| //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This tablegen backend emits code for use by the GlobalISel instruction |
| /// selector. See include/llvm/CodeGen/TargetGlobalISel.td. |
| /// |
| /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen |
| /// backend, filters out the ones that are unsupported, maps |
| /// SelectionDAG-specific constructs to their GlobalISel counterpart |
| /// (when applicable: MVT to LLT; SDNode to generic Instruction). |
| /// |
| /// Not all patterns are supported: pass the tablegen invocation |
| /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, |
| /// as well as why. |
| /// |
| /// The generated file defines a single method: |
| /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const; |
| /// intended to be used in InstructionSelector::select as the first-step |
| /// selector for the patterns that don't require complex C++. |
| /// |
| /// FIXME: We'll probably want to eventually define a base |
| /// "TargetGenInstructionSelector" class. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenDAGPatterns.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineValueType.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/ScopedPrinter.h" |
| #include "llvm/TableGen/Error.h" |
| #include "llvm/TableGen/Record.h" |
| #include "llvm/TableGen/TableGenBackend.h" |
| #include <string> |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "gisel-emitter" |
| |
| STATISTIC(NumPatternTotal, "Total number of patterns"); |
| STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG"); |
| STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped"); |
| STATISTIC(NumPatternEmitted, "Number of patterns emitted"); |
| |
| static cl::opt<bool> WarnOnSkippedPatterns( |
| "warn-on-skipped-patterns", |
| cl::desc("Explain why a pattern was skipped for inclusion " |
| "in the GlobalISel selector"), |
| cl::init(false)); |
| |
| //===- Helper functions ---------------------------------------------------===// |
| |
| /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for |
| /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...). |
| static Optional<std::string> MVTToLLT(MVT::SimpleValueType SVT) { |
| std::string TyStr; |
| raw_string_ostream OS(TyStr); |
| MVT VT(SVT); |
| if (VT.isVector() && VT.getVectorNumElements() != 1) { |
| OS << "LLT::vector(" << VT.getVectorNumElements() << ", " |
| << VT.getScalarSizeInBits() << ")"; |
| } else if (VT.isInteger() || VT.isFloatingPoint()) { |
| OS << "LLT::scalar(" << VT.getSizeInBits() << ")"; |
| } else { |
| return None; |
| } |
| OS.flush(); |
| return TyStr; |
| } |
| |
| static bool isTrivialOperatorNode(const TreePatternNode *N) { |
| return !N->isLeaf() && !N->hasAnyPredicate() && !N->getTransformFn(); |
| } |
| |
| //===- Matchers -----------------------------------------------------------===// |
| |
| template <class PredicateTy> class PredicateListMatcher { |
| private: |
| typedef std::vector<std::unique_ptr<PredicateTy>> PredicateVec; |
| PredicateVec Predicates; |
| |
| public: |
| /// Construct a new operand predicate and add it to the matcher. |
| template <class Kind, class... Args> |
| Kind &addPredicate(Args&&... args) { |
| Predicates.emplace_back( |
| llvm::make_unique<Kind>(std::forward<Args>(args)...)); |
| return *static_cast<Kind *>(Predicates.back().get()); |
| } |
| |
| typename PredicateVec::const_iterator predicates_begin() const { return Predicates.begin(); } |
| typename PredicateVec::const_iterator predicates_end() const { return Predicates.end(); } |
| iterator_range<typename PredicateVec::const_iterator> predicates() const { |
| return make_range(predicates_begin(), predicates_end()); |
| } |
| typename PredicateVec::size_type predicates_size() const { return Predicates.size(); } |
| |
| /// Emit a C++ expression that tests whether all the predicates are met. |
| template <class... Args> |
| void emitCxxPredicateListExpr(raw_ostream &OS, Args &&... args) const { |
| if (Predicates.empty()) { |
| OS << "true"; |
| return; |
| } |
| |
| StringRef Separator = ""; |
| for (const auto &Predicate : predicates()) { |
| OS << Separator << "("; |
| Predicate->emitCxxPredicateExpr(OS, std::forward<Args>(args)...); |
| OS << ")"; |
| Separator = " &&\n"; |
| } |
| } |
| }; |
| |
| /// Generates code to check a predicate of an operand. |
| /// |
| /// Typical predicates include: |
| /// * Operand is a particular register. |
| /// * Operand is assigned a particular register bank. |
| /// * Operand is an MBB. |
| class OperandPredicateMatcher { |
| public: |
| /// This enum is used for RTTI and also defines the priority that is given to |
| /// the predicate when generating the matcher code. Kinds with higher priority |
| /// must be tested first. |
| /// |
| /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter |
| /// but OPM_Int must have priority over OPM_RegBank since constant integers |
| /// are represented by a virtual register defined by a G_CONSTANT instruction. |
| enum PredicateKind { |
| OPM_Int, |
| OPM_LLT, |
| OPM_RegBank, |
| OPM_MBB, |
| }; |
| |
| protected: |
| PredicateKind Kind; |
| |
| public: |
| OperandPredicateMatcher(PredicateKind Kind) : Kind(Kind) {} |
| virtual ~OperandPredicateMatcher() {} |
| |
| PredicateKind getKind() const { return Kind; } |
| |
| /// Emit a C++ expression that checks the predicate for the given operand. |
| virtual void emitCxxPredicateExpr(raw_ostream &OS, |
| StringRef OperandExpr) const = 0; |
| |
| /// Compare the priority of this object and B. |
| /// |
| /// Returns true if this object is more important than B. |
| virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const { |
| return Kind < B.Kind; |
| }; |
| }; |
| |
| /// Generates code to check that an operand is a particular LLT. |
| class LLTOperandMatcher : public OperandPredicateMatcher { |
| protected: |
| std::string Ty; |
| |
| public: |
| LLTOperandMatcher(std::string Ty) |
| : OperandPredicateMatcher(OPM_LLT), Ty(Ty) {} |
| |
| static bool classof(const OperandPredicateMatcher *P) { |
| return P->getKind() == OPM_LLT; |
| } |
| |
| void emitCxxPredicateExpr(raw_ostream &OS, |
| StringRef OperandExpr) const override { |
| OS << "MRI.getType(" << OperandExpr << ".getReg()) == (" << Ty << ")"; |
| } |
| }; |
| |
| /// Generates code to check that an operand is in a particular register bank. |
| class RegisterBankOperandMatcher : public OperandPredicateMatcher { |
| protected: |
| const CodeGenRegisterClass &RC; |
| |
| public: |
| RegisterBankOperandMatcher(const CodeGenRegisterClass &RC) |
| : OperandPredicateMatcher(OPM_RegBank), RC(RC) {} |
| |
| static bool classof(const OperandPredicateMatcher *P) { |
| return P->getKind() == OPM_RegBank; |
| } |
| |
| void emitCxxPredicateExpr(raw_ostream &OS, |
| StringRef OperandExpr) const override { |
| OS << "(&RBI.getRegBankFromRegClass(" << RC.getQualifiedName() |
| << "RegClass) == RBI.getRegBank(" << OperandExpr |
| << ".getReg(), MRI, TRI))"; |
| } |
| }; |
| |
| /// Generates code to check that an operand is a basic block. |
| class MBBOperandMatcher : public OperandPredicateMatcher { |
| public: |
| MBBOperandMatcher() : OperandPredicateMatcher(OPM_MBB) {} |
| |
| static bool classof(const OperandPredicateMatcher *P) { |
| return P->getKind() == OPM_MBB; |
| } |
| |
| void emitCxxPredicateExpr(raw_ostream &OS, |
| StringRef OperandExpr) const override { |
| OS << OperandExpr << ".isMBB()"; |
| } |
| }; |
| |
| /// Generates code to check that an operand is a particular int. |
| class IntOperandMatcher : public OperandPredicateMatcher { |
| protected: |
| int64_t Value; |
| |
| public: |
| IntOperandMatcher(int64_t Value) |
| : OperandPredicateMatcher(OPM_Int), Value(Value) {} |
| |
| static bool classof(const OperandPredicateMatcher *P) { |
| return P->getKind() == OPM_Int; |
| } |
| |
| void emitCxxPredicateExpr(raw_ostream &OS, |
| StringRef OperandExpr) const override { |
| OS << "isOperandImmEqual(" << OperandExpr << ", " << Value << ", MRI)"; |
| } |
| }; |
| |
| /// Generates code to check that a set of predicates match for a particular |
| /// operand. |
| class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> { |
| protected: |
| unsigned OpIdx; |
| std::string SymbolicName; |
| |
| public: |
| OperandMatcher(unsigned OpIdx, const std::string &SymbolicName) |
| : OpIdx(OpIdx), SymbolicName(SymbolicName) {} |
| |
| bool hasSymbolicName() const { return !SymbolicName.empty(); } |
| const StringRef getSymbolicName() const { return SymbolicName; } |
| unsigned getOperandIndex() const { return OpIdx; } |
| |
| std::string getOperandExpr(const StringRef InsnVarName) const { |
| return (InsnVarName + ".getOperand(" + llvm::to_string(OpIdx) + ")").str(); |
| } |
| |
| /// Emit a C++ expression that tests whether the instruction named in |
| /// InsnVarName matches all the predicate and all the operands. |
| void emitCxxPredicateExpr(raw_ostream &OS, const StringRef InsnVarName) const { |
| OS << "(/* "; |
| if (SymbolicName.empty()) |
| OS << "Operand " << OpIdx; |
| else |
| OS << SymbolicName; |
| OS << " */ "; |
| emitCxxPredicateListExpr(OS, getOperandExpr(InsnVarName)); |
| OS << ")"; |
| } |
| |
| /// Compare the priority of this object and B. |
| /// |
| /// Returns true if this object is more important than B. |
| bool isHigherPriorityThan(const OperandMatcher &B) const { |
| // Operand matchers involving more predicates have higher priority. |
| if (predicates_size() > B.predicates_size()) |
| return true; |
| if (predicates_size() < B.predicates_size()) |
| return false; |
| |
| // This assumes that predicates are added in a consistent order. |
| for (const auto &Predicate : zip(predicates(), B.predicates())) { |
| if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate))) |
| return true; |
| if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate))) |
| return false; |
| } |
| |
| return false; |
| }; |
| }; |
| |
| /// Generates code to check a predicate on an instruction. |
| /// |
| /// Typical predicates include: |
| /// * The opcode of the instruction is a particular value. |
| /// * The nsw/nuw flag is/isn't set. |
| class InstructionPredicateMatcher { |
| protected: |
| /// This enum is used for RTTI and also defines the priority that is given to |
| /// the predicate when generating the matcher code. Kinds with higher priority |
| /// must be tested first. |
| enum PredicateKind { |
| IPM_Opcode, |
| }; |
| |
| PredicateKind Kind; |
| |
| public: |
| InstructionPredicateMatcher(PredicateKind Kind) : Kind(Kind) {} |
| virtual ~InstructionPredicateMatcher() {} |
| |
| PredicateKind getKind() const { return Kind; } |
| |
| /// Emit a C++ expression that tests whether the instruction named in |
| /// InsnVarName matches the predicate. |
| virtual void emitCxxPredicateExpr(raw_ostream &OS, |
| StringRef InsnVarName) const = 0; |
| |
| /// Compare the priority of this object and B. |
| /// |
| /// Returns true if this object is more important than B. |
| virtual bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const { |
| return Kind < B.Kind; |
| }; |
| }; |
| |
| /// Generates code to check the opcode of an instruction. |
| class InstructionOpcodeMatcher : public InstructionPredicateMatcher { |
| protected: |
| const CodeGenInstruction *I; |
| |
| public: |
| InstructionOpcodeMatcher(const CodeGenInstruction *I) |
| : InstructionPredicateMatcher(IPM_Opcode), I(I) {} |
| |
| static bool classof(const InstructionPredicateMatcher *P) { |
| return P->getKind() == IPM_Opcode; |
| } |
| |
| void emitCxxPredicateExpr(raw_ostream &OS, |
| StringRef InsnVarName) const override { |
| OS << InsnVarName << ".getOpcode() == " << I->Namespace |
| << "::" << I->TheDef->getName(); |
| } |
| |
| /// Compare the priority of this object and B. |
| /// |
| /// Returns true if this object is more important than B. |
| bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const override { |
| if (InstructionPredicateMatcher::isHigherPriorityThan(B)) |
| return true; |
| if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this)) |
| return false; |
| |
| // Prioritize opcodes for cosmetic reasons in the generated source. Although |
| // this is cosmetic at the moment, we may want to drive a similar ordering |
| // using instruction frequency information to improve compile time. |
| if (const InstructionOpcodeMatcher *BO = |
| dyn_cast<InstructionOpcodeMatcher>(&B)) |
| return I->TheDef->getName() < BO->I->TheDef->getName(); |
| |
| return false; |
| }; |
| }; |
| |
| /// Generates code to check that a set of predicates and operands match for a |
| /// particular instruction. |
| /// |
| /// Typical predicates include: |
| /// * Has a specific opcode. |
| /// * Has an nsw/nuw flag or doesn't. |
| class InstructionMatcher |
| : public PredicateListMatcher<InstructionPredicateMatcher> { |
| protected: |
| typedef std::vector<OperandMatcher> OperandVec; |
| |
| /// The operands to match. All rendered operands must be present even if the |
| /// condition is always true. |
| OperandVec Operands; |
| |
| public: |
| /// Add an operand to the matcher. |
| OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName) { |
| Operands.emplace_back(OpIdx, SymbolicName); |
| return Operands.back(); |
| } |
| |
| const OperandMatcher &getOperand(const StringRef SymbolicName) const { |
| assert(!SymbolicName.empty() && "Cannot lookup unnamed operand"); |
| const auto &I = std::find_if(Operands.begin(), Operands.end(), |
| [&SymbolicName](const OperandMatcher &X) { |
| return X.getSymbolicName() == SymbolicName; |
| }); |
| if (I != Operands.end()) |
| return *I; |
| llvm_unreachable("Failed to lookup operand"); |
| } |
| |
| unsigned getNumOperands() const { return Operands.size(); } |
| OperandVec::const_iterator operands_begin() const { |
| return Operands.begin(); |
| } |
| OperandVec::const_iterator operands_end() const { |
| return Operands.end(); |
| } |
| iterator_range<OperandVec::const_iterator> operands() const { |
| return make_range(operands_begin(), operands_end()); |
| } |
| |
| /// Emit a C++ expression that tests whether the instruction named in |
| /// InsnVarName matches all the predicates and all the operands. |
| void emitCxxPredicateExpr(raw_ostream &OS, StringRef InsnVarName) const { |
| emitCxxPredicateListExpr(OS, InsnVarName); |
| for (const auto &Operand : Operands) { |
| OS << " &&\n("; |
| Operand.emitCxxPredicateExpr(OS, InsnVarName); |
| OS << ")"; |
| } |
| } |
| |
| /// Compare the priority of this object and B. |
| /// |
| /// Returns true if this object is more important than B. |
| bool isHigherPriorityThan(const InstructionMatcher &B) const { |
| // Instruction matchers involving more operands have higher priority. |
| if (Operands.size() > B.Operands.size()) |
| return true; |
| if (Operands.size() < B.Operands.size()) |
| return false; |
| |
| for (const auto &Predicate : zip(predicates(), B.predicates())) { |
| if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate))) |
| return true; |
| if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate))) |
| return false; |
| } |
| |
| for (const auto &Operand : zip(Operands, B.Operands)) { |
| if (std::get<0>(Operand).isHigherPriorityThan(std::get<1>(Operand))) |
| return true; |
| if (std::get<1>(Operand).isHigherPriorityThan(std::get<0>(Operand))) |
| return false; |
| } |
| |
| return false; |
| }; |
| }; |
| |
| //===- Actions ------------------------------------------------------------===// |
| |
| namespace { |
| class OperandRenderer { |
| public: |
| enum RendererKind { OR_Copy, OR_Register }; |
| |
| protected: |
| RendererKind Kind; |
| |
| public: |
| OperandRenderer(RendererKind Kind) : Kind(Kind) {} |
| virtual ~OperandRenderer() {} |
| |
| RendererKind getKind() const { return Kind; } |
| |
| virtual void emitCxxRenderStmts(raw_ostream &OS) const = 0; |
| }; |
| |
| /// A CopyRenderer emits code to copy a single operand from an existing |
| /// instruction to the one being built. |
| class CopyRenderer : public OperandRenderer { |
| protected: |
| /// The matcher for the instruction that this operand is copied from. |
| /// This provides the facility for looking up an a operand by it's name so |
| /// that it can be used as a source for the instruction being built. |
| const InstructionMatcher &Matched; |
| /// The name of the instruction to copy from. |
| const StringRef InsnVarName; |
| /// The name of the operand. |
| const StringRef SymbolicName; |
| |
| public: |
| CopyRenderer(const InstructionMatcher &Matched, const StringRef InsnVarName, |
| const StringRef SymbolicName) |
| : OperandRenderer(OR_Copy), Matched(Matched), InsnVarName(InsnVarName), |
| SymbolicName(SymbolicName) {} |
| |
| static bool classof(const OperandRenderer *R) { |
| return R->getKind() == OR_Copy; |
| } |
| |
| const StringRef getSymbolicName() const { return SymbolicName; } |
| |
| void emitCxxRenderStmts(raw_ostream &OS) const override { |
| std::string OperandExpr = |
| Matched.getOperand(SymbolicName).getOperandExpr(InsnVarName); |
| OS << " MIB.add(" << OperandExpr << "/*" << SymbolicName << "*/);\n"; |
| } |
| }; |
| |
| /// Adds a specific physical register to the instruction being built. |
| /// This is typically useful for WZR/XZR on AArch64. |
| class AddRegisterRenderer : public OperandRenderer { |
| protected: |
| const Record *RegisterDef; |
| |
| public: |
| AddRegisterRenderer(const Record *RegisterDef) |
| : OperandRenderer(OR_Register), RegisterDef(RegisterDef) {} |
| |
| static bool classof(const OperandRenderer *R) { |
| return R->getKind() == OR_Register; |
| } |
| |
| void emitCxxRenderStmts(raw_ostream &OS) const override { |
| OS << " MIB.addReg(" << RegisterDef->getValueAsString("Namespace") |
| << "::" << RegisterDef->getName() << ");\n"; |
| } |
| }; |
| |
| /// An action taken when all Matcher predicates succeeded for a parent rule. |
| /// |
| /// Typical actions include: |
| /// * Changing the opcode of an instruction. |
| /// * Adding an operand to an instruction. |
| class MatchAction { |
| public: |
| virtual ~MatchAction() {} |
| |
| /// Emit the C++ statements to implement the action. |
| /// |
| /// \param InsnVarName If given, it's an instruction to recycle. The |
| /// requirements on the instruction vary from action to |
| /// action. |
| virtual void emitCxxActionStmts(raw_ostream &OS, |
| const StringRef InsnVarName) const = 0; |
| }; |
| |
| /// Generates a comment describing the matched rule being acted upon. |
| class DebugCommentAction : public MatchAction { |
| private: |
| const PatternToMatch &P; |
| |
| public: |
| DebugCommentAction(const PatternToMatch &P) : P(P) {} |
| |
| void emitCxxActionStmts(raw_ostream &OS, |
| const StringRef InsnVarName) const override { |
| OS << "// " << *P.getSrcPattern() << " => " << *P.getDstPattern(); |
| } |
| }; |
| |
| /// Generates code to build an instruction or mutate an existing instruction |
| /// into the desired instruction when this is possible. |
| class BuildMIAction : public MatchAction { |
| private: |
| const CodeGenInstruction *I; |
| const InstructionMatcher &Matched; |
| std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers; |
| |
| /// True if the instruction can be built solely by mutating the opcode. |
| bool canMutate() const { |
| for (const auto &Renderer : enumerate(OperandRenderers)) { |
| if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.Value)) { |
| if (Matched.getOperand(Copy->getSymbolicName()).getOperandIndex() != |
| Renderer.Index) |
| return false; |
| } else |
| return false; |
| } |
| |
| return true; |
| } |
| |
| public: |
| BuildMIAction(const CodeGenInstruction *I, const InstructionMatcher &Matched) |
| : I(I), Matched(Matched) {} |
| |
| template <class Kind, class... Args> |
| Kind &addRenderer(Args&&... args) { |
| OperandRenderers.emplace_back( |
| llvm::make_unique<Kind>(std::forward<Args>(args)...)); |
| return *static_cast<Kind *>(OperandRenderers.back().get()); |
| } |
| |
| virtual void emitCxxActionStmts(raw_ostream &OS, |
| const StringRef InsnVarName) const { |
| if (canMutate()) { |
| OS << "I.setDesc(TII.get(" << I->Namespace << "::" << I->TheDef->getName() |
| << "));\n"; |
| OS << " MachineInstr &NewI = I;\n"; |
| return; |
| } |
| |
| // TODO: Simple permutation looks like it could be almost as common as |
| // mutation due to commutative operations. |
| |
| OS << "MachineInstrBuilder MIB = BuildMI(*I.getParent(), I, " |
| "I.getDebugLoc(), TII.get(" |
| << I->Namespace << "::" << I->TheDef->getName() << "));\n"; |
| for (const auto &Renderer : OperandRenderers) |
| Renderer->emitCxxRenderStmts(OS); |
| OS << " MIB.setMemRefs(I.memoperands_begin(), I.memoperands_end());\n"; |
| OS << " " << InsnVarName << ".eraseFromParent();\n"; |
| OS << " MachineInstr &NewI = *MIB;\n"; |
| } |
| }; |
| |
| /// Generates code to check that a match rule matches. |
| class RuleMatcher { |
| /// A list of matchers that all need to succeed for the current rule to match. |
| /// FIXME: This currently supports a single match position but could be |
| /// extended to support multiple positions to support div/rem fusion or |
| /// load-multiple instructions. |
| std::vector<std::unique_ptr<InstructionMatcher>> Matchers; |
| |
| /// A list of actions that need to be taken when all predicates in this rule |
| /// have succeeded. |
| std::vector<std::unique_ptr<MatchAction>> Actions; |
| |
| public: |
| RuleMatcher() {} |
| |
| InstructionMatcher &addInstructionMatcher() { |
| Matchers.emplace_back(new InstructionMatcher()); |
| return *Matchers.back(); |
| } |
| |
| template <class Kind, class... Args> |
| Kind &addAction(Args&&... args) { |
| Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...)); |
| return *static_cast<Kind *>(Actions.back().get()); |
| } |
| |
| void emit(raw_ostream &OS) const { |
| if (Matchers.empty()) |
| llvm_unreachable("Unexpected empty matcher!"); |
| |
| // The representation supports rules that require multiple roots such as: |
| // %ptr(p0) = ... |
| // %elt0(s32) = G_LOAD %ptr |
| // %1(p0) = G_ADD %ptr, 4 |
| // %elt1(s32) = G_LOAD p0 %1 |
| // which could be usefully folded into: |
| // %ptr(p0) = ... |
| // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr |
| // on some targets but we don't need to make use of that yet. |
| assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet"); |
| OS << " if ("; |
| Matchers.front()->emitCxxPredicateExpr(OS, "I"); |
| OS << ") {\n"; |
| |
| for (const auto &MA : Actions) { |
| OS << " "; |
| MA->emitCxxActionStmts(OS, "I"); |
| OS << "\n"; |
| } |
| |
| OS << " constrainSelectedInstRegOperands(NewI, TII, TRI, RBI);\n"; |
| OS << " return true;\n"; |
| OS << " }\n\n"; |
| } |
| |
| /// Compare the priority of this object and B. |
| /// |
| /// Returns true if this object is more important than B. |
| bool isHigherPriorityThan(const RuleMatcher &B) const { |
| // Rules involving more match roots have higher priority. |
| if (Matchers.size() > B.Matchers.size()) |
| return true; |
| if (Matchers.size() < B.Matchers.size()) |
| return false; |
| |
| for (const auto &Matcher : zip(Matchers, B.Matchers)) { |
| if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher))) |
| return true; |
| if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher))) |
| return false; |
| } |
| |
| return false; |
| }; |
| }; |
| |
| //===- GlobalISelEmitter class --------------------------------------------===// |
| |
| class GlobalISelEmitter { |
| public: |
| explicit GlobalISelEmitter(RecordKeeper &RK); |
| void run(raw_ostream &OS); |
| |
| private: |
| const RecordKeeper &RK; |
| const CodeGenDAGPatterns CGP; |
| const CodeGenTarget &Target; |
| |
| /// Keep track of the equivalence between SDNodes and Instruction. |
| /// This is defined using 'GINodeEquiv' in the target description. |
| DenseMap<Record *, const CodeGenInstruction *> NodeEquivs; |
| |
| void gatherNodeEquivs(); |
| const CodeGenInstruction *findNodeEquiv(Record *N); |
| |
| /// Analyze pattern \p P, returning a matcher for it if possible. |
| /// Otherwise, return an Error explaining why we don't support it. |
| Expected<RuleMatcher> runOnPattern(const PatternToMatch &P); |
| }; |
| |
| void GlobalISelEmitter::gatherNodeEquivs() { |
| assert(NodeEquivs.empty()); |
| for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv")) |
| NodeEquivs[Equiv->getValueAsDef("Node")] = |
| &Target.getInstruction(Equiv->getValueAsDef("I")); |
| } |
| |
| const CodeGenInstruction *GlobalISelEmitter::findNodeEquiv(Record *N) { |
| return NodeEquivs.lookup(N); |
| } |
| |
| GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK) |
| : RK(RK), CGP(RK), Target(CGP.getTargetInfo()) {} |
| |
| //===- Emitter ------------------------------------------------------------===// |
| |
| /// Helper function to let the emitter report skip reason error messages. |
| static Error failedImport(const Twine &Reason) { |
| return make_error<StringError>(Reason, inconvertibleErrorCode()); |
| } |
| |
| Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { |
| // Keep track of the matchers and actions to emit. |
| RuleMatcher M; |
| M.addAction<DebugCommentAction>(P); |
| |
| // First, analyze the whole pattern. |
| // If the entire pattern has a predicate (e.g., target features), ignore it. |
| if (!P.getPredicates()->getValues().empty()) |
| return failedImport("Pattern has a predicate"); |
| |
| // Physreg imp-defs require additional logic. Ignore the pattern. |
| if (!P.getDstRegs().empty()) |
| return failedImport("Pattern defines a physical register"); |
| |
| // Next, analyze the pattern operators. |
| TreePatternNode *Src = P.getSrcPattern(); |
| TreePatternNode *Dst = P.getDstPattern(); |
| |
| // If the root of either pattern isn't a simple operator, ignore it. |
| if (!isTrivialOperatorNode(Dst)) |
| return failedImport("Dst pattern root isn't a trivial operator"); |
| if (!isTrivialOperatorNode(Src)) |
| return failedImport("Src pattern root isn't a trivial operator"); |
| |
| Record *DstOp = Dst->getOperator(); |
| if (!DstOp->isSubClassOf("Instruction")) |
| return failedImport("Pattern operator isn't an instruction"); |
| |
| auto &DstI = Target.getInstruction(DstOp); |
| |
| auto SrcGIOrNull = findNodeEquiv(Src->getOperator()); |
| if (!SrcGIOrNull) |
| return failedImport("Pattern operator lacks an equivalent Instruction"); |
| auto &SrcGI = *SrcGIOrNull; |
| |
| // The operators look good: match the opcode and mutate it to the new one. |
| InstructionMatcher &InsnMatcher = M.addInstructionMatcher(); |
| InsnMatcher.addPredicate<InstructionOpcodeMatcher>(&SrcGI); |
| auto &DstMIBuilder = M.addAction<BuildMIAction>(&DstI, InsnMatcher); |
| |
| // Next, analyze the children, only accepting patterns that don't require |
| // any change to operands. |
| if (Src->getNumChildren() != Dst->getNumChildren()) |
| return failedImport("Src/dst patterns have a different # of children"); |
| |
| unsigned OpIdx = 0; |
| |
| // Start with the defined operands (i.e., the results of the root operator). |
| if (DstI.Operands.NumDefs != Src->getExtTypes().size()) |
| return failedImport("Src pattern results and dst MI defs are different"); |
| |
| for (const EEVT::TypeSet &Ty : Src->getExtTypes()) { |
| const auto &DstIOperand = DstI.Operands[OpIdx]; |
| Record *DstIOpRec = DstIOperand.Rec; |
| if (!DstIOpRec->isSubClassOf("RegisterClass")) |
| return failedImport("Dst MI def isn't a register class"); |
| |
| auto OpTyOrNone = MVTToLLT(Ty.getConcrete()); |
| if (!OpTyOrNone) |
| return failedImport("Dst operand has an unsupported type"); |
| |
| OperandMatcher &OM = InsnMatcher.addOperand(OpIdx, DstIOperand.Name); |
| OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone); |
| OM.addPredicate<RegisterBankOperandMatcher>( |
| Target.getRegisterClass(DstIOpRec)); |
| DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, "I", DstIOperand.Name); |
| ++OpIdx; |
| } |
| |
| // Finally match the used operands (i.e., the children of the root operator). |
| for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) { |
| auto *SrcChild = Src->getChild(i); |
| |
| OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, SrcChild->getName()); |
| |
| // The only non-leaf child we accept is 'bb': it's an operator because |
| // BasicBlockSDNode isn't inline, but in MI it's just another operand. |
| if (!SrcChild->isLeaf()) { |
| if (SrcChild->getOperator()->isSubClassOf("SDNode")) { |
| auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator()); |
| if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { |
| OM.addPredicate<MBBOperandMatcher>(); |
| continue; |
| } |
| } |
| return failedImport("Src pattern child isn't a leaf node or an MBB"); |
| } |
| |
| if (SrcChild->hasAnyPredicate()) |
| return failedImport("Src pattern child has predicate"); |
| |
| ArrayRef<EEVT::TypeSet> ChildTypes = SrcChild->getExtTypes(); |
| if (ChildTypes.size() != 1) |
| return failedImport("Src pattern child has multiple results"); |
| |
| auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete()); |
| if (!OpTyOrNone) |
| return failedImport("Src operand has an unsupported type"); |
| OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone); |
| |
| if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) { |
| OM.addPredicate<IntOperandMatcher>(ChildInt->getValue()); |
| continue; |
| } |
| |
| if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { |
| auto *ChildRec = ChildDefInit->getDef(); |
| |
| // Otherwise, we're looking for a bog-standard RegisterClass operand. |
| if (!ChildRec->isSubClassOf("RegisterClass")) |
| return failedImport("Src pattern child isn't a RegisterClass"); |
| |
| OM.addPredicate<RegisterBankOperandMatcher>( |
| Target.getRegisterClass(ChildRec)); |
| continue; |
| } |
| |
| return failedImport("Src pattern child is an unsupported kind"); |
| } |
| |
| // Finally render the used operands (i.e., the children of the root operator). |
| for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { |
| auto *DstChild = Dst->getChild(i); |
| |
| // The only non-leaf child we accept is 'bb': it's an operator because |
| // BasicBlockSDNode isn't inline, but in MI it's just another operand. |
| if (!DstChild->isLeaf()) { |
| if (DstChild->getOperator()->isSubClassOf("SDNode")) { |
| auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator()); |
| if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { |
| DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, "I", |
| DstChild->getName()); |
| continue; |
| } |
| } |
| return failedImport("Dst pattern child isn't a leaf node or an MBB"); |
| } |
| |
| // Otherwise, we're looking for a bog-standard RegisterClass operand. |
| if (DstChild->hasAnyPredicate()) |
| return failedImport("Dst pattern child has predicate"); |
| |
| if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) { |
| auto *ChildRec = ChildDefInit->getDef(); |
| |
| ArrayRef<EEVT::TypeSet> ChildTypes = DstChild->getExtTypes(); |
| if (ChildTypes.size() != 1) |
| return failedImport("Dst pattern child has multiple results"); |
| |
| auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete()); |
| if (!OpTyOrNone) |
| return failedImport("Dst operand has an unsupported type"); |
| |
| if (ChildRec->isSubClassOf("Register")) { |
| DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec); |
| continue; |
| } |
| |
| if (ChildRec->isSubClassOf("RegisterClass")) { |
| DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, "I", |
| DstChild->getName()); |
| continue; |
| } |
| |
| return failedImport( |
| "Dst pattern child def is an unsupported tablegen class"); |
| } |
| |
| return failedImport("Src pattern child is an unsupported kind"); |
| } |
| |
| // We're done with this pattern! It's eligible for GISel emission; return it. |
| ++NumPatternImported; |
| return std::move(M); |
| } |
| |
| void GlobalISelEmitter::run(raw_ostream &OS) { |
| // Track the GINodeEquiv definitions. |
| gatherNodeEquivs(); |
| |
| emitSourceFileHeader(("Global Instruction Selector for the " + |
| Target.getName() + " target").str(), OS); |
| OS << "bool " << Target.getName() |
| << "InstructionSelector::selectImpl" |
| "(MachineInstr &I) const {\n const MachineRegisterInfo &MRI = " |
| "I.getParent()->getParent()->getRegInfo();\n\n"; |
| |
| std::vector<RuleMatcher> Rules; |
| // Look through the SelectionDAG patterns we found, possibly emitting some. |
| for (const PatternToMatch &Pat : CGP.ptms()) { |
| ++NumPatternTotal; |
| auto MatcherOrErr = runOnPattern(Pat); |
| |
| // The pattern analysis can fail, indicating an unsupported pattern. |
| // Report that if we've been asked to do so. |
| if (auto Err = MatcherOrErr.takeError()) { |
| if (WarnOnSkippedPatterns) { |
| PrintWarning(Pat.getSrcRecord()->getLoc(), |
| "Skipped pattern: " + toString(std::move(Err))); |
| } else { |
| consumeError(std::move(Err)); |
| } |
| ++NumPatternImportsSkipped; |
| continue; |
| } |
| |
| Rules.push_back(std::move(MatcherOrErr.get())); |
| } |
| |
| std::stable_sort(Rules.begin(), Rules.end(), |
| [&](const RuleMatcher &A, const RuleMatcher &B) { |
| if (A.isHigherPriorityThan(B)) { |
| assert(!B.isHigherPriorityThan(A) && "Cannot be more important " |
| "and less important at " |
| "the same time"); |
| return true; |
| } |
| return false; |
| }); |
| |
| for (const auto &Rule : Rules) { |
| Rule.emit(OS); |
| ++NumPatternEmitted; |
| } |
| |
| OS << " return false;\n}\n"; |
| } |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| |
| namespace llvm { |
| void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) { |
| GlobalISelEmitter(RK).run(OS); |
| } |
| } // End llvm namespace |