|  | //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/CodeGen/TargetSchedule.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCInstrItineraries.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetFrameLowering.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include <cctype> | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> DisableHazardRecognizer( | 
|  | "disable-sched-hazard", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable hazard detection during preRA scheduling")); | 
|  |  | 
|  | TargetInstrInfo::~TargetInstrInfo() { | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass* | 
|  | TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, | 
|  | const TargetRegisterInfo *TRI, | 
|  | const MachineFunction &MF) const { | 
|  | if (OpNum >= MCID.getNumOperands()) | 
|  | return nullptr; | 
|  |  | 
|  | short RegClass = MCID.OpInfo[OpNum].RegClass; | 
|  | if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) | 
|  | return TRI->getPointerRegClass(MF, RegClass); | 
|  |  | 
|  | // Instructions like INSERT_SUBREG do not have fixed register classes. | 
|  | if (RegClass < 0) | 
|  | return nullptr; | 
|  |  | 
|  | // Otherwise just look it up normally. | 
|  | return TRI->getRegClass(RegClass); | 
|  | } | 
|  |  | 
|  | /// insertNoop - Insert a noop into the instruction stream at the specified | 
|  | /// point. | 
|  | void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI) const { | 
|  | llvm_unreachable("Target didn't implement insertNoop!"); | 
|  | } | 
|  |  | 
|  | /// Measure the specified inline asm to determine an approximation of its | 
|  | /// length. | 
|  | /// Comments (which run till the next SeparatorString or newline) do not | 
|  | /// count as an instruction. | 
|  | /// Any other non-whitespace text is considered an instruction, with | 
|  | /// multiple instructions separated by SeparatorString or newlines. | 
|  | /// Variable-length instructions are not handled here; this function | 
|  | /// may be overloaded in the target code to do that. | 
|  | unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, | 
|  | const MCAsmInfo &MAI) const { | 
|  |  | 
|  |  | 
|  | // Count the number of instructions in the asm. | 
|  | bool atInsnStart = true; | 
|  | unsigned Length = 0; | 
|  | for (; *Str; ++Str) { | 
|  | if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), | 
|  | strlen(MAI.getSeparatorString())) == 0) | 
|  | atInsnStart = true; | 
|  | if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { | 
|  | Length += MAI.getMaxInstLength(); | 
|  | atInsnStart = false; | 
|  | } | 
|  | if (atInsnStart && strncmp(Str, MAI.getCommentString(), | 
|  | strlen(MAI.getCommentString())) == 0) | 
|  | atInsnStart = false; | 
|  | } | 
|  |  | 
|  | return Length; | 
|  | } | 
|  |  | 
|  | /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything | 
|  | /// after it, replacing it with an unconditional branch to NewDest. | 
|  | void | 
|  | TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, | 
|  | MachineBasicBlock *NewDest) const { | 
|  | MachineBasicBlock *MBB = Tail->getParent(); | 
|  |  | 
|  | // Remove all the old successors of MBB from the CFG. | 
|  | while (!MBB->succ_empty()) | 
|  | MBB->removeSuccessor(MBB->succ_begin()); | 
|  |  | 
|  | // Remove all the dead instructions from the end of MBB. | 
|  | MBB->erase(Tail, MBB->end()); | 
|  |  | 
|  | // If MBB isn't immediately before MBB, insert a branch to it. | 
|  | if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) | 
|  | InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), | 
|  | Tail->getDebugLoc()); | 
|  | MBB->addSuccessor(NewDest); | 
|  | } | 
|  |  | 
|  | // commuteInstruction - The default implementation of this method just exchanges | 
|  | // the two operands returned by findCommutedOpIndices. | 
|  | MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI, | 
|  | bool NewMI) const { | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | bool HasDef = MCID.getNumDefs(); | 
|  | if (HasDef && !MI->getOperand(0).isReg()) | 
|  | // No idea how to commute this instruction. Target should implement its own. | 
|  | return nullptr; | 
|  | unsigned Idx1, Idx2; | 
|  | if (!findCommutedOpIndices(MI, Idx1, Idx2)) { | 
|  | assert(MI->isCommutable() && "Precondition violation: MI must be commutable."); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && | 
|  | "This only knows how to commute register operands so far"); | 
|  | unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; | 
|  | unsigned Reg1 = MI->getOperand(Idx1).getReg(); | 
|  | unsigned Reg2 = MI->getOperand(Idx2).getReg(); | 
|  | unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; | 
|  | unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); | 
|  | unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); | 
|  | bool Reg1IsKill = MI->getOperand(Idx1).isKill(); | 
|  | bool Reg2IsKill = MI->getOperand(Idx2).isKill(); | 
|  | bool Reg1IsUndef = MI->getOperand(Idx1).isUndef(); | 
|  | bool Reg2IsUndef = MI->getOperand(Idx2).isUndef(); | 
|  | bool Reg1IsInternal = MI->getOperand(Idx1).isInternalRead(); | 
|  | bool Reg2IsInternal = MI->getOperand(Idx2).isInternalRead(); | 
|  | // If destination is tied to either of the commuted source register, then | 
|  | // it must be updated. | 
|  | if (HasDef && Reg0 == Reg1 && | 
|  | MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { | 
|  | Reg2IsKill = false; | 
|  | Reg0 = Reg2; | 
|  | SubReg0 = SubReg2; | 
|  | } else if (HasDef && Reg0 == Reg2 && | 
|  | MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { | 
|  | Reg1IsKill = false; | 
|  | Reg0 = Reg1; | 
|  | SubReg0 = SubReg1; | 
|  | } | 
|  |  | 
|  | if (NewMI) { | 
|  | // Create a new instruction. | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | MI = MF.CloneMachineInstr(MI); | 
|  | } | 
|  |  | 
|  | if (HasDef) { | 
|  | MI->getOperand(0).setReg(Reg0); | 
|  | MI->getOperand(0).setSubReg(SubReg0); | 
|  | } | 
|  | MI->getOperand(Idx2).setReg(Reg1); | 
|  | MI->getOperand(Idx1).setReg(Reg2); | 
|  | MI->getOperand(Idx2).setSubReg(SubReg1); | 
|  | MI->getOperand(Idx1).setSubReg(SubReg2); | 
|  | MI->getOperand(Idx2).setIsKill(Reg1IsKill); | 
|  | MI->getOperand(Idx1).setIsKill(Reg2IsKill); | 
|  | MI->getOperand(Idx2).setIsUndef(Reg1IsUndef); | 
|  | MI->getOperand(Idx1).setIsUndef(Reg2IsUndef); | 
|  | MI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); | 
|  | MI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | /// findCommutedOpIndices - If specified MI is commutable, return the two | 
|  | /// operand indices that would swap value. Return true if the instruction | 
|  | /// is not in a form which this routine understands. | 
|  | bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI, | 
|  | unsigned &SrcOpIdx1, | 
|  | unsigned &SrcOpIdx2) const { | 
|  | assert(!MI->isBundle() && | 
|  | "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); | 
|  |  | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | if (!MCID.isCommutable()) | 
|  | return false; | 
|  | // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this | 
|  | // is not true, then the target must implement this. | 
|  | SrcOpIdx1 = MCID.getNumDefs(); | 
|  | SrcOpIdx2 = SrcOpIdx1 + 1; | 
|  | if (!MI->getOperand(SrcOpIdx1).isReg() || | 
|  | !MI->getOperand(SrcOpIdx2).isReg()) | 
|  | // No idea. | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool | 
|  | TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { | 
|  | if (!MI->isTerminator()) return false; | 
|  |  | 
|  | // Conditional branch is a special case. | 
|  | if (MI->isBranch() && !MI->isBarrier()) | 
|  | return true; | 
|  | if (!MI->isPredicable()) | 
|  | return true; | 
|  | return !isPredicated(MI); | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::PredicateInstruction( | 
|  | MachineInstr *MI, ArrayRef<MachineOperand> Pred) const { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | assert(!MI->isBundle() && | 
|  | "TargetInstrInfo::PredicateInstruction() can't handle bundles"); | 
|  |  | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | if (!MI->isPredicable()) | 
|  | return false; | 
|  |  | 
|  | for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | if (MCID.OpInfo[i].isPredicate()) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (MO.isReg()) { | 
|  | MO.setReg(Pred[j].getReg()); | 
|  | MadeChange = true; | 
|  | } else if (MO.isImm()) { | 
|  | MO.setImm(Pred[j].getImm()); | 
|  | MadeChange = true; | 
|  | } else if (MO.isMBB()) { | 
|  | MO.setMBB(Pred[j].getMBB()); | 
|  | MadeChange = true; | 
|  | } | 
|  | ++j; | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, | 
|  | const MachineMemOperand *&MMO, | 
|  | int &FrameIndex) const { | 
|  | for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), | 
|  | oe = MI->memoperands_end(); | 
|  | o != oe; | 
|  | ++o) { | 
|  | if ((*o)->isLoad()) { | 
|  | if (const FixedStackPseudoSourceValue *Value = | 
|  | dyn_cast_or_null<FixedStackPseudoSourceValue>( | 
|  | (*o)->getPseudoValue())) { | 
|  | FrameIndex = Value->getFrameIndex(); | 
|  | MMO = *o; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI, | 
|  | const MachineMemOperand *&MMO, | 
|  | int &FrameIndex) const { | 
|  | for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), | 
|  | oe = MI->memoperands_end(); | 
|  | o != oe; | 
|  | ++o) { | 
|  | if ((*o)->isStore()) { | 
|  | if (const FixedStackPseudoSourceValue *Value = | 
|  | dyn_cast_or_null<FixedStackPseudoSourceValue>( | 
|  | (*o)->getPseudoValue())) { | 
|  | FrameIndex = Value->getFrameIndex(); | 
|  | MMO = *o; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, | 
|  | unsigned SubIdx, unsigned &Size, | 
|  | unsigned &Offset, | 
|  | const MachineFunction &MF) const { | 
|  | if (!SubIdx) { | 
|  | Size = RC->getSize(); | 
|  | Offset = 0; | 
|  | return true; | 
|  | } | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); | 
|  | // Convert bit size to byte size to be consistent with | 
|  | // MCRegisterClass::getSize(). | 
|  | if (BitSize % 8) | 
|  | return false; | 
|  |  | 
|  | int BitOffset = TRI->getSubRegIdxOffset(SubIdx); | 
|  | if (BitOffset < 0 || BitOffset % 8) | 
|  | return false; | 
|  |  | 
|  | Size = BitSize /= 8; | 
|  | Offset = (unsigned)BitOffset / 8; | 
|  |  | 
|  | assert(RC->getSize() >= (Offset + Size) && "bad subregister range"); | 
|  |  | 
|  | if (!MF.getDataLayout().isLittleEndian()) { | 
|  | Offset = RC->getSize() - (Offset + Size); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | unsigned DestReg, | 
|  | unsigned SubIdx, | 
|  | const MachineInstr *Orig, | 
|  | const TargetRegisterInfo &TRI) const { | 
|  | MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); | 
|  | MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); | 
|  | MBB.insert(I, MI); | 
|  | } | 
|  |  | 
|  | bool | 
|  | TargetInstrInfo::produceSameValue(const MachineInstr *MI0, | 
|  | const MachineInstr *MI1, | 
|  | const MachineRegisterInfo *MRI) const { | 
|  | return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); | 
|  | } | 
|  |  | 
|  | MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig, | 
|  | MachineFunction &MF) const { | 
|  | assert(!Orig->isNotDuplicable() && | 
|  | "Instruction cannot be duplicated"); | 
|  | return MF.CloneMachineInstr(Orig); | 
|  | } | 
|  |  | 
|  | // If the COPY instruction in MI can be folded to a stack operation, return | 
|  | // the register class to use. | 
|  | static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, | 
|  | unsigned FoldIdx) { | 
|  | assert(MI->isCopy() && "MI must be a COPY instruction"); | 
|  | if (MI->getNumOperands() != 2) | 
|  | return nullptr; | 
|  | assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); | 
|  |  | 
|  | const MachineOperand &FoldOp = MI->getOperand(FoldIdx); | 
|  | const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); | 
|  |  | 
|  | if (FoldOp.getSubReg() || LiveOp.getSubReg()) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned FoldReg = FoldOp.getReg(); | 
|  | unsigned LiveReg = LiveOp.getReg(); | 
|  |  | 
|  | assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && | 
|  | "Cannot fold physregs"); | 
|  |  | 
|  | const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); | 
|  |  | 
|  | if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) | 
|  | return RC->contains(LiveOp.getReg()) ? RC : nullptr; | 
|  |  | 
|  | if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) | 
|  | return RC; | 
|  |  | 
|  | // FIXME: Allow folding when register classes are memory compatible. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { | 
|  | llvm_unreachable("Not a MachO target"); | 
|  | } | 
|  |  | 
|  | static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr *MI, | 
|  | ArrayRef<unsigned> Ops, int FrameIndex, | 
|  | const TargetInstrInfo &TII) { | 
|  | unsigned StartIdx = 0; | 
|  | switch (MI->getOpcode()) { | 
|  | case TargetOpcode::STACKMAP: | 
|  | StartIdx = 2; // Skip ID, nShadowBytes. | 
|  | break; | 
|  | case TargetOpcode::PATCHPOINT: { | 
|  | // For PatchPoint, the call args are not foldable. | 
|  | PatchPointOpers opers(MI); | 
|  | StartIdx = opers.getVarIdx(); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("unexpected stackmap opcode"); | 
|  | } | 
|  |  | 
|  | // Return false if any operands requested for folding are not foldable (not | 
|  | // part of the stackmap's live values). | 
|  | for (unsigned Op : Ops) { | 
|  | if (Op < StartIdx) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | MachineInstr *NewMI = | 
|  | MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(MF, NewMI); | 
|  |  | 
|  | // No need to fold return, the meta data, and function arguments | 
|  | for (unsigned i = 0; i < StartIdx; ++i) | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  |  | 
|  | for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) { | 
|  | unsigned SpillSize; | 
|  | unsigned SpillOffset; | 
|  | // Compute the spill slot size and offset. | 
|  | const TargetRegisterClass *RC = | 
|  | MF.getRegInfo().getRegClass(MO.getReg()); | 
|  | bool Valid = | 
|  | TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); | 
|  | if (!Valid) | 
|  | report_fatal_error("cannot spill patchpoint subregister operand"); | 
|  | MIB.addImm(StackMaps::IndirectMemRefOp); | 
|  | MIB.addImm(SpillSize); | 
|  | MIB.addFrameIndex(FrameIndex); | 
|  | MIB.addImm(SpillOffset); | 
|  | } | 
|  | else | 
|  | MIB.addOperand(MO); | 
|  | } | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | /// foldMemoryOperand - Attempt to fold a load or store of the specified stack | 
|  | /// slot into the specified machine instruction for the specified operand(s). | 
|  | /// If this is possible, a new instruction is returned with the specified | 
|  | /// operand folded, otherwise NULL is returned. The client is responsible for | 
|  | /// removing the old instruction and adding the new one in the instruction | 
|  | /// stream. | 
|  | MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, | 
|  | ArrayRef<unsigned> Ops, | 
|  | int FI) const { | 
|  | unsigned Flags = 0; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | if (MI->getOperand(Ops[i]).isDef()) | 
|  | Flags |= MachineMemOperand::MOStore; | 
|  | else | 
|  | Flags |= MachineMemOperand::MOLoad; | 
|  |  | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  | assert(MBB && "foldMemoryOperand needs an inserted instruction"); | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  |  | 
|  | MachineInstr *NewMI = nullptr; | 
|  |  | 
|  | if (MI->getOpcode() == TargetOpcode::STACKMAP || | 
|  | MI->getOpcode() == TargetOpcode::PATCHPOINT) { | 
|  | // Fold stackmap/patchpoint. | 
|  | NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); | 
|  | if (NewMI) | 
|  | MBB->insert(MI, NewMI); | 
|  | } else { | 
|  | // Ask the target to do the actual folding. | 
|  | NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI); | 
|  | } | 
|  |  | 
|  | if (NewMI) { | 
|  | NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  | // Add a memory operand, foldMemoryOperandImpl doesn't do that. | 
|  | assert((!(Flags & MachineMemOperand::MOStore) || | 
|  | NewMI->mayStore()) && | 
|  | "Folded a def to a non-store!"); | 
|  | assert((!(Flags & MachineMemOperand::MOLoad) || | 
|  | NewMI->mayLoad()) && | 
|  | "Folded a use to a non-load!"); | 
|  | const MachineFrameInfo &MFI = *MF.getFrameInfo(); | 
|  | assert(MFI.getObjectOffset(FI) != -1); | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI), | 
|  | MFI.getObjectAlignment(FI)); | 
|  | NewMI->addMemOperand(MF, MMO); | 
|  |  | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | // Straight COPY may fold as load/store. | 
|  | if (!MI->isCopy() || Ops.size() != 1) | 
|  | return nullptr; | 
|  |  | 
|  | const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); | 
|  | if (!RC) | 
|  | return nullptr; | 
|  |  | 
|  | const MachineOperand &MO = MI->getOperand(1-Ops[0]); | 
|  | MachineBasicBlock::iterator Pos = MI; | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  |  | 
|  | if (Flags == MachineMemOperand::MOStore) | 
|  | storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); | 
|  | else | 
|  | loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); | 
|  | return --Pos; | 
|  | } | 
|  |  | 
|  | /// foldMemoryOperand - Same as the previous version except it allows folding | 
|  | /// of any load and store from / to any address, not just from a specific | 
|  | /// stack slot. | 
|  | MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, | 
|  | ArrayRef<unsigned> Ops, | 
|  | MachineInstr *LoadMI) const { | 
|  | assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); | 
|  | #ifndef NDEBUG | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); | 
|  | #endif | 
|  | MachineBasicBlock &MBB = *MI->getParent(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  |  | 
|  | // Ask the target to do the actual folding. | 
|  | MachineInstr *NewMI = nullptr; | 
|  | int FrameIndex = 0; | 
|  |  | 
|  | if ((MI->getOpcode() == TargetOpcode::STACKMAP || | 
|  | MI->getOpcode() == TargetOpcode::PATCHPOINT) && | 
|  | isLoadFromStackSlot(LoadMI, FrameIndex)) { | 
|  | // Fold stackmap/patchpoint. | 
|  | NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); | 
|  | if (NewMI) | 
|  | NewMI = MBB.insert(MI, NewMI); | 
|  | } else { | 
|  | // Ask the target to do the actual folding. | 
|  | NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI); | 
|  | } | 
|  |  | 
|  | if (!NewMI) return nullptr; | 
|  |  | 
|  | // Copy the memoperands from the load to the folded instruction. | 
|  | if (MI->memoperands_empty()) { | 
|  | NewMI->setMemRefs(LoadMI->memoperands_begin(), | 
|  | LoadMI->memoperands_end()); | 
|  | } | 
|  | else { | 
|  | // Handle the rare case of folding multiple loads. | 
|  | NewMI->setMemRefs(MI->memoperands_begin(), | 
|  | MI->memoperands_end()); | 
|  | for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(), | 
|  | E = LoadMI->memoperands_end(); I != E; ++I) { | 
|  | NewMI->addMemOperand(MF, *I); | 
|  | } | 
|  | } | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo:: | 
|  | isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, | 
|  | AliasAnalysis *AA) const { | 
|  | const MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | // Remat clients assume operand 0 is the defined register. | 
|  | if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) | 
|  | return false; | 
|  | unsigned DefReg = MI->getOperand(0).getReg(); | 
|  |  | 
|  | // A sub-register definition can only be rematerialized if the instruction | 
|  | // doesn't read the other parts of the register.  Otherwise it is really a | 
|  | // read-modify-write operation on the full virtual register which cannot be | 
|  | // moved safely. | 
|  | if (TargetRegisterInfo::isVirtualRegister(DefReg) && | 
|  | MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) | 
|  | return false; | 
|  |  | 
|  | // A load from a fixed stack slot can be rematerialized. This may be | 
|  | // redundant with subsequent checks, but it's target-independent, | 
|  | // simple, and a common case. | 
|  | int FrameIdx = 0; | 
|  | if (isLoadFromStackSlot(MI, FrameIdx) && | 
|  | MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) | 
|  | return true; | 
|  |  | 
|  | // Avoid instructions obviously unsafe for remat. | 
|  | if (MI->isNotDuplicable() || MI->mayStore() || | 
|  | MI->hasUnmodeledSideEffects()) | 
|  | return false; | 
|  |  | 
|  | // Don't remat inline asm. We have no idea how expensive it is | 
|  | // even if it's side effect free. | 
|  | if (MI->isInlineAsm()) | 
|  | return false; | 
|  |  | 
|  | // Avoid instructions which load from potentially varying memory. | 
|  | if (MI->mayLoad() && !MI->isInvariantLoad(AA)) | 
|  | return false; | 
|  |  | 
|  | // If any of the registers accessed are non-constant, conservatively assume | 
|  | // the instruction is not rematerializable. | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) | 
|  | continue; | 
|  |  | 
|  | // Check for a well-behaved physical register. | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | if (MO.isUse()) { | 
|  | // If the physreg has no defs anywhere, it's just an ambient register | 
|  | // and we can freely move its uses. Alternatively, if it's allocatable, | 
|  | // it could get allocated to something with a def during allocation. | 
|  | if (!MRI.isConstantPhysReg(Reg, MF)) | 
|  | return false; | 
|  | } else { | 
|  | // A physreg def. We can't remat it. | 
|  | return false; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Only allow one virtual-register def.  There may be multiple defs of the | 
|  | // same virtual register, though. | 
|  | if (MO.isDef() && Reg != DefReg) | 
|  | return false; | 
|  |  | 
|  | // Don't allow any virtual-register uses. Rematting an instruction with | 
|  | // virtual register uses would length the live ranges of the uses, which | 
|  | // is not necessarily a good idea, certainly not "trivial". | 
|  | if (MO.isUse()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Everything checked out. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const { | 
|  | const MachineFunction *MF = MI->getParent()->getParent(); | 
|  | const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); | 
|  | bool StackGrowsDown = | 
|  | TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; | 
|  |  | 
|  | unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); | 
|  | unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); | 
|  |  | 
|  | if (MI->getOpcode() != FrameSetupOpcode && | 
|  | MI->getOpcode() != FrameDestroyOpcode) | 
|  | return 0; | 
|  |  | 
|  | int SPAdj = MI->getOperand(0).getImm(); | 
|  | SPAdj = TFI->alignSPAdjust(SPAdj); | 
|  |  | 
|  | if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) || | 
|  | (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode)) | 
|  | SPAdj = -SPAdj; | 
|  |  | 
|  | return SPAdj; | 
|  | } | 
|  |  | 
|  | /// isSchedulingBoundary - Test if the given instruction should be | 
|  | /// considered a scheduling boundary. This primarily includes labels | 
|  | /// and terminators. | 
|  | bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | const MachineFunction &MF) const { | 
|  | // Terminators and labels can't be scheduled around. | 
|  | if (MI->isTerminator() || MI->isPosition()) | 
|  | return true; | 
|  |  | 
|  | // Don't attempt to schedule around any instruction that defines | 
|  | // a stack-oriented pointer, as it's unlikely to be profitable. This | 
|  | // saves compile time, because it doesn't require every single | 
|  | // stack slot reference to depend on the instruction that does the | 
|  | // modification. | 
|  | const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Provide a global flag for disabling the PreRA hazard recognizer that targets | 
|  | // may choose to honor. | 
|  | bool TargetInstrInfo::usePreRAHazardRecognizer() const { | 
|  | return !DisableHazardRecognizer; | 
|  | } | 
|  |  | 
|  | // Default implementation of CreateTargetRAHazardRecognizer. | 
|  | ScheduleHazardRecognizer *TargetInstrInfo:: | 
|  | CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, | 
|  | const ScheduleDAG *DAG) const { | 
|  | // Dummy hazard recognizer allows all instructions to issue. | 
|  | return new ScheduleHazardRecognizer(); | 
|  | } | 
|  |  | 
|  | // Default implementation of CreateTargetMIHazardRecognizer. | 
|  | ScheduleHazardRecognizer *TargetInstrInfo:: | 
|  | CreateTargetMIHazardRecognizer(const InstrItineraryData *II, | 
|  | const ScheduleDAG *DAG) const { | 
|  | return (ScheduleHazardRecognizer *) | 
|  | new ScoreboardHazardRecognizer(II, DAG, "misched"); | 
|  | } | 
|  |  | 
|  | // Default implementation of CreateTargetPostRAHazardRecognizer. | 
|  | ScheduleHazardRecognizer *TargetInstrInfo:: | 
|  | CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, | 
|  | const ScheduleDAG *DAG) const { | 
|  | return (ScheduleHazardRecognizer *) | 
|  | new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  SelectionDAG latency interface. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | int | 
|  | TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
|  | SDNode *DefNode, unsigned DefIdx, | 
|  | SDNode *UseNode, unsigned UseIdx) const { | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return -1; | 
|  |  | 
|  | if (!DefNode->isMachineOpcode()) | 
|  | return -1; | 
|  |  | 
|  | unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); | 
|  | if (!UseNode->isMachineOpcode()) | 
|  | return ItinData->getOperandCycle(DefClass, DefIdx); | 
|  | unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); | 
|  | return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); | 
|  | } | 
|  |  | 
|  | int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | 
|  | SDNode *N) const { | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return 1; | 
|  |  | 
|  | if (!N->isMachineOpcode()) | 
|  | return 1; | 
|  |  | 
|  | return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  MachineInstr latency interface. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | unsigned | 
|  | TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, | 
|  | const MachineInstr *MI) const { | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return 1; | 
|  |  | 
|  | unsigned Class = MI->getDesc().getSchedClass(); | 
|  | int UOps = ItinData->Itineraries[Class].NumMicroOps; | 
|  | if (UOps >= 0) | 
|  | return UOps; | 
|  |  | 
|  | // The # of u-ops is dynamically determined. The specific target should | 
|  | // override this function to return the right number. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// Return the default expected latency for a def based on it's opcode. | 
|  | unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, | 
|  | const MachineInstr *DefMI) const { | 
|  | if (DefMI->isTransient()) | 
|  | return 0; | 
|  | if (DefMI->mayLoad()) | 
|  | return SchedModel.LoadLatency; | 
|  | if (isHighLatencyDef(DefMI->getOpcode())) | 
|  | return SchedModel.HighLatency; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned TargetInstrInfo:: | 
|  | getInstrLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr *MI, | 
|  | unsigned *PredCost) const { | 
|  | // Default to one cycle for no itinerary. However, an "empty" itinerary may | 
|  | // still have a MinLatency property, which getStageLatency checks. | 
|  | if (!ItinData) | 
|  | return MI->mayLoad() ? 2 : 1; | 
|  |  | 
|  | return ItinData->getStageLatency(MI->getDesc().getSchedClass()); | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, | 
|  | const MachineInstr *DefMI, | 
|  | unsigned DefIdx) const { | 
|  | const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return false; | 
|  |  | 
|  | unsigned DefClass = DefMI->getDesc().getSchedClass(); | 
|  | int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); | 
|  | return (DefCycle != -1 && DefCycle <= 1); | 
|  | } | 
|  |  | 
|  | /// Both DefMI and UseMI must be valid.  By default, call directly to the | 
|  | /// itinerary. This may be overriden by the target. | 
|  | int TargetInstrInfo:: | 
|  | getOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr *DefMI, unsigned DefIdx, | 
|  | const MachineInstr *UseMI, unsigned UseIdx) const { | 
|  | unsigned DefClass = DefMI->getDesc().getSchedClass(); | 
|  | unsigned UseClass = UseMI->getDesc().getSchedClass(); | 
|  | return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); | 
|  | } | 
|  |  | 
|  | /// If we can determine the operand latency from the def only, without itinerary | 
|  | /// lookup, do so. Otherwise return -1. | 
|  | int TargetInstrInfo::computeDefOperandLatency( | 
|  | const InstrItineraryData *ItinData, | 
|  | const MachineInstr *DefMI) const { | 
|  |  | 
|  | // Let the target hook getInstrLatency handle missing itineraries. | 
|  | if (!ItinData) | 
|  | return getInstrLatency(ItinData, DefMI); | 
|  |  | 
|  | if(ItinData->isEmpty()) | 
|  | return defaultDefLatency(ItinData->SchedModel, DefMI); | 
|  |  | 
|  | // ...operand lookup required | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /// computeOperandLatency - Compute and return the latency of the given data | 
|  | /// dependent def and use when the operand indices are already known. UseMI may | 
|  | /// be NULL for an unknown use. | 
|  | /// | 
|  | /// FindMin may be set to get the minimum vs. expected latency. Minimum | 
|  | /// latency is used for scheduling groups, while expected latency is for | 
|  | /// instruction cost and critical path. | 
|  | /// | 
|  | /// Depending on the subtarget's itinerary properties, this may or may not need | 
|  | /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or | 
|  | /// UseIdx to compute min latency. | 
|  | unsigned TargetInstrInfo:: | 
|  | computeOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr *DefMI, unsigned DefIdx, | 
|  | const MachineInstr *UseMI, unsigned UseIdx) const { | 
|  |  | 
|  | int DefLatency = computeDefOperandLatency(ItinData, DefMI); | 
|  | if (DefLatency >= 0) | 
|  | return DefLatency; | 
|  |  | 
|  | assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); | 
|  |  | 
|  | int OperLatency = 0; | 
|  | if (UseMI) | 
|  | OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); | 
|  | else { | 
|  | unsigned DefClass = DefMI->getDesc().getSchedClass(); | 
|  | OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); | 
|  | } | 
|  | if (OperLatency >= 0) | 
|  | return OperLatency; | 
|  |  | 
|  | // No operand latency was found. | 
|  | unsigned InstrLatency = getInstrLatency(ItinData, DefMI); | 
|  |  | 
|  | // Expected latency is the max of the stage latency and itinerary props. | 
|  | InstrLatency = std::max(InstrLatency, | 
|  | defaultDefLatency(ItinData->SchedModel, DefMI)); | 
|  | return InstrLatency; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::getRegSequenceInputs( | 
|  | const MachineInstr &MI, unsigned DefIdx, | 
|  | SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { | 
|  | assert((MI.isRegSequence() || | 
|  | MI.isRegSequenceLike()) && "Instruction do not have the proper type"); | 
|  |  | 
|  | if (!MI.isRegSequence()) | 
|  | return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); | 
|  |  | 
|  | // We are looking at: | 
|  | // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... | 
|  | assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); | 
|  | for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; | 
|  | OpIdx += 2) { | 
|  | const MachineOperand &MOReg = MI.getOperand(OpIdx); | 
|  | const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); | 
|  | assert(MOSubIdx.isImm() && | 
|  | "One of the subindex of the reg_sequence is not an immediate"); | 
|  | // Record Reg:SubReg, SubIdx. | 
|  | InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), | 
|  | (unsigned)MOSubIdx.getImm())); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::getExtractSubregInputs( | 
|  | const MachineInstr &MI, unsigned DefIdx, | 
|  | RegSubRegPairAndIdx &InputReg) const { | 
|  | assert((MI.isExtractSubreg() || | 
|  | MI.isExtractSubregLike()) && "Instruction do not have the proper type"); | 
|  |  | 
|  | if (!MI.isExtractSubreg()) | 
|  | return getExtractSubregLikeInputs(MI, DefIdx, InputReg); | 
|  |  | 
|  | // We are looking at: | 
|  | // Def = EXTRACT_SUBREG v0.sub1, sub0. | 
|  | assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); | 
|  | const MachineOperand &MOReg = MI.getOperand(1); | 
|  | const MachineOperand &MOSubIdx = MI.getOperand(2); | 
|  | assert(MOSubIdx.isImm() && | 
|  | "The subindex of the extract_subreg is not an immediate"); | 
|  |  | 
|  | InputReg.Reg = MOReg.getReg(); | 
|  | InputReg.SubReg = MOReg.getSubReg(); | 
|  | InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetInstrInfo::getInsertSubregInputs( | 
|  | const MachineInstr &MI, unsigned DefIdx, | 
|  | RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { | 
|  | assert((MI.isInsertSubreg() || | 
|  | MI.isInsertSubregLike()) && "Instruction do not have the proper type"); | 
|  |  | 
|  | if (!MI.isInsertSubreg()) | 
|  | return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); | 
|  |  | 
|  | // We are looking at: | 
|  | // Def = INSERT_SEQUENCE v0, v1, sub0. | 
|  | assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); | 
|  | const MachineOperand &MOBaseReg = MI.getOperand(1); | 
|  | const MachineOperand &MOInsertedReg = MI.getOperand(2); | 
|  | const MachineOperand &MOSubIdx = MI.getOperand(3); | 
|  | assert(MOSubIdx.isImm() && | 
|  | "One of the subindex of the reg_sequence is not an immediate"); | 
|  | BaseReg.Reg = MOBaseReg.getReg(); | 
|  | BaseReg.SubReg = MOBaseReg.getSubReg(); | 
|  |  | 
|  | InsertedReg.Reg = MOInsertedReg.getReg(); | 
|  | InsertedReg.SubReg = MOInsertedReg.getSubReg(); | 
|  | InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); | 
|  | return true; | 
|  | } |