Type *SrcTy = Op0C->getOperand(0)->getType(); | 
|  | if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && | 
|  | // Only do this if the casts both really cause code to be generated. | 
|  | ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), | 
|  | I.getType(), TD) && | 
|  | ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), | 
|  | I.getType(), TD)) { | 
|  | Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0), | 
|  | Op1C->getOperand(0), | 
|  | I.getName()); | 
|  | InsertNewInstBefore(NewOp, I); | 
|  | return CastInst::create(Op0C->getOpcode(), NewOp, I.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts. | 
|  | if (ShiftInst *SI1 = dyn_cast<ShiftInst>(Op1)) { | 
|  | if (ShiftInst *SI0 = dyn_cast<ShiftInst>(Op0)) | 
|  | if (SI0->getOpcode() == SI1->getOpcode() && | 
|  | SI0->getOperand(1) == SI1->getOperand(1) && | 
|  | (SI0->hasOneUse() || SI1->hasOneUse())) { | 
|  | Instruction *NewOp = | 
|  | InsertNewInstBefore(BinaryOperator::createXor(SI0->getOperand(0), | 
|  | SI1->getOperand(0), | 
|  | SI0->getName()), I); | 
|  | return new ShiftInst(SI1->getOpcode(), NewOp, SI1->getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | static bool isPositive(ConstantInt *C) { | 
|  | return C->getSExtValue() >= 0; | 
|  | } | 
|  |  | 
|  | /// AddWithOverflow - Compute Result = In1+In2, returning true if the result | 
|  | /// overflowed for this type. | 
|  | static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1, | 
|  | ConstantInt *In2) { | 
|  | Result = cast<ConstantInt>(ConstantExpr::getAdd(In1, In2)); | 
|  |  | 
|  | return cast<ConstantInt>(Result)->getZExtValue() < | 
|  | cast<ConstantInt>(In1)->getZExtValue(); | 
|  | } | 
|  |  | 
|  | /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the | 
|  | /// code necessary to compute the offset from the base pointer (without adding | 
|  | /// in the base pointer).  Return the result as a signed integer of intptr size. | 
|  | static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) { | 
|  | TargetData &TD = IC.getTargetData(); | 
|  | gep_type_iterator GTI = gep_type_begin(GEP); | 
|  | const Type *IntPtrTy = TD.getIntPtrType(); | 
|  | Value *Result = Constant::getNullValue(IntPtrTy); | 
|  |  | 
|  | // Build a mask for high order bits. | 
|  | uint64_t PtrSizeMask = ~0ULL >> (64-TD.getPointerSize()*8); | 
|  |  | 
|  | for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { | 
|  | Value *Op = GEP->getOperand(i); | 
|  | uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask; | 
|  | Constant *Scale = ConstantInt::get(IntPtrTy, Size); | 
|  | if (Constant *OpC = dyn_cast<Constant>(Op)) { | 
|  | if (!OpC->isNullValue()) { | 
|  | OpC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/); | 
|  | Scale = ConstantExpr::getMul(OpC, Scale); | 
|  | if (Constant *RC = dyn_cast<Constant>(Result)) | 
|  | Result = ConstantExpr::getAdd(RC, Scale); | 
|  | else { | 
|  | // Emit an add instruction. | 
|  | Result = IC.InsertNewInstBefore( | 
|  | BinaryOperator::createAdd(Result, Scale, | 
|  | GEP->getName()+".offs"), I); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Convert to correct type. | 
|  | Op = IC.InsertNewInstBefore(CastInst::createSExtOrBitCast(Op, IntPtrTy, | 
|  | Op->getName()+".c"), I); | 
|  | if (Size != 1) | 
|  | // We'll let instcombine(mul) convert this to a shl if possible. | 
|  | Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale, | 
|  | GEP->getName()+".idx"), I); | 
|  |  | 
|  | // Emit an add instruction. | 
|  | Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result, | 
|  | GEP->getName()+".offs"), I); | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// FoldGEPICmp - Fold comparisons between a GEP instruction and something | 
|  | /// else.  At this point we know that the GEP is on the LHS of the comparison. | 
|  | Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS, | 
|  | ICmpInst::Predicate Cond, | 
|  | Instruction &I) { | 
|  | assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!"); | 
|  |  | 
|  | if (CastInst *CI = dyn_cast<CastInst>(RHS)) | 
|  | if (isa<PointerType>(CI->getOperand(0)->getType())) | 
|  | RHS = CI->getOperand(0); | 
|  |  | 
|  | Value *PtrBase = GEPLHS->getOperand(0); | 
|  | if (PtrBase == RHS) { | 
|  | // As an optimization, we don't actually have to compute the actual value of | 
|  | // OFFSET if this is a icmp_eq or icmp_ne comparison, just return whether | 
|  | // each index is zero or not. | 
|  | if (Cond == ICmpInst::ICMP_EQ || Cond == ICmpInst::ICMP_NE) { | 
|  | Instruction *InVal = 0; | 
|  | gep_type_iterator GTI = gep_type_begin(GEPLHS); | 
|  | for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) { | 
|  | bool EmitIt = true; | 
|  | if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) { | 
|  | if (isa<UndefValue>(C))  // undef index -> undef. | 
|  | return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); | 
|  | if (C->isNullValue()) | 
|  | EmitIt = false; | 
|  | else if (TD->getTypeSize(GTI.getIndexedType()) == 0) { | 
|  | EmitIt = false;  // This is indexing into a zero sized array? | 
|  | } else if (isa<ConstantInt>(C)) | 
|  | return ReplaceInstUsesWith(I, // No comparison is needed here. | 
|  | ConstantInt::get(Type::Int1Ty, | 
|  | Cond == ICmpInst::ICMP_NE)); | 
|  | } | 
|  |  | 
|  | if (EmitIt) { | 
|  | Instruction *Comp = | 
|  | new ICmpInst(Cond, GEPLHS->getOperand(i), | 
|  | Constant::getNullValue(GEPLHS->getOperand(i)->getType())); | 
|  | if (InVal == 0) | 
|  | InVal = Comp; | 
|  | else { | 
|  | InVal = InsertNewInstBefore(InVal, I); | 
|  | InsertNewInstBefore(Comp, I); | 
|  | if (Cond == ICmpInst::ICMP_NE)   // True if any are unequal | 
|  | InVal = BinaryOperator::createOr(InVal, Comp); | 
|  | else                              // True if all are equal | 
|  | InVal = BinaryOperator::createAnd(InVal, Comp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (InVal) | 
|  | return InVal; | 
|  | else | 
|  | // No comparison is needed here, all indexes = 0 | 
|  | ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, | 
|  | Cond == ICmpInst::ICMP_EQ)); | 
|  | } | 
|  |  | 
|  | // Only lower this if the icmp is the only user of the GEP or if we expect | 
|  | // the result to fold to a constant! | 
|  | if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) { | 
|  | // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0). | 
|  | Value *Offset = EmitGEPOffset(GEPLHS, I, *this); | 
|  | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, | 
|  | Constant::getNullValue(Offset->getType())); | 
|  | } | 
|  | } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) { | 
|  | // If the base pointers are different, but the indices are the same, just | 
|  | // compare the base pointer. | 
|  | if (PtrBase != GEPRHS->getOperand(0)) { | 
|  | bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); | 
|  | IndicesTheSame &= GEPLHS->getOperand(0)->getType() == | 
|  | GEPRHS->getOperand(0)->getType(); | 
|  | if (IndicesTheSame) | 
|  | for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) | 
|  | if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { | 
|  | IndicesTheSame = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If all indices are the same, just compare the base pointers. | 
|  | if (IndicesTheSame) | 
|  | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), | 
|  | GEPLHS->getOperand(0), GEPRHS->getOperand(0)); | 
|  |  | 
|  | // Otherwise, the base pointers are different and the indices are | 
|  | // different, bail out. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If one of the GEPs has all zero indices, recurse. | 
|  | bool AllZeros = true; | 
|  | for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) | 
|  | if (!isa<Constant>(GEPLHS->getOperand(i)) || | 
|  | !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) { | 
|  | AllZeros = false; | 
|  | break; | 
|  | } | 
|  | if (AllZeros) | 
|  | return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), | 
|  | ICmpInst::getSwappedPredicate(Cond), I); | 
|  |  | 
|  | // If the other GEP has all zero indices, recurse. | 
|  | AllZeros = true; | 
|  | for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) | 
|  | if (!isa<Constant>(GEPRHS->getOperand(i)) || | 
|  | !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) { | 
|  | AllZeros = false; | 
|  | break; | 
|  | } | 
|  | if (AllZeros) | 
|  | return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); | 
|  |  | 
|  | if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { | 
|  | // If the GEPs only differ by one index, compare it. | 
|  | unsigned NumDifferences = 0;  // Keep track of # differences. | 
|  | unsigned DiffOperand = 0;     // The operand that differs. | 
|  | for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) | 
|  | if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { | 
|  | if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != | 
|  | GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { | 
|  | // Irreconcilable differences. | 
|  | NumDifferences = 2; | 
|  | break; | 
|  | } else { | 
|  | if (NumDifferences++) break; | 
|  | DiffOperand = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NumDifferences == 0)   // SAME GEP? | 
|  | return ReplaceInstUsesWith(I, // No comparison is needed here. | 
|  | ConstantInt::get(Type::Int1Ty, | 
|  | Cond == ICmpInst::ICMP_EQ)); | 
|  | else if (NumDifferences == 1) { | 
|  | Value *LHSV = GEPLHS->getOperand(DiffOperand); | 
|  | Value *RHSV = GEPRHS->getOperand(DiffOperand); | 
|  | // Make sure we do a signed comparison here. | 
|  | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only lower this if the icmp is the only user of the GEP or if we expect | 
|  | // the result to fold to a constant! | 
|  | if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && | 
|  | (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { | 
|  | // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2) | 
|  | Value *L = EmitGEPOffset(GEPLHS, I, *this); | 
|  | Value *R = EmitGEPOffset(GEPRHS, I, *this); | 
|  | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { | 
|  | bool Changed = SimplifyCompare(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // Fold trivial predicates. | 
|  | if (I.getPredicate() == FCmpInst::FCMP_FALSE) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty)); | 
|  | if (I.getPredicate() == FCmpInst::FCMP_TRUE) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1)); | 
|  |  | 
|  | // Simplify 'fcmp pred X, X' | 
|  | if (Op0 == Op1) { | 
|  | switch (I.getPredicate()) { | 
|  | default: assert(0 && "Unknown predicate!"); | 
|  | case FCmpInst::FCMP_UEQ:    // True if unordered or equal | 
|  | case FCmpInst::FCMP_UGE:    // True if unordered, greater than, or equal | 
|  | case FCmpInst::FCMP_ULE:    // True if unordered, less than, or equal | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1)); | 
|  | case FCmpInst::FCMP_OGT:    // True if ordered and greater than | 
|  | case FCmpInst::FCMP_OLT:    // True if ordered and less than | 
|  | case FCmpInst::FCMP_ONE:    // True if ordered and operands are unequal | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0)); | 
|  |  | 
|  | case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y) | 
|  | case FCmpInst::FCMP_ULT:    // True if unordered or less than | 
|  | case FCmpInst::FCMP_UGT:    // True if unordered or greater than | 
|  | case FCmpInst::FCMP_UNE:    // True if unordered or not equal | 
|  | // Canonicalize these to be 'fcmp uno %X, 0.0'. | 
|  | I.setPredicate(FCmpInst::FCMP_UNO); | 
|  | I.setOperand(1, Constant::getNullValue(Op0->getType())); | 
|  | return &I; | 
|  |  | 
|  | case FCmpInst::FCMP_ORD:    // True if ordered (no nans) | 
|  | case FCmpInst::FCMP_OEQ:    // True if ordered and equal | 
|  | case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal | 
|  | case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal | 
|  | // Canonicalize these to be 'fcmp ord %X, 0.0'. | 
|  | I.setPredicate(FCmpInst::FCMP_ORD); | 
|  | I.setOperand(1, Constant::getNullValue(Op0->getType())); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<UndefValue>(Op1))                  // fcmp pred X, undef -> undef | 
|  | return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty)); | 
|  |  | 
|  | // Handle fcmp with constant RHS | 
|  | if (Constant *RHSC = dyn_cast<Constant>(Op1)) { | 
|  | if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) | 
|  | switch (LHSI->getOpcode()) { | 
|  | case Instruction::PHI: | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | break; | 
|  | case Instruction::Select: | 
|  | // If either operand of the select is a constant, we can fold the | 
|  | // comparison into the select arms, which will cause one to be | 
|  | // constant folded and the select turned into a bitwise or. | 
|  | Value *Op1 = 0, *Op2 = 0; | 
|  | if (LHSI->hasOneUse()) { | 
|  | if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { | 
|  | // Fold the known value into the constant operand. | 
|  | Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); | 
|  | // Insert a new FCmp of the other select operand. | 
|  | Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(), | 
|  | LHSI->getOperand(2), RHSC, | 
|  | I.getName()), I); | 
|  | } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { | 
|  | // Fold the known value into the constant operand. | 
|  | Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); | 
|  | // Insert a new FCmp of the other select operand. | 
|  | Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(), | 
|  | LHSI->getOperand(1), RHSC, | 
|  | I.getName()), I); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op1) | 
|  | return new SelectInst(LHSI->getOperand(0), Op1, Op2); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { | 
|  | bool Changed = SimplifyCompare(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | const Type *Ty = Op0->getType(); | 
|  |  | 
|  | // icmp X, X | 
|  | if (Op0 == Op1) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, | 
|  | isTrueWhenEqual(I))); | 
|  |  | 
|  | if (isa<UndefValue>(Op1))                  // X icmp undef -> undef | 
|  | return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty)); | 
|  |  | 
|  | // icmp of GlobalValues can never equal each other as long as they aren't | 
|  | // external weak linkage type. | 
|  | if (GlobalValue *GV0 = dyn_cast<GlobalValue>(Op0)) | 
|  | if (GlobalValue *GV1 = dyn_cast<GlobalValue>(Op1)) | 
|  | if (!GV0->hasExternalWeakLinkage() || !GV1->hasExternalWeakLinkage()) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, | 
|  | !isTrueWhenEqual(I))); | 
|  |  | 
|  | // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value | 
|  | // addresses never equal each other!  We already know that Op0 != Op1. | 
|  | if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) || | 
|  | isa<ConstantPointerNull>(Op0)) && | 
|  | (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) || | 
|  | isa<ConstantPointerNull>(Op1))) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, | 
|  | !isTrueWhenEqual(I))); | 
|  |  | 
|  | // icmp's with boolean values can always be turned into bitwise operations | 
|  | if (Ty == Type::Int1Ty) { | 
|  | switch (I.getPredicate()) { | 
|  | default: assert(0 && "Invalid icmp instruction!"); | 
|  | case ICmpInst::ICMP_EQ: {               // icmp eq bool %A, %B -> ~(A^B) | 
|  | Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp"); | 
|  | InsertNewInstBefore(Xor, I); | 
|  | return BinaryOperator::createNot(Xor); | 
|  | } | 
|  | case ICmpInst::ICMP_NE:                  // icmp eq bool %A, %B -> A^B | 
|  | return BinaryOperator::createXor(Op0, Op1); | 
|  |  | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_SGT: | 
|  | std::swap(Op0, Op1);                   // Change icmp gt -> icmp lt | 
|  | // FALL THROUGH | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_SLT: {               // icmp lt bool A, B -> ~X & Y | 
|  | Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp"); | 
|  | InsertNewInstBefore(Not, I); | 
|  | return BinaryOperator::createAnd(Not, Op1); | 
|  | } | 
|  | case ICmpInst::ICMP_UGE: | 
|  | case ICmpInst::ICMP_SGE: | 
|  | std::swap(Op0, Op1);                   // Change icmp ge -> icmp le | 
|  | // FALL THROUGH | 
|  | case ICmpInst::ICMP_ULE: | 
|  | case ICmpInst::ICMP_SLE: {               //  icmp le bool %A, %B -> ~A | B | 
|  | Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp"); | 
|  | InsertNewInstBefore(Not, I); | 
|  | return BinaryOperator::createOr(Not, Op1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we are doing a comparison between a constant and an instruction that | 
|  | // can be folded into the comparison. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | switch (I.getPredicate()) { | 
|  | default: break; | 
|  | case ICmpInst::ICMP_ULT:                        // A <u MIN -> FALSE | 
|  | if (CI->isMinValue(false)) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | if (CI->isMaxValue(false))                    // A <u MAX -> A != MAX | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1); | 
|  | if (isMinValuePlusOne(CI,false))              // A <u MIN+1 -> A == MIN | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI)); | 
|  | break; | 
|  |  | 
|  | case ICmpInst::ICMP_SLT: | 
|  | if (CI->isMinValue(true))                    // A <s MIN -> FALSE | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | if (CI->isMaxValue(true))                    // A <s MAX -> A != MAX | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); | 
|  | if (isMinValuePlusOne(CI,true))              // A <s MIN+1 -> A == MIN | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI)); | 
|  | break; | 
|  |  | 
|  | case ICmpInst::ICMP_UGT: | 
|  | if (CI->isMaxValue(false))                  // A >u MAX -> FALSE | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | if (CI->isMinValue(false))                  // A >u MIN -> A != MIN | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); | 
|  | if (isMaxValueMinusOne(CI, false))          // A >u MAX-1 -> A == MAX | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI)); | 
|  | break; | 
|  |  | 
|  | case ICmpInst::ICMP_SGT: | 
|  | if (CI->isMaxValue(true))                   // A >s MAX -> FALSE | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | if (CI->isMinValue(true))                   // A >s MIN -> A != MIN | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); | 
|  | if (isMaxValueMinusOne(CI, true))           // A >s MAX-1 -> A == MAX | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI)); | 
|  | break; | 
|  |  | 
|  | case ICmpInst::ICMP_ULE: | 
|  | if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | if (CI->isMinValue(false))                 // A <=u MIN -> A == MIN | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); | 
|  | if (isMaxValueMinusOne(CI,false))          // A <=u MAX-1 -> A != MAX | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI)); | 
|  | break; | 
|  |  | 
|  | case ICmpInst::ICMP_SLE: | 
|  | if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | if (CI->isMinValue(true))                  // A <=s MIN -> A == MIN | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); | 
|  | if (isMaxValueMinusOne(CI,true))           // A <=s MAX-1 -> A != MAX | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI)); | 
|  | break; | 
|  |  | 
|  | case ICmpInst::ICMP_UGE: | 
|  | if (CI->isMinValue(false))                 // A >=u MIN -> TRUE | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | if (CI->isMaxValue(false))                 // A >=u MAX -> A == MAX | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); | 
|  | if (isMinValuePlusOne(CI,false))           // A >=u MIN-1 -> A != MIN | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI)); | 
|  | break; | 
|  |  | 
|  | case ICmpInst::ICMP_SGE: | 
|  | if (CI->isMinValue(true))                  // A >=s MIN -> TRUE | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | if (CI->isMaxValue(true))                  // A >=s MAX -> A == MAX | 
|  | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); | 
|  | if (isMinValuePlusOne(CI,true))            // A >=s MIN-1 -> A != MIN | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we still have a icmp le or icmp ge instruction, turn it into the | 
|  | // appropriate icmp lt or icmp gt instruction.  Since the border cases have | 
|  | // already been handled above, this requires little checking. | 
|  | // | 
|  | if (I.getPredicate() == ICmpInst::ICMP_ULE) | 
|  | return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI)); | 
|  | if (I.getPredicate() == ICmpInst::ICMP_SLE) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI)); | 
|  | if (I.getPredicate() == ICmpInst::ICMP_UGE) | 
|  | return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI)); | 
|  | if (I.getPredicate() == ICmpInst::ICMP_SGE) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI)); | 
|  |  | 
|  | // See if we can fold the comparison based on bits known to be zero or one | 
|  | // in the input. | 
|  | uint64_t KnownZero, KnownOne; | 
|  | if (SimplifyDemandedBits(Op0, cast<IntegerType>(Ty)->getBitMask(), | 
|  | KnownZero, KnownOne, 0)) | 
|  | return &I; | 
|  |  | 
|  | // Given the known and unknown bits, compute a range that the LHS could be | 
|  | // in. | 
|  | if (KnownOne | KnownZero) { | 
|  | // Compute the Min, Max and RHS values based on the known bits. For the | 
|  | // EQ and NE we use unsigned values. | 
|  | uint64_t UMin = 0, UMax = 0, URHSVal = 0; | 
|  | int64_t SMin = 0, SMax = 0, SRHSVal = 0; | 
|  | if (ICmpInst::isSignedPredicate(I.getPredicate())) { | 
|  | SRHSVal = CI->getSExtValue(); | 
|  | ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, SMin, | 
|  | SMax); | 
|  | } else { | 
|  | URHSVal = CI->getZExtValue(); | 
|  | ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, UMin, | 
|  | UMax); | 
|  | } | 
|  | switch (I.getPredicate()) {  // LE/GE have been folded already. | 
|  | default: assert(0 && "Unknown icmp opcode!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | if (UMax < URHSVal || UMin > URHSVal) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (UMax < URHSVal || UMin > URHSVal) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | if (UMax < URHSVal) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | if (UMin > URHSVal) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | if (UMin > URHSVal) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | if (UMax < URHSVal) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | if (SMax < SRHSVal) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | if (SMin > SRHSVal) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | if (SMin > SRHSVal) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | if (SMax < SRHSVal) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since the RHS is a ConstantInt (CI), if the left hand side is an | 
|  | // instruction, see if that instruction also has constants so that the | 
|  | // instruction can be folded into the icmp | 
|  | if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) | 
|  | switch (LHSI->getOpcode()) { | 
|  | case Instruction::And: | 
|  | if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && | 
|  | LHSI->getOperand(0)->hasOneUse()) { | 
|  | ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1)); | 
|  |  | 
|  | // If the LHS is an AND of a truncating cast, we can widen the | 
|  | // and/compare to be the input width without changing the value | 
|  | // produced, eliminating a cast. | 
|  | if (CastInst *Cast = dyn_cast<CastInst>(LHSI->getOperand(0))) { | 
|  | // We can do this transformation if either the AND constant does not | 
|  | // have its sign bit set or if it is an equality comparison. | 
|  | // Extending a relational comparison when we're checking the sign | 
|  | // bit would not work. | 
|  | if (Cast->hasOneUse() && isa<TruncInst>(Cast) && | 
|  | (I.isEquality() || | 
|  | (AndCST->getZExtValue() == (uint64_t)AndCST->getSExtValue()) && | 
|  | (CI->getZExtValue() == (uint64_t)CI->getSExtValue()))) { | 
|  | ConstantInt *NewCST; | 
|  | ConstantInt *NewCI; | 
|  | NewCST = ConstantInt::get(Cast->getOperand(0)->getType(), | 
|  | AndCST->getZExtValue()); | 
|  | NewCI = ConstantInt::get(Cast->getOperand(0)->getType(), | 
|  | CI->getZExtValue()); | 
|  | Instruction *NewAnd = | 
|  | BinaryOperator::createAnd(Cast->getOperand(0), NewCST, | 
|  | LHSI->getName()); | 
|  | InsertNewInstBefore(NewAnd, I); | 
|  | return new ICmpInst(I.getPredicate(), NewAnd, NewCI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is: (X >> C1) & C2 != C3 (where any shift and any compare | 
|  | // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This | 
|  | // happens a LOT in code produced by the C front-end, for bitfield | 
|  | // access. | 
|  | ShiftInst *Shift = dyn_cast<ShiftInst>(LHSI->getOperand(0)); | 
|  |  | 
|  | // Check to see if there is a noop-cast between the shift and the and. | 
|  | if (!Shift) { | 
|  | if (CastInst *CI = dyn_cast<CastInst>(LHSI->getOperand(0))) | 
|  | if (CI->getOpcode() == Instruction::BitCast) | 
|  | Shift = dyn_cast<ShiftInst>(CI->getOperand(0)); | 
|  | } | 
|  |  | 
|  | ConstantInt *ShAmt; | 
|  | ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0; | 
|  | const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift. | 
|  | const Type *AndTy = AndCST->getType();          // Type of the and. | 
|  |  | 
|  | // We can fold this as long as we can't shift unknown bits | 
|  | // into the mask.  This can only happen with signed shift | 
|  | // rights, as they sign-extend. | 
|  | if (ShAmt) { | 
|  | bool CanFold = Shift->isLogicalShift(); | 
|  | if (!CanFold) { | 
|  | // To test for the bad case of the signed shr, see if any | 
|  | // of the bits shifted in could be tested after the mask. | 
|  | int ShAmtVal = Ty->getPrimitiveSizeInBits()-ShAmt->getZExtValue(); | 
|  | if (ShAmtVal < 0) ShAmtVal = 0; // Out of range shift. | 
|  |  | 
|  | Constant *OShAmt = ConstantInt::get(Type::Int8Ty, ShAmtVal); | 
|  | Constant *ShVal = | 
|  | ConstantExpr::getShl(ConstantInt::getAllOnesValue(AndTy), | 
|  | OShAmt); | 
|  | if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue()) | 
|  | CanFold = true; | 
|  | } | 
|  |  | 
|  | if (CanFold) { | 
|  | Constant *NewCst; | 
|  | if (Shift->getOpcode() == Instruction::Shl) | 
|  | NewCst = ConstantExpr::getLShr(CI, ShAmt); | 
|  | else | 
|  | NewCst = ConstantExpr::getShl(CI, ShAmt); | 
|  |  | 
|  | // Check to see if we are shifting out any of the bits being | 
|  | // compared. | 
|  | if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){ | 
|  | // If we shifted bits out, the fold is not going to work out. | 
|  | // As a special case, check to see if this means that the | 
|  | // result is always true or false now. | 
|  | if (I.getPredicate() == ICmpInst::ICMP_EQ) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | if (I.getPredicate() == ICmpInst::ICMP_NE) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | } else { | 
|  | I.setOperand(1, NewCst); | 
|  | Constant *NewAndCST; | 
|  | if (Shift->getOpcode() == Instruction::Shl) | 
|  | NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt); | 
|  | else | 
|  | NewAndCST = ConstantExpr::getShl(AndCST, ShAmt); | 
|  | LHSI->setOperand(1, NewAndCST); | 
|  | LHSI->setOperand(0, Shift->getOperand(0)); | 
|  | WorkList.push_back(Shift); // Shift is dead. | 
|  | AddUsesToWorkList(I); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is | 
|  | // preferable because it allows the C<<Y expression to be hoisted out | 
|  | // of a loop if Y is invariant and X is not. | 
|  | if (Shift && Shift->hasOneUse() && CI->isNullValue() && | 
|  | I.isEquality() && !Shift->isArithmeticShift() && | 
|  | isa<Instruction>(Shift->getOperand(0))) { | 
|  | // Compute C << Y. | 
|  | Value *NS; | 
|  | if (Shift->getOpcode() == Instruction::LShr) { | 
|  | NS = new ShiftInst(Instruction::Shl, AndCST, Shift->getOperand(1), | 
|  | "tmp"); | 
|  | } else { | 
|  | // Insert a logical shift. | 
|  | NS = new ShiftInst(Instruction::LShr, AndCST, | 
|  | Shift->getOperand(1), "tmp"); | 
|  | } | 
|  | InsertNewInstBefore(cast<Instruction>(NS), I); | 
|  |  | 
|  | // Compute X & (C << Y). | 
|  | Instruction *NewAnd = BinaryOperator::createAnd( | 
|  | Shift->getOperand(0), NS, LHSI->getName()); | 
|  | InsertNewInstBefore(NewAnd, I); | 
|  |  | 
|  | I.setOperand(0, NewAnd); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Shl:         // (icmp pred (shl X, ShAmt), CI) | 
|  | if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { | 
|  | if (I.isEquality()) { | 
|  | unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits(); | 
|  |  | 
|  | // Check that the shift amount is in range.  If not, don't perform | 
|  | // undefined shifts.  When the shift is visited it will be | 
|  | // simplified. | 
|  | if (ShAmt->getZExtValue() >= TypeBits) | 
|  | break; | 
|  |  | 
|  | // If we are comparing against bits always shifted out, the | 
|  | // comparison cannot succeed. | 
|  | Constant *Comp = | 
|  | ConstantExpr::getShl(ConstantExpr::getLShr(CI, ShAmt), ShAmt); | 
|  | if (Comp != CI) {// Comparing against a bit that we know is zero. | 
|  | bool IsICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE; | 
|  | Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE); | 
|  | return ReplaceInstUsesWith(I, Cst); | 
|  | } | 
|  |  | 
|  | if (LHSI->hasOneUse()) { | 
|  | // Otherwise strength reduce the shift into an and. | 
|  | unsigned ShAmtVal = (unsigned)ShAmt->getZExtValue(); | 
|  | uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1; | 
|  | Constant *Mask = ConstantInt::get(CI->getType(), Val); | 
|  |  | 
|  | Instruction *AndI = | 
|  | BinaryOperator::createAnd(LHSI->getOperand(0), | 
|  | Mask, LHSI->getName()+".mask"); | 
|  | Value *And = InsertNewInstBefore(AndI, I); | 
|  | return new ICmpInst(I.getPredicate(), And, | 
|  | ConstantExpr::getLShr(CI, ShAmt)); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI) | 
|  | case Instruction::AShr: | 
|  | if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { | 
|  | if (I.isEquality()) { | 
|  | // Check that the shift amount is in range.  If not, don't perform | 
|  | // undefined shifts.  When the shift is visited it will be | 
|  | // simplified. | 
|  | unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits(); | 
|  | if (ShAmt->getZExtValue() >= TypeBits) | 
|  | break; | 
|  |  | 
|  | // If we are comparing against bits always shifted out, the | 
|  | // comparison cannot succeed. | 
|  | Constant *Comp; | 
|  | if (LHSI->getOpcode() == Instruction::LShr) | 
|  | Comp = ConstantExpr::getLShr(ConstantExpr::getShl(CI, ShAmt), | 
|  | ShAmt); | 
|  | else | 
|  | Comp = ConstantExpr::getAShr(ConstantExpr::getShl(CI, ShAmt), | 
|  | ShAmt); | 
|  |  | 
|  | if (Comp != CI) {// Comparing against a bit that we know is zero. | 
|  | bool IsICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE; | 
|  | Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE); | 
|  | return ReplaceInstUsesWith(I, Cst); | 
|  | } | 
|  |  | 
|  | if (LHSI->hasOneUse() || CI->isNullValue()) { | 
|  | unsigned ShAmtVal = (unsigned)ShAmt->getZExtValue(); | 
|  |  | 
|  | // Otherwise strength reduce the shift into an and. | 
|  | uint64_t Val = ~0ULL;          // All ones. | 
|  | Val <<= ShAmtVal;              // Shift over to the right spot. | 
|  | Val &= ~0ULL >> (64-TypeBits); | 
|  | Constant *Mask = ConstantInt::get(CI->getType(), Val); | 
|  |  | 
|  | Instruction *AndI = | 
|  | BinaryOperator::createAnd(LHSI->getOperand(0), | 
|  | Mask, LHSI->getName()+".mask"); | 
|  | Value *And = InsertNewInstBefore(AndI, I); | 
|  | return new ICmpInst(I.getPredicate(), And, | 
|  | ConstantExpr::getShl(CI, ShAmt)); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | // Fold: icmp pred ([us]div X, C1), C2 -> range test | 
|  | // Fold this div into the comparison, producing a range check. | 
|  | // Determine, based on the divide type, what the range is being | 
|  | // checked.  If there is an overflow on the low or high side, remember | 
|  | // it, otherwise compute the range [low, hi) bounding the new value. | 
|  | // See: InsertRangeTest above for the kinds of replacements possible. | 
|  | if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { | 
|  | // FIXME: If the operand types don't match the type of the divide | 
|  | // then don't attempt this transform. The code below doesn't have the | 
|  | // logic to deal with a signed divide and an unsigned compare (and | 
|  | // vice versa). This is because (x /s C1) <s C2  produces different | 
|  | // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even | 
|  | // (x /u C1) <u C2.  Simply casting the operands and result won't | 
|  | // work. :(  The if statement below tests that condition and bails | 
|  | // if it finds it. | 
|  | bool DivIsSigned = LHSI->getOpcode() == Instruction::SDiv; | 
|  | if (!I.isEquality() && DivIsSigned != I.isSignedPredicate()) | 
|  | break; | 
|  |  | 
|  | // Initialize the variables that will indicate the nature of the | 
|  | // range check. | 
|  | bool LoOverflow = false, HiOverflow = false; | 
|  | ConstantInt *LoBound = 0, *HiBound = 0; | 
|  |  | 
|  | // Compute Prod = CI * DivRHS. We are essentially solving an equation | 
|  | // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and | 
|  | // C2 (CI). By solving for X we can turn this into a range check | 
|  | // instead of computing a divide. | 
|  | ConstantInt *Prod = | 
|  | cast<ConstantInt>(ConstantExpr::getMul(CI, DivRHS)); | 
|  |  | 
|  | // Determine if the product overflows by seeing if the product is | 
|  | // not equal to the divide. Make sure we do the same kind of divide | 
|  | // as in the LHS instruction that we're folding. | 
|  | bool ProdOV = !DivRHS->isNullValue() && | 
|  | (DivIsSigned ?  ConstantExpr::getSDiv(Prod, DivRHS) : | 
|  | ConstantExpr::getUDiv(Prod, DivRHS)) != CI; | 
|  |  | 
|  | // Get the ICmp opcode | 
|  | ICmpInst::Predicate predicate = I.getPredicate(); | 
|  |  | 
|  | if (DivRHS->isNullValue()) { | 
|  | // Don't hack on divide by zeros! | 
|  | } else if (!DivIsSigned) {  // udiv | 
|  | LoBound = Prod; | 
|  | LoOverflow = ProdOV; | 
|  | HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS); | 
|  | } else if (isPositive(DivRHS)) { // Divisor is > 0. | 
|  | if (CI->isNullValue()) {       // (X / pos) op 0 | 
|  | // Can't overflow. | 
|  | LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS))); | 
|  | HiBound = DivRHS; | 
|  | } else if (isPositive(CI)) {   // (X / pos) op pos | 
|  | LoBound = Prod; | 
|  | LoOverflow = ProdOV; | 
|  | HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS); | 
|  | } else {                       // (X / pos) op neg | 
|  | Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS)); | 
|  | LoOverflow = AddWithOverflow(LoBound, Prod, | 
|  | cast<ConstantInt>(DivRHSH)); | 
|  | HiBound = Prod; | 
|  | HiOverflow = ProdOV; | 
|  | } | 
|  | } else {                         // Divisor is < 0. | 
|  | if (CI->isNullValue()) {       // (X / neg) op 0 | 
|  | LoBound = AddOne(DivRHS); | 
|  | HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS)); | 
|  | if (HiBound == DivRHS) | 
|  | LoBound = 0;               // - INTMIN = INTMIN | 
|  | } else if (isPositive(CI)) {   // (X / neg) op pos | 
|  | HiOverflow = LoOverflow = ProdOV; | 
|  | if (!LoOverflow) | 
|  | LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS)); | 
|  | HiBound = AddOne(Prod); | 
|  | } else {                       // (X / neg) op neg | 
|  | LoBound = Prod; | 
|  | LoOverflow = HiOverflow = ProdOV; | 
|  | HiBound = cast<ConstantInt>(ConstantExpr::getSub(Prod, DivRHS)); | 
|  | } | 
|  |  | 
|  | // Dividing by a negate swaps the condition. | 
|  | predicate = ICmpInst::getSwappedPredicate(predicate); | 
|  | } | 
|  |  | 
|  | if (LoBound) { | 
|  | Value *X = LHSI->getOperand(0); | 
|  | switch (predicate) { | 
|  | default: assert(0 && "Unhandled icmp opcode!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | if (LoOverflow && HiOverflow) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | else if (HiOverflow) | 
|  | return new ICmpInst(DivIsSigned ?  ICmpInst::ICMP_SGE : | 
|  | ICmpInst::ICMP_UGE, X, LoBound); | 
|  | else if (LoOverflow) | 
|  | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : | 
|  | ICmpInst::ICMP_ULT, X, HiBound); | 
|  | else | 
|  | return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, | 
|  | true, I); | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (LoOverflow && HiOverflow) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getTrue()); | 
|  | else if (HiOverflow) | 
|  | return new ICmpInst(DivIsSigned ?  ICmpInst::ICMP_SLT : | 
|  | ICmpInst::ICMP_ULT, X, LoBound); | 
|  | else if (LoOverflow) | 
|  | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : | 
|  | ICmpInst::ICMP_UGE, X, HiBound); | 
|  | else | 
|  | return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, | 
|  | false, I); | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_SLT: | 
|  | if (LoOverflow) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | return new ICmpInst(predicate, X, LoBound); | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_SGT: | 
|  | if (HiOverflow) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::getFalse()); | 
|  | if (predicate == ICmpInst::ICMP_UGT) | 
|  | return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); | 
|  | else | 
|  | return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. | 
|  | if (I.isEquality()) { | 
|  | bool isICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE; | 
|  |  | 
|  | // If the first operand is (add|sub|and|or|xor|rem) with a constant, and | 
|  | // the second operand is a constant, simplify a bit. | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) { | 
|  | switch (BO->getOpcode()) { | 
|  | case Instruction::SRem: | 
|  | // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. | 
|  | if (CI->isNullValue() && isa<ConstantInt>(BO->getOperand(1)) && | 
|  | BO->hasOneUse()) { | 
|  | int64_t V = cast<ConstantInt>(BO->getOperand(1))->getSExtValue(); | 
|  | if (V > 1 && isPowerOf2_64(V)) { | 
|  | Value *NewRem = InsertNewInstBefore(BinaryOperator::createURem( | 
|  | BO->getOperand(0), BO->getOperand(1), BO->getName()), I); | 
|  | return new ICmpInst(I.getPredicate(), NewRem, | 
|  | Constant::getNullValue(BO->getType())); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Add: | 
|  | // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. | 
|  | if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { | 
|  | if (BO->hasOneUse()) | 
|  | return new ICmpInst(I.getPredicate(), BO->getOperand(0), | 
|  | ConstantExpr::getSub(CI, BOp1C)); | 
|  | } else if (CI->isNullValue()) { | 
|  | // Replace ((add A, B) != 0) with (A != -B) if A or B is | 
|  | // efficiently invertible, or if the add has just this one use. | 
|  | Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); | 
|  |  | 
|  | if (Value *NegVal = dyn_castNegVal(BOp1)) | 
|  | return new ICmpInst(I.getPredicate(), BOp0, NegVal); | 
|  | else if (Value *NegVal = dyn_castNegVal(BOp0)) | 
|  | return new ICmpInst(I.getPredicate(), NegVal, BOp1); | 
|  | else if (BO->hasOneUse()) { | 
|  | Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName()); | 
|  | BO->setName(""); | 
|  | InsertNewInstBefore(Neg, I); | 
|  | return new ICmpInst(I.getPredicate(), BOp0, Neg); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Xor: | 
|  | // For the xor case, we can xor two constants together, eliminating | 
|  | // the explicit xor. | 
|  | if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) | 
|  | return new ICmpInst(I.getPredicate(), BO->getOperand(0), | 
|  | ConstantExpr::getXor(CI, BOC)); | 
|  |  | 
|  | // FALLTHROUGH | 
|  | case Instruction::Sub: | 
|  | // Replace (([sub|xor] A, B) != 0) with (A != B) | 
|  | if (CI->isNullValue()) | 
|  | return new ICmpInst(I.getPredicate(), BO->getOperand(0), | 
|  | BO->getOperand(1)); | 
|  | break; | 
|  |  | 
|  | case Instruction::Or: | 
|  | // If bits are being or'd in that are not present in the constant we | 
|  | // are comparing against, then the comparison could never succeed! | 
|  | if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) { | 
|  | Constant *NotCI = ConstantExpr::getNot(CI); | 
|  | if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, | 
|  | isICMP_NE)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::And: | 
|  | if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { | 
|  | // If bits are being compared against that are and'd out, then the | 
|  | // comparison can never succeed! | 
|  | if (!ConstantExpr::getAnd(CI, | 
|  | ConstantExpr::getNot(BOC))->isNullValue()) | 
|  | return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, | 
|  | isICMP_NE)); | 
|  |  | 
|  | // If we have ((X & C) == C), turn it into ((X & C) != 0). | 
|  | if (CI == BOC && isOneBitSet(CI)) | 
|  | return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : | 
|  | ICmpInst::ICMP_NE, Op0, | 
|  | Constant::getNullValue(CI->getType())); | 
|  |  | 
|  | // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 | 
|  | if (isSignBit(BOC)) { | 
|  | Value *X = BO->getOperand(0); | 
|  | Constant *Zero = Constant::getNullValue(X->getType()); | 
|  | ICmpInst::Predicate pred = isICMP_NE ? | 
|  | ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; | 
|  | return new ICmpInst(pred, X, Zero); | 
|  | } | 
|  |  | 
|  | // ((X & ~7) == 0) --> X < 8 | 
|  | if (CI->isNullValue() && isHighOnes(BOC)) { | 
|  | Value *X = BO->getOperand(0); | 
|  | Constant *NegX = ConstantExpr::getNeg(BOC); | 
|  | ICmpInst::Predicate pred = isICMP_NE ? | 
|  | ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; | 
|  | return new ICmpInst(pred, X, NegX); | 
|  | } | 
|  |  | 
|  | } | 
|  | default: break; | 
|  | } | 
|  | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) { | 
|  | // Handle set{eq|ne} <intrinsic>, intcst. | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::bswap_i16: | 
|  | // icmp eq (bswap(x)), c -> icmp eq (x,bswap(c)) | 
|  | WorkList.push_back(II);  // Dead? | 
|  | I.setOperand(0, II->getOperand(1)); | 
|  | I.setOperand(1, ConstantInt::get(Type::Int16Ty, | 
|  | ByteSwap_16(CI->getZExtValue()))); | 
|  | return &I; | 
|  | case Intrinsic::bswap_i32: | 
|  | // icmp eq (bswap(x)), c -> icmp eq (x,bswap(c)) | 
|  | WorkList.push_back(II);  // Dead? | 
|  | I.setOperand(0, II->getOperand(1)); | 
|  | I.setOperand(1, ConstantInt::get(Type::Int32Ty, | 
|  | ByteSwap_32(CI->getZExtValue()))); | 
|  | return &I; | 
|  | case Intrinsic::bswap_i64: | 
|  | // icmp eq (bswap(x)), c -> icmp eq (x,bswap(c)) | 
|  | WorkList.push_back(II);  // Dead? | 
|  | I.setOperand(0, II->getOperand(1)); | 
|  | I.setOperand(1, ConstantInt::get(Type::Int64Ty, | 
|  | ByteSwap_64(CI->getZExtValue()))); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  | } else {  // Not a ICMP_EQ/ICMP_NE | 
|  | // If the LHS is a cast from an integral value of the same size, then | 
|  | // since we know the RHS is a constant, try to simlify. | 
|  | if (CastInst *Cast = dyn_cast<CastInst>(Op0)) { | 
|  | Value *CastOp = Cast->getOperand(0); | 
|  | const Type *SrcTy = CastOp->getType(); | 
|  | unsigned SrcTySize = SrcTy->getPrimitiveSizeInBits(); | 
|  | if (SrcTy->isInteger() && | 
|  | SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) { | 
|  | // If this is an unsigned comparison, try to make the comparison use | 
|  | // smaller constant values. | 
|  | switch (I.getPredicate()) { | 
|  | default: break; | 
|  | case ICmpInst::ICMP_ULT: { // X u< 128 => X s> -1 | 
|  | ConstantInt *CUI = cast<ConstantInt>(CI); | 
|  | if (CUI->getZExtValue() == 1ULL << (SrcTySize-1)) | 
|  | return new ICmpInst(ICmpInst::ICMP_SGT, CastOp, | 
|  | ConstantInt::get(SrcTy, -1)); | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_UGT: { // X u> 127 => X s< 0 | 
|  | ConstantInt *CUI = cast<ConstantInt>(CI); | 
|  | if (CUI->getZExtValue() == (1ULL << (SrcTySize-1))-1) | 
|  | return new ICmpInst(ICmpInst::ICMP_SLT, CastOp, | 
|  | Constant::getNullValue(SrcTy)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle icmp with constant RHS | 
|  | if (Constant *RHSC = dyn_cast<Constant>(Op1)) { | 
|  | if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) | 
|  | switch (LHSI->getOpcode()) { | 
|  | case Instruction::GetElementPtr: | 
|  | if (RHSC->isNullValue()) { | 
|  | // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null | 
|  | bool isAllZeros = true; | 
|  | for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i) | 
|  | if (!isa<Constant>(LHSI->getOperand(i)) || | 
|  | !cast<Constant>(LHSI->getOperand(i))->isNullValue()) { | 
|  | isAllZeros = false; | 
|  | break; | 
|  | } | 
|  | if (isAllZeros) | 
|  | return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), | 
|  | Constant::getNullValue(LHSI->getOperand(0)->getType())); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::PHI: | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | break; | 
|  | case Instruction::Select: | 
|  | // If either operand of the select is a constant, we can fold the | 
|  | // comparison into the select arms, which will cause one to be | 
|  | // constant folded and the select turned into a bitwise or. | 
|  | Value *Op1 = 0, *Op2 = 0; | 
|  | if (LHSI->hasOneUse()) { | 
|  | if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { | 
|  | // Fold the known value into the constant operand. | 
|  | Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); | 
|  | // Insert a new ICmp of the other select operand. | 
|  | Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(), | 
|  | LHSI->getOperand(2), RHSC, | 
|  | I.getName()), I); | 
|  | } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { | 
|  | // Fold the known value into the constant operand. | 
|  | Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); | 
|  | // Insert a new ICmp of the other select operand. | 
|  | Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(), | 
|  | LHSI->getOperand(1), RHSC, | 
|  | I.getName()), I); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op1) | 
|  | return new SelectInst(LHSI->getOperand(0), Op1, Op2); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. | 
|  | if (User *GEP = dyn_castGetElementPtr(Op0)) | 
|  | if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) | 
|  | return NI; | 
|  | if (User *GEP = dyn_castGetElementPtr(Op1)) | 
|  | if (Instruction *NI = FoldGEPICmp(GEP, Op0, | 
|  | ICmpInst::getSwappedPredicate(I.getPredicate()), I)) | 
|  | return NI; | 
|  |  | 
|  | // Test to see if the operands of the icmp are casted versions of other | 
|  | // values.  If the ptr->ptr cast can be stripped off both arguments, we do so | 
|  | // now. | 
|  | if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { | 
|  | if (isa<PointerType>(Op0->getType()) && | 
|  | (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { | 
|  | // We keep moving the cast from the left operand over to the right | 
|  | // operand, where it can often be eliminated completely. | 
|  | Op0 = CI->getOperand(0); | 
|  |  | 
|  | // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast | 
|  | // so eliminate it as well. | 
|  | if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) | 
|  | Op1 = CI2->getOperand(0); | 
|  |  | 
|  | // If Op1 is a constant, we can fold the cast into the constant. | 
|  | if (Op0->getType() != Op1->getType()) | 
|  | if (Constant *Op1C = dyn_cast<Constant>(Op1)) { | 
|  | Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); | 
|  | } else { | 
|  | // Otherwise, cast the RHS right before the icmp | 
|  | Op1 = InsertCastBefore(Instruction::BitCast, Op1, Op0->getType(), I); | 
|  | } | 
|  | return new ICmpInst(I.getPredicate(), Op0, Op1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<CastInst>(Op0)) { | 
|  | // Handle the special case of: icmp (cast bool to X), <cst> | 
|  | // This comes up when you have code like | 
|  | //   int X = A < B; | 
|  | //   if (X) ... | 
|  | // For generality, we handle any zero-extension of any operand comparison | 
|  | // with a constant or another cast from the same type. | 
|  | if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1)) | 
|  | if (Instruction *R = visitICmpInstWithCastAndCast(I)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | if (I.isEquality()) { | 
|  | Value *A, *B, *C, *D; | 
|  | if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { | 
|  | if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0 | 
|  | Value *OtherVal = A == Op1 ? B : A; | 
|  | return new ICmpInst(I.getPredicate(), OtherVal, | 
|  | Constant::getNullValue(A->getType())); | 
|  | } | 
|  |  | 
|  | if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { | 
|  | // A^c1 == C^c2 --> A == C^(c1^c2) | 
|  | if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) | 
|  | if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) | 
|  | if (Op1->hasOneUse()) { | 
|  | Constant *NC = ConstantExpr::getXor(C1, C2); | 
|  | Instruction *Xor = BinaryOperator::createXor(C, NC, "tmp"); | 
|  | return new ICmpInst(I.getPredicate(), A, | 
|  | InsertNewInstBefore(Xor, I)); | 
|  | } | 
|  |  | 
|  | // A^B == A^D -> B == D | 
|  | if (A == C) return new ICmpInst(I.getPredicate(), B, D); | 
|  | if (A == D) return new ICmpInst(I.getPredicate(), B, C); | 
|  | if (B == C) return new ICmpInst(I.getPredicate(), A, D); | 
|  | if (B == D) return new ICmpInst(I.getPredicate(), A, C); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && | 
|  | (A == Op0 || B == Op0)) { | 
|  | // A == (A^B)  ->  B == 0 | 
|  | Value *OtherVal = A == Op0 ? B : A; | 
|  | return new ICmpInst(I.getPredicate(), OtherVal, | 
|  | Constant::getNullValue(A->getType())); | 
|  | } | 
|  | if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) { | 
|  | // (A-B) == A  ->  B == 0 | 
|  | return new ICmpInst(I.getPredicate(), B, | 
|  | Constant::getNullValue(B->getType())); | 
|  | } | 
|  | if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) { | 
|  | // A == (A-B)  ->  B == 0 | 
|  | return new ICmpInst(I.getPredicate(), B, | 
|  | Constant::getNullValue(B->getType())); | 
|  | } | 
|  |  | 
|  | // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 | 
|  | if (Op0->hasOneUse() && Op1->hasOneUse() && | 
|  | match(Op0, m_And(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_And(m_Value(C), m_Value(D)))) { | 
|  | Value *X = 0, *Y = 0, *Z = 0; | 
|  |  | 
|  | if (A == C) { | 
|  | X = B; Y = D; Z = A; | 
|  | } else if (A == D) { | 
|  | X = B; Y = C; Z = A; | 
|  | } else if (B == C) { | 
|  | X = A; Y = D; Z = B; | 
|  | } else if (B == D) { | 
|  | X = A; Y = C; Z = B; | 
|  | } | 
|  |  | 
|  | if (X) {   // Build (X^Y) & Z | 
|  | Op1 = InsertNewInstBefore(BinaryOperator::createXor(X, Y, "tmp"), I); | 
|  | Op1 = InsertNewInstBefore(BinaryOperator::createAnd(Op1, Z, "tmp"), I); | 
|  | I.setOperand(0, Op1); | 
|  | I.setOperand(1, Constant::getNullValue(Op1->getType())); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | // visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). | 
|  | // We only handle extending casts so far. | 
|  | // | 
|  | Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { | 
|  | const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0)); | 
|  | Value *LHSCIOp        = LHSCI->getOperand(0); | 
|  | const Type *SrcTy     = LHSCIOp->getType(); | 
|  | const Type *DestTy    = LHSCI->getType(); | 
|  | Value *RHSCIOp; | 
|  |  | 
|  | // We only handle extension cast instructions, so far. Enforce this. | 
|  | if (LHSCI->getOpcode() != Instruction::ZExt && | 
|  | LHSCI->getOpcode() != Instruction::SExt) | 
|  | return 0; | 
|  |  | 
|  | bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; | 
|  | bool isSignedCmp = ICI.isSignedPredicate(); | 
|  |  | 
|  | if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) { | 
|  | // Not an extension from the same type? | 
|  | RHSCIOp = CI->getOperand(0); | 
|  | if (RHSCIOp->getType() != LHSCIOp->getType()) | 
|  | return 0; | 
|  |  | 
|  | // If the signedness of the two compares doesn't agree (i.e. one is a sext | 
|  | // and the other is a zext), then we can't handle this. | 
|  | if (CI->getOpcode() != LHSCI->getOpcode()) | 
|  | return 0; | 
|  |  | 
|  | // Likewise, if the signedness of the [sz]exts and the compare don't match, | 
|  | // then we can't handle this. | 
|  | if (isSignedExt != isSignedCmp && !ICI.isEquality()) | 
|  | return 0; | 
|  |  | 
|  | // Okay, just insert a compare of the reduced operands now! | 
|  | return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); | 
|  | } | 
|  |  | 
|  | // If we aren't dealing with a constant on the RHS, exit early | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1)); | 
|  | if (!CI) | 
|  | return 0; | 
|  |  | 
|  | // Compute the constant that would happen if we truncated to SrcTy then | 
|  | // reextended to DestTy. | 
|  | Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); | 
|  | Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); | 
|  |  | 
|  | // If the re-extended constant didn't change... | 
|  | if (Res2 == CI) { | 
|  | // Make sure that sign of the Cmp and the sign of the Cast are the same. | 
|  | // For example, we might have: | 
|  | //    %A = sext short %X to uint | 
|  | //    %B = icmp ugt uint %A, 1330 | 
|  | // It is incorrect to transform this into | 
|  | //    %B = icmp ugt short %X, 1330 | 
|  | // because %A may have negative value. | 
|  | // | 
|  | // However, it is OK if SrcTy is bool (See cast-set.ll testcase) | 
|  | // OR operation is EQ/NE. | 
|  | if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality()) | 
|  | return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The re-extended constant changed so the constant cannot be represented | 
|  | // in the shorter type. Consequently, we cannot emit a simple comparison. | 
|  |  | 
|  | // First, handle some easy cases. We know the result cannot be equal at this | 
|  | // point so handle the ICI.isEquality() cases | 
|  | if (ICI.getPredicate() == ICmpInst::ICMP_EQ) | 
|  | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); | 
|  | if (ICI.getPredicate() == ICmpInst::ICMP_NE) | 
|  | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); | 
|  |  | 
|  | // Evaluate the comparison for LT (we invert for GT below). LE and GE cases | 
|  | // should have been folded away previously and not enter in here. | 
|  | Value *Result; | 
|  | if (isSignedCmp) { | 
|  | // We're performing a signed comparison. | 
|  | if (cast<ConstantInt>(CI)->getSExtValue() < 0) | 
|  | Result = ConstantInt::getFalse();          // X < (small) --> false | 
|  | else | 
|  | Result = ConstantInt::getTrue();           // X < (large) --> true | 
|  | } else { | 
|  | // We're performing an unsigned comparison. | 
|  | if (isSignedExt) { | 
|  | // We're performing an unsigned comp with a sign extended value. | 
|  | // This is true if the input is >= 0. [aka >s -1] | 
|  | Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy); | 
|  | Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp, | 
|  | NegOne, ICI.getName()), ICI); | 
|  | } else { | 
|  | // Unsigned extend & unsigned compare -> always true. | 
|  | Result = ConstantInt::getTrue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, return the value computed. | 
|  | if (ICI.getPredicate() == ICmpInst::ICMP_ULT || | 
|  | ICI.getPredicate() == ICmpInst::ICMP_SLT) { | 
|  | return ReplaceInstUsesWith(ICI, Result); | 
|  | } else { | 
|  | assert((ICI.getPredicate()==ICmpInst::ICMP_UGT || | 
|  | ICI.getPredicate()==ICmpInst::ICMP_SGT) && | 
|  | "ICmp should be folded!"); | 
|  | if (Constant *CI = dyn_cast<Constant>(Result)) | 
|  | return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI)); | 
|  | else | 
|  | return BinaryOperator::createNot(Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitShiftInst(ShiftInst &I) { | 
|  | assert(I.getOperand(1)->getType() == Type::Int8Ty); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // shl X, 0 == X and shr X, 0 == X | 
|  | // shl 0, X == 0 and shr 0, X == 0 | 
|  | if (Op1 == Constant::getNullValue(Type::Int8Ty) || | 
|  | Op0 == Constant::getNullValue(Op0->getType())) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  |  | 
|  | if (isa<UndefValue>(Op0)) { | 
|  | if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  | else                                    // undef << X -> 0, undef >>u X -> 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | } | 
|  | if (isa<UndefValue>(Op1)) { | 
|  | if (I.getOpcode() == Instruction::AShr)  // X >>s undef -> X | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  | else                                     // X << undef, X >>u undef -> 0 | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | } | 
|  |  | 
|  | // ashr int -1, X = -1   (for any arithmetic shift rights of ~0) | 
|  | if (I.getOpcode() == Instruction::AShr) | 
|  | if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) | 
|  | if (CSI->isAllOnesValue()) | 
|  | return ReplaceInstUsesWith(I, CSI); | 
|  |  | 
|  | // Try to fold constant and into select arguments. | 
|  | if (isa<Constant>(Op0)) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  |  | 
|  | // See if we can turn a signed shr into an unsigned shr. | 
|  | if (I.isArithmeticShift()) { | 
|  | if (MaskedValueIsZero(Op0, | 
|  | 1ULL << (I.getType()->getPrimitiveSizeInBits()-1))) { | 
|  | return new ShiftInst(Instruction::LShr, Op0, Op1, I.getName()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1)) | 
|  | if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) | 
|  | return Res; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1, | 
|  | ShiftInst &I) { | 
|  | bool isLeftShift    = I.getOpcode() == Instruction::Shl; | 
|  | bool isSignedShift  = I.getOpcode() == Instruction::AShr; | 
|  | bool isUnsignedShift = !isSignedShift; | 
|  |  | 
|  | // See if we can simplify any instructions used by the instruction whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | uint64_t KnownZero, KnownOne; | 
|  | if (SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(), | 
|  | KnownZero, KnownOne)) | 
|  | return &I; | 
|  |  | 
|  | // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr | 
|  | // of a signed value. | 
|  | // | 
|  | unsigned TypeBits = Op0->getType()->getPrimitiveSizeInBits(); | 
|  | if (Op1->getZExtValue() >= TypeBits) { | 
|  | if (isUnsignedShift || isLeftShift) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); | 
|  | else { | 
|  | I.setOperand(1, ConstantInt::get(Type::Int8Ty, TypeBits-1)); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | // ((X*C1) << C2) == (X * (C1 << C2)) | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) | 
|  | if (BO->getOpcode() == Instruction::Mul && isLeftShift) | 
|  | if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1))) | 
|  | return BinaryOperator::createMul(BO->getOperand(0), | 
|  | ConstantExpr::getShl(BOOp, Op1)); | 
|  |  | 
|  | // Try to fold constant and into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI, this)) | 
|  | return R; | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  |  | 
|  | if (Op0->hasOneUse()) { | 
|  | if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { | 
|  | // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C) | 
|  | Value *V1, *V2; | 
|  | ConstantInt *CC; | 
|  | switch (Op0BO->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::Add: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | // These operators commute. | 
|  | // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C) | 
|  | if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && | 
|  | match(Op0BO->getOperand(1), | 
|  | m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) { | 
|  | Instruction *YS = new ShiftInst(Instruction::Shl, | 
|  | Op0BO->getOperand(0), Op1, | 
|  | Op0BO->getName()); | 
|  | InsertNewInstBefore(YS, I); // (Y << C) | 
|  | Instruction *X = | 
|  | BinaryOperator::create(Op0BO->getOpcode(), YS, V1, | 
|  | Op0BO->getOperand(1)->getName()); | 
|  | InsertNewInstBefore(X, I);  // (X + (Y << C)) | 
|  | Constant *C2 = ConstantInt::getAllOnesValue(X->getType()); | 
|  | C2 = ConstantExpr::getShl(C2, Op1); | 
|  | return BinaryOperator::createAnd(X, C2); | 
|  | } | 
|  |  | 
|  | // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C)) | 
|  | if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && | 
|  | match(Op0BO->getOperand(1), | 
|  | m_And(m_Shr(m_Value(V1), m_Value(V2)), | 
|  | m_ConstantInt(CC))) && V2 == Op1 && | 
|  | cast<BinaryOperator>(Op0BO->getOperand(1))->getOperand(0)->hasOneUse()) { | 
|  | Instruction *YS = new ShiftInst(Instruction::Shl, | 
|  | Op0BO->getOperand(0), Op1, | 
|  | Op0BO->getName()); | 
|  | InsertNewInstBefore(YS, I); // (Y << C) | 
|  | Instruction *XM = | 
|  | BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1), | 
|  | V1->getName()+".mask"); | 
|  | InsertNewInstBefore(XM, I); // X & (CC << C) | 
|  |  | 
|  | return BinaryOperator::create(Op0BO->getOpcode(), YS, XM); | 
|  | } | 
|  |  | 
|  | // FALL THROUGH. | 
|  | case Instruction::Sub: | 
|  | // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C) | 
|  | if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && | 
|  | match(Op0BO->getOperand(0), | 
|  | m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) { | 
|  | Instruction *YS = new ShiftInst(Instruction::Shl, | 
|  | Op0BO->getOperand(1), Op1, | 
|  | Op0BO->getName()); | 
|  | InsertNewInstBefore(YS, I); // (Y << C) | 
|  | Instruction *X = | 
|  | BinaryOperator::create(Op0BO->getOpcode(), V1, YS, | 
|  | Op0BO->getOperand(0)->getName()); | 
|  | InsertNewInstBefore(X, I);  // (X + (Y << C)) | 
|  | Constant *C2 = ConstantInt::getAllOnesValue(X->getType()); | 
|  | C2 = ConstantExpr::getShl(C2, Op1); | 
|  | return BinaryOperator::createAnd(X, C2); | 
|  | } | 
|  |  | 
|  | // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C) | 
|  | if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && | 
|  | match(Op0BO->getOperand(0), | 
|  | m_And(m_Shr(m_Value(V1), m_Value(V2)), | 
|  | m_ConstantInt(CC))) && V2 == Op1 && | 
|  | cast<BinaryOperator>(Op0BO->getOperand(0)) | 
|  | ->getOperand(0)->hasOneUse()) { | 
|  | Instruction *YS = new ShiftInst(Instruction::Shl, | 
|  | Op0BO->getOperand(1), Op1, | 
|  | Op0BO->getName()); | 
|  | InsertNewInstBefore(YS, I); // (Y << C) | 
|  | Instruction *XM = | 
|  | BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1), | 
|  | V1->getName()+".mask"); | 
|  | InsertNewInstBefore(XM, I); // X & (CC << C) | 
|  |  | 
|  | return BinaryOperator::create(Op0BO->getOpcode(), XM, YS); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | // If the operand is an bitwise operator with a constant RHS, and the | 
|  | // shift is the only use, we can pull it out of the shift. | 
|  | if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) { | 
|  | bool isValid = true;     // Valid only for And, Or, Xor | 
|  | bool highBitSet = false; // Transform if high bit of constant set? | 
|  |  | 
|  | switch (Op0BO->getOpcode()) { | 
|  | default: isValid = false; break;   // Do not perform transform! | 
|  | case Instruction::Add: | 
|  | isValid = isLeftShift; | 
|  | break; | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | highBitSet = false; | 
|  | break; | 
|  | case Instruction::And: | 
|  | highBitSet = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is a signed shift right, and the high bit is modified | 
|  | // by the logical operation, do not perform the transformation. | 
|  | // The highBitSet boolean indicates the value of the high bit of | 
|  | // the constant which would cause it to be modified for this | 
|  | // operation. | 
|  | // | 
|  | if (isValid && !isLeftShift && isSignedShift) { | 
|  | uint64_t Val = Op0C->getZExtValue(); | 
|  | isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet; | 
|  | } | 
|  |  | 
|  | if (isValid) { | 
|  | Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1); | 
|  |  | 
|  | Instruction *NewShift = | 
|  | new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), Op1, | 
|  | Op0BO->getName()); | 
|  | Op0BO->setName(""); | 
|  | InsertNewInstBefore(NewShift, I); | 
|  |  | 
|  | return BinaryOperator::create(Op0BO->getOpcode(), NewShift, | 
|  | NewRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find out if this is a shift of a shift by a constant. | 
|  | ShiftInst *ShiftOp = 0; | 
|  | if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0)) | 
|  | ShiftOp = Op0SI; | 
|  | else if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { | 
|  | // If this is a noop-integer cast of a shift instruction, use the shift. | 
|  | if (isa<ShiftInst>(CI->getOperand(0))) { | 
|  | ShiftOp = cast<ShiftInst>(CI->getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) { | 
|  | // Find the operands and properties of the input shift.  Note that the | 
|  | // signedness of the input shift may differ from the current shift if there | 
|  | // is a noop cast between the two. | 
|  | bool isShiftOfLeftShift   = ShiftOp->getOpcode() == Instruction::Shl; | 
|  | bool isShiftOfSignedShift = ShiftOp->getOpcode() == Instruction::AShr; | 
|  | bool isShiftOfUnsignedShift = !isShiftOfSignedShift; | 
|  |  | 
|  | ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1)); | 
|  |  | 
|  | unsigned ShiftAmt1 = (unsigned)ShiftAmt1C->getZExtValue(); | 
|  | unsigned ShiftAmt2 = (unsigned)Op1->getZExtValue(); | 
|  |  | 
|  | // Check for (A << c1) << c2   and   (A >> c1) >> c2. | 
|  | if (isLeftShift == isShiftOfLeftShift) { | 
|  | // Do not fold these shifts if the first one is signed and the second one | 
|  | // is unsigned and this is a right shift.  Further, don't do any folding | 
|  | // on them. | 
|  | if (isShiftOfSignedShift && isUnsignedShift && !isLeftShift) | 
|  | return 0; | 
|  |  | 
|  | unsigned Amt = ShiftAmt1+ShiftAmt2;   // Fold into one big shift. | 
|  | if (Amt > Op0->getType()->getPrimitiveSizeInBits()) | 
|  | Amt = Op0->getType()->getPrimitiveSizeInBits(); | 
|  |  | 
|  | Value *Op = ShiftOp->getOperand(0); | 
|  | ShiftInst *ShiftResult = new ShiftInst(I.getOpcode(), Op, | 
|  | ConstantInt::get(Type::Int8Ty, Amt)); | 
|  | if (I.getType() == ShiftResult->getType()) | 
|  | return ShiftResult; | 
|  | InsertNewInstBefore(ShiftResult, I); | 
|  | return CastInst::create(Instruction::BitCast, ShiftResult, I.getType()); | 
|  | } | 
|  |  | 
|  | // Check for (A << c1) >> c2 or (A >> c1) << c2.  If we are dealing with | 
|  | // signed types, we can only support the (A >> c1) << c2 configuration, | 
|  | // because it can not turn an arbitrary bit of A into a sign bit. | 
|  | if (isUnsignedShift || isLeftShift) { | 
|  | // Calculate bitmask for what gets shifted off the edge. | 
|  | Constant *C = ConstantInt::getAllOnesValue(I.getType()); | 
|  | if (isLeftShift) | 
|  | C = ConstantExpr::getShl(C, ShiftAmt1C); | 
|  | else | 
|  | C = ConstantExpr::getLShr(C, ShiftAmt1C); | 
|  |  | 
|  | Value *Op = ShiftOp->getOperand(0); | 
|  |  | 
|  | Instruction *Mask = | 
|  | BinaryOperator::createAnd(Op, C, Op->getName()+".mask"); | 
|  | InsertNewInstBefore(Mask, I); | 
|  |  | 
|  | // Figure out what flavor of shift we should use... | 
|  | if (ShiftAmt1 == ShiftAmt2) { | 
|  | return ReplaceInstUsesWith(I, Mask);  // (A << c) >> c  === A & c2 | 
|  | } else if (ShiftAmt1 < ShiftAmt2) { | 
|  | return new ShiftInst(I.getOpcode(), Mask, | 
|  | ConstantInt::get(Type::Int8Ty, ShiftAmt2-ShiftAmt1)); | 
|  | } else if (isShiftOfUnsignedShift || isShiftOfLeftShift) { | 
|  | if (isShiftOfUnsignedShift && !isShiftOfLeftShift && isSignedShift) { | 
|  | return new ShiftInst(Instruction::LShr, Mask, | 
|  | ConstantInt::get(Type::Int8Ty, ShiftAmt1-ShiftAmt2)); | 
|  | } else { | 
|  | return new ShiftInst(ShiftOp->getOpcode(), Mask, | 
|  | ConstantInt::get(Type::Int8Ty, ShiftAmt1-ShiftAmt2)); | 
|  | } | 
|  | } else { | 
|  | // (X >>s C1) << C2  where C1 > C2  === (X >>s (C1-C2)) & mask | 
|  | Instruction *Shift = | 
|  | new ShiftInst(ShiftOp->getOpcode(), Mask, | 
|  | ConstantInt::get(Type::Int8Ty, ShiftAmt1-ShiftAmt2)); | 
|  | InsertNewInstBefore(Shift, I); | 
|  |  | 
|  | C = ConstantInt::getAllOnesValue(Shift->getType()); | 
|  | C = ConstantExpr::getShl(C, Op1); | 
|  | return BinaryOperator::createAnd(Shift, C, Op->getName()+".mask"); | 
|  | } | 
|  | } else { | 
|  | // We can handle signed (X << C1) >>s C2 if it's a sign extend.  In | 
|  | // this case, C1 == C2 and C1 is 8, 16, or 32. | 
|  | if (ShiftAmt1 == ShiftAmt2) { | 
|  | const Type *SExtType = 0; | 
|  | switch (Op0->getType()->getPrimitiveSizeInBits() - ShiftAmt1) { | 
|  | case 8 : SExtType = Type::Int8Ty; break; | 
|  | case 16: SExtType = Type::Int16Ty; break; | 
|  | case 32: SExtType = Type::Int32Ty; break; | 
|  | } | 
|  |  | 
|  | if (SExtType) { | 
|  | Instruction *NewTrunc = | 
|  | new TruncInst(ShiftOp->getOperand(0), SExtType, "sext"); | 
|  | InsertNewInstBefore(NewTrunc, I); | 
|  | return new SExtInst(NewTrunc, I.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear | 
|  | /// expression.  If so, decompose it, returning some value X, such that Val is | 
|  | /// X*Scale+Offset. | 
|  | /// | 
|  | static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, | 
|  | unsigned &Offset) { | 
|  | assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!"); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { | 
|  | Offset = CI->getZExtValue(); | 
|  | Scale  = 1; | 
|  | return ConstantInt::get(Type::Int32Ty, 0); | 
|  | } else if (Instruction *I = dyn_cast<Instruction>(Val)) { | 
|  | if (I->getNumOperands() == 2) { | 
|  | if (ConstantInt *CUI = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | if (I->getOpcode() == Instruction::Shl) { | 
|  | // This is a value scaled by '1 << the shift amt'. | 
|  | Scale = 1U << CUI->getZExtValue(); | 
|  | Offset = 0; | 
|  | return I->getOperand(0); | 
|  | } else if (I->getOpcode() == Instruction::Mul) { | 
|  | // This value is scaled by 'CUI'. | 
|  | Scale = CUI->getZExtValue(); | 
|  | Offset = 0; | 
|  | return I->getOperand(0); | 
|  | } else if (I->getOpcode() == Instruction::Add) { | 
|  | // We have X+C.  Check to see if we really have (X*C2)+C1, | 
|  | // where C1 is divisible by C2. | 
|  | unsigned SubScale; | 
|  | Value *SubVal = | 
|  | DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); | 
|  | Offset += CUI->getZExtValue(); | 
|  | if (SubScale > 1 && (Offset % SubScale == 0)) { | 
|  | Scale = SubScale; | 
|  | return SubVal; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can't look past this. | 
|  | Scale = 1; | 
|  | Offset = 0; | 
|  | return Val; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, | 
|  | /// try to eliminate the cast by moving the type information into the alloc. | 
|  | Instruction *InstCombiner::PromoteCastOfAllocation(CastInst &CI, | 
|  | AllocationInst &AI) { | 
|  | const PointerType *PTy = dyn_cast<PointerType>(CI.getType()); | 
|  | if (!PTy) return 0;   // Not casting the allocation to a pointer type. | 
|  |  | 
|  | // Remove any uses of AI that are dead. | 
|  | assert(!CI.use_empty() && "Dead instructions should be removed earlier!"); | 
|  | std::vector<Instruction*> DeadUsers; | 
|  | for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) { | 
|  | Instruction *User = cast<Instruction>(*UI++); | 
|  | if (isInstructionTriviallyDead(User)) { | 
|  | while (UI != E && *UI == User) | 
|  | ++UI; // If this instruction uses AI more than once, don't break UI. | 
|  |  | 
|  | // Add operands to the worklist. | 
|  | AddUsesToWorkList(*User); | 
|  | ++NumDeadInst; | 
|  | DOUT << "IC: DCE: " << *User; | 
|  |  | 
|  | User->eraseFromParent(); | 
|  | removeFromWorkList(User); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the type really allocated and the type casted to. | 
|  | const Type *AllocElTy = AI.getAllocatedType(); | 
|  | const Type *CastElTy = PTy->getElementType(); | 
|  | if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; | 
|  |  | 
|  | unsigned AllocElTyAlign = TD->getTypeAlignmentABI(AllocElTy); | 
|  | unsigned CastElTyAlign = TD->getTypeAlignmentABI(CastElTy); | 
|  | if (CastElTyAlign < AllocElTyAlign) return 0; | 
|  |  | 
|  | // If the allocation has multiple uses, only promote it if we are strictly | 
|  | // increasing the alignment of the resultant allocation.  If we keep it the | 
|  | // same, we open the door to infinite loops of various kinds. | 
|  | if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0; | 
|  |  | 
|  | uint64_t AllocElTySize = TD->getTypeSize(AllocElTy); | 
|  | uint64_t CastElTySize = TD->getTypeSize(CastElTy); | 
|  | if (CastElTySize == 0 || AllocElTySize == 0) return 0; | 
|  |  | 
|  | // See if we can satisfy the modulus by pulling a scale out of the array | 
|  | // size argument. | 
|  | unsigned ArraySizeScale, ArrayOffset; | 
|  | Value *NumElements = // See if the array size is a decomposable linear expr. | 
|  | DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); | 
|  |  | 
|  | // If we can now satisfy the modulus, by using a non-1 scale, we really can | 
|  | // do the xform. | 
|  | if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || | 
|  | (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0; | 
|  |  | 
|  | unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; | 
|  | Value *Amt = 0; | 
|  | if (Scale == 1) { | 
|  | Amt = NumElements; | 
|  | } else { | 
|  | // If the allocation size is constant, form a constant mul expression | 
|  | Amt = ConstantInt::get(Type::Int32Ty, Scale); | 
|  | if (isa<ConstantInt>(NumElements)) | 
|  | Amt = ConstantExpr::getMul( | 
|  | cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt)); | 
|  | // otherwise multiply the amount and the number of elements | 
|  | else if (Scale != 1) { | 
|  | Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp"); | 
|  | Amt = InsertNewInstBefore(Tmp, AI); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unsigned Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { | 
|  | Value *Off = ConstantInt::get(Type::Int32Ty, Offset); | 
|  | Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp"); | 
|  | Amt = InsertNewInstBefore(Tmp, AI); | 
|  | } | 
|  |  | 
|  | std::string Name = AI.getName(); AI.setName(""); | 
|  | AllocationInst *New; | 
|  | if (isa<MallocInst>(AI)) | 
|  | New = new MallocInst(CastElTy, Amt, AI.getAlignment(), Name); | 
|  | else | 
|  | New = new AllocaInst(CastElTy, Amt, AI.getAlignment(), Name); | 
|  | InsertNewInstBefore(New, AI); | 
|  |  | 
|  | // If the allocation has multiple uses, insert a cast and change all things | 
|  | // that used it to use the new cast.  This will also hack on CI, but it will | 
|  | // die soon. | 
|  | if (!AI.hasOneUse()) { | 
|  | AddUsesToWorkList(AI); | 
|  | // New is the allocation instruction, pointer typed. AI is the original | 
|  | // allocation instruction, also pointer typed. Thus, cast to use is BitCast. | 
|  | CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast"); | 
|  | InsertNewInstBefore(NewCast, AI); | 
|  | AI.replaceAllUsesWith(NewCast); | 
|  | } | 
|  | return ReplaceInstUsesWith(CI, New); | 
|  | } | 
|  |  | 
|  | /// CanEvaluateInDifferentType - Return true if we can take the specified value | 
|  | /// and return it without inserting any new casts.  This is used by code that | 
|  | /// tries to decide whether promoting or shrinking integer operations to wider | 
|  | /// or smaller types will allow us to eliminate a truncate or extend. | 
|  | static bool CanEvaluateInDifferentType(Value *V, const Type *Ty, | 
|  | int &NumCastsRemoved) { | 
|  | if (isa<Constant>(V)) return true; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I || !I->hasOneUse()) return false; | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | // These operators can all arbitrarily be extended or truncated. | 
|  | return CanEvaluateInDifferentType(I->getOperand(0), Ty, NumCastsRemoved) && | 
|  | CanEvaluateInDifferentType(I->getOperand(1), Ty, NumCastsRemoved); | 
|  | case Instruction::AShr: | 
|  | case Instruction::LShr: | 
|  | case Instruction::Shl: | 
|  | // If this is just a bitcast changing the sign of the operation, we can | 
|  | // convert if the operand can be converted. | 
|  | if (V->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) | 
|  | return CanEvaluateInDifferentType(I->getOperand(0), Ty, NumCastsRemoved); | 
|  | break; | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::BitCast: | 
|  | // If this is a cast from the destination type, we can trivially eliminate | 
|  | // it, and this will remove a cast overall. | 
|  | if (I->getOperand(0)->getType() == Ty) { | 
|  | // If the first operand is itself a cast, and is eliminable, do not count | 
|  | // this as an eliminable cast.  We would prefer to eliminate those two | 
|  | // casts first. | 
|  | if (isa<CastInst>(I->getOperand(0))) | 
|  | return true; | 
|  |  | 
|  | ++NumCastsRemoved; | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | // TODO: Can handle more cases here. | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// EvaluateInDifferentType - Given an expression that | 
|  | /// CanEvaluateInDifferentType returns true for, actually insert the code to | 
|  | /// evaluate the expression. | 
|  | Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, | 
|  | bool isSigned ) { | 
|  | if (Constant *C = dyn_cast<Constant>(V)) | 
|  | return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); | 
|  |  | 
|  | // Otherwise, it must be an instruction. | 
|  | Instruction *I = cast<Instruction>(V); | 
|  | Instruction *Res = 0; | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: { | 
|  | Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); | 
|  | Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); | 
|  | Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(), | 
|  | LHS, RHS, I->getName()); | 
|  | break; | 
|  | } | 
|  | case Instruction::AShr: | 
|  | case Instruction::LShr: | 
|  | case Instruction::Shl: { | 
|  | Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); | 
|  | Res = new ShiftInst((Instruction::OtherOps)I->getOpcode(), LHS, | 
|  | I->getOperand(1), I->getName()); | 
|  | break; | 
|  | } | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::BitCast: | 
|  | // If the source type of the cast is the type we're trying for then we can | 
|  | // just return the source. There's no need to insert it because its not new. | 
|  | if (I->getOperand(0)->getType() == Ty) | 
|  | return I->getOperand(0); | 
|  |  | 
|  | // Some other kind of cast, which shouldn't happen, so just .. | 
|  | // FALL THROUGH | 
|  | default: | 
|  | // TODO: Can handle more cases here. | 
|  | assert(0 && "Unreachable!"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return InsertNewInstBefore(Res, *I); | 
|  | } | 
|  |  | 
|  | /// @brief Implement the transforms common to all CastInst visitors. | 
|  | Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { | 
|  | Value *Src = CI.getOperand(0); | 
|  |  | 
|  | // Casting undef to anything results in undef so might as just replace it and | 
|  | // get rid of the cast. | 
|  | if (isa<UndefValue>(Src))   // cast undef -> undef | 
|  | return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType())); | 
|  |  | 
|  | // Many cases of "cast of a cast" are eliminable. If its eliminable we just | 
|  | // eliminate it now. | 
|  | if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast | 
|  | if (Instruction::CastOps opc = | 
|  | isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { | 
|  | // The first cast (CSrc) is eliminable so we need to fix up or replace | 
|  | // the second cast (CI). CSrc will then have a good chance of being dead. | 
|  | return CastInst::create(opc, CSrc->getOperand(0), CI.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If casting the result of a getelementptr instruction with no offset, turn | 
|  | // this into a cast of the original pointer! | 
|  | // | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { | 
|  | bool AllZeroOperands = true; | 
|  | for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i) | 
|  | if (!isa<Constant>(GEP->getOperand(i)) || | 
|  | !cast<Constant>(GEP->getOperand(i))->isNullValue()) { | 
|  | AllZeroOperands = false; | 
|  | break; | 
|  | } | 
|  | if (AllZeroOperands) { | 
|  | // Changing the cast operand is usually not a good idea but it is safe | 
|  | // here because the pointer operand is being replaced with another | 
|  | // pointer operand so the opcode doesn't need to change. | 
|  | CI.setOperand(0, GEP->getOperand(0)); | 
|  | return &CI; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are casting a malloc or alloca to a pointer to a type of the same | 
|  | // size, rewrite the allocation instruction to allocate the "right" type. | 
|  | if (AllocationInst *AI = dyn_cast<AllocationInst>(Src)) | 
|  | if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) | 
|  | return V; | 
|  |  | 
|  | // If we are casting a select then fold the cast into the select | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Src)) | 
|  | if (Instruction *NV = FoldOpIntoSelect(CI, SI, this)) | 
|  | return NV; | 
|  |  | 
|  | // If we are casting a PHI then fold the cast into the PHI | 
|  | if (isa<PHINode>(Src)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(CI)) | 
|  | return NV; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Only the TRUNC, ZEXT, SEXT, and BITCONVERT can have both operands as | 
|  | /// integers. This function implements the common transforms for all those | 
|  | /// cases. | 
|  | /// @brief Implement the transforms common to CastInst with integer operands | 
|  | Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) { | 
|  | if (Instruction *Result = commonCastTransforms(CI)) | 
|  | return Result; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  | const Type *SrcTy = Src->getType(); | 
|  | const Type *DestTy = CI.getType(); | 
|  | unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); | 
|  |  | 
|  | // See if we can simplify any instructions used by the LHS whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | uint64_t KnownZero = 0, KnownOne = 0; | 
|  | if (SimplifyDemandedBits(&CI, cast<IntegerType>(DestTy)->getBitMask(), | 
|  | KnownZero, KnownOne)) | 
|  | return &CI; | 
|  |  | 
|  | // If the source isn't an instruction or has more than one use then we | 
|  | // can't do anything more. | 
|  | Instruction *SrcI = dyn_cast<Instruction>(Src); | 
|  | if (!SrcI || !Src->hasOneUse()) | 
|  | return 0; | 
|  |  | 
|  | // Attempt to propagate the cast into the instruction. | 
|  | int NumCastsRemoved = 0; | 
|  | if (CanEvaluateInDifferentType(SrcI, DestTy, NumCastsRemoved)) { | 
|  | // If this cast is a truncate, evaluting in a different type always | 
|  | // eliminates the cast, so it is always a win.  If this is a noop-cast | 
|  | // this just removes a noop cast which isn't pointful, but simplifies | 
|  | // the code.  If this is a zero-extension, we need to do an AND to | 
|  | // maintain the clear top-part of the computation, so we require that | 
|  | // the input have eliminated at least one cast.  If this is a sign | 
|  | // extension, we insert two new casts (to do the extension) so we | 
|  | // require that two casts have been eliminated. | 
|  | bool DoXForm = CI.isNoopCast(TD->getIntPtrType()); | 
|  | if (!DoXForm) { | 
|  | switch (CI.getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | DoXForm = true; | 
|  | break; | 
|  | case Instruction::ZExt: | 
|  | DoXForm = NumCastsRemoved >= 1; | 
|  | break; | 
|  | case Instruction::SExt: | 
|  | DoXForm = NumCastsRemoved >= 2; | 
|  | break; | 
|  | case Instruction::BitCast: | 
|  | DoXForm = false; | 
|  | break; | 
|  | default: | 
|  | // All the others use floating point so we shouldn't actually | 
|  | // get here because of the check above. | 
|  | assert(!"Unknown cast type .. unreachable"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DoXForm) { | 
|  | Value *Res = EvaluateInDifferentType(SrcI, DestTy, | 
|  | CI.getOpcode() == Instruction::SExt); | 
|  | assert(Res->getType() == DestTy); | 
|  | switch (CI.getOpcode()) { | 
|  | default: assert(0 && "Unknown cast type!"); | 
|  | case Instruction::Trunc: | 
|  | case Instruction::BitCast: | 
|  | // Just replace this cast with the result. | 
|  | return ReplaceInstUsesWith(CI, Res); | 
|  | case Instruction::ZExt: { | 
|  | // We need to emit an AND to clear the high bits. | 
|  | assert(SrcBitSize < DestBitSize && "Not a zext?"); | 
|  | Constant *C = | 
|  | ConstantInt::get(Type::Int64Ty, (1ULL << SrcBitSize)-1); | 
|  | if (DestBitSize < 64) | 
|  | C = ConstantExpr::getTrunc(C, DestTy); | 
|  | return BinaryOperator::createAnd(Res, C); | 
|  | } | 
|  | case Instruction::SExt: | 
|  | // We need to emit a cast to truncate, then a cast to sext. | 
|  | return CastInst::create(Instruction::SExt, | 
|  | InsertCastBefore(Instruction::Trunc, Res, Src->getType(), | 
|  | CI), DestTy); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0; | 
|  | Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0; | 
|  |  | 
|  | switch (SrcI->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | // If we are discarding information, or just changing the sign, | 
|  | // rewrite. | 
|  | if (DestBitSize <= SrcBitSize && DestBitSize != 1) { | 
|  | // Don't insert two casts if they cannot be eliminated.  We allow | 
|  | // two casts to be inserted if the sizes are the same.  This could | 
|  | // only be converting signedness, which is a noop. | 
|  | if (DestBitSize == SrcBitSize || | 
|  | !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) || | 
|  | !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) { | 
|  | Instruction::CastOps opcode = CI.getOpcode(); | 
|  | Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI); | 
|  | Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI); | 
|  | return BinaryOperator::create( | 
|  | cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c); | 
|  | } | 
|  | } | 
|  |  | 
|  | // cast (xor bool X, true) to int  --> xor (cast bool X to int), 1 | 
|  | if (isa<ZExtInst>(CI) && SrcBitSize == 1 && | 
|  | SrcI->getOpcode() == Instruction::Xor && | 
|  | Op1 == ConstantInt::getTrue() && | 
|  | (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) { | 
|  | Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI); | 
|  | return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1)); | 
|  | } | 
|  | break; | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SRem: | 
|  | case Instruction::URem: | 
|  | // If we are just changing the sign, rewrite. | 
|  | if (DestBitSize == SrcBitSize) { | 
|  | // Don't insert two casts if they cannot be eliminated.  We allow | 
|  | // two casts to be inserted if the sizes are the same.  This could | 
|  | // only be converting signedness, which is a noop. | 
|  | if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) || | 
|  | !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) { | 
|  | Value *Op0c = InsertOperandCastBefore(Instruction::BitCast, | 
|  | Op0, DestTy, SrcI); | 
|  | Value *Op1c = InsertOperandCastBefore(Instruction::BitCast, | 
|  | Op1, DestTy, SrcI); | 
|  | return BinaryOperator::create( | 
|  | cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Shl: | 
|  | // Allow changing the sign of the source operand.  Do not allow | 
|  | // changing the size of the shift, UNLESS the shift amount is a | 
|  | // constant.  We must not change variable sized shifts to a smaller | 
|  | // size, because it is undefined to shift more bits out than exist | 
|  | // in the value. | 
|  | if (DestBitSize == SrcBitSize || | 
|  | (DestBitSize < SrcBitSize && isa<Constant>(Op1))) { | 
|  | Instruction::CastOps opcode = (DestBitSize == SrcBitSize ? | 
|  | Instruction::BitCast : Instruction::Trunc); | 
|  | Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI); | 
|  | return new ShiftInst(Instruction::Shl, Op0c, Op1); | 
|  | } | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | // If this is a signed shr, and if all bits shifted in are about to be | 
|  | // truncated off, turn it into an unsigned shr to allow greater | 
|  | // simplifications. | 
|  | if (DestBitSize < SrcBitSize && | 
|  | isa<ConstantInt>(Op1)) { | 
|  | unsigned ShiftAmt = cast<ConstantInt>(Op1)->getZExtValue(); | 
|  | if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) { | 
|  | // Insert the new logical shift right. | 
|  | return new ShiftInst(Instruction::LShr, Op0, Op1); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::ICmp: | 
|  | // If we are just checking for a icmp eq of a single bit and casting it | 
|  | // to an integer, then shift the bit to the appropriate place and then | 
|  | // cast to integer to avoid the comparison. | 
|  | if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { | 
|  | uint64_t Op1CV = Op1C->getZExtValue(); | 
|  | // cast (X == 0) to int --> X^1      iff X has only the low bit set. | 
|  | // cast (X == 0) to int --> (X>>1)^1 iff X has only the 2nd bit set. | 
|  | // cast (X == 1) to int --> X        iff X has only the low bit set. | 
|  | // cast (X == 2) to int --> X>>1     iff X has only the 2nd bit set. | 
|  | // cast (X != 0) to int --> X        iff X has only the low bit set. | 
|  | // cast (X != 0) to int --> X>>1     iff X has only the 2nd bit set. | 
|  | // cast (X != 1) to int --> X^1      iff X has only the low bit set. | 
|  | // cast (X != 2) to int --> (X>>1)^1 iff X has only the 2nd bit set. | 
|  | if (Op1CV == 0 || isPowerOf2_64(Op1CV)) { | 
|  | // If Op1C some other power of two, convert: | 
|  | uint64_t KnownZero, KnownOne; | 
|  | uint64_t TypeMask = Op1C->getType()->getBitMask(); | 
|  | ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne); | 
|  |  | 
|  | // This only works for EQ and NE | 
|  | ICmpInst::Predicate pred = cast<ICmpInst>(SrcI)->getPredicate(); | 
|  | if (pred != ICmpInst::ICMP_NE && pred != ICmpInst::ICMP_EQ) | 
|  | break; | 
|  |  | 
|  | if (isPowerOf2_64(KnownZero^TypeMask)) { // Exactly 1 possible 1? | 
|  | bool isNE = pred == ICmpInst::ICMP_NE; | 
|  | if (Op1CV && (Op1CV != (KnownZero^TypeMask))) { | 
|  | // (X&4) == 2 --> false | 
|  | // (X&4) != 2 --> true | 
|  | Constant *Res = ConstantInt::get(Type::Int1Ty, isNE); | 
|  | Res = ConstantExpr::getZExt(Res, CI.getType()); | 
|  | return ReplaceInstUsesWith(CI, Res); | 
|  | } | 
|  |  | 
|  | unsigned ShiftAmt = Log2_64(KnownZero^TypeMask); | 
|  | Value *In = Op0; | 
|  | if (ShiftAmt) { | 
|  | // Perform a logical shr by shiftamt. | 
|  | // Insert the shift to put the result in the low bit. | 
|  | In = InsertNewInstBefore( | 
|  | new ShiftInst(Instruction::LShr, In, | 
|  | ConstantInt::get(Type::Int8Ty, ShiftAmt), | 
|  | In->getName()+".lobit"), CI); | 
|  | } | 
|  |  | 
|  | if ((Op1CV != 0) == isNE) { // Toggle the low bit. | 
|  | Constant *One = ConstantInt::get(In->getType(), 1); | 
|  | In = BinaryOperator::createXor(In, One, "tmp"); | 
|  | InsertNewInstBefore(cast<Instruction>(In), CI); | 
|  | } | 
|  |  | 
|  | if (CI.getType() == In->getType()) | 
|  | return ReplaceInstUsesWith(CI, In); | 
|  | else | 
|  | return CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitTrunc(CastInst &CI) { | 
|  | if (Instruction *Result = commonIntCastTransforms(CI)) | 
|  | return Result; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  | const Type *Ty = CI.getType(); | 
|  | unsigned DestBitWidth = Ty->getPrimitiveSizeInBits(); | 
|  |  | 
|  | if (Instruction *SrcI = dyn_cast<Instruction>(Src)) { | 
|  | switch (SrcI->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::LShr: | 
|  | // We can shrink lshr to something smaller if we know the bits shifted in | 
|  | // are already zeros. | 
|  | if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) { | 
|  | unsigned ShAmt = ShAmtV->getZExtValue(); | 
|  |  | 
|  | // Get a mask for the bits shifting in. | 
|  | uint64_t Mask = (~0ULL >> (64-ShAmt)) << DestBitWidth; | 
|  | Value* SrcIOp0 = SrcI->getOperand(0); | 
|  | if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) { | 
|  | if (ShAmt >= DestBitWidth)        // All zeros. | 
|  | return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty)); | 
|  |  | 
|  | // Okay, we can shrink this.  Truncate the input, then return a new | 
|  | // shift. | 
|  | Value *V = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI); | 
|  | return new ShiftInst(Instruction::LShr, V, SrcI->getOperand(1)); | 
|  | } | 
|  | } else {     // This is a variable shr. | 
|  |  | 
|  | // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'.  This is | 
|  | // more LLVM instructions, but allows '1 << Y' to be hoisted if | 
|  | // loop-invariant and CSE'd. | 
|  | if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) { | 
|  | Value *One = ConstantInt::get(SrcI->getType(), 1); | 
|  |  | 
|  | Value *V = InsertNewInstBefore(new ShiftInst(Instruction::Shl, One, | 
|  | SrcI->getOperand(1), | 
|  | "tmp"), CI); | 
|  | V = InsertNewInstBefore(BinaryOperator::createAnd(V, | 
|  | SrcI->getOperand(0), | 
|  | "tmp"), CI); | 
|  | Value *Zero = Constant::getNullValue(V->getType()); | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, V, Zero); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitZExt(CastInst &CI) { | 
|  | // If one of the common conversion will work .. | 
|  | if (Instruction *Result = commonIntCastTransforms(CI)) | 
|  | return Result; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  |  | 
|  | // If this is a cast of a cast | 
|  | if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast | 
|  | // If this is a TRUNC followed by a ZEXT then we are dealing with integral | 
|  | // types and if the sizes are just right we can convert this into a logical | 
|  | // 'and' which will be much cheaper than the pair of casts. | 
|  | if (isa<TruncInst>(CSrc)) { | 
|  | // Get the sizes of the types involved | 
|  | Value *A = CSrc->getOperand(0); | 
|  | unsigned SrcSize = A->getType()->getPrimitiveSizeInBits(); | 
|  | unsigned MidSize = CSrc->getType()->getPrimitiveSizeInBits(); | 
|  | unsigned DstSize = CI.getType()->getPrimitiveSizeInBits(); | 
|  | // If we're actually extending zero bits and the trunc is a no-op | 
|  | if (MidSize < DstSize && SrcSize == DstSize) { | 
|  | // Replace both of the casts with an And of the type mask. | 
|  | uint64_t AndValue = cast<IntegerType>(CSrc->getType())->getBitMask(); | 
|  | Constant *AndConst = ConstantInt::get(A->getType(), AndValue); | 
|  | Instruction *And = | 
|  | BinaryOperator::createAnd(CSrc->getOperand(0), AndConst); | 
|  | // Unfortunately, if the type changed, we need to cast it back. | 
|  | if (And->getType() != CI.getType()) { | 
|  | And->setName(CSrc->getName()+".mask"); | 
|  | InsertNewInstBefore(And, CI); | 
|  | And = CastInst::createIntegerCast(And, CI.getType(), false/*ZExt*/); | 
|  | } | 
|  | return And; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSExt(CastInst &CI) { | 
|  | return commonIntCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPTrunc(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPExt(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPToUI(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPToSI(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitUIToFP(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSIToFP(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitPtrToInt(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitIntToPtr(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitBitCast(CastInst &CI) { | 
|  |  | 
|  | // If the operands are integer typed then apply the integer transforms, | 
|  | // otherwise just apply the common ones. | 
|  | Value *Src = CI.getOperand(0); | 
|  | const Type *SrcTy = Src->getType(); | 
|  | const Type *DestTy = CI.getType(); | 
|  |  | 
|  | if (SrcTy->isInteger() && DestTy->isInteger()) { | 
|  | if (Instruction *Result = commonIntCastTransforms(CI)) | 
|  | return Result; | 
|  | } else { | 
|  | if (Instruction *Result = commonCastTransforms(CI)) | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Get rid of casts from one type to the same type. These are useless and can | 
|  | // be replaced by the operand. | 
|  | if (DestTy == Src->getType()) | 
|  | return ReplaceInstUsesWith(CI, Src); | 
|  |  | 
|  | // If the source and destination are pointers, and this cast is equivalent to | 
|  | // a getelementptr X, 0, 0, 0...  turn it into the appropriate getelementptr. | 
|  | // This can enhance SROA and other transforms that want type-safe pointers. | 
|  | if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { | 
|  | if (const PointerType *SrcPTy = dyn_cast<PointerType>(SrcTy)) { | 
|  | const Type *DstElTy = DstPTy->getElementType(); | 
|  | const Type *SrcElTy = SrcPTy->getElementType(); | 
|  |  | 
|  | Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty); | 
|  | unsigned NumZeros = 0; | 
|  | while (SrcElTy != DstElTy && | 
|  | isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) && | 
|  | SrcElTy->getNumContainedTypes() /* not "{}" */) { | 
|  | SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); | 
|  | ++NumZeros; | 
|  | } | 
|  |  | 
|  | // If we found a path from the src to dest, create the getelementptr now. | 
|  | if (SrcElTy == DstElTy) { | 
|  | std::vector<Value*> Idxs(NumZeros+1, ZeroUInt); | 
|  | return new GetElementPtrInst(Src, Idxs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { | 
|  | if (SVI->hasOneUse()) { | 
|  | // Okay, we have (bitconvert (shuffle ..)).  Check to see if this is | 
|  | // a bitconvert to a vector with the same # elts. | 
|  | if (isa<PackedType>(DestTy) && | 
|  | cast<PackedType>(DestTy)->getNumElements() == | 
|  | SVI->getType()->getNumElements()) { | 
|  | CastInst *Tmp; | 
|  | // If either of the operands is a cast from CI.getType(), then | 
|  | // evaluating the shuffle in the casted destination's type will allow | 
|  | // us to eliminate at least one cast. | 
|  | if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) && | 
|  | Tmp->getOperand(0)->getType() == DestTy) || | 
|  | ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) && | 
|  | Tmp->getOperand(0)->getType() == DestTy)) { | 
|  | Value *LHS = InsertOperandCastBefore(Instruction::BitCast, | 
|  | SVI->getOperand(0), DestTy, &CI); | 
|  | Value *RHS = InsertOperandCastBefore(Instruction::BitCast, | 
|  | SVI->getOperand(1), DestTy, &CI); | 
|  | // Return a new shuffle vector.  Use the same element ID's, as we | 
|  | // know the vector types match #elts. | 
|  | return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// GetSelectFoldableOperands - We want to turn code that looks like this: | 
|  | ///   %C = or %A, %B | 
|  | ///   %D = select %cond, %C, %A | 
|  | /// into: | 
|  | ///   %C = select %cond, %B, 0 | 
|  | ///   %D = or %A, %C | 
|  | /// | 
|  | /// Assuming that the specified instruction is an operand to the select, return | 
|  | /// a bitmask indicating which operands of this instruction are foldable if they | 
|  | /// equal the other incoming value of the select. | 
|  | /// | 
|  | static unsigned GetSelectFoldableOperands(Instruction *I) { | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | return 3;              // Can fold through either operand. | 
|  | case Instruction::Sub:   // Can only fold on the amount subtracted. | 
|  | case Instruction::Shl:   // Can only fold on the shift amount. | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | return 1; | 
|  | default: | 
|  | return 0;              // Cannot fold | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GetSelectFoldableConstant - For the same transformation as the previous | 
|  | /// function, return the identity constant that goes into the select. | 
|  | static Constant *GetSelectFoldableConstant(Instruction *I) { | 
|  | switch (I->getOpcode()) { | 
|  | default: assert(0 && "This cannot happen!"); abort(); | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | return Constant::getNullValue(I->getType()); | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | return Constant::getNullValue(Type::Int8Ty); | 
|  | case Instruction::And: | 
|  | return ConstantInt::getAllOnesValue(I->getType()); | 
|  | case Instruction::Mul: | 
|  | return ConstantInt::get(I->getType(), 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI | 
|  | /// have the same opcode and only one use each.  Try to simplify this. | 
|  | Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, | 
|  | Instruction *FI) { | 
|  | if (TI->getNumOperands() == 1) { | 
|  | // If this is a non-volatile load or a cast from the same type, | 
|  | // merge. | 
|  | if (TI->isCast()) { | 
|  | if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType()) | 
|  | return 0; | 
|  | } else { | 
|  | return 0;  // unknown unary op. | 
|  | } | 
|  |  | 
|  | // Fold this by inserting a select from the input values. | 
|  | SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0), | 
|  | FI->getOperand(0), SI.getName()+".v"); | 
|  | InsertNewInstBefore(NewSI, SI); | 
|  | return CastInst::create(Instruction::CastOps(TI->getOpcode()), NewSI, | 
|  | TI->getType()); | 
|  | } | 
|  |  | 
|  | // Only handle binary, compare and shift operators here. | 
|  | if (!isa<ShiftInst>(TI) && !isa<BinaryOperator>(TI)) | 
|  | return 0; | 
|  |  | 
|  | // Figure out if the operations have any operands in common. | 
|  | Value *MatchOp, *OtherOpT, *OtherOpF; | 
|  | bool MatchIsOpZero; | 
|  | if (TI->getOperand(0) == FI->getOperand(0)) { | 
|  | MatchOp  = TI->getOperand(0); | 
|  | OtherOpT = TI->getOperand(1); | 
|  | OtherOpF = FI->getOperand(1); | 
|  | MatchIsOpZero = true; | 
|  | } else if (TI->getOperand(1) == FI->getOperand(1)) { | 
|  | MatchOp  = TI->getOperand(1); | 
|  | OtherOpT = TI->getOperand(0); | 
|  | OtherOpF = FI->getOperand(0); | 
|  | MatchIsOpZero = false; | 
|  | } else if (!TI->isCommutative()) { | 
|  | return 0; | 
|  | } else if (TI->getOperand(0) == FI->getOperand(1)) { | 
|  | MatchOp  = TI->getOperand(0); | 
|  | OtherOpT = TI->getOperand(1); | 
|  | OtherOpF = FI->getOperand(0); | 
|  | MatchIsOpZero = true; | 
|  | } else if (TI->getOperand(1) == FI->getOperand(0)) { | 
|  | MatchOp  = TI->getOperand(1); | 
|  | OtherOpT = TI->getOperand(0); | 
|  | OtherOpF = FI->getOperand(1); | 
|  | MatchIsOpZero = true; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If we reach here, they do have operations in common. | 
|  | SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT, | 
|  | OtherOpF, SI.getName()+".v"); | 
|  | InsertNewInstBefore(NewSI, SI); | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) { | 
|  | if (MatchIsOpZero) | 
|  | return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI); | 
|  | else | 
|  | return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp); | 
|  | } | 
|  |  | 
|  | assert(isa<ShiftInst>(TI) && "Should only have Shift here"); | 
|  | if (MatchIsOpZero) | 
|  | return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), MatchOp, NewSI); | 
|  | else | 
|  | return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), NewSI, MatchOp); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { | 
|  | Value *CondVal = SI.getCondition(); | 
|  | Value *TrueVal = SI.getTrueValue(); | 
|  | Value *FalseVal = SI.getFalseValue(); | 
|  |  | 
|  | // select true, X, Y  -> X | 
|  | // select false, X, Y -> Y | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal)) | 
|  | return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal); | 
|  |  | 
|  | // select C, X, X -> X | 
|  | if (TrueVal == FalseVal) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  |  | 
|  | if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y | 
|  | if (isa<Constant>(TrueVal)) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | else | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | } | 
|  |  | 
|  | if (SI.getType() == Type::Int1Ty) { | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) { | 
|  | if (C->getZExtValue()) { | 
|  | // Change: A = select B, true, C --> A = or B, C | 
|  | return BinaryOperator::createOr(CondVal, FalseVal); | 
|  | } else { | 
|  | // Change: A = select B, false, C --> A = and !B, C | 
|  | Value *NotCond = | 
|  | InsertNewInstBefore(BinaryOperator::createNot(CondVal, | 
|  | "not."+CondVal->getName()), SI); | 
|  | return BinaryOperator::createAnd(NotCond, FalseVal); | 
|  | } | 
|  | } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) { | 
|  | if (C->getZExtValue() == false) { | 
|  | // Change: A = select B, C, false --> A = and B, C | 
|  | return BinaryOperator::createAnd(CondVal, TrueVal); | 
|  | } else { | 
|  | // Change: A = select B, C, true --> A = or !B, C | 
|  | Value *NotCond = | 
|  | InsertNewInstBefore(BinaryOperator::createNot(CondVal, | 
|  | "not."+CondVal->getName()), SI); | 
|  | return BinaryOperator::createOr(NotCond, TrueVal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Selecting between two integer constants? | 
|  | if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) | 
|  | if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) { | 
|  | // select C, 1, 0 -> cast C to int | 
|  | if (FalseValC->isNullValue() && TrueValC->getZExtValue() == 1) { | 
|  | return CastInst::create(Instruction::ZExt, CondVal, SI.getType()); | 
|  | } else if (TrueValC->isNullValue() && FalseValC->getZExtValue() == 1) { | 
|  | // select C, 0, 1 -> cast !C to int | 
|  | Value *NotCond = | 
|  | InsertNewInstBefore(BinaryOperator::createNot(CondVal, | 
|  | "not."+CondVal->getName()), SI); | 
|  | return CastInst::create(Instruction::ZExt, NotCond, SI.getType()); | 
|  | } | 
|  |  | 
|  | if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) { | 
|  |  | 
|  | // (x <s 0) ? -1 : 0 -> ashr x, 31 | 
|  | // (x >u 2147483647) ? -1 : 0 -> ashr x, 31 | 
|  | if (TrueValC->isAllOnesValue() && FalseValC->isNullValue()) | 
|  | if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) { | 
|  | bool CanXForm = false; | 
|  | if (IC->isSignedPredicate()) | 
|  | CanXForm = CmpCst->isNullValue() && | 
|  | IC->getPredicate() == ICmpInst::ICMP_SLT; | 
|  | else { | 
|  | unsigned Bits = CmpCst->getType()->getPrimitiveSizeInBits(); | 
|  | CanXForm = (CmpCst->getZExtValue() == ~0ULL >> (64-Bits+1)) && | 
|  | IC->getPredicate() == ICmpInst::ICMP_UGT; | 
|  | } | 
|  |  | 
|  | if (CanXForm) { | 
|  | // The comparison constant and the result are not neccessarily the | 
|  | // same width. Make an all-ones value by inserting a AShr. | 
|  | Value *X = IC->getOperand(0); | 
|  | unsigned Bits = X->getType()->getPrimitiveSizeInBits(); | 
|  | Constant *ShAmt = ConstantInt::get(Type::Int8Ty, Bits-1); | 
|  | Instruction *SRA = new ShiftInst(Instruction::AShr, X, | 
|  | ShAmt, "ones"); | 
|  | InsertNewInstBefore(SRA, SI); | 
|  |  | 
|  | // Finally, convert to the type of the select RHS.  We figure out | 
|  | // if this requires a SExt, Trunc or BitCast based on the sizes. | 
|  | Instruction::CastOps opc = Instruction::BitCast; | 
|  | unsigned SRASize = SRA->getType()->getPrimitiveSizeInBits(); | 
|  | unsigned SISize  = SI.getType()->getPrimitiveSizeInBits(); | 
|  | if (SRASize < SISize) | 
|  | opc = Instruction::SExt; | 
|  | else if (SRASize > SISize) | 
|  | opc = Instruction::Trunc; | 
|  | return CastInst::create(opc, SRA, SI.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // If one of the constants is zero (we know they can't both be) and we | 
|  | // have a fcmp instruction with zero, and we have an 'and' with the | 
|  | // non-constant value, eliminate this whole mess.  This corresponds to | 
|  | // cases like this: ((X & 27) ? 27 : 0) | 
|  | if (TrueValC->isNullValue() || FalseValC->isNullValue()) | 
|  | if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) && | 
|  | cast<Constant>(IC->getOperand(1))->isNullValue()) | 
|  | if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0))) | 
|  | if (ICA->getOpcode() == Instruction::And && | 
|  | isa<ConstantInt>(ICA->getOperand(1)) && | 
|  | (ICA->getOperand(1) == TrueValC || | 
|  | ICA->getOperand(1) == FalseValC) && | 
|  | isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) { | 
|  | // Okay, now we know that everything is set up, we just don't | 
|  | // know whether we have a icmp_ne or icmp_eq and whether the | 
|  | // true or false val is the zero. | 
|  | bool ShouldNotVal = !TrueValC->isNullValue(); | 
|  | ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; | 
|  | Value *V = ICA; | 
|  | if (ShouldNotVal) | 
|  | V = InsertNewInstBefore(BinaryOperator::create( | 
|  | Instruction::Xor, V, ICA->getOperand(1)), SI); | 
|  | return ReplaceInstUsesWith(SI, V); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we are selecting two values based on a comparison of the two values. | 
|  | if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { | 
|  | if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { | 
|  | // Transform (X == Y) ? X : Y  -> Y | 
|  | if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | // Transform (X != Y) ? X : Y  -> X | 
|  | if (FCI->getPredicate() == FCmpInst::FCMP_ONE) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc. | 
|  |  | 
|  | } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ | 
|  | // Transform (X == Y) ? Y : X  -> X | 
|  | if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | // Transform (X != Y) ? Y : X  -> Y | 
|  | if (FCI->getPredicate() == FCmpInst::FCMP_ONE) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc. | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we are selecting two values based on a comparison of the two values. | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) { | 
|  | if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) { | 
|  | // Transform (X == Y) ? X : Y  -> Y | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_EQ) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | // Transform (X != Y) ? X : Y  -> X | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_NE) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc. | 
|  |  | 
|  | } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){ | 
|  | // Transform (X == Y) ? Y : X  -> X | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_EQ) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | // Transform (X != Y) ? Y : X  -> Y | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_NE) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc. | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *TI = dyn_cast<Instruction>(TrueVal)) | 
|  | if (Instruction *FI = dyn_cast<Instruction>(FalseVal)) | 
|  | if (TI->hasOneUse() && FI->hasOneUse()) { | 
|  | Instruction *AddOp = 0, *SubOp = 0; | 
|  |  | 
|  | // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) | 
|  | if (TI->getOpcode() == FI->getOpcode()) | 
|  | if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) | 
|  | return IV; | 
|  |  | 
|  | // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is | 
|  | // even legal for FP. | 
|  | if (TI->getOpcode() == Instruction::Sub && | 
|  | FI->getOpcode() == Instruction::Add) { | 
|  | AddOp = FI; SubOp = TI; | 
|  | } else if (FI->getOpcode() == Instruction::Sub && | 
|  | TI->getOpcode() == Instruction::Add) { | 
|  | AddOp = TI; SubOp = FI; | 
|  | } | 
|  |  | 
|  | if (AddOp) { | 
|  | Value *OtherAddOp = 0; | 
|  | if (SubOp->getOperand(0) == AddOp->getOperand(0)) { | 
|  | OtherAddOp = AddOp->getOperand(1); | 
|  | } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { | 
|  | OtherAddOp = AddOp->getOperand(0); | 
|  | } | 
|  |  | 
|  | if (OtherAddOp) { | 
|  | // So at this point we know we have (Y -> OtherAddOp): | 
|  | //        select C, (add X, Y), (sub X, Z) | 
|  | Value *NegVal;  // Compute -Z | 
|  | if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) { | 
|  | NegVal = ConstantExpr::getNeg(C); | 
|  | } else { | 
|  | NegVal = InsertNewInstBefore( | 
|  | BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI); | 
|  | } | 
|  |  | 
|  | Value *NewTrueOp = OtherAddOp; | 
|  | Value *NewFalseOp = NegVal; | 
|  | if (AddOp != TI) | 
|  | std::swap(NewTrueOp, NewFalseOp); | 
|  | Instruction *NewSel = | 
|  | new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p"); | 
|  |  | 
|  | NewSel = InsertNewInstBefore(NewSel, SI); | 
|  | return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we can fold the select into one of our operands. | 
|  | if (SI.getType()->isInteger()) { | 
|  | // See the comment above GetSelectFoldableOperands for a description of the | 
|  | // transformation we are doing here. | 
|  | if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) | 
|  | if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && | 
|  | !isa<Constant>(FalseVal)) | 
|  | if (unsigned SFO = GetSelectFoldableOperands(TVI)) { | 
|  | unsigned OpToFold = 0; | 
|  | if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { | 
|  | OpToFold = 1; | 
|  | } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { | 
|  | OpToFold = 2; | 
|  | } | 
|  |  | 
|  | if (OpToFold) { | 
|  | Constant *C = GetSelectFoldableConstant(TVI); | 
|  | std::string Name = TVI->getName(); TVI->setName(""); | 
|  | Instruction *NewSel = | 
|  | new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C, | 
|  | Name); | 
|  | InsertNewInstBefore(NewSel, SI); | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI)) | 
|  | return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel); | 
|  | else if (ShiftInst *SI = dyn_cast<ShiftInst>(TVI)) | 
|  | return new ShiftInst(SI->getOpcode(), FalseVal, NewSel); | 
|  | else { | 
|  | assert(0 && "Unknown instruction!!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) | 
|  | if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && | 
|  | !isa<Constant>(TrueVal)) | 
|  | if (unsigned SFO = GetSelectFoldableOperands(FVI)) { | 
|  | unsigned OpToFold = 0; | 
|  | if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { | 
|  | OpToFold = 1; | 
|  | } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { | 
|  | OpToFold = 2; | 
|  | } | 
|  |  | 
|  | if (OpToFold) { | 
|  | Constant *C = GetSelectFoldableConstant(FVI); | 
|  | std::string Name = FVI->getName(); FVI->setName(""); | 
|  | Instruction *NewSel = | 
|  | new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold), | 
|  | Name); | 
|  | InsertNewInstBefore(NewSel, SI); | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI)) | 
|  | return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel); | 
|  | else if (ShiftInst *SI = dyn_cast<ShiftInst>(FVI)) | 
|  | return new ShiftInst(SI->getOpcode(), TrueVal, NewSel); | 
|  | else { | 
|  | assert(0 && "Unknown instruction!!"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BinaryOperator::isNot(CondVal)) { | 
|  | SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); | 
|  | SI.setOperand(1, FalseVal); | 
|  | SI.setOperand(2, TrueVal); | 
|  | return &SI; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// GetKnownAlignment - If the specified pointer has an alignment that we can | 
|  | /// determine, return it, otherwise return 0. | 
|  | static unsigned GetKnownAlignment(Value *V, TargetData *TD) { | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { | 
|  | unsigned Align = GV->getAlignment(); | 
|  | if (Align == 0 && TD) | 
|  | Align = TD->getTypeAlignmentPref(GV->getType()->getElementType()); | 
|  | return Align; | 
|  | } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) { | 
|  | unsigned Align = AI->getAlignment(); | 
|  | if (Align == 0 && TD) { | 
|  | if (isa<AllocaInst>(AI)) | 
|  | Align = TD->getTypeAlignmentPref(AI->getType()->getElementType()); | 
|  | else if (isa<MallocInst>(AI)) { | 
|  | // Malloc returns maximally aligned memory. | 
|  | Align = TD->getTypeAlignmentABI(AI->getType()->getElementType()); | 
|  | Align = | 
|  | std::max(Align, | 
|  | (unsigned)TD->getTypeAlignmentABI(Type::DoubleTy)); | 
|  | Align = | 
|  | std::max(Align, | 
|  | (unsigned)TD->getTypeAlignmentABI(Type::Int64Ty)); | 
|  | } | 
|  | } | 
|  | return Align; | 
|  | } else if (isa<BitCastInst>(V) || | 
|  | (isa<ConstantExpr>(V) && | 
|  | cast<ConstantExpr>(V)->getOpcode() == Instruction::BitCast)) { | 
|  | User *CI = cast<User>(V); | 
|  | if (isa<PointerType>(CI->getOperand(0)->getType())) | 
|  | return GetKnownAlignment(CI->getOperand(0), TD); | 
|  | return 0; | 
|  | } else if (isa<GetElementPtrInst>(V) || | 
|  | (isa<ConstantExpr>(V) && | 
|  | cast<ConstantExpr>(V)->getOpcode()==Instruction::GetElementPtr)) { | 
|  | User *GEPI = cast<User>(V); | 
|  | unsigned BaseAlignment = GetKnownAlignment(GEPI->getOperand(0), TD); | 
|  | if (BaseAlignment == 0) return 0; | 
|  |  | 
|  | // If all indexes are zero, it is just the alignment of the base pointer. | 
|  | bool AllZeroOperands = true; | 
|  | for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i) | 
|  | if (!isa<Constant>(GEPI->getOperand(i)) || | 
|  | !cast<Constant>(GEPI->getOperand(i))->isNullValue()) { | 
|  | AllZeroOperands = false; | 
|  | break; | 
|  | } | 
|  | if (AllZeroOperands) | 
|  | return BaseAlignment; | 
|  |  | 
|  | // Otherwise, if the base alignment is >= the alignment we expect for the | 
|  | // base pointer type, then we know that the resultant pointer is aligned at | 
|  | // least as much as its type requires. | 
|  | if (!TD) return 0; | 
|  |  | 
|  | const Type *BasePtrTy = GEPI->getOperand(0)->getType(); | 
|  | const PointerType *PtrTy = cast<PointerType>(BasePtrTy); | 
|  | if (TD->getTypeAlignmentABI(PtrTy->getElementType()) | 
|  | <= BaseAlignment) { | 
|  | const Type *GEPTy = GEPI->getType(); | 
|  | const PointerType *GEPPtrTy = cast<PointerType>(GEPTy); | 
|  | return TD->getTypeAlignmentABI(GEPPtrTy->getElementType()); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitCallInst - CallInst simplification.  This mostly only handles folding | 
|  | /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do | 
|  | /// the heavy lifting. | 
|  | /// | 
|  | Instruction *InstCombiner::visitCallInst(CallInst &CI) { | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); | 
|  | if (!II) return visitCallSite(&CI); | 
|  |  | 
|  | // Intrinsics cannot occur in an invoke, so handle them here instead of in | 
|  | // visitCallSite. | 
|  | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // memmove/cpy/set of zero bytes is a noop. | 
|  | if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { | 
|  | if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) | 
|  | if (CI->getZExtValue() == 1) { | 
|  | // Replace the instruction with just byte operations.  We would | 
|  | // transform other cases to loads/stores, but we don't know if | 
|  | // alignment is sufficient. | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have a memmove and the source operation is a constant global, | 
|  | // then the source and dest pointers can't alias, so we can change this | 
|  | // into a call to memcpy. | 
|  | if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II)) { | 
|  | if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) | 
|  | if (GVSrc->isConstant()) { | 
|  | Module *M = CI.getParent()->getParent()->getParent(); | 
|  | const char *Name; | 
|  | if (CI.getCalledFunction()->getFunctionType()->getParamType(2) == | 
|  | Type::Int32Ty) | 
|  | Name = "llvm.memcpy.i32"; | 
|  | else | 
|  | Name = "llvm.memcpy.i64"; | 
|  | Constant *MemCpy = M->getOrInsertFunction(Name, | 
|  | CI.getCalledFunction()->getFunctionType()); | 
|  | CI.setOperand(0, MemCpy); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can determine a pointer alignment that is bigger than currently | 
|  | // set, update the alignment. | 
|  | if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) { | 
|  | unsigned Alignment1 = GetKnownAlignment(MI->getOperand(1), TD); | 
|  | unsigned Alignment2 = GetKnownAlignment(MI->getOperand(2), TD); | 
|  | unsigned Align = std::min(Alignment1, Alignment2); | 
|  | if (MI->getAlignment()->getZExtValue() < Align) { | 
|  | MI->setAlignment(ConstantInt::get(Type::Int32Ty, Align)); | 
|  | Changed = true; | 
|  | } | 
|  | } else if (isa<MemSetInst>(MI)) { | 
|  | unsigned Alignment = GetKnownAlignment(MI->getDest(), TD); | 
|  | if (MI->getAlignment()->getZExtValue() < Alignment) { | 
|  | MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment)); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Changed) return II; | 
|  | } else { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::ppc_altivec_lvx: | 
|  | case Intrinsic::ppc_altivec_lvxl: | 
|  | case Intrinsic::x86_sse_loadu_ps: | 
|  | case Intrinsic::x86_sse2_loadu_pd: | 
|  | case Intrinsic::x86_sse2_loadu_dq: | 
|  | // Turn PPC lvx     -> load if the pointer is known aligned. | 
|  | // Turn X86 loadups -> load if the pointer is known aligned. | 
|  | if (GetKnownAlignment(II->getOperand(1), TD) >= 16) { | 
|  | Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1), | 
|  | PointerType::get(II->getType()), CI); | 
|  | return new LoadInst(Ptr); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::ppc_altivec_stvx: | 
|  | case Intrinsic::ppc_altivec_stvxl: | 
|  | // Turn stvx -> store if the pointer is known aligned. | 
|  | if (GetKnownAlignment(II->getOperand(2), TD) >= 16) { | 
|  | const Type *OpPtrTy = PointerType::get(II->getOperand(1)->getType()); | 
|  | Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(2), | 
|  | OpPtrTy, CI); | 
|  | return new StoreInst(II->getOperand(1), Ptr); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::x86_sse_storeu_ps: | 
|  | case Intrinsic::x86_sse2_storeu_pd: | 
|  | case Intrinsic::x86_sse2_storeu_dq: | 
|  | case Intrinsic::x86_sse2_storel_dq: | 
|  | // Turn X86 storeu -> store if the pointer is known aligned. | 
|  | if (GetKnownAlignment(II->getOperand(1), TD) >= 16) { | 
|  | const Type *OpPtrTy = PointerType::get(II->getOperand(2)->getType()); | 
|  | Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1), | 
|  | OpPtrTy, CI); | 
|  | return new StoreInst(II->getOperand(2), Ptr); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_sse_cvttss2si: { | 
|  | // These intrinsics only demands the 0th element of its input vector.  If | 
|  | // we can simplify the input based on that, do so now. | 
|  | uint64_t UndefElts; | 
|  | if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1, | 
|  | UndefElts)) { | 
|  | II->setOperand(1, V); | 
|  | return II; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::ppc_altivec_vperm: | 
|  | // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. | 
|  | if (ConstantPacked *Mask = dyn_cast<ConstantPacked>(II->getOperand(3))) { | 
|  | assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!"); | 
|  |  | 
|  | // Check that all of the elements are integer constants or undefs. | 
|  | bool AllEltsOk = true; | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | if (!isa<ConstantInt>(Mask->getOperand(i)) && | 
|  | !isa<UndefValue>(Mask->getOperand(i))) { | 
|  | AllEltsOk = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AllEltsOk) { | 
|  | // Cast the input vectors to byte vectors. | 
|  | Value *Op0 = InsertCastBefore(Instruction::BitCast, | 
|  | II->getOperand(1), Mask->getType(), CI); | 
|  | Value *Op1 = InsertCastBefore(Instruction::BitCast, | 
|  | II->getOperand(2), Mask->getType(), CI); | 
|  | Value *Result = UndefValue::get(Op0->getType()); | 
|  |  | 
|  | // Only extract each element once. | 
|  | Value *ExtractedElts[32]; | 
|  | memset(ExtractedElts, 0, sizeof(ExtractedElts)); | 
|  |  | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | if (isa<UndefValue>(Mask->getOperand(i))) | 
|  | continue; | 
|  | unsigned Idx =cast<ConstantInt>(Mask->getOperand(i))->getZExtValue(); | 
|  | Idx &= 31;  // Match the hardware behavior. | 
|  |  | 
|  | if (ExtractedElts[Idx] == 0) { | 
|  | Instruction *Elt = | 
|  | new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp"); | 
|  | InsertNewInstBefore(Elt, CI); | 
|  | ExtractedElts[Idx] = Elt; | 
|  | } | 
|  |  | 
|  | // Insert this value into the result vector. | 
|  | Result = new InsertElementInst(Result, ExtractedElts[Idx], i,"tmp"); | 
|  | InsertNewInstBefore(cast<Instruction>(Result), CI); | 
|  | } | 
|  | return CastInst::create(Instruction::BitCast, Result, CI.getType()); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Intrinsic::stackrestore: { | 
|  | // If the save is right next to the restore, remove the restore.  This can | 
|  | // happen when variable allocas are DCE'd. | 
|  | if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) { | 
|  | if (SS->getIntrinsicID() == Intrinsic::stacksave) { | 
|  | BasicBlock::iterator BI = SS; | 
|  | if (&*++BI == II) | 
|  | return EraseInstFromFunction(CI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the stack restore is in a return/unwind block and if there are no | 
|  | // allocas or calls between the restore and the return, nuke the restore. | 
|  | TerminatorInst *TI = II->getParent()->getTerminator(); | 
|  | if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) { | 
|  | BasicBlock::iterator BI = II; | 
|  | bool CannotRemove = false; | 
|  | for (++BI; &*BI != TI; ++BI) { | 
|  | if (isa<AllocaInst>(BI) || | 
|  | (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) { | 
|  | CannotRemove = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!CannotRemove) | 
|  | return EraseInstFromFunction(CI); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return visitCallSite(II); | 
|  | } | 
|  |  | 
|  | // InvokeInst simplification | 
|  | // | 
|  | Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { | 
|  | return visitCallSite(&II); | 
|  | } | 
|  |  | 
|  | // visitCallSite - Improvements for call and invoke instructions. | 
|  | // | 
|  | Instruction *InstCombiner::visitCallSite(CallSite CS) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // If the callee is a constexpr cast of a function, attempt to move the cast | 
|  | // to the arguments of the call/invoke. | 
|  | if (transformConstExprCastCall(CS)) return 0; | 
|  |  | 
|  | Value *Callee = CS.getCalledValue(); | 
|  |  | 
|  | if (Function *CalleeF = dyn_cast<Function>(Callee)) | 
|  | if (CalleeF->getCallingConv() != CS.getCallingConv()) { | 
|  | Instruction *OldCall = CS.getInstruction(); | 
|  | // If the call and callee calling conventions don't match, this call must | 
|  | // be unreachable, as the call is undefined. | 
|  | new StoreInst(ConstantInt::getTrue(), | 
|  | UndefValue::get(PointerType::get(Type::Int1Ty)), OldCall); | 
|  | if (!OldCall->use_empty()) | 
|  | OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType())); | 
|  | if (isa<CallInst>(OldCall))   // Not worth removing an invoke here. | 
|  | return EraseInstFromFunction(*OldCall); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { | 
|  | // This instruction is not reachable, just remove it.  We insert a store to | 
|  | // undef so that we know that this code is not reachable, despite the fact | 
|  | // that we can't modify the CFG here. | 
|  | new StoreInst(ConstantInt::getTrue(), | 
|  | UndefValue::get(PointerType::get(Type::Int1Ty)), | 
|  | CS.getInstruction()); | 
|  |  | 
|  | if (!CS.getInstruction()->use_empty()) | 
|  | CS.getInstruction()-> | 
|  | replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType())); | 
|  |  | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { | 
|  | // Don't break the CFG, insert a dummy cond branch. | 
|  | new BranchInst(II->getNormalDest(), II->getUnwindDest(), | 
|  | ConstantInt::getTrue(), II); | 
|  | } | 
|  | return EraseInstFromFunction(*CS.getInstruction()); | 
|  | } | 
|  |  | 
|  | const PointerType *PTy = cast<PointerType>(Callee->getType()); | 
|  | const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); | 
|  | if (FTy->isVarArg()) { | 
|  | // See if we can optimize any arguments passed through the varargs area of | 
|  | // the call. | 
|  | for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(), | 
|  | E = CS.arg_end(); I != E; ++I) | 
|  | if (CastInst *CI = dyn_cast<CastInst>(*I)) { | 
|  | // If this cast does not effect the value passed through the varargs | 
|  | // area, we can eliminate the use of the cast. | 
|  | Value *Op = CI->getOperand(0); | 
|  | if (CI->isLosslessCast()) { | 
|  | *I = Op; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? CS.getInstruction() : 0; | 
|  | } | 
|  |  | 
|  | // transformConstExprCastCall - If the callee is a constexpr cast of a function, | 
|  | // attempt to move the cast to the arguments of the call/invoke. | 
|  | // | 
|  | bool InstCombiner::transformConstExprCastCall(CallSite CS) { | 
|  | if (!isa<ConstantExpr>(CS.getCalledValue())) return false; | 
|  | ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue()); | 
|  | if (CE->getOpcode() != Instruction::BitCast || | 
|  | !isa<Function>(CE->getOperand(0))) | 
|  | return false; | 
|  | Function *Callee = cast<Function>(CE->getOperand(0)); | 
|  | Instruction *Caller = CS.getInstruction(); | 
|  |  | 
|  | // Okay, this is a cast from a function to a different type.  Unless doing so | 
|  | // would cause a type conversion of one of our arguments, change this call to | 
|  | // be a direct call with arguments casted to the appropriate types. | 
|  | // | 
|  | const FunctionType *FT = Callee->getFunctionType(); | 
|  | const Type *OldRetTy = Caller->getType(); | 
|  |  | 
|  | // Check to see if we are changing the return type... | 
|  | if (OldRetTy != FT->getReturnType()) { | 
|  | if (Callee->isDeclaration() && !Caller->use_empty() && | 
|  | OldRetTy != FT->getReturnType() && | 
|  | // Conversion is ok if changing from pointer to int of same size. | 
|  | !(isa<PointerType>(FT->getReturnType()) && | 
|  | TD->getIntPtrType() == OldRetTy)) | 
|  | return false;   // Cannot transform this return value. | 
|  |  | 
|  | // If the callsite is an invoke instruction, and the return value is used by | 
|  | // a PHI node in a successor, we cannot change the return type of the call | 
|  | // because there is no place to put the cast instruction (without breaking | 
|  | // the critical edge).  Bail out in this case. | 
|  | if (!Caller->use_empty()) | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) | 
|  | for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); | 
|  | UI != E; ++UI) | 
|  | if (PHINode *PN = dyn_cast<PHINode>(*UI)) | 
|  | if (PN->getParent() == II->getNormalDest() || | 
|  | PN->getParent() == II->getUnwindDest()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); | 
|  | unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); | 
|  |  | 
|  | CallSite::arg_iterator AI = CS.arg_begin(); | 
|  | for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { | 
|  | const Type *ParamTy = FT->getParamType(i); | 
|  | const Type *ActTy = (*AI)->getType(); | 
|  | ConstantInt *c = dyn_cast<ConstantInt>(*AI); | 
|  | //Either we can cast directly, or we can upconvert the argument | 
|  | bool isConvertible = ActTy == ParamTy || | 
|  | (isa<PointerType>(ParamTy) && isa<PointerType>(ActTy)) || | 
|  | (ParamTy->isInteger() && ActTy->isInteger() && | 
|  | ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) || | 
|  | (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits() | 
|  | && c->getSExtValue() > 0); | 
|  | if (Callee->isDeclaration() && !isConvertible) return false; | 
|  | } | 
|  |  | 
|  | if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() && | 
|  | Callee->isDeclaration()) | 
|  | return false;   // Do not delete arguments unless we have a function body... | 
|  |  | 
|  | // Okay, we decided that this is a safe thing to do: go ahead and start | 
|  | // inserting cast instructions as necessary... | 
|  | std::vector<Value*> Args; | 
|  | Args.reserve(NumActualArgs); | 
|  |  | 
|  | AI = CS.arg_begin(); | 
|  | for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { | 
|  | const Type *ParamTy = FT->getParamType(i); | 
|  | if ((*AI)->getType() == ParamTy) { | 
|  | Args.push_back(*AI); | 
|  | } else { | 
|  | Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, | 
|  | false, ParamTy, false); | 
|  | CastInst *NewCast = CastInst::create(opcode, *AI, ParamTy, "tmp"); | 
|  | Args.push_back(InsertNewInstBefore(NewCast, *Caller)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the function takes more arguments than the call was taking, add them | 
|  | // now... | 
|  | for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) | 
|  | Args.push_back(Constant::getNullValue(FT->getParamType(i))); | 
|  |  | 
|  | // If we are removing arguments to the function, emit an obnoxious warning... | 
|  | if (FT->getNumParams() < NumActualArgs) | 
|  | if (!FT->isVarArg()) { | 
|  | cerr << "WARNING: While resolving call to function '" | 
|  | << Callee->getName() << "' arguments were dropped!\n"; | 
|  | } else { | 
|  | // Add all of the arguments in their promoted form to the arg list... | 
|  | for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { | 
|  | const Type *PTy = getPromotedType((*AI)->getType()); | 
|  | if (PTy != (*AI)->getType()) { | 
|  | // Must promote to pass through va_arg area! | 
|  | Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, | 
|  | PTy, false); | 
|  | Instruction *Cast = CastInst::create(opcode, *AI, PTy, "tmp"); | 
|  | InsertNewInstBefore(Cast, *Caller); | 
|  | Args.push_back(Cast); | 
|  | } else { | 
|  | Args.push_back(*AI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FT->getReturnType() == Type::VoidTy) | 
|  | Caller->setName("");   // Void type should not have a name... | 
|  |  | 
|  | Instruction *NC; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { | 
|  | NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(), | 
|  | Args, Caller->getName(), Caller); | 
|  | cast<InvokeInst>(II)->setCallingConv(II->getCallingConv()); | 
|  | } else { | 
|  | NC = new CallInst(Callee, Args, Caller->getName(), Caller); | 
|  | if (cast<CallInst>(Caller)->isTailCall()) | 
|  | cast<CallInst>(NC)->setTailCall(); | 
|  | cast<CallInst>(NC)->setCallingConv(cast<CallInst>(Caller)->getCallingConv()); | 
|  | } | 
|  |  | 
|  | // Insert a cast of the return type as necessary... | 
|  | Value *NV = NC; | 
|  | if (Caller->getType() != NV->getType() && !Caller->use_empty()) { | 
|  | if (NV->getType() != Type::VoidTy) { | 
|  | const Type *CallerTy = Caller->getType(); | 
|  | Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, | 
|  | CallerTy, false); | 
|  | NV = NC = CastInst::create(opcode, NC, CallerTy, "tmp"); | 
|  |  | 
|  | // If this is an invoke instruction, we should insert it after the first | 
|  | // non-phi, instruction in the normal successor block. | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { | 
|  | BasicBlock::iterator I = II->getNormalDest()->begin(); | 
|  | while (isa<PHINode>(I)) ++I; | 
|  | InsertNewInstBefore(NC, *I); | 
|  | } else { | 
|  | // Otherwise, it's a call, just insert cast right after the call instr | 
|  | InsertNewInstBefore(NC, *Caller); | 
|  | } | 
|  | AddUsersToWorkList(*Caller); | 
|  | } else { | 
|  | NV = UndefValue::get(Caller->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Caller->getType() != Type::VoidTy && !Caller->use_empty()) | 
|  | Caller->replaceAllUsesWith(NV); | 
|  | Caller->getParent()->getInstList().erase(Caller); | 
|  | removeFromWorkList(Caller); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)] | 
|  | /// and if a/b/c/d and the add's all have a single use, turn this into two phi's | 
|  | /// and a single binop. | 
|  | Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { | 
|  | Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); | 
|  | assert(isa<BinaryOperator>(FirstInst) || isa<ShiftInst>(FirstInst) || | 
|  | isa<GetElementPtrInst>(FirstInst) || isa<CmpInst>(FirstInst)); | 
|  | unsigned Opc = FirstInst->getOpcode(); | 
|  | Value *LHSVal = FirstInst->getOperand(0); | 
|  | Value *RHSVal = FirstInst->getOperand(1); | 
|  |  | 
|  | const Type *LHSType = LHSVal->getType(); | 
|  | const Type *RHSType = RHSVal->getType(); | 
|  |  | 
|  | // Scan to see if all operands are the same opcode, all have one use, and all | 
|  | // kill their operands (i.e. the operands have one use). | 
|  | for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) { | 
|  | Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); | 
|  | if (!I || I->getOpcode() != Opc || !I->hasOneUse() || | 
|  | // Verify type of the LHS matches so we don't fold cmp's of different | 
|  | // types or GEP's with different index types. | 
|  | I->getOperand(0)->getType() != LHSType || | 
|  | I->getOperand(1)->getType() != RHSType) | 
|  | return 0; | 
|  |  | 
|  | // If they are CmpInst instructions, check their predicates | 
|  | if (Opc == Instruction::ICmp || Opc == Instruction::FCmp) | 
|  | if (cast<CmpInst>(I)->getPredicate() != | 
|  | cast<CmpInst>(FirstInst)->getPredicate()) | 
|  | return 0; | 
|  |  | 
|  | // Keep track of which operand needs a phi node. | 
|  | if (I->getOperand(0) != LHSVal) LHSVal = 0; | 
|  | if (I->getOperand(1) != RHSVal) RHSVal = 0; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is safe to transform, determine if it is profitable. | 
|  |  | 
|  | // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out. | 
|  | // Indexes are often folded into load/store instructions, so we don't want to | 
|  | // hide them behind a phi. | 
|  | if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0) | 
|  | return 0; | 
|  |  | 
|  | Value *InLHS = FirstInst->getOperand(0); | 
|  | Value *InRHS = FirstInst->getOperand(1); | 
|  | PHINode *NewLHS = 0, *NewRHS = 0; | 
|  | if (LHSVal == 0) { | 
|  | NewLHS = new PHINode(LHSType, FirstInst->getOperand(0)->getName()+".pn"); | 
|  | NewLHS->reserveOperandSpace(PN.getNumOperands()/2); | 
|  | NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); | 
|  | InsertNewInstBefore(NewLHS, PN); | 
|  | LHSVal = NewLHS; | 
|  | } | 
|  |  | 
|  | if (RHSVal == 0) { | 
|  | NewRHS = new PHINode(RHSType, FirstInst->getOperand(1)->getName()+".pn"); | 
|  | NewRHS->reserveOperandSpace(PN.getNumOperands()/2); | 
|  | NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); | 
|  | InsertNewInstBefore(NewRHS, PN); | 
|  | RHSVal = NewRHS; | 
|  | } | 
|  |  | 
|  | // Add all operands to the new PHIs. | 
|  | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | if (NewLHS) { | 
|  | Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); | 
|  | NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); | 
|  | } | 
|  | if (NewRHS) { | 
|  | Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1); | 
|  | NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) | 
|  | return BinaryOperator::create(BinOp->getOpcode(), LHSVal, RHSVal); | 
|  | else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) | 
|  | return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal, | 
|  | RHSVal); | 
|  | else if (ShiftInst *SI = dyn_cast<ShiftInst>(FirstInst)) | 
|  | return new ShiftInst(SI->getOpcode(), LHSVal, RHSVal); | 
|  | else { | 
|  | assert(isa<GetElementPtrInst>(FirstInst)); | 
|  | return new GetElementPtrInst(LHSVal, RHSVal); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isSafeToSinkLoad - Return true if we know that it is safe sink the load out | 
|  | /// of the block that defines it.  This means that it must be obvious the value | 
|  | /// of the load is not changed from the point of the load to the end of the | 
|  | /// block it is in. | 
|  | static bool isSafeToSinkLoad(LoadInst *L) { | 
|  | BasicBlock::iterator BBI = L, E = L->getParent()->end(); | 
|  |  | 
|  | for (++BBI; BBI != E; ++BBI) | 
|  | if (BBI->mayWriteToMemory()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" | 
|  | // operator and they all are only used by the PHI, PHI together their | 
|  | // inputs, and do the operation once, to the result of the PHI. | 
|  | Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { | 
|  | Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); | 
|  |  | 
|  | // Scan the instruction, looking for input operations that can be folded away. | 
|  | // If all input operands to the phi are the same instruction (e.g. a cast from | 
|  | // the same type or "+42") we can pull the operation through the PHI, reducing | 
|  | // code size and simplifying code. | 
|  | Constant *ConstantOp = 0; | 
|  | const Type *CastSrcTy = 0; | 
|  | bool isVolatile = false; | 
|  | if (isa<CastInst>(FirstInst)) { | 
|  | CastSrcTy = FirstInst->getOperand(0)->getType(); | 
|  | } else if (isa<BinaryOperator>(FirstInst) || isa<ShiftInst>(FirstInst) || | 
|  | isa<CmpInst>(FirstInst)) { | 
|  | // Can fold binop, compare or shift here if the RHS is a constant, | 
|  | // otherwise call FoldPHIArgBinOpIntoPHI. | 
|  | ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); | 
|  | if (ConstantOp == 0) | 
|  | return FoldPHIArgBinOpIntoPHI(PN); | 
|  | } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) { | 
|  | isVolatile = LI->isVolatile(); | 
|  | // We can't sink the load if the loaded value could be modified between the | 
|  | // load and the PHI. | 
|  | if (LI->getParent() != PN.getIncomingBlock(0) || | 
|  | !isSafeToSinkLoad(LI)) | 
|  | return 0; | 
|  | } else if (isa<GetElementPtrInst>(FirstInst)) { | 
|  | if (FirstInst->getNumOperands() == 2) | 
|  | return FoldPHIArgBinOpIntoPHI(PN); | 
|  | // Can't handle general GEPs yet. | 
|  | return 0; | 
|  | } else { | 
|  | return 0;  // Cannot fold this operation. | 
|  | } | 
|  |  | 
|  | // Check to see if all arguments are the same operation. | 
|  | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | if (!isa<Instruction>(PN.getIncomingValue(i))) return 0; | 
|  | Instruction *I = cast<Instruction>(PN.getIncomingValue(i)); | 
|  | if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst)) | 
|  | return 0; | 
|  | if (CastSrcTy) { | 
|  | if (I->getOperand(0)->getType() != CastSrcTy) | 
|  | return 0;  // Cast operation must match. | 
|  | } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | // We can't sink the load if the loaded value could be modified between | 
|  | // the load and the PHI. | 
|  | if (LI->isVolatile() != isVolatile || | 
|  | LI->getParent() != PN.getIncomingBlock(i) || | 
|  | !isSafeToSinkLoad(LI)) | 
|  | return 0; | 
|  | } else if (I->getOperand(1) != ConstantOp) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, they are all the same operation.  Create a new PHI node of the | 
|  | // correct type, and PHI together all of the LHS's of the instructions. | 
|  | PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(), | 
|  | PN.getName()+".in"); | 
|  | NewPN->reserveOperandSpace(PN.getNumOperands()/2); | 
|  |  | 
|  | Value *InVal = FirstInst->getOperand(0); | 
|  | NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); | 
|  |  | 
|  | // Add all operands to the new PHI. | 
|  | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); | 
|  | if (NewInVal != InVal) | 
|  | InVal = 0; | 
|  | NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); | 
|  | } | 
|  |  | 
|  | Value *PhiVal; | 
|  | if (InVal) { | 
|  | // The new PHI unions all of the same values together.  This is really | 
|  | // common, so we handle it intelligently here for compile-time speed. | 
|  | PhiVal = InVal; | 
|  | delete NewPN; | 
|  | } else { | 
|  | InsertNewInstBefore(NewPN, PN); | 
|  | PhiVal = NewPN; | 
|  | } | 
|  |  | 
|  | // Insert and return the new operation. | 
|  | if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst)) | 
|  | return CastInst::create(FirstCI->getOpcode(), PhiVal, PN.getType()); | 
|  | else if (isa<LoadInst>(FirstInst)) | 
|  | return new LoadInst(PhiVal, "", isVolatile); | 
|  | else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) | 
|  | return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp); | 
|  | else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) | 
|  | return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), | 
|  | PhiVal, ConstantOp); | 
|  | else | 
|  | return new ShiftInst(cast<ShiftInst>(FirstInst)->getOpcode(), | 
|  | PhiVal, ConstantOp); | 
|  | } | 
|  |  | 
|  | /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle | 
|  | /// that is dead. | 
|  | static bool DeadPHICycle(PHINode *PN, std::set<PHINode*> &PotentiallyDeadPHIs) { | 
|  | if (PN->use_empty()) return true; | 
|  | if (!PN->hasOneUse()) return false; | 
|  |  | 
|  | // Remember this node, and if we find the cycle, return. | 
|  | if (!PotentiallyDeadPHIs.insert(PN).second) | 
|  | return true; | 
|  |  | 
|  | if (PHINode *PU = dyn_cast<PHINode>(PN->use_back())) | 
|  | return DeadPHICycle(PU, PotentiallyDeadPHIs); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // PHINode simplification | 
|  | // | 
|  | Instruction *InstCombiner::visitPHINode(PHINode &PN) { | 
|  | // If LCSSA is around, don't mess with Phi nodes | 
|  | if (mustPreserveAnalysisID(LCSSAID)) return 0; | 
|  |  | 
|  | if (Value *V = PN.hasConstantValue()) | 
|  | return ReplaceInstUsesWith(PN, V); | 
|  |  | 
|  | // If all PHI operands are the same operation, pull them through the PHI, | 
|  | // reducing code size. | 
|  | if (isa<Instruction>(PN.getIncomingValue(0)) && | 
|  | PN.getIncomingValue(0)->hasOneUse()) | 
|  | if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) | 
|  | return Result; | 
|  |  | 
|  | // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if | 
|  | // this PHI only has a single use (a PHI), and if that PHI only has one use (a | 
|  | // PHI)... break the cycle. | 
|  | if (PN.hasOneUse()) { | 
|  | Instruction *PHIUser = cast<Instruction>(PN.use_back()); | 
|  | if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { | 
|  | std::set<PHINode*> PotentiallyDeadPHIs; | 
|  | PotentiallyDeadPHIs.insert(&PN); | 
|  | if (DeadPHICycle(PU, PotentiallyDeadPHIs)) | 
|  | return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); | 
|  | } | 
|  |  | 
|  | // If this phi has a single use, and if that use just computes a value for | 
|  | // the next iteration of a loop, delete the phi.  This occurs with unused | 
|  | // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this | 
|  | // common case here is good because the only other things that catch this | 
|  | // are induction variable analysis (sometimes) and ADCE, which is only run | 
|  | // late. | 
|  | if (PHIUser->hasOneUse() && | 
|  | (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && | 
|  | PHIUser->use_back() == &PN) { | 
|  | return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy, | 
|  | Instruction *InsertPoint, | 
|  | InstCombiner *IC) { | 
|  | unsigned PtrSize = DTy->getPrimitiveSizeInBits(); | 
|  | unsigned VTySize = V->getType()->getPrimitiveSizeInBits(); | 
|  | // We must cast correctly to the pointer type. Ensure that we | 
|  | // sign extend the integer value if it is smaller as this is | 
|  | // used for address computation. | 
|  | Instruction::CastOps opcode = | 
|  | (VTySize < PtrSize ? Instruction::SExt : | 
|  | (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc)); | 
|  | return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint); | 
|  | } | 
|  |  | 
|  |  | 
|  | Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { | 
|  | Value *PtrOp = GEP.getOperand(0); | 
|  | // Is it 'getelementptr %P, long 0'  or 'getelementptr %P' | 
|  | // If so, eliminate the noop. | 
|  | if (GEP.getNumOperands() == 1) | 
|  | return ReplaceInstUsesWith(GEP, PtrOp); | 
|  |  | 
|  | if (isa<UndefValue>(GEP.getOperand(0))) | 
|  | return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType())); | 
|  |  | 
|  | bool HasZeroPointerIndex = false; | 
|  | if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1))) | 
|  | HasZeroPointerIndex = C->isNullValue(); | 
|  |  | 
|  | if (GEP.getNumOperands() == 2 && HasZeroPointerIndex) | 
|  | return ReplaceInstUsesWith(GEP, PtrOp); | 
|  |  | 
|  | // Eliminate unneeded casts for indices. | 
|  | bool MadeChange = false; | 
|  | gep_type_iterator GTI = gep_type_begin(GEP); | 
|  | for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI) | 
|  | if (isa<SequentialType>(*GTI)) { | 
|  | if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) { | 
|  | if (CI->getOpcode() == Instruction::ZExt || | 
|  | CI->getOpcode() == Instruction::SExt) { | 
|  | const Type *SrcTy = CI->getOperand(0)->getType(); | 
|  | // We can eliminate a cast from i32 to i64 iff the target | 
|  | // is a 32-bit pointer target. | 
|  | if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) { | 
|  | MadeChange = true; | 
|  | GEP.setOperand(i, CI->getOperand(0)); | 
|  | } | 
|  | } | 
|  | } | 
|  | // If we are using a wider index than needed for this platform, shrink it | 
|  | // to what we need.  If the incoming value needs a cast instruction, | 
|  | // insert it.  This explicit cast can make subsequent optimizations more | 
|  | // obvious. | 
|  | Value *Op = GEP.getOperand(i); | 
|  | if (TD->getTypeSize(Op->getType()) > TD->getPointerSize()) | 
|  | if (Constant *C = dyn_cast<Constant>(Op)) { | 
|  | GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType())); | 
|  | MadeChange = true; | 
|  | } else { | 
|  | Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(), | 
|  | GEP); | 
|  | GEP.setOperand(i, Op); | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  | if (MadeChange) return &GEP; | 
|  |  | 
|  | // Combine Indices - If the source pointer to this getelementptr instruction | 
|  | // is a getelementptr instruction, combine the indices of the two | 
|  | // getelementptr instructions into a single instruction. | 
|  | // | 
|  | std::vector<Value*> SrcGEPOperands; | 
|  | if (User *Src = dyn_castGetElementPtr(PtrOp)) | 
|  | SrcGEPOperands.assign(Src->op_begin(), Src->op_end()); | 
|  |  | 
|  | if (!SrcGEPOperands.empty()) { | 
|  | // Note that if our source is a gep chain itself that we wait for that | 
|  | // chain to be resolved before we perform this transformation.  This | 
|  | // avoids us creating a TON of code in some cases. | 
|  | // | 
|  | if (isa<GetElementPtrInst>(SrcGEPOperands[0]) && | 
|  | cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2) | 
|  | return 0;   // Wait until our source is folded to completion. | 
|  |  | 
|  | std::vector<Value *> Indices; | 
|  |  | 
|  | // Find out whether the last index in the source GEP is a sequential idx. | 
|  | bool EndsWithSequential = false; | 
|  | for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)), | 
|  | E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I) | 
|  | EndsWithSequential = !isa<StructType>(*I); | 
|  |  | 
|  | // Can we combine the two pointer arithmetics offsets? | 
|  | if (EndsWithSequential) { | 
|  | // Replace: gep (gep %P, long B), long A, ... | 
|  | // With:    T = long A+B; gep %P, T, ... | 
|  | // | 
|  | Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1); | 
|  | if (SO1 == Constant::getNullValue(SO1->getType())) { | 
|  | Sum = GO1; | 
|  | } else if (GO1 == Constant::getNullValue(GO1->getType())) { | 
|  | Sum = SO1; | 
|  | } else { | 
|  | // If they aren't the same type, convert both to an integer of the | 
|  | // target's pointer size. | 
|  | if (SO1->getType() != GO1->getType()) { | 
|  | if (Constant *SO1C = dyn_cast<Constant>(SO1)) { | 
|  | SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true); | 
|  | } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) { | 
|  | GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true); | 
|  | } else { | 
|  | unsigned PS = TD->getPointerSize(); | 
|  | if (TD->getTypeSize(SO1->getType()) == PS) { | 
|  | // Convert GO1 to SO1's type. | 
|  | GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this); | 
|  |  | 
|  | } else if (TD->getTypeSize(GO1->getType()) == PS) { | 
|  | // Convert SO1 to GO1's type. | 
|  | SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this); | 
|  | } else { | 
|  | const Type *PT = TD->getIntPtrType(); | 
|  | SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this); | 
|  | GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (isa<Constant>(SO1) && isa<Constant>(GO1)) | 
|  | Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1)); | 
|  | else { | 
|  | Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum"); | 
|  | InsertNewInstBefore(cast<Instruction>(Sum), GEP); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Recycle the GEP we already have if possible. | 
|  | if (SrcGEPOperands.size() == 2) { | 
|  | GEP.setOperand(0, SrcGEPOperands[0]); | 
|  | GEP.setOperand(1, Sum); | 
|  | return &GEP; | 
|  | } else { | 
|  | Indices.insert(Indices.end(), SrcGEPOperands.begin()+1, | 
|  | SrcGEPOperands.end()-1); | 
|  | Indices.push_back(Sum); | 
|  | Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end()); | 
|  | } | 
|  | } else if (isa<Constant>(*GEP.idx_begin()) && | 
|  | cast<Constant>(*GEP.idx_begin())->isNullValue() && | 
|  | SrcGEPOperands.size() != 1) { | 
|  | // Otherwise we can do the fold if the first index of the GEP is a zero | 
|  | Indices.insert(Indices.end(), SrcGEPOperands.begin()+1, | 
|  | SrcGEPOperands.end()); | 
|  | Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end()); | 
|  | } | 
|  |  | 
|  | if (!Indices.empty()) | 
|  | return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName()); | 
|  |  | 
|  | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) { | 
|  | // GEP of global variable.  If all of the indices for this GEP are | 
|  | // constants, we can promote this to a constexpr instead of an instruction. | 
|  |  | 
|  | // Scan for nonconstants... | 
|  | std::vector<Constant*> Indices; | 
|  | User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); | 
|  | for (; I != E && isa<Constant>(*I); ++I) | 
|  | Indices.push_back(cast<Constant>(*I)); | 
|  |  | 
|  | if (I == E) {  // If they are all constants... | 
|  | Constant *CE = ConstantExpr::getGetElementPtr(GV, Indices); | 
|  |  | 
|  | // Replace all uses of the GEP with the new constexpr... | 
|  | return ReplaceInstUsesWith(GEP, CE); | 
|  | } | 
|  | } else if (Value *X = getBitCastOperand(PtrOp)) {  // Is the operand a cast? | 
|  | if (!isa<PointerType>(X->getType())) { | 
|  | // Not interesting.  Source pointer must be a cast from pointer. | 
|  | } else if (HasZeroPointerIndex) { | 
|  | // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ... | 
|  | // into     : GEP [10 x ubyte]* X, long 0, ... | 
|  | // | 
|  | // This occurs when the program declares an array extern like "int X[];" | 
|  | // | 
|  | const PointerType *CPTy = cast<PointerType>(PtrOp->getType()); | 
|  | const PointerType *XTy = cast<PointerType>(X->getType()); | 
|  | if (const ArrayType *XATy = | 
|  | dyn_cast<ArrayType>(XTy->getElementType())) | 
|  | if (const ArrayType *CATy = | 
|  | dyn_cast<ArrayType>(CPTy->getElementType())) | 
|  | if (CATy->getElementType() == XATy->getElementType()) { | 
|  | // At this point, we know that the cast source type is a pointer | 
|  | // to an array of the same type as the destination pointer | 
|  | // array.  Because the array type is never stepped over (there | 
|  | // is a leading zero) we can fold the cast into this GEP. | 
|  | GEP.setOperand(0, X); | 
|  | return &GEP; | 
|  | } | 
|  | } else if (GEP.getNumOperands() == 2) { | 
|  | // Transform things like: | 
|  | // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V | 
|  | // into:  %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast | 
|  | const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType(); | 
|  | const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType(); | 
|  | if (isa<ArrayType>(SrcElTy) && | 
|  | TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) == | 
|  | TD->getTypeSize(ResElTy)) { | 
|  | Value *V = InsertNewInstBefore( | 
|  | new GetElementPtrInst(X, Constant::getNullValue(Type::Int32Ty), | 
|  | GEP.getOperand(1), GEP.getName()), GEP); | 
|  | // V and GEP are both pointer types --> BitCast | 
|  | return new BitCastInst(V, GEP.getType()); | 
|  | } | 
|  |  | 
|  | // Transform things like: | 
|  | // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp | 
|  | //   (where tmp = 8*tmp2) into: | 
|  | // getelementptr [100 x double]* %arr, int 0, int %tmp.2 | 
|  |  | 
|  | if (isa<ArrayType>(SrcElTy) && | 
|  | (ResElTy == Type::Int8Ty || ResElTy == Type::Int8Ty)) { | 
|  | uint64_t ArrayEltSize = | 
|  | TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()); | 
|  |  | 
|  | // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We | 
|  | // allow either a mul, shift, or constant here. | 
|  | Value *NewIdx = 0; | 
|  | ConstantInt *Scale = 0; | 
|  | if (ArrayEltSize == 1) { | 
|  | NewIdx = GEP.getOperand(1); | 
|  | Scale = ConstantInt::get(NewIdx->getType(), 1); | 
|  | } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) { | 
|  | NewIdx = ConstantInt::get(CI->getType(), 1); | 
|  | Scale = CI; | 
|  | } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){ | 
|  | if (Inst->getOpcode() == Instruction::Shl && | 
|  | isa<ConstantInt>(Inst->getOperand(1))) { | 
|  | unsigned ShAmt = | 
|  | cast<ConstantInt>(Inst->getOperand(1))->getZExtValue(); | 
|  | Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmt); | 
|  | NewIdx = Inst->getOperand(0); | 
|  | } else if (Inst->getOpcode() == Instruction::Mul && | 
|  | isa<ConstantInt>(Inst->getOperand(1))) { | 
|  | Scale = cast<ConstantInt>(Inst->getOperand(1)); | 
|  | NewIdx = Inst->getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the index will be to exactly the right offset with the scale taken | 
|  | // out, perform the transformation. | 
|  | if (Scale && Scale->getZExtValue() % ArrayEltSize == 0) { | 
|  | if (isa<ConstantInt>(Scale)) | 
|  | Scale = ConstantInt::get(Scale->getType(), | 
|  | Scale->getZExtValue() / ArrayEltSize); | 
|  | if (Scale->getZExtValue() != 1) { | 
|  | Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(), | 
|  | true /*SExt*/); | 
|  | Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale"); | 
|  | NewIdx = InsertNewInstBefore(Sc, GEP); | 
|  | } | 
|  |  | 
|  | // Insert the new GEP instruction. | 
|  | Instruction *NewGEP = | 
|  | new GetElementPtrInst(X, Constant::getNullValue(Type::Int32Ty), | 
|  | NewIdx, GEP.getName()); | 
|  | NewGEP = InsertNewInstBefore(NewGEP, GEP); | 
|  | // The NewGEP must be pointer typed, so must the old one -> BitCast | 
|  | return new BitCastInst(NewGEP, GEP.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) { | 
|  | // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1 | 
|  | if (AI.isArrayAllocation())    // Check C != 1 | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { | 
|  | const Type *NewTy = | 
|  | ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); | 
|  | AllocationInst *New = 0; | 
|  |  | 
|  | // Create and insert the replacement instruction... | 
|  | if (isa<MallocInst>(AI)) | 
|  | New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName()); | 
|  | else { | 
|  | assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!"); | 
|  | New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName()); | 
|  | } | 
|  |  | 
|  | InsertNewInstBefore(New, AI); | 
|  |  | 
|  | // Scan to the end of the allocation instructions, to skip over a block of | 
|  | // allocas if possible... | 
|  | // | 
|  | BasicBlock::iterator It = New; | 
|  | while (isa<AllocationInst>(*It)) ++It; | 
|  |  | 
|  | // Now that I is pointing to the first non-allocation-inst in the block, | 
|  | // insert our getelementptr instruction... | 
|  | // | 
|  | Value *NullIdx = Constant::getNullValue(Type::Int32Ty); | 
|  | Value *V = new GetElementPtrInst(New, NullIdx, NullIdx, | 
|  | New->getName()+".sub", It); | 
|  |  | 
|  | // Now make everything use the getelementptr instead of the original | 
|  | // allocation. | 
|  | return ReplaceInstUsesWith(AI, V); | 
|  | } else if (isa<UndefValue>(AI.getArraySize())) { | 
|  | return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); | 
|  | } | 
|  |  | 
|  | // If alloca'ing a zero byte object, replace the alloca with a null pointer. | 
|  | // Note that we only do this for alloca's, because malloc should allocate and | 
|  | // return a unique pointer, even for a zero byte allocation. | 
|  | if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() && | 
|  | TD->getTypeSize(AI.getAllocatedType()) == 0) | 
|  | return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFreeInst(FreeInst &FI) { | 
|  | Value *Op = FI.getOperand(0); | 
|  |  | 
|  | // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X | 
|  | if (CastInst *CI = dyn_cast<CastInst>(Op)) | 
|  | if (isa<PointerType>(CI->getOperand(0)->getType())) { | 
|  | FI.setOperand(0, CI->getOperand(0)); | 
|  | return &FI; | 
|  | } | 
|  |  | 
|  | // free undef -> unreachable. | 
|  | if (isa<UndefValue>(Op)) { | 
|  | // Insert a new store to null because we cannot modify the CFG here. | 
|  | new StoreInst(ConstantInt::getTrue(), | 
|  | UndefValue::get(PointerType::get(Type::Int1Ty)), &FI); | 
|  | return EraseInstFromFunction(FI); | 
|  | } | 
|  |  | 
|  | // If we have 'free null' delete the instruction.  This can happen in stl code | 
|  | // when lots of inlining happens. | 
|  | if (isa<ConstantPointerNull>(Op)) | 
|  | return EraseInstFromFunction(FI); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible. | 
|  | static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) { | 
|  | User *CI = cast<User>(LI.getOperand(0)); | 
|  | Value *CastOp = CI->getOperand(0); | 
|  |  | 
|  | const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType(); | 
|  | if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) { | 
|  | const Type *SrcPTy = SrcTy->getElementType(); | 
|  |  | 
|  | if (DestPTy->isInteger() || isa<PointerType>(DestPTy) || | 
|  | isa<PackedType>(DestPTy)) { | 
|  | // If the source is an array, the code below will not succeed.  Check to | 
|  | // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for | 
|  | // constants. | 
|  | if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy)) | 
|  | if (Constant *CSrc = dyn_cast<Constant>(CastOp)) | 
|  | if (ASrcTy->getNumElements() != 0) { | 
|  | std::vector<Value*> Idxs(2, Constant::getNullValue(Type::Int32Ty)); | 
|  | CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs); | 
|  | SrcTy = cast<PointerType>(CastOp->getType()); | 
|  | SrcPTy = SrcTy->getElementType(); | 
|  | } | 
|  |  | 
|  | if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) || | 
|  | isa<PackedType>(SrcPTy)) && | 
|  | // Do not allow turning this into a load of an integer, which is then | 
|  | // casted to a pointer, this pessimizes pointer analysis a lot. | 
|  | (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) && | 
|  | IC.getTargetData().getTypeSizeInBits(SrcPTy) == | 
|  | IC.getTargetData().getTypeSizeInBits(DestPTy)) { | 
|  |  | 
|  | // Okay, we are casting from one integer or pointer type to another of | 
|  | // the same size.  Instead of casting the pointer before the load, cast | 
|  | // the result of the loaded value. | 
|  | Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp, | 
|  | CI->getName(), | 
|  | LI.isVolatile()),LI); | 
|  | // Now cast the result of the load. | 
|  | return new BitCastInst(NewLoad, LI.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// isSafeToLoadUnconditionally - Return true if we know that executing a load | 
|  | /// from this value cannot trap.  If it is not obviously safe to load from the | 
|  | /// specified pointer, we do a quick local scan of the basic block containing | 
|  | /// ScanFrom, to determine if the address is already accessed. | 
|  | static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) { | 
|  | // If it is an alloca or global variable, it is always safe to load from. | 
|  | if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true; | 
|  |  | 
|  | // Otherwise, be a little bit agressive by scanning the local block where we | 
|  | // want to check to see if the pointer is already being loaded or stored | 
|  | // from/to.  If so, the previous load or store would have already trapped, | 
|  | // so there is no harm doing an extra load (also, CSE will later eliminate | 
|  | // the load entirely). | 
|  | BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); | 
|  |  | 
|  | while (BBI != E) { | 
|  | --BBI; | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { | 
|  | if (LI->getOperand(0) == V) return true; | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) | 
|  | if (SI->getOperand(1) == V) return true; | 
|  |  | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { | 
|  | Value *Op = LI.getOperand(0); | 
|  |  | 
|  | // load (cast X) --> cast (load X) iff safe | 
|  | if (isa<CastInst>(Op)) | 
|  | if (Instruction *Res = InstCombineLoadCast(*this, LI)) | 
|  | return Res; | 
|  |  | 
|  | // None of the following transforms are legal for volatile loads. | 
|  | if (LI.isVolatile()) return 0; | 
|  |  | 
|  | if (&LI.getParent()->front() != &LI) { | 
|  | BasicBlock::iterator BBI = &LI; --BBI; | 
|  | // If the instruction immediately before this is a store to the same | 
|  | // address, do a simple form of store->load forwarding. | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) | 
|  | if (SI->getOperand(1) == LI.getOperand(0)) | 
|  | return ReplaceInstUsesWith(LI, SI->getOperand(0)); | 
|  | if (LoadInst *LIB = dyn_cast<LoadInst>(BBI)) | 
|  | if (LIB->getOperand(0) == LI.getOperand(0)) | 
|  | return ReplaceInstUsesWith(LI, LIB); | 
|  | } | 
|  |  | 
|  | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) | 
|  | if (isa<ConstantPointerNull>(GEPI->getOperand(0)) || | 
|  | isa<UndefValue>(GEPI->getOperand(0))) { | 
|  | // Insert a new store to null instruction before the load to indicate | 
|  | // that this code is not reachable.  We do this instead of inserting | 
|  | // an unreachable instruction directly because we cannot modify the | 
|  | // CFG. | 
|  | new StoreInst(UndefValue::get(LI.getType()), | 
|  | Constant::getNullValue(Op->getType()), &LI); | 
|  | return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); | 
|  | } | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(Op)) { | 
|  | // load null/undef -> undef | 
|  | if ((C->isNullValue() || isa<UndefValue>(C))) { | 
|  | // Insert a new store to null instruction before the load to indicate that | 
|  | // this code is not reachable.  We do this instead of inserting an | 
|  | // unreachable instruction directly because we cannot modify the CFG. | 
|  | new StoreInst(UndefValue::get(LI.getType()), | 
|  | Constant::getNullValue(Op->getType()), &LI); | 
|  | return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); | 
|  | } | 
|  |  | 
|  | // Instcombine load (constant global) into the value loaded. | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op)) | 
|  | if (GV->isConstant() && !GV->isDeclaration()) | 
|  | return ReplaceInstUsesWith(LI, GV->getInitializer()); | 
|  |  | 
|  | // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) { | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) | 
|  | if (GV->isConstant() && !GV->isDeclaration()) | 
|  | if (Constant *V = | 
|  | ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) | 
|  | return ReplaceInstUsesWith(LI, V); | 
|  | if (CE->getOperand(0)->isNullValue()) { | 
|  | // Insert a new store to null instruction before the load to indicate | 
|  | // that this code is not reachable.  We do this instead of inserting | 
|  | // an unreachable instruction directly because we cannot modify the | 
|  | // CFG. | 
|  | new StoreInst(UndefValue::get(LI.getType()), | 
|  | Constant::getNullValue(Op->getType()), &LI); | 
|  | return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); | 
|  | } | 
|  |  | 
|  | } else if (CE->isCast()) { | 
|  | if (Instruction *Res = InstCombineLoadCast(*this, LI)) | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op->hasOneUse()) { | 
|  | // Change select and PHI nodes to select values instead of addresses: this | 
|  | // helps alias analysis out a lot, allows many others simplifications, and | 
|  | // exposes redundancy in the code. | 
|  | // | 
|  | // Note that we cannot do the transformation unless we know that the | 
|  | // introduced loads cannot trap!  Something like this is valid as long as | 
|  | // the condition is always false: load (select bool %C, int* null, int* %G), | 
|  | // but it would not be valid if we transformed it to load from null | 
|  | // unconditionally. | 
|  | // | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { | 
|  | // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2). | 
|  | if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) && | 
|  | isSafeToLoadUnconditionally(SI->getOperand(2), SI)) { | 
|  | Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1), | 
|  | SI->getOperand(1)->getName()+".val"), LI); | 
|  | Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2), | 
|  | SI->getOperand(2)->getName()+".val"), LI); | 
|  | return new SelectInst(SI->getCondition(), V1, V2); | 
|  | } | 
|  |  | 
|  | // load (select (cond, null, P)) -> load P | 
|  | if (Constant *C = dyn_cast<Constant>(SI->getOperand(1))) | 
|  | if (C->isNullValue()) { | 
|  | LI.setOperand(0, SI->getOperand(2)); | 
|  | return &LI; | 
|  | } | 
|  |  | 
|  | // load (select (cond, P, null)) -> load P | 
|  | if (Constant *C = dyn_cast<Constant>(SI->getOperand(2))) | 
|  | if (C->isNullValue()) { | 
|  | LI.setOperand(0, SI->getOperand(1)); | 
|  | return &LI; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P | 
|  | /// when possible. | 
|  | static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { | 
|  | User *CI = cast<User>(SI.getOperand(1)); | 
|  | Value *CastOp = CI->getOperand(0); | 
|  |  | 
|  | const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType(); | 
|  | if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) { | 
|  | const Type *SrcPTy = SrcTy->getElementType(); | 
|  |  | 
|  | if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) { | 
|  | // If the source is an array, the code below will not succeed.  Check to | 
|  | // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for | 
|  | // constants. | 
|  | if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy)) | 
|  | if (Constant *CSrc = dyn_cast<Constant>(CastOp)) | 
|  | if (ASrcTy->getNumElements() != 0) { | 
|  | std::vector<Value*> Idxs(2, Constant::getNullValue(Type::Int32Ty)); | 
|  | CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs); | 
|  | SrcTy = cast<PointerType>(CastOp->getType()); | 
|  | SrcPTy = SrcTy->getElementType(); | 
|  | } | 
|  |  | 
|  | if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) && | 
|  | IC.getTargetData().getTypeSizeInBits(SrcPTy) == | 
|  | IC.getTargetData().getTypeSizeInBits(DestPTy)) { | 
|  |  | 
|  | // Okay, we are casting from one integer or pointer type to another of | 
|  | // the same size.  Instead of casting the pointer before | 
|  | // the store, cast the value to be stored. | 
|  | Value *NewCast; | 
|  | Value *SIOp0 = SI.getOperand(0); | 
|  | Instruction::CastOps opcode = Instruction::BitCast; | 
|  | const Type* CastSrcTy = SIOp0->getType(); | 
|  | const Type* CastDstTy = SrcPTy; | 
|  | if (isa<PointerType>(CastDstTy)) { | 
|  | if (CastSrcTy->isInteger()) | 
|  | opcode = Instruction::IntToPtr; | 
|  | } else if (isa<IntegerType>(CastDstTy)) { | 
|  | if (isa<PointerType>(SIOp0->getType())) | 
|  | opcode = Instruction::PtrToInt; | 
|  | } | 
|  | if (Constant *C = dyn_cast<Constant>(SIOp0)) | 
|  | NewCast = ConstantExpr::getCast(opcode, C, CastDstTy); | 
|  | else | 
|  | NewCast = IC.InsertNewInstBefore( | 
|  | CastInst::create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"), | 
|  | SI); | 
|  | return new StoreInst(NewCast, CastOp); | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { | 
|  | Value *Val = SI.getOperand(0); | 
|  | Value *Ptr = SI.getOperand(1); | 
|  |  | 
|  | if (isa<UndefValue>(Ptr)) {     // store X, undef -> noop (even if volatile) | 
|  | EraseInstFromFunction(SI); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If the RHS is an alloca with a single use, zapify the store, making the | 
|  | // alloca dead. | 
|  | if (Ptr->hasOneUse()) { | 
|  | if (isa<AllocaInst>(Ptr)) { | 
|  | EraseInstFromFunction(SI); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) | 
|  | if (isa<AllocaInst>(GEP->getOperand(0)) && | 
|  | GEP->getOperand(0)->hasOneUse()) { | 
|  | EraseInstFromFunction(SI); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do really simple DSE, to catch cases where there are several consequtive | 
|  | // stores to the same location, separated by a few arithmetic operations. This | 
|  | // situation often occurs with bitfield accesses. | 
|  | BasicBlock::iterator BBI = &SI; | 
|  | for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; | 
|  | --ScanInsts) { | 
|  | --BBI; | 
|  |  | 
|  | if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { | 
|  | // Prev store isn't volatile, and stores to the same location? | 
|  | if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) { | 
|  | ++NumDeadStore; | 
|  | ++BBI; | 
|  | EraseInstFromFunction(*PrevSI); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is a load, we have to stop.  However, if the loaded value is from | 
|  | // the pointer we're loading and is producing the pointer we're storing, | 
|  | // then *this* store is dead (X = load P; store X -> P). | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { | 
|  | if (LI == Val && LI->getOperand(0) == Ptr) { | 
|  | EraseInstFromFunction(SI); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  | // Otherwise, this is a load from some other location.  Stores before it | 
|  | // may not be dead. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Don't skip over loads or things that can modify memory. | 
|  | if (BBI->mayWriteToMemory()) | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (SI.isVolatile()) return 0;  // Don't hack volatile stores. | 
|  |  | 
|  | // store X, null    -> turns into 'unreachable' in SimplifyCFG | 
|  | if (isa<ConstantPointerNull>(Ptr)) { | 
|  | if (!isa<UndefValue>(Val)) { | 
|  | SI.setOperand(0, UndefValue::get(Val->getType())); | 
|  | if (Instruction *U = dyn_cast<Instruction>(Val)) | 
|  | WorkList.push_back(U);  // Dropped a use. | 
|  | ++NumCombined; | 
|  | } | 
|  | return 0;  // Do not modify these! | 
|  | } | 
|  |  | 
|  | // store undef, Ptr -> noop | 
|  | if (isa<UndefValue>(Val)) { | 
|  | EraseInstFromFunction(SI); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If the pointer destination is a cast, see if we can fold the cast into the | 
|  | // source instead. | 
|  | if (isa<CastInst>(Ptr)) | 
|  | if (Instruction *Res = InstCombineStoreToCast(*this, SI)) | 
|  | return Res; | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) | 
|  | if (CE->isCast()) | 
|  | if (Instruction *Res = InstCombineStoreToCast(*this, SI)) | 
|  | return Res; | 
|  |  | 
|  |  | 
|  | // If this store is the last instruction in the basic block, and if the block | 
|  | // ends with an unconditional branch, try to move it to the successor block. | 
|  | BBI = &SI; ++BBI; | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) | 
|  | if (BI->isUnconditional()) { | 
|  | // Check to see if the successor block has exactly two incoming edges.  If | 
|  | // so, see if the other predecessor contains a store to the same location. | 
|  | // if so, insert a PHI node (if needed) and move the stores down. | 
|  | BasicBlock *Dest = BI->getSuccessor(0); | 
|  |  | 
|  | pred_iterator PI = pred_begin(Dest); | 
|  | BasicBlock *Other = 0; | 
|  | if (*PI != BI->getParent()) | 
|  | Other = *PI; | 
|  | ++PI; | 
|  | if (PI != pred_end(Dest)) { | 
|  | if (*PI != BI->getParent()) | 
|  | if (Other) | 
|  | Other = 0; | 
|  | else | 
|  | Other = *PI; | 
|  | if (++PI != pred_end(Dest)) | 
|  | Other = 0; | 
|  | } | 
|  | if (Other) {  // If only one other pred... | 
|  | BBI = Other->getTerminator(); | 
|  | // Make sure this other block ends in an unconditional branch and that | 
|  | // there is an instruction before the branch. | 
|  | if (isa<BranchInst>(BBI) && cast<BranchInst>(BBI)->isUnconditional() && | 
|  | BBI != Other->begin()) { | 
|  | --BBI; | 
|  | StoreInst *OtherStore = dyn_cast<StoreInst>(BBI); | 
|  |  | 
|  | // If this instruction is a store to the same location. | 
|  | if (OtherStore && OtherStore->getOperand(1) == SI.getOperand(1)) { | 
|  | // Okay, we know we can perform this transformation.  Insert a PHI | 
|  | // node now if we need it. | 
|  | Value *MergedVal = OtherStore->getOperand(0); | 
|  | if (MergedVal != SI.getOperand(0)) { | 
|  | PHINode *PN = new PHINode(MergedVal->getType(), "storemerge"); | 
|  | PN->reserveOperandSpace(2); | 
|  | PN->addIncoming(SI.getOperand(0), SI.getParent()); | 
|  | PN->addIncoming(OtherStore->getOperand(0), Other); | 
|  | MergedVal = InsertNewInstBefore(PN, Dest->front()); | 
|  | } | 
|  |  | 
|  | // Advance to a place where it is safe to insert the new store and | 
|  | // insert it. | 
|  | BBI = Dest->begin(); | 
|  | while (isa<PHINode>(BBI)) ++BBI; | 
|  | InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1), | 
|  | OtherStore->isVolatile()), *BBI); | 
|  |  | 
|  | // Nuke the old stores. | 
|  | EraseInstFromFunction(SI); | 
|  | EraseInstFromFunction(*OtherStore); | 
|  | ++NumCombined; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { | 
|  | // Change br (not X), label True, label False to: br X, label False, True | 
|  | Value *X = 0; | 
|  | BasicBlock *TrueDest; | 
|  | BasicBlock *FalseDest; | 
|  | if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && | 
|  | !isa<Constant>(X)) { | 
|  | // Swap Destinations and condition... | 
|  | BI.setCondition(X); | 
|  | BI.setSuccessor(0, FalseDest); | 
|  | BI.setSuccessor(1, TrueDest); | 
|  | return &BI; | 
|  | } | 
|  |  | 
|  | // Cannonicalize fcmp_one -> fcmp_oeq | 
|  | FCmpInst::Predicate FPred; Value *Y; | 
|  | if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), | 
|  | TrueDest, FalseDest))) | 
|  | if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || | 
|  | FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) { | 
|  | FCmpInst *I = cast<FCmpInst>(BI.getCondition()); | 
|  | std::string Name = I->getName(); I->setName(""); | 
|  | FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred); | 
|  | Value *NewSCC =  new FCmpInst(NewPred, X, Y, Name, I); | 
|  | // Swap Destinations and condition... | 
|  | BI.setCondition(NewSCC); | 
|  | BI.setSuccessor(0, FalseDest); | 
|  | BI.setSuccessor(1, TrueDest); | 
|  | removeFromWorkList(I); | 
|  | I->getParent()->getInstList().erase(I); | 
|  | WorkList.push_back(cast<Instruction>(NewSCC)); | 
|  | return &BI; | 
|  | } | 
|  |  | 
|  | // Cannonicalize icmp_ne -> icmp_eq | 
|  | ICmpInst::Predicate IPred; | 
|  | if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), | 
|  | TrueDest, FalseDest))) | 
|  | if ((IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE || | 
|  | IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || | 
|  | IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) { | 
|  | ICmpInst *I = cast<ICmpInst>(BI.getCondition()); | 
|  | std::string Name = I->getName(); I->setName(""); | 
|  | ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred); | 
|  | Value *NewSCC = new ICmpInst(NewPred, X, Y, Name, I); | 
|  | // Swap Destinations and condition... | 
|  | BI.setCondition(NewSCC); | 
|  | BI.setSuccessor(0, FalseDest); | 
|  | BI.setSuccessor(1, TrueDest); | 
|  | removeFromWorkList(I); | 
|  | I->getParent()->getInstList().erase(I); | 
|  | WorkList.push_back(cast<Instruction>(NewSCC)); | 
|  | return &BI; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { | 
|  | Value *Cond = SI.getCondition(); | 
|  | if (Instruction *I = dyn_cast<Instruction>(Cond)) { | 
|  | if (I->getOpcode() == Instruction::Add) | 
|  | if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | // change 'switch (X+4) case 1:' into 'switch (X) case -3' | 
|  | for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) | 
|  | SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)), | 
|  | AddRHS)); | 
|  | SI.setOperand(0, I->getOperand(0)); | 
|  | WorkList.push_back(I); | 
|  | return &SI; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// CheapToScalarize - Return true if the value is cheaper to scalarize than it | 
|  | /// is to leave as a vector operation. | 
|  | static bool CheapToScalarize(Value *V, bool isConstant) { | 
|  | if (isa<ConstantAggregateZero>(V)) | 
|  | return true; | 
|  | if (ConstantPacked *C = dyn_cast<ConstantPacked>(V)) { | 
|  | if (isConstant) return true; | 
|  | // If all elts are the same, we can extract. | 
|  | Constant *Op0 = C->getOperand(0); | 
|  | for (unsigned i = 1; i < C->getNumOperands(); ++i) | 
|  | if (C->getOperand(i) != Op0) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return false; | 
|  |  | 
|  | // Insert element gets simplified to the inserted element or is deleted if | 
|  | // this is constant idx extract element and its a constant idx insertelt. | 
|  | if (I->getOpcode() == Instruction::InsertElement && isConstant && | 
|  | isa<ConstantInt>(I->getOperand(2))) | 
|  | return true; | 
|  | if (I->getOpcode() == Instruction::Load && I->hasOneUse()) | 
|  | return true; | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) | 
|  | if (BO->hasOneUse() && | 
|  | (CheapToScalarize(BO->getOperand(0), isConstant) || | 
|  | CheapToScalarize(BO->getOperand(1), isConstant))) | 
|  | return true; | 
|  | if (CmpInst *CI = dyn_cast<CmpInst>(I)) | 
|  | if (CI->hasOneUse() && | 
|  | (CheapToScalarize(CI->getOperand(0), isConstant) || | 
|  | CheapToScalarize(CI->getOperand(1), isConstant))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getShuffleMask - Read and decode a shufflevector mask.  It turns undef | 
|  | /// elements into values that are larger than the #elts in the input. | 
|  | static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) { | 
|  | unsigned NElts = SVI->getType()->getNumElements(); | 
|  | if (isa<ConstantAggregateZero>(SVI->getOperand(2))) | 
|  | return std::vector<unsigned>(NElts, 0); | 
|  | if (isa<UndefValue>(SVI->getOperand(2))) | 
|  | return std::vector<unsigned>(NElts, 2*NElts); | 
|  |  | 
|  | std::vector<unsigned> Result; | 
|  | const ConstantPacked *CP = cast<ConstantPacked>(SVI->getOperand(2)); | 
|  | for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) | 
|  | if (isa<UndefValue>(CP->getOperand(i))) | 
|  | Result.push_back(NElts*2);  // undef -> 8 | 
|  | else | 
|  | Result.push_back(cast<ConstantInt>(CP->getOperand(i))->getZExtValue()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// FindScalarElement - Given a vector and an element number, see if the scalar | 
|  | /// value is already around as a register, for example if it were inserted then | 
|  | /// extracted from the vector. | 
|  | static Value *FindScalarElement(Value *V, unsigned EltNo) { | 
|  | assert(isa<PackedType>(V->getType()) && "Not looking at a vector?"); | 
|  | const PackedType *PTy = cast<PackedType>(V->getType()); | 
|  | unsigned Width = PTy->getNumElements(); | 
|  | if (EltNo >= Width)  // Out of range access. | 
|  | return UndefValue::get(PTy->getElementType()); | 
|  |  | 
|  | if (isa<UndefValue>(V)) | 
|  | return UndefValue::get(PTy->getElementType()); | 
|  | else if (isa<ConstantAggregateZero>(V)) | 
|  | return Constant::getNullValue(PTy->getElementType()); | 
|  | else if (ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) | 
|  | return CP->getOperand(EltNo); | 
|  | else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { | 
|  | // If this is an insert to a variable element, we don't know what it is. | 
|  | if (!isa<ConstantInt>(III->getOperand(2))) | 
|  | return 0; | 
|  | unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); | 
|  |  | 
|  | // If this is an insert to the element we are looking for, return the | 
|  | // inserted value. | 
|  | if (EltNo == IIElt) | 
|  | return III->getOperand(1); | 
|  |  | 
|  | // Otherwise, the insertelement doesn't modify the value, recurse on its | 
|  | // vector input. | 
|  | return FindScalarElement(III->getOperand(0), EltNo); | 
|  | } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { | 
|  | unsigned InEl = getShuffleMask(SVI)[EltNo]; | 
|  | if (InEl < Width) | 
|  | return FindScalarElement(SVI->getOperand(0), InEl); | 
|  | else if (InEl < Width*2) | 
|  | return FindScalarElement(SVI->getOperand(1), InEl - Width); | 
|  | else | 
|  | return UndefValue::get(PTy->getElementType()); | 
|  | } | 
|  |  | 
|  | // Otherwise, we don't know. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { | 
|  |  | 
|  | // If packed val is undef, replace extract with scalar undef. | 
|  | if (isa<UndefValue>(EI.getOperand(0))) | 
|  | return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); | 
|  |  | 
|  | // If packed val is constant 0, replace extract with scalar 0. | 
|  | if (isa<ConstantAggregateZero>(EI.getOperand(0))) | 
|  | return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType())); | 
|  |  | 
|  | if (ConstantPacked *C = dyn_cast<ConstantPacked>(EI.getOperand(0))) { | 
|  | // If packed val is constant with uniform operands, replace EI | 
|  | // with that operand | 
|  | Constant *op0 = C->getOperand(0); | 
|  | for (unsigned i = 1; i < C->getNumOperands(); ++i) | 
|  | if (C->getOperand(i) != op0) { | 
|  | op0 = 0; | 
|  | break; | 
|  | } | 
|  | if (op0) | 
|  | return ReplaceInstUsesWith(EI, op0); | 
|  | } | 
|  |  | 
|  | // If extracting a specified index from the vector, see if we can recursively | 
|  | // find a previously computed scalar that was inserted into the vector. | 
|  | if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) { | 
|  | // This instruction only demands the single element from the input vector. | 
|  | // If the input vector has a single use, simplify it based on this use | 
|  | // property. | 
|  | uint64_t IndexVal = IdxC->getZExtValue(); | 
|  | if (EI.getOperand(0)->hasOneUse()) { | 
|  | uint64_t UndefElts; | 
|  | if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), | 
|  | 1 << IndexVal, | 
|  | UndefElts)) { | 
|  | EI.setOperand(0, V); | 
|  | return &EI; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal)) | 
|  | return ReplaceInstUsesWith(EI, Elt); | 
|  | } | 
|  |  | 
|  | if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) { | 
|  | if (I->hasOneUse()) { | 
|  | // Push extractelement into predecessor operation if legal and | 
|  | // profitable to do so | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { | 
|  | bool isConstantElt = isa<ConstantInt>(EI.getOperand(1)); | 
|  | if (CheapToScalarize(BO, isConstantElt)) { | 
|  | ExtractElementInst *newEI0 = | 
|  | new ExtractElementInst(BO->getOperand(0), EI.getOperand(1), | 
|  | EI.getName()+".lhs"); | 
|  | ExtractElementInst *newEI1 = | 
|  | new ExtractElementInst(BO->getOperand(1), EI.getOperand(1), | 
|  | EI.getName()+".rhs"); | 
|  | InsertNewInstBefore(newEI0, EI); | 
|  | InsertNewInstBefore(newEI1, EI); | 
|  | return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1); | 
|  | } | 
|  | } else if (isa<LoadInst>(I)) { | 
|  | Value *Ptr = InsertCastBefore(Instruction::BitCast, I->getOperand(0), | 
|  | PointerType::get(EI.getType()), EI); | 
|  | GetElementPtrInst *GEP = | 
|  | new GetElementPtrInst(Ptr, EI.getOperand(1), I->getName() + ".gep"); | 
|  | InsertNewInstBefore(GEP, EI); | 
|  | return new LoadInst(GEP); | 
|  | } | 
|  | } | 
|  | if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) { | 
|  | // Extracting the inserted element? | 
|  | if (IE->getOperand(2) == EI.getOperand(1)) | 
|  | return ReplaceInstUsesWith(EI, IE->getOperand(1)); | 
|  | // If the inserted and extracted elements are constants, they must not | 
|  | // be the same value, extract from the pre-inserted value instead. | 
|  | if (isa<Constant>(IE->getOperand(2)) && | 
|  | isa<Constant>(EI.getOperand(1))) { | 
|  | AddUsesToWorkList(EI); | 
|  | EI.setOperand(0, IE->getOperand(0)); | 
|  | return &EI; | 
|  | } | 
|  | } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) { | 
|  | // If this is extracting an element from a shufflevector, figure out where | 
|  | // it came from and extract from the appropriate input element instead. | 
|  | if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) { | 
|  | unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()]; | 
|  | Value *Src; | 
|  | if (SrcIdx < SVI->getType()->getNumElements()) | 
|  | Src = SVI->getOperand(0); | 
|  | else if (SrcIdx < SVI->getType()->getNumElements()*2) { | 
|  | SrcIdx -= SVI->getType()->getNumElements(); | 
|  | Src = SVI->getOperand(1); | 
|  | } else { | 
|  | return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); | 
|  | } | 
|  | return new ExtractElementInst(Src, SrcIdx); | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns | 
|  | /// elements from either LHS or RHS, return the shuffle mask and true. | 
|  | /// Otherwise, return false. | 
|  | static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, | 
|  | std::vector<Constant*> &Mask) { | 
|  | assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() && | 
|  | "Invalid CollectSingleShuffleElements"); | 
|  | unsigned NumElts = cast<PackedType>(V->getType())->getNumElements(); | 
|  |  | 
|  | if (isa<UndefValue>(V)) { | 
|  | Mask.assign(NumElts, UndefValue::get(Type::Int32Ty)); | 
|  | return true; | 
|  | } else if (V == LHS) { | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Mask.push_back(ConstantInt::get(Type::Int32Ty, i)); | 
|  | return true; | 
|  | } else if (V == RHS) { | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts)); | 
|  | return true; | 
|  | } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { | 
|  | // If this is an insert of an extract from some other vector, include it. | 
|  | Value *VecOp    = IEI->getOperand(0); | 
|  | Value *ScalarOp = IEI->getOperand(1); | 
|  | Value *IdxOp    = IEI->getOperand(2); | 
|  |  | 
|  | if (!isa<ConstantInt>(IdxOp)) | 
|  | return false; | 
|  | unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); | 
|  |  | 
|  | if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector. | 
|  | // Okay, we can handle this if the vector we are insertinting into is | 
|  | // transitively ok. | 
|  | if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { | 
|  | // If so, update the mask to reflect the inserted undef. | 
|  | Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty); | 
|  | return true; | 
|  | } | 
|  | } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ | 
|  | if (isa<ConstantInt>(EI->getOperand(1)) && | 
|  | EI->getOperand(0)->getType() == V->getType()) { | 
|  | unsigned ExtractedIdx = | 
|  | cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); | 
|  |  | 
|  | // This must be extracting from either LHS or RHS. | 
|  | if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { | 
|  | // Okay, we can handle this if the vector we are insertinting into is | 
|  | // transitively ok. | 
|  | if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { | 
|  | // If so, update the mask to reflect the inserted value. | 
|  | if (EI->getOperand(0) == LHS) { | 
|  | Mask[InsertedIdx & (NumElts-1)] = | 
|  | ConstantInt::get(Type::Int32Ty, ExtractedIdx); | 
|  | } else { | 
|  | assert(EI->getOperand(0) == RHS); | 
|  | Mask[InsertedIdx & (NumElts-1)] = | 
|  | ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts); | 
|  |  | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // TODO: Handle shufflevector here! | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CollectShuffleElements - We are building a shuffle of V, using RHS as the | 
|  | /// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask | 
|  | /// that computes V and the LHS value of the shuffle. | 
|  | static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask, | 
|  | Value *&RHS) { | 
|  | assert(isa<PackedType>(V->getType()) && | 
|  | (RHS == 0 || V->getType() == RHS->getType()) && | 
|  | "Invalid shuffle!"); | 
|  | unsigned NumElts = cast<PackedType>(V->getType())->getNumElements(); | 
|  |  | 
|  | if (isa<UndefValue>(V)) { | 
|  | Mask.assign(NumElts, UndefValue::get(Type::Int32Ty)); | 
|  | return V; | 
|  | } else if (isa<ConstantAggregateZero>(V)) { | 
|  | Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0)); | 
|  | return V; | 
|  | } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { | 
|  | // If this is an insert of an extract from some other vector, include it. | 
|  | Value *VecOp    = IEI->getOperand(0); | 
|  | Value *ScalarOp = IEI->getOperand(1); | 
|  | Value *IdxOp    = IEI->getOperand(2); | 
|  |  | 
|  | if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { | 
|  | if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) && | 
|  | EI->getOperand(0)->getType() == V->getType()) { | 
|  | unsigned ExtractedIdx = | 
|  | cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); | 
|  | unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); | 
|  |  | 
|  | // Either the extracted from or inserted into vector must be RHSVec, | 
|  | // otherwise we'd end up with a shuffle of three inputs. | 
|  | if (EI->getOperand(0) == RHS || RHS == 0) { | 
|  | RHS = EI->getOperand(0); | 
|  | Value *V = CollectShuffleElements(VecOp, Mask, RHS); | 
|  | Mask[InsertedIdx & (NumElts-1)] = | 
|  | ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | if (VecOp == RHS) { | 
|  | Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS); | 
|  | // Everything but the extracted element is replaced with the RHS. | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (i != InsertedIdx) | 
|  | Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // If this insertelement is a chain that comes from exactly these two | 
|  | // vectors, return the vector and the effective shuffle. | 
|  | if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask)) | 
|  | return EI->getOperand(0); | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  | // TODO: Handle shufflevector here! | 
|  |  | 
|  | // Otherwise, can't do anything fancy.  Return an identity vector. | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Mask.push_back(ConstantInt::get(Type::Int32Ty, i)); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { | 
|  | Value *VecOp    = IE.getOperand(0); | 
|  | Value *ScalarOp = IE.getOperand(1); | 
|  | Value *IdxOp    = IE.getOperand(2); | 
|  |  | 
|  | // If the inserted element was extracted from some other vector, and if the | 
|  | // indexes are constant, try to turn this into a shufflevector operation. | 
|  | if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { | 
|  | if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) && | 
|  | EI->getOperand(0)->getType() == IE.getType()) { | 
|  | unsigned NumVectorElts = IE.getType()->getNumElements(); | 
|  | unsigned ExtractedIdx=cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); | 
|  | unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); | 
|  |  | 
|  | if (ExtractedIdx >= NumVectorElts) // Out of range extract. | 
|  | return ReplaceInstUsesWith(IE, VecOp); | 
|  |  | 
|  | if (InsertedIdx >= NumVectorElts)  // Out of range insert. | 
|  | return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType())); | 
|  |  | 
|  | // If we are extracting a value from a vector, then inserting it right | 
|  | // back into the same place, just use the input vector. | 
|  | if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) | 
|  | return ReplaceInstUsesWith(IE, VecOp); | 
|  |  | 
|  | // We could theoretically do this for ANY input.  However, doing so could | 
|  | // turn chains of insertelement instructions into a chain of shufflevector | 
|  | // instructions, and right now we do not merge shufflevectors.  As such, | 
|  | // only do this in a situation where it is clear that there is benefit. | 
|  | if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) { | 
|  | // Turn this into shuffle(EIOp0, VecOp, Mask).  The result has all of | 
|  | // the values of VecOp, except then one read from EIOp0. | 
|  | // Build a new shuffle mask. | 
|  | std::vector<Constant*> Mask; | 
|  | if (isa<UndefValue>(VecOp)) | 
|  | Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty)); | 
|  | else { | 
|  | assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing"); | 
|  | Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty, | 
|  | NumVectorElts)); | 
|  | } | 
|  | Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx); | 
|  | return new ShuffleVectorInst(EI->getOperand(0), VecOp, | 
|  | ConstantPacked::get(Mask)); | 
|  | } | 
|  |  | 
|  | // If this insertelement isn't used by some other insertelement, turn it | 
|  | // (and any insertelements it points to), into one big shuffle. | 
|  | if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) { | 
|  | std::vector<Constant*> Mask; | 
|  | Value *RHS = 0; | 
|  | Value *LHS = CollectShuffleElements(&IE, Mask, RHS); | 
|  | if (RHS == 0) RHS = UndefValue::get(LHS->getType()); | 
|  | // We now have a shuffle of LHS, RHS, Mask. | 
|  | return new ShuffleVectorInst(LHS, RHS, ConstantPacked::get(Mask)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { | 
|  | Value *LHS = SVI.getOperand(0); | 
|  | Value *RHS = SVI.getOperand(1); | 
|  | std::vector<unsigned> Mask = getShuffleMask(&SVI); | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Undefined shuffle mask -> undefined value. | 
|  | if (isa<UndefValue>(SVI.getOperand(2))) | 
|  | return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType())); | 
|  |  | 
|  | // If we have shuffle(x, undef, mask) and any elements of mask refer to | 
|  | // the undef, change them to undefs. | 
|  | if (isa<UndefValue>(SVI.getOperand(1))) { | 
|  | // Scan to see if there are any references to the RHS.  If so, replace them | 
|  | // with undef element refs and set MadeChange to true. | 
|  | for (unsigned i = 0, e = Mask.size(); i != e; ++i) { | 
|  | if (Mask[i] >= e && Mask[i] != 2*e) { | 
|  | Mask[i] = 2*e; | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MadeChange) { | 
|  | // Remap any references to RHS to use LHS. | 
|  | std::vector<Constant*> Elts; | 
|  | for (unsigned i = 0, e = Mask.size(); i != e; ++i) { | 
|  | if (Mask[i] == 2*e) | 
|  | Elts.push_back(UndefValue::get(Type::Int32Ty)); | 
|  | else | 
|  | Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i])); | 
|  | } | 
|  | SVI.setOperand(2, ConstantPacked::get(Elts)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask') | 
|  | // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). | 
|  | if (LHS == RHS || isa<UndefValue>(LHS)) { | 
|  | if (isa<UndefValue>(LHS) && LHS == RHS) { | 
|  | // shuffle(undef,undef,mask) -> undef. | 
|  | return ReplaceInstUsesWith(SVI, LHS); | 
|  | } | 
|  |  | 
|  | // Remap any references to RHS to use LHS. | 
|  | std::vector<Constant*> Elts; | 
|  | for (unsigned i = 0, e = Mask.size(); i != e; ++i) { | 
|  | if (Mask[i] >= 2*e) | 
|  | Elts.push_back(UndefValue::get(Type::Int32Ty)); | 
|  | else { | 
|  | if ((Mask[i] >= e && isa<UndefValue>(RHS)) || | 
|  | (Mask[i] <  e && isa<UndefValue>(LHS))) | 
|  | Mask[i] = 2*e;     // Turn into undef. | 
|  | else | 
|  | Mask[i] &= (e-1);  // Force to LHS. | 
|  | Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i])); | 
|  | } | 
|  | } | 
|  | SVI.setOperand(0, SVI.getOperand(1)); | 
|  | SVI.setOperand(1, UndefValue::get(RHS->getType())); | 
|  | SVI.setOperand(2, ConstantPacked::get(Elts)); | 
|  | LHS = SVI.getOperand(0); | 
|  | RHS = SVI.getOperand(1); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // Analyze the shuffle, are the LHS or RHS and identity shuffles? | 
|  | bool isLHSID = true, isRHSID = true; | 
|  |  | 
|  | for (unsigned i = 0, e = Mask.size(); i != e; ++i) { | 
|  | if (Mask[i] >= e*2) continue;  // Ignore undef values. | 
|  | // Is this an identity shuffle of the LHS value? | 
|  | isLHSID &= (Mask[i] == i); | 
|  |  | 
|  | // Is this an identity shuffle of the RHS value? | 
|  | isRHSID &= (Mask[i]-e == i); | 
|  | } | 
|  |  | 
|  | // Eliminate identity shuffles. | 
|  | if (isLHSID) return ReplaceInstUsesWith(SVI, LHS); | 
|  | if (isRHSID) return ReplaceInstUsesWith(SVI, RHS); | 
|  |  | 
|  | // If the LHS is a shufflevector itself, see if we can combine it with this | 
|  | // one without producing an unusual shuffle.  Here we are really conservative: | 
|  | // we are absolutely afraid of producing a shuffle mask not in the input | 
|  | // program, because the code gen may not be smart enough to turn a merged | 
|  | // shuffle into two specific shuffles: it may produce worse code.  As such, | 
|  | // we only merge two shuffles if the result is one of the two input shuffle | 
|  | // masks.  In this case, merging the shuffles just removes one instruction, | 
|  | // which we know is safe.  This is good for things like turning: | 
|  | // (splat(splat)) -> splat. | 
|  | if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) { | 
|  | if (isa<UndefValue>(RHS)) { | 
|  | std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI); | 
|  |  | 
|  | std::vector<unsigned> NewMask; | 
|  | for (unsigned i = 0, e = Mask.size(); i != e; ++i) | 
|  | if (Mask[i] >= 2*e) | 
|  | NewMask.push_back(2*e); | 
|  | else | 
|  | NewMask.push_back(LHSMask[Mask[i]]); | 
|  |  | 
|  | // If the result mask is equal to the src shuffle or this shuffle mask, do | 
|  | // the replacement. | 
|  | if (NewMask == LHSMask || NewMask == Mask) { | 
|  | std::vector<Constant*> Elts; | 
|  | for (unsigned i = 0, e = NewMask.size(); i != e; ++i) { | 
|  | if (NewMask[i] >= e*2) { | 
|  | Elts.push_back(UndefValue::get(Type::Int32Ty)); | 
|  | } else { | 
|  | Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i])); | 
|  | } | 
|  | } | 
|  | return new ShuffleVectorInst(LHSSVI->getOperand(0), | 
|  | LHSSVI->getOperand(1), | 
|  | ConstantPacked::get(Elts)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if SimplifyDemandedVectorElts can simplify based on this shuffle.  For | 
|  | // example, if this is a splat, then we only demand from one input element. | 
|  | uint64_t UndefElts; | 
|  | if (Value *V = SimplifyDemandedVectorElts(&SVI, (1ULL << Mask.size())-1, | 
|  | UndefElts)) | 
|  | return ReplaceInstUsesWith(SVI, V); | 
|  |  | 
|  | return MadeChange ? &SVI : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | void InstCombiner::removeFromWorkList(Instruction *I) { | 
|  | WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I), | 
|  | WorkList.end()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// TryToSinkInstruction - Try to move the specified instruction from its | 
|  | /// current block into the beginning of DestBlock, which can only happen if it's | 
|  | /// safe to move the instruction past all of the instructions between it and the | 
|  | /// end of its block. | 
|  | static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { | 
|  | assert(I->hasOneUse() && "Invariants didn't hold!"); | 
|  |  | 
|  | // Cannot move control-flow-involving, volatile loads, vaarg, etc. | 
|  | if (isa<PHINode>(I) || I->mayWriteToMemory()) return false; | 
|  |  | 
|  | // Do not sink alloca instructions out of the entry block. | 
|  | if (isa<AllocaInst>(I) && I->getParent() == &DestBlock->getParent()->front()) | 
|  | return false; | 
|  |  | 
|  | // We can only sink load instructions if there is nothing between the load and | 
|  | // the end of block that could change the value. | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end(); | 
|  | Scan != E; ++Scan) | 
|  | if (Scan->mayWriteToMemory()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BasicBlock::iterator InsertPos = DestBlock->begin(); | 
|  | while (isa<PHINode>(InsertPos)) ++InsertPos; | 
|  |  | 
|  | I->moveBefore(InsertPos); | 
|  | ++NumSunkInst; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset | 
|  | /// from a global, return the global and the constant.  Because of | 
|  | /// constantexprs, this function is recursive. | 
|  | static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, | 
|  | int64_t &Offset, const TargetData &TD) { | 
|  | // Trivial case, constant is the global. | 
|  | if ((GV = dyn_cast<GlobalValue>(C))) { | 
|  | Offset = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, if this isn't a constant expr, bail out. | 
|  | ConstantExpr *CE = dyn_cast<ConstantExpr>(C); | 
|  | if (!CE) return false; | 
|  |  | 
|  | // Look through ptr->int and ptr->ptr casts. | 
|  | if (CE->getOpcode() == Instruction::PtrToInt || | 
|  | CE->getOpcode() == Instruction::BitCast) | 
|  | return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD); | 
|  |  | 
|  | // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) { | 
|  | // Cannot compute this if the element type of the pointer is missing size | 
|  | // info. | 
|  | if (!cast<PointerType>(CE->getOperand(0)->getType())->getElementType()->isSized()) | 
|  | return false; | 
|  |  | 
|  | // If the base isn't a global+constant, we aren't either. | 
|  | if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, add any offset that our operands provide. | 
|  | gep_type_iterator GTI = gep_type_begin(CE); | 
|  | for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i, ++GTI) { | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(i)); | 
|  | if (!CI) return false;  // Index isn't a simple constant? | 
|  | if (CI->getZExtValue() == 0) continue;  // Not adding anything. | 
|  |  | 
|  | if (const StructType *ST = dyn_cast<StructType>(*GTI)) { | 
|  | // N = N + Offset | 
|  | Offset += TD.getStructLayout(ST)->MemberOffsets[CI->getZExtValue()]; | 
|  | } else { | 
|  | const SequentialType *ST = cast<SequentialType>(*GTI); | 
|  | Offset += TD.getTypeSize(ST->getElementType())*CI->getSExtValue(); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// OptimizeConstantExpr - Given a constant expression and target data layout | 
|  | /// information, symbolically evaluate the constant expr to something simpler | 
|  | /// if possible. | 
|  | static Constant *OptimizeConstantExpr(ConstantExpr *CE, const TargetData *TD) { | 
|  | if (!TD) return CE; | 
|  |  | 
|  | Constant *Ptr = CE->getOperand(0); | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr && Ptr->isNullValue() && | 
|  | cast<PointerType>(Ptr->getType())->getElementType()->isSized()) { | 
|  | // If this is a constant expr gep that is effectively computing an | 
|  | // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' | 
|  | bool isFoldableGEP = true; | 
|  | for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) | 
|  | if (!isa<ConstantInt>(CE->getOperand(i))) | 
|  | isFoldableGEP = false; | 
|  | if (isFoldableGEP) { | 
|  | std::vector<Value*> Ops(CE->op_begin()+1, CE->op_end()); | 
|  | uint64_t Offset = TD->getIndexedOffset(Ptr->getType(), Ops); | 
|  | Constant *C = ConstantInt::get(TD->getIntPtrType(), Offset); | 
|  | return ConstantExpr::getIntToPtr(C, CE->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // SROA | 
|  |  | 
|  | // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. | 
|  | // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute | 
|  | // bits. | 
|  |  | 
|  |  | 
|  | // If the constant expr is something like &A[123] - &A[4].f, fold this into a | 
|  | // constant.  This happens frequently when iterating over a global array. | 
|  | if (CE->getOpcode() == Instruction::Sub) { | 
|  | GlobalValue *GV1, *GV2; | 
|  | int64_t Offs1, Offs2; | 
|  |  | 
|  | if (IsConstantOffsetFromGlobal(CE->getOperand(0), GV1, Offs1, *TD)) | 
|  | if (IsConstantOffsetFromGlobal(CE->getOperand(1), GV2, Offs2, *TD) && | 
|  | GV1 == GV2) { | 
|  | // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. | 
|  | return ConstantInt::get(CE->getType(), Offs1-Offs2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: Fold icmp setne/seteq as well. | 
|  |  | 
|  | return CE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding | 
|  | /// all reachable code to the worklist. | 
|  | /// | 
|  | /// This has a couple of tricks to make the code faster and more powerful.  In | 
|  | /// particular, we constant fold and DCE instructions as we go, to avoid adding | 
|  | /// them to the worklist (this significantly speeds up instcombine on code where | 
|  | /// many instructions are dead or constant).  Additionally, if we find a branch | 
|  | /// whose condition is a known constant, we only visit the reachable successors. | 
|  | /// | 
|  | static void AddReachableCodeToWorklist(BasicBlock *BB, | 
|  | std::set<BasicBlock*> &Visited, | 
|  | std::vector<Instruction*> &WorkList, | 
|  | const TargetData *TD) { | 
|  | // We have now visited this block!  If we've already been here, bail out. | 
|  | if (!Visited.insert(BB).second) return; | 
|  |  | 
|  | for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { | 
|  | Instruction *Inst = BBI++; | 
|  |  | 
|  | // DCE instruction if trivially dead. | 
|  | if (isInstructionTriviallyDead(Inst)) { | 
|  | ++NumDeadInst; | 
|  | DOUT << "IC: DCE: " << *Inst; | 
|  | Inst->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // ConstantProp instruction if trivially constant. | 
|  | if (Constant *C = ConstantFoldInstruction(Inst, TD)) { | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) | 
|  | C = OptimizeConstantExpr(CE, TD); | 
|  | DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst; | 
|  | Inst->replaceAllUsesWith(C); | 
|  | ++NumConstProp; | 
|  | Inst->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | WorkList.push_back(Inst); | 
|  | } | 
|  |  | 
|  | // Recursively visit successors.  If this is a branch or switch on a constant, | 
|  | // only visit the reachable successor. | 
|  | TerminatorInst *TI = BB->getTerminator(); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { | 
|  | bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); | 
|  | AddReachableCodeToWorklist(BI->getSuccessor(!CondVal), Visited, WorkList, | 
|  | TD); | 
|  | return; | 
|  | } | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { | 
|  | // See if this is an explicit destination. | 
|  | for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) | 
|  | if (SI->getCaseValue(i) == Cond) { | 
|  | AddReachableCodeToWorklist(SI->getSuccessor(i), Visited, WorkList,TD); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise it is the default destination. | 
|  | AddReachableCodeToWorklist(SI->getSuccessor(0), Visited, WorkList, TD); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) | 
|  | AddReachableCodeToWorklist(TI->getSuccessor(i), Visited, WorkList, TD); | 
|  | } | 
|  |  | 
|  | bool InstCombiner::runOnFunction(Function &F) { | 
|  | bool Changed = false; | 
|  | TD = &getAnalysis<TargetData>(); | 
|  |  | 
|  | { | 
|  | // Do a depth-first traversal of the function, populate the worklist with | 
|  | // the reachable instructions.  Ignore blocks that are not reachable.  Keep | 
|  | // track of which blocks we visit. | 
|  | std::set<BasicBlock*> Visited; | 
|  | AddReachableCodeToWorklist(F.begin(), Visited, WorkList, TD); | 
|  |  | 
|  | // Do a quick scan over the function.  If we find any blocks that are | 
|  | // unreachable, remove any instructions inside of them.  This prevents | 
|  | // the instcombine code from having to deal with some bad special cases. | 
|  | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) | 
|  | if (!Visited.count(BB)) { | 
|  | Instruction *Term = BB->getTerminator(); | 
|  | while (Term != BB->begin()) {   // Remove instrs bottom-up | 
|  | BasicBlock::iterator I = Term; --I; | 
|  |  | 
|  | DOUT << "IC: DCE: " << *I; | 
|  | ++NumDeadInst; | 
|  |  | 
|  | if (!I->use_empty()) | 
|  | I->replaceAllUsesWith(UndefValue::get(I->getType())); | 
|  | I->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | Instruction *I = WorkList.back();  // Get an instruction from the worklist | 
|  | WorkList.pop_back(); | 
|  |  | 
|  | // Check to see if we can DCE the instruction. | 
|  | if (isInstructionTriviallyDead(I)) { | 
|  | // Add operands to the worklist. | 
|  | if (I->getNumOperands() < 4) | 
|  | AddUsesToWorkList(*I); | 
|  | ++NumDeadInst; | 
|  |  | 
|  | DOUT << "IC: DCE: " << *I; | 
|  |  | 
|  | I->eraseFromParent(); | 
|  | removeFromWorkList(I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Instruction isn't dead, see if we can constant propagate it. | 
|  | if (Constant *C = ConstantFoldInstruction(I, TD)) { | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) | 
|  | C = OptimizeConstantExpr(CE, TD); | 
|  | DOUT << "IC: ConstFold to: " << *C << " from: " << *I; | 
|  |  | 
|  | // Add operands to the worklist. | 
|  | AddUsesToWorkList(*I); | 
|  | ReplaceInstUsesWith(*I, C); | 
|  |  | 
|  | ++NumConstProp; | 
|  | I->eraseFromParent(); | 
|  | removeFromWorkList(I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // See if we can trivially sink this instruction to a successor basic block. | 
|  | if (I->hasOneUse()) { | 
|  | BasicBlock *BB = I->getParent(); | 
|  | BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent(); | 
|  | if (UserParent != BB) { | 
|  | bool UserIsSuccessor = false; | 
|  | // See if the user is one of our successors. | 
|  | for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) | 
|  | if (*SI == UserParent) { | 
|  | UserIsSuccessor = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the user is one of our immediate successors, and if that successor | 
|  | // only has us as a predecessors (we'd have to split the critical edge | 
|  | // otherwise), we can keep going. | 
|  | if (UserIsSuccessor && !isa<PHINode>(I->use_back()) && | 
|  | next(pred_begin(UserParent)) == pred_end(UserParent)) | 
|  | // Okay, the CFG is simple enough, try to sink this instruction. | 
|  | Changed |= TryToSinkInstruction(I, UserParent); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we have an instruction, try combining it to simplify it... | 
|  | if (Instruction *Result = visit(*I)) { | 
|  | ++NumCombined; | 
|  | // Should we replace the old instruction with a new one? | 
|  | if (Result != I) { | 
|  | DOUT << "IC: Old = " << *I | 
|  | << "    New = " << *Result; | 
|  |  | 
|  | // Everything uses the new instruction now. | 
|  | I->replaceAllUsesWith(Result); | 
|  |  | 
|  | // Push the new instruction and any users onto the worklist. | 
|  | WorkList.push_back(Result); | 
|  | AddUsersToWorkList(*Result); | 
|  |  | 
|  | // Move the name to the new instruction first... | 
|  | std::string OldName = I->getName(); I->setName(""); | 
|  | Result->setName(OldName); | 
|  |  | 
|  | // Insert the new instruction into the basic block... | 
|  | BasicBlock *InstParent = I->getParent(); | 
|  | BasicBlock::iterator InsertPos = I; | 
|  |  | 
|  | if (!isa<PHINode>(Result))        // If combining a PHI, don't insert | 
|  | while (isa<PHINode>(InsertPos)) // middle of a block of PHIs. | 
|  | ++InsertPos; | 
|  |  | 
|  | InstParent->getInstList().insert(InsertPos, Result); | 
|  |  | 
|  | // Make sure that we reprocess all operands now that we reduced their | 
|  | // use counts. | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
|  | if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i))) | 
|  | WorkList.push_back(OpI); | 
|  |  | 
|  | // Instructions can end up on the worklist more than once.  Make sure | 
|  | // we do not process an instruction that has been deleted. | 
|  | removeFromWorkList(I); | 
|  |  | 
|  | // Erase the old instruction. | 
|  | InstParent->getInstList().erase(I); | 
|  | } else { | 
|  | DOUT << "IC: MOD = " << *I; | 
|  |  | 
|  | // If the instruction was modified, it's possible that it is now dead. | 
|  | // if so, remove it. | 
|  | if (isInstructionTriviallyDead(I)) { | 
|  | // Make sure we process all operands now that we are reducing their | 
|  | // use counts. | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
|  | if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i))) | 
|  | WorkList.push_back(OpI); | 
|  |  | 
|  | // Instructions may end up in the worklist more than once.  Erase all | 
|  | // occurrences of this instruction. | 
|  | removeFromWorkList(I); | 
|  | I->eraseFromParent(); | 
|  | } else { | 
|  | WorkList.push_back(Result); | 
|  | AddUsersToWorkList(*Result); | 
|  | } | 
|  | } | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createInstructionCombiningPass() { | 
|  | return new InstCombiner(); | 
|  | } | 
|  |  |