|  | //===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the interfaces that AVR uses to lower LLVM code into a | 
|  | // selection DAG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AVRISelLowering.h" | 
|  |  | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  |  | 
|  | #include "AVR.h" | 
|  | #include "AVRMachineFunctionInfo.h" | 
|  | #include "AVRTargetMachine.h" | 
|  | #include "MCTargetDesc/AVRMCTargetDesc.h" | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | AVRTargetLowering::AVRTargetLowering(AVRTargetMachine &tm) | 
|  | : TargetLowering(tm) { | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i8, &AVR::GPR8RegClass); | 
|  | addRegisterClass(MVT::i16, &AVR::DREGSRegClass); | 
|  |  | 
|  | // Compute derived properties from the register classes. | 
|  | computeRegisterProperties(tm.getSubtargetImpl()->getRegisterInfo()); | 
|  |  | 
|  | setBooleanContents(ZeroOrOneBooleanContent); | 
|  | setBooleanVectorContents(ZeroOrOneBooleanContent); | 
|  | setSchedulingPreference(Sched::RegPressure); | 
|  | setStackPointerRegisterToSaveRestore(AVR::SP); | 
|  |  | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i16, Custom); | 
|  | setOperationAction(ISD::BlockAddress, MVT::i16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand); | 
|  |  | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { | 
|  | setLoadExtAction(N, VT, MVT::i1, Promote); | 
|  | setLoadExtAction(N, VT, MVT::i8, Expand); | 
|  | } | 
|  | } | 
|  |  | 
|  | setTruncStoreAction(MVT::i16, MVT::i8, Expand); | 
|  |  | 
|  | // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types | 
|  | // revert into a sub since we don't have an add with immediate instruction. | 
|  | setOperationAction(ISD::ADD, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ADD, MVT::i64, Custom); | 
|  |  | 
|  | // our shift instructions are only able to shift 1 bit at a time, so handle | 
|  | // this in a custom way. | 
|  | setOperationAction(ISD::SRA, MVT::i8, Custom); | 
|  | setOperationAction(ISD::SHL, MVT::i8, Custom); | 
|  | setOperationAction(ISD::SRL, MVT::i8, Custom); | 
|  | setOperationAction(ISD::SRA, MVT::i16, Custom); | 
|  | setOperationAction(ISD::SHL, MVT::i16, Custom); | 
|  | setOperationAction(ISD::SRL, MVT::i16, Custom); | 
|  | setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand); | 
|  | setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand); | 
|  | setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BR_CC, MVT::i8, Custom); | 
|  | setOperationAction(ISD::BR_CC, MVT::i16, Custom); | 
|  | setOperationAction(ISD::BR_CC, MVT::i32, Custom); | 
|  | setOperationAction(ISD::BR_CC, MVT::i64, Custom); | 
|  | setOperationAction(ISD::BRCOND, MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i8, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i16, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SETCC, MVT::i8, Custom); | 
|  | setOperationAction(ISD::SETCC, MVT::i16, Custom); | 
|  | setOperationAction(ISD::SETCC, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SETCC, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::i8, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::i16, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BSWAP, MVT::i16, Expand); | 
|  |  | 
|  | // Add support for postincrement and predecrement load/stores. | 
|  | setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); | 
|  | setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal); | 
|  | setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal); | 
|  | setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal); | 
|  | setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal); | 
|  | setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::BR_JT, MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::VASTART, MVT::Other, Custom); | 
|  | setOperationAction(ISD::VAEND, MVT::Other, Expand); | 
|  | setOperationAction(ISD::VAARG, MVT::Other, Expand); | 
|  | setOperationAction(ISD::VACOPY, MVT::Other, Expand); | 
|  |  | 
|  | // Atomic operations which must be lowered to rtlib calls | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | setOperationAction(ISD::ATOMIC_SWAP, VT, Expand); | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); | 
|  | } | 
|  |  | 
|  | // Division/remainder | 
|  | setOperationAction(ISD::UDIV, MVT::i8, Expand); | 
|  | setOperationAction(ISD::UDIV, MVT::i16, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i8, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i16, Expand); | 
|  | setOperationAction(ISD::SDIV, MVT::i8, Expand); | 
|  | setOperationAction(ISD::SDIV, MVT::i16, Expand); | 
|  | setOperationAction(ISD::SREM, MVT::i8, Expand); | 
|  | setOperationAction(ISD::SREM, MVT::i16, Expand); | 
|  |  | 
|  | // Make division and modulus custom | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | setOperationAction(ISD::UDIVREM, VT, Custom); | 
|  | setOperationAction(ISD::SDIVREM, VT, Custom); | 
|  | } | 
|  |  | 
|  | // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co. | 
|  | setOperationAction(ISD::MUL, MVT::i8, Expand); | 
|  | setOperationAction(ISD::MUL, MVT::i16, Expand); | 
|  |  | 
|  | // Expand 16 bit multiplications. | 
|  | setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand); | 
|  |  | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | setOperationAction(ISD::MULHS, VT, Expand); | 
|  | setOperationAction(ISD::MULHU, VT, Expand); | 
|  | } | 
|  |  | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | setOperationAction(ISD::CTPOP, VT, Expand); | 
|  | setOperationAction(ISD::CTLZ, VT, Expand); | 
|  | setOperationAction(ISD::CTTZ, VT, Expand); | 
|  | } | 
|  |  | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); | 
|  | // TODO: The generated code is pretty poor. Investigate using the | 
|  | // same "shift and subtract with carry" trick that we do for | 
|  | // extending 8-bit to 16-bit. This may require infrastructure | 
|  | // improvements in how we treat 16-bit "registers" to be feasible. | 
|  | } | 
|  |  | 
|  | // Division rtlib functions (not supported) | 
|  | setLibcallName(RTLIB::SDIV_I8, nullptr); | 
|  | setLibcallName(RTLIB::SDIV_I16, nullptr); | 
|  | setLibcallName(RTLIB::SDIV_I32, nullptr); | 
|  | setLibcallName(RTLIB::SDIV_I64, nullptr); | 
|  | setLibcallName(RTLIB::SDIV_I128, nullptr); | 
|  | setLibcallName(RTLIB::UDIV_I8, nullptr); | 
|  | setLibcallName(RTLIB::UDIV_I16, nullptr); | 
|  | setLibcallName(RTLIB::UDIV_I32, nullptr); | 
|  | setLibcallName(RTLIB::UDIV_I64, nullptr); | 
|  | setLibcallName(RTLIB::UDIV_I128, nullptr); | 
|  |  | 
|  | // Modulus rtlib functions (not supported) | 
|  | setLibcallName(RTLIB::SREM_I8, nullptr); | 
|  | setLibcallName(RTLIB::SREM_I16, nullptr); | 
|  | setLibcallName(RTLIB::SREM_I32, nullptr); | 
|  | setLibcallName(RTLIB::SREM_I64, nullptr); | 
|  | setLibcallName(RTLIB::SREM_I128, nullptr); | 
|  | setLibcallName(RTLIB::UREM_I8, nullptr); | 
|  | setLibcallName(RTLIB::UREM_I16, nullptr); | 
|  | setLibcallName(RTLIB::UREM_I32, nullptr); | 
|  | setLibcallName(RTLIB::UREM_I64, nullptr); | 
|  | setLibcallName(RTLIB::UREM_I128, nullptr); | 
|  |  | 
|  | // Division and modulus rtlib functions | 
|  | setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4"); | 
|  | setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4"); | 
|  | setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); | 
|  | setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4"); | 
|  | setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4"); | 
|  | setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4"); | 
|  | setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4"); | 
|  | setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); | 
|  | setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4"); | 
|  | setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4"); | 
|  |  | 
|  | // Several of the runtime library functions use a special calling conv | 
|  | setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN); | 
|  | setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN); | 
|  | setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN); | 
|  | setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN); | 
|  |  | 
|  | // Trigonometric rtlib functions | 
|  | setLibcallName(RTLIB::SIN_F32, "sin"); | 
|  | setLibcallName(RTLIB::COS_F32, "cos"); | 
|  |  | 
|  | setMinFunctionAlignment(1); | 
|  | setMinimumJumpTableEntries(INT_MAX); | 
|  | } | 
|  |  | 
|  | const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | #define NODE(name)       \ | 
|  | case AVRISD::name:     \ | 
|  | return #name | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return nullptr; | 
|  | NODE(RET_FLAG); | 
|  | NODE(RETI_FLAG); | 
|  | NODE(CALL); | 
|  | NODE(WRAPPER); | 
|  | NODE(LSL); | 
|  | NODE(LSR); | 
|  | NODE(ROL); | 
|  | NODE(ROR); | 
|  | NODE(ASR); | 
|  | NODE(LSLLOOP); | 
|  | NODE(LSRLOOP); | 
|  | NODE(ASRLOOP); | 
|  | NODE(BRCOND); | 
|  | NODE(CMP); | 
|  | NODE(CMPC); | 
|  | NODE(TST); | 
|  | NODE(SELECT_CC); | 
|  | #undef NODE | 
|  | } | 
|  | } | 
|  |  | 
|  | EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, | 
|  | EVT VT) const { | 
|  | assert(!VT.isVector() && "No AVR SetCC type for vectors!"); | 
|  | return MVT::i8; | 
|  | } | 
|  |  | 
|  | SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const { | 
|  | //:TODO: this function has to be completely rewritten to produce optimal | 
|  | // code, for now it's producing very long but correct code. | 
|  | unsigned Opc8; | 
|  | const SDNode *N = Op.getNode(); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // Expand non-constant shifts to loops. | 
|  | if (!isa<ConstantSDNode>(N->getOperand(1))) { | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Invalid shift opcode!"); | 
|  | case ISD::SHL: | 
|  | return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0), | 
|  | N->getOperand(1)); | 
|  | case ISD::SRL: | 
|  | return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0), | 
|  | N->getOperand(1)); | 
|  | case ISD::SRA: | 
|  | return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0), | 
|  | N->getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | SDValue Victim = N->getOperand(0); | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::SRA: | 
|  | Opc8 = AVRISD::ASR; | 
|  | break; | 
|  | case ISD::ROTL: | 
|  | Opc8 = AVRISD::ROL; | 
|  | break; | 
|  | case ISD::ROTR: | 
|  | Opc8 = AVRISD::ROR; | 
|  | break; | 
|  | case ISD::SRL: | 
|  | Opc8 = AVRISD::LSR; | 
|  | break; | 
|  | case ISD::SHL: | 
|  | Opc8 = AVRISD::LSL; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Invalid shift opcode"); | 
|  | } | 
|  |  | 
|  | while (ShiftAmount--) { | 
|  | Victim = DAG.getNode(Opc8, dl, VT, Victim); | 
|  | } | 
|  |  | 
|  | return Victim; | 
|  | } | 
|  |  | 
|  | SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { | 
|  | unsigned Opcode = Op->getOpcode(); | 
|  | assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && | 
|  | "Invalid opcode for Div/Rem lowering"); | 
|  | bool isSigned = (Opcode == ISD::SDIVREM); | 
|  | EVT VT = Op->getValueType(0); | 
|  | Type *Ty = VT.getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | RTLIB::Libcall LC; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected request for libcall!"); | 
|  | case MVT::i8: | 
|  | LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; | 
|  | break; | 
|  | case MVT::i16: | 
|  | LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; | 
|  | break; | 
|  | case MVT::i32: | 
|  | LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; | 
|  | break; | 
|  | case MVT::i64: | 
|  | LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue InChain = DAG.getEntryNode(); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (SDValue const &Value : Op->op_values()) { | 
|  | Entry.Node = Value; | 
|  | Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext()); | 
|  | Entry.isSExt = isSigned; | 
|  | Entry.isZExt = !isSigned; | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), | 
|  | getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | Type *RetTy = (Type *)StructType::get(Ty, Ty, nullptr); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(dl) | 
|  | .setChain(InChain) | 
|  | .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) | 
|  | .setInRegister() | 
|  | .setSExtResult(isSigned) | 
|  | .setZExtResult(!isSigned); | 
|  |  | 
|  | std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); | 
|  | return CallInfo.first; | 
|  | } | 
|  |  | 
|  | SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | auto DL = DAG.getDataLayout(); | 
|  |  | 
|  | const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | 
|  | int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); | 
|  |  | 
|  | // Create the TargetGlobalAddress node, folding in the constant offset. | 
|  | SDValue Result = | 
|  | DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset); | 
|  | return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result); | 
|  | } | 
|  |  | 
|  | SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | auto DL = DAG.getDataLayout(); | 
|  | const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); | 
|  |  | 
|  | SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL)); | 
|  |  | 
|  | return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result); | 
|  | } | 
|  |  | 
|  | /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC. | 
|  | static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Unknown condition code!"); | 
|  | case ISD::SETEQ: | 
|  | return AVRCC::COND_EQ; | 
|  | case ISD::SETNE: | 
|  | return AVRCC::COND_NE; | 
|  | case ISD::SETGE: | 
|  | return AVRCC::COND_GE; | 
|  | case ISD::SETLT: | 
|  | return AVRCC::COND_LT; | 
|  | case ISD::SETUGE: | 
|  | return AVRCC::COND_SH; | 
|  | case ISD::SETULT: | 
|  | return AVRCC::COND_LO; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for | 
|  | /// the given operands. | 
|  | SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, | 
|  | SDValue &AVRcc, SelectionDAG &DAG, | 
|  | SDLoc DL) const { | 
|  | SDValue Cmp; | 
|  | EVT VT = LHS.getValueType(); | 
|  | bool UseTest = false; | 
|  |  | 
|  | switch (CC) { | 
|  | default: | 
|  | break; | 
|  | case ISD::SETLE: { | 
|  | // Swap operands and reverse the branching condition. | 
|  | std::swap(LHS, RHS); | 
|  | CC = ISD::SETGE; | 
|  | break; | 
|  | } | 
|  | case ISD::SETGT: { | 
|  | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { | 
|  | switch (C->getSExtValue()) { | 
|  | case -1: { | 
|  | // When doing lhs > -1 use a tst instruction on the top part of lhs | 
|  | // and use brpl instead of using a chain of cp/cpc. | 
|  | UseTest = true; | 
|  | AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8); | 
|  | break; | 
|  | } | 
|  | case 0: { | 
|  | // Turn lhs > 0 into 0 < lhs since 0 can be materialized with | 
|  | // __zero_reg__ in lhs. | 
|  | RHS = LHS; | 
|  | LHS = DAG.getConstant(0, DL, VT); | 
|  | CC = ISD::SETLT; | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows | 
|  | // us to  fold the constant into the cmp instruction. | 
|  | RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT); | 
|  | CC = ISD::SETGE; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | // Swap operands and reverse the branching condition. | 
|  | std::swap(LHS, RHS); | 
|  | CC = ISD::SETLT; | 
|  | break; | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { | 
|  | switch (C->getSExtValue()) { | 
|  | case 1: { | 
|  | // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with | 
|  | // __zero_reg__ in lhs. | 
|  | RHS = LHS; | 
|  | LHS = DAG.getConstant(0, DL, VT); | 
|  | CC = ISD::SETGE; | 
|  | break; | 
|  | } | 
|  | case 0: { | 
|  | // When doing lhs < 0 use a tst instruction on the top part of lhs | 
|  | // and use brmi instead of using a chain of cp/cpc. | 
|  | UseTest = true; | 
|  | AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::SETULE: { | 
|  | // Swap operands and reverse the branching condition. | 
|  | std::swap(LHS, RHS); | 
|  | CC = ISD::SETUGE; | 
|  | break; | 
|  | } | 
|  | case ISD::SETUGT: { | 
|  | // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to | 
|  | // fold the constant into the cmp instruction. | 
|  | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { | 
|  | RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT); | 
|  | CC = ISD::SETUGE; | 
|  | break; | 
|  | } | 
|  | // Swap operands and reverse the branching condition. | 
|  | std::swap(LHS, RHS); | 
|  | CC = ISD::SETULT; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of | 
|  | // using the default and/or/xor expansion code which is much longer. | 
|  | if (VT == MVT::i32) { | 
|  | SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS, | 
|  | DAG.getIntPtrConstant(1, DL)); | 
|  | SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS, | 
|  | DAG.getIntPtrConstant(1, DL)); | 
|  |  | 
|  | if (UseTest) { | 
|  | // When using tst we only care about the highest part. | 
|  | SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi, | 
|  | DAG.getIntPtrConstant(1, DL)); | 
|  | Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top); | 
|  | } else { | 
|  | Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo); | 
|  | Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp); | 
|  | } | 
|  | } else if (VT == MVT::i64) { | 
|  | SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS, | 
|  | DAG.getIntPtrConstant(1, DL)); | 
|  |  | 
|  | SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0, | 
|  | DAG.getIntPtrConstant(1, DL)); | 
|  | SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1, | 
|  | DAG.getIntPtrConstant(1, DL)); | 
|  |  | 
|  | SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS, | 
|  | DAG.getIntPtrConstant(1, DL)); | 
|  |  | 
|  | SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0, | 
|  | DAG.getIntPtrConstant(1, DL)); | 
|  | SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1, | 
|  | DAG.getIntPtrConstant(1, DL)); | 
|  |  | 
|  | if (UseTest) { | 
|  | // When using tst we only care about the highest part. | 
|  | SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3, | 
|  | DAG.getIntPtrConstant(1, DL)); | 
|  | Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top); | 
|  | } else { | 
|  | Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0); | 
|  | Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp); | 
|  | Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp); | 
|  | Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp); | 
|  | } | 
|  | } else if (VT == MVT::i8 || VT == MVT::i16) { | 
|  | if (UseTest) { | 
|  | // When using tst we only care about the highest part. | 
|  | Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, | 
|  | (VT == MVT::i8) | 
|  | ? LHS | 
|  | : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, | 
|  | LHS, DAG.getIntPtrConstant(1, DL))); | 
|  | } else { | 
|  | Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS); | 
|  | } | 
|  | } else { | 
|  | llvm_unreachable("Invalid comparison size"); | 
|  | } | 
|  |  | 
|  | // When using a test instruction AVRcc is already set. | 
|  | if (!UseTest) { | 
|  | AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8); | 
|  | } | 
|  |  | 
|  | return Cmp; | 
|  | } | 
|  |  | 
|  | SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); | 
|  | SDValue LHS = Op.getOperand(2); | 
|  | SDValue RHS = Op.getOperand(3); | 
|  | SDValue Dest = Op.getOperand(4); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | SDValue TargetCC; | 
|  | SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl); | 
|  |  | 
|  | return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC, | 
|  | Cmp); | 
|  | } | 
|  |  | 
|  | SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | SDValue TrueV = Op.getOperand(2); | 
|  | SDValue FalseV = Op.getOperand(3); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | SDValue TargetCC; | 
|  | SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); | 
|  | SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp}; | 
|  |  | 
|  | return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops); | 
|  | } | 
|  |  | 
|  | SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | SDValue TargetCC; | 
|  | SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL); | 
|  |  | 
|  | SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType()); | 
|  | SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType()); | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); | 
|  | SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp}; | 
|  |  | 
|  | return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops); | 
|  | } | 
|  |  | 
|  | SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { | 
|  | const MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>(); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | auto DL = DAG.getDataLayout(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // Vastart just stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL)); | 
|  |  | 
|  | return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1), | 
|  | MachinePointerInfo(SV), 0); | 
|  | } | 
|  |  | 
|  | SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Don't know how to custom lower this!"); | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: | 
|  | return LowerShifts(Op, DAG); | 
|  | case ISD::GlobalAddress: | 
|  | return LowerGlobalAddress(Op, DAG); | 
|  | case ISD::BlockAddress: | 
|  | return LowerBlockAddress(Op, DAG); | 
|  | case ISD::BR_CC: | 
|  | return LowerBR_CC(Op, DAG); | 
|  | case ISD::SELECT_CC: | 
|  | return LowerSELECT_CC(Op, DAG); | 
|  | case ISD::SETCC: | 
|  | return LowerSETCC(Op, DAG); | 
|  | case ISD::VASTART: | 
|  | return LowerVASTART(Op, DAG); | 
|  | case ISD::SDIVREM: | 
|  | case ISD::UDIVREM: | 
|  | return LowerDivRem(Op, DAG); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Replace a node with an illegal result type | 
|  | /// with a new node built out of custom code. | 
|  | void AVRTargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(N); | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::ADD: { | 
|  | // Convert add (x, imm) into sub (x, -imm). | 
|  | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { | 
|  | SDValue Sub = DAG.getNode( | 
|  | ISD::SUB, DL, N->getValueType(0), N->getOperand(0), | 
|  | DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0))); | 
|  | Results.push_back(Sub); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | SDValue Res = LowerOperation(SDValue(N, 0), DAG); | 
|  |  | 
|  | for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) | 
|  | Results.push_back(Res.getValue(I)); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if the addressing mode represented | 
|  | /// by AM is legal for this target, for a load/store of the specified type. | 
|  | bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL, | 
|  | const AddrMode &AM, Type *Ty, | 
|  | unsigned AS) const { | 
|  | int64_t Offs = AM.BaseOffs; | 
|  |  | 
|  | // Allow absolute addresses. | 
|  | if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Flash memory instructions only allow zero offsets. | 
|  | if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Allow reg+<6bit> offset. | 
|  | if (Offs < 0) | 
|  | Offs = -Offs; | 
|  | if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true by value, base pointer and | 
|  | /// offset pointer and addressing mode by reference if the node's address | 
|  | /// can be legally represented as pre-indexed load / store address. | 
|  | bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, | 
|  | SDValue &Offset, | 
|  | ISD::MemIndexedMode &AM, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT; | 
|  | const SDNode *Op; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
|  | VT = LD->getMemoryVT(); | 
|  | Op = LD->getBasePtr().getNode(); | 
|  | if (LD->getExtensionType() != ISD::NON_EXTLOAD) | 
|  | return false; | 
|  | if (AVR::isProgramMemoryAccess(LD)) { | 
|  | return false; | 
|  | } | 
|  | } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
|  | VT = ST->getMemoryVT(); | 
|  | Op = ST->getBasePtr().getNode(); | 
|  | if (AVR::isProgramMemoryAccess(ST)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (VT != MVT::i8 && VT != MVT::i16) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { | 
|  | int RHSC = RHS->getSExtValue(); | 
|  | if (Op->getOpcode() == ISD::SUB) | 
|  | RHSC = -RHSC; | 
|  |  | 
|  | if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Base = Op->getOperand(0); | 
|  | Offset = DAG.getConstant(RHSC, DL, MVT::i8); | 
|  | AM = ISD::PRE_DEC; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true by value, base pointer and | 
|  | /// offset pointer and addressing mode by reference if this node can be | 
|  | /// combined with a load / store to form a post-indexed load / store. | 
|  | bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, | 
|  | SDValue &Base, | 
|  | SDValue &Offset, | 
|  | ISD::MemIndexedMode &AM, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
|  | VT = LD->getMemoryVT(); | 
|  | if (LD->getExtensionType() != ISD::NON_EXTLOAD) | 
|  | return false; | 
|  | } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
|  | VT = ST->getMemoryVT(); | 
|  | if (AVR::isProgramMemoryAccess(ST)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (VT != MVT::i8 && VT != MVT::i16) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { | 
|  | int RHSC = RHS->getSExtValue(); | 
|  | if (Op->getOpcode() == ISD::SUB) | 
|  | RHSC = -RHSC; | 
|  | if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Base = Op->getOperand(0); | 
|  | Offset = DAG.getConstant(RHSC, DL, MVT::i8); | 
|  | AM = ISD::POST_INC; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AVRTargetLowering::isOffsetFoldingLegal( | 
|  | const GlobalAddressSDNode *GA) const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //             Formal Arguments Calling Convention Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AVRGenCallingConv.inc" | 
|  |  | 
|  | /// For each argument in a function store the number of pieces it is composed | 
|  | /// of. | 
|  | static void parseFunctionArgs(const Function *F, const DataLayout *TD, | 
|  | SmallVectorImpl<unsigned> &Out) { | 
|  | for (Argument const &Arg : F->args()) { | 
|  | unsigned Bytes = (TD->getTypeSizeInBits(Arg.getType()) + 7) / 8; | 
|  | Out.push_back((Bytes + 1) / 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// For external symbols there is no function prototype information so we | 
|  | /// have to rely directly on argument sizes. | 
|  | static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In, | 
|  | SmallVectorImpl<unsigned> &Out) { | 
|  | for (unsigned i = 0, e = In.size(); i != e;) { | 
|  | unsigned Size = 0; | 
|  | unsigned Offset = 0; | 
|  | while ((i != e) && (In[i].PartOffset == Offset)) { | 
|  | Offset += In[i].VT.getStoreSize(); | 
|  | ++i; | 
|  | ++Size; | 
|  | } | 
|  | Out.push_back(Size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) { | 
|  | SDValue Callee = CLI.Callee; | 
|  |  | 
|  | if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | return G->getSymbol(); | 
|  | } | 
|  |  | 
|  | if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | return G->getGlobal()->getName(); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("don't know how to get the name for this callee"); | 
|  | } | 
|  |  | 
|  | /// Analyze incoming and outgoing function arguments. We need custom C++ code | 
|  | /// to handle special constraints in the ABI like reversing the order of the | 
|  | /// pieces of splitted arguments. In addition, all pieces of a certain argument | 
|  | /// have to be passed either using registers or the stack but never mixing both. | 
|  | static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI, | 
|  | const Function *F, const DataLayout *TD, | 
|  | const SmallVectorImpl<ISD::OutputArg> *Outs, | 
|  | const SmallVectorImpl<ISD::InputArg> *Ins, | 
|  | CallingConv::ID CallConv, | 
|  | SmallVectorImpl<CCValAssign> &ArgLocs, | 
|  | CCState &CCInfo, bool IsCall, bool IsVarArg) { | 
|  | static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20, | 
|  | AVR::R18, AVR::R16, AVR::R14, | 
|  | AVR::R12, AVR::R10, AVR::R8}; | 
|  | static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20, | 
|  | AVR::R19R18, AVR::R17R16, AVR::R15R14, | 
|  | AVR::R13R12, AVR::R11R10, AVR::R9R8}; | 
|  | if (IsVarArg) { | 
|  | // Variadic functions do not need all the analisys below. | 
|  | if (IsCall) { | 
|  | CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg); | 
|  | } else { | 
|  | CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Fill in the Args array which will contain original argument sizes. | 
|  | SmallVector<unsigned, 8> Args; | 
|  | if (IsCall) { | 
|  | parseExternFuncCallArgs(*Outs, Args); | 
|  | } else { | 
|  | assert(F != nullptr && "function should not be null"); | 
|  | parseFunctionArgs(F, TD, Args); | 
|  | } | 
|  |  | 
|  | unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0; | 
|  | // Variadic functions always use the stack. | 
|  | bool UsesStack = false; | 
|  | for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) { | 
|  | unsigned Size = Args[i]; | 
|  |  | 
|  | // If we have a zero-sized argument, don't attempt to lower it. | 
|  | // AVR-GCC does not support zero-sized arguments and so we need not | 
|  | // worry about ABI compatibility. | 
|  | if (Size == 0) continue; | 
|  |  | 
|  | MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT; | 
|  |  | 
|  | // If we have plenty of regs to pass the whole argument do it. | 
|  | if (!UsesStack && (Size <= RegsLeft)) { | 
|  | const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8; | 
|  |  | 
|  | for (unsigned j = 0; j != Size; ++j) { | 
|  | unsigned Reg = CCInfo.AllocateReg( | 
|  | ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8))); | 
|  | CCInfo.addLoc( | 
|  | CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full)); | 
|  | --RegsLeft; | 
|  | } | 
|  |  | 
|  | // Reverse the order of the pieces to agree with the "big endian" format | 
|  | // required in the calling convention ABI. | 
|  | std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size); | 
|  | } else { | 
|  | // Pass the rest of arguments using the stack. | 
|  | UsesStack = true; | 
|  | for (unsigned j = 0; j != Size; ++j) { | 
|  | unsigned Offset = CCInfo.AllocateStack( | 
|  | TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())), | 
|  | TD->getABITypeAlignment( | 
|  | EVT(LocVT).getTypeForEVT(CCInfo.getContext()))); | 
|  | CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT, | 
|  | CCValAssign::Full)); | 
|  | } | 
|  | } | 
|  | pos += Size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI, | 
|  | const Function *F, const DataLayout *TD, | 
|  | const SmallVectorImpl<ISD::OutputArg> *Outs, | 
|  | const SmallVectorImpl<ISD::InputArg> *Ins, | 
|  | CallingConv::ID CallConv, | 
|  | SmallVectorImpl<CCValAssign> &ArgLocs, | 
|  | CCState &CCInfo, bool IsCall, bool IsVarArg) { | 
|  | StringRef FuncName = getFunctionName(CLI); | 
|  |  | 
|  | if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) { | 
|  | CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV); | 
|  | } else { | 
|  | analyzeStandardArguments(&CLI, F, TD, Outs, Ins, | 
|  | CallConv, ArgLocs, CCInfo, | 
|  | IsCall, IsVarArg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI, | 
|  | const Function *F, const DataLayout *TD, | 
|  | const SmallVectorImpl<ISD::OutputArg> *Outs, | 
|  | const SmallVectorImpl<ISD::InputArg> *Ins, | 
|  | CallingConv::ID CallConv, | 
|  | SmallVectorImpl<CCValAssign> &ArgLocs, | 
|  | CCState &CCInfo, bool IsCall, bool IsVarArg) { | 
|  | switch (CallConv) { | 
|  | case CallingConv::AVR_BUILTIN: { | 
|  | analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins, | 
|  | CallConv, ArgLocs, CCInfo, | 
|  | IsCall, IsVarArg); | 
|  | return; | 
|  | } | 
|  | default: { | 
|  | analyzeStandardArguments(CLI, F, TD, Outs, Ins, | 
|  | CallConv, ArgLocs, CCInfo, | 
|  | IsCall, IsVarArg); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue AVRTargetLowering::LowerFormalArguments( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | auto DL = DAG.getDataLayout(); | 
|  |  | 
|  | // Assign locations to all of the incoming arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | analyzeArguments(nullptr, MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo, | 
|  | false, isVarArg); | 
|  |  | 
|  | SDValue ArgValue; | 
|  | for (CCValAssign &VA : ArgLocs) { | 
|  |  | 
|  | // Arguments stored on registers. | 
|  | if (VA.isRegLoc()) { | 
|  | EVT RegVT = VA.getLocVT(); | 
|  | const TargetRegisterClass *RC; | 
|  | if (RegVT == MVT::i8) { | 
|  | RC = &AVR::GPR8RegClass; | 
|  | } else if (RegVT == MVT::i16) { | 
|  | RC = &AVR::DREGSRegClass; | 
|  | } else { | 
|  | llvm_unreachable("Unknown argument type!"); | 
|  | } | 
|  |  | 
|  | unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); | 
|  | ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); | 
|  |  | 
|  | // :NOTE: Clang should not promote any i8 into i16 but for safety the | 
|  | // following code will handle zexts or sexts generated by other | 
|  | // front ends. Otherwise: | 
|  | // If this is an 8 bit value, it is really passed promoted | 
|  | // to 16 bits. Insert an assert[sz]ext to capture this, then | 
|  | // truncate to the right size. | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); | 
|  | break; | 
|  | } | 
|  |  | 
|  | InVals.push_back(ArgValue); | 
|  | } else { | 
|  | // Sanity check. | 
|  | assert(VA.isMemLoc()); | 
|  |  | 
|  | EVT LocVT = VA.getLocVT(); | 
|  |  | 
|  | // Create the frame index object for this incoming parameter. | 
|  | int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, | 
|  | VA.getLocMemOffset(), true); | 
|  |  | 
|  | // Create the SelectionDAG nodes corresponding to a load | 
|  | // from this parameter. | 
|  | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL)); | 
|  | InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN, | 
|  | MachinePointerInfo::getFixedStack(MF, FI), | 
|  | 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (isVarArg) { | 
|  | unsigned StackSize = CCInfo.getNextStackOffset(); | 
|  | AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>(); | 
|  |  | 
|  | AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true)); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                  Call Calling Convention Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | SelectionDAG &DAG = CLI.DAG; | 
|  | SDLoc &DL = CLI.DL; | 
|  | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; | 
|  | SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; | 
|  | SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; | 
|  | SDValue Chain = CLI.Chain; | 
|  | SDValue Callee = CLI.Callee; | 
|  | bool &isTailCall = CLI.IsTailCall; | 
|  | CallingConv::ID CallConv = CLI.CallConv; | 
|  | bool isVarArg = CLI.IsVarArg; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | // AVR does not yet support tail call optimization. | 
|  | isTailCall = false; | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every | 
|  | // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol | 
|  | // node so that legalize doesn't hack it. | 
|  | const Function *F = nullptr; | 
|  | if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | const GlobalValue *GV = G->getGlobal(); | 
|  |  | 
|  | F = cast<Function>(GV); | 
|  | Callee = | 
|  | DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout())); | 
|  | } else if (const ExternalSymbolSDNode *ES = | 
|  | dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | Callee = DAG.getTargetExternalSymbol(ES->getSymbol(), | 
|  | getPointerTy(DAG.getDataLayout())); | 
|  | } | 
|  |  | 
|  | analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo, | 
|  | true, isVarArg); | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = CCInfo.getNextStackOffset(); | 
|  |  | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), | 
|  | DL); | 
|  |  | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  |  | 
|  | // First, walk the register assignments, inserting copies. | 
|  | unsigned AI, AE; | 
|  | bool HasStackArgs = false; | 
|  | for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) { | 
|  | CCValAssign &VA = ArgLocs[AI]; | 
|  | EVT RegVT = VA.getLocVT(); | 
|  | SDValue Arg = OutVals[AI]; | 
|  |  | 
|  | // Promote the value if needed. With Clang this should not happen. | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Stop when we encounter a stack argument, we need to process them | 
|  | // in reverse order in the loop below. | 
|  | if (VA.isMemLoc()) { | 
|  | HasStackArgs = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Arguments that can be passed on registers must be kept in the RegsToPass | 
|  | // vector. | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
|  | } | 
|  |  | 
|  | // Second, stack arguments have to walked in reverse order by inserting | 
|  | // chained stores, this ensures their order is not changed by the scheduler | 
|  | // and that the push instruction sequence generated is correct, otherwise they | 
|  | // can be freely intermixed. | 
|  | if (HasStackArgs) { | 
|  | for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) { | 
|  | unsigned Loc = AI - 1; | 
|  | CCValAssign &VA = ArgLocs[Loc]; | 
|  | SDValue Arg = OutVals[Loc]; | 
|  |  | 
|  | assert(VA.isMemLoc()); | 
|  |  | 
|  | // SP points to one stack slot further so add one to adjust it. | 
|  | SDValue PtrOff = DAG.getNode( | 
|  | ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), | 
|  | DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())), | 
|  | DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL)); | 
|  |  | 
|  | Chain = | 
|  | DAG.getStore(Chain, DL, Arg, PtrOff, | 
|  | MachinePointerInfo::getStack(MF, VA.getLocMemOffset()), | 
|  | 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain and | 
|  | // flag operands which copy the outgoing args into registers.  The InFlag in | 
|  | // necessary since all emited instructions must be stuck together. | 
|  | SDValue InFlag; | 
|  | for (auto Reg : RegsToPass) { | 
|  | Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // Returns a chain & a flag for retval copy to use. | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are known live | 
|  | // into the call. | 
|  | for (auto Reg : RegsToPass) { | 
|  | Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); | 
|  | } | 
|  |  | 
|  | // Add a register mask operand representing the call-preserved registers. | 
|  | const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine(); | 
|  | const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo(); | 
|  | const uint32_t *Mask = | 
|  | TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); | 
|  | assert(Mask && "Missing call preserved mask for calling convention"); | 
|  | Ops.push_back(DAG.getRegisterMask(Mask)); | 
|  |  | 
|  | if (InFlag.getNode()) { | 
|  | Ops.push_back(InFlag); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Create the CALLSEQ_END node. | 
|  | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), | 
|  | DAG.getIntPtrConstant(0, DL, true), InFlag, DL); | 
|  |  | 
|  | if (!Ins.empty()) { | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // Handle result values, copying them out of physregs into vregs that we | 
|  | // return. | 
|  | return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG, | 
|  | InVals); | 
|  | } | 
|  |  | 
|  | /// Lower the result values of a call into the | 
|  | /// appropriate copies out of appropriate physical registers. | 
|  | /// | 
|  | SDValue AVRTargetLowering::LowerCallResult( | 
|  | SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  |  | 
|  | // Assign locations to each value returned by this call. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // Handle runtime calling convs. | 
|  | auto CCFunction = CCAssignFnForReturn(CallConv); | 
|  | CCInfo.AnalyzeCallResult(Ins, CCFunction); | 
|  |  | 
|  | if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) { | 
|  | // Reverse splitted return values to get the "big endian" format required | 
|  | // to agree with the calling convention ABI. | 
|  | std::reverse(RVLocs.begin(), RVLocs.end()); | 
|  | } | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (CCValAssign const &RVLoc : RVLocs) { | 
|  | Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(), | 
|  | InFlag) | 
|  | .getValue(1); | 
|  | InFlag = Chain.getValue(2); | 
|  | InVals.push_back(Chain.getValue(0)); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //               Return Value Calling Convention Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const { | 
|  | switch (CC) { | 
|  | case CallingConv::AVR_BUILTIN: | 
|  | return RetCC_AVR_BUILTIN; | 
|  | default: | 
|  | return RetCC_AVR; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv, | 
|  | MachineFunction &MF, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | LLVMContext &Context) const | 
|  | { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); | 
|  |  | 
|  | auto CCFunction = CCAssignFnForReturn(CallConv); | 
|  | return CCInfo.CheckReturn(Outs, CCFunction); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, | 
|  | bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SDLoc &dl, SelectionDAG &DAG) const { | 
|  | // CCValAssign - represent the assignment of the return value to locations. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  |  | 
|  | // CCState - Info about the registers and stack slot. | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // Analyze return values. | 
|  | auto CCFunction = CCAssignFnForReturn(CallConv); | 
|  | CCInfo.AnalyzeReturn(Outs, CCFunction); | 
|  |  | 
|  | // If this is the first return lowered for this function, add the regs to | 
|  | // the liveout set for the function. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned e = RVLocs.size(); | 
|  |  | 
|  | // Reverse splitted return values to get the "big endian" format required | 
|  | // to agree with the calling convention ABI. | 
|  | if (e > 1) { | 
|  | std::reverse(RVLocs.begin(), RVLocs.end()); | 
|  | } | 
|  |  | 
|  | SDValue Flag; | 
|  | SmallVector<SDValue, 4> RetOps(1, Chain); | 
|  | // Copy the result values into the output registers. | 
|  | for (unsigned i = 0; i != e; ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); | 
|  |  | 
|  | // Guarantee that all emitted copies are stuck together with flags. | 
|  | Flag = Chain.getValue(1); | 
|  | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | 
|  | } | 
|  |  | 
|  | // Don't emit the ret/reti instruction when the naked attribute is present in | 
|  | // the function being compiled. | 
|  | if (MF.getFunction()->getAttributes().hasAttribute( | 
|  | AttributeSet::FunctionIndex, Attribute::Naked)) { | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | unsigned RetOpc = | 
|  | (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL) | 
|  | ? AVRISD::RETI_FLAG | 
|  | : AVRISD::RET_FLAG; | 
|  |  | 
|  | RetOps[0] = Chain; // Update chain. | 
|  |  | 
|  | if (Flag.getNode()) { | 
|  | RetOps.push_back(Flag); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(RetOpc, dl, MVT::Other, RetOps); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Custom Inserters | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | unsigned Opc; | 
|  | const TargetRegisterClass *RC; | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineRegisterInfo &RI = F->getRegInfo(); | 
|  | const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine(); | 
|  | const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo(); | 
|  | DebugLoc dl = MI.getDebugLoc(); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Invalid shift opcode!"); | 
|  | case AVR::Lsl8: | 
|  | Opc = AVR::LSLRd; | 
|  | RC = &AVR::GPR8RegClass; | 
|  | break; | 
|  | case AVR::Lsl16: | 
|  | Opc = AVR::LSLWRd; | 
|  | RC = &AVR::DREGSRegClass; | 
|  | break; | 
|  | case AVR::Asr8: | 
|  | Opc = AVR::ASRRd; | 
|  | RC = &AVR::GPR8RegClass; | 
|  | break; | 
|  | case AVR::Asr16: | 
|  | Opc = AVR::ASRWRd; | 
|  | RC = &AVR::DREGSRegClass; | 
|  | break; | 
|  | case AVR::Lsr8: | 
|  | Opc = AVR::LSRRd; | 
|  | RC = &AVR::GPR8RegClass; | 
|  | break; | 
|  | case AVR::Lsr16: | 
|  | Opc = AVR::LSRWRd; | 
|  | RC = &AVR::DREGSRegClass; | 
|  | break; | 
|  | } | 
|  |  | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction::iterator I = BB->getParent()->begin(); | 
|  | ++I; | 
|  |  | 
|  | // Create loop block. | 
|  | MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  |  | 
|  | F->insert(I, LoopBB); | 
|  | F->insert(I, RemBB); | 
|  |  | 
|  | // Update machine-CFG edges by transferring all successors of the current | 
|  | // block to the block containing instructions after shift. | 
|  | RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), | 
|  | BB->end()); | 
|  | RemBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB. | 
|  | BB->addSuccessor(LoopBB); | 
|  | BB->addSuccessor(RemBB); | 
|  | LoopBB->addSuccessor(RemBB); | 
|  | LoopBB->addSuccessor(LoopBB); | 
|  |  | 
|  | unsigned ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass); | 
|  | unsigned ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass); | 
|  | unsigned ShiftReg = RI.createVirtualRegister(RC); | 
|  | unsigned ShiftReg2 = RI.createVirtualRegister(RC); | 
|  | unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg(); | 
|  | unsigned SrcReg = MI.getOperand(1).getReg(); | 
|  | unsigned DstReg = MI.getOperand(0).getReg(); | 
|  |  | 
|  | // BB: | 
|  | // cp 0, N | 
|  | // breq RemBB | 
|  | BuildMI(BB, dl, TII.get(AVR::CPRdRr)).addReg(ShiftAmtSrcReg).addReg(AVR::R0); | 
|  | BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB); | 
|  |  | 
|  | // LoopBB: | 
|  | // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB] | 
|  | // ShiftAmt = phi [%N, BB],      [%ShiftAmt2, LoopBB] | 
|  | // ShiftReg2 = shift ShiftReg | 
|  | // ShiftAmt2 = ShiftAmt - 1; | 
|  | BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg) | 
|  | .addReg(SrcReg) | 
|  | .addMBB(BB) | 
|  | .addReg(ShiftReg2) | 
|  | .addMBB(LoopBB); | 
|  | BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg) | 
|  | .addReg(ShiftAmtSrcReg) | 
|  | .addMBB(BB) | 
|  | .addReg(ShiftAmtReg2) | 
|  | .addMBB(LoopBB); | 
|  | BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg); | 
|  | BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2) | 
|  | .addReg(ShiftAmtReg) | 
|  | .addImm(1); | 
|  | BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB); | 
|  |  | 
|  | // RemBB: | 
|  | // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB] | 
|  | BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg) | 
|  | .addReg(SrcReg) | 
|  | .addMBB(BB) | 
|  | .addReg(ShiftReg2) | 
|  | .addMBB(LoopBB); | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return RemBB; | 
|  | } | 
|  |  | 
|  | static bool isCopyMulResult(MachineBasicBlock::iterator const &I) { | 
|  | if (I->getOpcode() == AVR::COPY) { | 
|  | unsigned SrcReg = I->getOperand(1).getReg(); | 
|  | return (SrcReg == AVR::R0 || SrcReg == AVR::R1); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The mul instructions wreak havock on our zero_reg R1. We need to clear it | 
|  | // after the result has been evacuated. This is probably not the best way to do | 
|  | // it, but it works for now. | 
|  | MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine(); | 
|  | const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo(); | 
|  | MachineBasicBlock::iterator I(MI); | 
|  | ++I; // in any case insert *after* the mul instruction | 
|  | if (isCopyMulResult(I)) | 
|  | ++I; | 
|  | if (isCopyMulResult(I)) | 
|  | ++I; | 
|  | BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1) | 
|  | .addReg(AVR::R1) | 
|  | .addReg(AVR::R1); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | int Opc = MI.getOpcode(); | 
|  |  | 
|  | // Pseudo shift instructions with a non constant shift amount are expanded | 
|  | // into a loop. | 
|  | switch (Opc) { | 
|  | case AVR::Lsl8: | 
|  | case AVR::Lsl16: | 
|  | case AVR::Lsr8: | 
|  | case AVR::Lsr16: | 
|  | case AVR::Asr8: | 
|  | case AVR::Asr16: | 
|  | return insertShift(MI, MBB); | 
|  | case AVR::MULRdRr: | 
|  | case AVR::MULSRdRr: | 
|  | return insertMul(MI, MBB); | 
|  | } | 
|  |  | 
|  | assert((Opc == AVR::Select16 || Opc == AVR::Select8) && | 
|  | "Unexpected instr type to insert"); | 
|  |  | 
|  | const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent() | 
|  | ->getParent() | 
|  | ->getSubtarget() | 
|  | .getInstrInfo(); | 
|  | DebugLoc dl = MI.getDebugLoc(); | 
|  |  | 
|  | // To "insert" a SELECT instruction, we insert the diamond | 
|  | // control-flow pattern. The incoming instruction knows the | 
|  | // destination vreg to set, the condition code register to branch | 
|  | // on, the true/false values to select between, and a branch opcode | 
|  | // to use. | 
|  |  | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  |  | 
|  | MachineFunction::iterator I = MBB->getParent()->begin(); | 
|  | ++I; | 
|  | MF->insert(I, trueMBB); | 
|  | MF->insert(I, falseMBB); | 
|  |  | 
|  | // Transfer remaining instructions and all successors of the current | 
|  | // block to the block which will contain the Phi node for the | 
|  | // select. | 
|  | trueMBB->splice(trueMBB->begin(), MBB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); | 
|  | trueMBB->transferSuccessorsAndUpdatePHIs(MBB); | 
|  |  | 
|  | AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm(); | 
|  | BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB); | 
|  | BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB); | 
|  | MBB->addSuccessor(falseMBB); | 
|  | MBB->addSuccessor(trueMBB); | 
|  |  | 
|  | // Unconditionally flow back to the true block | 
|  | BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB); | 
|  | falseMBB->addSuccessor(trueMBB); | 
|  |  | 
|  | // Set up the Phi node to determine where we came from | 
|  | BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg()) | 
|  | .addReg(MI.getOperand(1).getReg()) | 
|  | .addMBB(MBB) | 
|  | .addReg(MI.getOperand(2).getReg()) | 
|  | .addMBB(falseMBB) ; | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return trueMBB; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Inline Asm Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | AVRTargetLowering::ConstraintType | 
|  | AVRTargetLowering::getConstraintType(StringRef Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html | 
|  | switch (Constraint[0]) { | 
|  | case 'a': // Simple upper registers | 
|  | case 'b': // Base pointer registers pairs | 
|  | case 'd': // Upper register | 
|  | case 'l': // Lower registers | 
|  | case 'e': // Pointer register pairs | 
|  | case 'q': // Stack pointer register | 
|  | case 'r': // Any register | 
|  | case 'w': // Special upper register pairs | 
|  | return C_RegisterClass; | 
|  | case 't': // Temporary register | 
|  | case 'x': case 'X': // Pointer register pair X | 
|  | case 'y': case 'Y': // Pointer register pair Y | 
|  | case 'z': case 'Z': // Pointer register pair Z | 
|  | return C_Register; | 
|  | case 'Q': // A memory address based on Y or Z pointer with displacement. | 
|  | return C_Memory; | 
|  | case 'G': // Floating point constant | 
|  | case 'I': // 6-bit positive integer constant | 
|  | case 'J': // 6-bit negative integer constant | 
|  | case 'K': // Integer constant (Range: 2) | 
|  | case 'L': // Integer constant (Range: 0) | 
|  | case 'M': // 8-bit integer constant | 
|  | case 'N': // Integer constant (Range: -1) | 
|  | case 'O': // Integer constant (Range: 8, 16, 24) | 
|  | case 'P': // Integer constant (Range: 1) | 
|  | case 'R': // Integer constant (Range: -6 to 5)x | 
|  | return C_Other; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { | 
|  | // Not sure if this is actually the right thing to do, but we got to do | 
|  | // *something* [agnat] | 
|  | switch (ConstraintCode[0]) { | 
|  | case 'Q': | 
|  | return InlineAsm::Constraint_Q; | 
|  | } | 
|  | return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); | 
|  | } | 
|  |  | 
|  | AVRTargetLowering::ConstraintWeight | 
|  | AVRTargetLowering::getSingleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, const char *constraint) const { | 
|  | ConstraintWeight weight = CW_Invalid; | 
|  | Value *CallOperandVal = info.CallOperandVal; | 
|  |  | 
|  | // If we don't have a value, we can't do a match, | 
|  | // but allow it at the lowest weight. | 
|  | // (this behaviour has been copied from the ARM backend) | 
|  | if (!CallOperandVal) { | 
|  | return CW_Default; | 
|  | } | 
|  |  | 
|  | // Look at the constraint type. | 
|  | switch (*constraint) { | 
|  | default: | 
|  | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); | 
|  | break; | 
|  | case 'd': | 
|  | case 'r': | 
|  | case 'l': | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'a': | 
|  | case 'b': | 
|  | case 'e': | 
|  | case 'q': | 
|  | case 't': | 
|  | case 'w': | 
|  | case 'x': case 'X': | 
|  | case 'y': case 'Y': | 
|  | case 'z': case 'Z': | 
|  | weight = CW_SpecificReg; | 
|  | break; | 
|  | case 'G': | 
|  | if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) { | 
|  | if (C->isZero()) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'I': | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (isUInt<6>(C->getZExtValue())) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'J': | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'K': | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() == 2) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'L': | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() == 0) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'M': | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (isUInt<8>(C->getZExtValue())) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'N': | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getSExtValue() == -1) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'O': | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) || | 
|  | (C->getZExtValue() == 24)) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'P': | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() == 1) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'R': | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'Q': | 
|  | weight = CW_Memory; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> | 
|  | AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, | 
|  | StringRef Constraint, | 
|  | MVT VT) const { | 
|  | auto STI = static_cast<const AVRTargetMachine &>(this->getTargetMachine()) | 
|  | .getSubtargetImpl(); | 
|  |  | 
|  | // We only support i8 and i16. | 
|  | // | 
|  | //:FIXME: remove this assert for now since it gets sometimes executed | 
|  | // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type."); | 
|  |  | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 'a': // Simple upper registers r16..r23. | 
|  | return std::make_pair(0U, &AVR::LD8loRegClass); | 
|  | case 'b': // Base pointer registers: y, z. | 
|  | return std::make_pair(0U, &AVR::PTRDISPREGSRegClass); | 
|  | case 'd': // Upper registers r16..r31. | 
|  | return std::make_pair(0U, &AVR::LD8RegClass); | 
|  | case 'l': // Lower registers r0..r15. | 
|  | return std::make_pair(0U, &AVR::GPR8loRegClass); | 
|  | case 'e': // Pointer register pairs: x, y, z. | 
|  | return std::make_pair(0U, &AVR::PTRREGSRegClass); | 
|  | case 'q': // Stack pointer register: SPH:SPL. | 
|  | return std::make_pair(0U, &AVR::GPRSPRegClass); | 
|  | case 'r': // Any register: r0..r31. | 
|  | if (VT == MVT::i8) | 
|  | return std::make_pair(0U, &AVR::GPR8RegClass); | 
|  |  | 
|  | assert(VT == MVT::i16 && "inline asm constraint too large"); | 
|  | return std::make_pair(0U, &AVR::DREGSRegClass); | 
|  | case 't': // Temporary register: r0. | 
|  | return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass); | 
|  | case 'w': // Special upper register pairs: r24, r26, r28, r30. | 
|  | return std::make_pair(0U, &AVR::IWREGSRegClass); | 
|  | case 'x': // Pointer register pair X: r27:r26. | 
|  | case 'X': | 
|  | return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass); | 
|  | case 'y': // Pointer register pair Y: r29:r28. | 
|  | case 'Y': | 
|  | return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass); | 
|  | case 'z': // Pointer register pair Z: r31:r30. | 
|  | case 'Z': | 
|  | return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TargetLowering::getRegForInlineAsmConstraint(STI->getRegisterInfo(), | 
|  | Constraint, VT); | 
|  | } | 
|  |  | 
|  | void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op, | 
|  | std::string &Constraint, | 
|  | std::vector<SDValue> &Ops, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Result(0, 0); | 
|  | SDLoc DL(Op); | 
|  | EVT Ty = Op.getValueType(); | 
|  |  | 
|  | // Currently only support length 1 constraints. | 
|  | if (Constraint.length() != 1) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | char ConstraintLetter = Constraint[0]; | 
|  | switch (ConstraintLetter) { | 
|  | default: | 
|  | break; | 
|  | // Deal with integers first: | 
|  | case 'I': | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | case 'O': | 
|  | case 'P': | 
|  | case 'R': { | 
|  | const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); | 
|  | if (!C) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | int64_t CVal64 = C->getSExtValue(); | 
|  | uint64_t CUVal64 = C->getZExtValue(); | 
|  | switch (ConstraintLetter) { | 
|  | case 'I': // 0..63 | 
|  | if (!isUInt<6>(CUVal64)) | 
|  | return; | 
|  | Result = DAG.getTargetConstant(CUVal64, DL, Ty); | 
|  | break; | 
|  | case 'J': // -63..0 | 
|  | if (CVal64 < -63 || CVal64 > 0) | 
|  | return; | 
|  | Result = DAG.getTargetConstant(CVal64, DL, Ty); | 
|  | break; | 
|  | case 'K': // 2 | 
|  | if (CUVal64 != 2) | 
|  | return; | 
|  | Result = DAG.getTargetConstant(CUVal64, DL, Ty); | 
|  | break; | 
|  | case 'L': // 0 | 
|  | if (CUVal64 != 0) | 
|  | return; | 
|  | Result = DAG.getTargetConstant(CUVal64, DL, Ty); | 
|  | break; | 
|  | case 'M': // 0..255 | 
|  | if (!isUInt<8>(CUVal64)) | 
|  | return; | 
|  | // i8 type may be printed as a negative number, | 
|  | // e.g. 254 would be printed as -2, | 
|  | // so we force it to i16 at least. | 
|  | if (Ty.getSimpleVT() == MVT::i8) { | 
|  | Ty = MVT::i16; | 
|  | } | 
|  | Result = DAG.getTargetConstant(CUVal64, DL, Ty); | 
|  | break; | 
|  | case 'N': // -1 | 
|  | if (CVal64 != -1) | 
|  | return; | 
|  | Result = DAG.getTargetConstant(CVal64, DL, Ty); | 
|  | break; | 
|  | case 'O': // 8, 16, 24 | 
|  | if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24) | 
|  | return; | 
|  | Result = DAG.getTargetConstant(CUVal64, DL, Ty); | 
|  | break; | 
|  | case 'P': // 1 | 
|  | if (CUVal64 != 1) | 
|  | return; | 
|  | Result = DAG.getTargetConstant(CUVal64, DL, Ty); | 
|  | break; | 
|  | case 'R': // -6..5 | 
|  | if (CVal64 < -6 || CVal64 > 5) | 
|  | return; | 
|  | Result = DAG.getTargetConstant(CVal64, DL, Ty); | 
|  | break; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case 'G': | 
|  | const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op); | 
|  | if (!FC || !FC->isZero()) | 
|  | return; | 
|  | // Soften float to i8 0 | 
|  | Result = DAG.getTargetConstant(0, DL, MVT::i8); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Result.getNode()) { | 
|  | Ops.push_back(Result); | 
|  | return; | 
|  | } | 
|  |  | 
|  | return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); | 
|  | } | 
|  |  | 
|  | unsigned AVRTargetLowering::getRegisterByName(const char *RegName, | 
|  | EVT VT, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned Reg; | 
|  |  | 
|  | if (VT == MVT::i8) { | 
|  | Reg = StringSwitch<unsigned>(RegName) | 
|  | .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2) | 
|  | .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5) | 
|  | .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8) | 
|  | .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11) | 
|  | .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14) | 
|  | .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17) | 
|  | .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20) | 
|  | .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23) | 
|  | .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26) | 
|  | .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29) | 
|  | .Case("r30", AVR::R30).Case("r31", AVR::R31) | 
|  | .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30) | 
|  | .Default(0); | 
|  | } else { | 
|  | Reg = StringSwitch<unsigned>(RegName) | 
|  | .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2) | 
|  | .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6) | 
|  | .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10) | 
|  | .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14) | 
|  | .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18) | 
|  | .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22) | 
|  | .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26) | 
|  | .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30) | 
|  | .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30) | 
|  | .Default(0); | 
|  | } | 
|  |  | 
|  | if (Reg) | 
|  | return Reg; | 
|  |  | 
|  | report_fatal_error("Invalid register name global variable"); | 
|  | } | 
|  |  | 
|  | } // end of namespace llvm | 
|  |  |