|  | //===-- SparcV9CodeEmitter.cpp --------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // SPARC-specific backend for emitting machine code to memory. | 
|  | // | 
|  | // This module also contains the code for lazily resolving the targets of call | 
|  | // instructions, including the callback used to redirect calls to functions for | 
|  | // which the code has not yet been generated into the JIT compiler. | 
|  | // | 
|  | // This file #includes SparcV9GenCodeEmitter.inc, which contains the code for | 
|  | // getBinaryCodeForInstr(), a method that converts a MachineInstr into the | 
|  | // corresponding binary machine code word. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/PassManager.h" | 
|  | #include "llvm/CodeGen/MachineCodeEmitter.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "SparcV9Internals.h" | 
|  | #include "SparcV9TargetMachine.h" | 
|  | #include "SparcV9RegInfo.h" | 
|  | #include "SparcV9CodeEmitter.h" | 
|  | #include "SparcV9Relocations.h" | 
|  | #include "MachineFunctionInfo.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | bool SparcV9TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM, | 
|  | MachineCodeEmitter &MCE) { | 
|  | PM.add(new SparcV9CodeEmitter(*this, MCE)); | 
|  | PM.add(createSparcV9MachineCodeDestructionPass()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm, | 
|  | MachineCodeEmitter &M): TM(tm), MCE(M) {} | 
|  |  | 
|  | void SparcV9CodeEmitter::emitWord(unsigned Val) { | 
|  | MCE.emitWord(Val); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg, | 
|  | MachineInstr &MI) { | 
|  | const SparcV9RegInfo &RI = *TM.getRegInfo(); | 
|  | unsigned regClass, regType = RI.getRegType(fakeReg); | 
|  | // At least map fakeReg into its class | 
|  | fakeReg = RI.getClassRegNum(fakeReg, regClass); | 
|  |  | 
|  | switch (regClass) { | 
|  | case SparcV9RegInfo::IntRegClassID: { | 
|  | // SparcV9 manual, p31 | 
|  | static const unsigned IntRegMap[] = { | 
|  | // "o0", "o1", "o2", "o3", "o4", "o5",       "o7", | 
|  | 8, 9, 10, 11, 12, 13, 15, | 
|  | // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | 
|  | 16, 17, 18, 19, 20, 21, 22, 23, | 
|  | // "i0", "i1", "i2", "i3", "i4", "i5", "i6", "i7", | 
|  | 24, 25, 26, 27, 28, 29, 30, 31, | 
|  | // "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | 
|  | 0, 1, 2, 3, 4, 5, 6, 7, | 
|  | // "o6" | 
|  | 14 | 
|  | }; | 
|  |  | 
|  | return IntRegMap[fakeReg]; | 
|  | break; | 
|  | } | 
|  | case SparcV9RegInfo::FloatRegClassID: { | 
|  | DEBUG(std::cerr << "FP reg: " << fakeReg << "\n"); | 
|  | if (regType == SparcV9RegInfo::FPSingleRegType) { | 
|  | // only numbered 0-31, hence can already fit into 5 bits (and 6) | 
|  | DEBUG(std::cerr << "FP single reg, returning: " << fakeReg << "\n"); | 
|  | } else if (regType == SparcV9RegInfo::FPDoubleRegType) { | 
|  | // FIXME: This assumes that we only have 5-bit register fields! | 
|  | // From SparcV9 Manual, page 40. | 
|  | // The bit layout becomes: b[4], b[3], b[2], b[1], b[5] | 
|  | fakeReg |= (fakeReg >> 5) & 1; | 
|  | fakeReg &= 0x1f; | 
|  | DEBUG(std::cerr << "FP double reg, returning: " << fakeReg << "\n"); | 
|  | } | 
|  | return fakeReg; | 
|  | } | 
|  | case SparcV9RegInfo::IntCCRegClassID: { | 
|  | /*                                   xcc, icc, ccr */ | 
|  | static const unsigned IntCCReg[] = {  6,   4,   2 }; | 
|  |  | 
|  | assert(fakeReg < sizeof(IntCCReg)/sizeof(IntCCReg[0]) | 
|  | && "CC register out of bounds for IntCCReg map"); | 
|  | DEBUG(std::cerr << "IntCC reg: " << IntCCReg[fakeReg] << "\n"); | 
|  | return IntCCReg[fakeReg]; | 
|  | } | 
|  | case SparcV9RegInfo::FloatCCRegClassID: { | 
|  | /* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */ | 
|  | DEBUG(std::cerr << "FP CC reg: " << fakeReg << "\n"); | 
|  | return fakeReg; | 
|  | } | 
|  | case SparcV9RegInfo::SpecialRegClassID: { | 
|  | // Currently only "special" reg is %fsr, which is encoded as 1 in | 
|  | // instructions and 0 in SparcV9SpecialRegClass. | 
|  | static const unsigned SpecialReg[] = {  1 }; | 
|  | assert(fakeReg < sizeof(SpecialReg)/sizeof(SpecialReg[0]) | 
|  | && "Special register out of bounds for SpecialReg map"); | 
|  | DEBUG(std::cerr << "Special reg: " << SpecialReg[fakeReg] << "\n"); | 
|  | return SpecialReg[fakeReg]; | 
|  | } | 
|  | default: | 
|  | assert(0 && "Invalid unified register number in getRealRegNum"); | 
|  | return fakeReg; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI, | 
|  | MachineOperand &MO) { | 
|  | int64_t rv = 0; // Return value; defaults to 0 for unhandled cases | 
|  | // or things that get fixed up later by the JIT. | 
|  | if (MO.isPCRelativeDisp() || MO.isGlobalAddress()) { | 
|  | DEBUG(std::cerr << "PCRelativeDisp: "); | 
|  | Value *V = MO.getVRegValue(); | 
|  | if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { | 
|  | DEBUG(std::cerr << "Saving reference to BB (VReg)\n"); | 
|  | unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); | 
|  | BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); | 
|  | } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | // The real target of the branch is CI = PC + (rv * 4) | 
|  | // So undo that: give the instruction (CI - PC) / 4 | 
|  | rv = (CI->getRawValue() - MCE.getCurrentPCValue()) / 4; | 
|  | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | unsigned Reloc = 0; | 
|  | if (MI.getOpcode() == V9::CALL) { | 
|  | Reloc = V9::reloc_pcrel_call; | 
|  | } else if (MI.getOpcode() == V9::SETHI) { | 
|  | if (MO.isHiBits64()) | 
|  | Reloc = V9::reloc_sethi_hh; | 
|  | else if (MO.isHiBits32()) | 
|  | Reloc = V9::reloc_sethi_lm; | 
|  | else | 
|  | assert(0 && "Unknown relocation!"); | 
|  | } else if (MI.getOpcode() == V9::ORi) { | 
|  | if (MO.isLoBits32()) | 
|  | Reloc = V9::reloc_or_lo; | 
|  | else if (MO.isLoBits64()) | 
|  | Reloc = V9::reloc_or_hm; | 
|  | else | 
|  | assert(0 && "Unknown relocation!"); | 
|  | } else { | 
|  | assert(0 && "Unknown relocation!"); | 
|  | } | 
|  |  | 
|  | MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(), Reloc, GV)); | 
|  | rv = 0; | 
|  | } else { | 
|  | std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n"; | 
|  | abort(); | 
|  | } | 
|  | } else if (MO.isRegister() || MO.getType() == MachineOperand::MO_CCRegister) | 
|  | { | 
|  | // This is necessary because the SparcV9 backend doesn't actually lay out | 
|  | // registers in the real fashion -- it skips those that it chooses not to | 
|  | // allocate, i.e. those that are the FP, SP, etc. | 
|  | unsigned fakeReg = MO.getReg(); | 
|  | unsigned realRegByClass = getRealRegNum(fakeReg, MI); | 
|  | DEBUG(std::cerr << MO << ": Reg[" << std::dec << fakeReg << "] => " | 
|  | << realRegByClass << " (LLC: " | 
|  | << TM.getRegInfo()->getUnifiedRegName(fakeReg) << ")\n"); | 
|  | rv = realRegByClass; | 
|  | } else if (MO.isImmediate()) { | 
|  | rv = MO.getImmedValue(); | 
|  | DEBUG(std::cerr << "immed: " << rv << "\n"); | 
|  | } else if (MO.isMachineBasicBlock()) { | 
|  | // Duplicate code of the above case for VirtualRegister, BasicBlock... | 
|  | // It should really hit this case, but SparcV9 backend uses VRegs instead | 
|  | DEBUG(std::cerr << "Saving reference to MBB\n"); | 
|  | const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock(); | 
|  | unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); | 
|  | BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); | 
|  | } else if (MO.isExternalSymbol()) { | 
|  | // SparcV9 backend doesn't generate this (yet...) | 
|  | std::cerr << "ERROR: External symbol unhandled: " << MO << "\n"; | 
|  | abort(); | 
|  | } else if (MO.isFrameIndex()) { | 
|  | // SparcV9 backend doesn't generate this (yet...) | 
|  | int FrameIndex = MO.getFrameIndex(); | 
|  | std::cerr << "ERROR: Frame index unhandled.\n"; | 
|  | abort(); | 
|  | } else if (MO.isConstantPoolIndex()) { | 
|  | unsigned Index = MO.getConstantPoolIndex(); | 
|  | rv = MCE.getConstantPoolEntryAddress(Index); | 
|  | } else { | 
|  | std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | // Finally, deal with the various bitfield-extracting functions that | 
|  | // are used in SPARC assembly. (Some of these make no sense in combination | 
|  | // with some of the above; we'll trust that the instruction selector | 
|  | // will not produce nonsense, and not check for valid combinations here.) | 
|  | if (MO.isLoBits32()) {          // %lo(val) == %lo() in SparcV9 ABI doc | 
|  | return rv & 0x03ff; | 
|  | } else if (MO.isHiBits32()) {   // %lm(val) == %hi() in SparcV9 ABI doc | 
|  | return (rv >> 10) & 0x03fffff; | 
|  | } else if (MO.isLoBits64()) {   // %hm(val) == %ulo() in SparcV9 ABI doc | 
|  | return (rv >> 32) & 0x03ff; | 
|  | } else if (MO.isHiBits64()) {   // %hh(val) == %uhi() in SparcV9 ABI doc | 
|  | return rv >> 42; | 
|  | } else {                        // (unadorned) val | 
|  | return rv; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) { | 
|  | Val >>= bit; | 
|  | return (Val & 1); | 
|  | } | 
|  |  | 
|  | bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) { | 
|  | MCE.startFunction(MF); | 
|  | DEBUG(std::cerr << "Starting function " << MF.getFunction()->getName() | 
|  | << ", address: " << "0x" << std::hex | 
|  | << (long)MCE.getCurrentPCValue() << "\n"); | 
|  |  | 
|  | MCE.emitConstantPool(MF.getConstantPool()); | 
|  | for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) | 
|  | emitBasicBlock(*I); | 
|  | MCE.finishFunction(MF); | 
|  |  | 
|  | DEBUG(std::cerr << "Finishing fn " << MF.getFunction()->getName() << "\n"); | 
|  |  | 
|  | // Resolve branches to BasicBlocks for the entire function | 
|  | for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { | 
|  | long Location = BBLocations[BBRefs[i].first]; | 
|  | unsigned *Ref = BBRefs[i].second.first; | 
|  | MachineInstr *MI = BBRefs[i].second.second; | 
|  | DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location | 
|  | << " in instr: " << std::dec << *MI); | 
|  | for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) { | 
|  | MachineOperand &op = MI->getOperand(ii); | 
|  | if (op.isPCRelativeDisp()) { | 
|  | // the instruction's branch target is made such that it branches to | 
|  | // PC + (branchTarget * 4), so undo that arithmetic here: | 
|  | // Location is the target of the branch | 
|  | // Ref is the location of the instruction, and hence the PC | 
|  | int64_t branchTarget = (Location - (long)Ref) >> 2; | 
|  | // Save the flags. | 
|  | bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false; | 
|  | if (op.isLoBits32()) { loBits32=true; } | 
|  | if (op.isHiBits32()) { hiBits32=true; } | 
|  | if (op.isLoBits64()) { loBits64=true; } | 
|  | if (op.isHiBits64()) { hiBits64=true; } | 
|  | MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed, | 
|  | branchTarget); | 
|  | if (loBits32) { MI->getOperand(ii).markLo32(); } | 
|  | else if (hiBits32) { MI->getOperand(ii).markHi32(); } | 
|  | else if (loBits64) { MI->getOperand(ii).markLo64(); } | 
|  | else if (hiBits64) { MI->getOperand(ii).markHi64(); } | 
|  | DEBUG(std::cerr << "Rewrote BB ref: "); | 
|  | unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI); | 
|  | MCE.emitWordAt (fixedInstr, Ref); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | BBRefs.clear(); | 
|  | BBLocations.clear(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) { | 
|  | currBB = MBB.getBasicBlock(); | 
|  | BBLocations[currBB] = MCE.getCurrentPCValue(); | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) | 
|  | if (I->getOpcode() != V9::RDCCR) { | 
|  | emitWord(getBinaryCodeForInstr(*I)); | 
|  | } else { | 
|  | // FIXME: The tblgen produced code emitter cannot deal with the fact that | 
|  | // machine operand #0 of the RDCCR instruction should be ignored.  This is | 
|  | // really a bug in the representation of the RDCCR instruction (which has | 
|  | // no need to explicitly represent the CCR dest), but we hack around it | 
|  | // here. | 
|  | unsigned RegNo = getMachineOpValue(*I, I->getOperand(1)); | 
|  | RegNo &= (1<<5)-1; | 
|  | emitWord((RegNo << 25) | 2168487936U); | 
|  | } | 
|  | } | 
|  |  | 
|  | #include "SparcV9GenCodeEmitter.inc" | 
|  |  |