| //===- Relocations.cpp ----------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains platform-independent functions to process relocations. |
| // I'll describe the overview of this file here. |
| // |
| // Simple relocations are easy to handle for the linker. For example, |
| // for R_X86_64_PC64 relocs, the linker just has to fix up locations |
| // with the relative offsets to the target symbols. It would just be |
| // reading records from relocation sections and applying them to output. |
| // |
| // But not all relocations are that easy to handle. For example, for |
| // R_386_GOTOFF relocs, the linker has to create new GOT entries for |
| // symbols if they don't exist, and fix up locations with GOT entry |
| // offsets from the beginning of GOT section. So there is more than |
| // fixing addresses in relocation processing. |
| // |
| // ELF defines a large number of complex relocations. |
| // |
| // The functions in this file analyze relocations and do whatever needs |
| // to be done. It includes, but not limited to, the following. |
| // |
| // - create GOT/PLT entries |
| // - create new relocations in .dynsym to let the dynamic linker resolve |
| // them at runtime (since ELF supports dynamic linking, not all |
| // relocations can be resolved at link-time) |
| // - create COPY relocs and reserve space in .bss |
| // - replace expensive relocs (in terms of runtime cost) with cheap ones |
| // - error out infeasible combinations such as PIC and non-relative relocs |
| // |
| // Note that the functions in this file don't actually apply relocations |
| // because it doesn't know about the output file nor the output file buffer. |
| // It instead stores Relocation objects to InputSection's Relocations |
| // vector to let it apply later in InputSection::writeTo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Relocations.h" |
| #include "Config.h" |
| #include "Memory.h" |
| #include "OutputSections.h" |
| #include "Strings.h" |
| #include "SymbolTable.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "Thunks.h" |
| |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| |
| namespace lld { |
| namespace elf { |
| |
| static bool refersToGotEntry(RelExpr Expr) { |
| return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, |
| R_MIPS_GOT_OFF32, R_MIPS_TLSGD, R_MIPS_TLSLD, |
| R_GOT_PAGE_PC, R_GOT_PC, R_GOT_FROM_END, R_TLSGD, |
| R_TLSGD_PC, R_TLSDESC, R_TLSDESC_PAGE>(Expr); |
| } |
| |
| static bool isPreemptible(const SymbolBody &Body, uint32_t Type) { |
| // In case of MIPS GP-relative relocations always resolve to a definition |
| // in a regular input file, ignoring the one-definition rule. So we, |
| // for example, should not attempt to create a dynamic relocation even |
| // if the target symbol is preemptible. There are two two MIPS GP-relative |
| // relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16 |
| // can be against a preemptible symbol. |
| // To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all |
| // relocation types occupy eight bit. In case of N64 ABI we extract first |
| // relocation from 3-in-1 packet because only the first relocation can |
| // be against a real symbol. |
| if (Config->EMachine == EM_MIPS && (Type & 0xff) == R_MIPS_GPREL16) |
| return false; |
| return Body.isPreemptible(); |
| } |
| |
| // This function is similar to the `handleTlsRelocation`. ARM and MIPS do not |
| // support any relaxations for TLS relocations so by factoring out ARM and MIPS |
| // handling in to the separate function we can simplify the code and do not |
| // pollute `handleTlsRelocation` by ARM and MIPS `ifs` statements. |
| template <class ELFT, class GOT> |
| static unsigned |
| handleNoRelaxTlsRelocation(GOT *Got, uint32_t Type, SymbolBody &Body, |
| InputSectionBase &C, typename ELFT::uint Offset, |
| int64_t Addend, RelExpr Expr) { |
| typedef typename ELFT::uint uintX_t; |
| auto addModuleReloc = [](SymbolBody &Body, GOT *Got, uintX_t Off, bool LD) { |
| // The Dynamic TLS Module Index Relocation can be statically resolved to 1 |
| // if we know that we are linking an executable. For ARM we resolve the |
| // relocation when writing the Got. MIPS has a custom Got implementation |
| // that writes the Module index in directly. |
| if (!Body.isPreemptible() && !Config->pic() && Config->EMachine == EM_ARM) |
| Got->Relocations.push_back( |
| {R_ABS, Target->TlsModuleIndexRel, Off, 0, &Body}); |
| else { |
| SymbolBody *Dest = LD ? nullptr : &Body; |
| In<ELFT>::RelaDyn->addReloc( |
| {Target->TlsModuleIndexRel, Got, Off, false, Dest, 0}); |
| } |
| }; |
| if (isRelExprOneOf<R_MIPS_TLSLD, R_TLSLD_PC>(Expr)) { |
| if (Got->addTlsIndex() && (Config->pic() || Config->EMachine == EM_ARM)) |
| addModuleReloc(Body, Got, Got->getTlsIndexOff(), true); |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| if (Target->isTlsGlobalDynamicRel(Type)) { |
| if (Got->addDynTlsEntry(Body) && |
| (Body.isPreemptible() || Config->EMachine == EM_ARM)) { |
| uintX_t Off = Got->getGlobalDynOffset(Body); |
| addModuleReloc(Body, Got, Off, false); |
| if (Body.isPreemptible()) |
| In<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, Got, |
| Off + (uintX_t)sizeof(uintX_t), false, |
| &Body, 0}); |
| } |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Returns the number of relocations processed. |
| template <class ELFT> |
| static unsigned |
| handleTlsRelocation(uint32_t Type, SymbolBody &Body, InputSectionBase &C, |
| typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) { |
| if (!(C.Flags & SHF_ALLOC)) |
| return 0; |
| |
| if (!Body.isTls()) |
| return 0; |
| |
| typedef typename ELFT::uint uintX_t; |
| |
| if (Config->EMachine == EM_ARM) |
| return handleNoRelaxTlsRelocation<ELFT>(In<ELFT>::Got, Type, Body, C, |
| Offset, Addend, Expr); |
| if (Config->EMachine == EM_MIPS) |
| return handleNoRelaxTlsRelocation<ELFT>(In<ELFT>::MipsGot, Type, Body, C, |
| Offset, Addend, Expr); |
| |
| bool IsPreemptible = isPreemptible(Body, Type); |
| if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) && |
| Config->Shared) { |
| if (In<ELFT>::Got->addDynTlsEntry(Body)) { |
| uintX_t Off = In<ELFT>::Got->getGlobalDynOffset(Body); |
| In<ELFT>::RelaDyn->addReloc({Target->TlsDescRel, In<ELFT>::Got, Off, |
| !IsPreemptible, &Body, 0}); |
| } |
| if (Expr != R_TLSDESC_CALL) |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| if (isRelExprOneOf<R_TLSLD_PC, R_TLSLD>(Expr)) { |
| // Local-Dynamic relocs can be relaxed to Local-Exec. |
| if (!Config->Shared) { |
| C.Relocations.push_back( |
| {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); |
| return 2; |
| } |
| if (In<ELFT>::Got->addTlsIndex()) |
| In<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, In<ELFT>::Got, |
| In<ELFT>::Got->getTlsIndexOff(), false, |
| nullptr, 0}); |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| // Local-Dynamic relocs can be relaxed to Local-Exec. |
| if (Target->isTlsLocalDynamicRel(Type) && !Config->Shared) { |
| C.Relocations.push_back( |
| {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| if (isRelExprOneOf<R_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL>(Expr) || |
| Target->isTlsGlobalDynamicRel(Type)) { |
| if (Config->Shared) { |
| if (In<ELFT>::Got->addDynTlsEntry(Body)) { |
| uintX_t Off = In<ELFT>::Got->getGlobalDynOffset(Body); |
| In<ELFT>::RelaDyn->addReloc( |
| {Target->TlsModuleIndexRel, In<ELFT>::Got, Off, false, &Body, 0}); |
| |
| // If the symbol is preemptible we need the dynamic linker to write |
| // the offset too. |
| uintX_t OffsetOff = Off + (uintX_t)sizeof(uintX_t); |
| if (IsPreemptible) |
| In<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, In<ELFT>::Got, |
| OffsetOff, false, &Body, 0}); |
| else |
| In<ELFT>::Got->Relocations.push_back( |
| {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Body}); |
| } |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec |
| // depending on the symbol being locally defined or not. |
| if (IsPreemptible) { |
| C.Relocations.push_back( |
| {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type, |
| Offset, Addend, &Body}); |
| if (!Body.isInGot()) { |
| In<ELFT>::Got->addEntry(Body); |
| In<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, In<ELFT>::Got, |
| Body.getGotOffset<ELFT>(), false, &Body, |
| 0}); |
| } |
| return Target->TlsGdRelaxSkip; |
| } |
| C.Relocations.push_back( |
| {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, |
| Offset, Addend, &Body}); |
| return Target->TlsGdRelaxSkip; |
| } |
| |
| // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally |
| // defined. |
| if (Target->isTlsInitialExecRel(Type) && !Config->Shared && !IsPreemptible) { |
| C.Relocations.push_back( |
| {R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| return 0; |
| } |
| |
| template <endianness E> static int16_t readSignedLo16(const uint8_t *Loc) { |
| return read32<E>(Loc) & 0xffff; |
| } |
| |
| template <class RelTy> |
| static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) { |
| switch (Rel->getType(Config->isMips64EL())) { |
| case R_MIPS_HI16: |
| return R_MIPS_LO16; |
| case R_MIPS_GOT16: |
| return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE; |
| case R_MIPS_PCHI16: |
| return R_MIPS_PCLO16; |
| case R_MICROMIPS_HI16: |
| return R_MICROMIPS_LO16; |
| default: |
| return R_MIPS_NONE; |
| } |
| } |
| |
| template <class ELFT, class RelTy> |
| static int32_t findMipsPairedAddend(const uint8_t *Buf, const uint8_t *BufLoc, |
| SymbolBody &Sym, const RelTy *Rel, |
| const RelTy *End) { |
| uint32_t SymIndex = Rel->getSymbol(Config->isMips64EL()); |
| uint32_t Type = getMipsPairType(Rel, Sym); |
| |
| // Some MIPS relocations use addend calculated from addend of the relocation |
| // itself and addend of paired relocation. ABI requires to compute such |
| // combined addend in case of REL relocation record format only. |
| // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (RelTy::IsRela || Type == R_MIPS_NONE) |
| return 0; |
| |
| for (const RelTy *RI = Rel; RI != End; ++RI) { |
| if (RI->getType(Config->isMips64EL()) != Type) |
| continue; |
| if (RI->getSymbol(Config->isMips64EL()) != SymIndex) |
| continue; |
| const endianness E = ELFT::TargetEndianness; |
| return ((read32<E>(BufLoc) & 0xffff) << 16) + |
| readSignedLo16<E>(Buf + RI->r_offset); |
| } |
| warn("can't find matching " + toString(Type) + " relocation for " + |
| toString(Rel->getType(Config->isMips64EL()))); |
| return 0; |
| } |
| |
| // True if non-preemptable symbol always has the same value regardless of where |
| // the DSO is loaded. |
| template <class ELFT> static bool isAbsolute(const SymbolBody &Body) { |
| if (Body.isUndefined()) |
| return !Body.isLocal() && Body.symbol()->isWeak(); |
| if (const auto *DR = dyn_cast<DefinedRegular>(&Body)) |
| return DR->Section == nullptr; // Absolute symbol. |
| return false; |
| } |
| |
| template <class ELFT> static bool isAbsoluteValue(const SymbolBody &Body) { |
| return isAbsolute<ELFT>(Body) || Body.isTls(); |
| } |
| |
| static bool needsPlt(RelExpr Expr) { |
| return isRelExprOneOf<R_PLT_PC, R_PPC_PLT_OPD, R_PLT, R_PLT_PAGE_PC>(Expr); |
| } |
| |
| // True if this expression is of the form Sym - X, where X is a position in the |
| // file (PC, or GOT for example). |
| static bool isRelExpr(RelExpr Expr) { |
| return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL, |
| R_PAGE_PC, R_RELAX_GOT_PC>(Expr); |
| } |
| |
| template <class ELFT> |
| static bool |
| isStaticLinkTimeConstant(RelExpr E, uint32_t Type, const SymbolBody &Body, |
| InputSectionBase &S, typename ELFT::uint RelOff) { |
| // These expressions always compute a constant |
| if (isRelExprOneOf<R_SIZE, R_GOT_FROM_END, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, |
| R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_TLSGD, |
| R_GOT_PAGE_PC, R_GOT_PC, R_PLT_PC, R_TLSGD_PC, R_TLSGD, |
| R_PPC_PLT_OPD, R_TLSDESC_CALL, R_TLSDESC_PAGE, R_HINT>(E)) |
| return true; |
| |
| // These never do, except if the entire file is position dependent or if |
| // only the low bits are used. |
| if (E == R_GOT || E == R_PLT || E == R_TLSDESC) |
| return Target->usesOnlyLowPageBits(Type) || !Config->pic(); |
| |
| if (isPreemptible(Body, Type)) |
| return false; |
| |
| if (!Config->pic()) |
| return true; |
| |
| bool AbsVal = isAbsoluteValue<ELFT>(Body); |
| bool RelE = isRelExpr(E); |
| if (AbsVal && !RelE) |
| return true; |
| if (!AbsVal && RelE) |
| return true; |
| |
| // Relative relocation to an absolute value. This is normally unrepresentable, |
| // but if the relocation refers to a weak undefined symbol, we allow it to |
| // resolve to the image base. This is a little strange, but it allows us to |
| // link function calls to such symbols. Normally such a call will be guarded |
| // with a comparison, which will load a zero from the GOT. |
| // Another special case is MIPS _gp_disp symbol which represents offset |
| // between start of a function and '_gp' value and defined as absolute just |
| // to simplify the code. |
| if (AbsVal && RelE) { |
| if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) |
| return true; |
| if (&Body == ElfSym::MipsGpDisp) |
| return true; |
| error(S.getLocation<ELFT>(RelOff) + ": relocation " + toString(Type) + |
| " cannot refer to absolute symbol '" + toString(Body) + |
| "' defined in " + toString(Body.File)); |
| return true; |
| } |
| |
| return Target->usesOnlyLowPageBits(Type); |
| } |
| |
| static RelExpr toPlt(RelExpr Expr) { |
| if (Expr == R_PPC_OPD) |
| return R_PPC_PLT_OPD; |
| if (Expr == R_PC) |
| return R_PLT_PC; |
| if (Expr == R_PAGE_PC) |
| return R_PLT_PAGE_PC; |
| if (Expr == R_ABS) |
| return R_PLT; |
| return Expr; |
| } |
| |
| static RelExpr fromPlt(RelExpr Expr) { |
| // We decided not to use a plt. Optimize a reference to the plt to a |
| // reference to the symbol itself. |
| if (Expr == R_PLT_PC) |
| return R_PC; |
| if (Expr == R_PPC_PLT_OPD) |
| return R_PPC_OPD; |
| if (Expr == R_PLT) |
| return R_ABS; |
| return Expr; |
| } |
| |
| template <class ELFT> static bool isReadOnly(SharedSymbol *SS) { |
| typedef typename ELFT::Phdr Elf_Phdr; |
| uint64_t Value = SS->getValue<ELFT>(); |
| |
| // Determine if the symbol is read-only by scanning the DSO's program headers. |
| auto *File = cast<SharedFile<ELFT>>(SS->File); |
| for (const Elf_Phdr &Phdr : check(File->getObj().program_headers())) |
| if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) && |
| !(Phdr.p_flags & ELF::PF_W) && Value >= Phdr.p_vaddr && |
| Value < Phdr.p_vaddr + Phdr.p_memsz) |
| return true; |
| return false; |
| } |
| |
| // Returns symbols at the same offset as a given symbol, including SS itself. |
| // |
| // If two or more symbols are at the same offset, and at least one of |
| // them are copied by a copy relocation, all of them need to be copied. |
| // Otherwise, they would refer different places at runtime. |
| template <class ELFT> |
| static std::vector<SharedSymbol *> getSymbolsAt(SharedSymbol *SS) { |
| typedef typename ELFT::Sym Elf_Sym; |
| |
| auto *File = cast<SharedFile<ELFT>>(SS->File); |
| uint64_t Shndx = SS->getShndx<ELFT>(); |
| uint64_t Value = SS->getValue<ELFT>(); |
| |
| std::vector<SharedSymbol *> Ret; |
| for (const Elf_Sym &S : File->getGlobalSymbols()) { |
| if (S.st_shndx != Shndx || S.st_value != Value) |
| continue; |
| StringRef Name = check(S.getName(File->getStringTable())); |
| SymbolBody *Sym = Symtab<ELFT>::X->find(Name); |
| if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym)) |
| Ret.push_back(Alias); |
| } |
| return Ret; |
| } |
| |
| // Reserve space in .bss or .bss.rel.ro for copy relocation. |
| // |
| // The copy relocation is pretty much a hack. If you use a copy relocation |
| // in your program, not only the symbol name but the symbol's size, RW/RO |
| // bit and alignment become part of the ABI. In addition to that, if the |
| // symbol has aliases, the aliases become part of the ABI. That's subtle, |
| // but if you violate that implicit ABI, that can cause very counter- |
| // intuitive consequences. |
| // |
| // So, what is the copy relocation? It's for linking non-position |
| // independent code to DSOs. In an ideal world, all references to data |
| // exported by DSOs should go indirectly through GOT. But if object files |
| // are compiled as non-PIC, all data references are direct. There is no |
| // way for the linker to transform the code to use GOT, as machine |
| // instructions are already set in stone in object files. This is where |
| // the copy relocation takes a role. |
| // |
| // A copy relocation instructs the dynamic linker to copy data from a DSO |
| // to a specified address (which is usually in .bss) at load-time. If the |
| // static linker (that's us) finds a direct data reference to a DSO |
| // symbol, it creates a copy relocation, so that the symbol can be |
| // resolved as if it were in .bss rather than in a DSO. |
| // |
| // As you can see in this function, we create a copy relocation for the |
| // dynamic linker, and the relocation contains not only symbol name but |
| // various other informtion about the symbol. So, such attributes become a |
| // part of the ABI. |
| // |
| // Note for application developers: I can give you a piece of advice if |
| // you are writing a shared library. You probably should export only |
| // functions from your library. You shouldn't export variables. |
| // |
| // As an example what can happen when you export variables without knowing |
| // the semantics of copy relocations, assume that you have an exported |
| // variable of type T. It is an ABI-breaking change to add new members at |
| // end of T even though doing that doesn't change the layout of the |
| // existing members. That's because the space for the new members are not |
| // reserved in .bss unless you recompile the main program. That means they |
| // are likely to overlap with other data that happens to be laid out next |
| // to the variable in .bss. This kind of issue is sometimes very hard to |
| // debug. What's a solution? Instead of exporting a varaible V from a DSO, |
| // define an accessor getV(). |
| template <class ELFT> static void addCopyRelSymbol(SharedSymbol *SS) { |
| typedef typename ELFT::uint uintX_t; |
| |
| // Copy relocation against zero-sized symbol doesn't make sense. |
| uintX_t SymSize = SS->template getSize<ELFT>(); |
| if (SymSize == 0) |
| fatal("cannot create a copy relocation for symbol " + toString(*SS)); |
| |
| // See if this symbol is in a read-only segment. If so, preserve the symbol's |
| // memory protection by reserving space in the .bss.rel.ro section. |
| bool IsReadOnly = isReadOnly<ELFT>(SS); |
| OutputSection *OSec = IsReadOnly ? Out::BssRelRo : Out::Bss; |
| |
| // Create a SyntheticSection in Out to hold the .bss and the Copy Reloc. |
| auto *ISec = |
| make<CopyRelSection<ELFT>>(IsReadOnly, SS->getAlignment<ELFT>(), SymSize); |
| OSec->addSection(ISec); |
| |
| // Look through the DSO's dynamic symbol table for aliases and create a |
| // dynamic symbol for each one. This causes the copy relocation to correctly |
| // interpose any aliases. |
| for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) { |
| Sym->NeedsCopy = true; |
| Sym->Section = ISec; |
| Sym->symbol()->IsUsedInRegularObj = true; |
| } |
| |
| In<ELFT>::RelaDyn->addReloc({Target->CopyRel, ISec, 0, false, SS, 0}); |
| } |
| |
| template <class ELFT> |
| static RelExpr adjustExpr(const elf::ObjectFile<ELFT> &File, SymbolBody &Body, |
| bool IsWrite, RelExpr Expr, uint32_t Type, |
| const uint8_t *Data, InputSectionBase &S, |
| typename ELFT::uint RelOff) { |
| bool Preemptible = isPreemptible(Body, Type); |
| if (Body.isGnuIFunc()) { |
| Expr = toPlt(Expr); |
| } else if (!Preemptible) { |
| if (needsPlt(Expr)) |
| Expr = fromPlt(Expr); |
| if (Expr == R_GOT_PC && !isAbsoluteValue<ELFT>(Body)) |
| Expr = Target->adjustRelaxExpr(Type, Data, Expr); |
| } |
| |
| if (IsWrite || isStaticLinkTimeConstant<ELFT>(Expr, Type, Body, S, RelOff)) |
| return Expr; |
| |
| // This relocation would require the dynamic linker to write a value to read |
| // only memory. We can hack around it if we are producing an executable and |
| // the refered symbol can be preemepted to refer to the executable. |
| if (Config->Shared || (Config->pic() && !isRelExpr(Expr))) { |
| if (Config->ZText) |
| error(S.getLocation<ELFT>(RelOff) + ": can't create dynamic relocation " + |
| toString(Type) + " against " + |
| (Body.getName().empty() ? "local symbol in readonly segment" |
| : "symbol '" + toString(Body) + "'") + |
| " defined in " + toString(Body.File)); |
| return Expr; |
| } |
| if (Body.getVisibility() != STV_DEFAULT) { |
| error(S.getLocation<ELFT>(RelOff) + ": cannot preempt symbol '" + |
| toString(Body) + "' defined in " + toString(Body.File)); |
| return Expr; |
| } |
| if (Body.isObject()) { |
| // Produce a copy relocation. |
| auto *B = cast<SharedSymbol>(&Body); |
| if (!B->NeedsCopy) { |
| if (Config->ZNocopyreloc) |
| error(S.getLocation<ELFT>(RelOff) + ": unresolvable relocation " + |
| toString(Type) + " against symbol '" + toString(*B) + |
| "'; recompile with -fPIC or remove '-z nocopyreloc'"); |
| |
| addCopyRelSymbol<ELFT>(B); |
| } |
| return Expr; |
| } |
| if (Body.isFunc()) { |
| // This handles a non PIC program call to function in a shared library. In |
| // an ideal world, we could just report an error saying the relocation can |
| // overflow at runtime. In the real world with glibc, crt1.o has a |
| // R_X86_64_PC32 pointing to libc.so. |
| // |
| // The general idea on how to handle such cases is to create a PLT entry and |
| // use that as the function value. |
| // |
| // For the static linking part, we just return a plt expr and everything |
| // else will use the the PLT entry as the address. |
| // |
| // The remaining problem is making sure pointer equality still works. We |
| // need the help of the dynamic linker for that. We let it know that we have |
| // a direct reference to a so symbol by creating an undefined symbol with a |
| // non zero st_value. Seeing that, the dynamic linker resolves the symbol to |
| // the value of the symbol we created. This is true even for got entries, so |
| // pointer equality is maintained. To avoid an infinite loop, the only entry |
| // that points to the real function is a dedicated got entry used by the |
| // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, |
| // R_386_JMP_SLOT, etc). |
| Body.NeedsPltAddr = true; |
| return toPlt(Expr); |
| } |
| error("symbol '" + toString(Body) + "' defined in " + toString(Body.File) + |
| " is missing type"); |
| |
| return Expr; |
| } |
| |
| template <class ELFT, class RelTy> |
| static int64_t computeAddend(const elf::ObjectFile<ELFT> &File, |
| const uint8_t *SectionData, const RelTy *End, |
| const RelTy &RI, RelExpr Expr, SymbolBody &Body) { |
| uint32_t Type = RI.getType(Config->isMips64EL()); |
| int64_t Addend = getAddend<ELFT>(RI); |
| const uint8_t *BufLoc = SectionData + RI.r_offset; |
| if (!RelTy::IsRela) |
| Addend += Target->getImplicitAddend(BufLoc, Type); |
| if (Config->EMachine == EM_MIPS) { |
| Addend += findMipsPairedAddend<ELFT>(SectionData, BufLoc, Body, &RI, End); |
| if (Type == R_MIPS_LO16 && Expr == R_PC) |
| // R_MIPS_LO16 expression has R_PC type iif the target is _gp_disp |
| // symbol. In that case we should use the following formula for |
| // calculation "AHL + GP - P + 4". Let's add 4 right here. |
| // For details see p. 4-19 at |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| Addend += 4; |
| if (Expr == R_MIPS_GOTREL && Body.isLocal()) |
| Addend += File.MipsGp0; |
| } |
| if (Config->pic() && Config->EMachine == EM_PPC64 && Type == R_PPC64_TOC) |
| Addend += getPPC64TocBase(); |
| return Addend; |
| } |
| |
| template <class ELFT> |
| static void reportUndefined(SymbolBody &Sym, InputSectionBase &S, |
| typename ELFT::uint Offset) { |
| bool CanBeExternal = Sym.symbol()->computeBinding() != STB_LOCAL && |
| Sym.getVisibility() == STV_DEFAULT; |
| if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll || |
| (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal)) |
| return; |
| |
| std::string Msg = S.getLocation<ELFT>(Offset) + ": undefined symbol '" + |
| toString(Sym) + "'"; |
| |
| if (Config->UnresolvedSymbols == UnresolvedPolicy::WarnAll || |
| (Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal)) |
| warn(Msg); |
| else |
| error(Msg); |
| } |
| |
| template <class RelTy> |
| static std::pair<uint32_t, uint32_t> |
| mergeMipsN32RelTypes(uint32_t Type, uint32_t Offset, RelTy *I, RelTy *E) { |
| // MIPS N32 ABI treats series of successive relocations with the same offset |
| // as a single relocation. The similar approach used by N64 ABI, but this ABI |
| // packs all relocations into the single relocation record. Here we emulate |
| // this for the N32 ABI. Iterate over relocation with the same offset and put |
| // theirs types into the single bit-set. |
| uint32_t Processed = 0; |
| for (; I != E && Offset == I->r_offset; ++I) { |
| ++Processed; |
| Type |= I->getType(Config->isMips64EL()) << (8 * Processed); |
| } |
| return std::make_pair(Type, Processed); |
| } |
| |
| // The reason we have to do this early scan is as follows |
| // * To mmap the output file, we need to know the size |
| // * For that, we need to know how many dynamic relocs we will have. |
| // It might be possible to avoid this by outputting the file with write: |
| // * Write the allocated output sections, computing addresses. |
| // * Apply relocations, recording which ones require a dynamic reloc. |
| // * Write the dynamic relocations. |
| // * Write the rest of the file. |
| // This would have some drawbacks. For example, we would only know if .rela.dyn |
| // is needed after applying relocations. If it is, it will go after rw and rx |
| // sections. Given that it is ro, we will need an extra PT_LOAD. This |
| // complicates things for the dynamic linker and means we would have to reserve |
| // space for the extra PT_LOAD even if we end up not using it. |
| template <class ELFT, class RelTy> |
| static void scanRelocs(InputSectionBase &C, ArrayRef<RelTy> Rels) { |
| typedef typename ELFT::uint uintX_t; |
| |
| bool IsWrite = C.Flags & SHF_WRITE; |
| |
| auto AddDyn = [=](const DynamicReloc<ELFT> &Reloc) { |
| In<ELFT>::RelaDyn->addReloc(Reloc); |
| }; |
| |
| const elf::ObjectFile<ELFT> *File = C.getFile<ELFT>(); |
| ArrayRef<uint8_t> SectionData = C.Data; |
| const uint8_t *Buf = SectionData.begin(); |
| |
| ArrayRef<EhSectionPiece> Pieces; |
| if (auto *Eh = dyn_cast<EhInputSection>(&C)) |
| Pieces = Eh->Pieces; |
| |
| ArrayRef<EhSectionPiece>::iterator PieceI = Pieces.begin(); |
| ArrayRef<EhSectionPiece>::iterator PieceE = Pieces.end(); |
| |
| for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) { |
| const RelTy &RI = *I; |
| SymbolBody &Body = File->getRelocTargetSym(RI); |
| uint32_t Type = RI.getType(Config->isMips64EL()); |
| |
| if (Config->MipsN32Abi) { |
| uint32_t Processed; |
| std::tie(Type, Processed) = |
| mergeMipsN32RelTypes(Type, RI.r_offset, I + 1, E); |
| I += Processed; |
| } |
| |
| // We only report undefined symbols if they are referenced somewhere in the |
| // code. |
| if (!Body.isLocal() && Body.isUndefined() && !Body.symbol()->isWeak()) |
| reportUndefined<ELFT>(Body, C, RI.r_offset); |
| |
| RelExpr Expr = Target->getRelExpr(Type, Body); |
| |
| // Ignore "hint" relocations because they are only markers for relaxation. |
| if (isRelExprOneOf<R_HINT, R_NONE>(Expr)) |
| continue; |
| |
| bool Preemptible = isPreemptible(Body, Type); |
| Expr = adjustExpr(*File, Body, IsWrite, Expr, Type, Buf + RI.r_offset, C, |
| RI.r_offset); |
| if (ErrorCount) |
| continue; |
| |
| // Skip a relocation that points to a dead piece |
| // in a eh_frame section. |
| while (PieceI != PieceE && |
| (PieceI->InputOff + PieceI->size() <= RI.r_offset)) |
| ++PieceI; |
| |
| // Compute the offset of this section in the output section. We do it here |
| // to try to compute it only once. |
| uintX_t Offset; |
| if (PieceI != PieceE) { |
| assert(PieceI->InputOff <= RI.r_offset && "Relocation not in any piece"); |
| if (PieceI->OutputOff == -1) |
| continue; |
| Offset = PieceI->OutputOff + RI.r_offset - PieceI->InputOff; |
| } else { |
| Offset = RI.r_offset; |
| } |
| |
| // This relocation does not require got entry, but it is relative to got and |
| // needs it to be created. Here we request for that. |
| if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL, |
| R_GOTREL_FROM_END, R_PPC_TOC>(Expr)) |
| In<ELFT>::Got->HasGotOffRel = true; |
| |
| int64_t Addend = computeAddend(*File, Buf, E, RI, Expr, Body); |
| |
| if (unsigned Processed = |
| handleTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr)) { |
| I += (Processed - 1); |
| continue; |
| } |
| |
| if (Expr == R_TLSDESC_CALL) |
| continue; |
| |
| if (needsPlt(Expr) || |
| refersToGotEntry(Expr) || !isPreemptible(Body, Type)) { |
| // If the relocation points to something in the file, we can process it. |
| bool Constant = |
| isStaticLinkTimeConstant<ELFT>(Expr, Type, Body, C, RI.r_offset); |
| |
| // If the output being produced is position independent, the final value |
| // is still not known. In that case we still need some help from the |
| // dynamic linker. We can however do better than just copying the incoming |
| // relocation. We can process some of it and and just ask the dynamic |
| // linker to add the load address. |
| if (!Constant) |
| AddDyn({Target->RelativeRel, &C, Offset, true, &Body, Addend}); |
| |
| // If the produced value is a constant, we just remember to write it |
| // when outputting this section. We also have to do it if the format |
| // uses Elf_Rel, since in that case the written value is the addend. |
| if (Constant || !RelTy::IsRela) |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| } else { |
| // We don't know anything about the finaly symbol. Just ask the dynamic |
| // linker to handle the relocation for us. |
| if (!Target->isPicRel(Type)) |
| error(C.getLocation<ELFT>(Offset) + ": relocation " + toString(Type) + |
| " cannot be used against shared object; recompile with -fPIC."); |
| AddDyn({Target->getDynRel(Type), &C, Offset, false, &Body, Addend}); |
| |
| // MIPS ABI turns using of GOT and dynamic relocations inside out. |
| // While regular ABI uses dynamic relocations to fill up GOT entries |
| // MIPS ABI requires dynamic linker to fills up GOT entries using |
| // specially sorted dynamic symbol table. This affects even dynamic |
| // relocations against symbols which do not require GOT entries |
| // creation explicitly, i.e. do not have any GOT-relocations. So if |
| // a preemptible symbol has a dynamic relocation we anyway have |
| // to create a GOT entry for it. |
| // If a non-preemptible symbol has a dynamic relocation against it, |
| // dynamic linker takes it st_value, adds offset and writes down |
| // result of the dynamic relocation. In case of preemptible symbol |
| // dynamic linker performs symbol resolution, writes the symbol value |
| // to the GOT entry and reads the GOT entry when it needs to perform |
| // a dynamic relocation. |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 |
| if (Config->EMachine == EM_MIPS) |
| In<ELFT>::MipsGot->addEntry(Body, Addend, Expr); |
| continue; |
| } |
| |
| // At this point we are done with the relocated position. Some relocations |
| // also require us to create a got or plt entry. |
| |
| // If a relocation needs PLT, we create a PLT and a GOT slot for the symbol. |
| if (needsPlt(Expr)) { |
| if (Body.isInPlt()) |
| continue; |
| |
| if (Body.isGnuIFunc() && !Preemptible) { |
| In<ELFT>::Iplt->addEntry(Body); |
| In<ELFT>::IgotPlt->addEntry(Body); |
| In<ELFT>::RelaIplt->addReloc({Target->IRelativeRel, In<ELFT>::IgotPlt, |
| Body.getGotPltOffset<ELFT>(), |
| !Preemptible, &Body, 0}); |
| } else { |
| In<ELFT>::Plt->addEntry(Body); |
| In<ELFT>::GotPlt->addEntry(Body); |
| In<ELFT>::RelaPlt->addReloc({Target->PltRel, In<ELFT>::GotPlt, |
| Body.getGotPltOffset<ELFT>(), !Preemptible, |
| &Body, 0}); |
| } |
| continue; |
| } |
| |
| if (refersToGotEntry(Expr)) { |
| if (Config->EMachine == EM_MIPS) { |
| // MIPS ABI has special rules to process GOT entries and doesn't |
| // require relocation entries for them. A special case is TLS |
| // relocations. In that case dynamic loader applies dynamic |
| // relocations to initialize TLS GOT entries. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| In<ELFT>::MipsGot->addEntry(Body, Addend, Expr); |
| if (Body.isTls() && Body.isPreemptible()) |
| AddDyn({Target->TlsGotRel, In<ELFT>::MipsGot, |
| Body.getGotOffset<ELFT>(), false, &Body, 0}); |
| continue; |
| } |
| |
| if (Body.isInGot()) |
| continue; |
| |
| In<ELFT>::Got->addEntry(Body); |
| uintX_t Off = Body.getGotOffset<ELFT>(); |
| uint32_t DynType; |
| RelExpr GotRE = R_ABS; |
| if (Body.isTls()) { |
| DynType = Target->TlsGotRel; |
| GotRE = R_TLS; |
| } else if (!Preemptible && Config->pic() && !isAbsolute<ELFT>(Body)) |
| DynType = Target->RelativeRel; |
| else |
| DynType = Target->GotRel; |
| |
| // FIXME: this logic is almost duplicated above. |
| bool Constant = |
| !Preemptible && !(Config->pic() && !isAbsolute<ELFT>(Body)); |
| if (!Constant) |
| AddDyn({DynType, In<ELFT>::Got, Off, !Preemptible, &Body, 0}); |
| if (Constant || (!RelTy::IsRela && !Preemptible)) |
| In<ELFT>::Got->Relocations.push_back({GotRE, DynType, Off, 0, &Body}); |
| continue; |
| } |
| } |
| } |
| |
| template <class ELFT> void scanRelocations(InputSectionBase &S) { |
| if (S.AreRelocsRela) |
| scanRelocs<ELFT>(S, S.relas<ELFT>()); |
| else |
| scanRelocs<ELFT>(S, S.rels<ELFT>()); |
| } |
| |
| // Insert the Thunks for OutputSection OS into their designated place |
| // in the Sections vector, and recalculate the InputSection output section |
| // offsets. |
| // This may invalidate any output section offsets stored outside of InputSection |
| template <class ELFT> |
| static void mergeThunks(OutputSection *OS, |
| std::vector<ThunkSection<ELFT> *> &Thunks) { |
| // Order Thunks in ascending OutSecOff |
| auto ThunkCmp = [](const ThunkSection<ELFT> *A, const ThunkSection<ELFT> *B) { |
| return A->OutSecOff < B->OutSecOff; |
| }; |
| std::stable_sort(Thunks.begin(), Thunks.end(), ThunkCmp); |
| |
| // Merge sorted vectors of Thunks and InputSections by OutSecOff |
| std::vector<InputSection *> Tmp; |
| Tmp.reserve(OS->Sections.size() + Thunks.size()); |
| auto MergeCmp = [](const InputSection *A, const InputSection *B) { |
| // std::merge requires a strict weak ordering. |
| if (A->OutSecOff < B->OutSecOff) |
| return true; |
| if (A->OutSecOff == B->OutSecOff) |
| // Check if Thunk is immediately before any specific Target InputSection |
| // for example Mips LA25 Thunks. |
| if (auto *TA = dyn_cast<ThunkSection<ELFT>>(A)) |
| if (TA && TA->getTargetInputSection() == B) |
| return true; |
| return false; |
| }; |
| std::merge(OS->Sections.begin(), OS->Sections.end(), Thunks.begin(), |
| Thunks.end(), std::back_inserter(Tmp), MergeCmp); |
| OS->Sections = std::move(Tmp); |
| OS->assignOffsets<ELFT>(); |
| } |
| |
| // Process all relocations from the InputSections that have been assigned |
| // to OutputSections and redirect through Thunks if needed. |
| // |
| // createThunks must be called after scanRelocs has created the Relocations for |
| // each InputSection. It must be called before the static symbol table is |
| // finalized. If any Thunks are added to an OutputSection the output section |
| // offsets of the InputSections will change. |
| // |
| // FIXME: All Thunks are assumed to be in range of the relocation. Range |
| // extension Thunks are not yet supported. |
| template <class ELFT> |
| bool createThunks(ArrayRef<OutputSection *> OutputSections) { |
| // Track Symbols that already have a Thunk |
| DenseMap<SymbolBody *, Thunk<ELFT> *> ThunkedSymbols; |
| // Track InputSections that have a ThunkSection placed in front |
| DenseMap<InputSection *, ThunkSection<ELFT> *> ThunkedSections; |
| // Track the ThunksSections that need to be inserted into an OutputSection |
| std::map<OutputSection *, std::vector<ThunkSection<ELFT> *>> ThunkSections; |
| |
| // Find or create a Thunk for Body for relocation Type |
| auto GetThunk = [&](SymbolBody &Body, uint32_t Type) { |
| auto res = ThunkedSymbols.insert({&Body, nullptr}); |
| if (res.second == true) |
| res.first->second = addThunk<ELFT>(Type, Body); |
| return std::make_pair(res.first->second, res.second); |
| }; |
| |
| // Find or create a ThunkSection to be placed immediately before IS |
| auto GetISThunkSec = [&](InputSection *IS, OutputSection *OS) { |
| ThunkSection<ELFT> *TS = ThunkedSections.lookup(IS); |
| if (TS) |
| return TS; |
| auto *TOS = cast<OutputSection>(IS->OutSec); |
| TS = make<ThunkSection<ELFT>>(TOS, IS->OutSecOff); |
| ThunkSections[TOS].push_back(TS); |
| ThunkedSections[IS] = TS; |
| return TS; |
| }; |
| // Find or create a ThunkSection to be placed as last executable section in |
| // OS. |
| auto GetOSThunkSec = [&](ThunkSection<ELFT> *&TS, OutputSection *OS) { |
| if (TS == nullptr) { |
| uint32_t Off = 0; |
| for (auto *IS : OS->Sections) { |
| Off = IS->OutSecOff + IS->getSize(); |
| if ((IS->Flags & SHF_EXECINSTR) == 0) |
| break; |
| } |
| TS = make<ThunkSection<ELFT>>(OS, Off); |
| ThunkSections[OS].push_back(TS); |
| } |
| return TS; |
| }; |
| // Create all the Thunks and insert them into synthetic ThunkSections. The |
| // ThunkSections are later inserted back into the OutputSection. |
| |
| // We separate the creation of ThunkSections from the insertion of the |
| // ThunkSections back into the OutputSection as ThunkSections are not always |
| // inserted into the same OutputSection as the caller. |
| for (OutputSection *Base : OutputSections) { |
| auto *OS = dyn_cast<OutputSection>(Base); |
| if (OS == nullptr) |
| continue; |
| |
| ThunkSection<ELFT> *OSTS = nullptr; |
| for (InputSection *IS : OS->Sections) { |
| for (Relocation &Rel : IS->Relocations) { |
| SymbolBody &Body = *Rel.Sym; |
| if (Target->needsThunk(Rel.Expr, Rel.Type, IS->template getFile<ELFT>(), |
| Body)) { |
| Thunk<ELFT> *T; |
| bool IsNew; |
| std::tie(T, IsNew) = GetThunk(Body, Rel.Type); |
| if (IsNew) { |
| // Find or create a ThunkSection for the new Thunk |
| ThunkSection<ELFT> *TS; |
| if (auto *TIS = T->getTargetInputSection()) |
| TS = GetISThunkSec(TIS, OS); |
| else |
| TS = GetOSThunkSec(OSTS, OS); |
| TS->addThunk(T); |
| } |
| // Redirect relocation to Thunk, we never go via the PLT to a Thunk |
| Rel.Sym = T->ThunkSym; |
| Rel.Expr = fromPlt(Rel.Expr); |
| } |
| } |
| } |
| } |
| |
| // Merge all created synthetic ThunkSections back into OutputSection |
| for (auto &KV : ThunkSections) |
| mergeThunks<ELFT>(KV.first, KV.second); |
| return !ThunkSections.empty(); |
| } |
| |
| template void scanRelocations<ELF32LE>(InputSectionBase &); |
| template void scanRelocations<ELF32BE>(InputSectionBase &); |
| template void scanRelocations<ELF64LE>(InputSectionBase &); |
| template void scanRelocations<ELF64BE>(InputSectionBase &); |
| |
| template bool createThunks<ELF32LE>(ArrayRef<OutputSection *>); |
| template bool createThunks<ELF32BE>(ArrayRef<OutputSection *>); |
| template bool createThunks<ELF64LE>(ArrayRef<OutputSection *>); |
| template bool createThunks<ELF64BE>(ArrayRef<OutputSection *>); |
| } |
| } |