|  | //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This contains code to emit Objective-C code as LLVM code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CGDebugInfo.h" | 
|  | #include "CGObjCRuntime.h" | 
|  | #include "CodeGenFunction.h" | 
|  | #include "CodeGenModule.h" | 
|  | #include "ConstantEmitter.h" | 
|  | #include "TargetInfo.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/StmtObjC.h" | 
|  | #include "clang/Basic/Diagnostic.h" | 
|  | #include "clang/CodeGen/CGFunctionInfo.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; | 
|  | static TryEmitResult | 
|  | tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); | 
|  | static RValue AdjustObjCObjectType(CodeGenFunction &CGF, | 
|  | QualType ET, | 
|  | RValue Result); | 
|  |  | 
|  | /// Given the address of a variable of pointer type, find the correct | 
|  | /// null to store into it. | 
|  | static llvm::Constant *getNullForVariable(Address addr) { | 
|  | llvm::Type *type = addr.getElementType(); | 
|  | return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); | 
|  | } | 
|  |  | 
|  | /// Emits an instance of NSConstantString representing the object. | 
|  | llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) | 
|  | { | 
|  | llvm::Constant *C = | 
|  | CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); | 
|  | // FIXME: This bitcast should just be made an invariant on the Runtime. | 
|  | return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); | 
|  | } | 
|  |  | 
|  | /// EmitObjCBoxedExpr - This routine generates code to call | 
|  | /// the appropriate expression boxing method. This will either be | 
|  | /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], | 
|  | /// or [NSValue valueWithBytes:objCType:]. | 
|  | /// | 
|  | llvm::Value * | 
|  | CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { | 
|  | // Generate the correct selector for this literal's concrete type. | 
|  | // Get the method. | 
|  | const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  |  | 
|  | if (E->isExpressibleAsConstantInitializer()) { | 
|  | ConstantEmitter ConstEmitter(CGM); | 
|  | return ConstEmitter.tryEmitAbstract(E, E->getType()); | 
|  | } | 
|  |  | 
|  | assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); | 
|  | Selector Sel = BoxingMethod->getSelector(); | 
|  |  | 
|  | // Generate a reference to the class pointer, which will be the receiver. | 
|  | // Assumes that the method was introduced in the class that should be | 
|  | // messaged (avoids pulling it out of the result type). | 
|  | CGObjCRuntime &Runtime = CGM.getObjCRuntime(); | 
|  | const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); | 
|  | llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); | 
|  |  | 
|  | CallArgList Args; | 
|  | const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); | 
|  | QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); | 
|  |  | 
|  | // ObjCBoxedExpr supports boxing of structs and unions | 
|  | // via [NSValue valueWithBytes:objCType:] | 
|  | const QualType ValueType(SubExpr->getType().getCanonicalType()); | 
|  | if (ValueType->isObjCBoxableRecordType()) { | 
|  | // Emit CodeGen for first parameter | 
|  | // and cast value to correct type | 
|  | Address Temporary = CreateMemTemp(SubExpr->getType()); | 
|  | EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); | 
|  | Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); | 
|  | Args.add(RValue::get(BitCast.getPointer()), ArgQT); | 
|  |  | 
|  | // Create char array to store type encoding | 
|  | std::string Str; | 
|  | getContext().getObjCEncodingForType(ValueType, Str); | 
|  | llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); | 
|  |  | 
|  | // Cast type encoding to correct type | 
|  | const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; | 
|  | QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); | 
|  | llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); | 
|  |  | 
|  | Args.add(RValue::get(Cast), EncodingQT); | 
|  | } else { | 
|  | Args.add(EmitAnyExpr(SubExpr), ArgQT); | 
|  | } | 
|  |  | 
|  | RValue result = Runtime.GenerateMessageSend( | 
|  | *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, | 
|  | Args, ClassDecl, BoxingMethod); | 
|  | return Builder.CreateBitCast(result.getScalarVal(), | 
|  | ConvertType(E->getType())); | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, | 
|  | const ObjCMethodDecl *MethodWithObjects) { | 
|  | ASTContext &Context = CGM.getContext(); | 
|  | const ObjCDictionaryLiteral *DLE = nullptr; | 
|  | const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); | 
|  | if (!ALE) | 
|  | DLE = cast<ObjCDictionaryLiteral>(E); | 
|  |  | 
|  | // Optimize empty collections by referencing constants, when available. | 
|  | uint64_t NumElements = | 
|  | ALE ? ALE->getNumElements() : DLE->getNumElements(); | 
|  | if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { | 
|  | StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; | 
|  | QualType IdTy(CGM.getContext().getObjCIdType()); | 
|  | llvm::Constant *Constant = | 
|  | CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); | 
|  | LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); | 
|  | llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); | 
|  | cast<llvm::LoadInst>(Ptr)->setMetadata( | 
|  | CGM.getModule().getMDKindID("invariant.load"), | 
|  | llvm::MDNode::get(getLLVMContext(), None)); | 
|  | return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); | 
|  | } | 
|  |  | 
|  | // Compute the type of the array we're initializing. | 
|  | llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), | 
|  | NumElements); | 
|  | QualType ElementType = Context.getObjCIdType().withConst(); | 
|  | QualType ElementArrayType | 
|  | = Context.getConstantArrayType(ElementType, APNumElements, | 
|  | ArrayType::Normal, /*IndexTypeQuals=*/0); | 
|  |  | 
|  | // Allocate the temporary array(s). | 
|  | Address Objects = CreateMemTemp(ElementArrayType, "objects"); | 
|  | Address Keys = Address::invalid(); | 
|  | if (DLE) | 
|  | Keys = CreateMemTemp(ElementArrayType, "keys"); | 
|  |  | 
|  | // In ARC, we may need to do extra work to keep all the keys and | 
|  | // values alive until after the call. | 
|  | SmallVector<llvm::Value *, 16> NeededObjects; | 
|  | bool TrackNeededObjects = | 
|  | (getLangOpts().ObjCAutoRefCount && | 
|  | CGM.getCodeGenOpts().OptimizationLevel != 0); | 
|  |  | 
|  | // Perform the actual initialialization of the array(s). | 
|  | for (uint64_t i = 0; i < NumElements; i++) { | 
|  | if (ALE) { | 
|  | // Emit the element and store it to the appropriate array slot. | 
|  | const Expr *Rhs = ALE->getElement(i); | 
|  | LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), | 
|  | ElementType, AlignmentSource::Decl); | 
|  |  | 
|  | llvm::Value *value = EmitScalarExpr(Rhs); | 
|  | EmitStoreThroughLValue(RValue::get(value), LV, true); | 
|  | if (TrackNeededObjects) { | 
|  | NeededObjects.push_back(value); | 
|  | } | 
|  | } else { | 
|  | // Emit the key and store it to the appropriate array slot. | 
|  | const Expr *Key = DLE->getKeyValueElement(i).Key; | 
|  | LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), | 
|  | ElementType, AlignmentSource::Decl); | 
|  | llvm::Value *keyValue = EmitScalarExpr(Key); | 
|  | EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); | 
|  |  | 
|  | // Emit the value and store it to the appropriate array slot. | 
|  | const Expr *Value = DLE->getKeyValueElement(i).Value; | 
|  | LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), | 
|  | ElementType, AlignmentSource::Decl); | 
|  | llvm::Value *valueValue = EmitScalarExpr(Value); | 
|  | EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); | 
|  | if (TrackNeededObjects) { | 
|  | NeededObjects.push_back(keyValue); | 
|  | NeededObjects.push_back(valueValue); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Generate the argument list. | 
|  | CallArgList Args; | 
|  | ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); | 
|  | const ParmVarDecl *argDecl = *PI++; | 
|  | QualType ArgQT = argDecl->getType().getUnqualifiedType(); | 
|  | Args.add(RValue::get(Objects.getPointer()), ArgQT); | 
|  | if (DLE) { | 
|  | argDecl = *PI++; | 
|  | ArgQT = argDecl->getType().getUnqualifiedType(); | 
|  | Args.add(RValue::get(Keys.getPointer()), ArgQT); | 
|  | } | 
|  | argDecl = *PI; | 
|  | ArgQT = argDecl->getType().getUnqualifiedType(); | 
|  | llvm::Value *Count = | 
|  | llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); | 
|  | Args.add(RValue::get(Count), ArgQT); | 
|  |  | 
|  | // Generate a reference to the class pointer, which will be the receiver. | 
|  | Selector Sel = MethodWithObjects->getSelector(); | 
|  | QualType ResultType = E->getType(); | 
|  | const ObjCObjectPointerType *InterfacePointerType | 
|  | = ResultType->getAsObjCInterfacePointerType(); | 
|  | ObjCInterfaceDecl *Class | 
|  | = InterfacePointerType->getObjectType()->getInterface(); | 
|  | CGObjCRuntime &Runtime = CGM.getObjCRuntime(); | 
|  | llvm::Value *Receiver = Runtime.GetClass(*this, Class); | 
|  |  | 
|  | // Generate the message send. | 
|  | RValue result = Runtime.GenerateMessageSend( | 
|  | *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, | 
|  | Receiver, Args, Class, MethodWithObjects); | 
|  |  | 
|  | // The above message send needs these objects, but in ARC they are | 
|  | // passed in a buffer that is essentially __unsafe_unretained. | 
|  | // Therefore we must prevent the optimizer from releasing them until | 
|  | // after the call. | 
|  | if (TrackNeededObjects) { | 
|  | EmitARCIntrinsicUse(NeededObjects); | 
|  | } | 
|  |  | 
|  | return Builder.CreateBitCast(result.getScalarVal(), | 
|  | ConvertType(E->getType())); | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { | 
|  | return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( | 
|  | const ObjCDictionaryLiteral *E) { | 
|  | return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); | 
|  | } | 
|  |  | 
|  | /// Emit a selector. | 
|  | llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { | 
|  | // Untyped selector. | 
|  | // Note that this implementation allows for non-constant strings to be passed | 
|  | // as arguments to @selector().  Currently, the only thing preventing this | 
|  | // behaviour is the type checking in the front end. | 
|  | return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { | 
|  | // FIXME: This should pass the Decl not the name. | 
|  | return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); | 
|  | } | 
|  |  | 
|  | /// Adjust the type of an Objective-C object that doesn't match up due | 
|  | /// to type erasure at various points, e.g., related result types or the use | 
|  | /// of parameterized classes. | 
|  | static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, | 
|  | RValue Result) { | 
|  | if (!ExpT->isObjCRetainableType()) | 
|  | return Result; | 
|  |  | 
|  | // If the converted types are the same, we're done. | 
|  | llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); | 
|  | if (ExpLLVMTy == Result.getScalarVal()->getType()) | 
|  | return Result; | 
|  |  | 
|  | // We have applied a substitution. Cast the rvalue appropriately. | 
|  | return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), | 
|  | ExpLLVMTy)); | 
|  | } | 
|  |  | 
|  | /// Decide whether to extend the lifetime of the receiver of a | 
|  | /// returns-inner-pointer message. | 
|  | static bool | 
|  | shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { | 
|  | switch (message->getReceiverKind()) { | 
|  |  | 
|  | // For a normal instance message, we should extend unless the | 
|  | // receiver is loaded from a variable with precise lifetime. | 
|  | case ObjCMessageExpr::Instance: { | 
|  | const Expr *receiver = message->getInstanceReceiver(); | 
|  |  | 
|  | // Look through OVEs. | 
|  | if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { | 
|  | if (opaque->getSourceExpr()) | 
|  | receiver = opaque->getSourceExpr()->IgnoreParens(); | 
|  | } | 
|  |  | 
|  | const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); | 
|  | if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; | 
|  | receiver = ice->getSubExpr()->IgnoreParens(); | 
|  |  | 
|  | // Look through OVEs. | 
|  | if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { | 
|  | if (opaque->getSourceExpr()) | 
|  | receiver = opaque->getSourceExpr()->IgnoreParens(); | 
|  | } | 
|  |  | 
|  | // Only __strong variables. | 
|  | if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) | 
|  | return true; | 
|  |  | 
|  | // All ivars and fields have precise lifetime. | 
|  | if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, check for variables. | 
|  | const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); | 
|  | if (!declRef) return true; | 
|  | const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); | 
|  | if (!var) return true; | 
|  |  | 
|  | // All variables have precise lifetime except local variables with | 
|  | // automatic storage duration that aren't specially marked. | 
|  | return (var->hasLocalStorage() && | 
|  | !var->hasAttr<ObjCPreciseLifetimeAttr>()); | 
|  | } | 
|  |  | 
|  | case ObjCMessageExpr::Class: | 
|  | case ObjCMessageExpr::SuperClass: | 
|  | // It's never necessary for class objects. | 
|  | return false; | 
|  |  | 
|  | case ObjCMessageExpr::SuperInstance: | 
|  | // We generally assume that 'self' lives throughout a method call. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("invalid receiver kind"); | 
|  | } | 
|  |  | 
|  | /// Given an expression of ObjC pointer type, check whether it was | 
|  | /// immediately loaded from an ARC __weak l-value. | 
|  | static const Expr *findWeakLValue(const Expr *E) { | 
|  | assert(E->getType()->isObjCRetainableType()); | 
|  | E = E->IgnoreParens(); | 
|  | if (auto CE = dyn_cast<CastExpr>(E)) { | 
|  | if (CE->getCastKind() == CK_LValueToRValue) { | 
|  | if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) | 
|  | return CE->getSubExpr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// The ObjC runtime may provide entrypoints that are likely to be faster | 
|  | /// than an ordinary message send of the appropriate selector. | 
|  | /// | 
|  | /// The entrypoints are guaranteed to be equivalent to just sending the | 
|  | /// corresponding message.  If the entrypoint is implemented naively as just a | 
|  | /// message send, using it is a trade-off: it sacrifices a few cycles of | 
|  | /// overhead to save a small amount of code.  However, it's possible for | 
|  | /// runtimes to detect and special-case classes that use "standard" | 
|  | /// behavior; if that's dynamically a large proportion of all objects, using | 
|  | /// the entrypoint will also be faster than using a message send. | 
|  | /// | 
|  | /// If the runtime does support a required entrypoint, then this method will | 
|  | /// generate a call and return the resulting value.  Otherwise it will return | 
|  | /// None and the caller can generate a msgSend instead. | 
|  | static Optional<llvm::Value *> | 
|  | tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, | 
|  | llvm::Value *Receiver, | 
|  | const CallArgList& Args, Selector Sel, | 
|  | const ObjCMethodDecl *method, | 
|  | bool isClassMessage) { | 
|  | auto &CGM = CGF.CGM; | 
|  | if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) | 
|  | return None; | 
|  |  | 
|  | auto &Runtime = CGM.getLangOpts().ObjCRuntime; | 
|  | switch (Sel.getMethodFamily()) { | 
|  | case OMF_alloc: | 
|  | if (isClassMessage && | 
|  | Runtime.shouldUseRuntimeFunctionsForAlloc() && | 
|  | ResultType->isObjCObjectPointerType()) { | 
|  | // [Foo alloc] -> objc_alloc(Foo) or | 
|  | // [self alloc] -> objc_alloc(self) | 
|  | if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") | 
|  | return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); | 
|  | // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or | 
|  | // [self allocWithZone:nil] -> objc_allocWithZone(self) | 
|  | if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && | 
|  | Args.size() == 1 && Args.front().getType()->isPointerType() && | 
|  | Sel.getNameForSlot(0) == "allocWithZone") { | 
|  | const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); | 
|  | if (isa<llvm::ConstantPointerNull>(arg)) | 
|  | return CGF.EmitObjCAllocWithZone(Receiver, | 
|  | CGF.ConvertType(ResultType)); | 
|  | return None; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OMF_autorelease: | 
|  | if (ResultType->isObjCObjectPointerType() && | 
|  | CGM.getLangOpts().getGC() == LangOptions::NonGC && | 
|  | Runtime.shouldUseARCFunctionsForRetainRelease()) | 
|  | return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); | 
|  | break; | 
|  |  | 
|  | case OMF_retain: | 
|  | if (ResultType->isObjCObjectPointerType() && | 
|  | CGM.getLangOpts().getGC() == LangOptions::NonGC && | 
|  | Runtime.shouldUseARCFunctionsForRetainRelease()) | 
|  | return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); | 
|  | break; | 
|  |  | 
|  | case OMF_release: | 
|  | if (ResultType->isVoidType() && | 
|  | CGM.getLangOpts().getGC() == LangOptions::NonGC && | 
|  | Runtime.shouldUseARCFunctionsForRetainRelease()) { | 
|  | CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); | 
|  | return nullptr; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return None; | 
|  | } | 
|  |  | 
|  | /// Instead of '[[MyClass alloc] init]', try to generate | 
|  | /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the | 
|  | /// caller side, as well as the optimized objc_alloc. | 
|  | static Optional<llvm::Value *> | 
|  | tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { | 
|  | auto &Runtime = CGF.getLangOpts().ObjCRuntime; | 
|  | if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) | 
|  | return None; | 
|  |  | 
|  | // Match the exact pattern '[[MyClass alloc] init]'. | 
|  | Selector Sel = OME->getSelector(); | 
|  | if (OME->getReceiverKind() != ObjCMessageExpr::Instance || | 
|  | !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || | 
|  | Sel.getNameForSlot(0) != "init") | 
|  | return None; | 
|  |  | 
|  | // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' or | 
|  | // we are in an ObjC class method and 'receiver' is '[self alloc]'. | 
|  | auto *SubOME = | 
|  | dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); | 
|  | if (!SubOME) | 
|  | return None; | 
|  | Selector SubSel = SubOME->getSelector(); | 
|  |  | 
|  | // Check if we are in an ObjC class method and the receiver expression is | 
|  | // 'self'. | 
|  | const Expr *SelfInClassMethod = nullptr; | 
|  | if (const auto *CurMD = dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) | 
|  | if (CurMD->isClassMethod()) | 
|  | if ((SelfInClassMethod = SubOME->getInstanceReceiver())) | 
|  | if (!SelfInClassMethod->isObjCSelfExpr()) | 
|  | SelfInClassMethod = nullptr; | 
|  |  | 
|  | if ((SubOME->getReceiverKind() != ObjCMessageExpr::Class && | 
|  | !SelfInClassMethod) || !SubOME->getType()->isObjCObjectPointerType() || | 
|  | !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") | 
|  | return None; | 
|  |  | 
|  | llvm::Value *Receiver; | 
|  | if (SelfInClassMethod) { | 
|  | Receiver = CGF.EmitScalarExpr(SelfInClassMethod); | 
|  | } else { | 
|  | QualType ReceiverType = SubOME->getClassReceiver(); | 
|  | const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); | 
|  | const ObjCInterfaceDecl *ID = ObjTy->getInterface(); | 
|  | assert(ID && "null interface should be impossible here"); | 
|  | Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); | 
|  | } | 
|  | return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); | 
|  | } | 
|  |  | 
|  | RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, | 
|  | ReturnValueSlot Return) { | 
|  | // Only the lookup mechanism and first two arguments of the method | 
|  | // implementation vary between runtimes.  We can get the receiver and | 
|  | // arguments in generic code. | 
|  |  | 
|  | bool isDelegateInit = E->isDelegateInitCall(); | 
|  |  | 
|  | const ObjCMethodDecl *method = E->getMethodDecl(); | 
|  |  | 
|  | // If the method is -retain, and the receiver's being loaded from | 
|  | // a __weak variable, peephole the entire operation to objc_loadWeakRetained. | 
|  | if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && | 
|  | method->getMethodFamily() == OMF_retain) { | 
|  | if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { | 
|  | LValue lvalue = EmitLValue(lvalueExpr); | 
|  | llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); | 
|  | return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) | 
|  | return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); | 
|  |  | 
|  | // We don't retain the receiver in delegate init calls, and this is | 
|  | // safe because the receiver value is always loaded from 'self', | 
|  | // which we zero out.  We don't want to Block_copy block receivers, | 
|  | // though. | 
|  | bool retainSelf = | 
|  | (!isDelegateInit && | 
|  | CGM.getLangOpts().ObjCAutoRefCount && | 
|  | method && | 
|  | method->hasAttr<NSConsumesSelfAttr>()); | 
|  |  | 
|  | CGObjCRuntime &Runtime = CGM.getObjCRuntime(); | 
|  | bool isSuperMessage = false; | 
|  | bool isClassMessage = false; | 
|  | ObjCInterfaceDecl *OID = nullptr; | 
|  | // Find the receiver | 
|  | QualType ReceiverType; | 
|  | llvm::Value *Receiver = nullptr; | 
|  | switch (E->getReceiverKind()) { | 
|  | case ObjCMessageExpr::Instance: | 
|  | ReceiverType = E->getInstanceReceiver()->getType(); | 
|  | if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(CurFuncDecl)) | 
|  | if (OMD->isClassMethod()) | 
|  | if (E->getInstanceReceiver()->isObjCSelfExpr()) | 
|  | isClassMessage = true; | 
|  | if (retainSelf) { | 
|  | TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, | 
|  | E->getInstanceReceiver()); | 
|  | Receiver = ter.getPointer(); | 
|  | if (ter.getInt()) retainSelf = false; | 
|  | } else | 
|  | Receiver = EmitScalarExpr(E->getInstanceReceiver()); | 
|  | break; | 
|  |  | 
|  | case ObjCMessageExpr::Class: { | 
|  | ReceiverType = E->getClassReceiver(); | 
|  | const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); | 
|  | assert(ObjTy && "Invalid Objective-C class message send"); | 
|  | OID = ObjTy->getInterface(); | 
|  | assert(OID && "Invalid Objective-C class message send"); | 
|  | Receiver = Runtime.GetClass(*this, OID); | 
|  | isClassMessage = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ObjCMessageExpr::SuperInstance: | 
|  | ReceiverType = E->getSuperType(); | 
|  | Receiver = LoadObjCSelf(); | 
|  | isSuperMessage = true; | 
|  | break; | 
|  |  | 
|  | case ObjCMessageExpr::SuperClass: | 
|  | ReceiverType = E->getSuperType(); | 
|  | Receiver = LoadObjCSelf(); | 
|  | isSuperMessage = true; | 
|  | isClassMessage = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (retainSelf) | 
|  | Receiver = EmitARCRetainNonBlock(Receiver); | 
|  |  | 
|  | // In ARC, we sometimes want to "extend the lifetime" | 
|  | // (i.e. retain+autorelease) of receivers of returns-inner-pointer | 
|  | // messages. | 
|  | if (getLangOpts().ObjCAutoRefCount && method && | 
|  | method->hasAttr<ObjCReturnsInnerPointerAttr>() && | 
|  | shouldExtendReceiverForInnerPointerMessage(E)) | 
|  | Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); | 
|  |  | 
|  | QualType ResultType = method ? method->getReturnType() : E->getType(); | 
|  |  | 
|  | CallArgList Args; | 
|  | EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); | 
|  |  | 
|  | // For delegate init calls in ARC, do an unsafe store of null into | 
|  | // self.  This represents the call taking direct ownership of that | 
|  | // value.  We have to do this after emitting the other call | 
|  | // arguments because they might also reference self, but we don't | 
|  | // have to worry about any of them modifying self because that would | 
|  | // be an undefined read and write of an object in unordered | 
|  | // expressions. | 
|  | if (isDelegateInit) { | 
|  | assert(getLangOpts().ObjCAutoRefCount && | 
|  | "delegate init calls should only be marked in ARC"); | 
|  |  | 
|  | // Do an unsafe store of null into self. | 
|  | Address selfAddr = | 
|  | GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); | 
|  | Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); | 
|  | } | 
|  |  | 
|  | RValue result; | 
|  | if (isSuperMessage) { | 
|  | // super is only valid in an Objective-C method | 
|  | const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); | 
|  | bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); | 
|  | result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, | 
|  | E->getSelector(), | 
|  | OMD->getClassInterface(), | 
|  | isCategoryImpl, | 
|  | Receiver, | 
|  | isClassMessage, | 
|  | Args, | 
|  | method); | 
|  | } else { | 
|  | // Call runtime methods directly if we can. | 
|  | if (Optional<llvm::Value *> SpecializedResult = | 
|  | tryGenerateSpecializedMessageSend(*this, ResultType, Receiver, Args, | 
|  | E->getSelector(), method, | 
|  | isClassMessage)) { | 
|  | result = RValue::get(SpecializedResult.getValue()); | 
|  | } else { | 
|  | result = Runtime.GenerateMessageSend(*this, Return, ResultType, | 
|  | E->getSelector(), Receiver, Args, | 
|  | OID, method); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For delegate init calls in ARC, implicitly store the result of | 
|  | // the call back into self.  This takes ownership of the value. | 
|  | if (isDelegateInit) { | 
|  | Address selfAddr = | 
|  | GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); | 
|  | llvm::Value *newSelf = result.getScalarVal(); | 
|  |  | 
|  | // The delegate return type isn't necessarily a matching type; in | 
|  | // fact, it's quite likely to be 'id'. | 
|  | llvm::Type *selfTy = selfAddr.getElementType(); | 
|  | newSelf = Builder.CreateBitCast(newSelf, selfTy); | 
|  |  | 
|  | Builder.CreateStore(newSelf, selfAddr); | 
|  | } | 
|  |  | 
|  | return AdjustObjCObjectType(*this, E->getType(), result); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct FinishARCDealloc final : EHScopeStack::Cleanup { | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); | 
|  |  | 
|  | const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); | 
|  | const ObjCInterfaceDecl *iface = impl->getClassInterface(); | 
|  | if (!iface->getSuperClass()) return; | 
|  |  | 
|  | bool isCategory = isa<ObjCCategoryImplDecl>(impl); | 
|  |  | 
|  | // Call [super dealloc] if we have a superclass. | 
|  | llvm::Value *self = CGF.LoadObjCSelf(); | 
|  |  | 
|  | CallArgList args; | 
|  | CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), | 
|  | CGF.getContext().VoidTy, | 
|  | method->getSelector(), | 
|  | iface, | 
|  | isCategory, | 
|  | self, | 
|  | /*is class msg*/ false, | 
|  | args, | 
|  | method); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// StartObjCMethod - Begin emission of an ObjCMethod. This generates | 
|  | /// the LLVM function and sets the other context used by | 
|  | /// CodeGenFunction. | 
|  | void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, | 
|  | const ObjCContainerDecl *CD) { | 
|  | SourceLocation StartLoc = OMD->getBeginLoc(); | 
|  | FunctionArgList args; | 
|  | // Check if we should generate debug info for this method. | 
|  | if (OMD->hasAttr<NoDebugAttr>()) | 
|  | DebugInfo = nullptr; // disable debug info indefinitely for this function | 
|  |  | 
|  | llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); | 
|  |  | 
|  | const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); | 
|  | CGM.SetInternalFunctionAttributes(OMD, Fn, FI); | 
|  |  | 
|  | args.push_back(OMD->getSelfDecl()); | 
|  | args.push_back(OMD->getCmdDecl()); | 
|  |  | 
|  | args.append(OMD->param_begin(), OMD->param_end()); | 
|  |  | 
|  | CurGD = OMD; | 
|  | CurEHLocation = OMD->getEndLoc(); | 
|  |  | 
|  | StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, | 
|  | OMD->getLocation(), StartLoc); | 
|  |  | 
|  | // In ARC, certain methods get an extra cleanup. | 
|  | if (CGM.getLangOpts().ObjCAutoRefCount && | 
|  | OMD->isInstanceMethod() && | 
|  | OMD->getSelector().isUnarySelector()) { | 
|  | const IdentifierInfo *ident = | 
|  | OMD->getSelector().getIdentifierInfoForSlot(0); | 
|  | if (ident->isStr("dealloc")) | 
|  | EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, | 
|  | LValue lvalue, QualType type); | 
|  |  | 
|  | /// Generate an Objective-C method.  An Objective-C method is a C function with | 
|  | /// its pointer, name, and types registered in the class structure. | 
|  | void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { | 
|  | StartObjCMethod(OMD, OMD->getClassInterface()); | 
|  | PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); | 
|  | assert(isa<CompoundStmt>(OMD->getBody())); | 
|  | incrementProfileCounter(OMD->getBody()); | 
|  | EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); | 
|  | FinishFunction(OMD->getBodyRBrace()); | 
|  | } | 
|  |  | 
|  | /// emitStructGetterCall - Call the runtime function to load a property | 
|  | /// into the return value slot. | 
|  | static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, | 
|  | bool isAtomic, bool hasStrong) { | 
|  | ASTContext &Context = CGF.getContext(); | 
|  |  | 
|  | Address src = | 
|  | CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) | 
|  | .getAddress(); | 
|  |  | 
|  | // objc_copyStruct (ReturnValue, &structIvar, | 
|  | //                  sizeof (Type of Ivar), isAtomic, false); | 
|  | CallArgList args; | 
|  |  | 
|  | Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); | 
|  | args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); | 
|  |  | 
|  | src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); | 
|  | args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); | 
|  |  | 
|  | CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); | 
|  | args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); | 
|  | args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); | 
|  | args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); | 
|  |  | 
|  | llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); | 
|  | CGCallee callee = CGCallee::forDirect(fn); | 
|  | CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), | 
|  | callee, ReturnValueSlot(), args); | 
|  | } | 
|  |  | 
|  | /// Determine whether the given architecture supports unaligned atomic | 
|  | /// accesses.  They don't have to be fast, just faster than a function | 
|  | /// call and a mutex. | 
|  | static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { | 
|  | // FIXME: Allow unaligned atomic load/store on x86.  (It is not | 
|  | // currently supported by the backend.) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Return the maximum size that permits atomic accesses for the given | 
|  | /// architecture. | 
|  | static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, | 
|  | llvm::Triple::ArchType arch) { | 
|  | // ARM has 8-byte atomic accesses, but it's not clear whether we | 
|  | // want to rely on them here. | 
|  |  | 
|  | // In the default case, just assume that any size up to a pointer is | 
|  | // fine given adequate alignment. | 
|  | return CharUnits::fromQuantity(CGM.PointerSizeInBytes); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class PropertyImplStrategy { | 
|  | public: | 
|  | enum StrategyKind { | 
|  | /// The 'native' strategy is to use the architecture's provided | 
|  | /// reads and writes. | 
|  | Native, | 
|  |  | 
|  | /// Use objc_setProperty and objc_getProperty. | 
|  | GetSetProperty, | 
|  |  | 
|  | /// Use objc_setProperty for the setter, but use expression | 
|  | /// evaluation for the getter. | 
|  | SetPropertyAndExpressionGet, | 
|  |  | 
|  | /// Use objc_copyStruct. | 
|  | CopyStruct, | 
|  |  | 
|  | /// The 'expression' strategy is to emit normal assignment or | 
|  | /// lvalue-to-rvalue expressions. | 
|  | Expression | 
|  | }; | 
|  |  | 
|  | StrategyKind getKind() const { return StrategyKind(Kind); } | 
|  |  | 
|  | bool hasStrongMember() const { return HasStrong; } | 
|  | bool isAtomic() const { return IsAtomic; } | 
|  | bool isCopy() const { return IsCopy; } | 
|  |  | 
|  | CharUnits getIvarSize() const { return IvarSize; } | 
|  | CharUnits getIvarAlignment() const { return IvarAlignment; } | 
|  |  | 
|  | PropertyImplStrategy(CodeGenModule &CGM, | 
|  | const ObjCPropertyImplDecl *propImpl); | 
|  |  | 
|  | private: | 
|  | unsigned Kind : 8; | 
|  | unsigned IsAtomic : 1; | 
|  | unsigned IsCopy : 1; | 
|  | unsigned HasStrong : 1; | 
|  |  | 
|  | CharUnits IvarSize; | 
|  | CharUnits IvarAlignment; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Pick an implementation strategy for the given property synthesis. | 
|  | PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, | 
|  | const ObjCPropertyImplDecl *propImpl) { | 
|  | const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); | 
|  | ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); | 
|  |  | 
|  | IsCopy = (setterKind == ObjCPropertyDecl::Copy); | 
|  | IsAtomic = prop->isAtomic(); | 
|  | HasStrong = false; // doesn't matter here. | 
|  |  | 
|  | // Evaluate the ivar's size and alignment. | 
|  | ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); | 
|  | QualType ivarType = ivar->getType(); | 
|  | std::tie(IvarSize, IvarAlignment) = | 
|  | CGM.getContext().getTypeInfoInChars(ivarType); | 
|  |  | 
|  | // If we have a copy property, we always have to use getProperty/setProperty. | 
|  | // TODO: we could actually use setProperty and an expression for non-atomics. | 
|  | if (IsCopy) { | 
|  | Kind = GetSetProperty; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle retain. | 
|  | if (setterKind == ObjCPropertyDecl::Retain) { | 
|  | // In GC-only, there's nothing special that needs to be done. | 
|  | if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { | 
|  | // fallthrough | 
|  |  | 
|  | // In ARC, if the property is non-atomic, use expression emission, | 
|  | // which translates to objc_storeStrong.  This isn't required, but | 
|  | // it's slightly nicer. | 
|  | } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { | 
|  | // Using standard expression emission for the setter is only | 
|  | // acceptable if the ivar is __strong, which won't be true if | 
|  | // the property is annotated with __attribute__((NSObject)). | 
|  | // TODO: falling all the way back to objc_setProperty here is | 
|  | // just laziness, though;  we could still use objc_storeStrong | 
|  | // if we hacked it right. | 
|  | if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) | 
|  | Kind = Expression; | 
|  | else | 
|  | Kind = SetPropertyAndExpressionGet; | 
|  | return; | 
|  |  | 
|  | // Otherwise, we need to at least use setProperty.  However, if | 
|  | // the property isn't atomic, we can use normal expression | 
|  | // emission for the getter. | 
|  | } else if (!IsAtomic) { | 
|  | Kind = SetPropertyAndExpressionGet; | 
|  | return; | 
|  |  | 
|  | // Otherwise, we have to use both setProperty and getProperty. | 
|  | } else { | 
|  | Kind = GetSetProperty; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we're not atomic, just use expression accesses. | 
|  | if (!IsAtomic) { | 
|  | Kind = Expression; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Properties on bitfield ivars need to be emitted using expression | 
|  | // accesses even if they're nominally atomic. | 
|  | if (ivar->isBitField()) { | 
|  | Kind = Expression; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // GC-qualified or ARC-qualified ivars need to be emitted as | 
|  | // expressions.  This actually works out to being atomic anyway, | 
|  | // except for ARC __strong, but that should trigger the above code. | 
|  | if (ivarType.hasNonTrivialObjCLifetime() || | 
|  | (CGM.getLangOpts().getGC() && | 
|  | CGM.getContext().getObjCGCAttrKind(ivarType))) { | 
|  | Kind = Expression; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compute whether the ivar has strong members. | 
|  | if (CGM.getLangOpts().getGC()) | 
|  | if (const RecordType *recordType = ivarType->getAs<RecordType>()) | 
|  | HasStrong = recordType->getDecl()->hasObjectMember(); | 
|  |  | 
|  | // We can never access structs with object members with a native | 
|  | // access, because we need to use write barriers.  This is what | 
|  | // objc_copyStruct is for. | 
|  | if (HasStrong) { | 
|  | Kind = CopyStruct; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is target-dependent and based on the size and | 
|  | // alignment of the ivar. | 
|  |  | 
|  | // If the size of the ivar is not a power of two, give up.  We don't | 
|  | // want to get into the business of doing compare-and-swaps. | 
|  | if (!IvarSize.isPowerOfTwo()) { | 
|  | Kind = CopyStruct; | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm::Triple::ArchType arch = | 
|  | CGM.getTarget().getTriple().getArch(); | 
|  |  | 
|  | // Most architectures require memory to fit within a single cache | 
|  | // line, so the alignment has to be at least the size of the access. | 
|  | // Otherwise we have to grab a lock. | 
|  | if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { | 
|  | Kind = CopyStruct; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the ivar's size exceeds the architecture's maximum atomic | 
|  | // access size, we have to use CopyStruct. | 
|  | if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { | 
|  | Kind = CopyStruct; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, we can use native loads and stores. | 
|  | Kind = Native; | 
|  | } | 
|  |  | 
|  | /// Generate an Objective-C property getter function. | 
|  | /// | 
|  | /// The given Decl must be an ObjCImplementationDecl. \@synthesize | 
|  | /// is illegal within a category. | 
|  | void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, | 
|  | const ObjCPropertyImplDecl *PID) { | 
|  | llvm::Constant *AtomicHelperFn = | 
|  | CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); | 
|  | const ObjCPropertyDecl *PD = PID->getPropertyDecl(); | 
|  | ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); | 
|  | assert(OMD && "Invalid call to generate getter (empty method)"); | 
|  | StartObjCMethod(OMD, IMP->getClassInterface()); | 
|  |  | 
|  | generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); | 
|  |  | 
|  | FinishFunction(); | 
|  | } | 
|  |  | 
|  | static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { | 
|  | const Expr *getter = propImpl->getGetterCXXConstructor(); | 
|  | if (!getter) return true; | 
|  |  | 
|  | // Sema only makes only of these when the ivar has a C++ class type, | 
|  | // so the form is pretty constrained. | 
|  |  | 
|  | // If the property has a reference type, we might just be binding a | 
|  | // reference, in which case the result will be a gl-value.  We should | 
|  | // treat this as a non-trivial operation. | 
|  | if (getter->isGLValue()) | 
|  | return false; | 
|  |  | 
|  | // If we selected a trivial copy-constructor, we're okay. | 
|  | if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) | 
|  | return (construct->getConstructor()->isTrivial()); | 
|  |  | 
|  | // The constructor might require cleanups (in which case it's never | 
|  | // trivial). | 
|  | assert(isa<ExprWithCleanups>(getter)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// emitCPPObjectAtomicGetterCall - Call the runtime function to | 
|  | /// copy the ivar into the resturn slot. | 
|  | static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, | 
|  | llvm::Value *returnAddr, | 
|  | ObjCIvarDecl *ivar, | 
|  | llvm::Constant *AtomicHelperFn) { | 
|  | // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, | 
|  | //                           AtomicHelperFn); | 
|  | CallArgList args; | 
|  |  | 
|  | // The 1st argument is the return Slot. | 
|  | args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); | 
|  |  | 
|  | // The 2nd argument is the address of the ivar. | 
|  | llvm::Value *ivarAddr = | 
|  | CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), | 
|  | CGF.LoadObjCSelf(), ivar, 0).getPointer(); | 
|  | ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); | 
|  | args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); | 
|  |  | 
|  | // Third argument is the helper function. | 
|  | args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); | 
|  |  | 
|  | llvm::FunctionCallee copyCppAtomicObjectFn = | 
|  | CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); | 
|  | CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); | 
|  | CGF.EmitCall( | 
|  | CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), | 
|  | callee, ReturnValueSlot(), args); | 
|  | } | 
|  |  | 
|  | void | 
|  | CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, | 
|  | const ObjCPropertyImplDecl *propImpl, | 
|  | const ObjCMethodDecl *GetterMethodDecl, | 
|  | llvm::Constant *AtomicHelperFn) { | 
|  | // If there's a non-trivial 'get' expression, we just have to emit that. | 
|  | if (!hasTrivialGetExpr(propImpl)) { | 
|  | if (!AtomicHelperFn) { | 
|  | auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), | 
|  | propImpl->getGetterCXXConstructor(), | 
|  | /* NRVOCandidate=*/nullptr); | 
|  | EmitReturnStmt(*ret); | 
|  | } | 
|  | else { | 
|  | ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); | 
|  | emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), | 
|  | ivar, AtomicHelperFn); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); | 
|  | QualType propType = prop->getType(); | 
|  | ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); | 
|  |  | 
|  | ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); | 
|  |  | 
|  | // Pick an implementation strategy. | 
|  | PropertyImplStrategy strategy(CGM, propImpl); | 
|  | switch (strategy.getKind()) { | 
|  | case PropertyImplStrategy::Native: { | 
|  | // We don't need to do anything for a zero-size struct. | 
|  | if (strategy.getIvarSize().isZero()) | 
|  | return; | 
|  |  | 
|  | LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); | 
|  |  | 
|  | // Currently, all atomic accesses have to be through integer | 
|  | // types, so there's no point in trying to pick a prettier type. | 
|  | uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); | 
|  | llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); | 
|  | bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay | 
|  |  | 
|  | // Perform an atomic load.  This does not impose ordering constraints. | 
|  | Address ivarAddr = LV.getAddress(); | 
|  | ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); | 
|  | llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); | 
|  | load->setAtomic(llvm::AtomicOrdering::Unordered); | 
|  |  | 
|  | // Store that value into the return address.  Doing this with a | 
|  | // bitcast is likely to produce some pretty ugly IR, but it's not | 
|  | // the *most* terrible thing in the world. | 
|  | llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); | 
|  | uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); | 
|  | llvm::Value *ivarVal = load; | 
|  | if (ivarSize > retTySize) { | 
|  | llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); | 
|  | ivarVal = Builder.CreateTrunc(load, newTy); | 
|  | bitcastType = newTy->getPointerTo(); | 
|  | } | 
|  | Builder.CreateStore(ivarVal, | 
|  | Builder.CreateBitCast(ReturnValue, bitcastType)); | 
|  |  | 
|  | // Make sure we don't do an autorelease. | 
|  | AutoreleaseResult = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | case PropertyImplStrategy::GetSetProperty: { | 
|  | llvm::FunctionCallee getPropertyFn = | 
|  | CGM.getObjCRuntime().GetPropertyGetFunction(); | 
|  | if (!getPropertyFn) { | 
|  | CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); | 
|  | return; | 
|  | } | 
|  | CGCallee callee = CGCallee::forDirect(getPropertyFn); | 
|  |  | 
|  | // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). | 
|  | // FIXME: Can't this be simpler? This might even be worse than the | 
|  | // corresponding gcc code. | 
|  | llvm::Value *cmd = | 
|  | Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); | 
|  | llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); | 
|  | llvm::Value *ivarOffset = | 
|  | EmitIvarOffset(classImpl->getClassInterface(), ivar); | 
|  |  | 
|  | CallArgList args; | 
|  | args.add(RValue::get(self), getContext().getObjCIdType()); | 
|  | args.add(RValue::get(cmd), getContext().getObjCSelType()); | 
|  | args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); | 
|  | args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), | 
|  | getContext().BoolTy); | 
|  |  | 
|  | // FIXME: We shouldn't need to get the function info here, the | 
|  | // runtime already should have computed it to build the function. | 
|  | llvm::CallBase *CallInstruction; | 
|  | RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( | 
|  | getContext().getObjCIdType(), args), | 
|  | callee, ReturnValueSlot(), args, &CallInstruction); | 
|  | if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) | 
|  | call->setTailCall(); | 
|  |  | 
|  | // We need to fix the type here. Ivars with copy & retain are | 
|  | // always objects so we don't need to worry about complex or | 
|  | // aggregates. | 
|  | RV = RValue::get(Builder.CreateBitCast( | 
|  | RV.getScalarVal(), | 
|  | getTypes().ConvertType(getterMethod->getReturnType()))); | 
|  |  | 
|  | EmitReturnOfRValue(RV, propType); | 
|  |  | 
|  | // objc_getProperty does an autorelease, so we should suppress ours. | 
|  | AutoreleaseResult = false; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | case PropertyImplStrategy::CopyStruct: | 
|  | emitStructGetterCall(*this, ivar, strategy.isAtomic(), | 
|  | strategy.hasStrongMember()); | 
|  | return; | 
|  |  | 
|  | case PropertyImplStrategy::Expression: | 
|  | case PropertyImplStrategy::SetPropertyAndExpressionGet: { | 
|  | LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); | 
|  |  | 
|  | QualType ivarType = ivar->getType(); | 
|  | switch (getEvaluationKind(ivarType)) { | 
|  | case TEK_Complex: { | 
|  | ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); | 
|  | EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), | 
|  | /*init*/ true); | 
|  | return; | 
|  | } | 
|  | case TEK_Aggregate: { | 
|  | // The return value slot is guaranteed to not be aliased, but | 
|  | // that's not necessarily the same as "on the stack", so | 
|  | // we still potentially need objc_memmove_collectable. | 
|  | EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), | 
|  | /* Src= */ LV, ivarType, overlapForReturnValue()); | 
|  | return; | 
|  | } | 
|  | case TEK_Scalar: { | 
|  | llvm::Value *value; | 
|  | if (propType->isReferenceType()) { | 
|  | value = LV.getAddress().getPointer(); | 
|  | } else { | 
|  | // We want to load and autoreleaseReturnValue ARC __weak ivars. | 
|  | if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { | 
|  | if (getLangOpts().ObjCAutoRefCount) { | 
|  | value = emitARCRetainLoadOfScalar(*this, LV, ivarType); | 
|  | } else { | 
|  | value = EmitARCLoadWeak(LV.getAddress()); | 
|  | } | 
|  |  | 
|  | // Otherwise we want to do a simple load, suppressing the | 
|  | // final autorelease. | 
|  | } else { | 
|  | value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); | 
|  | AutoreleaseResult = false; | 
|  | } | 
|  |  | 
|  | value = Builder.CreateBitCast( | 
|  | value, ConvertType(GetterMethodDecl->getReturnType())); | 
|  | } | 
|  |  | 
|  | EmitReturnOfRValue(RValue::get(value), propType); | 
|  | return; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("bad evaluation kind"); | 
|  | } | 
|  |  | 
|  | } | 
|  | llvm_unreachable("bad @property implementation strategy!"); | 
|  | } | 
|  |  | 
|  | /// emitStructSetterCall - Call the runtime function to store the value | 
|  | /// from the first formal parameter into the given ivar. | 
|  | static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, | 
|  | ObjCIvarDecl *ivar) { | 
|  | // objc_copyStruct (&structIvar, &Arg, | 
|  | //                  sizeof (struct something), true, false); | 
|  | CallArgList args; | 
|  |  | 
|  | // The first argument is the address of the ivar. | 
|  | llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), | 
|  | CGF.LoadObjCSelf(), ivar, 0) | 
|  | .getPointer(); | 
|  | ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); | 
|  | args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); | 
|  |  | 
|  | // The second argument is the address of the parameter variable. | 
|  | ParmVarDecl *argVar = *OMD->param_begin(); | 
|  | DeclRefExpr argRef(CGF.getContext(), argVar, false, | 
|  | argVar->getType().getNonReferenceType(), VK_LValue, | 
|  | SourceLocation()); | 
|  | llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); | 
|  | argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); | 
|  | args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); | 
|  |  | 
|  | // The third argument is the sizeof the type. | 
|  | llvm::Value *size = | 
|  | CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); | 
|  | args.add(RValue::get(size), CGF.getContext().getSizeType()); | 
|  |  | 
|  | // The fourth argument is the 'isAtomic' flag. | 
|  | args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); | 
|  |  | 
|  | // The fifth argument is the 'hasStrong' flag. | 
|  | // FIXME: should this really always be false? | 
|  | args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); | 
|  |  | 
|  | llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); | 
|  | CGCallee callee = CGCallee::forDirect(fn); | 
|  | CGF.EmitCall( | 
|  | CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), | 
|  | callee, ReturnValueSlot(), args); | 
|  | } | 
|  |  | 
|  | /// emitCPPObjectAtomicSetterCall - Call the runtime function to store | 
|  | /// the value from the first formal parameter into the given ivar, using | 
|  | /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. | 
|  | static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, | 
|  | ObjCMethodDecl *OMD, | 
|  | ObjCIvarDecl *ivar, | 
|  | llvm::Constant *AtomicHelperFn) { | 
|  | // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, | 
|  | //                           AtomicHelperFn); | 
|  | CallArgList args; | 
|  |  | 
|  | // The first argument is the address of the ivar. | 
|  | llvm::Value *ivarAddr = | 
|  | CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), | 
|  | CGF.LoadObjCSelf(), ivar, 0).getPointer(); | 
|  | ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); | 
|  | args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); | 
|  |  | 
|  | // The second argument is the address of the parameter variable. | 
|  | ParmVarDecl *argVar = *OMD->param_begin(); | 
|  | DeclRefExpr argRef(CGF.getContext(), argVar, false, | 
|  | argVar->getType().getNonReferenceType(), VK_LValue, | 
|  | SourceLocation()); | 
|  | llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); | 
|  | argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); | 
|  | args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); | 
|  |  | 
|  | // Third argument is the helper function. | 
|  | args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); | 
|  |  | 
|  | llvm::FunctionCallee fn = | 
|  | CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); | 
|  | CGCallee callee = CGCallee::forDirect(fn); | 
|  | CGF.EmitCall( | 
|  | CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), | 
|  | callee, ReturnValueSlot(), args); | 
|  | } | 
|  |  | 
|  |  | 
|  | static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { | 
|  | Expr *setter = PID->getSetterCXXAssignment(); | 
|  | if (!setter) return true; | 
|  |  | 
|  | // Sema only makes only of these when the ivar has a C++ class type, | 
|  | // so the form is pretty constrained. | 
|  |  | 
|  | // An operator call is trivial if the function it calls is trivial. | 
|  | // This also implies that there's nothing non-trivial going on with | 
|  | // the arguments, because operator= can only be trivial if it's a | 
|  | // synthesized assignment operator and therefore both parameters are | 
|  | // references. | 
|  | if (CallExpr *call = dyn_cast<CallExpr>(setter)) { | 
|  | if (const FunctionDecl *callee | 
|  | = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) | 
|  | if (callee->isTrivial()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(isa<ExprWithCleanups>(setter)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool UseOptimizedSetter(CodeGenModule &CGM) { | 
|  | if (CGM.getLangOpts().getGC() != LangOptions::NonGC) | 
|  | return false; | 
|  | return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); | 
|  | } | 
|  |  | 
|  | void | 
|  | CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, | 
|  | const ObjCPropertyImplDecl *propImpl, | 
|  | llvm::Constant *AtomicHelperFn) { | 
|  | const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); | 
|  | ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); | 
|  | ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); | 
|  |  | 
|  | // Just use the setter expression if Sema gave us one and it's | 
|  | // non-trivial. | 
|  | if (!hasTrivialSetExpr(propImpl)) { | 
|  | if (!AtomicHelperFn) | 
|  | // If non-atomic, assignment is called directly. | 
|  | EmitStmt(propImpl->getSetterCXXAssignment()); | 
|  | else | 
|  | // If atomic, assignment is called via a locking api. | 
|  | emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, | 
|  | AtomicHelperFn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | PropertyImplStrategy strategy(CGM, propImpl); | 
|  | switch (strategy.getKind()) { | 
|  | case PropertyImplStrategy::Native: { | 
|  | // We don't need to do anything for a zero-size struct. | 
|  | if (strategy.getIvarSize().isZero()) | 
|  | return; | 
|  |  | 
|  | Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); | 
|  |  | 
|  | LValue ivarLValue = | 
|  | EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); | 
|  | Address ivarAddr = ivarLValue.getAddress(); | 
|  |  | 
|  | // Currently, all atomic accesses have to be through integer | 
|  | // types, so there's no point in trying to pick a prettier type. | 
|  | llvm::Type *bitcastType = | 
|  | llvm::Type::getIntNTy(getLLVMContext(), | 
|  | getContext().toBits(strategy.getIvarSize())); | 
|  |  | 
|  | // Cast both arguments to the chosen operation type. | 
|  | argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); | 
|  | ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); | 
|  |  | 
|  | // This bitcast load is likely to cause some nasty IR. | 
|  | llvm::Value *load = Builder.CreateLoad(argAddr); | 
|  |  | 
|  | // Perform an atomic store.  There are no memory ordering requirements. | 
|  | llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); | 
|  | store->setAtomic(llvm::AtomicOrdering::Unordered); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case PropertyImplStrategy::GetSetProperty: | 
|  | case PropertyImplStrategy::SetPropertyAndExpressionGet: { | 
|  |  | 
|  | llvm::FunctionCallee setOptimizedPropertyFn = nullptr; | 
|  | llvm::FunctionCallee setPropertyFn = nullptr; | 
|  | if (UseOptimizedSetter(CGM)) { | 
|  | // 10.8 and iOS 6.0 code and GC is off | 
|  | setOptimizedPropertyFn = | 
|  | CGM.getObjCRuntime().GetOptimizedPropertySetFunction( | 
|  | strategy.isAtomic(), strategy.isCopy()); | 
|  | if (!setOptimizedPropertyFn) { | 
|  | CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); | 
|  | return; | 
|  | } | 
|  | } | 
|  | else { | 
|  | setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); | 
|  | if (!setPropertyFn) { | 
|  | CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit objc_setProperty((id) self, _cmd, offset, arg, | 
|  | //                       <is-atomic>, <is-copy>). | 
|  | llvm::Value *cmd = | 
|  | Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); | 
|  | llvm::Value *self = | 
|  | Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); | 
|  | llvm::Value *ivarOffset = | 
|  | EmitIvarOffset(classImpl->getClassInterface(), ivar); | 
|  | Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); | 
|  | llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); | 
|  | arg = Builder.CreateBitCast(arg, VoidPtrTy); | 
|  |  | 
|  | CallArgList args; | 
|  | args.add(RValue::get(self), getContext().getObjCIdType()); | 
|  | args.add(RValue::get(cmd), getContext().getObjCSelType()); | 
|  | if (setOptimizedPropertyFn) { | 
|  | args.add(RValue::get(arg), getContext().getObjCIdType()); | 
|  | args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); | 
|  | CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); | 
|  | EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), | 
|  | callee, ReturnValueSlot(), args); | 
|  | } else { | 
|  | args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); | 
|  | args.add(RValue::get(arg), getContext().getObjCIdType()); | 
|  | args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), | 
|  | getContext().BoolTy); | 
|  | args.add(RValue::get(Builder.getInt1(strategy.isCopy())), | 
|  | getContext().BoolTy); | 
|  | // FIXME: We shouldn't need to get the function info here, the runtime | 
|  | // already should have computed it to build the function. | 
|  | CGCallee callee = CGCallee::forDirect(setPropertyFn); | 
|  | EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), | 
|  | callee, ReturnValueSlot(), args); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | case PropertyImplStrategy::CopyStruct: | 
|  | emitStructSetterCall(*this, setterMethod, ivar); | 
|  | return; | 
|  |  | 
|  | case PropertyImplStrategy::Expression: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, fake up some ASTs and emit a normal assignment. | 
|  | ValueDecl *selfDecl = setterMethod->getSelfDecl(); | 
|  | DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), | 
|  | VK_LValue, SourceLocation()); | 
|  | ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, | 
|  | selfDecl->getType(), CK_LValueToRValue, &self, | 
|  | VK_RValue); | 
|  | ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), | 
|  | SourceLocation(), SourceLocation(), | 
|  | &selfLoad, true, true); | 
|  |  | 
|  | ParmVarDecl *argDecl = *setterMethod->param_begin(); | 
|  | QualType argType = argDecl->getType().getNonReferenceType(); | 
|  | DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, | 
|  | SourceLocation()); | 
|  | ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, | 
|  | argType.getUnqualifiedType(), CK_LValueToRValue, | 
|  | &arg, VK_RValue); | 
|  |  | 
|  | // The property type can differ from the ivar type in some situations with | 
|  | // Objective-C pointer types, we can always bit cast the RHS in these cases. | 
|  | // The following absurdity is just to ensure well-formed IR. | 
|  | CastKind argCK = CK_NoOp; | 
|  | if (ivarRef.getType()->isObjCObjectPointerType()) { | 
|  | if (argLoad.getType()->isObjCObjectPointerType()) | 
|  | argCK = CK_BitCast; | 
|  | else if (argLoad.getType()->isBlockPointerType()) | 
|  | argCK = CK_BlockPointerToObjCPointerCast; | 
|  | else | 
|  | argCK = CK_CPointerToObjCPointerCast; | 
|  | } else if (ivarRef.getType()->isBlockPointerType()) { | 
|  | if (argLoad.getType()->isBlockPointerType()) | 
|  | argCK = CK_BitCast; | 
|  | else | 
|  | argCK = CK_AnyPointerToBlockPointerCast; | 
|  | } else if (ivarRef.getType()->isPointerType()) { | 
|  | argCK = CK_BitCast; | 
|  | } | 
|  | ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, | 
|  | ivarRef.getType(), argCK, &argLoad, | 
|  | VK_RValue); | 
|  | Expr *finalArg = &argLoad; | 
|  | if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), | 
|  | argLoad.getType())) | 
|  | finalArg = &argCast; | 
|  |  | 
|  |  | 
|  | BinaryOperator assign(&ivarRef, finalArg, BO_Assign, | 
|  | ivarRef.getType(), VK_RValue, OK_Ordinary, | 
|  | SourceLocation(), FPOptions()); | 
|  | EmitStmt(&assign); | 
|  | } | 
|  |  | 
|  | /// Generate an Objective-C property setter function. | 
|  | /// | 
|  | /// The given Decl must be an ObjCImplementationDecl. \@synthesize | 
|  | /// is illegal within a category. | 
|  | void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, | 
|  | const ObjCPropertyImplDecl *PID) { | 
|  | llvm::Constant *AtomicHelperFn = | 
|  | CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); | 
|  | const ObjCPropertyDecl *PD = PID->getPropertyDecl(); | 
|  | ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); | 
|  | assert(OMD && "Invalid call to generate setter (empty method)"); | 
|  | StartObjCMethod(OMD, IMP->getClassInterface()); | 
|  |  | 
|  | generateObjCSetterBody(IMP, PID, AtomicHelperFn); | 
|  |  | 
|  | FinishFunction(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct DestroyIvar final : EHScopeStack::Cleanup { | 
|  | private: | 
|  | llvm::Value *addr; | 
|  | const ObjCIvarDecl *ivar; | 
|  | CodeGenFunction::Destroyer *destroyer; | 
|  | bool useEHCleanupForArray; | 
|  | public: | 
|  | DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, | 
|  | CodeGenFunction::Destroyer *destroyer, | 
|  | bool useEHCleanupForArray) | 
|  | : addr(addr), ivar(ivar), destroyer(destroyer), | 
|  | useEHCleanupForArray(useEHCleanupForArray) {} | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | LValue lvalue | 
|  | = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); | 
|  | CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, | 
|  | flags.isForNormalCleanup() && useEHCleanupForArray); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Like CodeGenFunction::destroyARCStrong, but do it with a call. | 
|  | static void destroyARCStrongWithStore(CodeGenFunction &CGF, | 
|  | Address addr, | 
|  | QualType type) { | 
|  | llvm::Value *null = getNullForVariable(addr); | 
|  | CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); | 
|  | } | 
|  |  | 
|  | static void emitCXXDestructMethod(CodeGenFunction &CGF, | 
|  | ObjCImplementationDecl *impl) { | 
|  | CodeGenFunction::RunCleanupsScope scope(CGF); | 
|  |  | 
|  | llvm::Value *self = CGF.LoadObjCSelf(); | 
|  |  | 
|  | const ObjCInterfaceDecl *iface = impl->getClassInterface(); | 
|  | for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); | 
|  | ivar; ivar = ivar->getNextIvar()) { | 
|  | QualType type = ivar->getType(); | 
|  |  | 
|  | // Check whether the ivar is a destructible type. | 
|  | QualType::DestructionKind dtorKind = type.isDestructedType(); | 
|  | if (!dtorKind) continue; | 
|  |  | 
|  | CodeGenFunction::Destroyer *destroyer = nullptr; | 
|  |  | 
|  | // Use a call to objc_storeStrong to destroy strong ivars, for the | 
|  | // general benefit of the tools. | 
|  | if (dtorKind == QualType::DK_objc_strong_lifetime) { | 
|  | destroyer = destroyARCStrongWithStore; | 
|  |  | 
|  | // Otherwise use the default for the destruction kind. | 
|  | } else { | 
|  | destroyer = CGF.getDestroyer(dtorKind); | 
|  | } | 
|  |  | 
|  | CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); | 
|  |  | 
|  | CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, | 
|  | cleanupKind & EHCleanup); | 
|  | } | 
|  |  | 
|  | assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, | 
|  | ObjCMethodDecl *MD, | 
|  | bool ctor) { | 
|  | MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); | 
|  | StartObjCMethod(MD, IMP->getClassInterface()); | 
|  |  | 
|  | // Emit .cxx_construct. | 
|  | if (ctor) { | 
|  | // Suppress the final autorelease in ARC. | 
|  | AutoreleaseResult = false; | 
|  |  | 
|  | for (const auto *IvarInit : IMP->inits()) { | 
|  | FieldDecl *Field = IvarInit->getAnyMember(); | 
|  | ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); | 
|  | LValue LV = EmitLValueForIvar(TypeOfSelfObject(), | 
|  | LoadObjCSelf(), Ivar, 0); | 
|  | EmitAggExpr(IvarInit->getInit(), | 
|  | AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, | 
|  | AggValueSlot::DoesNotNeedGCBarriers, | 
|  | AggValueSlot::IsNotAliased, | 
|  | AggValueSlot::DoesNotOverlap)); | 
|  | } | 
|  | // constructor returns 'self'. | 
|  | CodeGenTypes &Types = CGM.getTypes(); | 
|  | QualType IdTy(CGM.getContext().getObjCIdType()); | 
|  | llvm::Value *SelfAsId = | 
|  | Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); | 
|  | EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); | 
|  |  | 
|  | // Emit .cxx_destruct. | 
|  | } else { | 
|  | emitCXXDestructMethod(*this, IMP); | 
|  | } | 
|  | FinishFunction(); | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::LoadObjCSelf() { | 
|  | VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); | 
|  | DeclRefExpr DRE(getContext(), Self, | 
|  | /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), | 
|  | Self->getType(), VK_LValue, SourceLocation()); | 
|  | return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); | 
|  | } | 
|  |  | 
|  | QualType CodeGenFunction::TypeOfSelfObject() { | 
|  | const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); | 
|  | ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); | 
|  | const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( | 
|  | getContext().getCanonicalType(selfDecl->getType())); | 
|  | return PTy->getPointeeType(); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ | 
|  | llvm::FunctionCallee EnumerationMutationFnPtr = | 
|  | CGM.getObjCRuntime().EnumerationMutationFunction(); | 
|  | if (!EnumerationMutationFnPtr) { | 
|  | CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); | 
|  | return; | 
|  | } | 
|  | CGCallee EnumerationMutationFn = | 
|  | CGCallee::forDirect(EnumerationMutationFnPtr); | 
|  |  | 
|  | CGDebugInfo *DI = getDebugInfo(); | 
|  | if (DI) | 
|  | DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); | 
|  |  | 
|  | RunCleanupsScope ForScope(*this); | 
|  |  | 
|  | // The local variable comes into scope immediately. | 
|  | AutoVarEmission variable = AutoVarEmission::invalid(); | 
|  | if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) | 
|  | variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); | 
|  |  | 
|  | JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); | 
|  |  | 
|  | // Fast enumeration state. | 
|  | QualType StateTy = CGM.getObjCFastEnumerationStateType(); | 
|  | Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); | 
|  | EmitNullInitialization(StatePtr, StateTy); | 
|  |  | 
|  | // Number of elements in the items array. | 
|  | static const unsigned NumItems = 16; | 
|  |  | 
|  | // Fetch the countByEnumeratingWithState:objects:count: selector. | 
|  | IdentifierInfo *II[] = { | 
|  | &CGM.getContext().Idents.get("countByEnumeratingWithState"), | 
|  | &CGM.getContext().Idents.get("objects"), | 
|  | &CGM.getContext().Idents.get("count") | 
|  | }; | 
|  | Selector FastEnumSel = | 
|  | CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); | 
|  |  | 
|  | QualType ItemsTy = | 
|  | getContext().getConstantArrayType(getContext().getObjCIdType(), | 
|  | llvm::APInt(32, NumItems), | 
|  | ArrayType::Normal, 0); | 
|  | Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); | 
|  |  | 
|  | // Emit the collection pointer.  In ARC, we do a retain. | 
|  | llvm::Value *Collection; | 
|  | if (getLangOpts().ObjCAutoRefCount) { | 
|  | Collection = EmitARCRetainScalarExpr(S.getCollection()); | 
|  |  | 
|  | // Enter a cleanup to do the release. | 
|  | EmitObjCConsumeObject(S.getCollection()->getType(), Collection); | 
|  | } else { | 
|  | Collection = EmitScalarExpr(S.getCollection()); | 
|  | } | 
|  |  | 
|  | // The 'continue' label needs to appear within the cleanup for the | 
|  | // collection object. | 
|  | JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); | 
|  |  | 
|  | // Send it our message: | 
|  | CallArgList Args; | 
|  |  | 
|  | // The first argument is a temporary of the enumeration-state type. | 
|  | Args.add(RValue::get(StatePtr.getPointer()), | 
|  | getContext().getPointerType(StateTy)); | 
|  |  | 
|  | // The second argument is a temporary array with space for NumItems | 
|  | // pointers.  We'll actually be loading elements from the array | 
|  | // pointer written into the control state; this buffer is so that | 
|  | // collections that *aren't* backed by arrays can still queue up | 
|  | // batches of elements. | 
|  | Args.add(RValue::get(ItemsPtr.getPointer()), | 
|  | getContext().getPointerType(ItemsTy)); | 
|  |  | 
|  | // The third argument is the capacity of that temporary array. | 
|  | llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); | 
|  | llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); | 
|  | Args.add(RValue::get(Count), getContext().getNSUIntegerType()); | 
|  |  | 
|  | // Start the enumeration. | 
|  | RValue CountRV = | 
|  | CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), | 
|  | getContext().getNSUIntegerType(), | 
|  | FastEnumSel, Collection, Args); | 
|  |  | 
|  | // The initial number of objects that were returned in the buffer. | 
|  | llvm::Value *initialBufferLimit = CountRV.getScalarVal(); | 
|  |  | 
|  | llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); | 
|  | llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); | 
|  |  | 
|  | llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); | 
|  |  | 
|  | // If the limit pointer was zero to begin with, the collection is | 
|  | // empty; skip all this. Set the branch weight assuming this has the same | 
|  | // probability of exiting the loop as any other loop exit. | 
|  | uint64_t EntryCount = getCurrentProfileCount(); | 
|  | Builder.CreateCondBr( | 
|  | Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, | 
|  | LoopInitBB, | 
|  | createProfileWeights(EntryCount, getProfileCount(S.getBody()))); | 
|  |  | 
|  | // Otherwise, initialize the loop. | 
|  | EmitBlock(LoopInitBB); | 
|  |  | 
|  | // Save the initial mutations value.  This is the value at an | 
|  | // address that was written into the state object by | 
|  | // countByEnumeratingWithState:objects:count:. | 
|  | Address StateMutationsPtrPtr = | 
|  | Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); | 
|  | llvm::Value *StateMutationsPtr | 
|  | = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); | 
|  |  | 
|  | llvm::Value *initialMutations = | 
|  | Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), | 
|  | "forcoll.initial-mutations"); | 
|  |  | 
|  | // Start looping.  This is the point we return to whenever we have a | 
|  | // fresh, non-empty batch of objects. | 
|  | llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); | 
|  | EmitBlock(LoopBodyBB); | 
|  |  | 
|  | // The current index into the buffer. | 
|  | llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); | 
|  | index->addIncoming(zero, LoopInitBB); | 
|  |  | 
|  | // The current buffer size. | 
|  | llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); | 
|  | count->addIncoming(initialBufferLimit, LoopInitBB); | 
|  |  | 
|  | incrementProfileCounter(&S); | 
|  |  | 
|  | // Check whether the mutations value has changed from where it was | 
|  | // at start.  StateMutationsPtr should actually be invariant between | 
|  | // refreshes. | 
|  | StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); | 
|  | llvm::Value *currentMutations | 
|  | = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), | 
|  | "statemutations"); | 
|  |  | 
|  | llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); | 
|  | llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); | 
|  |  | 
|  | Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), | 
|  | WasNotMutatedBB, WasMutatedBB); | 
|  |  | 
|  | // If so, call the enumeration-mutation function. | 
|  | EmitBlock(WasMutatedBB); | 
|  | llvm::Value *V = | 
|  | Builder.CreateBitCast(Collection, | 
|  | ConvertType(getContext().getObjCIdType())); | 
|  | CallArgList Args2; | 
|  | Args2.add(RValue::get(V), getContext().getObjCIdType()); | 
|  | // FIXME: We shouldn't need to get the function info here, the runtime already | 
|  | // should have computed it to build the function. | 
|  | EmitCall( | 
|  | CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), | 
|  | EnumerationMutationFn, ReturnValueSlot(), Args2); | 
|  |  | 
|  | // Otherwise, or if the mutation function returns, just continue. | 
|  | EmitBlock(WasNotMutatedBB); | 
|  |  | 
|  | // Initialize the element variable. | 
|  | RunCleanupsScope elementVariableScope(*this); | 
|  | bool elementIsVariable; | 
|  | LValue elementLValue; | 
|  | QualType elementType; | 
|  | if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { | 
|  | // Initialize the variable, in case it's a __block variable or something. | 
|  | EmitAutoVarInit(variable); | 
|  |  | 
|  | const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); | 
|  | DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, | 
|  | D->getType(), VK_LValue, SourceLocation()); | 
|  | elementLValue = EmitLValue(&tempDRE); | 
|  | elementType = D->getType(); | 
|  | elementIsVariable = true; | 
|  |  | 
|  | if (D->isARCPseudoStrong()) | 
|  | elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); | 
|  | } else { | 
|  | elementLValue = LValue(); // suppress warning | 
|  | elementType = cast<Expr>(S.getElement())->getType(); | 
|  | elementIsVariable = false; | 
|  | } | 
|  | llvm::Type *convertedElementType = ConvertType(elementType); | 
|  |  | 
|  | // Fetch the buffer out of the enumeration state. | 
|  | // TODO: this pointer should actually be invariant between | 
|  | // refreshes, which would help us do certain loop optimizations. | 
|  | Address StateItemsPtr = | 
|  | Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); | 
|  | llvm::Value *EnumStateItems = | 
|  | Builder.CreateLoad(StateItemsPtr, "stateitems"); | 
|  |  | 
|  | // Fetch the value at the current index from the buffer. | 
|  | llvm::Value *CurrentItemPtr = | 
|  | Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); | 
|  | llvm::Value *CurrentItem = | 
|  | Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); | 
|  |  | 
|  | // Cast that value to the right type. | 
|  | CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, | 
|  | "currentitem"); | 
|  |  | 
|  | // Make sure we have an l-value.  Yes, this gets evaluated every | 
|  | // time through the loop. | 
|  | if (!elementIsVariable) { | 
|  | elementLValue = EmitLValue(cast<Expr>(S.getElement())); | 
|  | EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); | 
|  | } else { | 
|  | EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, | 
|  | /*isInit*/ true); | 
|  | } | 
|  |  | 
|  | // If we do have an element variable, this assignment is the end of | 
|  | // its initialization. | 
|  | if (elementIsVariable) | 
|  | EmitAutoVarCleanups(variable); | 
|  |  | 
|  | // Perform the loop body, setting up break and continue labels. | 
|  | BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); | 
|  | { | 
|  | RunCleanupsScope Scope(*this); | 
|  | EmitStmt(S.getBody()); | 
|  | } | 
|  | BreakContinueStack.pop_back(); | 
|  |  | 
|  | // Destroy the element variable now. | 
|  | elementVariableScope.ForceCleanup(); | 
|  |  | 
|  | // Check whether there are more elements. | 
|  | EmitBlock(AfterBody.getBlock()); | 
|  |  | 
|  | llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); | 
|  |  | 
|  | // First we check in the local buffer. | 
|  | llvm::Value *indexPlusOne = | 
|  | Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); | 
|  |  | 
|  | // If we haven't overrun the buffer yet, we can continue. | 
|  | // Set the branch weights based on the simplifying assumption that this is | 
|  | // like a while-loop, i.e., ignoring that the false branch fetches more | 
|  | // elements and then returns to the loop. | 
|  | Builder.CreateCondBr( | 
|  | Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, | 
|  | createProfileWeights(getProfileCount(S.getBody()), EntryCount)); | 
|  |  | 
|  | index->addIncoming(indexPlusOne, AfterBody.getBlock()); | 
|  | count->addIncoming(count, AfterBody.getBlock()); | 
|  |  | 
|  | // Otherwise, we have to fetch more elements. | 
|  | EmitBlock(FetchMoreBB); | 
|  |  | 
|  | CountRV = | 
|  | CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), | 
|  | getContext().getNSUIntegerType(), | 
|  | FastEnumSel, Collection, Args); | 
|  |  | 
|  | // If we got a zero count, we're done. | 
|  | llvm::Value *refetchCount = CountRV.getScalarVal(); | 
|  |  | 
|  | // (note that the message send might split FetchMoreBB) | 
|  | index->addIncoming(zero, Builder.GetInsertBlock()); | 
|  | count->addIncoming(refetchCount, Builder.GetInsertBlock()); | 
|  |  | 
|  | Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), | 
|  | EmptyBB, LoopBodyBB); | 
|  |  | 
|  | // No more elements. | 
|  | EmitBlock(EmptyBB); | 
|  |  | 
|  | if (!elementIsVariable) { | 
|  | // If the element was not a declaration, set it to be null. | 
|  |  | 
|  | llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); | 
|  | elementLValue = EmitLValue(cast<Expr>(S.getElement())); | 
|  | EmitStoreThroughLValue(RValue::get(null), elementLValue); | 
|  | } | 
|  |  | 
|  | if (DI) | 
|  | DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); | 
|  |  | 
|  | ForScope.ForceCleanup(); | 
|  | EmitBlock(LoopEnd.getBlock()); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { | 
|  | CGM.getObjCRuntime().EmitTryStmt(*this, S); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { | 
|  | CGM.getObjCRuntime().EmitThrowStmt(*this, S); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitObjCAtSynchronizedStmt( | 
|  | const ObjCAtSynchronizedStmt &S) { | 
|  | CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct CallObjCRelease final : EHScopeStack::Cleanup { | 
|  | CallObjCRelease(llvm::Value *object) : object(object) {} | 
|  | llvm::Value *object; | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | // Releases at the end of the full-expression are imprecise. | 
|  | CGF.EmitARCRelease(object, ARCImpreciseLifetime); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Produce the code for a CK_ARCConsumeObject.  Does a primitive | 
|  | /// release at the end of the full-expression. | 
|  | llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, | 
|  | llvm::Value *object) { | 
|  | // If we're in a conditional branch, we need to make the cleanup | 
|  | // conditional. | 
|  | pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); | 
|  | return object; | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, | 
|  | llvm::Value *value) { | 
|  | return EmitARCRetainAutorelease(type, value); | 
|  | } | 
|  |  | 
|  | /// Given a number of pointers, inform the optimizer that they're | 
|  | /// being intrinsically used up until this point in the program. | 
|  | void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { | 
|  | llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; | 
|  | if (!fn) | 
|  | fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); | 
|  |  | 
|  | // This isn't really a "runtime" function, but as an intrinsic it | 
|  | // doesn't really matter as long as we align things up. | 
|  | EmitNounwindRuntimeCall(fn, values); | 
|  | } | 
|  |  | 
|  | static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { | 
|  | if (auto *F = dyn_cast<llvm::Function>(RTF)) { | 
|  | // If the target runtime doesn't naturally support ARC, emit weak | 
|  | // references to the runtime support library.  We don't really | 
|  | // permit this to fail, but we need a particular relocation style. | 
|  | if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && | 
|  | !CGM.getTriple().isOSBinFormatCOFF()) { | 
|  | F->setLinkage(llvm::Function::ExternalWeakLinkage); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, | 
|  | llvm::FunctionCallee RTF) { | 
|  | setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); | 
|  | } | 
|  |  | 
|  | /// Perform an operation having the signature | 
|  | ///   i8* (i8*) | 
|  | /// where a null input causes a no-op and returns null. | 
|  | static llvm::Value *emitARCValueOperation( | 
|  | CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, | 
|  | llvm::Function *&fn, llvm::Intrinsic::ID IntID, | 
|  | llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { | 
|  | if (isa<llvm::ConstantPointerNull>(value)) | 
|  | return value; | 
|  |  | 
|  | if (!fn) { | 
|  | fn = CGF.CGM.getIntrinsic(IntID); | 
|  | setARCRuntimeFunctionLinkage(CGF.CGM, fn); | 
|  | } | 
|  |  | 
|  | // Cast the argument to 'id'. | 
|  | llvm::Type *origType = returnType ? returnType : value->getType(); | 
|  | value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); | 
|  |  | 
|  | // Call the function. | 
|  | llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); | 
|  | call->setTailCallKind(tailKind); | 
|  |  | 
|  | // Cast the result back to the original type. | 
|  | return CGF.Builder.CreateBitCast(call, origType); | 
|  | } | 
|  |  | 
|  | /// Perform an operation having the following signature: | 
|  | ///   i8* (i8**) | 
|  | static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, | 
|  | llvm::Function *&fn, | 
|  | llvm::Intrinsic::ID IntID) { | 
|  | if (!fn) { | 
|  | fn = CGF.CGM.getIntrinsic(IntID); | 
|  | setARCRuntimeFunctionLinkage(CGF.CGM, fn); | 
|  | } | 
|  |  | 
|  | // Cast the argument to 'id*'. | 
|  | llvm::Type *origType = addr.getElementType(); | 
|  | addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); | 
|  |  | 
|  | // Call the function. | 
|  | llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); | 
|  |  | 
|  | // Cast the result back to a dereference of the original type. | 
|  | if (origType != CGF.Int8PtrTy) | 
|  | result = CGF.Builder.CreateBitCast(result, origType); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /// Perform an operation having the following signature: | 
|  | ///   i8* (i8**, i8*) | 
|  | static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, | 
|  | llvm::Value *value, | 
|  | llvm::Function *&fn, | 
|  | llvm::Intrinsic::ID IntID, | 
|  | bool ignored) { | 
|  | assert(addr.getElementType() == value->getType()); | 
|  |  | 
|  | if (!fn) { | 
|  | fn = CGF.CGM.getIntrinsic(IntID); | 
|  | setARCRuntimeFunctionLinkage(CGF.CGM, fn); | 
|  | } | 
|  |  | 
|  | llvm::Type *origType = value->getType(); | 
|  |  | 
|  | llvm::Value *args[] = { | 
|  | CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), | 
|  | CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) | 
|  | }; | 
|  | llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); | 
|  |  | 
|  | if (ignored) return nullptr; | 
|  |  | 
|  | return CGF.Builder.CreateBitCast(result, origType); | 
|  | } | 
|  |  | 
|  | /// Perform an operation having the following signature: | 
|  | ///   void (i8**, i8**) | 
|  | static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, | 
|  | llvm::Function *&fn, | 
|  | llvm::Intrinsic::ID IntID) { | 
|  | assert(dst.getType() == src.getType()); | 
|  |  | 
|  | if (!fn) { | 
|  | fn = CGF.CGM.getIntrinsic(IntID); | 
|  | setARCRuntimeFunctionLinkage(CGF.CGM, fn); | 
|  | } | 
|  |  | 
|  | llvm::Value *args[] = { | 
|  | CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), | 
|  | CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) | 
|  | }; | 
|  | CGF.EmitNounwindRuntimeCall(fn, args); | 
|  | } | 
|  |  | 
|  | /// Perform an operation having the signature | 
|  | ///   i8* (i8*) | 
|  | /// where a null input causes a no-op and returns null. | 
|  | static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, | 
|  | llvm::Value *value, | 
|  | llvm::Type *returnType, | 
|  | llvm::FunctionCallee &fn, | 
|  | StringRef fnName) { | 
|  | if (isa<llvm::ConstantPointerNull>(value)) | 
|  | return value; | 
|  |  | 
|  | if (!fn) { | 
|  | llvm::FunctionType *fnType = | 
|  | llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); | 
|  | fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); | 
|  |  | 
|  | // We have Native ARC, so set nonlazybind attribute for performance | 
|  | if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) | 
|  | if (fnName == "objc_retain") | 
|  | f->addFnAttr(llvm::Attribute::NonLazyBind); | 
|  | } | 
|  |  | 
|  | // Cast the argument to 'id'. | 
|  | llvm::Type *origType = returnType ? returnType : value->getType(); | 
|  | value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); | 
|  |  | 
|  | // Call the function. | 
|  | llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); | 
|  |  | 
|  | // Cast the result back to the original type. | 
|  | return CGF.Builder.CreateBitCast(Inst, origType); | 
|  | } | 
|  |  | 
|  | /// Produce the code to do a retain.  Based on the type, calls one of: | 
|  | ///   call i8* \@objc_retain(i8* %value) | 
|  | ///   call i8* \@objc_retainBlock(i8* %value) | 
|  | llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { | 
|  | if (type->isBlockPointerType()) | 
|  | return EmitARCRetainBlock(value, /*mandatory*/ false); | 
|  | else | 
|  | return EmitARCRetainNonBlock(value); | 
|  | } | 
|  |  | 
|  | /// Retain the given object, with normal retain semantics. | 
|  | ///   call i8* \@objc_retain(i8* %value) | 
|  | llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { | 
|  | return emitARCValueOperation(*this, value, nullptr, | 
|  | CGM.getObjCEntrypoints().objc_retain, | 
|  | llvm::Intrinsic::objc_retain); | 
|  | } | 
|  |  | 
|  | /// Retain the given block, with _Block_copy semantics. | 
|  | ///   call i8* \@objc_retainBlock(i8* %value) | 
|  | /// | 
|  | /// \param mandatory - If false, emit the call with metadata | 
|  | /// indicating that it's okay for the optimizer to eliminate this call | 
|  | /// if it can prove that the block never escapes except down the stack. | 
|  | llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, | 
|  | bool mandatory) { | 
|  | llvm::Value *result | 
|  | = emitARCValueOperation(*this, value, nullptr, | 
|  | CGM.getObjCEntrypoints().objc_retainBlock, | 
|  | llvm::Intrinsic::objc_retainBlock); | 
|  |  | 
|  | // If the copy isn't mandatory, add !clang.arc.copy_on_escape to | 
|  | // tell the optimizer that it doesn't need to do this copy if the | 
|  | // block doesn't escape, where being passed as an argument doesn't | 
|  | // count as escaping. | 
|  | if (!mandatory && isa<llvm::Instruction>(result)) { | 
|  | llvm::CallInst *call | 
|  | = cast<llvm::CallInst>(result->stripPointerCasts()); | 
|  | assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); | 
|  |  | 
|  | call->setMetadata("clang.arc.copy_on_escape", | 
|  | llvm::MDNode::get(Builder.getContext(), None)); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { | 
|  | // Fetch the void(void) inline asm which marks that we're going to | 
|  | // do something with the autoreleased return value. | 
|  | llvm::InlineAsm *&marker | 
|  | = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; | 
|  | if (!marker) { | 
|  | StringRef assembly | 
|  | = CGF.CGM.getTargetCodeGenInfo() | 
|  | .getARCRetainAutoreleasedReturnValueMarker(); | 
|  |  | 
|  | // If we have an empty assembly string, there's nothing to do. | 
|  | if (assembly.empty()) { | 
|  |  | 
|  | // Otherwise, at -O0, build an inline asm that we're going to call | 
|  | // in a moment. | 
|  | } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { | 
|  | llvm::FunctionType *type = | 
|  | llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); | 
|  |  | 
|  | marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); | 
|  |  | 
|  | // If we're at -O1 and above, we don't want to litter the code | 
|  | // with this marker yet, so leave a breadcrumb for the ARC | 
|  | // optimizer to pick up. | 
|  | } else { | 
|  | const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker"; | 
|  | if (!CGF.CGM.getModule().getModuleFlag(markerKey)) { | 
|  | auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); | 
|  | CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Call the marker asm if we made one, which we do only at -O0. | 
|  | if (marker) | 
|  | CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); | 
|  | } | 
|  |  | 
|  | /// Retain the given object which is the result of a function call. | 
|  | ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) | 
|  | /// | 
|  | /// Yes, this function name is one character away from a different | 
|  | /// call with completely different semantics. | 
|  | llvm::Value * | 
|  | CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { | 
|  | emitAutoreleasedReturnValueMarker(*this); | 
|  | llvm::CallInst::TailCallKind tailKind = | 
|  | CGM.getTargetCodeGenInfo() | 
|  | .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() | 
|  | ? llvm::CallInst::TCK_NoTail | 
|  | : llvm::CallInst::TCK_None; | 
|  | return emitARCValueOperation( | 
|  | *this, value, nullptr, | 
|  | CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, | 
|  | llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind); | 
|  | } | 
|  |  | 
|  | /// Claim a possibly-autoreleased return value at +0.  This is only | 
|  | /// valid to do in contexts which do not rely on the retain to keep | 
|  | /// the object valid for all of its uses; for example, when | 
|  | /// the value is ignored, or when it is being assigned to an | 
|  | /// __unsafe_unretained variable. | 
|  | /// | 
|  | ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) | 
|  | llvm::Value * | 
|  | CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { | 
|  | emitAutoreleasedReturnValueMarker(*this); | 
|  | return emitARCValueOperation(*this, value, nullptr, | 
|  | CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, | 
|  | llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue); | 
|  | } | 
|  |  | 
|  | /// Release the given object. | 
|  | ///   call void \@objc_release(i8* %value) | 
|  | void CodeGenFunction::EmitARCRelease(llvm::Value *value, | 
|  | ARCPreciseLifetime_t precise) { | 
|  | if (isa<llvm::ConstantPointerNull>(value)) return; | 
|  |  | 
|  | llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; | 
|  | if (!fn) { | 
|  | fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release); | 
|  | setARCRuntimeFunctionLinkage(CGM, fn); | 
|  | } | 
|  |  | 
|  | // Cast the argument to 'id'. | 
|  | value = Builder.CreateBitCast(value, Int8PtrTy); | 
|  |  | 
|  | // Call objc_release. | 
|  | llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); | 
|  |  | 
|  | if (precise == ARCImpreciseLifetime) { | 
|  | call->setMetadata("clang.imprecise_release", | 
|  | llvm::MDNode::get(Builder.getContext(), None)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Destroy a __strong variable. | 
|  | /// | 
|  | /// At -O0, emit a call to store 'null' into the address; | 
|  | /// instrumenting tools prefer this because the address is exposed, | 
|  | /// but it's relatively cumbersome to optimize. | 
|  | /// | 
|  | /// At -O1 and above, just load and call objc_release. | 
|  | /// | 
|  | ///   call void \@objc_storeStrong(i8** %addr, i8* null) | 
|  | void CodeGenFunction::EmitARCDestroyStrong(Address addr, | 
|  | ARCPreciseLifetime_t precise) { | 
|  | if (CGM.getCodeGenOpts().OptimizationLevel == 0) { | 
|  | llvm::Value *null = getNullForVariable(addr); | 
|  | EmitARCStoreStrongCall(addr, null, /*ignored*/ true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm::Value *value = Builder.CreateLoad(addr); | 
|  | EmitARCRelease(value, precise); | 
|  | } | 
|  |  | 
|  | /// Store into a strong object.  Always calls this: | 
|  | ///   call void \@objc_storeStrong(i8** %addr, i8* %value) | 
|  | llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, | 
|  | llvm::Value *value, | 
|  | bool ignored) { | 
|  | assert(addr.getElementType() == value->getType()); | 
|  |  | 
|  | llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; | 
|  | if (!fn) { | 
|  | fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong); | 
|  | setARCRuntimeFunctionLinkage(CGM, fn); | 
|  | } | 
|  |  | 
|  | llvm::Value *args[] = { | 
|  | Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), | 
|  | Builder.CreateBitCast(value, Int8PtrTy) | 
|  | }; | 
|  | EmitNounwindRuntimeCall(fn, args); | 
|  |  | 
|  | if (ignored) return nullptr; | 
|  | return value; | 
|  | } | 
|  |  | 
|  | /// Store into a strong object.  Sometimes calls this: | 
|  | ///   call void \@objc_storeStrong(i8** %addr, i8* %value) | 
|  | /// Other times, breaks it down into components. | 
|  | llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, | 
|  | llvm::Value *newValue, | 
|  | bool ignored) { | 
|  | QualType type = dst.getType(); | 
|  | bool isBlock = type->isBlockPointerType(); | 
|  |  | 
|  | // Use a store barrier at -O0 unless this is a block type or the | 
|  | // lvalue is inadequately aligned. | 
|  | if (shouldUseFusedARCCalls() && | 
|  | !isBlock && | 
|  | (dst.getAlignment().isZero() || | 
|  | dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { | 
|  | return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); | 
|  | } | 
|  |  | 
|  | // Otherwise, split it out. | 
|  |  | 
|  | // Retain the new value. | 
|  | newValue = EmitARCRetain(type, newValue); | 
|  |  | 
|  | // Read the old value. | 
|  | llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); | 
|  |  | 
|  | // Store.  We do this before the release so that any deallocs won't | 
|  | // see the old value. | 
|  | EmitStoreOfScalar(newValue, dst); | 
|  |  | 
|  | // Finally, release the old value. | 
|  | EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); | 
|  |  | 
|  | return newValue; | 
|  | } | 
|  |  | 
|  | /// Autorelease the given object. | 
|  | ///   call i8* \@objc_autorelease(i8* %value) | 
|  | llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { | 
|  | return emitARCValueOperation(*this, value, nullptr, | 
|  | CGM.getObjCEntrypoints().objc_autorelease, | 
|  | llvm::Intrinsic::objc_autorelease); | 
|  | } | 
|  |  | 
|  | /// Autorelease the given object. | 
|  | ///   call i8* \@objc_autoreleaseReturnValue(i8* %value) | 
|  | llvm::Value * | 
|  | CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { | 
|  | return emitARCValueOperation(*this, value, nullptr, | 
|  | CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, | 
|  | llvm::Intrinsic::objc_autoreleaseReturnValue, | 
|  | llvm::CallInst::TCK_Tail); | 
|  | } | 
|  |  | 
|  | /// Do a fused retain/autorelease of the given object. | 
|  | ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) | 
|  | llvm::Value * | 
|  | CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { | 
|  | return emitARCValueOperation(*this, value, nullptr, | 
|  | CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, | 
|  | llvm::Intrinsic::objc_retainAutoreleaseReturnValue, | 
|  | llvm::CallInst::TCK_Tail); | 
|  | } | 
|  |  | 
|  | /// Do a fused retain/autorelease of the given object. | 
|  | ///   call i8* \@objc_retainAutorelease(i8* %value) | 
|  | /// or | 
|  | ///   %retain = call i8* \@objc_retainBlock(i8* %value) | 
|  | ///   call i8* \@objc_autorelease(i8* %retain) | 
|  | llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, | 
|  | llvm::Value *value) { | 
|  | if (!type->isBlockPointerType()) | 
|  | return EmitARCRetainAutoreleaseNonBlock(value); | 
|  |  | 
|  | if (isa<llvm::ConstantPointerNull>(value)) return value; | 
|  |  | 
|  | llvm::Type *origType = value->getType(); | 
|  | value = Builder.CreateBitCast(value, Int8PtrTy); | 
|  | value = EmitARCRetainBlock(value, /*mandatory*/ true); | 
|  | value = EmitARCAutorelease(value); | 
|  | return Builder.CreateBitCast(value, origType); | 
|  | } | 
|  |  | 
|  | /// Do a fused retain/autorelease of the given object. | 
|  | ///   call i8* \@objc_retainAutorelease(i8* %value) | 
|  | llvm::Value * | 
|  | CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { | 
|  | return emitARCValueOperation(*this, value, nullptr, | 
|  | CGM.getObjCEntrypoints().objc_retainAutorelease, | 
|  | llvm::Intrinsic::objc_retainAutorelease); | 
|  | } | 
|  |  | 
|  | /// i8* \@objc_loadWeak(i8** %addr) | 
|  | /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). | 
|  | llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { | 
|  | return emitARCLoadOperation(*this, addr, | 
|  | CGM.getObjCEntrypoints().objc_loadWeak, | 
|  | llvm::Intrinsic::objc_loadWeak); | 
|  | } | 
|  |  | 
|  | /// i8* \@objc_loadWeakRetained(i8** %addr) | 
|  | llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { | 
|  | return emitARCLoadOperation(*this, addr, | 
|  | CGM.getObjCEntrypoints().objc_loadWeakRetained, | 
|  | llvm::Intrinsic::objc_loadWeakRetained); | 
|  | } | 
|  |  | 
|  | /// i8* \@objc_storeWeak(i8** %addr, i8* %value) | 
|  | /// Returns %value. | 
|  | llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, | 
|  | llvm::Value *value, | 
|  | bool ignored) { | 
|  | return emitARCStoreOperation(*this, addr, value, | 
|  | CGM.getObjCEntrypoints().objc_storeWeak, | 
|  | llvm::Intrinsic::objc_storeWeak, ignored); | 
|  | } | 
|  |  | 
|  | /// i8* \@objc_initWeak(i8** %addr, i8* %value) | 
|  | /// Returns %value.  %addr is known to not have a current weak entry. | 
|  | /// Essentially equivalent to: | 
|  | ///   *addr = nil; objc_storeWeak(addr, value); | 
|  | void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { | 
|  | // If we're initializing to null, just write null to memory; no need | 
|  | // to get the runtime involved.  But don't do this if optimization | 
|  | // is enabled, because accounting for this would make the optimizer | 
|  | // much more complicated. | 
|  | if (isa<llvm::ConstantPointerNull>(value) && | 
|  | CGM.getCodeGenOpts().OptimizationLevel == 0) { | 
|  | Builder.CreateStore(value, addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | emitARCStoreOperation(*this, addr, value, | 
|  | CGM.getObjCEntrypoints().objc_initWeak, | 
|  | llvm::Intrinsic::objc_initWeak, /*ignored*/ true); | 
|  | } | 
|  |  | 
|  | /// void \@objc_destroyWeak(i8** %addr) | 
|  | /// Essentially objc_storeWeak(addr, nil). | 
|  | void CodeGenFunction::EmitARCDestroyWeak(Address addr) { | 
|  | llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; | 
|  | if (!fn) { | 
|  | fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak); | 
|  | setARCRuntimeFunctionLinkage(CGM, fn); | 
|  | } | 
|  |  | 
|  | // Cast the argument to 'id*'. | 
|  | addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); | 
|  |  | 
|  | EmitNounwindRuntimeCall(fn, addr.getPointer()); | 
|  | } | 
|  |  | 
|  | /// void \@objc_moveWeak(i8** %dest, i8** %src) | 
|  | /// Disregards the current value in %dest.  Leaves %src pointing to nothing. | 
|  | /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). | 
|  | void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { | 
|  | emitARCCopyOperation(*this, dst, src, | 
|  | CGM.getObjCEntrypoints().objc_moveWeak, | 
|  | llvm::Intrinsic::objc_moveWeak); | 
|  | } | 
|  |  | 
|  | /// void \@objc_copyWeak(i8** %dest, i8** %src) | 
|  | /// Disregards the current value in %dest.  Essentially | 
|  | ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) | 
|  | void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { | 
|  | emitARCCopyOperation(*this, dst, src, | 
|  | CGM.getObjCEntrypoints().objc_copyWeak, | 
|  | llvm::Intrinsic::objc_copyWeak); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, | 
|  | Address SrcAddr) { | 
|  | llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); | 
|  | Object = EmitObjCConsumeObject(Ty, Object); | 
|  | EmitARCStoreWeak(DstAddr, Object, false); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, | 
|  | Address SrcAddr) { | 
|  | llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); | 
|  | Object = EmitObjCConsumeObject(Ty, Object); | 
|  | EmitARCStoreWeak(DstAddr, Object, false); | 
|  | EmitARCDestroyWeak(SrcAddr); | 
|  | } | 
|  |  | 
|  | /// Produce the code to do a objc_autoreleasepool_push. | 
|  | ///   call i8* \@objc_autoreleasePoolPush(void) | 
|  | llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { | 
|  | llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; | 
|  | if (!fn) { | 
|  | fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush); | 
|  | setARCRuntimeFunctionLinkage(CGM, fn); | 
|  | } | 
|  |  | 
|  | return EmitNounwindRuntimeCall(fn); | 
|  | } | 
|  |  | 
|  | /// Produce the code to do a primitive release. | 
|  | ///   call void \@objc_autoreleasePoolPop(i8* %ptr) | 
|  | void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { | 
|  | assert(value->getType() == Int8PtrTy); | 
|  |  | 
|  | if (getInvokeDest()) { | 
|  | // Call the runtime method not the intrinsic if we are handling exceptions | 
|  | llvm::FunctionCallee &fn = | 
|  | CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; | 
|  | if (!fn) { | 
|  | llvm::FunctionType *fnType = | 
|  | llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); | 
|  | fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); | 
|  | setARCRuntimeFunctionLinkage(CGM, fn); | 
|  | } | 
|  |  | 
|  | // objc_autoreleasePoolPop can throw. | 
|  | EmitRuntimeCallOrInvoke(fn, value); | 
|  | } else { | 
|  | llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; | 
|  | if (!fn) { | 
|  | fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop); | 
|  | setARCRuntimeFunctionLinkage(CGM, fn); | 
|  | } | 
|  |  | 
|  | EmitRuntimeCall(fn, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Produce the code to do an MRR version objc_autoreleasepool_push. | 
|  | /// Which is: [[NSAutoreleasePool alloc] init]; | 
|  | /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. | 
|  | /// init is declared as: - (id) init; in its NSObject super class. | 
|  | /// | 
|  | llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { | 
|  | CGObjCRuntime &Runtime = CGM.getObjCRuntime(); | 
|  | llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); | 
|  | // [NSAutoreleasePool alloc] | 
|  | IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); | 
|  | Selector AllocSel = getContext().Selectors.getSelector(0, &II); | 
|  | CallArgList Args; | 
|  | RValue AllocRV = | 
|  | Runtime.GenerateMessageSend(*this, ReturnValueSlot(), | 
|  | getContext().getObjCIdType(), | 
|  | AllocSel, Receiver, Args); | 
|  |  | 
|  | // [Receiver init] | 
|  | Receiver = AllocRV.getScalarVal(); | 
|  | II = &CGM.getContext().Idents.get("init"); | 
|  | Selector InitSel = getContext().Selectors.getSelector(0, &II); | 
|  | RValue InitRV = | 
|  | Runtime.GenerateMessageSend(*this, ReturnValueSlot(), | 
|  | getContext().getObjCIdType(), | 
|  | InitSel, Receiver, Args); | 
|  | return InitRV.getScalarVal(); | 
|  | } | 
|  |  | 
|  | /// Allocate the given objc object. | 
|  | ///   call i8* \@objc_alloc(i8* %value) | 
|  | llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, | 
|  | llvm::Type *resultType) { | 
|  | return emitObjCValueOperation(*this, value, resultType, | 
|  | CGM.getObjCEntrypoints().objc_alloc, | 
|  | "objc_alloc"); | 
|  | } | 
|  |  | 
|  | /// Allocate the given objc object. | 
|  | ///   call i8* \@objc_allocWithZone(i8* %value) | 
|  | llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, | 
|  | llvm::Type *resultType) { | 
|  | return emitObjCValueOperation(*this, value, resultType, | 
|  | CGM.getObjCEntrypoints().objc_allocWithZone, | 
|  | "objc_allocWithZone"); | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, | 
|  | llvm::Type *resultType) { | 
|  | return emitObjCValueOperation(*this, value, resultType, | 
|  | CGM.getObjCEntrypoints().objc_alloc_init, | 
|  | "objc_alloc_init"); | 
|  | } | 
|  |  | 
|  | /// Produce the code to do a primitive release. | 
|  | /// [tmp drain]; | 
|  | void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { | 
|  | IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); | 
|  | Selector DrainSel = getContext().Selectors.getSelector(0, &II); | 
|  | CallArgList Args; | 
|  | CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), | 
|  | getContext().VoidTy, DrainSel, Arg, Args); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, | 
|  | Address addr, | 
|  | QualType type) { | 
|  | CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, | 
|  | Address addr, | 
|  | QualType type) { | 
|  | CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, | 
|  | Address addr, | 
|  | QualType type) { | 
|  | CGF.EmitARCDestroyWeak(addr); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, | 
|  | QualType type) { | 
|  | llvm::Value *value = CGF.Builder.CreateLoad(addr); | 
|  | CGF.EmitARCIntrinsicUse(value); | 
|  | } | 
|  |  | 
|  | /// Autorelease the given object. | 
|  | ///   call i8* \@objc_autorelease(i8* %value) | 
|  | llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, | 
|  | llvm::Type *returnType) { | 
|  | return emitObjCValueOperation( | 
|  | *this, value, returnType, | 
|  | CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, | 
|  | "objc_autorelease"); | 
|  | } | 
|  |  | 
|  | /// Retain the given object, with normal retain semantics. | 
|  | ///   call i8* \@objc_retain(i8* %value) | 
|  | llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, | 
|  | llvm::Type *returnType) { | 
|  | return emitObjCValueOperation( | 
|  | *this, value, returnType, | 
|  | CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); | 
|  | } | 
|  |  | 
|  | /// Release the given object. | 
|  | ///   call void \@objc_release(i8* %value) | 
|  | void CodeGenFunction::EmitObjCRelease(llvm::Value *value, | 
|  | ARCPreciseLifetime_t precise) { | 
|  | if (isa<llvm::ConstantPointerNull>(value)) return; | 
|  |  | 
|  | llvm::FunctionCallee &fn = | 
|  | CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; | 
|  | if (!fn) { | 
|  | llvm::FunctionType *fnType = | 
|  | llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); | 
|  | fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); | 
|  | setARCRuntimeFunctionLinkage(CGM, fn); | 
|  | // We have Native ARC, so set nonlazybind attribute for performance | 
|  | if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) | 
|  | f->addFnAttr(llvm::Attribute::NonLazyBind); | 
|  | } | 
|  |  | 
|  | // Cast the argument to 'id'. | 
|  | value = Builder.CreateBitCast(value, Int8PtrTy); | 
|  |  | 
|  | // Call objc_release. | 
|  | llvm::CallBase *call = EmitCallOrInvoke(fn, value); | 
|  |  | 
|  | if (precise == ARCImpreciseLifetime) { | 
|  | call->setMetadata("clang.imprecise_release", | 
|  | llvm::MDNode::get(Builder.getContext(), None)); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { | 
|  | llvm::Value *Token; | 
|  |  | 
|  | CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | CGF.EmitObjCAutoreleasePoolPop(Token); | 
|  | } | 
|  | }; | 
|  | struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { | 
|  | llvm::Value *Token; | 
|  |  | 
|  | CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | CGF.EmitObjCMRRAutoreleasePoolPop(Token); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { | 
|  | if (CGM.getLangOpts().ObjCAutoRefCount) | 
|  | EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); | 
|  | else | 
|  | EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); | 
|  | } | 
|  |  | 
|  | static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { | 
|  | switch (lifetime) { | 
|  | case Qualifiers::OCL_None: | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | case Qualifiers::OCL_Strong: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | return true; | 
|  |  | 
|  | case Qualifiers::OCL_Weak: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("impossible lifetime!"); | 
|  | } | 
|  |  | 
|  | static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, | 
|  | LValue lvalue, | 
|  | QualType type) { | 
|  | llvm::Value *result; | 
|  | bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); | 
|  | if (shouldRetain) { | 
|  | result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); | 
|  | } else { | 
|  | assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); | 
|  | result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress()); | 
|  | } | 
|  | return TryEmitResult(result, !shouldRetain); | 
|  | } | 
|  |  | 
|  | static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, | 
|  | const Expr *e) { | 
|  | e = e->IgnoreParens(); | 
|  | QualType type = e->getType(); | 
|  |  | 
|  | // If we're loading retained from a __strong xvalue, we can avoid | 
|  | // an extra retain/release pair by zeroing out the source of this | 
|  | // "move" operation. | 
|  | if (e->isXValue() && | 
|  | !type.isConstQualified() && | 
|  | type.getObjCLifetime() == Qualifiers::OCL_Strong) { | 
|  | // Emit the lvalue. | 
|  | LValue lv = CGF.EmitLValue(e); | 
|  |  | 
|  | // Load the object pointer. | 
|  | llvm::Value *result = CGF.EmitLoadOfLValue(lv, | 
|  | SourceLocation()).getScalarVal(); | 
|  |  | 
|  | // Set the source pointer to NULL. | 
|  | CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); | 
|  |  | 
|  | return TryEmitResult(result, true); | 
|  | } | 
|  |  | 
|  | // As a very special optimization, in ARC++, if the l-value is the | 
|  | // result of a non-volatile assignment, do a simple retain of the | 
|  | // result of the call to objc_storeWeak instead of reloading. | 
|  | if (CGF.getLangOpts().CPlusPlus && | 
|  | !type.isVolatileQualified() && | 
|  | type.getObjCLifetime() == Qualifiers::OCL_Weak && | 
|  | isa<BinaryOperator>(e) && | 
|  | cast<BinaryOperator>(e)->getOpcode() == BO_Assign) | 
|  | return TryEmitResult(CGF.EmitScalarExpr(e), false); | 
|  |  | 
|  | // Try to emit code for scalar constant instead of emitting LValue and | 
|  | // loading it because we are not guaranteed to have an l-value. One of such | 
|  | // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. | 
|  | if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { | 
|  | auto *DRE = const_cast<DeclRefExpr *>(decl_expr); | 
|  | if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) | 
|  | return TryEmitResult(CGF.emitScalarConstant(constant, DRE), | 
|  | !shouldRetainObjCLifetime(type.getObjCLifetime())); | 
|  | } | 
|  |  | 
|  | return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); | 
|  | } | 
|  |  | 
|  | typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, | 
|  | llvm::Value *value)> | 
|  | ValueTransform; | 
|  |  | 
|  | /// Insert code immediately after a call. | 
|  | static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, | 
|  | llvm::Value *value, | 
|  | ValueTransform doAfterCall, | 
|  | ValueTransform doFallback) { | 
|  | if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { | 
|  | CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); | 
|  |  | 
|  | // Place the retain immediately following the call. | 
|  | CGF.Builder.SetInsertPoint(call->getParent(), | 
|  | ++llvm::BasicBlock::iterator(call)); | 
|  | value = doAfterCall(CGF, value); | 
|  |  | 
|  | CGF.Builder.restoreIP(ip); | 
|  | return value; | 
|  | } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { | 
|  | CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); | 
|  |  | 
|  | // Place the retain at the beginning of the normal destination block. | 
|  | llvm::BasicBlock *BB = invoke->getNormalDest(); | 
|  | CGF.Builder.SetInsertPoint(BB, BB->begin()); | 
|  | value = doAfterCall(CGF, value); | 
|  |  | 
|  | CGF.Builder.restoreIP(ip); | 
|  | return value; | 
|  |  | 
|  | // Bitcasts can arise because of related-result returns.  Rewrite | 
|  | // the operand. | 
|  | } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { | 
|  | llvm::Value *operand = bitcast->getOperand(0); | 
|  | operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); | 
|  | bitcast->setOperand(0, operand); | 
|  | return bitcast; | 
|  |  | 
|  | // Generic fall-back case. | 
|  | } else { | 
|  | // Retain using the non-block variant: we never need to do a copy | 
|  | // of a block that's been returned to us. | 
|  | return doFallback(CGF, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Given that the given expression is some sort of call (which does | 
|  | /// not return retained), emit a retain following it. | 
|  | static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, | 
|  | const Expr *e) { | 
|  | llvm::Value *value = CGF.EmitScalarExpr(e); | 
|  | return emitARCOperationAfterCall(CGF, value, | 
|  | [](CodeGenFunction &CGF, llvm::Value *value) { | 
|  | return CGF.EmitARCRetainAutoreleasedReturnValue(value); | 
|  | }, | 
|  | [](CodeGenFunction &CGF, llvm::Value *value) { | 
|  | return CGF.EmitARCRetainNonBlock(value); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Given that the given expression is some sort of call (which does | 
|  | /// not return retained), perform an unsafeClaim following it. | 
|  | static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, | 
|  | const Expr *e) { | 
|  | llvm::Value *value = CGF.EmitScalarExpr(e); | 
|  | return emitARCOperationAfterCall(CGF, value, | 
|  | [](CodeGenFunction &CGF, llvm::Value *value) { | 
|  | return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); | 
|  | }, | 
|  | [](CodeGenFunction &CGF, llvm::Value *value) { | 
|  | return value; | 
|  | }); | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, | 
|  | bool allowUnsafeClaim) { | 
|  | if (allowUnsafeClaim && | 
|  | CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { | 
|  | return emitARCUnsafeClaimCallResult(*this, E); | 
|  | } else { | 
|  | llvm::Value *value = emitARCRetainCallResult(*this, E); | 
|  | return EmitObjCConsumeObject(E->getType(), value); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine whether it might be important to emit a separate | 
|  | /// objc_retain_block on the result of the given expression, or | 
|  | /// whether it's okay to just emit it in a +1 context. | 
|  | static bool shouldEmitSeparateBlockRetain(const Expr *e) { | 
|  | assert(e->getType()->isBlockPointerType()); | 
|  | e = e->IgnoreParens(); | 
|  |  | 
|  | // For future goodness, emit block expressions directly in +1 | 
|  | // contexts if we can. | 
|  | if (isa<BlockExpr>(e)) | 
|  | return false; | 
|  |  | 
|  | if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { | 
|  | switch (cast->getCastKind()) { | 
|  | // Emitting these operations in +1 contexts is goodness. | 
|  | case CK_LValueToRValue: | 
|  | case CK_ARCReclaimReturnedObject: | 
|  | case CK_ARCConsumeObject: | 
|  | case CK_ARCProduceObject: | 
|  | return false; | 
|  |  | 
|  | // These operations preserve a block type. | 
|  | case CK_NoOp: | 
|  | case CK_BitCast: | 
|  | return shouldEmitSeparateBlockRetain(cast->getSubExpr()); | 
|  |  | 
|  | // These operations are known to be bad (or haven't been considered). | 
|  | case CK_AnyPointerToBlockPointerCast: | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// A CRTP base class for emitting expressions of retainable object | 
|  | /// pointer type in ARC. | 
|  | template <typename Impl, typename Result> class ARCExprEmitter { | 
|  | protected: | 
|  | CodeGenFunction &CGF; | 
|  | Impl &asImpl() { return *static_cast<Impl*>(this); } | 
|  |  | 
|  | ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} | 
|  |  | 
|  | public: | 
|  | Result visit(const Expr *e); | 
|  | Result visitCastExpr(const CastExpr *e); | 
|  | Result visitPseudoObjectExpr(const PseudoObjectExpr *e); | 
|  | Result visitBlockExpr(const BlockExpr *e); | 
|  | Result visitBinaryOperator(const BinaryOperator *e); | 
|  | Result visitBinAssign(const BinaryOperator *e); | 
|  | Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); | 
|  | Result visitBinAssignAutoreleasing(const BinaryOperator *e); | 
|  | Result visitBinAssignWeak(const BinaryOperator *e); | 
|  | Result visitBinAssignStrong(const BinaryOperator *e); | 
|  |  | 
|  | // Minimal implementation: | 
|  | //   Result visitLValueToRValue(const Expr *e) | 
|  | //   Result visitConsumeObject(const Expr *e) | 
|  | //   Result visitExtendBlockObject(const Expr *e) | 
|  | //   Result visitReclaimReturnedObject(const Expr *e) | 
|  | //   Result visitCall(const Expr *e) | 
|  | //   Result visitExpr(const Expr *e) | 
|  | // | 
|  | //   Result emitBitCast(Result result, llvm::Type *resultType) | 
|  | //   llvm::Value *getValueOfResult(Result result) | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Try to emit a PseudoObjectExpr under special ARC rules. | 
|  | /// | 
|  | /// This massively duplicates emitPseudoObjectRValue. | 
|  | template <typename Impl, typename Result> | 
|  | Result | 
|  | ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { | 
|  | SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; | 
|  |  | 
|  | // Find the result expression. | 
|  | const Expr *resultExpr = E->getResultExpr(); | 
|  | assert(resultExpr); | 
|  | Result result; | 
|  |  | 
|  | for (PseudoObjectExpr::const_semantics_iterator | 
|  | i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { | 
|  | const Expr *semantic = *i; | 
|  |  | 
|  | // If this semantic expression is an opaque value, bind it | 
|  | // to the result of its source expression. | 
|  | if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { | 
|  | typedef CodeGenFunction::OpaqueValueMappingData OVMA; | 
|  | OVMA opaqueData; | 
|  |  | 
|  | // If this semantic is the result of the pseudo-object | 
|  | // expression, try to evaluate the source as +1. | 
|  | if (ov == resultExpr) { | 
|  | assert(!OVMA::shouldBindAsLValue(ov)); | 
|  | result = asImpl().visit(ov->getSourceExpr()); | 
|  | opaqueData = OVMA::bind(CGF, ov, | 
|  | RValue::get(asImpl().getValueOfResult(result))); | 
|  |  | 
|  | // Otherwise, just bind it. | 
|  | } else { | 
|  | opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); | 
|  | } | 
|  | opaques.push_back(opaqueData); | 
|  |  | 
|  | // Otherwise, if the expression is the result, evaluate it | 
|  | // and remember the result. | 
|  | } else if (semantic == resultExpr) { | 
|  | result = asImpl().visit(semantic); | 
|  |  | 
|  | // Otherwise, evaluate the expression in an ignored context. | 
|  | } else { | 
|  | CGF.EmitIgnoredExpr(semantic); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Unbind all the opaques now. | 
|  | for (unsigned i = 0, e = opaques.size(); i != e; ++i) | 
|  | opaques[i].unbind(CGF); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | template <typename Impl, typename Result> | 
|  | Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { | 
|  | // The default implementation just forwards the expression to visitExpr. | 
|  | return asImpl().visitExpr(e); | 
|  | } | 
|  |  | 
|  | template <typename Impl, typename Result> | 
|  | Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { | 
|  | switch (e->getCastKind()) { | 
|  |  | 
|  | // No-op casts don't change the type, so we just ignore them. | 
|  | case CK_NoOp: | 
|  | return asImpl().visit(e->getSubExpr()); | 
|  |  | 
|  | // These casts can change the type. | 
|  | case CK_CPointerToObjCPointerCast: | 
|  | case CK_BlockPointerToObjCPointerCast: | 
|  | case CK_AnyPointerToBlockPointerCast: | 
|  | case CK_BitCast: { | 
|  | llvm::Type *resultType = CGF.ConvertType(e->getType()); | 
|  | assert(e->getSubExpr()->getType()->hasPointerRepresentation()); | 
|  | Result result = asImpl().visit(e->getSubExpr()); | 
|  | return asImpl().emitBitCast(result, resultType); | 
|  | } | 
|  |  | 
|  | // Handle some casts specially. | 
|  | case CK_LValueToRValue: | 
|  | return asImpl().visitLValueToRValue(e->getSubExpr()); | 
|  | case CK_ARCConsumeObject: | 
|  | return asImpl().visitConsumeObject(e->getSubExpr()); | 
|  | case CK_ARCExtendBlockObject: | 
|  | return asImpl().visitExtendBlockObject(e->getSubExpr()); | 
|  | case CK_ARCReclaimReturnedObject: | 
|  | return asImpl().visitReclaimReturnedObject(e->getSubExpr()); | 
|  |  | 
|  | // Otherwise, use the default logic. | 
|  | default: | 
|  | return asImpl().visitExpr(e); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Impl, typename Result> | 
|  | Result | 
|  | ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { | 
|  | switch (e->getOpcode()) { | 
|  | case BO_Comma: | 
|  | CGF.EmitIgnoredExpr(e->getLHS()); | 
|  | CGF.EnsureInsertPoint(); | 
|  | return asImpl().visit(e->getRHS()); | 
|  |  | 
|  | case BO_Assign: | 
|  | return asImpl().visitBinAssign(e); | 
|  |  | 
|  | default: | 
|  | return asImpl().visitExpr(e); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Impl, typename Result> | 
|  | Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { | 
|  | switch (e->getLHS()->getType().getObjCLifetime()) { | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | return asImpl().visitBinAssignUnsafeUnretained(e); | 
|  |  | 
|  | case Qualifiers::OCL_Weak: | 
|  | return asImpl().visitBinAssignWeak(e); | 
|  |  | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | return asImpl().visitBinAssignAutoreleasing(e); | 
|  |  | 
|  | case Qualifiers::OCL_Strong: | 
|  | return asImpl().visitBinAssignStrong(e); | 
|  |  | 
|  | case Qualifiers::OCL_None: | 
|  | return asImpl().visitExpr(e); | 
|  | } | 
|  | llvm_unreachable("bad ObjC ownership qualifier"); | 
|  | } | 
|  |  | 
|  | /// The default rule for __unsafe_unretained emits the RHS recursively, | 
|  | /// stores into the unsafe variable, and propagates the result outward. | 
|  | template <typename Impl, typename Result> | 
|  | Result ARCExprEmitter<Impl,Result>:: | 
|  | visitBinAssignUnsafeUnretained(const BinaryOperator *e) { | 
|  | // Recursively emit the RHS. | 
|  | // For __block safety, do this before emitting the LHS. | 
|  | Result result = asImpl().visit(e->getRHS()); | 
|  |  | 
|  | // Perform the store. | 
|  | LValue lvalue = | 
|  | CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); | 
|  | CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), | 
|  | lvalue); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | template <typename Impl, typename Result> | 
|  | Result | 
|  | ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { | 
|  | return asImpl().visitExpr(e); | 
|  | } | 
|  |  | 
|  | template <typename Impl, typename Result> | 
|  | Result | 
|  | ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { | 
|  | return asImpl().visitExpr(e); | 
|  | } | 
|  |  | 
|  | template <typename Impl, typename Result> | 
|  | Result | 
|  | ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { | 
|  | return asImpl().visitExpr(e); | 
|  | } | 
|  |  | 
|  | /// The general expression-emission logic. | 
|  | template <typename Impl, typename Result> | 
|  | Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { | 
|  | // We should *never* see a nested full-expression here, because if | 
|  | // we fail to emit at +1, our caller must not retain after we close | 
|  | // out the full-expression.  This isn't as important in the unsafe | 
|  | // emitter. | 
|  | assert(!isa<ExprWithCleanups>(e)); | 
|  |  | 
|  | // Look through parens, __extension__, generic selection, etc. | 
|  | e = e->IgnoreParens(); | 
|  |  | 
|  | // Handle certain kinds of casts. | 
|  | if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { | 
|  | return asImpl().visitCastExpr(ce); | 
|  |  | 
|  | // Handle the comma operator. | 
|  | } else if (auto op = dyn_cast<BinaryOperator>(e)) { | 
|  | return asImpl().visitBinaryOperator(op); | 
|  |  | 
|  | // TODO: handle conditional operators here | 
|  |  | 
|  | // For calls and message sends, use the retained-call logic. | 
|  | // Delegate inits are a special case in that they're the only | 
|  | // returns-retained expression that *isn't* surrounded by | 
|  | // a consume. | 
|  | } else if (isa<CallExpr>(e) || | 
|  | (isa<ObjCMessageExpr>(e) && | 
|  | !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { | 
|  | return asImpl().visitCall(e); | 
|  |  | 
|  | // Look through pseudo-object expressions. | 
|  | } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { | 
|  | return asImpl().visitPseudoObjectExpr(pseudo); | 
|  | } else if (auto *be = dyn_cast<BlockExpr>(e)) | 
|  | return asImpl().visitBlockExpr(be); | 
|  |  | 
|  | return asImpl().visitExpr(e); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// An emitter for +1 results. | 
|  | struct ARCRetainExprEmitter : | 
|  | public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { | 
|  |  | 
|  | ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} | 
|  |  | 
|  | llvm::Value *getValueOfResult(TryEmitResult result) { | 
|  | return result.getPointer(); | 
|  | } | 
|  |  | 
|  | TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { | 
|  | llvm::Value *value = result.getPointer(); | 
|  | value = CGF.Builder.CreateBitCast(value, resultType); | 
|  | result.setPointer(value); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | TryEmitResult visitLValueToRValue(const Expr *e) { | 
|  | return tryEmitARCRetainLoadOfScalar(CGF, e); | 
|  | } | 
|  |  | 
|  | /// For consumptions, just emit the subexpression and thus elide | 
|  | /// the retain/release pair. | 
|  | TryEmitResult visitConsumeObject(const Expr *e) { | 
|  | llvm::Value *result = CGF.EmitScalarExpr(e); | 
|  | return TryEmitResult(result, true); | 
|  | } | 
|  |  | 
|  | TryEmitResult visitBlockExpr(const BlockExpr *e) { | 
|  | TryEmitResult result = visitExpr(e); | 
|  | // Avoid the block-retain if this is a block literal that doesn't need to be | 
|  | // copied to the heap. | 
|  | if (e->getBlockDecl()->canAvoidCopyToHeap()) | 
|  | result.setInt(true); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /// Block extends are net +0.  Naively, we could just recurse on | 
|  | /// the subexpression, but actually we need to ensure that the | 
|  | /// value is copied as a block, so there's a little filter here. | 
|  | TryEmitResult visitExtendBlockObject(const Expr *e) { | 
|  | llvm::Value *result; // will be a +0 value | 
|  |  | 
|  | // If we can't safely assume the sub-expression will produce a | 
|  | // block-copied value, emit the sub-expression at +0. | 
|  | if (shouldEmitSeparateBlockRetain(e)) { | 
|  | result = CGF.EmitScalarExpr(e); | 
|  |  | 
|  | // Otherwise, try to emit the sub-expression at +1 recursively. | 
|  | } else { | 
|  | TryEmitResult subresult = asImpl().visit(e); | 
|  |  | 
|  | // If that produced a retained value, just use that. | 
|  | if (subresult.getInt()) { | 
|  | return subresult; | 
|  | } | 
|  |  | 
|  | // Otherwise it's +0. | 
|  | result = subresult.getPointer(); | 
|  | } | 
|  |  | 
|  | // Retain the object as a block. | 
|  | result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); | 
|  | return TryEmitResult(result, true); | 
|  | } | 
|  |  | 
|  | /// For reclaims, emit the subexpression as a retained call and | 
|  | /// skip the consumption. | 
|  | TryEmitResult visitReclaimReturnedObject(const Expr *e) { | 
|  | llvm::Value *result = emitARCRetainCallResult(CGF, e); | 
|  | return TryEmitResult(result, true); | 
|  | } | 
|  |  | 
|  | /// When we have an undecorated call, retroactively do a claim. | 
|  | TryEmitResult visitCall(const Expr *e) { | 
|  | llvm::Value *result = emitARCRetainCallResult(CGF, e); | 
|  | return TryEmitResult(result, true); | 
|  | } | 
|  |  | 
|  | // TODO: maybe special-case visitBinAssignWeak? | 
|  |  | 
|  | TryEmitResult visitExpr(const Expr *e) { | 
|  | // We didn't find an obvious production, so emit what we've got and | 
|  | // tell the caller that we didn't manage to retain. | 
|  | llvm::Value *result = CGF.EmitScalarExpr(e); | 
|  | return TryEmitResult(result, false); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static TryEmitResult | 
|  | tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { | 
|  | return ARCRetainExprEmitter(CGF).visit(e); | 
|  | } | 
|  |  | 
|  | static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, | 
|  | LValue lvalue, | 
|  | QualType type) { | 
|  | TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); | 
|  | llvm::Value *value = result.getPointer(); | 
|  | if (!result.getInt()) | 
|  | value = CGF.EmitARCRetain(type, value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | /// EmitARCRetainScalarExpr - Semantically equivalent to | 
|  | /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a | 
|  | /// best-effort attempt to peephole expressions that naturally produce | 
|  | /// retained objects. | 
|  | llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { | 
|  | // The retain needs to happen within the full-expression. | 
|  | if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { | 
|  | enterFullExpression(cleanups); | 
|  | RunCleanupsScope scope(*this); | 
|  | return EmitARCRetainScalarExpr(cleanups->getSubExpr()); | 
|  | } | 
|  |  | 
|  | TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); | 
|  | llvm::Value *value = result.getPointer(); | 
|  | if (!result.getInt()) | 
|  | value = EmitARCRetain(e->getType(), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | llvm::Value * | 
|  | CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { | 
|  | // The retain needs to happen within the full-expression. | 
|  | if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { | 
|  | enterFullExpression(cleanups); | 
|  | RunCleanupsScope scope(*this); | 
|  | return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); | 
|  | } | 
|  |  | 
|  | TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); | 
|  | llvm::Value *value = result.getPointer(); | 
|  | if (result.getInt()) | 
|  | value = EmitARCAutorelease(value); | 
|  | else | 
|  | value = EmitARCRetainAutorelease(e->getType(), value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { | 
|  | llvm::Value *result; | 
|  | bool doRetain; | 
|  |  | 
|  | if (shouldEmitSeparateBlockRetain(e)) { | 
|  | result = EmitScalarExpr(e); | 
|  | doRetain = true; | 
|  | } else { | 
|  | TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); | 
|  | result = subresult.getPointer(); | 
|  | doRetain = !subresult.getInt(); | 
|  | } | 
|  |  | 
|  | if (doRetain) | 
|  | result = EmitARCRetainBlock(result, /*mandatory*/ true); | 
|  | return EmitObjCConsumeObject(e->getType(), result); | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { | 
|  | // In ARC, retain and autorelease the expression. | 
|  | if (getLangOpts().ObjCAutoRefCount) { | 
|  | // Do so before running any cleanups for the full-expression. | 
|  | // EmitARCRetainAutoreleaseScalarExpr does this for us. | 
|  | return EmitARCRetainAutoreleaseScalarExpr(expr); | 
|  | } | 
|  |  | 
|  | // Otherwise, use the normal scalar-expression emission.  The | 
|  | // exception machinery doesn't do anything special with the | 
|  | // exception like retaining it, so there's no safety associated with | 
|  | // only running cleanups after the throw has started, and when it | 
|  | // matters it tends to be substantially inferior code. | 
|  | return EmitScalarExpr(expr); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// An emitter for assigning into an __unsafe_unretained context. | 
|  | struct ARCUnsafeUnretainedExprEmitter : | 
|  | public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { | 
|  |  | 
|  | ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} | 
|  |  | 
|  | llvm::Value *getValueOfResult(llvm::Value *value) { | 
|  | return value; | 
|  | } | 
|  |  | 
|  | llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { | 
|  | return CGF.Builder.CreateBitCast(value, resultType); | 
|  | } | 
|  |  | 
|  | llvm::Value *visitLValueToRValue(const Expr *e) { | 
|  | return CGF.EmitScalarExpr(e); | 
|  | } | 
|  |  | 
|  | /// For consumptions, just emit the subexpression and perform the | 
|  | /// consumption like normal. | 
|  | llvm::Value *visitConsumeObject(const Expr *e) { | 
|  | llvm::Value *value = CGF.EmitScalarExpr(e); | 
|  | return CGF.EmitObjCConsumeObject(e->getType(), value); | 
|  | } | 
|  |  | 
|  | /// No special logic for block extensions.  (This probably can't | 
|  | /// actually happen in this emitter, though.) | 
|  | llvm::Value *visitExtendBlockObject(const Expr *e) { | 
|  | return CGF.EmitARCExtendBlockObject(e); | 
|  | } | 
|  |  | 
|  | /// For reclaims, perform an unsafeClaim if that's enabled. | 
|  | llvm::Value *visitReclaimReturnedObject(const Expr *e) { | 
|  | return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); | 
|  | } | 
|  |  | 
|  | /// When we have an undecorated call, just emit it without adding | 
|  | /// the unsafeClaim. | 
|  | llvm::Value *visitCall(const Expr *e) { | 
|  | return CGF.EmitScalarExpr(e); | 
|  | } | 
|  |  | 
|  | /// Just do normal scalar emission in the default case. | 
|  | llvm::Value *visitExpr(const Expr *e) { | 
|  | return CGF.EmitScalarExpr(e); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, | 
|  | const Expr *e) { | 
|  | return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); | 
|  | } | 
|  |  | 
|  | /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to | 
|  | /// immediately releasing the resut of EmitARCRetainScalarExpr, but | 
|  | /// avoiding any spurious retains, including by performing reclaims | 
|  | /// with objc_unsafeClaimAutoreleasedReturnValue. | 
|  | llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { | 
|  | // Look through full-expressions. | 
|  | if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { | 
|  | enterFullExpression(cleanups); | 
|  | RunCleanupsScope scope(*this); | 
|  | return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); | 
|  | } | 
|  |  | 
|  | return emitARCUnsafeUnretainedScalarExpr(*this, e); | 
|  | } | 
|  |  | 
|  | std::pair<LValue,llvm::Value*> | 
|  | CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, | 
|  | bool ignored) { | 
|  | // Evaluate the RHS first.  If we're ignoring the result, assume | 
|  | // that we can emit at an unsafe +0. | 
|  | llvm::Value *value; | 
|  | if (ignored) { | 
|  | value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); | 
|  | } else { | 
|  | value = EmitScalarExpr(e->getRHS()); | 
|  | } | 
|  |  | 
|  | // Emit the LHS and perform the store. | 
|  | LValue lvalue = EmitLValue(e->getLHS()); | 
|  | EmitStoreOfScalar(value, lvalue); | 
|  |  | 
|  | return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); | 
|  | } | 
|  |  | 
|  | std::pair<LValue,llvm::Value*> | 
|  | CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, | 
|  | bool ignored) { | 
|  | // Evaluate the RHS first. | 
|  | TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); | 
|  | llvm::Value *value = result.getPointer(); | 
|  |  | 
|  | bool hasImmediateRetain = result.getInt(); | 
|  |  | 
|  | // If we didn't emit a retained object, and the l-value is of block | 
|  | // type, then we need to emit the block-retain immediately in case | 
|  | // it invalidates the l-value. | 
|  | if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { | 
|  | value = EmitARCRetainBlock(value, /*mandatory*/ false); | 
|  | hasImmediateRetain = true; | 
|  | } | 
|  |  | 
|  | LValue lvalue = EmitLValue(e->getLHS()); | 
|  |  | 
|  | // If the RHS was emitted retained, expand this. | 
|  | if (hasImmediateRetain) { | 
|  | llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); | 
|  | EmitStoreOfScalar(value, lvalue); | 
|  | EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); | 
|  | } else { | 
|  | value = EmitARCStoreStrong(lvalue, value, ignored); | 
|  | } | 
|  |  | 
|  | return std::pair<LValue,llvm::Value*>(lvalue, value); | 
|  | } | 
|  |  | 
|  | std::pair<LValue,llvm::Value*> | 
|  | CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { | 
|  | llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); | 
|  | LValue lvalue = EmitLValue(e->getLHS()); | 
|  |  | 
|  | EmitStoreOfScalar(value, lvalue); | 
|  |  | 
|  | return std::pair<LValue,llvm::Value*>(lvalue, value); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitObjCAutoreleasePoolStmt( | 
|  | const ObjCAutoreleasePoolStmt &ARPS) { | 
|  | const Stmt *subStmt = ARPS.getSubStmt(); | 
|  | const CompoundStmt &S = cast<CompoundStmt>(*subStmt); | 
|  |  | 
|  | CGDebugInfo *DI = getDebugInfo(); | 
|  | if (DI) | 
|  | DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); | 
|  |  | 
|  | // Keep track of the current cleanup stack depth. | 
|  | RunCleanupsScope Scope(*this); | 
|  | if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { | 
|  | llvm::Value *token = EmitObjCAutoreleasePoolPush(); | 
|  | EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); | 
|  | } else { | 
|  | llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); | 
|  | EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); | 
|  | } | 
|  |  | 
|  | for (const auto *I : S.body()) | 
|  | EmitStmt(I); | 
|  |  | 
|  | if (DI) | 
|  | DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); | 
|  | } | 
|  |  | 
|  | /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, | 
|  | /// make sure it survives garbage collection until this point. | 
|  | void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { | 
|  | // We just use an inline assembly. | 
|  | llvm::FunctionType *extenderType | 
|  | = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); | 
|  | llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, | 
|  | /* assembly */ "", | 
|  | /* constraints */ "r", | 
|  | /* side effects */ true); | 
|  |  | 
|  | object = Builder.CreateBitCast(object, VoidPtrTy); | 
|  | EmitNounwindRuntimeCall(extender, object); | 
|  | } | 
|  |  | 
|  | /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with | 
|  | /// non-trivial copy assignment function, produce following helper function. | 
|  | /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } | 
|  | /// | 
|  | llvm::Constant * | 
|  | CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( | 
|  | const ObjCPropertyImplDecl *PID) { | 
|  | if (!getLangOpts().CPlusPlus || | 
|  | !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) | 
|  | return nullptr; | 
|  | QualType Ty = PID->getPropertyIvarDecl()->getType(); | 
|  | if (!Ty->isRecordType()) | 
|  | return nullptr; | 
|  | const ObjCPropertyDecl *PD = PID->getPropertyDecl(); | 
|  | if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) | 
|  | return nullptr; | 
|  | llvm::Constant *HelperFn = nullptr; | 
|  | if (hasTrivialSetExpr(PID)) | 
|  | return nullptr; | 
|  | assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); | 
|  | if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) | 
|  | return HelperFn; | 
|  |  | 
|  | ASTContext &C = getContext(); | 
|  | IdentifierInfo *II | 
|  | = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); | 
|  |  | 
|  | QualType ReturnTy = C.VoidTy; | 
|  | QualType DestTy = C.getPointerType(Ty); | 
|  | QualType SrcTy = Ty; | 
|  | SrcTy.addConst(); | 
|  | SrcTy = C.getPointerType(SrcTy); | 
|  |  | 
|  | SmallVector<QualType, 2> ArgTys; | 
|  | ArgTys.push_back(DestTy); | 
|  | ArgTys.push_back(SrcTy); | 
|  | QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); | 
|  |  | 
|  | FunctionDecl *FD = FunctionDecl::Create( | 
|  | C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, | 
|  | FunctionTy, nullptr, SC_Static, false, false); | 
|  |  | 
|  | FunctionArgList args; | 
|  | ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, | 
|  | ImplicitParamDecl::Other); | 
|  | args.push_back(&DstDecl); | 
|  | ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, | 
|  | ImplicitParamDecl::Other); | 
|  | args.push_back(&SrcDecl); | 
|  |  | 
|  | const CGFunctionInfo &FI = | 
|  | CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); | 
|  |  | 
|  | llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); | 
|  |  | 
|  | llvm::Function *Fn = | 
|  | llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, | 
|  | "__assign_helper_atomic_property_", | 
|  | &CGM.getModule()); | 
|  |  | 
|  | CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); | 
|  |  | 
|  | StartFunction(FD, ReturnTy, Fn, FI, args); | 
|  |  | 
|  | DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, | 
|  | SourceLocation()); | 
|  | UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), | 
|  | VK_LValue, OK_Ordinary, SourceLocation(), false); | 
|  |  | 
|  | DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, | 
|  | SourceLocation()); | 
|  | UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), | 
|  | VK_LValue, OK_Ordinary, SourceLocation(), false); | 
|  |  | 
|  | Expr *Args[2] = { &DST, &SRC }; | 
|  | CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); | 
|  | CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( | 
|  | C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), | 
|  | VK_LValue, SourceLocation(), FPOptions()); | 
|  |  | 
|  | EmitStmt(TheCall); | 
|  |  | 
|  | FinishFunction(); | 
|  | HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); | 
|  | CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); | 
|  | return HelperFn; | 
|  | } | 
|  |  | 
|  | llvm::Constant * | 
|  | CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( | 
|  | const ObjCPropertyImplDecl *PID) { | 
|  | if (!getLangOpts().CPlusPlus || | 
|  | !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) | 
|  | return nullptr; | 
|  | const ObjCPropertyDecl *PD = PID->getPropertyDecl(); | 
|  | QualType Ty = PD->getType(); | 
|  | if (!Ty->isRecordType()) | 
|  | return nullptr; | 
|  | if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) | 
|  | return nullptr; | 
|  | llvm::Constant *HelperFn = nullptr; | 
|  | if (hasTrivialGetExpr(PID)) | 
|  | return nullptr; | 
|  | assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); | 
|  | if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) | 
|  | return HelperFn; | 
|  |  | 
|  | ASTContext &C = getContext(); | 
|  | IdentifierInfo *II = | 
|  | &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); | 
|  |  | 
|  | QualType ReturnTy = C.VoidTy; | 
|  | QualType DestTy = C.getPointerType(Ty); | 
|  | QualType SrcTy = Ty; | 
|  | SrcTy.addConst(); | 
|  | SrcTy = C.getPointerType(SrcTy); | 
|  |  | 
|  | SmallVector<QualType, 2> ArgTys; | 
|  | ArgTys.push_back(DestTy); | 
|  | ArgTys.push_back(SrcTy); | 
|  | QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); | 
|  |  | 
|  | FunctionDecl *FD = FunctionDecl::Create( | 
|  | C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, | 
|  | FunctionTy, nullptr, SC_Static, false, false); | 
|  |  | 
|  | FunctionArgList args; | 
|  | ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, | 
|  | ImplicitParamDecl::Other); | 
|  | args.push_back(&DstDecl); | 
|  | ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, | 
|  | ImplicitParamDecl::Other); | 
|  | args.push_back(&SrcDecl); | 
|  |  | 
|  | const CGFunctionInfo &FI = | 
|  | CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); | 
|  |  | 
|  | llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); | 
|  |  | 
|  | llvm::Function *Fn = llvm::Function::Create( | 
|  | LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", | 
|  | &CGM.getModule()); | 
|  |  | 
|  | CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); | 
|  |  | 
|  | StartFunction(FD, ReturnTy, Fn, FI, args); | 
|  |  | 
|  | DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, | 
|  | SourceLocation()); | 
|  |  | 
|  | UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), | 
|  | VK_LValue, OK_Ordinary, SourceLocation(), false); | 
|  |  | 
|  | CXXConstructExpr *CXXConstExpr = | 
|  | cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); | 
|  |  | 
|  | SmallVector<Expr*, 4> ConstructorArgs; | 
|  | ConstructorArgs.push_back(&SRC); | 
|  | ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), | 
|  | CXXConstExpr->arg_end()); | 
|  |  | 
|  | CXXConstructExpr *TheCXXConstructExpr = | 
|  | CXXConstructExpr::Create(C, Ty, SourceLocation(), | 
|  | CXXConstExpr->getConstructor(), | 
|  | CXXConstExpr->isElidable(), | 
|  | ConstructorArgs, | 
|  | CXXConstExpr->hadMultipleCandidates(), | 
|  | CXXConstExpr->isListInitialization(), | 
|  | CXXConstExpr->isStdInitListInitialization(), | 
|  | CXXConstExpr->requiresZeroInitialization(), | 
|  | CXXConstExpr->getConstructionKind(), | 
|  | SourceRange()); | 
|  |  | 
|  | DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, | 
|  | SourceLocation()); | 
|  |  | 
|  | RValue DV = EmitAnyExpr(&DstExpr); | 
|  | CharUnits Alignment | 
|  | = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); | 
|  | EmitAggExpr(TheCXXConstructExpr, | 
|  | AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), | 
|  | Qualifiers(), | 
|  | AggValueSlot::IsDestructed, | 
|  | AggValueSlot::DoesNotNeedGCBarriers, | 
|  | AggValueSlot::IsNotAliased, | 
|  | AggValueSlot::DoesNotOverlap)); | 
|  |  | 
|  | FinishFunction(); | 
|  | HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); | 
|  | CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); | 
|  | return HelperFn; | 
|  | } | 
|  |  | 
|  | llvm::Value * | 
|  | CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { | 
|  | // Get selectors for retain/autorelease. | 
|  | IdentifierInfo *CopyID = &getContext().Idents.get("copy"); | 
|  | Selector CopySelector = | 
|  | getContext().Selectors.getNullarySelector(CopyID); | 
|  | IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); | 
|  | Selector AutoreleaseSelector = | 
|  | getContext().Selectors.getNullarySelector(AutoreleaseID); | 
|  |  | 
|  | // Emit calls to retain/autorelease. | 
|  | CGObjCRuntime &Runtime = CGM.getObjCRuntime(); | 
|  | llvm::Value *Val = Block; | 
|  | RValue Result; | 
|  | Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), | 
|  | Ty, CopySelector, | 
|  | Val, CallArgList(), nullptr, nullptr); | 
|  | Val = Result.getScalarVal(); | 
|  | Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), | 
|  | Ty, AutoreleaseSelector, | 
|  | Val, CallArgList(), nullptr, nullptr); | 
|  | Val = Result.getScalarVal(); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | llvm::Value * | 
|  | CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { | 
|  | assert(Args.size() == 3 && "Expected 3 argument here!"); | 
|  |  | 
|  | if (!CGM.IsOSVersionAtLeastFn) { | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); | 
|  | CGM.IsOSVersionAtLeastFn = | 
|  | CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); | 
|  | } | 
|  |  | 
|  | llvm::Value *CallRes = | 
|  | EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); | 
|  |  | 
|  | return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); | 
|  | } | 
|  |  | 
|  | void CodeGenModule::emitAtAvailableLinkGuard() { | 
|  | if (!IsOSVersionAtLeastFn) | 
|  | return; | 
|  | // @available requires CoreFoundation only on Darwin. | 
|  | if (!Target.getTriple().isOSDarwin()) | 
|  | return; | 
|  | // Add -framework CoreFoundation to the linker commands. We still want to | 
|  | // emit the core foundation reference down below because otherwise if | 
|  | // CoreFoundation is not used in the code, the linker won't link the | 
|  | // framework. | 
|  | auto &Context = getLLVMContext(); | 
|  | llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), | 
|  | llvm::MDString::get(Context, "CoreFoundation")}; | 
|  | LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); | 
|  | // Emit a reference to a symbol from CoreFoundation to ensure that | 
|  | // CoreFoundation is linked into the final binary. | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); | 
|  | llvm::FunctionCallee CFFunc = | 
|  | CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); | 
|  |  | 
|  | llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); | 
|  | llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( | 
|  | CheckFTy, "__clang_at_available_requires_core_foundation_framework", | 
|  | llvm::AttributeList(), /*IsLocal=*/true); | 
|  | llvm::Function *CFLinkCheckFunc = | 
|  | cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); | 
|  | if (CFLinkCheckFunc->empty()) { | 
|  | CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); | 
|  | CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); | 
|  | CodeGenFunction CGF(*this); | 
|  | CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); | 
|  | CGF.EmitNounwindRuntimeCall(CFFunc, | 
|  | llvm::Constant::getNullValue(VoidPtrTy)); | 
|  | CGF.Builder.CreateUnreachable(); | 
|  | addCompilerUsedGlobal(CFLinkCheckFunc); | 
|  | } | 
|  | } | 
|  |  | 
|  | CGObjCRuntime::~CGObjCRuntime() {} |