|  | //===- HexagonBitSimplify.cpp ---------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "BitTracker.h" | 
|  | #include "HexagonBitTracker.h" | 
|  | #include "HexagonInstrInfo.h" | 
|  | #include "HexagonRegisterInfo.h" | 
|  | #include "HexagonSubtarget.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/GraphTraits.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #define DEBUG_TYPE "hexbit" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden, | 
|  | cl::init(true), cl::desc("Preserve subregisters in tied operands")); | 
|  | static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden, | 
|  | cl::init(true), cl::desc("Generate extract instructions")); | 
|  | static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden, | 
|  | cl::init(true), cl::desc("Generate bitsplit instructions")); | 
|  |  | 
|  | static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden, | 
|  | cl::init(std::numeric_limits<unsigned>::max())); | 
|  | static unsigned CountExtract = 0; | 
|  | static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden, | 
|  | cl::init(std::numeric_limits<unsigned>::max())); | 
|  | static unsigned CountBitSplit = 0; | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | void initializeHexagonBitSimplifyPass(PassRegistry& Registry); | 
|  | FunctionPass *createHexagonBitSimplify(); | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Set of virtual registers, based on BitVector. | 
|  | struct RegisterSet : private BitVector { | 
|  | RegisterSet() = default; | 
|  | explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} | 
|  | RegisterSet(const RegisterSet &RS) = default; | 
|  |  | 
|  | using BitVector::clear; | 
|  | using BitVector::count; | 
|  |  | 
|  | unsigned find_first() const { | 
|  | int First = BitVector::find_first(); | 
|  | if (First < 0) | 
|  | return 0; | 
|  | return x2v(First); | 
|  | } | 
|  |  | 
|  | unsigned find_next(unsigned Prev) const { | 
|  | int Next = BitVector::find_next(v2x(Prev)); | 
|  | if (Next < 0) | 
|  | return 0; | 
|  | return x2v(Next); | 
|  | } | 
|  |  | 
|  | RegisterSet &insert(unsigned R) { | 
|  | unsigned Idx = v2x(R); | 
|  | ensure(Idx); | 
|  | return static_cast<RegisterSet&>(BitVector::set(Idx)); | 
|  | } | 
|  | RegisterSet &remove(unsigned R) { | 
|  | unsigned Idx = v2x(R); | 
|  | if (Idx >= size()) | 
|  | return *this; | 
|  | return static_cast<RegisterSet&>(BitVector::reset(Idx)); | 
|  | } | 
|  |  | 
|  | RegisterSet &insert(const RegisterSet &Rs) { | 
|  | return static_cast<RegisterSet&>(BitVector::operator|=(Rs)); | 
|  | } | 
|  | RegisterSet &remove(const RegisterSet &Rs) { | 
|  | return static_cast<RegisterSet&>(BitVector::reset(Rs)); | 
|  | } | 
|  |  | 
|  | reference operator[](unsigned R) { | 
|  | unsigned Idx = v2x(R); | 
|  | ensure(Idx); | 
|  | return BitVector::operator[](Idx); | 
|  | } | 
|  | bool operator[](unsigned R) const { | 
|  | unsigned Idx = v2x(R); | 
|  | assert(Idx < size()); | 
|  | return BitVector::operator[](Idx); | 
|  | } | 
|  | bool has(unsigned R) const { | 
|  | unsigned Idx = v2x(R); | 
|  | if (Idx >= size()) | 
|  | return false; | 
|  | return BitVector::test(Idx); | 
|  | } | 
|  |  | 
|  | bool empty() const { | 
|  | return !BitVector::any(); | 
|  | } | 
|  | bool includes(const RegisterSet &Rs) const { | 
|  | // A.BitVector::test(B)  <=>  A-B != {} | 
|  | return !Rs.BitVector::test(*this); | 
|  | } | 
|  | bool intersects(const RegisterSet &Rs) const { | 
|  | return BitVector::anyCommon(Rs); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void ensure(unsigned Idx) { | 
|  | if (size() <= Idx) | 
|  | resize(std::max(Idx+1, 32U)); | 
|  | } | 
|  |  | 
|  | static inline unsigned v2x(unsigned v) { | 
|  | return TargetRegisterInfo::virtReg2Index(v); | 
|  | } | 
|  |  | 
|  | static inline unsigned x2v(unsigned x) { | 
|  | return TargetRegisterInfo::index2VirtReg(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct PrintRegSet { | 
|  | PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) | 
|  | : RS(S), TRI(RI) {} | 
|  |  | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, | 
|  | const PrintRegSet &P); | 
|  |  | 
|  | private: | 
|  | const RegisterSet &RS; | 
|  | const TargetRegisterInfo *TRI; | 
|  | }; | 
|  |  | 
|  | raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) | 
|  | LLVM_ATTRIBUTE_UNUSED; | 
|  | raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { | 
|  | OS << '{'; | 
|  | for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R)) | 
|  | OS << ' ' << printReg(R, P.TRI); | 
|  | OS << " }"; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | class Transformation; | 
|  |  | 
|  | class HexagonBitSimplify : public MachineFunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | HexagonBitSimplify() : MachineFunctionPass(ID) { | 
|  | initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "Hexagon bit simplification"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs); | 
|  | static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses); | 
|  | static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1, | 
|  | const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W); | 
|  | static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B, | 
|  | uint16_t W); | 
|  | static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B, | 
|  | uint16_t W, uint64_t &U); | 
|  | static bool replaceReg(unsigned OldR, unsigned NewR, | 
|  | MachineRegisterInfo &MRI); | 
|  | static bool getSubregMask(const BitTracker::RegisterRef &RR, | 
|  | unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI); | 
|  | static bool replaceRegWithSub(unsigned OldR, unsigned NewR, | 
|  | unsigned NewSR, MachineRegisterInfo &MRI); | 
|  | static bool replaceSubWithSub(unsigned OldR, unsigned OldSR, | 
|  | unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI); | 
|  | static bool parseRegSequence(const MachineInstr &I, | 
|  | BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH, | 
|  | const MachineRegisterInfo &MRI); | 
|  |  | 
|  | static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits, | 
|  | uint16_t Begin); | 
|  | static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits, | 
|  | uint16_t Begin, const HexagonInstrInfo &HII); | 
|  |  | 
|  | static const TargetRegisterClass *getFinalVRegClass( | 
|  | const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI); | 
|  | static bool isTransparentCopy(const BitTracker::RegisterRef &RD, | 
|  | const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI); | 
|  |  | 
|  | private: | 
|  | MachineDominatorTree *MDT = nullptr; | 
|  |  | 
|  | bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs); | 
|  | static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI, | 
|  | unsigned NewSub = Hexagon::NoSubRegister); | 
|  | }; | 
|  |  | 
|  | using HBS = HexagonBitSimplify; | 
|  |  | 
|  | // The purpose of this class is to provide a common facility to traverse | 
|  | // the function top-down or bottom-up via the dominator tree, and keep | 
|  | // track of the available registers. | 
|  | class Transformation { | 
|  | public: | 
|  | bool TopDown; | 
|  |  | 
|  | Transformation(bool TD) : TopDown(TD) {} | 
|  | virtual ~Transformation() = default; | 
|  |  | 
|  | virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char HexagonBitSimplify::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit", | 
|  | "Hexagon bit simplification", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit", | 
|  | "Hexagon bit simplification", false, false) | 
|  |  | 
|  | bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T, | 
|  | RegisterSet &AVs) { | 
|  | bool Changed = false; | 
|  |  | 
|  | if (T.TopDown) | 
|  | Changed = T.processBlock(B, AVs); | 
|  |  | 
|  | RegisterSet Defs; | 
|  | for (auto &I : B) | 
|  | getInstrDefs(I, Defs); | 
|  | RegisterSet NewAVs = AVs; | 
|  | NewAVs.insert(Defs); | 
|  |  | 
|  | for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B))) | 
|  | Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs); | 
|  |  | 
|  | if (!T.TopDown) | 
|  | Changed |= T.processBlock(B, AVs); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // | 
|  | // Utility functions: | 
|  | // | 
|  | void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI, | 
|  | RegisterSet &Defs) { | 
|  | for (auto &Op : MI.operands()) { | 
|  | if (!Op.isReg() || !Op.isDef()) | 
|  | continue; | 
|  | unsigned R = Op.getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(R)) | 
|  | continue; | 
|  | Defs.insert(R); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonBitSimplify::getInstrUses(const MachineInstr &MI, | 
|  | RegisterSet &Uses) { | 
|  | for (auto &Op : MI.operands()) { | 
|  | if (!Op.isReg() || !Op.isUse()) | 
|  | continue; | 
|  | unsigned R = Op.getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(R)) | 
|  | continue; | 
|  | Uses.insert(R); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if all the bits in range [B, E) in both cells are equal. | 
|  | bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1, | 
|  | uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2, | 
|  | uint16_t W) { | 
|  | for (uint16_t i = 0; i < W; ++i) { | 
|  | // If RC1[i] is "bottom", it cannot be proven equal to RC2[i]. | 
|  | if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0) | 
|  | return false; | 
|  | // Same for RC2[i]. | 
|  | if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0) | 
|  | return false; | 
|  | if (RC1[B1+i] != RC2[B2+i]) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC, | 
|  | uint16_t B, uint16_t W) { | 
|  | assert(B < RC.width() && B+W <= RC.width()); | 
|  | for (uint16_t i = B; i < B+W; ++i) | 
|  | if (!RC[i].is(0)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC, | 
|  | uint16_t B, uint16_t W, uint64_t &U) { | 
|  | assert(B < RC.width() && B+W <= RC.width()); | 
|  | int64_t T = 0; | 
|  | for (uint16_t i = B+W; i > B; --i) { | 
|  | const BitTracker::BitValue &BV = RC[i-1]; | 
|  | T <<= 1; | 
|  | if (BV.is(1)) | 
|  | T |= 1; | 
|  | else if (!BV.is(0)) | 
|  | return false; | 
|  | } | 
|  | U = T; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR, | 
|  | MachineRegisterInfo &MRI) { | 
|  | if (!TargetRegisterInfo::isVirtualRegister(OldR) || | 
|  | !TargetRegisterInfo::isVirtualRegister(NewR)) | 
|  | return false; | 
|  | auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); | 
|  | decltype(End) NextI; | 
|  | for (auto I = Begin; I != End; I = NextI) { | 
|  | NextI = std::next(I); | 
|  | I->setReg(NewR); | 
|  | } | 
|  | return Begin != End; | 
|  | } | 
|  |  | 
|  | bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR, | 
|  | unsigned NewSR, MachineRegisterInfo &MRI) { | 
|  | if (!TargetRegisterInfo::isVirtualRegister(OldR) || | 
|  | !TargetRegisterInfo::isVirtualRegister(NewR)) | 
|  | return false; | 
|  | if (hasTiedUse(OldR, MRI, NewSR)) | 
|  | return false; | 
|  | auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); | 
|  | decltype(End) NextI; | 
|  | for (auto I = Begin; I != End; I = NextI) { | 
|  | NextI = std::next(I); | 
|  | I->setReg(NewR); | 
|  | I->setSubReg(NewSR); | 
|  | } | 
|  | return Begin != End; | 
|  | } | 
|  |  | 
|  | bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR, | 
|  | unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) { | 
|  | if (!TargetRegisterInfo::isVirtualRegister(OldR) || | 
|  | !TargetRegisterInfo::isVirtualRegister(NewR)) | 
|  | return false; | 
|  | if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR)) | 
|  | return false; | 
|  | auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); | 
|  | decltype(End) NextI; | 
|  | for (auto I = Begin; I != End; I = NextI) { | 
|  | NextI = std::next(I); | 
|  | if (I->getSubReg() != OldSR) | 
|  | continue; | 
|  | I->setReg(NewR); | 
|  | I->setSubReg(NewSR); | 
|  | } | 
|  | return Begin != End; | 
|  | } | 
|  |  | 
|  | // For a register ref (pair Reg:Sub), set Begin to the position of the LSB | 
|  | // of Sub in Reg, and set Width to the size of Sub in bits. Return true, | 
|  | // if this succeeded, otherwise return false. | 
|  | bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR, | 
|  | unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) { | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg); | 
|  | if (RR.Sub == 0) { | 
|  | Begin = 0; | 
|  | Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Begin = 0; | 
|  |  | 
|  | switch (RC->getID()) { | 
|  | case Hexagon::DoubleRegsRegClassID: | 
|  | case Hexagon::HvxWRRegClassID: | 
|  | Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2; | 
|  | if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi) | 
|  | Begin = Width; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // For a REG_SEQUENCE, set SL to the low subregister and SH to the high | 
|  | // subregister. | 
|  | bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I, | 
|  | BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH, | 
|  | const MachineRegisterInfo &MRI) { | 
|  | assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE); | 
|  | unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm(); | 
|  | auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg()); | 
|  | auto &HRI = static_cast<const HexagonRegisterInfo&>( | 
|  | *MRI.getTargetRegisterInfo()); | 
|  | unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo); | 
|  | unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi); | 
|  | assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo)); | 
|  | if (Sub1 == SubLo && Sub2 == SubHi) { | 
|  | SL = I.getOperand(1); | 
|  | SH = I.getOperand(3); | 
|  | return true; | 
|  | } | 
|  | if (Sub1 == SubHi && Sub2 == SubLo) { | 
|  | SH = I.getOperand(1); | 
|  | SL = I.getOperand(3); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // All stores (except 64-bit stores) take a 32-bit register as the source | 
|  | // of the value to be stored. If the instruction stores into a location | 
|  | // that is shorter than 32 bits, some bits of the source register are not | 
|  | // used. For each store instruction, calculate the set of used bits in | 
|  | // the source register, and set appropriate bits in Bits. Return true if | 
|  | // the bits are calculated, false otherwise. | 
|  | bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits, | 
|  | uint16_t Begin) { | 
|  | using namespace Hexagon; | 
|  |  | 
|  | switch (Opc) { | 
|  | // Store byte | 
|  | case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32 | 
|  | case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new | 
|  | case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32 | 
|  | case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32 | 
|  | case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32 | 
|  | case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32 | 
|  | case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new | 
|  | case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new | 
|  | case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new | 
|  | case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new | 
|  | case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32 | 
|  | case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new | 
|  | case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32 | 
|  | case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32 | 
|  | case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32 | 
|  | case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32 | 
|  | case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new | 
|  | case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new | 
|  | case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new | 
|  | case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new | 
|  | case S4_storerb_ap:           // memb(Re32=#U6)=Rt32 | 
|  | case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new | 
|  | case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32 | 
|  | case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new | 
|  | case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32 | 
|  | case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new | 
|  | case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32 | 
|  | case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new | 
|  | case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32 | 
|  | case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new | 
|  | case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32 | 
|  | case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new | 
|  | case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32 | 
|  | case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new | 
|  | case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32 | 
|  | case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32 | 
|  | case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 | 
|  | case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 | 
|  | case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new | 
|  | case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new | 
|  | case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new | 
|  | case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new | 
|  | case S2_storerbgp:            // memb(gp+#u16:0)=Rt32 | 
|  | case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new | 
|  | case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32 | 
|  | case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32 | 
|  | case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32 | 
|  | case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32 | 
|  | case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new | 
|  | case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new | 
|  | case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new | 
|  | case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new | 
|  | Bits.set(Begin, Begin+8); | 
|  | return true; | 
|  |  | 
|  | // Store low half | 
|  | case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32 | 
|  | case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new | 
|  | case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32 | 
|  | case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32 | 
|  | case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32 | 
|  | case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32 | 
|  | case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new | 
|  | case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new | 
|  | case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new | 
|  | case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new | 
|  | case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32 | 
|  | case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new | 
|  | case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32 | 
|  | case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32 | 
|  | case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32 | 
|  | case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32 | 
|  | case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new | 
|  | case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new | 
|  | case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new | 
|  | case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new | 
|  | case S4_storerh_ap:           // memh(Re32=#U6)=Rt32 | 
|  | case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new | 
|  | case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32 | 
|  | case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new | 
|  | case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32 | 
|  | case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new | 
|  | case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32 | 
|  | case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new | 
|  | case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32 | 
|  | case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new | 
|  | case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32 | 
|  | case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new | 
|  | case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32 | 
|  | case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32 | 
|  | case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32 | 
|  | case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 | 
|  | case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 | 
|  | case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new | 
|  | case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new | 
|  | case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new | 
|  | case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new | 
|  | case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new | 
|  | case S2_storerhgp:            // memh(gp+#u16:1)=Rt32 | 
|  | case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new | 
|  | case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32 | 
|  | case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32 | 
|  | case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32 | 
|  | case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32 | 
|  | case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new | 
|  | case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new | 
|  | case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new | 
|  | case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new | 
|  | Bits.set(Begin, Begin+16); | 
|  | return true; | 
|  |  | 
|  | // Store high half | 
|  | case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32 | 
|  | case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32 | 
|  | case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32 | 
|  | case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32 | 
|  | case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32 | 
|  | case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32 | 
|  | case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32 | 
|  | case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32 | 
|  | case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32 | 
|  | case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32 | 
|  | case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32 | 
|  | case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32 | 
|  | case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32 | 
|  | case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32 | 
|  | case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32 | 
|  | case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32 | 
|  | case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32 | 
|  | case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 | 
|  | case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 | 
|  | case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 | 
|  | case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 | 
|  | case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32 | 
|  | case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32 | 
|  | case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32 | 
|  | case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32 | 
|  | case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32 | 
|  | Bits.set(Begin+16, Begin+32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // For an instruction with opcode Opc, calculate the set of bits that it | 
|  | // uses in a register in operand OpN. This only calculates the set of used | 
|  | // bits for cases where it does not depend on any operands (as is the case | 
|  | // in shifts, for example). For concrete instructions from a program, the | 
|  | // operand may be a subregister of a larger register, while Bits would | 
|  | // correspond to the larger register in its entirety. Because of that, | 
|  | // the parameter Begin can be used to indicate which bit of Bits should be | 
|  | // considered the LSB of of the operand. | 
|  | bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN, | 
|  | BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) { | 
|  | using namespace Hexagon; | 
|  |  | 
|  | const MCInstrDesc &D = HII.get(Opc); | 
|  | if (D.mayStore()) { | 
|  | if (OpN == D.getNumOperands()-1) | 
|  | return getUsedBitsInStore(Opc, Bits, Begin); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (Opc) { | 
|  | // One register source. Used bits: R1[0-7]. | 
|  | case A2_sxtb: | 
|  | case A2_zxtb: | 
|  | case A4_cmpbeqi: | 
|  | case A4_cmpbgti: | 
|  | case A4_cmpbgtui: | 
|  | if (OpN == 1) { | 
|  | Bits.set(Begin, Begin+8); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // One register source. Used bits: R1[0-15]. | 
|  | case A2_aslh: | 
|  | case A2_sxth: | 
|  | case A2_zxth: | 
|  | case A4_cmpheqi: | 
|  | case A4_cmphgti: | 
|  | case A4_cmphgtui: | 
|  | if (OpN == 1) { | 
|  | Bits.set(Begin, Begin+16); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // One register source. Used bits: R1[16-31]. | 
|  | case A2_asrh: | 
|  | if (OpN == 1) { | 
|  | Bits.set(Begin+16, Begin+32); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Two register sources. Used bits: R1[0-7], R2[0-7]. | 
|  | case A4_cmpbeq: | 
|  | case A4_cmpbgt: | 
|  | case A4_cmpbgtu: | 
|  | if (OpN == 1) { | 
|  | Bits.set(Begin, Begin+8); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Two register sources. Used bits: R1[0-15], R2[0-15]. | 
|  | case A4_cmpheq: | 
|  | case A4_cmphgt: | 
|  | case A4_cmphgtu: | 
|  | case A2_addh_h16_ll: | 
|  | case A2_addh_h16_sat_ll: | 
|  | case A2_addh_l16_ll: | 
|  | case A2_addh_l16_sat_ll: | 
|  | case A2_combine_ll: | 
|  | case A2_subh_h16_ll: | 
|  | case A2_subh_h16_sat_ll: | 
|  | case A2_subh_l16_ll: | 
|  | case A2_subh_l16_sat_ll: | 
|  | case M2_mpy_acc_ll_s0: | 
|  | case M2_mpy_acc_ll_s1: | 
|  | case M2_mpy_acc_sat_ll_s0: | 
|  | case M2_mpy_acc_sat_ll_s1: | 
|  | case M2_mpy_ll_s0: | 
|  | case M2_mpy_ll_s1: | 
|  | case M2_mpy_nac_ll_s0: | 
|  | case M2_mpy_nac_ll_s1: | 
|  | case M2_mpy_nac_sat_ll_s0: | 
|  | case M2_mpy_nac_sat_ll_s1: | 
|  | case M2_mpy_rnd_ll_s0: | 
|  | case M2_mpy_rnd_ll_s1: | 
|  | case M2_mpy_sat_ll_s0: | 
|  | case M2_mpy_sat_ll_s1: | 
|  | case M2_mpy_sat_rnd_ll_s0: | 
|  | case M2_mpy_sat_rnd_ll_s1: | 
|  | case M2_mpyd_acc_ll_s0: | 
|  | case M2_mpyd_acc_ll_s1: | 
|  | case M2_mpyd_ll_s0: | 
|  | case M2_mpyd_ll_s1: | 
|  | case M2_mpyd_nac_ll_s0: | 
|  | case M2_mpyd_nac_ll_s1: | 
|  | case M2_mpyd_rnd_ll_s0: | 
|  | case M2_mpyd_rnd_ll_s1: | 
|  | case M2_mpyu_acc_ll_s0: | 
|  | case M2_mpyu_acc_ll_s1: | 
|  | case M2_mpyu_ll_s0: | 
|  | case M2_mpyu_ll_s1: | 
|  | case M2_mpyu_nac_ll_s0: | 
|  | case M2_mpyu_nac_ll_s1: | 
|  | case M2_mpyud_acc_ll_s0: | 
|  | case M2_mpyud_acc_ll_s1: | 
|  | case M2_mpyud_ll_s0: | 
|  | case M2_mpyud_ll_s1: | 
|  | case M2_mpyud_nac_ll_s0: | 
|  | case M2_mpyud_nac_ll_s1: | 
|  | if (OpN == 1 || OpN == 2) { | 
|  | Bits.set(Begin, Begin+16); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Two register sources. Used bits: R1[0-15], R2[16-31]. | 
|  | case A2_addh_h16_lh: | 
|  | case A2_addh_h16_sat_lh: | 
|  | case A2_combine_lh: | 
|  | case A2_subh_h16_lh: | 
|  | case A2_subh_h16_sat_lh: | 
|  | case M2_mpy_acc_lh_s0: | 
|  | case M2_mpy_acc_lh_s1: | 
|  | case M2_mpy_acc_sat_lh_s0: | 
|  | case M2_mpy_acc_sat_lh_s1: | 
|  | case M2_mpy_lh_s0: | 
|  | case M2_mpy_lh_s1: | 
|  | case M2_mpy_nac_lh_s0: | 
|  | case M2_mpy_nac_lh_s1: | 
|  | case M2_mpy_nac_sat_lh_s0: | 
|  | case M2_mpy_nac_sat_lh_s1: | 
|  | case M2_mpy_rnd_lh_s0: | 
|  | case M2_mpy_rnd_lh_s1: | 
|  | case M2_mpy_sat_lh_s0: | 
|  | case M2_mpy_sat_lh_s1: | 
|  | case M2_mpy_sat_rnd_lh_s0: | 
|  | case M2_mpy_sat_rnd_lh_s1: | 
|  | case M2_mpyd_acc_lh_s0: | 
|  | case M2_mpyd_acc_lh_s1: | 
|  | case M2_mpyd_lh_s0: | 
|  | case M2_mpyd_lh_s1: | 
|  | case M2_mpyd_nac_lh_s0: | 
|  | case M2_mpyd_nac_lh_s1: | 
|  | case M2_mpyd_rnd_lh_s0: | 
|  | case M2_mpyd_rnd_lh_s1: | 
|  | case M2_mpyu_acc_lh_s0: | 
|  | case M2_mpyu_acc_lh_s1: | 
|  | case M2_mpyu_lh_s0: | 
|  | case M2_mpyu_lh_s1: | 
|  | case M2_mpyu_nac_lh_s0: | 
|  | case M2_mpyu_nac_lh_s1: | 
|  | case M2_mpyud_acc_lh_s0: | 
|  | case M2_mpyud_acc_lh_s1: | 
|  | case M2_mpyud_lh_s0: | 
|  | case M2_mpyud_lh_s1: | 
|  | case M2_mpyud_nac_lh_s0: | 
|  | case M2_mpyud_nac_lh_s1: | 
|  | // These four are actually LH. | 
|  | case A2_addh_l16_hl: | 
|  | case A2_addh_l16_sat_hl: | 
|  | case A2_subh_l16_hl: | 
|  | case A2_subh_l16_sat_hl: | 
|  | if (OpN == 1) { | 
|  | Bits.set(Begin, Begin+16); | 
|  | return true; | 
|  | } | 
|  | if (OpN == 2) { | 
|  | Bits.set(Begin+16, Begin+32); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Two register sources, used bits: R1[16-31], R2[0-15]. | 
|  | case A2_addh_h16_hl: | 
|  | case A2_addh_h16_sat_hl: | 
|  | case A2_combine_hl: | 
|  | case A2_subh_h16_hl: | 
|  | case A2_subh_h16_sat_hl: | 
|  | case M2_mpy_acc_hl_s0: | 
|  | case M2_mpy_acc_hl_s1: | 
|  | case M2_mpy_acc_sat_hl_s0: | 
|  | case M2_mpy_acc_sat_hl_s1: | 
|  | case M2_mpy_hl_s0: | 
|  | case M2_mpy_hl_s1: | 
|  | case M2_mpy_nac_hl_s0: | 
|  | case M2_mpy_nac_hl_s1: | 
|  | case M2_mpy_nac_sat_hl_s0: | 
|  | case M2_mpy_nac_sat_hl_s1: | 
|  | case M2_mpy_rnd_hl_s0: | 
|  | case M2_mpy_rnd_hl_s1: | 
|  | case M2_mpy_sat_hl_s0: | 
|  | case M2_mpy_sat_hl_s1: | 
|  | case M2_mpy_sat_rnd_hl_s0: | 
|  | case M2_mpy_sat_rnd_hl_s1: | 
|  | case M2_mpyd_acc_hl_s0: | 
|  | case M2_mpyd_acc_hl_s1: | 
|  | case M2_mpyd_hl_s0: | 
|  | case M2_mpyd_hl_s1: | 
|  | case M2_mpyd_nac_hl_s0: | 
|  | case M2_mpyd_nac_hl_s1: | 
|  | case M2_mpyd_rnd_hl_s0: | 
|  | case M2_mpyd_rnd_hl_s1: | 
|  | case M2_mpyu_acc_hl_s0: | 
|  | case M2_mpyu_acc_hl_s1: | 
|  | case M2_mpyu_hl_s0: | 
|  | case M2_mpyu_hl_s1: | 
|  | case M2_mpyu_nac_hl_s0: | 
|  | case M2_mpyu_nac_hl_s1: | 
|  | case M2_mpyud_acc_hl_s0: | 
|  | case M2_mpyud_acc_hl_s1: | 
|  | case M2_mpyud_hl_s0: | 
|  | case M2_mpyud_hl_s1: | 
|  | case M2_mpyud_nac_hl_s0: | 
|  | case M2_mpyud_nac_hl_s1: | 
|  | if (OpN == 1) { | 
|  | Bits.set(Begin+16, Begin+32); | 
|  | return true; | 
|  | } | 
|  | if (OpN == 2) { | 
|  | Bits.set(Begin, Begin+16); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Two register sources, used bits: R1[16-31], R2[16-31]. | 
|  | case A2_addh_h16_hh: | 
|  | case A2_addh_h16_sat_hh: | 
|  | case A2_combine_hh: | 
|  | case A2_subh_h16_hh: | 
|  | case A2_subh_h16_sat_hh: | 
|  | case M2_mpy_acc_hh_s0: | 
|  | case M2_mpy_acc_hh_s1: | 
|  | case M2_mpy_acc_sat_hh_s0: | 
|  | case M2_mpy_acc_sat_hh_s1: | 
|  | case M2_mpy_hh_s0: | 
|  | case M2_mpy_hh_s1: | 
|  | case M2_mpy_nac_hh_s0: | 
|  | case M2_mpy_nac_hh_s1: | 
|  | case M2_mpy_nac_sat_hh_s0: | 
|  | case M2_mpy_nac_sat_hh_s1: | 
|  | case M2_mpy_rnd_hh_s0: | 
|  | case M2_mpy_rnd_hh_s1: | 
|  | case M2_mpy_sat_hh_s0: | 
|  | case M2_mpy_sat_hh_s1: | 
|  | case M2_mpy_sat_rnd_hh_s0: | 
|  | case M2_mpy_sat_rnd_hh_s1: | 
|  | case M2_mpyd_acc_hh_s0: | 
|  | case M2_mpyd_acc_hh_s1: | 
|  | case M2_mpyd_hh_s0: | 
|  | case M2_mpyd_hh_s1: | 
|  | case M2_mpyd_nac_hh_s0: | 
|  | case M2_mpyd_nac_hh_s1: | 
|  | case M2_mpyd_rnd_hh_s0: | 
|  | case M2_mpyd_rnd_hh_s1: | 
|  | case M2_mpyu_acc_hh_s0: | 
|  | case M2_mpyu_acc_hh_s1: | 
|  | case M2_mpyu_hh_s0: | 
|  | case M2_mpyu_hh_s1: | 
|  | case M2_mpyu_nac_hh_s0: | 
|  | case M2_mpyu_nac_hh_s1: | 
|  | case M2_mpyud_acc_hh_s0: | 
|  | case M2_mpyud_acc_hh_s1: | 
|  | case M2_mpyud_hh_s0: | 
|  | case M2_mpyud_hh_s1: | 
|  | case M2_mpyud_nac_hh_s0: | 
|  | case M2_mpyud_nac_hh_s1: | 
|  | if (OpN == 1 || OpN == 2) { | 
|  | Bits.set(Begin+16, Begin+32); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Calculate the register class that matches Reg:Sub. For example, if | 
|  | // %1 is a double register, then %1:isub_hi would match the "int" | 
|  | // register class. | 
|  | const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass( | 
|  | const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) { | 
|  | if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) | 
|  | return nullptr; | 
|  | auto *RC = MRI.getRegClass(RR.Reg); | 
|  | if (RR.Sub == 0) | 
|  | return RC; | 
|  | auto &HRI = static_cast<const HexagonRegisterInfo&>( | 
|  | *MRI.getTargetRegisterInfo()); | 
|  |  | 
|  | auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void { | 
|  | (void)HRI; | 
|  | assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) || | 
|  | Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi)); | 
|  | }; | 
|  |  | 
|  | switch (RC->getID()) { | 
|  | case Hexagon::DoubleRegsRegClassID: | 
|  | VerifySR(RC, RR.Sub); | 
|  | return &Hexagon::IntRegsRegClass; | 
|  | case Hexagon::HvxWRRegClassID: | 
|  | VerifySR(RC, RR.Sub); | 
|  | return &Hexagon::HvxVRRegClass; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Check if RD could be replaced with RS at any possible use of RD. | 
|  | // For example a predicate register cannot be replaced with a integer | 
|  | // register, but a 64-bit register with a subregister can be replaced | 
|  | // with a 32-bit register. | 
|  | bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD, | 
|  | const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) { | 
|  | if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) || | 
|  | !TargetRegisterInfo::isVirtualRegister(RS.Reg)) | 
|  | return false; | 
|  | // Return false if one (or both) classes are nullptr. | 
|  | auto *DRC = getFinalVRegClass(RD, MRI); | 
|  | if (!DRC) | 
|  | return false; | 
|  |  | 
|  | return DRC == getFinalVRegClass(RS, MRI); | 
|  | } | 
|  |  | 
|  | bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI, | 
|  | unsigned NewSub) { | 
|  | if (!PreserveTiedOps) | 
|  | return false; | 
|  | return llvm::any_of(MRI.use_operands(Reg), | 
|  | [NewSub] (const MachineOperand &Op) -> bool { | 
|  | return Op.getSubReg() != NewSub && Op.isTied(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class DeadCodeElimination { | 
|  | public: | 
|  | DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt) | 
|  | : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()), | 
|  | MDT(mdt), MRI(mf.getRegInfo()) {} | 
|  |  | 
|  | bool run() { | 
|  | return runOnNode(MDT.getRootNode()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool isDead(unsigned R) const; | 
|  | bool runOnNode(MachineDomTreeNode *N); | 
|  |  | 
|  | MachineFunction &MF; | 
|  | const HexagonInstrInfo &HII; | 
|  | MachineDominatorTree &MDT; | 
|  | MachineRegisterInfo &MRI; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool DeadCodeElimination::isDead(unsigned R) const { | 
|  | for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { | 
|  | MachineInstr *UseI = I->getParent(); | 
|  | if (UseI->isDebugValue()) | 
|  | continue; | 
|  | if (UseI->isPHI()) { | 
|  | assert(!UseI->getOperand(0).getSubReg()); | 
|  | unsigned DR = UseI->getOperand(0).getReg(); | 
|  | if (DR == R) | 
|  | continue; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) { | 
|  | bool Changed = false; | 
|  |  | 
|  | for (auto *DTN : children<MachineDomTreeNode*>(N)) | 
|  | Changed |= runOnNode(DTN); | 
|  |  | 
|  | MachineBasicBlock *B = N->getBlock(); | 
|  | std::vector<MachineInstr*> Instrs; | 
|  | for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) | 
|  | Instrs.push_back(&*I); | 
|  |  | 
|  | for (auto MI : Instrs) { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | // Do not touch lifetime markers. This is why the target-independent DCE | 
|  | // cannot be used. | 
|  | if (Opc == TargetOpcode::LIFETIME_START || | 
|  | Opc == TargetOpcode::LIFETIME_END) | 
|  | continue; | 
|  | bool Store = false; | 
|  | if (MI->isInlineAsm()) | 
|  | continue; | 
|  | // Delete PHIs if possible. | 
|  | if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store)) | 
|  | continue; | 
|  |  | 
|  | bool AllDead = true; | 
|  | SmallVector<unsigned,2> Regs; | 
|  | for (auto &Op : MI->operands()) { | 
|  | if (!Op.isReg() || !Op.isDef()) | 
|  | continue; | 
|  | unsigned R = Op.getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) { | 
|  | AllDead = false; | 
|  | break; | 
|  | } | 
|  | Regs.push_back(R); | 
|  | } | 
|  | if (!AllDead) | 
|  | continue; | 
|  |  | 
|  | B->erase(MI); | 
|  | for (unsigned i = 0, n = Regs.size(); i != n; ++i) | 
|  | MRI.markUsesInDebugValueAsUndef(Regs[i]); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Eliminate redundant instructions | 
|  | // | 
|  | // This transformation will identify instructions where the output register | 
|  | // is the same as one of its input registers. This only works on instructions | 
|  | // that define a single register (unlike post-increment loads, for example). | 
|  | // The equality check is actually more detailed: the code calculates which | 
|  | // bits of the output are used, and only compares these bits with the input | 
|  | // registers. | 
|  | // If the output matches an input, the instruction is replaced with COPY. | 
|  | // The copies will be removed by another transformation. | 
|  | class RedundantInstrElimination : public Transformation { | 
|  | public: | 
|  | RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii, | 
|  | const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) | 
|  | : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {} | 
|  |  | 
|  | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; | 
|  |  | 
|  | private: | 
|  | bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN, | 
|  | unsigned &LostB, unsigned &LostE); | 
|  | bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN, | 
|  | unsigned &LostB, unsigned &LostE); | 
|  | bool computeUsedBits(unsigned Reg, BitVector &Bits); | 
|  | bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits, | 
|  | uint16_t Begin); | 
|  | bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS); | 
|  |  | 
|  | const HexagonInstrInfo &HII; | 
|  | const HexagonRegisterInfo &HRI; | 
|  | MachineRegisterInfo &MRI; | 
|  | BitTracker &BT; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // Check if the instruction is a lossy shift left, where the input being | 
|  | // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range | 
|  | // of bit indices that are lost. | 
|  | bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI, | 
|  | unsigned OpN, unsigned &LostB, unsigned &LostE) { | 
|  | using namespace Hexagon; | 
|  |  | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | unsigned ImN, RegN, Width; | 
|  | switch (Opc) { | 
|  | case S2_asl_i_p: | 
|  | ImN = 2; | 
|  | RegN = 1; | 
|  | Width = 64; | 
|  | break; | 
|  | case S2_asl_i_p_acc: | 
|  | case S2_asl_i_p_and: | 
|  | case S2_asl_i_p_nac: | 
|  | case S2_asl_i_p_or: | 
|  | case S2_asl_i_p_xacc: | 
|  | ImN = 3; | 
|  | RegN = 2; | 
|  | Width = 64; | 
|  | break; | 
|  | case S2_asl_i_r: | 
|  | ImN = 2; | 
|  | RegN = 1; | 
|  | Width = 32; | 
|  | break; | 
|  | case S2_addasl_rrri: | 
|  | case S4_andi_asl_ri: | 
|  | case S4_ori_asl_ri: | 
|  | case S4_addi_asl_ri: | 
|  | case S4_subi_asl_ri: | 
|  | case S2_asl_i_r_acc: | 
|  | case S2_asl_i_r_and: | 
|  | case S2_asl_i_r_nac: | 
|  | case S2_asl_i_r_or: | 
|  | case S2_asl_i_r_sat: | 
|  | case S2_asl_i_r_xacc: | 
|  | ImN = 3; | 
|  | RegN = 2; | 
|  | Width = 32; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (RegN != OpN) | 
|  | return false; | 
|  |  | 
|  | assert(MI.getOperand(ImN).isImm()); | 
|  | unsigned S = MI.getOperand(ImN).getImm(); | 
|  | if (S == 0) | 
|  | return false; | 
|  | LostB = Width-S; | 
|  | LostE = Width; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if the instruction is a lossy shift right, where the input being | 
|  | // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range | 
|  | // of bit indices that are lost. | 
|  | bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI, | 
|  | unsigned OpN, unsigned &LostB, unsigned &LostE) { | 
|  | using namespace Hexagon; | 
|  |  | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | unsigned ImN, RegN; | 
|  | switch (Opc) { | 
|  | case S2_asr_i_p: | 
|  | case S2_lsr_i_p: | 
|  | ImN = 2; | 
|  | RegN = 1; | 
|  | break; | 
|  | case S2_asr_i_p_acc: | 
|  | case S2_asr_i_p_and: | 
|  | case S2_asr_i_p_nac: | 
|  | case S2_asr_i_p_or: | 
|  | case S2_lsr_i_p_acc: | 
|  | case S2_lsr_i_p_and: | 
|  | case S2_lsr_i_p_nac: | 
|  | case S2_lsr_i_p_or: | 
|  | case S2_lsr_i_p_xacc: | 
|  | ImN = 3; | 
|  | RegN = 2; | 
|  | break; | 
|  | case S2_asr_i_r: | 
|  | case S2_lsr_i_r: | 
|  | ImN = 2; | 
|  | RegN = 1; | 
|  | break; | 
|  | case S4_andi_lsr_ri: | 
|  | case S4_ori_lsr_ri: | 
|  | case S4_addi_lsr_ri: | 
|  | case S4_subi_lsr_ri: | 
|  | case S2_asr_i_r_acc: | 
|  | case S2_asr_i_r_and: | 
|  | case S2_asr_i_r_nac: | 
|  | case S2_asr_i_r_or: | 
|  | case S2_lsr_i_r_acc: | 
|  | case S2_lsr_i_r_and: | 
|  | case S2_lsr_i_r_nac: | 
|  | case S2_lsr_i_r_or: | 
|  | case S2_lsr_i_r_xacc: | 
|  | ImN = 3; | 
|  | RegN = 2; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (RegN != OpN) | 
|  | return false; | 
|  |  | 
|  | assert(MI.getOperand(ImN).isImm()); | 
|  | unsigned S = MI.getOperand(ImN).getImm(); | 
|  | LostB = 0; | 
|  | LostE = S; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Calculate the bit vector that corresponds to the used bits of register Reg. | 
|  | // The vector Bits has the same size, as the size of Reg in bits. If the cal- | 
|  | // culation fails (i.e. the used bits are unknown), it returns false. Other- | 
|  | // wise, it returns true and sets the corresponding bits in Bits. | 
|  | bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) { | 
|  | BitVector Used(Bits.size()); | 
|  | RegisterSet Visited; | 
|  | std::vector<unsigned> Pending; | 
|  | Pending.push_back(Reg); | 
|  |  | 
|  | for (unsigned i = 0; i < Pending.size(); ++i) { | 
|  | unsigned R = Pending[i]; | 
|  | if (Visited.has(R)) | 
|  | continue; | 
|  | Visited.insert(R); | 
|  | for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { | 
|  | BitTracker::RegisterRef UR = *I; | 
|  | unsigned B, W; | 
|  | if (!HBS::getSubregMask(UR, B, W, MRI)) | 
|  | return false; | 
|  | MachineInstr &UseI = *I->getParent(); | 
|  | if (UseI.isPHI() || UseI.isCopy()) { | 
|  | unsigned DefR = UseI.getOperand(0).getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(DefR)) | 
|  | return false; | 
|  | Pending.push_back(DefR); | 
|  | } else { | 
|  | if (!computeUsedBits(UseI, I.getOperandNo(), Used, B)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | Bits |= Used; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Calculate the bits used by instruction MI in a register in operand OpN. | 
|  | // Return true/false if the calculation succeeds/fails. If is succeeds, set | 
|  | // used bits in Bits. This function does not reset any bits in Bits, so | 
|  | // subsequent calls over different instructions will result in the union | 
|  | // of the used bits in all these instructions. | 
|  | // The register in question may be used with a sub-register, whereas Bits | 
|  | // holds the bits for the entire register. To keep track of that, the | 
|  | // argument Begin indicates where in Bits is the lowest-significant bit | 
|  | // of the register used in operand OpN. For example, in instruction: | 
|  | //   %1 = S2_lsr_i_r %2:isub_hi, 10 | 
|  | // the operand 1 is a 32-bit register, which happens to be a subregister | 
|  | // of the 64-bit register %2, and that subregister starts at position 32. | 
|  | // In this case Begin=32, since Bits[32] would be the lowest-significant bit | 
|  | // of %2:isub_hi. | 
|  | bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI, | 
|  | unsigned OpN, BitVector &Bits, uint16_t Begin) { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | BitVector T(Bits.size()); | 
|  | bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII); | 
|  | // Even if we don't have bits yet, we could still provide some information | 
|  | // if the instruction is a lossy shift: the lost bits will be marked as | 
|  | // not used. | 
|  | unsigned LB, LE; | 
|  | if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) { | 
|  | assert(MI.getOperand(OpN).isReg()); | 
|  | BitTracker::RegisterRef RR = MI.getOperand(OpN); | 
|  | const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI); | 
|  | uint16_t Width = HRI.getRegSizeInBits(*RC); | 
|  |  | 
|  | if (!GotBits) | 
|  | T.set(Begin, Begin+Width); | 
|  | assert(LB <= LE && LB < Width && LE <= Width); | 
|  | T.reset(Begin+LB, Begin+LE); | 
|  | GotBits = true; | 
|  | } | 
|  | if (GotBits) | 
|  | Bits |= T; | 
|  | return GotBits; | 
|  | } | 
|  |  | 
|  | // Calculates the used bits in RD ("defined register"), and checks if these | 
|  | // bits in RS ("used register") and RD are identical. | 
|  | bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD, | 
|  | BitTracker::RegisterRef RS) { | 
|  | const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); | 
|  | const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); | 
|  |  | 
|  | unsigned DB, DW; | 
|  | if (!HBS::getSubregMask(RD, DB, DW, MRI)) | 
|  | return false; | 
|  | unsigned SB, SW; | 
|  | if (!HBS::getSubregMask(RS, SB, SW, MRI)) | 
|  | return false; | 
|  | if (SW != DW) | 
|  | return false; | 
|  |  | 
|  | BitVector Used(DC.width()); | 
|  | if (!computeUsedBits(RD.Reg, Used)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i != DW; ++i) | 
|  | if (Used[i+DB] && DC[DB+i] != SC[SB+i]) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RedundantInstrElimination::processBlock(MachineBasicBlock &B, | 
|  | const RegisterSet&) { | 
|  | if (!BT.reached(&B)) | 
|  | return false; | 
|  | bool Changed = false; | 
|  |  | 
|  | for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) { | 
|  | NextI = std::next(I); | 
|  | MachineInstr *MI = &*I; | 
|  |  | 
|  | if (MI->getOpcode() == TargetOpcode::COPY) | 
|  | continue; | 
|  | if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) | 
|  | continue; | 
|  | unsigned NumD = MI->getDesc().getNumDefs(); | 
|  | if (NumD != 1) | 
|  | continue; | 
|  |  | 
|  | BitTracker::RegisterRef RD = MI->getOperand(0); | 
|  | if (!BT.has(RD.Reg)) | 
|  | continue; | 
|  | const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); | 
|  | auto At = MachineBasicBlock::iterator(MI); | 
|  |  | 
|  | // Find a source operand that is equal to the result. | 
|  | for (auto &Op : MI->uses()) { | 
|  | if (!Op.isReg()) | 
|  | continue; | 
|  | BitTracker::RegisterRef RS = Op; | 
|  | if (!BT.has(RS.Reg)) | 
|  | continue; | 
|  | if (!HBS::isTransparentCopy(RD, RS, MRI)) | 
|  | continue; | 
|  |  | 
|  | unsigned BN, BW; | 
|  | if (!HBS::getSubregMask(RS, BN, BW, MRI)) | 
|  | continue; | 
|  |  | 
|  | const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); | 
|  | if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW)) | 
|  | continue; | 
|  |  | 
|  | // If found, replace the instruction with a COPY. | 
|  | const DebugLoc &DL = MI->getDebugLoc(); | 
|  | const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); | 
|  | unsigned NewR = MRI.createVirtualRegister(FRC); | 
|  | MachineInstr *CopyI = | 
|  | BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) | 
|  | .addReg(RS.Reg, 0, RS.Sub); | 
|  | HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); | 
|  | // This pass can create copies between registers that don't have the | 
|  | // exact same values. Updating the tracker has to involve updating | 
|  | // all dependent cells. Example: | 
|  | //   %1  = inst %2     ; %1 != %2, but used bits are equal | 
|  | // | 
|  | //   %3  = copy %2     ; <- inserted | 
|  | //   ... = %3          ; <- replaced from %2 | 
|  | // Indirectly, we can create a "copy" between %1 and %2 even | 
|  | // though their exact values do not match. | 
|  | BT.visit(*CopyI); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Recognize instructions that produce constant values known at compile-time. | 
|  | // Replace them with register definitions that load these constants directly. | 
|  | class ConstGeneration : public Transformation { | 
|  | public: | 
|  | ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii, | 
|  | MachineRegisterInfo &mri) | 
|  | : Transformation(true), HII(hii), MRI(mri), BT(bt) {} | 
|  |  | 
|  | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; | 
|  | static bool isTfrConst(const MachineInstr &MI); | 
|  |  | 
|  | private: | 
|  | unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C, | 
|  | MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL); | 
|  |  | 
|  | const HexagonInstrInfo &HII; | 
|  | MachineRegisterInfo &MRI; | 
|  | BitTracker &BT; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool ConstGeneration::isTfrConst(const MachineInstr &MI) { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | switch (Opc) { | 
|  | case Hexagon::A2_combineii: | 
|  | case Hexagon::A4_combineii: | 
|  | case Hexagon::A2_tfrsi: | 
|  | case Hexagon::A2_tfrpi: | 
|  | case Hexagon::PS_true: | 
|  | case Hexagon::PS_false: | 
|  | case Hexagon::CONST32: | 
|  | case Hexagon::CONST64: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Generate a transfer-immediate instruction that is appropriate for the | 
|  | // register class and the actual value being transferred. | 
|  | unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C, | 
|  | MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) { | 
|  | unsigned Reg = MRI.createVirtualRegister(RC); | 
|  | if (RC == &Hexagon::IntRegsRegClass) { | 
|  | BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg) | 
|  | .addImm(int32_t(C)); | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | if (RC == &Hexagon::DoubleRegsRegClass) { | 
|  | if (isInt<8>(C)) { | 
|  | BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg) | 
|  | .addImm(C); | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | unsigned Lo = Lo_32(C), Hi = Hi_32(C); | 
|  | if (isInt<8>(Lo) || isInt<8>(Hi)) { | 
|  | unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii | 
|  | : Hexagon::A4_combineii; | 
|  | BuildMI(B, At, DL, HII.get(Opc), Reg) | 
|  | .addImm(int32_t(Hi)) | 
|  | .addImm(int32_t(Lo)); | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg) | 
|  | .addImm(C); | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | if (RC == &Hexagon::PredRegsRegClass) { | 
|  | unsigned Opc; | 
|  | if (C == 0) | 
|  | Opc = Hexagon::PS_false; | 
|  | else if ((C & 0xFF) == 0xFF) | 
|  | Opc = Hexagon::PS_true; | 
|  | else | 
|  | return 0; | 
|  | BuildMI(B, At, DL, HII.get(Opc), Reg); | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) { | 
|  | if (!BT.reached(&B)) | 
|  | return false; | 
|  | bool Changed = false; | 
|  | RegisterSet Defs; | 
|  |  | 
|  | for (auto I = B.begin(), E = B.end(); I != E; ++I) { | 
|  | if (isTfrConst(*I)) | 
|  | continue; | 
|  | Defs.clear(); | 
|  | HBS::getInstrDefs(*I, Defs); | 
|  | if (Defs.count() != 1) | 
|  | continue; | 
|  | unsigned DR = Defs.find_first(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(DR)) | 
|  | continue; | 
|  | uint64_t U; | 
|  | const BitTracker::RegisterCell &DRC = BT.lookup(DR); | 
|  | if (HBS::getConst(DRC, 0, DRC.width(), U)) { | 
|  | int64_t C = U; | 
|  | DebugLoc DL = I->getDebugLoc(); | 
|  | auto At = I->isPHI() ? B.getFirstNonPHI() : I; | 
|  | unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL); | 
|  | if (ImmReg) { | 
|  | HBS::replaceReg(DR, ImmReg, MRI); | 
|  | BT.put(ImmReg, DRC); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Identify pairs of available registers which hold identical values. | 
|  | // In such cases, only one of them needs to be calculated, the other one | 
|  | // will be defined as a copy of the first. | 
|  | class CopyGeneration : public Transformation { | 
|  | public: | 
|  | CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii, | 
|  | const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) | 
|  | : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {} | 
|  |  | 
|  | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; | 
|  |  | 
|  | private: | 
|  | bool findMatch(const BitTracker::RegisterRef &Inp, | 
|  | BitTracker::RegisterRef &Out, const RegisterSet &AVs); | 
|  |  | 
|  | const HexagonInstrInfo &HII; | 
|  | const HexagonRegisterInfo &HRI; | 
|  | MachineRegisterInfo &MRI; | 
|  | BitTracker &BT; | 
|  | RegisterSet Forbidden; | 
|  | }; | 
|  |  | 
|  | // Eliminate register copies RD = RS, by replacing the uses of RD with | 
|  | // with uses of RS. | 
|  | class CopyPropagation : public Transformation { | 
|  | public: | 
|  | CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) | 
|  | : Transformation(false), HRI(hri), MRI(mri) {} | 
|  |  | 
|  | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; | 
|  |  | 
|  | static bool isCopyReg(unsigned Opc, bool NoConv); | 
|  |  | 
|  | private: | 
|  | bool propagateRegCopy(MachineInstr &MI); | 
|  |  | 
|  | const HexagonRegisterInfo &HRI; | 
|  | MachineRegisterInfo &MRI; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Check if there is a register in AVs that is identical to Inp. If so, | 
|  | /// set Out to the found register. The output may be a pair Reg:Sub. | 
|  | bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp, | 
|  | BitTracker::RegisterRef &Out, const RegisterSet &AVs) { | 
|  | if (!BT.has(Inp.Reg)) | 
|  | return false; | 
|  | const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg); | 
|  | auto *FRC = HBS::getFinalVRegClass(Inp, MRI); | 
|  | unsigned B, W; | 
|  | if (!HBS::getSubregMask(Inp, B, W, MRI)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) { | 
|  | if (!BT.has(R) || Forbidden[R]) | 
|  | continue; | 
|  | const BitTracker::RegisterCell &RC = BT.lookup(R); | 
|  | unsigned RW = RC.width(); | 
|  | if (W == RW) { | 
|  | if (FRC != MRI.getRegClass(R)) | 
|  | continue; | 
|  | if (!HBS::isTransparentCopy(R, Inp, MRI)) | 
|  | continue; | 
|  | if (!HBS::isEqual(InpRC, B, RC, 0, W)) | 
|  | continue; | 
|  | Out.Reg = R; | 
|  | Out.Sub = 0; | 
|  | return true; | 
|  | } | 
|  | // Check if there is a super-register, whose part (with a subregister) | 
|  | // is equal to the input. | 
|  | // Only do double registers for now. | 
|  | if (W*2 != RW) | 
|  | continue; | 
|  | if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass) | 
|  | continue; | 
|  |  | 
|  | if (HBS::isEqual(InpRC, B, RC, 0, W)) | 
|  | Out.Sub = Hexagon::isub_lo; | 
|  | else if (HBS::isEqual(InpRC, B, RC, W, W)) | 
|  | Out.Sub = Hexagon::isub_hi; | 
|  | else | 
|  | continue; | 
|  | Out.Reg = R; | 
|  | if (HBS::isTransparentCopy(Out, Inp, MRI)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CopyGeneration::processBlock(MachineBasicBlock &B, | 
|  | const RegisterSet &AVs) { | 
|  | if (!BT.reached(&B)) | 
|  | return false; | 
|  | RegisterSet AVB(AVs); | 
|  | bool Changed = false; | 
|  | RegisterSet Defs; | 
|  |  | 
|  | for (auto I = B.begin(), E = B.end(), NextI = I; I != E; | 
|  | ++I, AVB.insert(Defs)) { | 
|  | NextI = std::next(I); | 
|  | Defs.clear(); | 
|  | HBS::getInstrDefs(*I, Defs); | 
|  |  | 
|  | unsigned Opc = I->getOpcode(); | 
|  | if (CopyPropagation::isCopyReg(Opc, false) || | 
|  | ConstGeneration::isTfrConst(*I)) | 
|  | continue; | 
|  |  | 
|  | DebugLoc DL = I->getDebugLoc(); | 
|  | auto At = I->isPHI() ? B.getFirstNonPHI() : I; | 
|  |  | 
|  | for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) { | 
|  | BitTracker::RegisterRef MR; | 
|  | auto *FRC = HBS::getFinalVRegClass(R, MRI); | 
|  |  | 
|  | if (findMatch(R, MR, AVB)) { | 
|  | unsigned NewR = MRI.createVirtualRegister(FRC); | 
|  | BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) | 
|  | .addReg(MR.Reg, 0, MR.Sub); | 
|  | BT.put(BitTracker::RegisterRef(NewR), BT.get(MR)); | 
|  | HBS::replaceReg(R, NewR, MRI); | 
|  | Forbidden.insert(R); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (FRC == &Hexagon::DoubleRegsRegClass || | 
|  | FRC == &Hexagon::HvxWRRegClass) { | 
|  | // Try to generate REG_SEQUENCE. | 
|  | unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo); | 
|  | unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi); | 
|  | BitTracker::RegisterRef TL = { R, SubLo }; | 
|  | BitTracker::RegisterRef TH = { R, SubHi }; | 
|  | BitTracker::RegisterRef ML, MH; | 
|  | if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) { | 
|  | auto *FRC = HBS::getFinalVRegClass(R, MRI); | 
|  | unsigned NewR = MRI.createVirtualRegister(FRC); | 
|  | BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR) | 
|  | .addReg(ML.Reg, 0, ML.Sub) | 
|  | .addImm(SubLo) | 
|  | .addReg(MH.Reg, 0, MH.Sub) | 
|  | .addImm(SubHi); | 
|  | BT.put(BitTracker::RegisterRef(NewR), BT.get(R)); | 
|  | HBS::replaceReg(R, NewR, MRI); | 
|  | Forbidden.insert(R); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) { | 
|  | switch (Opc) { | 
|  | case TargetOpcode::COPY: | 
|  | case TargetOpcode::REG_SEQUENCE: | 
|  | case Hexagon::A4_combineir: | 
|  | case Hexagon::A4_combineri: | 
|  | return true; | 
|  | case Hexagon::A2_tfr: | 
|  | case Hexagon::A2_tfrp: | 
|  | case Hexagon::A2_combinew: | 
|  | case Hexagon::V6_vcombine: | 
|  | return NoConv; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CopyPropagation::propagateRegCopy(MachineInstr &MI) { | 
|  | bool Changed = false; | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | BitTracker::RegisterRef RD = MI.getOperand(0); | 
|  | assert(MI.getOperand(0).getSubReg() == 0); | 
|  |  | 
|  | switch (Opc) { | 
|  | case TargetOpcode::COPY: | 
|  | case Hexagon::A2_tfr: | 
|  | case Hexagon::A2_tfrp: { | 
|  | BitTracker::RegisterRef RS = MI.getOperand(1); | 
|  | if (!HBS::isTransparentCopy(RD, RS, MRI)) | 
|  | break; | 
|  | if (RS.Sub != 0) | 
|  | Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI); | 
|  | else | 
|  | Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI); | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::REG_SEQUENCE: { | 
|  | BitTracker::RegisterRef SL, SH; | 
|  | if (HBS::parseRegSequence(MI, SL, SH, MRI)) { | 
|  | const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg); | 
|  | unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo); | 
|  | unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi); | 
|  | Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI); | 
|  | Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Hexagon::A2_combinew: | 
|  | case Hexagon::V6_vcombine: { | 
|  | const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg); | 
|  | unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo); | 
|  | unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi); | 
|  | BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2); | 
|  | Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI); | 
|  | Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI); | 
|  | break; | 
|  | } | 
|  | case Hexagon::A4_combineir: | 
|  | case Hexagon::A4_combineri: { | 
|  | unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1; | 
|  | unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo | 
|  | : Hexagon::isub_hi; | 
|  | BitTracker::RegisterRef RS = MI.getOperand(SrcX); | 
|  | Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) { | 
|  | std::vector<MachineInstr*> Instrs; | 
|  | for (auto I = B.rbegin(), E = B.rend(); I != E; ++I) | 
|  | Instrs.push_back(&*I); | 
|  |  | 
|  | bool Changed = false; | 
|  | for (auto I : Instrs) { | 
|  | unsigned Opc = I->getOpcode(); | 
|  | if (!CopyPropagation::isCopyReg(Opc, true)) | 
|  | continue; | 
|  | Changed |= propagateRegCopy(*I); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Recognize patterns that can be simplified and replace them with the | 
|  | // simpler forms. | 
|  | // This is by no means complete | 
|  | class BitSimplification : public Transformation { | 
|  | public: | 
|  | BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt, | 
|  | const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri, | 
|  | MachineRegisterInfo &mri, MachineFunction &mf) | 
|  | : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri), | 
|  | MF(mf), BT(bt) {} | 
|  |  | 
|  | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; | 
|  |  | 
|  | private: | 
|  | struct RegHalf : public BitTracker::RegisterRef { | 
|  | bool Low;  // Low/High halfword. | 
|  | }; | 
|  |  | 
|  | bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC, | 
|  | unsigned B, RegHalf &RH); | 
|  | bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum); | 
|  |  | 
|  | bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC, | 
|  | BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt); | 
|  | unsigned getCombineOpcode(bool HLow, bool LLow); | 
|  |  | 
|  | bool genStoreUpperHalf(MachineInstr *MI); | 
|  | bool genStoreImmediate(MachineInstr *MI); | 
|  | bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD, | 
|  | const BitTracker::RegisterCell &RC); | 
|  | bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD, | 
|  | const BitTracker::RegisterCell &RC); | 
|  | bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD, | 
|  | const BitTracker::RegisterCell &RC); | 
|  | bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD, | 
|  | const BitTracker::RegisterCell &RC); | 
|  | bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD, | 
|  | const BitTracker::RegisterCell &RC, const RegisterSet &AVs); | 
|  | bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD, | 
|  | const BitTracker::RegisterCell &RC); | 
|  | bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD, | 
|  | const BitTracker::RegisterCell &RC, const RegisterSet &AVs); | 
|  |  | 
|  | // Cache of created instructions to avoid creating duplicates. | 
|  | // XXX Currently only used by genBitSplit. | 
|  | std::vector<MachineInstr*> NewMIs; | 
|  |  | 
|  | const MachineDominatorTree &MDT; | 
|  | const HexagonInstrInfo &HII; | 
|  | const HexagonRegisterInfo &HRI; | 
|  | MachineRegisterInfo &MRI; | 
|  | MachineFunction &MF; | 
|  | BitTracker &BT; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // Check if the bits [B..B+16) in register cell RC form a valid halfword, | 
|  | // i.e. [0..16), [16..32), etc. of some register. If so, return true and | 
|  | // set the information about the found register in RH. | 
|  | bool BitSimplification::matchHalf(unsigned SelfR, | 
|  | const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) { | 
|  | // XXX This could be searching in the set of available registers, in case | 
|  | // the match is not exact. | 
|  |  | 
|  | // Match 16-bit chunks, where the RC[B..B+15] references exactly one | 
|  | // register and all the bits B..B+15 match between RC and the register. | 
|  | // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... }, | 
|  | // and RC = { [0]:0 [1-15]:v1[1-15]... }. | 
|  | bool Low = false; | 
|  | unsigned I = B; | 
|  | while (I < B+16 && RC[I].num()) | 
|  | I++; | 
|  | if (I == B+16) | 
|  | return false; | 
|  |  | 
|  | unsigned Reg = RC[I].RefI.Reg; | 
|  | unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B. | 
|  | if (P < I-B) | 
|  | return false; | 
|  | unsigned Pos = P - (I-B); | 
|  |  | 
|  | if (Reg == 0 || Reg == SelfR)    // Don't match "self". | 
|  | return false; | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | return false; | 
|  | if (!BT.has(Reg)) | 
|  | return false; | 
|  |  | 
|  | const BitTracker::RegisterCell &SC = BT.lookup(Reg); | 
|  | if (Pos+16 > SC.width()) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < 16; ++i) { | 
|  | const BitTracker::BitValue &RV = RC[i+B]; | 
|  | if (RV.Type == BitTracker::BitValue::Ref) { | 
|  | if (RV.RefI.Reg != Reg) | 
|  | return false; | 
|  | if (RV.RefI.Pos != i+Pos) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  | if (RC[i+B] != SC[i+Pos]) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned Sub = 0; | 
|  | switch (Pos) { | 
|  | case 0: | 
|  | Sub = Hexagon::isub_lo; | 
|  | Low = true; | 
|  | break; | 
|  | case 16: | 
|  | Sub = Hexagon::isub_lo; | 
|  | Low = false; | 
|  | break; | 
|  | case 32: | 
|  | Sub = Hexagon::isub_hi; | 
|  | Low = true; | 
|  | break; | 
|  | case 48: | 
|  | Sub = Hexagon::isub_hi; | 
|  | Low = false; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | RH.Reg = Reg; | 
|  | RH.Sub = Sub; | 
|  | RH.Low = Low; | 
|  | // If the subregister is not valid with the register, set it to 0. | 
|  | if (!HBS::getFinalVRegClass(RH, MRI)) | 
|  | RH.Sub = 0; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc, | 
|  | unsigned OpNum) { | 
|  | auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF); | 
|  | auto *RRC = HBS::getFinalVRegClass(R, MRI); | 
|  | return OpRC->hasSubClassEq(RRC); | 
|  | } | 
|  |  | 
|  | // Check if RC matches the pattern of a S2_packhl. If so, return true and | 
|  | // set the inputs Rs and Rt. | 
|  | bool BitSimplification::matchPackhl(unsigned SelfR, | 
|  | const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs, | 
|  | BitTracker::RegisterRef &Rt) { | 
|  | RegHalf L1, H1, L2, H2; | 
|  |  | 
|  | if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1)) | 
|  | return false; | 
|  | if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1)) | 
|  | return false; | 
|  |  | 
|  | // Rs = H1.L1, Rt = H2.L2 | 
|  | if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low) | 
|  | return false; | 
|  | if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low) | 
|  | return false; | 
|  |  | 
|  | Rs = H1; | 
|  | Rt = H2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) { | 
|  | return HLow ? LLow ? Hexagon::A2_combine_ll | 
|  | : Hexagon::A2_combine_lh | 
|  | : LLow ? Hexagon::A2_combine_hl | 
|  | : Hexagon::A2_combine_hh; | 
|  | } | 
|  |  | 
|  | // If MI stores the upper halfword of a register (potentially obtained via | 
|  | // shifts or extracts), replace it with a storerf instruction. This could | 
|  | // cause the "extraction" code to become dead. | 
|  | bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | if (Opc != Hexagon::S2_storerh_io) | 
|  | return false; | 
|  |  | 
|  | MachineOperand &ValOp = MI->getOperand(2); | 
|  | BitTracker::RegisterRef RS = ValOp; | 
|  | if (!BT.has(RS.Reg)) | 
|  | return false; | 
|  | const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); | 
|  | RegHalf H; | 
|  | if (!matchHalf(0, RC, 0, H)) | 
|  | return false; | 
|  | if (H.Low) | 
|  | return false; | 
|  | MI->setDesc(HII.get(Hexagon::S2_storerf_io)); | 
|  | ValOp.setReg(H.Reg); | 
|  | ValOp.setSubReg(H.Sub); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If MI stores a value known at compile-time, and the value is within a range | 
|  | // that avoids using constant-extenders, replace it with a store-immediate. | 
|  | bool BitSimplification::genStoreImmediate(MachineInstr *MI) { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | unsigned Align = 0; | 
|  | switch (Opc) { | 
|  | case Hexagon::S2_storeri_io: | 
|  | Align++; | 
|  | LLVM_FALLTHROUGH; | 
|  | case Hexagon::S2_storerh_io: | 
|  | Align++; | 
|  | LLVM_FALLTHROUGH; | 
|  | case Hexagon::S2_storerb_io: | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Avoid stores to frame-indices (due to an unknown offset). | 
|  | if (!MI->getOperand(0).isReg()) | 
|  | return false; | 
|  | MachineOperand &OffOp = MI->getOperand(1); | 
|  | if (!OffOp.isImm()) | 
|  | return false; | 
|  |  | 
|  | int64_t Off = OffOp.getImm(); | 
|  | // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x). | 
|  | if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1))) | 
|  | return false; | 
|  | // Source register: | 
|  | BitTracker::RegisterRef RS = MI->getOperand(2); | 
|  | if (!BT.has(RS.Reg)) | 
|  | return false; | 
|  | const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); | 
|  | uint64_t U; | 
|  | if (!HBS::getConst(RC, 0, RC.width(), U)) | 
|  | return false; | 
|  |  | 
|  | // Only consider 8-bit values to avoid constant-extenders. | 
|  | int V; | 
|  | switch (Opc) { | 
|  | case Hexagon::S2_storerb_io: | 
|  | V = int8_t(U); | 
|  | break; | 
|  | case Hexagon::S2_storerh_io: | 
|  | V = int16_t(U); | 
|  | break; | 
|  | case Hexagon::S2_storeri_io: | 
|  | V = int32_t(U); | 
|  | break; | 
|  | } | 
|  | if (!isInt<8>(V)) | 
|  | return false; | 
|  |  | 
|  | MI->RemoveOperand(2); | 
|  | switch (Opc) { | 
|  | case Hexagon::S2_storerb_io: | 
|  | MI->setDesc(HII.get(Hexagon::S4_storeirb_io)); | 
|  | break; | 
|  | case Hexagon::S2_storerh_io: | 
|  | MI->setDesc(HII.get(Hexagon::S4_storeirh_io)); | 
|  | break; | 
|  | case Hexagon::S2_storeri_io: | 
|  | MI->setDesc(HII.get(Hexagon::S4_storeiri_io)); | 
|  | break; | 
|  | } | 
|  | MI->addOperand(MachineOperand::CreateImm(V)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the | 
|  | // last instruction in a sequence that results in something equivalent to | 
|  | // the pack-halfwords. The intent is to cause the entire sequence to become | 
|  | // dead. | 
|  | bool BitSimplification::genPackhl(MachineInstr *MI, | 
|  | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | if (Opc == Hexagon::S2_packhl) | 
|  | return false; | 
|  | BitTracker::RegisterRef Rs, Rt; | 
|  | if (!matchPackhl(RD.Reg, RC, Rs, Rt)) | 
|  | return false; | 
|  | if (!validateReg(Rs, Hexagon::S2_packhl, 1) || | 
|  | !validateReg(Rt, Hexagon::S2_packhl, 2)) | 
|  | return false; | 
|  |  | 
|  | MachineBasicBlock &B = *MI->getParent(); | 
|  | unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | auto At = MI->isPHI() ? B.getFirstNonPHI() | 
|  | : MachineBasicBlock::iterator(MI); | 
|  | BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR) | 
|  | .addReg(Rs.Reg, 0, Rs.Sub) | 
|  | .addReg(Rt.Reg, 0, Rt.Sub); | 
|  | HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); | 
|  | BT.put(BitTracker::RegisterRef(NewR), RC); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If MI produces halfword of the input in the low half of the output, | 
|  | // replace it with zero-extend or extractu. | 
|  | bool BitSimplification::genExtractHalf(MachineInstr *MI, | 
|  | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { | 
|  | RegHalf L; | 
|  | // Check for halfword in low 16 bits, zeros elsewhere. | 
|  | if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16)) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | MachineBasicBlock &B = *MI->getParent(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | // Prefer zxth, since zxth can go in any slot, while extractu only in | 
|  | // slots 2 and 3. | 
|  | unsigned NewR = 0; | 
|  | auto At = MI->isPHI() ? B.getFirstNonPHI() | 
|  | : MachineBasicBlock::iterator(MI); | 
|  | if (L.Low && Opc != Hexagon::A2_zxth) { | 
|  | if (validateReg(L, Hexagon::A2_zxth, 1)) { | 
|  | NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR) | 
|  | .addReg(L.Reg, 0, L.Sub); | 
|  | } | 
|  | } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) { | 
|  | if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) { | 
|  | NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR) | 
|  | .addReg(L.Reg, 0, L.Sub) | 
|  | .addImm(16); | 
|  | } | 
|  | } | 
|  | if (NewR == 0) | 
|  | return false; | 
|  | HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); | 
|  | BT.put(BitTracker::RegisterRef(NewR), RC); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the | 
|  | // combine. | 
|  | bool BitSimplification::genCombineHalf(MachineInstr *MI, | 
|  | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { | 
|  | RegHalf L, H; | 
|  | // Check for combine h/l | 
|  | if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H)) | 
|  | return false; | 
|  | // Do nothing if this is just a reg copy. | 
|  | if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | unsigned COpc = getCombineOpcode(H.Low, L.Low); | 
|  | if (COpc == Opc) | 
|  | return false; | 
|  | if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2)) | 
|  | return false; | 
|  |  | 
|  | MachineBasicBlock &B = *MI->getParent(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | auto At = MI->isPHI() ? B.getFirstNonPHI() | 
|  | : MachineBasicBlock::iterator(MI); | 
|  | BuildMI(B, At, DL, HII.get(COpc), NewR) | 
|  | .addReg(H.Reg, 0, H.Sub) | 
|  | .addReg(L.Reg, 0, L.Sub); | 
|  | HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); | 
|  | BT.put(BitTracker::RegisterRef(NewR), RC); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If MI resets high bits of a register and keeps the lower ones, replace it | 
|  | // with zero-extend byte/half, and-immediate, or extractu, as appropriate. | 
|  | bool BitSimplification::genExtractLow(MachineInstr *MI, | 
|  | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | switch (Opc) { | 
|  | case Hexagon::A2_zxtb: | 
|  | case Hexagon::A2_zxth: | 
|  | case Hexagon::S2_extractu: | 
|  | return false; | 
|  | } | 
|  | if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) { | 
|  | int32_t Imm = MI->getOperand(2).getImm(); | 
|  | if (isInt<10>(Imm)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) | 
|  | return false; | 
|  | unsigned W = RC.width(); | 
|  | while (W > 0 && RC[W-1].is(0)) | 
|  | W--; | 
|  | if (W == 0 || W == RC.width()) | 
|  | return false; | 
|  | unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb | 
|  | : (W == 16) ? Hexagon::A2_zxth | 
|  | : (W < 10)  ? Hexagon::A2_andir | 
|  | : Hexagon::S2_extractu; | 
|  | MachineBasicBlock &B = *MI->getParent(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | for (auto &Op : MI->uses()) { | 
|  | if (!Op.isReg()) | 
|  | continue; | 
|  | BitTracker::RegisterRef RS = Op; | 
|  | if (!BT.has(RS.Reg)) | 
|  | continue; | 
|  | const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); | 
|  | unsigned BN, BW; | 
|  | if (!HBS::getSubregMask(RS, BN, BW, MRI)) | 
|  | continue; | 
|  | if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W)) | 
|  | continue; | 
|  | if (!validateReg(RS, NewOpc, 1)) | 
|  | continue; | 
|  |  | 
|  | unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | auto At = MI->isPHI() ? B.getFirstNonPHI() | 
|  | : MachineBasicBlock::iterator(MI); | 
|  | auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR) | 
|  | .addReg(RS.Reg, 0, RS.Sub); | 
|  | if (NewOpc == Hexagon::A2_andir) | 
|  | MIB.addImm((1 << W) - 1); | 
|  | else if (NewOpc == Hexagon::S2_extractu) | 
|  | MIB.addImm(W).addImm(0); | 
|  | HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); | 
|  | BT.put(BitTracker::RegisterRef(NewR), RC); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool BitSimplification::genBitSplit(MachineInstr *MI, | 
|  | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC, | 
|  | const RegisterSet &AVs) { | 
|  | if (!GenBitSplit) | 
|  | return false; | 
|  | if (MaxBitSplit.getNumOccurrences()) { | 
|  | if (CountBitSplit >= MaxBitSplit) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | switch (Opc) { | 
|  | case Hexagon::A4_bitsplit: | 
|  | case Hexagon::A4_bitspliti: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned W = RC.width(); | 
|  | if (W != 32) | 
|  | return false; | 
|  |  | 
|  | auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned { | 
|  | unsigned Z = C.width(); | 
|  | while (Z > 0 && C[Z-1].is(0)) | 
|  | --Z; | 
|  | return C.width() - Z; | 
|  | }; | 
|  |  | 
|  | // Count the number of leading zeros in the target RC. | 
|  | unsigned Z = ctlz(RC); | 
|  | if (Z == 0 || Z == W) | 
|  | return false; | 
|  |  | 
|  | // A simplistic analysis: assume the source register (the one being split) | 
|  | // is fully unknown, and that all its bits are self-references. | 
|  | const BitTracker::BitValue &B0 = RC[0]; | 
|  | if (B0.Type != BitTracker::BitValue::Ref) | 
|  | return false; | 
|  |  | 
|  | unsigned SrcR = B0.RefI.Reg; | 
|  | unsigned SrcSR = 0; | 
|  | unsigned Pos = B0.RefI.Pos; | 
|  |  | 
|  | // All the non-zero bits should be consecutive bits from the same register. | 
|  | for (unsigned i = 1; i < W-Z; ++i) { | 
|  | const BitTracker::BitValue &V = RC[i]; | 
|  | if (V.Type != BitTracker::BitValue::Ref) | 
|  | return false; | 
|  | if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Now, find the other bitfield among AVs. | 
|  | for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) { | 
|  | // The number of leading zeros here should be the number of trailing | 
|  | // non-zeros in RC. | 
|  | if (!BT.has(S)) | 
|  | continue; | 
|  | const BitTracker::RegisterCell &SC = BT.lookup(S); | 
|  | if (SC.width() != W || ctlz(SC) != W-Z) | 
|  | continue; | 
|  | // The Z lower bits should now match SrcR. | 
|  | const BitTracker::BitValue &S0 = SC[0]; | 
|  | if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR) | 
|  | continue; | 
|  | unsigned P = S0.RefI.Pos; | 
|  |  | 
|  | if (Pos <= P && (Pos + W-Z) != P) | 
|  | continue; | 
|  | if (P < Pos && (P + Z) != Pos) | 
|  | continue; | 
|  | // The starting bitfield position must be at a subregister boundary. | 
|  | if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32) | 
|  | continue; | 
|  |  | 
|  | unsigned I; | 
|  | for (I = 1; I < Z; ++I) { | 
|  | const BitTracker::BitValue &V = SC[I]; | 
|  | if (V.Type != BitTracker::BitValue::Ref) | 
|  | break; | 
|  | if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I) | 
|  | break; | 
|  | } | 
|  | if (I != Z) | 
|  | continue; | 
|  |  | 
|  | // Generate bitsplit where S is defined. | 
|  | if (MaxBitSplit.getNumOccurrences()) | 
|  | CountBitSplit++; | 
|  | MachineInstr *DefS = MRI.getVRegDef(S); | 
|  | assert(DefS != nullptr); | 
|  | DebugLoc DL = DefS->getDebugLoc(); | 
|  | MachineBasicBlock &B = *DefS->getParent(); | 
|  | auto At = DefS->isPHI() ? B.getFirstNonPHI() | 
|  | : MachineBasicBlock::iterator(DefS); | 
|  | if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID) | 
|  | SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo; | 
|  | if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1)) | 
|  | continue; | 
|  | unsigned ImmOp = Pos <= P ? W-Z : Z; | 
|  |  | 
|  | // Find an existing bitsplit instruction if one already exists. | 
|  | unsigned NewR = 0; | 
|  | for (MachineInstr *In : NewMIs) { | 
|  | if (In->getOpcode() != Hexagon::A4_bitspliti) | 
|  | continue; | 
|  | MachineOperand &Op1 = In->getOperand(1); | 
|  | if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR) | 
|  | continue; | 
|  | if (In->getOperand(2).getImm() != ImmOp) | 
|  | continue; | 
|  | // Check if the target register is available here. | 
|  | MachineOperand &Op0 = In->getOperand(0); | 
|  | MachineInstr *DefI = MRI.getVRegDef(Op0.getReg()); | 
|  | assert(DefI != nullptr); | 
|  | if (!MDT.dominates(DefI, &*At)) | 
|  | continue; | 
|  |  | 
|  | // Found one that can be reused. | 
|  | assert(Op0.getSubReg() == 0); | 
|  | NewR = Op0.getReg(); | 
|  | break; | 
|  | } | 
|  | if (!NewR) { | 
|  | NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass); | 
|  | auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR) | 
|  | .addReg(SrcR, 0, SrcSR) | 
|  | .addImm(ImmOp); | 
|  | NewMIs.push_back(NewBS); | 
|  | } | 
|  | if (Pos <= P) { | 
|  | HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI); | 
|  | HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_hi, MRI); | 
|  | } else { | 
|  | HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_lo, MRI); | 
|  | HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check for tstbit simplification opportunity, where the bit being checked | 
|  | // can be tracked back to another register. For example: | 
|  | //   %2 = S2_lsr_i_r  %1, 5 | 
|  | //   %3 = S2_tstbit_i %2, 0 | 
|  | // => | 
|  | //   %3 = S2_tstbit_i %1, 5 | 
|  | bool BitSimplification::simplifyTstbit(MachineInstr *MI, | 
|  | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | if (Opc != Hexagon::S2_tstbit_i) | 
|  | return false; | 
|  |  | 
|  | unsigned BN = MI->getOperand(2).getImm(); | 
|  | BitTracker::RegisterRef RS = MI->getOperand(1); | 
|  | unsigned F, W; | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI)) | 
|  | return false; | 
|  | MachineBasicBlock &B = *MI->getParent(); | 
|  | auto At = MI->isPHI() ? B.getFirstNonPHI() | 
|  | : MachineBasicBlock::iterator(MI); | 
|  |  | 
|  | const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); | 
|  | const BitTracker::BitValue &V = SC[F+BN]; | 
|  | if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) { | 
|  | const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg); | 
|  | // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is | 
|  | // a double register, need to use a subregister and adjust bit | 
|  | // number. | 
|  | unsigned P = std::numeric_limits<unsigned>::max(); | 
|  | BitTracker::RegisterRef RR(V.RefI.Reg, 0); | 
|  | if (TC == &Hexagon::DoubleRegsRegClass) { | 
|  | P = V.RefI.Pos; | 
|  | RR.Sub = Hexagon::isub_lo; | 
|  | if (P >= 32) { | 
|  | P -= 32; | 
|  | RR.Sub = Hexagon::isub_hi; | 
|  | } | 
|  | } else if (TC == &Hexagon::IntRegsRegClass) { | 
|  | P = V.RefI.Pos; | 
|  | } | 
|  | if (P != std::numeric_limits<unsigned>::max()) { | 
|  | unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); | 
|  | BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR) | 
|  | .addReg(RR.Reg, 0, RR.Sub) | 
|  | .addImm(P); | 
|  | HBS::replaceReg(RD.Reg, NewR, MRI); | 
|  | BT.put(NewR, RC); | 
|  | return true; | 
|  | } | 
|  | } else if (V.is(0) || V.is(1)) { | 
|  | unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); | 
|  | unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true; | 
|  | BuildMI(B, At, DL, HII.get(NewOpc), NewR); | 
|  | HBS::replaceReg(RD.Reg, NewR, MRI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Detect whether RD is a bitfield extract (sign- or zero-extended) of | 
|  | // some register from the AVs set. Create a new corresponding instruction | 
|  | // at the location of MI. The intent is to recognize situations where | 
|  | // a sequence of instructions performs an operation that is equivalent to | 
|  | // an extract operation, such as a shift left followed by a shift right. | 
|  | bool BitSimplification::simplifyExtractLow(MachineInstr *MI, | 
|  | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC, | 
|  | const RegisterSet &AVs) { | 
|  | if (!GenExtract) | 
|  | return false; | 
|  | if (MaxExtract.getNumOccurrences()) { | 
|  | if (CountExtract >= MaxExtract) | 
|  | return false; | 
|  | CountExtract++; | 
|  | } | 
|  |  | 
|  | unsigned W = RC.width(); | 
|  | unsigned RW = W; | 
|  | unsigned Len; | 
|  | bool Signed; | 
|  |  | 
|  | // The code is mostly class-independent, except for the part that generates | 
|  | // the extract instruction, and establishes the source register (in case it | 
|  | // needs to use a subregister). | 
|  | const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); | 
|  | if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass) | 
|  | return false; | 
|  | assert(RD.Sub == 0); | 
|  |  | 
|  | // Observation: | 
|  | // If the cell has a form of 00..0xx..x with k zeros and n remaining | 
|  | // bits, this could be an extractu of the n bits, but it could also be | 
|  | // an extractu of a longer field which happens to have 0s in the top | 
|  | // bit positions. | 
|  | // The same logic applies to sign-extended fields. | 
|  | // | 
|  | // Do not check for the extended extracts, since it would expand the | 
|  | // search space quite a bit. The search may be expensive as it is. | 
|  |  | 
|  | const BitTracker::BitValue &TopV = RC[W-1]; | 
|  |  | 
|  | // Eliminate candidates that have self-referential bits, since they | 
|  | // cannot be extracts from other registers. Also, skip registers that | 
|  | // have compile-time constant values. | 
|  | bool IsConst = true; | 
|  | for (unsigned I = 0; I != W; ++I) { | 
|  | const BitTracker::BitValue &V = RC[I]; | 
|  | if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg) | 
|  | return false; | 
|  | IsConst = IsConst && (V.is(0) || V.is(1)); | 
|  | } | 
|  | if (IsConst) | 
|  | return false; | 
|  |  | 
|  | if (TopV.is(0) || TopV.is(1)) { | 
|  | bool S = TopV.is(1); | 
|  | for (--W; W > 0 && RC[W-1].is(S); --W) | 
|  | ; | 
|  | Len = W; | 
|  | Signed = S; | 
|  | // The sign bit must be a part of the field being extended. | 
|  | if (Signed) | 
|  | ++Len; | 
|  | } else { | 
|  | // This could still be a sign-extended extract. | 
|  | assert(TopV.Type == BitTracker::BitValue::Ref); | 
|  | if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1) | 
|  | return false; | 
|  | for (--W; W > 0 && RC[W-1] == TopV; --W) | 
|  | ; | 
|  | // The top bits of RC are copies of TopV. One occurrence of TopV will | 
|  | // be a part of the field. | 
|  | Len = W + 1; | 
|  | Signed = true; | 
|  | } | 
|  |  | 
|  | // This would be just a copy. It should be handled elsewhere. | 
|  | if (Len == RW) | 
|  | return false; | 
|  |  | 
|  | DEBUG({ | 
|  | dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub) | 
|  | << ", MI: " << *MI; | 
|  | dbgs() << "Cell: " << RC << '\n'; | 
|  | dbgs() << "Expected bitfield size: " << Len << " bits, " | 
|  | << (Signed ? "sign" : "zero") << "-extended\n"; | 
|  | }); | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) { | 
|  | if (!BT.has(R)) | 
|  | continue; | 
|  | const BitTracker::RegisterCell &SC = BT.lookup(R); | 
|  | unsigned SW = SC.width(); | 
|  |  | 
|  | // The source can be longer than the destination, as long as its size is | 
|  | // a multiple of the size of the destination. Also, we would need to be | 
|  | // able to refer to the subregister in the source that would be of the | 
|  | // same size as the destination, but only check the sizes here. | 
|  | if (SW < RW || (SW % RW) != 0) | 
|  | continue; | 
|  |  | 
|  | // The field can start at any offset in SC as long as it contains Len | 
|  | // bits and does not cross subregister boundary (if the source register | 
|  | // is longer than the destination). | 
|  | unsigned Off = 0; | 
|  | while (Off <= SW-Len) { | 
|  | unsigned OE = (Off+Len)/RW; | 
|  | if (OE != Off/RW) { | 
|  | // The assumption here is that if the source (R) is longer than the | 
|  | // destination, then the destination is a sequence of words of | 
|  | // size RW, and each such word in R can be accessed via a subregister. | 
|  | // | 
|  | // If the beginning and the end of the field cross the subregister | 
|  | // boundary, advance to the next subregister. | 
|  | Off = OE*RW; | 
|  | continue; | 
|  | } | 
|  | if (HBS::isEqual(RC, 0, SC, Off, Len)) | 
|  | break; | 
|  | ++Off; | 
|  | } | 
|  |  | 
|  | if (Off > SW-Len) | 
|  | continue; | 
|  |  | 
|  | // Found match. | 
|  | unsigned ExtOpc = 0; | 
|  | if (Off == 0) { | 
|  | if (Len == 8) | 
|  | ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb; | 
|  | else if (Len == 16) | 
|  | ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth; | 
|  | else if (Len < 10 && !Signed) | 
|  | ExtOpc = Hexagon::A2_andir; | 
|  | } | 
|  | if (ExtOpc == 0) { | 
|  | ExtOpc = | 
|  | Signed ? (RW == 32 ? Hexagon::S4_extract  : Hexagon::S4_extractp) | 
|  | : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup); | 
|  | } | 
|  | unsigned SR = 0; | 
|  | // This only recognizes isub_lo and isub_hi. | 
|  | if (RW != SW && RW*2 != SW) | 
|  | continue; | 
|  | if (RW != SW) | 
|  | SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi; | 
|  | Off = Off % RW; | 
|  |  | 
|  | if (!validateReg({R,SR}, ExtOpc, 1)) | 
|  | continue; | 
|  |  | 
|  | // Don't generate the same instruction as the one being optimized. | 
|  | if (MI->getOpcode() == ExtOpc) { | 
|  | // All possible ExtOpc's have the source in operand(1). | 
|  | const MachineOperand &SrcOp = MI->getOperand(1); | 
|  | if (SrcOp.getReg() == R) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | MachineBasicBlock &B = *MI->getParent(); | 
|  | unsigned NewR = MRI.createVirtualRegister(FRC); | 
|  | auto At = MI->isPHI() ? B.getFirstNonPHI() | 
|  | : MachineBasicBlock::iterator(MI); | 
|  | auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR) | 
|  | .addReg(R, 0, SR); | 
|  | switch (ExtOpc) { | 
|  | case Hexagon::A2_sxtb: | 
|  | case Hexagon::A2_zxtb: | 
|  | case Hexagon::A2_sxth: | 
|  | case Hexagon::A2_zxth: | 
|  | break; | 
|  | case Hexagon::A2_andir: | 
|  | MIB.addImm((1u << Len) - 1); | 
|  | break; | 
|  | case Hexagon::S4_extract: | 
|  | case Hexagon::S2_extractu: | 
|  | case Hexagon::S4_extractp: | 
|  | case Hexagon::S2_extractup: | 
|  | MIB.addImm(Len) | 
|  | .addImm(Off); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected opcode"); | 
|  | } | 
|  |  | 
|  | HBS::replaceReg(RD.Reg, NewR, MRI); | 
|  | BT.put(BitTracker::RegisterRef(NewR), RC); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool BitSimplification::processBlock(MachineBasicBlock &B, | 
|  | const RegisterSet &AVs) { | 
|  | if (!BT.reached(&B)) | 
|  | return false; | 
|  | bool Changed = false; | 
|  | RegisterSet AVB = AVs; | 
|  | RegisterSet Defs; | 
|  |  | 
|  | for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) { | 
|  | MachineInstr *MI = &*I; | 
|  | Defs.clear(); | 
|  | HBS::getInstrDefs(*MI, Defs); | 
|  |  | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE) | 
|  | continue; | 
|  |  | 
|  | if (MI->mayStore()) { | 
|  | bool T = genStoreUpperHalf(MI); | 
|  | T = T || genStoreImmediate(MI); | 
|  | Changed |= T; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Defs.count() != 1) | 
|  | continue; | 
|  | const MachineOperand &Op0 = MI->getOperand(0); | 
|  | if (!Op0.isReg() || !Op0.isDef()) | 
|  | continue; | 
|  | BitTracker::RegisterRef RD = Op0; | 
|  | if (!BT.has(RD.Reg)) | 
|  | continue; | 
|  | const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); | 
|  | const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg); | 
|  |  | 
|  | if (FRC->getID() == Hexagon::DoubleRegsRegClassID) { | 
|  | bool T = genPackhl(MI, RD, RC); | 
|  | T = T || simplifyExtractLow(MI, RD, RC, AVB); | 
|  | Changed |= T; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (FRC->getID() == Hexagon::IntRegsRegClassID) { | 
|  | bool T = genBitSplit(MI, RD, RC, AVB); | 
|  | T = T || simplifyExtractLow(MI, RD, RC, AVB); | 
|  | T = T || genExtractHalf(MI, RD, RC); | 
|  | T = T || genCombineHalf(MI, RD, RC); | 
|  | T = T || genExtractLow(MI, RD, RC); | 
|  | Changed |= T; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (FRC->getID() == Hexagon::PredRegsRegClassID) { | 
|  | bool T = simplifyTstbit(MI, RD, RC); | 
|  | Changed |= T; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
|  | auto &HRI = *HST.getRegisterInfo(); | 
|  | auto &HII = *HST.getInstrInfo(); | 
|  |  | 
|  | MDT = &getAnalysis<MachineDominatorTree>(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | bool Changed; | 
|  |  | 
|  | Changed = DeadCodeElimination(MF, *MDT).run(); | 
|  |  | 
|  | const HexagonEvaluator HE(HRI, MRI, HII, MF); | 
|  | BitTracker BT(HE, MF); | 
|  | DEBUG(BT.trace(true)); | 
|  | BT.run(); | 
|  |  | 
|  | MachineBasicBlock &Entry = MF.front(); | 
|  |  | 
|  | RegisterSet AIG;  // Available registers for IG. | 
|  | ConstGeneration ImmG(BT, HII, MRI); | 
|  | Changed |= visitBlock(Entry, ImmG, AIG); | 
|  |  | 
|  | RegisterSet ARE;  // Available registers for RIE. | 
|  | RedundantInstrElimination RIE(BT, HII, HRI, MRI); | 
|  | bool Ried = visitBlock(Entry, RIE, ARE); | 
|  | if (Ried) { | 
|  | Changed = true; | 
|  | BT.run(); | 
|  | } | 
|  |  | 
|  | RegisterSet ACG;  // Available registers for CG. | 
|  | CopyGeneration CopyG(BT, HII, HRI, MRI); | 
|  | Changed |= visitBlock(Entry, CopyG, ACG); | 
|  |  | 
|  | RegisterSet ACP;  // Available registers for CP. | 
|  | CopyPropagation CopyP(HRI, MRI); | 
|  | Changed |= visitBlock(Entry, CopyP, ACP); | 
|  |  | 
|  | Changed = DeadCodeElimination(MF, *MDT).run() || Changed; | 
|  |  | 
|  | BT.run(); | 
|  | RegisterSet ABS;  // Available registers for BS. | 
|  | BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF); | 
|  | Changed |= visitBlock(Entry, BitS, ABS); | 
|  |  | 
|  | Changed = DeadCodeElimination(MF, *MDT).run() || Changed; | 
|  |  | 
|  | if (Changed) { | 
|  | for (auto &B : MF) | 
|  | for (auto &I : B) | 
|  | I.clearKillInfo(); | 
|  | DeadCodeElimination(MF, *MDT).run(); | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Recognize loops where the code at the end of the loop matches the code | 
|  | // before the entry of the loop, and the matching code is such that is can | 
|  | // be simplified. This pass relies on the bit simplification above and only | 
|  | // prepares code in a way that can be handled by the bit simplifcation. | 
|  | // | 
|  | // This is the motivating testcase (and explanation): | 
|  | // | 
|  | // { | 
|  | //   loop0(.LBB0_2, r1)      // %for.body.preheader | 
|  | //   r5:4 = memd(r0++#8) | 
|  | // } | 
|  | // { | 
|  | //   r3 = lsr(r4, #16) | 
|  | //   r7:6 = combine(r5, r5) | 
|  | // } | 
|  | // { | 
|  | //   r3 = insert(r5, #16, #16) | 
|  | //   r7:6 = vlsrw(r7:6, #16) | 
|  | // } | 
|  | // .LBB0_2: | 
|  | // { | 
|  | //   memh(r2+#4) = r5 | 
|  | //   memh(r2+#6) = r6            # R6 is really R5.H | 
|  | // } | 
|  | // { | 
|  | //   r2 = add(r2, #8) | 
|  | //   memh(r2+#0) = r4 | 
|  | //   memh(r2+#2) = r3            # R3 is really R4.H | 
|  | // } | 
|  | // { | 
|  | //   r5:4 = memd(r0++#8) | 
|  | // } | 
|  | // {                             # "Shuffling" code that sets up R3 and R6 | 
|  | //   r3 = lsr(r4, #16)           # so that their halves can be stored in the | 
|  | //   r7:6 = combine(r5, r5)      # next iteration. This could be folded into | 
|  | // }                             # the stores if the code was at the beginning | 
|  | // {                             # of the loop iteration. Since the same code | 
|  | //   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved | 
|  | //   r7:6 = vlsrw(r7:6, #16)     # there. | 
|  | // }:endloop0 | 
|  | // | 
|  | // | 
|  | // The outcome: | 
|  | // | 
|  | // { | 
|  | //   loop0(.LBB0_2, r1) | 
|  | //   r5:4 = memd(r0++#8) | 
|  | // } | 
|  | // .LBB0_2: | 
|  | // { | 
|  | //   memh(r2+#4) = r5 | 
|  | //   memh(r2+#6) = r5.h | 
|  | // } | 
|  | // { | 
|  | //   r2 = add(r2, #8) | 
|  | //   memh(r2+#0) = r4 | 
|  | //   memh(r2+#2) = r4.h | 
|  | // } | 
|  | // { | 
|  | //   r5:4 = memd(r0++#8) | 
|  | // }:endloop0 | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | FunctionPass *createHexagonLoopRescheduling(); | 
|  | void initializeHexagonLoopReschedulingPass(PassRegistry&); | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class HexagonLoopRescheduling : public MachineFunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | HexagonLoopRescheduling() : MachineFunctionPass(ID) { | 
|  | initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | private: | 
|  | const HexagonInstrInfo *HII = nullptr; | 
|  | const HexagonRegisterInfo *HRI = nullptr; | 
|  | MachineRegisterInfo *MRI = nullptr; | 
|  | BitTracker *BTP = nullptr; | 
|  |  | 
|  | struct LoopCand { | 
|  | LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb, | 
|  | MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {} | 
|  |  | 
|  | MachineBasicBlock *LB, *PB, *EB; | 
|  | }; | 
|  | using InstrList = std::vector<MachineInstr *>; | 
|  | struct InstrGroup { | 
|  | BitTracker::RegisterRef Inp, Out; | 
|  | InstrList Ins; | 
|  | }; | 
|  | struct PhiInfo { | 
|  | PhiInfo(MachineInstr &P, MachineBasicBlock &B); | 
|  |  | 
|  | unsigned DefR; | 
|  | BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register | 
|  | MachineBasicBlock *LB, *PB;     // Loop Block, Preheader Block | 
|  | }; | 
|  |  | 
|  | static unsigned getDefReg(const MachineInstr *MI); | 
|  | bool isConst(unsigned Reg) const; | 
|  | bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const; | 
|  | bool isStoreInput(const MachineInstr *MI, unsigned DefR) const; | 
|  | bool isShuffleOf(unsigned OutR, unsigned InpR) const; | 
|  | bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2, | 
|  | unsigned &InpR2) const; | 
|  | void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB, | 
|  | MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR); | 
|  | bool processLoop(LoopCand &C); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char HexagonLoopRescheduling::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched", | 
|  | "Hexagon Loop Rescheduling", false, false) | 
|  |  | 
|  | HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P, | 
|  | MachineBasicBlock &B) { | 
|  | DefR = HexagonLoopRescheduling::getDefReg(&P); | 
|  | LB = &B; | 
|  | PB = nullptr; | 
|  | for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) { | 
|  | const MachineOperand &OpB = P.getOperand(i+1); | 
|  | if (OpB.getMBB() == &B) { | 
|  | LR = P.getOperand(i); | 
|  | continue; | 
|  | } | 
|  | PB = OpB.getMBB(); | 
|  | PR = P.getOperand(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) { | 
|  | RegisterSet Defs; | 
|  | HBS::getInstrDefs(*MI, Defs); | 
|  | if (Defs.count() != 1) | 
|  | return 0; | 
|  | return Defs.find_first(); | 
|  | } | 
|  |  | 
|  | bool HexagonLoopRescheduling::isConst(unsigned Reg) const { | 
|  | if (!BTP->has(Reg)) | 
|  | return false; | 
|  | const BitTracker::RegisterCell &RC = BTP->lookup(Reg); | 
|  | for (unsigned i = 0, w = RC.width(); i < w; ++i) { | 
|  | const BitTracker::BitValue &V = RC[i]; | 
|  | if (!V.is(0) && !V.is(1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI, | 
|  | unsigned DefR) const { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | switch (Opc) { | 
|  | case TargetOpcode::COPY: | 
|  | case Hexagon::S2_lsr_i_r: | 
|  | case Hexagon::S2_asr_i_r: | 
|  | case Hexagon::S2_asl_i_r: | 
|  | case Hexagon::S2_lsr_i_p: | 
|  | case Hexagon::S2_asr_i_p: | 
|  | case Hexagon::S2_asl_i_p: | 
|  | case Hexagon::S2_insert: | 
|  | case Hexagon::A2_or: | 
|  | case Hexagon::A2_orp: | 
|  | case Hexagon::A2_and: | 
|  | case Hexagon::A2_andp: | 
|  | case Hexagon::A2_combinew: | 
|  | case Hexagon::A4_combineri: | 
|  | case Hexagon::A4_combineir: | 
|  | case Hexagon::A2_combineii: | 
|  | case Hexagon::A4_combineii: | 
|  | case Hexagon::A2_combine_ll: | 
|  | case Hexagon::A2_combine_lh: | 
|  | case Hexagon::A2_combine_hl: | 
|  | case Hexagon::A2_combine_hh: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI, | 
|  | unsigned InpR) const { | 
|  | for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { | 
|  | const MachineOperand &Op = MI->getOperand(i); | 
|  | if (!Op.isReg()) | 
|  | continue; | 
|  | if (Op.getReg() == InpR) | 
|  | return i == n-1; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const { | 
|  | if (!BTP->has(OutR) || !BTP->has(InpR)) | 
|  | return false; | 
|  | const BitTracker::RegisterCell &OutC = BTP->lookup(OutR); | 
|  | for (unsigned i = 0, w = OutC.width(); i < w; ++i) { | 
|  | const BitTracker::BitValue &V = OutC[i]; | 
|  | if (V.Type != BitTracker::BitValue::Ref) | 
|  | continue; | 
|  | if (V.RefI.Reg != InpR) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1, | 
|  | unsigned OutR2, unsigned &InpR2) const { | 
|  | if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2)) | 
|  | return false; | 
|  | const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1); | 
|  | const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2); | 
|  | unsigned W = OutC1.width(); | 
|  | unsigned MatchR = 0; | 
|  | if (W != OutC2.width()) | 
|  | return false; | 
|  | for (unsigned i = 0; i < W; ++i) { | 
|  | const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i]; | 
|  | if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One) | 
|  | return false; | 
|  | if (V1.Type != BitTracker::BitValue::Ref) | 
|  | continue; | 
|  | if (V1.RefI.Pos != V2.RefI.Pos) | 
|  | return false; | 
|  | if (V1.RefI.Reg != InpR1) | 
|  | return false; | 
|  | if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2) | 
|  | return false; | 
|  | if (!MatchR) | 
|  | MatchR = V2.RefI.Reg; | 
|  | else if (V2.RefI.Reg != MatchR) | 
|  | return false; | 
|  | } | 
|  | InpR2 = MatchR; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB, | 
|  | MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR, | 
|  | unsigned NewPredR) { | 
|  | DenseMap<unsigned,unsigned> RegMap; | 
|  |  | 
|  | const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR); | 
|  | unsigned PhiR = MRI->createVirtualRegister(PhiRC); | 
|  | BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR) | 
|  | .addReg(NewPredR) | 
|  | .addMBB(&PB) | 
|  | .addReg(G.Inp.Reg) | 
|  | .addMBB(&LB); | 
|  | RegMap.insert(std::make_pair(G.Inp.Reg, PhiR)); | 
|  |  | 
|  | for (unsigned i = G.Ins.size(); i > 0; --i) { | 
|  | const MachineInstr *SI = G.Ins[i-1]; | 
|  | unsigned DR = getDefReg(SI); | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(DR); | 
|  | unsigned NewDR = MRI->createVirtualRegister(RC); | 
|  | DebugLoc DL = SI->getDebugLoc(); | 
|  |  | 
|  | auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR); | 
|  | for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) { | 
|  | const MachineOperand &Op = SI->getOperand(j); | 
|  | if (!Op.isReg()) { | 
|  | MIB.add(Op); | 
|  | continue; | 
|  | } | 
|  | if (!Op.isUse()) | 
|  | continue; | 
|  | unsigned UseR = RegMap[Op.getReg()]; | 
|  | MIB.addReg(UseR, 0, Op.getSubReg()); | 
|  | } | 
|  | RegMap.insert(std::make_pair(DR, NewDR)); | 
|  | } | 
|  |  | 
|  | HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI); | 
|  | } | 
|  |  | 
|  | bool HexagonLoopRescheduling::processLoop(LoopCand &C) { | 
|  | DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB) << "\n"); | 
|  | std::vector<PhiInfo> Phis; | 
|  | for (auto &I : *C.LB) { | 
|  | if (!I.isPHI()) | 
|  | break; | 
|  | unsigned PR = getDefReg(&I); | 
|  | if (isConst(PR)) | 
|  | continue; | 
|  | bool BadUse = false, GoodUse = false; | 
|  | for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) { | 
|  | MachineInstr *UseI = UI->getParent(); | 
|  | if (UseI->getParent() != C.LB) { | 
|  | BadUse = true; | 
|  | break; | 
|  | } | 
|  | if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR)) | 
|  | GoodUse = true; | 
|  | } | 
|  | if (BadUse || !GoodUse) | 
|  | continue; | 
|  |  | 
|  | Phis.push_back(PhiInfo(I, *C.LB)); | 
|  | } | 
|  |  | 
|  | DEBUG({ | 
|  | dbgs() << "Phis: {"; | 
|  | for (auto &I : Phis) { | 
|  | dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi(" | 
|  | << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber() | 
|  | << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b" | 
|  | << I.LB->getNumber() << ')'; | 
|  | } | 
|  | dbgs() << " }\n"; | 
|  | }); | 
|  |  | 
|  | if (Phis.empty()) | 
|  | return false; | 
|  |  | 
|  | bool Changed = false; | 
|  | InstrList ShufIns; | 
|  |  | 
|  | // Go backwards in the block: for each bit shuffling instruction, check | 
|  | // if that instruction could potentially be moved to the front of the loop: | 
|  | // the output of the loop cannot be used in a non-shuffling instruction | 
|  | // in this loop. | 
|  | for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) { | 
|  | if (I->isTerminator()) | 
|  | continue; | 
|  | if (I->isPHI()) | 
|  | break; | 
|  |  | 
|  | RegisterSet Defs; | 
|  | HBS::getInstrDefs(*I, Defs); | 
|  | if (Defs.count() != 1) | 
|  | continue; | 
|  | unsigned DefR = Defs.find_first(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(DefR)) | 
|  | continue; | 
|  | if (!isBitShuffle(&*I, DefR)) | 
|  | continue; | 
|  |  | 
|  | bool BadUse = false; | 
|  | for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) { | 
|  | MachineInstr *UseI = UI->getParent(); | 
|  | if (UseI->getParent() == C.LB) { | 
|  | if (UseI->isPHI()) { | 
|  | // If the use is in a phi node in this loop, then it should be | 
|  | // the value corresponding to the back edge. | 
|  | unsigned Idx = UI.getOperandNo(); | 
|  | if (UseI->getOperand(Idx+1).getMBB() != C.LB) | 
|  | BadUse = true; | 
|  | } else { | 
|  | auto F = find(ShufIns, UseI); | 
|  | if (F == ShufIns.end()) | 
|  | BadUse = true; | 
|  | } | 
|  | } else { | 
|  | // There is a use outside of the loop, but there is no epilog block | 
|  | // suitable for a copy-out. | 
|  | if (C.EB == nullptr) | 
|  | BadUse = true; | 
|  | } | 
|  | if (BadUse) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (BadUse) | 
|  | continue; | 
|  | ShufIns.push_back(&*I); | 
|  | } | 
|  |  | 
|  | // Partition the list of shuffling instructions into instruction groups, | 
|  | // where each group has to be moved as a whole (i.e. a group is a chain of | 
|  | // dependent instructions). A group produces a single live output register, | 
|  | // which is meant to be the input of the loop phi node (although this is | 
|  | // not checked here yet). It also uses a single register as its input, | 
|  | // which is some value produced in the loop body. After moving the group | 
|  | // to the beginning of the loop, that input register would need to be | 
|  | // the loop-carried register (through a phi node) instead of the (currently | 
|  | // loop-carried) output register. | 
|  | using InstrGroupList = std::vector<InstrGroup>; | 
|  | InstrGroupList Groups; | 
|  |  | 
|  | for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) { | 
|  | MachineInstr *SI = ShufIns[i]; | 
|  | if (SI == nullptr) | 
|  | continue; | 
|  |  | 
|  | InstrGroup G; | 
|  | G.Ins.push_back(SI); | 
|  | G.Out.Reg = getDefReg(SI); | 
|  | RegisterSet Inputs; | 
|  | HBS::getInstrUses(*SI, Inputs); | 
|  |  | 
|  | for (unsigned j = i+1; j < n; ++j) { | 
|  | MachineInstr *MI = ShufIns[j]; | 
|  | if (MI == nullptr) | 
|  | continue; | 
|  | RegisterSet Defs; | 
|  | HBS::getInstrDefs(*MI, Defs); | 
|  | // If this instruction does not define any pending inputs, skip it. | 
|  | if (!Defs.intersects(Inputs)) | 
|  | continue; | 
|  | // Otherwise, add it to the current group and remove the inputs that | 
|  | // are defined by MI. | 
|  | G.Ins.push_back(MI); | 
|  | Inputs.remove(Defs); | 
|  | // Then add all registers used by MI. | 
|  | HBS::getInstrUses(*MI, Inputs); | 
|  | ShufIns[j] = nullptr; | 
|  | } | 
|  |  | 
|  | // Only add a group if it requires at most one register. | 
|  | if (Inputs.count() > 1) | 
|  | continue; | 
|  | auto LoopInpEq = [G] (const PhiInfo &P) -> bool { | 
|  | return G.Out.Reg == P.LR.Reg; | 
|  | }; | 
|  | if (llvm::find_if(Phis, LoopInpEq) == Phis.end()) | 
|  | continue; | 
|  |  | 
|  | G.Inp.Reg = Inputs.find_first(); | 
|  | Groups.push_back(G); | 
|  | } | 
|  |  | 
|  | DEBUG({ | 
|  | for (unsigned i = 0, n = Groups.size(); i < n; ++i) { | 
|  | InstrGroup &G = Groups[i]; | 
|  | dbgs() << "Group[" << i << "] inp: " | 
|  | << printReg(G.Inp.Reg, HRI, G.Inp.Sub) | 
|  | << "  out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n"; | 
|  | for (unsigned j = 0, m = G.Ins.size(); j < m; ++j) | 
|  | dbgs() << "  " << *G.Ins[j]; | 
|  | } | 
|  | }); | 
|  |  | 
|  | for (unsigned i = 0, n = Groups.size(); i < n; ++i) { | 
|  | InstrGroup &G = Groups[i]; | 
|  | if (!isShuffleOf(G.Out.Reg, G.Inp.Reg)) | 
|  | continue; | 
|  | auto LoopInpEq = [G] (const PhiInfo &P) -> bool { | 
|  | return G.Out.Reg == P.LR.Reg; | 
|  | }; | 
|  | auto F = llvm::find_if(Phis, LoopInpEq); | 
|  | if (F == Phis.end()) | 
|  | continue; | 
|  | unsigned PrehR = 0; | 
|  | if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) { | 
|  | const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg); | 
|  | unsigned Opc = DefPrehR->getOpcode(); | 
|  | if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi) | 
|  | continue; | 
|  | if (!DefPrehR->getOperand(1).isImm()) | 
|  | continue; | 
|  | if (DefPrehR->getOperand(1).getImm() != 0) | 
|  | continue; | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg); | 
|  | if (RC != MRI->getRegClass(F->PR.Reg)) { | 
|  | PrehR = MRI->createVirtualRegister(RC); | 
|  | unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi | 
|  | : Hexagon::A2_tfrpi; | 
|  | auto T = C.PB->getFirstTerminator(); | 
|  | DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc(); | 
|  | BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR) | 
|  | .addImm(0); | 
|  | } else { | 
|  | PrehR = F->PR.Reg; | 
|  | } | 
|  | } | 
|  | // isSameShuffle could match with PrehR being of a wider class than | 
|  | // G.Inp.Reg, for example if G shuffles the low 32 bits of its input, | 
|  | // it would match for the input being a 32-bit register, and PrehR | 
|  | // being a 64-bit register (where the low 32 bits match). This could | 
|  | // be handled, but for now skip these cases. | 
|  | if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg)) | 
|  | continue; | 
|  | moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
|  | HII = HST.getInstrInfo(); | 
|  | HRI = HST.getRegisterInfo(); | 
|  | MRI = &MF.getRegInfo(); | 
|  | const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); | 
|  | BitTracker BT(HE, MF); | 
|  | DEBUG(BT.trace(true)); | 
|  | BT.run(); | 
|  | BTP = &BT; | 
|  |  | 
|  | std::vector<LoopCand> Cand; | 
|  |  | 
|  | for (auto &B : MF) { | 
|  | if (B.pred_size() != 2 || B.succ_size() != 2) | 
|  | continue; | 
|  | MachineBasicBlock *PB = nullptr; | 
|  | bool IsLoop = false; | 
|  | for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) { | 
|  | if (*PI != &B) | 
|  | PB = *PI; | 
|  | else | 
|  | IsLoop = true; | 
|  | } | 
|  | if (!IsLoop) | 
|  | continue; | 
|  |  | 
|  | MachineBasicBlock *EB = nullptr; | 
|  | for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) { | 
|  | if (*SI == &B) | 
|  | continue; | 
|  | // Set EP to the epilog block, if it has only 1 predecessor (i.e. the | 
|  | // edge from B to EP is non-critical. | 
|  | if ((*SI)->pred_size() == 1) | 
|  | EB = *SI; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Cand.push_back(LoopCand(&B, PB, EB)); | 
|  | } | 
|  |  | 
|  | bool Changed = false; | 
|  | for (auto &C : Cand) | 
|  | Changed |= processLoop(C); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Public Constructor Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | FunctionPass *llvm::createHexagonLoopRescheduling() { | 
|  | return new HexagonLoopRescheduling(); | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createHexagonBitSimplify() { | 
|  | return new HexagonBitSimplify(); | 
|  | } |