|  | //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for declarations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "TypeLocBuilder.h" | 
|  | #include "clang/AST/ASTConsumer.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTLambda.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/CommentDiagnostic.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/EvaluatedExprVisitor.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/NonTrivialTypeVisitor.h" | 
|  | #include "clang/AST/StmtCXX.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex | 
|  | #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. | 
|  | #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex | 
|  | #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() | 
|  | #include "clang/Sema/CXXFieldCollector.h" | 
|  | #include "clang/Sema/DeclSpec.h" | 
|  | #include "clang/Sema/DelayedDiagnostic.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/ParsedTemplate.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/ScopeInfo.h" | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/Sema/Template.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include <algorithm> | 
|  | #include <cstring> | 
|  | #include <functional> | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { | 
|  | if (OwnedType) { | 
|  | Decl *Group[2] = { OwnedType, Ptr }; | 
|  | return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); | 
|  | } | 
|  |  | 
|  | return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class TypeNameValidatorCCC final : public CorrectionCandidateCallback { | 
|  | public: | 
|  | TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, | 
|  | bool AllowTemplates = false, | 
|  | bool AllowNonTemplates = true) | 
|  | : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), | 
|  | AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { | 
|  | WantExpressionKeywords = false; | 
|  | WantCXXNamedCasts = false; | 
|  | WantRemainingKeywords = false; | 
|  | } | 
|  |  | 
|  | bool ValidateCandidate(const TypoCorrection &candidate) override { | 
|  | if (NamedDecl *ND = candidate.getCorrectionDecl()) { | 
|  | if (!AllowInvalidDecl && ND->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | if (getAsTypeTemplateDecl(ND)) | 
|  | return AllowTemplates; | 
|  |  | 
|  | bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); | 
|  | if (!IsType) | 
|  | return false; | 
|  |  | 
|  | if (AllowNonTemplates) | 
|  | return true; | 
|  |  | 
|  | // An injected-class-name of a class template (specialization) is valid | 
|  | // as a template or as a non-template. | 
|  | if (AllowTemplates) { | 
|  | auto *RD = dyn_cast<CXXRecordDecl>(ND); | 
|  | if (!RD || !RD->isInjectedClassName()) | 
|  | return false; | 
|  | RD = cast<CXXRecordDecl>(RD->getDeclContext()); | 
|  | return RD->getDescribedClassTemplate() || | 
|  | isa<ClassTemplateSpecializationDecl>(RD); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return !WantClassName && candidate.isKeyword(); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<CorrectionCandidateCallback> clone() override { | 
|  | return llvm::make_unique<TypeNameValidatorCCC>(*this); | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool AllowInvalidDecl; | 
|  | bool WantClassName; | 
|  | bool AllowTemplates; | 
|  | bool AllowNonTemplates; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Determine whether the token kind starts a simple-type-specifier. | 
|  | bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { | 
|  | switch (Kind) { | 
|  | // FIXME: Take into account the current language when deciding whether a | 
|  | // token kind is a valid type specifier | 
|  | case tok::kw_short: | 
|  | case tok::kw_long: | 
|  | case tok::kw___int64: | 
|  | case tok::kw___int128: | 
|  | case tok::kw_signed: | 
|  | case tok::kw_unsigned: | 
|  | case tok::kw_void: | 
|  | case tok::kw_char: | 
|  | case tok::kw_int: | 
|  | case tok::kw_half: | 
|  | case tok::kw_float: | 
|  | case tok::kw_double: | 
|  | case tok::kw__Float16: | 
|  | case tok::kw___float128: | 
|  | case tok::kw_wchar_t: | 
|  | case tok::kw_bool: | 
|  | case tok::kw___underlying_type: | 
|  | case tok::kw___auto_type: | 
|  | return true; | 
|  |  | 
|  | case tok::annot_typename: | 
|  | case tok::kw_char16_t: | 
|  | case tok::kw_char32_t: | 
|  | case tok::kw_typeof: | 
|  | case tok::annot_decltype: | 
|  | case tok::kw_decltype: | 
|  | return getLangOpts().CPlusPlus; | 
|  |  | 
|  | case tok::kw_char8_t: | 
|  | return getLangOpts().Char8; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | enum class UnqualifiedTypeNameLookupResult { | 
|  | NotFound, | 
|  | FoundNonType, | 
|  | FoundType | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Tries to perform unqualified lookup of the type decls in bases for | 
|  | /// dependent class. | 
|  | /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a | 
|  | /// type decl, \a FoundType if only type decls are found. | 
|  | static UnqualifiedTypeNameLookupResult | 
|  | lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, | 
|  | SourceLocation NameLoc, | 
|  | const CXXRecordDecl *RD) { | 
|  | if (!RD->hasDefinition()) | 
|  | return UnqualifiedTypeNameLookupResult::NotFound; | 
|  | // Look for type decls in base classes. | 
|  | UnqualifiedTypeNameLookupResult FoundTypeDecl = | 
|  | UnqualifiedTypeNameLookupResult::NotFound; | 
|  | for (const auto &Base : RD->bases()) { | 
|  | const CXXRecordDecl *BaseRD = nullptr; | 
|  | if (auto *BaseTT = Base.getType()->getAs<TagType>()) | 
|  | BaseRD = BaseTT->getAsCXXRecordDecl(); | 
|  | else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { | 
|  | // Look for type decls in dependent base classes that have known primary | 
|  | // templates. | 
|  | if (!TST || !TST->isDependentType()) | 
|  | continue; | 
|  | auto *TD = TST->getTemplateName().getAsTemplateDecl(); | 
|  | if (!TD) | 
|  | continue; | 
|  | if (auto *BasePrimaryTemplate = | 
|  | dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) { | 
|  | if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) | 
|  | BaseRD = BasePrimaryTemplate; | 
|  | else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { | 
|  | if (const ClassTemplatePartialSpecializationDecl *PS = | 
|  | CTD->findPartialSpecialization(Base.getType())) | 
|  | if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) | 
|  | BaseRD = PS; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (BaseRD) { | 
|  | for (NamedDecl *ND : BaseRD->lookup(&II)) { | 
|  | if (!isa<TypeDecl>(ND)) | 
|  | return UnqualifiedTypeNameLookupResult::FoundNonType; | 
|  | FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; | 
|  | } | 
|  | if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { | 
|  | switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) { | 
|  | case UnqualifiedTypeNameLookupResult::FoundNonType: | 
|  | return UnqualifiedTypeNameLookupResult::FoundNonType; | 
|  | case UnqualifiedTypeNameLookupResult::FoundType: | 
|  | FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; | 
|  | break; | 
|  | case UnqualifiedTypeNameLookupResult::NotFound: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return FoundTypeDecl; | 
|  | } | 
|  |  | 
|  | static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, | 
|  | const IdentifierInfo &II, | 
|  | SourceLocation NameLoc) { | 
|  | // Lookup in the parent class template context, if any. | 
|  | const CXXRecordDecl *RD = nullptr; | 
|  | UnqualifiedTypeNameLookupResult FoundTypeDecl = | 
|  | UnqualifiedTypeNameLookupResult::NotFound; | 
|  | for (DeclContext *DC = S.CurContext; | 
|  | DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; | 
|  | DC = DC->getParent()) { | 
|  | // Look for type decls in dependent base classes that have known primary | 
|  | // templates. | 
|  | RD = dyn_cast<CXXRecordDecl>(DC); | 
|  | if (RD && RD->getDescribedClassTemplate()) | 
|  | FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); | 
|  | } | 
|  | if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) | 
|  | return nullptr; | 
|  |  | 
|  | // We found some types in dependent base classes.  Recover as if the user | 
|  | // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the | 
|  | // lookup during template instantiation. | 
|  | S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II; | 
|  |  | 
|  | ASTContext &Context = S.Context; | 
|  | auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, | 
|  | cast<Type>(Context.getRecordType(RD))); | 
|  | QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); | 
|  |  | 
|  | CXXScopeSpec SS; | 
|  | SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); | 
|  |  | 
|  | TypeLocBuilder Builder; | 
|  | DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); | 
|  | DepTL.setNameLoc(NameLoc); | 
|  | DepTL.setElaboratedKeywordLoc(SourceLocation()); | 
|  | DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  | return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | 
|  | } | 
|  |  | 
|  | /// If the identifier refers to a type name within this scope, | 
|  | /// return the declaration of that type. | 
|  | /// | 
|  | /// This routine performs ordinary name lookup of the identifier II | 
|  | /// within the given scope, with optional C++ scope specifier SS, to | 
|  | /// determine whether the name refers to a type. If so, returns an | 
|  | /// opaque pointer (actually a QualType) corresponding to that | 
|  | /// type. Otherwise, returns NULL. | 
|  | ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, | 
|  | Scope *S, CXXScopeSpec *SS, | 
|  | bool isClassName, bool HasTrailingDot, | 
|  | ParsedType ObjectTypePtr, | 
|  | bool IsCtorOrDtorName, | 
|  | bool WantNontrivialTypeSourceInfo, | 
|  | bool IsClassTemplateDeductionContext, | 
|  | IdentifierInfo **CorrectedII) { | 
|  | // FIXME: Consider allowing this outside C++1z mode as an extension. | 
|  | bool AllowDeducedTemplate = IsClassTemplateDeductionContext && | 
|  | getLangOpts().CPlusPlus17 && !IsCtorOrDtorName && | 
|  | !isClassName && !HasTrailingDot; | 
|  |  | 
|  | // Determine where we will perform name lookup. | 
|  | DeclContext *LookupCtx = nullptr; | 
|  | if (ObjectTypePtr) { | 
|  | QualType ObjectType = ObjectTypePtr.get(); | 
|  | if (ObjectType->isRecordType()) | 
|  | LookupCtx = computeDeclContext(ObjectType); | 
|  | } else if (SS && SS->isNotEmpty()) { | 
|  | LookupCtx = computeDeclContext(*SS, false); | 
|  |  | 
|  | if (!LookupCtx) { | 
|  | if (isDependentScopeSpecifier(*SS)) { | 
|  | // C++ [temp.res]p3: | 
|  | //   A qualified-id that refers to a type and in which the | 
|  | //   nested-name-specifier depends on a template-parameter (14.6.2) | 
|  | //   shall be prefixed by the keyword typename to indicate that the | 
|  | //   qualified-id denotes a type, forming an | 
|  | //   elaborated-type-specifier (7.1.5.3). | 
|  | // | 
|  | // We therefore do not perform any name lookup if the result would | 
|  | // refer to a member of an unknown specialization. | 
|  | if (!isClassName && !IsCtorOrDtorName) | 
|  | return nullptr; | 
|  |  | 
|  | // We know from the grammar that this name refers to a type, | 
|  | // so build a dependent node to describe the type. | 
|  | if (WantNontrivialTypeSourceInfo) | 
|  | return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get(); | 
|  |  | 
|  | NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); | 
|  | QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc, | 
|  | II, NameLoc); | 
|  | return ParsedType::make(T); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!LookupCtx->isDependentContext() && | 
|  | RequireCompleteDeclContext(*SS, LookupCtx)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // FIXME: LookupNestedNameSpecifierName isn't the right kind of | 
|  | // lookup for class-names. | 
|  | LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : | 
|  | LookupOrdinaryName; | 
|  | LookupResult Result(*this, &II, NameLoc, Kind); | 
|  | if (LookupCtx) { | 
|  | // Perform "qualified" name lookup into the declaration context we | 
|  | // computed, which is either the type of the base of a member access | 
|  | // expression or the declaration context associated with a prior | 
|  | // nested-name-specifier. | 
|  | LookupQualifiedName(Result, LookupCtx); | 
|  |  | 
|  | if (ObjectTypePtr && Result.empty()) { | 
|  | // C++ [basic.lookup.classref]p3: | 
|  | //   If the unqualified-id is ~type-name, the type-name is looked up | 
|  | //   in the context of the entire postfix-expression. If the type T of | 
|  | //   the object expression is of a class type C, the type-name is also | 
|  | //   looked up in the scope of class C. At least one of the lookups shall | 
|  | //   find a name that refers to (possibly cv-qualified) T. | 
|  | LookupName(Result, S); | 
|  | } | 
|  | } else { | 
|  | // Perform unqualified name lookup. | 
|  | LookupName(Result, S); | 
|  |  | 
|  | // For unqualified lookup in a class template in MSVC mode, look into | 
|  | // dependent base classes where the primary class template is known. | 
|  | if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { | 
|  | if (ParsedType TypeInBase = | 
|  | recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) | 
|  | return TypeInBase; | 
|  | } | 
|  | } | 
|  |  | 
|  | NamedDecl *IIDecl = nullptr; | 
|  | switch (Result.getResultKind()) { | 
|  | case LookupResult::NotFound: | 
|  | case LookupResult::NotFoundInCurrentInstantiation: | 
|  | if (CorrectedII) { | 
|  | TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName, | 
|  | AllowDeducedTemplate); | 
|  | TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind, | 
|  | S, SS, CCC, CTK_ErrorRecovery); | 
|  | IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); | 
|  | TemplateTy Template; | 
|  | bool MemberOfUnknownSpecialization; | 
|  | UnqualifiedId TemplateName; | 
|  | TemplateName.setIdentifier(NewII, NameLoc); | 
|  | NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); | 
|  | CXXScopeSpec NewSS, *NewSSPtr = SS; | 
|  | if (SS && NNS) { | 
|  | NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); | 
|  | NewSSPtr = &NewSS; | 
|  | } | 
|  | if (Correction && (NNS || NewII != &II) && | 
|  | // Ignore a correction to a template type as the to-be-corrected | 
|  | // identifier is not a template (typo correction for template names | 
|  | // is handled elsewhere). | 
|  | !(getLangOpts().CPlusPlus && NewSSPtr && | 
|  | isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false, | 
|  | Template, MemberOfUnknownSpecialization))) { | 
|  | ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, | 
|  | isClassName, HasTrailingDot, ObjectTypePtr, | 
|  | IsCtorOrDtorName, | 
|  | WantNontrivialTypeSourceInfo, | 
|  | IsClassTemplateDeductionContext); | 
|  | if (Ty) { | 
|  | diagnoseTypo(Correction, | 
|  | PDiag(diag::err_unknown_type_or_class_name_suggest) | 
|  | << Result.getLookupName() << isClassName); | 
|  | if (SS && NNS) | 
|  | SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); | 
|  | *CorrectedII = NewII; | 
|  | return Ty; | 
|  | } | 
|  | } | 
|  | } | 
|  | // If typo correction failed or was not performed, fall through | 
|  | LLVM_FALLTHROUGH; | 
|  | case LookupResult::FoundOverloaded: | 
|  | case LookupResult::FoundUnresolvedValue: | 
|  | Result.suppressDiagnostics(); | 
|  | return nullptr; | 
|  |  | 
|  | case LookupResult::Ambiguous: | 
|  | // Recover from type-hiding ambiguities by hiding the type.  We'll | 
|  | // do the lookup again when looking for an object, and we can | 
|  | // diagnose the error then.  If we don't do this, then the error | 
|  | // about hiding the type will be immediately followed by an error | 
|  | // that only makes sense if the identifier was treated like a type. | 
|  | if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { | 
|  | Result.suppressDiagnostics(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Look to see if we have a type anywhere in the list of results. | 
|  | for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); | 
|  | Res != ResEnd; ++Res) { | 
|  | if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) || | 
|  | (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) { | 
|  | if (!IIDecl || | 
|  | (*Res)->getLocation().getRawEncoding() < | 
|  | IIDecl->getLocation().getRawEncoding()) | 
|  | IIDecl = *Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!IIDecl) { | 
|  | // None of the entities we found is a type, so there is no way | 
|  | // to even assume that the result is a type. In this case, don't | 
|  | // complain about the ambiguity. The parser will either try to | 
|  | // perform this lookup again (e.g., as an object name), which | 
|  | // will produce the ambiguity, or will complain that it expected | 
|  | // a type name. | 
|  | Result.suppressDiagnostics(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // We found a type within the ambiguous lookup; diagnose the | 
|  | // ambiguity and then return that type. This might be the right | 
|  | // answer, or it might not be, but it suppresses any attempt to | 
|  | // perform the name lookup again. | 
|  | break; | 
|  |  | 
|  | case LookupResult::Found: | 
|  | IIDecl = Result.getFoundDecl(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(IIDecl && "Didn't find decl"); | 
|  |  | 
|  | QualType T; | 
|  | if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { | 
|  | // C++ [class.qual]p2: A lookup that would find the injected-class-name | 
|  | // instead names the constructors of the class, except when naming a class. | 
|  | // This is ill-formed when we're not actually forming a ctor or dtor name. | 
|  | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); | 
|  | auto *FoundRD = dyn_cast<CXXRecordDecl>(TD); | 
|  | if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD && | 
|  | FoundRD->isInjectedClassName() && | 
|  | declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) | 
|  | Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor) | 
|  | << &II << /*Type*/1; | 
|  |  | 
|  | DiagnoseUseOfDecl(IIDecl, NameLoc); | 
|  |  | 
|  | T = Context.getTypeDeclType(TD); | 
|  | MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); | 
|  | } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { | 
|  | (void)DiagnoseUseOfDecl(IDecl, NameLoc); | 
|  | if (!HasTrailingDot) | 
|  | T = Context.getObjCInterfaceType(IDecl); | 
|  | } else if (AllowDeducedTemplate) { | 
|  | if (auto *TD = getAsTypeTemplateDecl(IIDecl)) | 
|  | T = Context.getDeducedTemplateSpecializationType(TemplateName(TD), | 
|  | QualType(), false); | 
|  | } | 
|  |  | 
|  | if (T.isNull()) { | 
|  | // If it's not plausibly a type, suppress diagnostics. | 
|  | Result.suppressDiagnostics(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // NOTE: avoid constructing an ElaboratedType(Loc) if this is a | 
|  | // constructor or destructor name (in such a case, the scope specifier | 
|  | // will be attached to the enclosing Expr or Decl node). | 
|  | if (SS && SS->isNotEmpty() && !IsCtorOrDtorName && | 
|  | !isa<ObjCInterfaceDecl>(IIDecl)) { | 
|  | if (WantNontrivialTypeSourceInfo) { | 
|  | // Construct a type with type-source information. | 
|  | TypeLocBuilder Builder; | 
|  | Builder.pushTypeSpec(T).setNameLoc(NameLoc); | 
|  |  | 
|  | T = getElaboratedType(ETK_None, *SS, T); | 
|  | ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); | 
|  | ElabTL.setElaboratedKeywordLoc(SourceLocation()); | 
|  | ElabTL.setQualifierLoc(SS->getWithLocInContext(Context)); | 
|  | return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | 
|  | } else { | 
|  | T = getElaboratedType(ETK_None, *SS, T); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ParsedType::make(T); | 
|  | } | 
|  |  | 
|  | // Builds a fake NNS for the given decl context. | 
|  | static NestedNameSpecifier * | 
|  | synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { | 
|  | for (;; DC = DC->getLookupParent()) { | 
|  | DC = DC->getPrimaryContext(); | 
|  | auto *ND = dyn_cast<NamespaceDecl>(DC); | 
|  | if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) | 
|  | return NestedNameSpecifier::Create(Context, nullptr, ND); | 
|  | else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) | 
|  | return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), | 
|  | RD->getTypeForDecl()); | 
|  | else if (isa<TranslationUnitDecl>(DC)) | 
|  | return NestedNameSpecifier::GlobalSpecifier(Context); | 
|  | } | 
|  | llvm_unreachable("something isn't in TU scope?"); | 
|  | } | 
|  |  | 
|  | /// Find the parent class with dependent bases of the innermost enclosing method | 
|  | /// context. Do not look for enclosing CXXRecordDecls directly, or we will end | 
|  | /// up allowing unqualified dependent type names at class-level, which MSVC | 
|  | /// correctly rejects. | 
|  | static const CXXRecordDecl * | 
|  | findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { | 
|  | for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { | 
|  | DC = DC->getPrimaryContext(); | 
|  | if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) | 
|  | if (MD->getParent()->hasAnyDependentBases()) | 
|  | return MD->getParent(); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, | 
|  | SourceLocation NameLoc, | 
|  | bool IsTemplateTypeArg) { | 
|  | assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"); | 
|  |  | 
|  | NestedNameSpecifier *NNS = nullptr; | 
|  | if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { | 
|  | // If we weren't able to parse a default template argument, delay lookup | 
|  | // until instantiation time by making a non-dependent DependentTypeName. We | 
|  | // pretend we saw a NestedNameSpecifier referring to the current scope, and | 
|  | // lookup is retried. | 
|  | // FIXME: This hurts our diagnostic quality, since we get errors like "no | 
|  | // type named 'Foo' in 'current_namespace'" when the user didn't write any | 
|  | // name specifiers. | 
|  | NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext); | 
|  | Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; | 
|  | } else if (const CXXRecordDecl *RD = | 
|  | findRecordWithDependentBasesOfEnclosingMethod(CurContext)) { | 
|  | // Build a DependentNameType that will perform lookup into RD at | 
|  | // instantiation time. | 
|  | NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), | 
|  | RD->getTypeForDecl()); | 
|  |  | 
|  | // Diagnose that this identifier was undeclared, and retry the lookup during | 
|  | // template instantiation. | 
|  | Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II | 
|  | << RD; | 
|  | } else { | 
|  | // This is not a situation that we should recover from. | 
|  | return ParsedType(); | 
|  | } | 
|  |  | 
|  | QualType T = Context.getDependentNameType(ETK_None, NNS, &II); | 
|  |  | 
|  | // Build type location information.  We synthesized the qualifier, so we have | 
|  | // to build a fake NestedNameSpecifierLoc. | 
|  | NestedNameSpecifierLocBuilder NNSLocBuilder; | 
|  | NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); | 
|  | NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); | 
|  |  | 
|  | TypeLocBuilder Builder; | 
|  | DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); | 
|  | DepTL.setNameLoc(NameLoc); | 
|  | DepTL.setElaboratedKeywordLoc(SourceLocation()); | 
|  | DepTL.setQualifierLoc(QualifierLoc); | 
|  | return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | 
|  | } | 
|  |  | 
|  | /// isTagName() - This method is called *for error recovery purposes only* | 
|  | /// to determine if the specified name is a valid tag name ("struct foo").  If | 
|  | /// so, this returns the TST for the tag corresponding to it (TST_enum, | 
|  | /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose | 
|  | /// cases in C where the user forgot to specify the tag. | 
|  | DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { | 
|  | // Do a tag name lookup in this scope. | 
|  | LookupResult R(*this, &II, SourceLocation(), LookupTagName); | 
|  | LookupName(R, S, false); | 
|  | R.suppressDiagnostics(); | 
|  | if (R.getResultKind() == LookupResult::Found) | 
|  | if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { | 
|  | switch (TD->getTagKind()) { | 
|  | case TTK_Struct: return DeclSpec::TST_struct; | 
|  | case TTK_Interface: return DeclSpec::TST_interface; | 
|  | case TTK_Union:  return DeclSpec::TST_union; | 
|  | case TTK_Class:  return DeclSpec::TST_class; | 
|  | case TTK_Enum:   return DeclSpec::TST_enum; | 
|  | } | 
|  | } | 
|  |  | 
|  | return DeclSpec::TST_unspecified; | 
|  | } | 
|  |  | 
|  | /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, | 
|  | /// if a CXXScopeSpec's type is equal to the type of one of the base classes | 
|  | /// then downgrade the missing typename error to a warning. | 
|  | /// This is needed for MSVC compatibility; Example: | 
|  | /// @code | 
|  | /// template<class T> class A { | 
|  | /// public: | 
|  | ///   typedef int TYPE; | 
|  | /// }; | 
|  | /// template<class T> class B : public A<T> { | 
|  | /// public: | 
|  | ///   A<T>::TYPE a; // no typename required because A<T> is a base class. | 
|  | /// }; | 
|  | /// @endcode | 
|  | bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { | 
|  | if (CurContext->isRecord()) { | 
|  | if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) | 
|  | return true; | 
|  |  | 
|  | const Type *Ty = SS->getScopeRep()->getAsType(); | 
|  |  | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); | 
|  | for (const auto &Base : RD->bases()) | 
|  | if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) | 
|  | return true; | 
|  | return S->isFunctionPrototypeScope(); | 
|  | } | 
|  | return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, | 
|  | SourceLocation IILoc, | 
|  | Scope *S, | 
|  | CXXScopeSpec *SS, | 
|  | ParsedType &SuggestedType, | 
|  | bool IsTemplateName) { | 
|  | // Don't report typename errors for editor placeholders. | 
|  | if (II->isEditorPlaceholder()) | 
|  | return; | 
|  | // We don't have anything to suggest (yet). | 
|  | SuggestedType = nullptr; | 
|  |  | 
|  | // There may have been a typo in the name of the type. Look up typo | 
|  | // results, in case we have something that we can suggest. | 
|  | TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false, | 
|  | /*AllowTemplates=*/IsTemplateName, | 
|  | /*AllowNonTemplates=*/!IsTemplateName); | 
|  | if (TypoCorrection Corrected = | 
|  | CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, | 
|  | CCC, CTK_ErrorRecovery)) { | 
|  | // FIXME: Support error recovery for the template-name case. | 
|  | bool CanRecover = !IsTemplateName; | 
|  | if (Corrected.isKeyword()) { | 
|  | // We corrected to a keyword. | 
|  | diagnoseTypo(Corrected, | 
|  | PDiag(IsTemplateName ? diag::err_no_template_suggest | 
|  | : diag::err_unknown_typename_suggest) | 
|  | << II); | 
|  | II = Corrected.getCorrectionAsIdentifierInfo(); | 
|  | } else { | 
|  | // We found a similarly-named type or interface; suggest that. | 
|  | if (!SS || !SS->isSet()) { | 
|  | diagnoseTypo(Corrected, | 
|  | PDiag(IsTemplateName ? diag::err_no_template_suggest | 
|  | : diag::err_unknown_typename_suggest) | 
|  | << II, CanRecover); | 
|  | } else if (DeclContext *DC = computeDeclContext(*SS, false)) { | 
|  | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | 
|  | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && | 
|  | II->getName().equals(CorrectedStr); | 
|  | diagnoseTypo(Corrected, | 
|  | PDiag(IsTemplateName | 
|  | ? diag::err_no_member_template_suggest | 
|  | : diag::err_unknown_nested_typename_suggest) | 
|  | << II << DC << DroppedSpecifier << SS->getRange(), | 
|  | CanRecover); | 
|  | } else { | 
|  | llvm_unreachable("could not have corrected a typo here"); | 
|  | } | 
|  |  | 
|  | if (!CanRecover) | 
|  | return; | 
|  |  | 
|  | CXXScopeSpec tmpSS; | 
|  | if (Corrected.getCorrectionSpecifier()) | 
|  | tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), | 
|  | SourceRange(IILoc)); | 
|  | // FIXME: Support class template argument deduction here. | 
|  | SuggestedType = | 
|  | getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S, | 
|  | tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr, | 
|  | /*IsCtorOrDtorName=*/false, | 
|  | /*WantNontrivialTypeSourceInfo=*/true); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus && !IsTemplateName) { | 
|  | // See if II is a class template that the user forgot to pass arguments to. | 
|  | UnqualifiedId Name; | 
|  | Name.setIdentifier(II, IILoc); | 
|  | CXXScopeSpec EmptySS; | 
|  | TemplateTy TemplateResult; | 
|  | bool MemberOfUnknownSpecialization; | 
|  | if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, | 
|  | Name, nullptr, true, TemplateResult, | 
|  | MemberOfUnknownSpecialization) == TNK_Type_template) { | 
|  | diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Should we move the logic that tries to recover from a missing tag | 
|  | // (struct, union, enum) from Parser::ParseImplicitInt here, instead? | 
|  |  | 
|  | if (!SS || (!SS->isSet() && !SS->isInvalid())) | 
|  | Diag(IILoc, IsTemplateName ? diag::err_no_template | 
|  | : diag::err_unknown_typename) | 
|  | << II; | 
|  | else if (DeclContext *DC = computeDeclContext(*SS, false)) | 
|  | Diag(IILoc, IsTemplateName ? diag::err_no_member_template | 
|  | : diag::err_typename_nested_not_found) | 
|  | << II << DC << SS->getRange(); | 
|  | else if (isDependentScopeSpecifier(*SS)) { | 
|  | unsigned DiagID = diag::err_typename_missing; | 
|  | if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) | 
|  | DiagID = diag::ext_typename_missing; | 
|  |  | 
|  | Diag(SS->getRange().getBegin(), DiagID) | 
|  | << SS->getScopeRep() << II->getName() | 
|  | << SourceRange(SS->getRange().getBegin(), IILoc) | 
|  | << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); | 
|  | SuggestedType = ActOnTypenameType(S, SourceLocation(), | 
|  | *SS, *II, IILoc).get(); | 
|  | } else { | 
|  | assert(SS && SS->isInvalid() && | 
|  | "Invalid scope specifier has already been diagnosed"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine whether the given result set contains either a type name | 
|  | /// or | 
|  | static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { | 
|  | bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && | 
|  | NextToken.is(tok::less); | 
|  |  | 
|  | for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { | 
|  | if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) | 
|  | return true; | 
|  |  | 
|  | if (CheckTemplate && isa<TemplateDecl>(*I)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, | 
|  | Scope *S, CXXScopeSpec &SS, | 
|  | IdentifierInfo *&Name, | 
|  | SourceLocation NameLoc) { | 
|  | LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); | 
|  | SemaRef.LookupParsedName(R, S, &SS); | 
|  | if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { | 
|  | StringRef FixItTagName; | 
|  | switch (Tag->getTagKind()) { | 
|  | case TTK_Class: | 
|  | FixItTagName = "class "; | 
|  | break; | 
|  |  | 
|  | case TTK_Enum: | 
|  | FixItTagName = "enum "; | 
|  | break; | 
|  |  | 
|  | case TTK_Struct: | 
|  | FixItTagName = "struct "; | 
|  | break; | 
|  |  | 
|  | case TTK_Interface: | 
|  | FixItTagName = "__interface "; | 
|  | break; | 
|  |  | 
|  | case TTK_Union: | 
|  | FixItTagName = "union "; | 
|  | break; | 
|  | } | 
|  |  | 
|  | StringRef TagName = FixItTagName.drop_back(); | 
|  | SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) | 
|  | << Name << TagName << SemaRef.getLangOpts().CPlusPlus | 
|  | << FixItHint::CreateInsertion(NameLoc, FixItTagName); | 
|  |  | 
|  | for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); | 
|  | I != IEnd; ++I) | 
|  | SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) | 
|  | << Name << TagName; | 
|  |  | 
|  | // Replace lookup results with just the tag decl. | 
|  | Result.clear(Sema::LookupTagName); | 
|  | SemaRef.LookupParsedName(Result, S, &SS); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. | 
|  | static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS, | 
|  | QualType T, SourceLocation NameLoc) { | 
|  | ASTContext &Context = S.Context; | 
|  |  | 
|  | TypeLocBuilder Builder; | 
|  | Builder.pushTypeSpec(T).setNameLoc(NameLoc); | 
|  |  | 
|  | T = S.getElaboratedType(ETK_None, SS, T); | 
|  | ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); | 
|  | ElabTL.setElaboratedKeywordLoc(SourceLocation()); | 
|  | ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  | return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | 
|  | } | 
|  |  | 
|  | Sema::NameClassification | 
|  | Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name, | 
|  | SourceLocation NameLoc, const Token &NextToken, | 
|  | bool IsAddressOfOperand, CorrectionCandidateCallback *CCC) { | 
|  | DeclarationNameInfo NameInfo(Name, NameLoc); | 
|  | ObjCMethodDecl *CurMethod = getCurMethodDecl(); | 
|  |  | 
|  | if (NextToken.is(tok::coloncolon)) { | 
|  | NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation()); | 
|  | BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false); | 
|  | } else if (getLangOpts().CPlusPlus && SS.isSet() && | 
|  | isCurrentClassName(*Name, S, &SS)) { | 
|  | // Per [class.qual]p2, this names the constructors of SS, not the | 
|  | // injected-class-name. We don't have a classification for that. | 
|  | // There's not much point caching this result, since the parser | 
|  | // will reject it later. | 
|  | return NameClassification::Unknown(); | 
|  | } | 
|  |  | 
|  | LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); | 
|  | LookupParsedName(Result, S, &SS, !CurMethod); | 
|  |  | 
|  | // For unqualified lookup in a class template in MSVC mode, look into | 
|  | // dependent base classes where the primary class template is known. | 
|  | if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { | 
|  | if (ParsedType TypeInBase = | 
|  | recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) | 
|  | return TypeInBase; | 
|  | } | 
|  |  | 
|  | // Perform lookup for Objective-C instance variables (including automatically | 
|  | // synthesized instance variables), if we're in an Objective-C method. | 
|  | // FIXME: This lookup really, really needs to be folded in to the normal | 
|  | // unqualified lookup mechanism. | 
|  | if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { | 
|  | ExprResult E = LookupInObjCMethod(Result, S, Name, true); | 
|  | if (E.get() || E.isInvalid()) | 
|  | return E; | 
|  | } | 
|  |  | 
|  | bool SecondTry = false; | 
|  | bool IsFilteredTemplateName = false; | 
|  |  | 
|  | Corrected: | 
|  | switch (Result.getResultKind()) { | 
|  | case LookupResult::NotFound: | 
|  | // If an unqualified-id is followed by a '(', then we have a function | 
|  | // call. | 
|  | if (!SS.isSet() && NextToken.is(tok::l_paren)) { | 
|  | // In C++, this is an ADL-only call. | 
|  | // FIXME: Reference? | 
|  | if (getLangOpts().CPlusPlus) | 
|  | return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); | 
|  |  | 
|  | // C90 6.3.2.2: | 
|  | //   If the expression that precedes the parenthesized argument list in a | 
|  | //   function call consists solely of an identifier, and if no | 
|  | //   declaration is visible for this identifier, the identifier is | 
|  | //   implicitly declared exactly as if, in the innermost block containing | 
|  | //   the function call, the declaration | 
|  | // | 
|  | //     extern int identifier (); | 
|  | // | 
|  | //   appeared. | 
|  | // | 
|  | // We also allow this in C99 as an extension. | 
|  | if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) { | 
|  | Result.addDecl(D); | 
|  | Result.resolveKind(); | 
|  | return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus2a && !SS.isSet() && NextToken.is(tok::less)) { | 
|  | // In C++20 onwards, this could be an ADL-only call to a function | 
|  | // template, and we're required to assume that this is a template name. | 
|  | // | 
|  | // FIXME: Find a way to still do typo correction in this case. | 
|  | TemplateName Template = | 
|  | Context.getAssumedTemplateName(NameInfo.getName()); | 
|  | return NameClassification::UndeclaredTemplate(Template); | 
|  | } | 
|  |  | 
|  | // In C, we first see whether there is a tag type by the same name, in | 
|  | // which case it's likely that the user just forgot to write "enum", | 
|  | // "struct", or "union". | 
|  | if (!getLangOpts().CPlusPlus && !SecondTry && | 
|  | isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Perform typo correction to determine if there is another name that is | 
|  | // close to this name. | 
|  | if (!SecondTry && CCC) { | 
|  | SecondTry = true; | 
|  | if (TypoCorrection Corrected = | 
|  | CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, | 
|  | &SS, *CCC, CTK_ErrorRecovery)) { | 
|  | unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; | 
|  | unsigned QualifiedDiag = diag::err_no_member_suggest; | 
|  |  | 
|  | NamedDecl *FirstDecl = Corrected.getFoundDecl(); | 
|  | NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); | 
|  | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && | 
|  | UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { | 
|  | UnqualifiedDiag = diag::err_no_template_suggest; | 
|  | QualifiedDiag = diag::err_no_member_template_suggest; | 
|  | } else if (UnderlyingFirstDecl && | 
|  | (isa<TypeDecl>(UnderlyingFirstDecl) || | 
|  | isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || | 
|  | isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { | 
|  | UnqualifiedDiag = diag::err_unknown_typename_suggest; | 
|  | QualifiedDiag = diag::err_unknown_nested_typename_suggest; | 
|  | } | 
|  |  | 
|  | if (SS.isEmpty()) { | 
|  | diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); | 
|  | } else {// FIXME: is this even reachable? Test it. | 
|  | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | 
|  | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && | 
|  | Name->getName().equals(CorrectedStr); | 
|  | diagnoseTypo(Corrected, PDiag(QualifiedDiag) | 
|  | << Name << computeDeclContext(SS, false) | 
|  | << DroppedSpecifier << SS.getRange()); | 
|  | } | 
|  |  | 
|  | // Update the name, so that the caller has the new name. | 
|  | Name = Corrected.getCorrectionAsIdentifierInfo(); | 
|  |  | 
|  | // Typo correction corrected to a keyword. | 
|  | if (Corrected.isKeyword()) | 
|  | return Name; | 
|  |  | 
|  | // Also update the LookupResult... | 
|  | // FIXME: This should probably go away at some point | 
|  | Result.clear(); | 
|  | Result.setLookupName(Corrected.getCorrection()); | 
|  | if (FirstDecl) | 
|  | Result.addDecl(FirstDecl); | 
|  |  | 
|  | // If we found an Objective-C instance variable, let | 
|  | // LookupInObjCMethod build the appropriate expression to | 
|  | // reference the ivar. | 
|  | // FIXME: This is a gross hack. | 
|  | if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { | 
|  | Result.clear(); | 
|  | ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier())); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | goto Corrected; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We failed to correct; just fall through and let the parser deal with it. | 
|  | Result.suppressDiagnostics(); | 
|  | return NameClassification::Unknown(); | 
|  |  | 
|  | case LookupResult::NotFoundInCurrentInstantiation: { | 
|  | // We performed name lookup into the current instantiation, and there were | 
|  | // dependent bases, so we treat this result the same way as any other | 
|  | // dependent nested-name-specifier. | 
|  |  | 
|  | // C++ [temp.res]p2: | 
|  | //   A name used in a template declaration or definition and that is | 
|  | //   dependent on a template-parameter is assumed not to name a type | 
|  | //   unless the applicable name lookup finds a type name or the name is | 
|  | //   qualified by the keyword typename. | 
|  | // | 
|  | // FIXME: If the next token is '<', we might want to ask the parser to | 
|  | // perform some heroics to see if we actually have a | 
|  | // template-argument-list, which would indicate a missing 'template' | 
|  | // keyword here. | 
|  | return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), | 
|  | NameInfo, IsAddressOfOperand, | 
|  | /*TemplateArgs=*/nullptr); | 
|  | } | 
|  |  | 
|  | case LookupResult::Found: | 
|  | case LookupResult::FoundOverloaded: | 
|  | case LookupResult::FoundUnresolvedValue: | 
|  | break; | 
|  |  | 
|  | case LookupResult::Ambiguous: | 
|  | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && | 
|  | hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true, | 
|  | /*AllowDependent=*/false)) { | 
|  | // C++ [temp.local]p3: | 
|  | //   A lookup that finds an injected-class-name (10.2) can result in an | 
|  | //   ambiguity in certain cases (for example, if it is found in more than | 
|  | //   one base class). If all of the injected-class-names that are found | 
|  | //   refer to specializations of the same class template, and if the name | 
|  | //   is followed by a template-argument-list, the reference refers to the | 
|  | //   class template itself and not a specialization thereof, and is not | 
|  | //   ambiguous. | 
|  | // | 
|  | // This filtering can make an ambiguous result into an unambiguous one, | 
|  | // so try again after filtering out template names. | 
|  | FilterAcceptableTemplateNames(Result); | 
|  | if (!Result.isAmbiguous()) { | 
|  | IsFilteredTemplateName = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Diagnose the ambiguity and return an error. | 
|  | return NameClassification::Error(); | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && | 
|  | (IsFilteredTemplateName || | 
|  | hasAnyAcceptableTemplateNames( | 
|  | Result, /*AllowFunctionTemplates=*/true, | 
|  | /*AllowDependent=*/false, | 
|  | /*AllowNonTemplateFunctions*/ !SS.isSet() && | 
|  | getLangOpts().CPlusPlus2a))) { | 
|  | // C++ [temp.names]p3: | 
|  | //   After name lookup (3.4) finds that a name is a template-name or that | 
|  | //   an operator-function-id or a literal- operator-id refers to a set of | 
|  | //   overloaded functions any member of which is a function template if | 
|  | //   this is followed by a <, the < is always taken as the delimiter of a | 
|  | //   template-argument-list and never as the less-than operator. | 
|  | // C++2a [temp.names]p2: | 
|  | //   A name is also considered to refer to a template if it is an | 
|  | //   unqualified-id followed by a < and name lookup finds either one | 
|  | //   or more functions or finds nothing. | 
|  | if (!IsFilteredTemplateName) | 
|  | FilterAcceptableTemplateNames(Result); | 
|  |  | 
|  | bool IsFunctionTemplate; | 
|  | bool IsVarTemplate; | 
|  | TemplateName Template; | 
|  | if (Result.end() - Result.begin() > 1) { | 
|  | IsFunctionTemplate = true; | 
|  | Template = Context.getOverloadedTemplateName(Result.begin(), | 
|  | Result.end()); | 
|  | } else if (!Result.empty()) { | 
|  | auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl( | 
|  | *Result.begin(), /*AllowFunctionTemplates=*/true, | 
|  | /*AllowDependent=*/false)); | 
|  | IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); | 
|  | IsVarTemplate = isa<VarTemplateDecl>(TD); | 
|  |  | 
|  | if (SS.isSet() && !SS.isInvalid()) | 
|  | Template = | 
|  | Context.getQualifiedTemplateName(SS.getScopeRep(), | 
|  | /*TemplateKeyword=*/false, TD); | 
|  | else | 
|  | Template = TemplateName(TD); | 
|  | } else { | 
|  | // All results were non-template functions. This is a function template | 
|  | // name. | 
|  | IsFunctionTemplate = true; | 
|  | Template = Context.getAssumedTemplateName(NameInfo.getName()); | 
|  | } | 
|  |  | 
|  | if (IsFunctionTemplate) { | 
|  | // Function templates always go through overload resolution, at which | 
|  | // point we'll perform the various checks (e.g., accessibility) we need | 
|  | // to based on which function we selected. | 
|  | Result.suppressDiagnostics(); | 
|  |  | 
|  | return NameClassification::FunctionTemplate(Template); | 
|  | } | 
|  |  | 
|  | return IsVarTemplate ? NameClassification::VarTemplate(Template) | 
|  | : NameClassification::TypeTemplate(Template); | 
|  | } | 
|  |  | 
|  | NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); | 
|  | if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { | 
|  | DiagnoseUseOfDecl(Type, NameLoc); | 
|  | MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); | 
|  | QualType T = Context.getTypeDeclType(Type); | 
|  | if (SS.isNotEmpty()) | 
|  | return buildNestedType(*this, SS, T, NameLoc); | 
|  | return ParsedType::make(T); | 
|  | } | 
|  |  | 
|  | ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); | 
|  | if (!Class) { | 
|  | // FIXME: It's unfortunate that we don't have a Type node for handling this. | 
|  | if (ObjCCompatibleAliasDecl *Alias = | 
|  | dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) | 
|  | Class = Alias->getClassInterface(); | 
|  | } | 
|  |  | 
|  | if (Class) { | 
|  | DiagnoseUseOfDecl(Class, NameLoc); | 
|  |  | 
|  | if (NextToken.is(tok::period)) { | 
|  | // Interface. <something> is parsed as a property reference expression. | 
|  | // Just return "unknown" as a fall-through for now. | 
|  | Result.suppressDiagnostics(); | 
|  | return NameClassification::Unknown(); | 
|  | } | 
|  |  | 
|  | QualType T = Context.getObjCInterfaceType(Class); | 
|  | return ParsedType::make(T); | 
|  | } | 
|  |  | 
|  | // We can have a type template here if we're classifying a template argument. | 
|  | if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) && | 
|  | !isa<VarTemplateDecl>(FirstDecl)) | 
|  | return NameClassification::TypeTemplate( | 
|  | TemplateName(cast<TemplateDecl>(FirstDecl))); | 
|  |  | 
|  | // Check for a tag type hidden by a non-type decl in a few cases where it | 
|  | // seems likely a type is wanted instead of the non-type that was found. | 
|  | bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star); | 
|  | if ((NextToken.is(tok::identifier) || | 
|  | (NextIsOp && | 
|  | FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && | 
|  | isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { | 
|  | TypeDecl *Type = Result.getAsSingle<TypeDecl>(); | 
|  | DiagnoseUseOfDecl(Type, NameLoc); | 
|  | QualType T = Context.getTypeDeclType(Type); | 
|  | if (SS.isNotEmpty()) | 
|  | return buildNestedType(*this, SS, T, NameLoc); | 
|  | return ParsedType::make(T); | 
|  | } | 
|  |  | 
|  | if (FirstDecl->isCXXClassMember()) | 
|  | return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, | 
|  | nullptr, S); | 
|  |  | 
|  | bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); | 
|  | return BuildDeclarationNameExpr(SS, Result, ADL); | 
|  | } | 
|  |  | 
|  | Sema::TemplateNameKindForDiagnostics | 
|  | Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { | 
|  | auto *TD = Name.getAsTemplateDecl(); | 
|  | if (!TD) | 
|  | return TemplateNameKindForDiagnostics::DependentTemplate; | 
|  | if (isa<ClassTemplateDecl>(TD)) | 
|  | return TemplateNameKindForDiagnostics::ClassTemplate; | 
|  | if (isa<FunctionTemplateDecl>(TD)) | 
|  | return TemplateNameKindForDiagnostics::FunctionTemplate; | 
|  | if (isa<VarTemplateDecl>(TD)) | 
|  | return TemplateNameKindForDiagnostics::VarTemplate; | 
|  | if (isa<TypeAliasTemplateDecl>(TD)) | 
|  | return TemplateNameKindForDiagnostics::AliasTemplate; | 
|  | if (isa<TemplateTemplateParmDecl>(TD)) | 
|  | return TemplateNameKindForDiagnostics::TemplateTemplateParam; | 
|  | if (isa<ConceptDecl>(TD)) | 
|  | return TemplateNameKindForDiagnostics::Concept; | 
|  | return TemplateNameKindForDiagnostics::DependentTemplate; | 
|  | } | 
|  |  | 
|  | // Determines the context to return to after temporarily entering a | 
|  | // context.  This depends in an unnecessarily complicated way on the | 
|  | // exact ordering of callbacks from the parser. | 
|  | DeclContext *Sema::getContainingDC(DeclContext *DC) { | 
|  |  | 
|  | // Functions defined inline within classes aren't parsed until we've | 
|  | // finished parsing the top-level class, so the top-level class is | 
|  | // the context we'll need to return to. | 
|  | // A Lambda call operator whose parent is a class must not be treated | 
|  | // as an inline member function.  A Lambda can be used legally | 
|  | // either as an in-class member initializer or a default argument.  These | 
|  | // are parsed once the class has been marked complete and so the containing | 
|  | // context would be the nested class (when the lambda is defined in one); | 
|  | // If the class is not complete, then the lambda is being used in an | 
|  | // ill-formed fashion (such as to specify the width of a bit-field, or | 
|  | // in an array-bound) - in which case we still want to return the | 
|  | // lexically containing DC (which could be a nested class). | 
|  | if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) { | 
|  | DC = DC->getLexicalParent(); | 
|  |  | 
|  | // A function not defined within a class will always return to its | 
|  | // lexical context. | 
|  | if (!isa<CXXRecordDecl>(DC)) | 
|  | return DC; | 
|  |  | 
|  | // A C++ inline method/friend is parsed *after* the topmost class | 
|  | // it was declared in is fully parsed ("complete");  the topmost | 
|  | // class is the context we need to return to. | 
|  | while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent())) | 
|  | DC = RD; | 
|  |  | 
|  | // Return the declaration context of the topmost class the inline method is | 
|  | // declared in. | 
|  | return DC; | 
|  | } | 
|  |  | 
|  | return DC->getLexicalParent(); | 
|  | } | 
|  |  | 
|  | void Sema::PushDeclContext(Scope *S, DeclContext *DC) { | 
|  | assert(getContainingDC(DC) == CurContext && | 
|  | "The next DeclContext should be lexically contained in the current one."); | 
|  | CurContext = DC; | 
|  | S->setEntity(DC); | 
|  | } | 
|  |  | 
|  | void Sema::PopDeclContext() { | 
|  | assert(CurContext && "DeclContext imbalance!"); | 
|  |  | 
|  | CurContext = getContainingDC(CurContext); | 
|  | assert(CurContext && "Popped translation unit!"); | 
|  | } | 
|  |  | 
|  | Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, | 
|  | Decl *D) { | 
|  | // Unlike PushDeclContext, the context to which we return is not necessarily | 
|  | // the containing DC of TD, because the new context will be some pre-existing | 
|  | // TagDecl definition instead of a fresh one. | 
|  | auto Result = static_cast<SkippedDefinitionContext>(CurContext); | 
|  | CurContext = cast<TagDecl>(D)->getDefinition(); | 
|  | assert(CurContext && "skipping definition of undefined tag"); | 
|  | // Start lookups from the parent of the current context; we don't want to look | 
|  | // into the pre-existing complete definition. | 
|  | S->setEntity(CurContext->getLookupParent()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { | 
|  | CurContext = static_cast<decltype(CurContext)>(Context); | 
|  | } | 
|  |  | 
|  | /// EnterDeclaratorContext - Used when we must lookup names in the context | 
|  | /// of a declarator's nested name specifier. | 
|  | /// | 
|  | void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { | 
|  | // C++0x [basic.lookup.unqual]p13: | 
|  | //   A name used in the definition of a static data member of class | 
|  | //   X (after the qualified-id of the static member) is looked up as | 
|  | //   if the name was used in a member function of X. | 
|  | // C++0x [basic.lookup.unqual]p14: | 
|  | //   If a variable member of a namespace is defined outside of the | 
|  | //   scope of its namespace then any name used in the definition of | 
|  | //   the variable member (after the declarator-id) is looked up as | 
|  | //   if the definition of the variable member occurred in its | 
|  | //   namespace. | 
|  | // Both of these imply that we should push a scope whose context | 
|  | // is the semantic context of the declaration.  We can't use | 
|  | // PushDeclContext here because that context is not necessarily | 
|  | // lexically contained in the current context.  Fortunately, | 
|  | // the containing scope should have the appropriate information. | 
|  |  | 
|  | assert(!S->getEntity() && "scope already has entity"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | Scope *Ancestor = S->getParent(); | 
|  | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); | 
|  | assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); | 
|  | #endif | 
|  |  | 
|  | CurContext = DC; | 
|  | S->setEntity(DC); | 
|  | } | 
|  |  | 
|  | void Sema::ExitDeclaratorContext(Scope *S) { | 
|  | assert(S->getEntity() == CurContext && "Context imbalance!"); | 
|  |  | 
|  | // Switch back to the lexical context.  The safety of this is | 
|  | // enforced by an assert in EnterDeclaratorContext. | 
|  | Scope *Ancestor = S->getParent(); | 
|  | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); | 
|  | CurContext = Ancestor->getEntity(); | 
|  |  | 
|  | // We don't need to do anything with the scope, which is going to | 
|  | // disappear. | 
|  | } | 
|  |  | 
|  | void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { | 
|  | // We assume that the caller has already called | 
|  | // ActOnReenterTemplateScope so getTemplatedDecl() works. | 
|  | FunctionDecl *FD = D->getAsFunction(); | 
|  | if (!FD) | 
|  | return; | 
|  |  | 
|  | // Same implementation as PushDeclContext, but enters the context | 
|  | // from the lexical parent, rather than the top-level class. | 
|  | assert(CurContext == FD->getLexicalParent() && | 
|  | "The next DeclContext should be lexically contained in the current one."); | 
|  | CurContext = FD; | 
|  | S->setEntity(CurContext); | 
|  |  | 
|  | for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(P); | 
|  | // If the parameter has an identifier, then add it to the scope | 
|  | if (Param->getIdentifier()) { | 
|  | S->AddDecl(Param); | 
|  | IdResolver.AddDecl(Param); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnExitFunctionContext() { | 
|  | // Same implementation as PopDeclContext, but returns to the lexical parent, | 
|  | // rather than the top-level class. | 
|  | assert(CurContext && "DeclContext imbalance!"); | 
|  | CurContext = CurContext->getLexicalParent(); | 
|  | assert(CurContext && "Popped translation unit!"); | 
|  | } | 
|  |  | 
|  | /// Determine whether we allow overloading of the function | 
|  | /// PrevDecl with another declaration. | 
|  | /// | 
|  | /// This routine determines whether overloading is possible, not | 
|  | /// whether some new function is actually an overload. It will return | 
|  | /// true in C++ (where we can always provide overloads) or, as an | 
|  | /// extension, in C when the previous function is already an | 
|  | /// overloaded function declaration or has the "overloadable" | 
|  | /// attribute. | 
|  | static bool AllowOverloadingOfFunction(LookupResult &Previous, | 
|  | ASTContext &Context, | 
|  | const FunctionDecl *New) { | 
|  | if (Context.getLangOpts().CPlusPlus) | 
|  | return true; | 
|  |  | 
|  | if (Previous.getResultKind() == LookupResult::FoundOverloaded) | 
|  | return true; | 
|  |  | 
|  | return Previous.getResultKind() == LookupResult::Found && | 
|  | (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() || | 
|  | New->hasAttr<OverloadableAttr>()); | 
|  | } | 
|  |  | 
|  | /// Add this decl to the scope shadowed decl chains. | 
|  | void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { | 
|  | // Move up the scope chain until we find the nearest enclosing | 
|  | // non-transparent context. The declaration will be introduced into this | 
|  | // scope. | 
|  | while (S->getEntity() && S->getEntity()->isTransparentContext()) | 
|  | S = S->getParent(); | 
|  |  | 
|  | // Add scoped declarations into their context, so that they can be | 
|  | // found later. Declarations without a context won't be inserted | 
|  | // into any context. | 
|  | if (AddToContext) | 
|  | CurContext->addDecl(D); | 
|  |  | 
|  | // Out-of-line definitions shouldn't be pushed into scope in C++, unless they | 
|  | // are function-local declarations. | 
|  | if (getLangOpts().CPlusPlus && D->isOutOfLine() && | 
|  | !D->getDeclContext()->getRedeclContext()->Equals( | 
|  | D->getLexicalDeclContext()->getRedeclContext()) && | 
|  | !D->getLexicalDeclContext()->isFunctionOrMethod()) | 
|  | return; | 
|  |  | 
|  | // Template instantiations should also not be pushed into scope. | 
|  | if (isa<FunctionDecl>(D) && | 
|  | cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) | 
|  | return; | 
|  |  | 
|  | // If this replaces anything in the current scope, | 
|  | IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), | 
|  | IEnd = IdResolver.end(); | 
|  | for (; I != IEnd; ++I) { | 
|  | if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { | 
|  | S->RemoveDecl(*I); | 
|  | IdResolver.RemoveDecl(*I); | 
|  |  | 
|  | // Should only need to replace one decl. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | S->AddDecl(D); | 
|  |  | 
|  | if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { | 
|  | // Implicitly-generated labels may end up getting generated in an order that | 
|  | // isn't strictly lexical, which breaks name lookup. Be careful to insert | 
|  | // the label at the appropriate place in the identifier chain. | 
|  | for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { | 
|  | DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); | 
|  | if (IDC == CurContext) { | 
|  | if (!S->isDeclScope(*I)) | 
|  | continue; | 
|  | } else if (IDC->Encloses(CurContext)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | IdResolver.InsertDeclAfter(I, D); | 
|  | } else { | 
|  | IdResolver.AddDecl(D); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, | 
|  | bool AllowInlineNamespace) { | 
|  | return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); | 
|  | } | 
|  |  | 
|  | Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { | 
|  | DeclContext *TargetDC = DC->getPrimaryContext(); | 
|  | do { | 
|  | if (DeclContext *ScopeDC = S->getEntity()) | 
|  | if (ScopeDC->getPrimaryContext() == TargetDC) | 
|  | return S; | 
|  | } while ((S = S->getParent())); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool isOutOfScopePreviousDeclaration(NamedDecl *, | 
|  | DeclContext*, | 
|  | ASTContext&); | 
|  |  | 
|  | /// Filters out lookup results that don't fall within the given scope | 
|  | /// as determined by isDeclInScope. | 
|  | void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, | 
|  | bool ConsiderLinkage, | 
|  | bool AllowInlineNamespace) { | 
|  | LookupResult::Filter F = R.makeFilter(); | 
|  | while (F.hasNext()) { | 
|  | NamedDecl *D = F.next(); | 
|  |  | 
|  | if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) | 
|  | continue; | 
|  |  | 
|  | if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) | 
|  | continue; | 
|  |  | 
|  | F.erase(); | 
|  | } | 
|  |  | 
|  | F.done(); | 
|  | } | 
|  |  | 
|  | /// We've determined that \p New is a redeclaration of \p Old. Check that they | 
|  | /// have compatible owning modules. | 
|  | bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { | 
|  | // FIXME: The Modules TS is not clear about how friend declarations are | 
|  | // to be treated. It's not meaningful to have different owning modules for | 
|  | // linkage in redeclarations of the same entity, so for now allow the | 
|  | // redeclaration and change the owning modules to match. | 
|  | if (New->getFriendObjectKind() && | 
|  | Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { | 
|  | New->setLocalOwningModule(Old->getOwningModule()); | 
|  | makeMergedDefinitionVisible(New); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Module *NewM = New->getOwningModule(); | 
|  | Module *OldM = Old->getOwningModule(); | 
|  |  | 
|  | if (NewM && NewM->Kind == Module::PrivateModuleFragment) | 
|  | NewM = NewM->Parent; | 
|  | if (OldM && OldM->Kind == Module::PrivateModuleFragment) | 
|  | OldM = OldM->Parent; | 
|  |  | 
|  | if (NewM == OldM) | 
|  | return false; | 
|  |  | 
|  | bool NewIsModuleInterface = NewM && NewM->isModulePurview(); | 
|  | bool OldIsModuleInterface = OldM && OldM->isModulePurview(); | 
|  | if (NewIsModuleInterface || OldIsModuleInterface) { | 
|  | // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: | 
|  | //   if a declaration of D [...] appears in the purview of a module, all | 
|  | //   other such declarations shall appear in the purview of the same module | 
|  | Diag(New->getLocation(), diag::err_mismatched_owning_module) | 
|  | << New | 
|  | << NewIsModuleInterface | 
|  | << (NewIsModuleInterface ? NewM->getFullModuleName() : "") | 
|  | << OldIsModuleInterface | 
|  | << (OldIsModuleInterface ? OldM->getFullModuleName() : ""); | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | New->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isUsingDecl(NamedDecl *D) { | 
|  | return isa<UsingShadowDecl>(D) || | 
|  | isa<UnresolvedUsingTypenameDecl>(D) || | 
|  | isa<UnresolvedUsingValueDecl>(D); | 
|  | } | 
|  |  | 
|  | /// Removes using shadow declarations from the lookup results. | 
|  | static void RemoveUsingDecls(LookupResult &R) { | 
|  | LookupResult::Filter F = R.makeFilter(); | 
|  | while (F.hasNext()) | 
|  | if (isUsingDecl(F.next())) | 
|  | F.erase(); | 
|  |  | 
|  | F.done(); | 
|  | } | 
|  |  | 
|  | /// Check for this common pattern: | 
|  | /// @code | 
|  | /// class S { | 
|  | ///   S(const S&); // DO NOT IMPLEMENT | 
|  | ///   void operator=(const S&); // DO NOT IMPLEMENT | 
|  | /// }; | 
|  | /// @endcode | 
|  | static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { | 
|  | // FIXME: Should check for private access too but access is set after we get | 
|  | // the decl here. | 
|  | if (D->doesThisDeclarationHaveABody()) | 
|  | return false; | 
|  |  | 
|  | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) | 
|  | return CD->isCopyConstructor(); | 
|  | return D->isCopyAssignmentOperator(); | 
|  | } | 
|  |  | 
|  | // We need this to handle | 
|  | // | 
|  | // typedef struct { | 
|  | //   void *foo() { return 0; } | 
|  | // } A; | 
|  | // | 
|  | // When we see foo we don't know if after the typedef we will get 'A' or '*A' | 
|  | // for example. If 'A', foo will have external linkage. If we have '*A', | 
|  | // foo will have no linkage. Since we can't know until we get to the end | 
|  | // of the typedef, this function finds out if D might have non-external linkage. | 
|  | // Callers should verify at the end of the TU if it D has external linkage or | 
|  | // not. | 
|  | bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { | 
|  | const DeclContext *DC = D->getDeclContext(); | 
|  | while (!DC->isTranslationUnit()) { | 
|  | if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ | 
|  | if (!RD->hasNameForLinkage()) | 
|  | return true; | 
|  | } | 
|  | DC = DC->getParent(); | 
|  | } | 
|  |  | 
|  | return !D->isExternallyVisible(); | 
|  | } | 
|  |  | 
|  | // FIXME: This needs to be refactored; some other isInMainFile users want | 
|  | // these semantics. | 
|  | static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { | 
|  | if (S.TUKind != TU_Complete) | 
|  | return false; | 
|  | return S.SourceMgr.isInMainFile(Loc); | 
|  | } | 
|  |  | 
|  | bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { | 
|  | assert(D); | 
|  |  | 
|  | if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) | 
|  | return false; | 
|  |  | 
|  | // Ignore all entities declared within templates, and out-of-line definitions | 
|  | // of members of class templates. | 
|  | if (D->getDeclContext()->isDependentContext() || | 
|  | D->getLexicalDeclContext()->isDependentContext()) | 
|  | return false; | 
|  |  | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return false; | 
|  | // A non-out-of-line declaration of a member specialization was implicitly | 
|  | // instantiated; it's the out-of-line declaration that we're interested in. | 
|  | if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && | 
|  | FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) | 
|  | return false; | 
|  |  | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) | 
|  | return false; | 
|  | } else { | 
|  | // 'static inline' functions are defined in headers; don't warn. | 
|  | if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (FD->doesThisDeclarationHaveABody() && | 
|  | Context.DeclMustBeEmitted(FD)) | 
|  | return false; | 
|  | } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | // Constants and utility variables are defined in headers with internal | 
|  | // linkage; don't warn.  (Unlike functions, there isn't a convenient marker | 
|  | // like "inline".) | 
|  | if (!isMainFileLoc(*this, VD->getLocation())) | 
|  | return false; | 
|  |  | 
|  | if (Context.DeclMustBeEmitted(VD)) | 
|  | return false; | 
|  |  | 
|  | if (VD->isStaticDataMember() && | 
|  | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return false; | 
|  | if (VD->isStaticDataMember() && | 
|  | VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && | 
|  | VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) | 
|  | return false; | 
|  |  | 
|  | if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) | 
|  | return false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Only warn for unused decls internal to the translation unit. | 
|  | // FIXME: This seems like a bogus check; it suppresses -Wunused-function | 
|  | // for inline functions defined in the main source file, for instance. | 
|  | return mightHaveNonExternalLinkage(D); | 
|  | } | 
|  |  | 
|  | void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { | 
|  | if (!D) | 
|  | return; | 
|  |  | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | const FunctionDecl *First = FD->getFirstDecl(); | 
|  | if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) | 
|  | return; // First should already be in the vector. | 
|  | } | 
|  |  | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | const VarDecl *First = VD->getFirstDecl(); | 
|  | if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) | 
|  | return; // First should already be in the vector. | 
|  | } | 
|  |  | 
|  | if (ShouldWarnIfUnusedFileScopedDecl(D)) | 
|  | UnusedFileScopedDecls.push_back(D); | 
|  | } | 
|  |  | 
|  | static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { | 
|  | if (D->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | bool Referenced = false; | 
|  | if (auto *DD = dyn_cast<DecompositionDecl>(D)) { | 
|  | // For a decomposition declaration, warn if none of the bindings are | 
|  | // referenced, instead of if the variable itself is referenced (which | 
|  | // it is, by the bindings' expressions). | 
|  | for (auto *BD : DD->bindings()) { | 
|  | if (BD->isReferenced()) { | 
|  | Referenced = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (!D->getDeclName()) { | 
|  | return false; | 
|  | } else if (D->isReferenced() || D->isUsed()) { | 
|  | Referenced = true; | 
|  | } | 
|  |  | 
|  | if (Referenced || D->hasAttr<UnusedAttr>() || | 
|  | D->hasAttr<ObjCPreciseLifetimeAttr>()) | 
|  | return false; | 
|  |  | 
|  | if (isa<LabelDecl>(D)) | 
|  | return true; | 
|  |  | 
|  | // Except for labels, we only care about unused decls that are local to | 
|  | // functions. | 
|  | bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); | 
|  | if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) | 
|  | // For dependent types, the diagnostic is deferred. | 
|  | WithinFunction = | 
|  | WithinFunction || (R->isLocalClass() && !R->isDependentType()); | 
|  | if (!WithinFunction) | 
|  | return false; | 
|  |  | 
|  | if (isa<TypedefNameDecl>(D)) | 
|  | return true; | 
|  |  | 
|  | // White-list anything that isn't a local variable. | 
|  | if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) | 
|  | return false; | 
|  |  | 
|  | // Types of valid local variables should be complete, so this should succeed. | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  |  | 
|  | // White-list anything with an __attribute__((unused)) type. | 
|  | const auto *Ty = VD->getType().getTypePtr(); | 
|  |  | 
|  | // Only look at the outermost level of typedef. | 
|  | if (const TypedefType *TT = Ty->getAs<TypedefType>()) { | 
|  | if (TT->getDecl()->hasAttr<UnusedAttr>()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we failed to complete the type for some reason, or if the type is | 
|  | // dependent, don't diagnose the variable. | 
|  | if (Ty->isIncompleteType() || Ty->isDependentType()) | 
|  | return false; | 
|  |  | 
|  | // Look at the element type to ensure that the warning behaviour is | 
|  | // consistent for both scalars and arrays. | 
|  | Ty = Ty->getBaseElementTypeUnsafe(); | 
|  |  | 
|  | if (const TagType *TT = Ty->getAs<TagType>()) { | 
|  | const TagDecl *Tag = TT->getDecl(); | 
|  | if (Tag->hasAttr<UnusedAttr>()) | 
|  | return false; | 
|  |  | 
|  | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { | 
|  | if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) | 
|  | return false; | 
|  |  | 
|  | if (const Expr *Init = VD->getInit()) { | 
|  | if (const ExprWithCleanups *Cleanups = | 
|  | dyn_cast<ExprWithCleanups>(Init)) | 
|  | Init = Cleanups->getSubExpr(); | 
|  | const CXXConstructExpr *Construct = | 
|  | dyn_cast<CXXConstructExpr>(Init); | 
|  | if (Construct && !Construct->isElidable()) { | 
|  | CXXConstructorDecl *CD = Construct->getConstructor(); | 
|  | if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && | 
|  | (VD->getInit()->isValueDependent() || !VD->evaluateValue())) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: __attribute__((unused)) templates? | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, | 
|  | FixItHint &Hint) { | 
|  | if (isa<LabelDecl>(D)) { | 
|  | SourceLocation AfterColon = Lexer::findLocationAfterToken( | 
|  | D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), | 
|  | true); | 
|  | if (AfterColon.isInvalid()) | 
|  | return; | 
|  | Hint = FixItHint::CreateRemoval( | 
|  | CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { | 
|  | if (D->getTypeForDecl()->isDependentType()) | 
|  | return; | 
|  |  | 
|  | for (auto *TmpD : D->decls()) { | 
|  | if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) | 
|  | DiagnoseUnusedDecl(T); | 
|  | else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) | 
|  | DiagnoseUnusedNestedTypedefs(R); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used | 
|  | /// unless they are marked attr(unused). | 
|  | void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { | 
|  | if (!ShouldDiagnoseUnusedDecl(D)) | 
|  | return; | 
|  |  | 
|  | if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { | 
|  | // typedefs can be referenced later on, so the diagnostics are emitted | 
|  | // at end-of-translation-unit. | 
|  | UnusedLocalTypedefNameCandidates.insert(TD); | 
|  | return; | 
|  | } | 
|  |  | 
|  | FixItHint Hint; | 
|  | GenerateFixForUnusedDecl(D, Context, Hint); | 
|  |  | 
|  | unsigned DiagID; | 
|  | if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) | 
|  | DiagID = diag::warn_unused_exception_param; | 
|  | else if (isa<LabelDecl>(D)) | 
|  | DiagID = diag::warn_unused_label; | 
|  | else | 
|  | DiagID = diag::warn_unused_variable; | 
|  |  | 
|  | Diag(D->getLocation(), DiagID) << D << Hint; | 
|  | } | 
|  |  | 
|  | static void CheckPoppedLabel(LabelDecl *L, Sema &S) { | 
|  | // Verify that we have no forward references left.  If so, there was a goto | 
|  | // or address of a label taken, but no definition of it.  Label fwd | 
|  | // definitions are indicated with a null substmt which is also not a resolved | 
|  | // MS inline assembly label name. | 
|  | bool Diagnose = false; | 
|  | if (L->isMSAsmLabel()) | 
|  | Diagnose = !L->isResolvedMSAsmLabel(); | 
|  | else | 
|  | Diagnose = L->getStmt() == nullptr; | 
|  | if (Diagnose) | 
|  | S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName(); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { | 
|  | S->mergeNRVOIntoParent(); | 
|  |  | 
|  | if (S->decl_empty()) return; | 
|  | assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && | 
|  | "Scope shouldn't contain decls!"); | 
|  |  | 
|  | for (auto *TmpD : S->decls()) { | 
|  | assert(TmpD && "This decl didn't get pushed??"); | 
|  |  | 
|  | assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); | 
|  | NamedDecl *D = cast<NamedDecl>(TmpD); | 
|  |  | 
|  | // Diagnose unused variables in this scope. | 
|  | if (!S->hasUnrecoverableErrorOccurred()) { | 
|  | DiagnoseUnusedDecl(D); | 
|  | if (const auto *RD = dyn_cast<RecordDecl>(D)) | 
|  | DiagnoseUnusedNestedTypedefs(RD); | 
|  | } | 
|  |  | 
|  | if (!D->getDeclName()) continue; | 
|  |  | 
|  | // If this was a forward reference to a label, verify it was defined. | 
|  | if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) | 
|  | CheckPoppedLabel(LD, *this); | 
|  |  | 
|  | // Remove this name from our lexical scope, and warn on it if we haven't | 
|  | // already. | 
|  | IdResolver.RemoveDecl(D); | 
|  | auto ShadowI = ShadowingDecls.find(D); | 
|  | if (ShadowI != ShadowingDecls.end()) { | 
|  | if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) { | 
|  | Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field) | 
|  | << D << FD << FD->getParent(); | 
|  | Diag(FD->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  | ShadowingDecls.erase(ShadowI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Look for an Objective-C class in the translation unit. | 
|  | /// | 
|  | /// \param Id The name of the Objective-C class we're looking for. If | 
|  | /// typo-correction fixes this name, the Id will be updated | 
|  | /// to the fixed name. | 
|  | /// | 
|  | /// \param IdLoc The location of the name in the translation unit. | 
|  | /// | 
|  | /// \param DoTypoCorrection If true, this routine will attempt typo correction | 
|  | /// if there is no class with the given name. | 
|  | /// | 
|  | /// \returns The declaration of the named Objective-C class, or NULL if the | 
|  | /// class could not be found. | 
|  | ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, | 
|  | SourceLocation IdLoc, | 
|  | bool DoTypoCorrection) { | 
|  | // The third "scope" argument is 0 since we aren't enabling lazy built-in | 
|  | // creation from this context. | 
|  | NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); | 
|  |  | 
|  | if (!IDecl && DoTypoCorrection) { | 
|  | // Perform typo correction at the given location, but only if we | 
|  | // find an Objective-C class name. | 
|  | DeclFilterCCC<ObjCInterfaceDecl> CCC{}; | 
|  | if (TypoCorrection C = | 
|  | CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, | 
|  | TUScope, nullptr, CCC, CTK_ErrorRecovery)) { | 
|  | diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); | 
|  | IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); | 
|  | Id = IDecl->getIdentifier(); | 
|  | } | 
|  | } | 
|  | ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); | 
|  | // This routine must always return a class definition, if any. | 
|  | if (Def && Def->getDefinition()) | 
|  | Def = Def->getDefinition(); | 
|  | return Def; | 
|  | } | 
|  |  | 
|  | /// getNonFieldDeclScope - Retrieves the innermost scope, starting | 
|  | /// from S, where a non-field would be declared. This routine copes | 
|  | /// with the difference between C and C++ scoping rules in structs and | 
|  | /// unions. For example, the following code is well-formed in C but | 
|  | /// ill-formed in C++: | 
|  | /// @code | 
|  | /// struct S6 { | 
|  | ///   enum { BAR } e; | 
|  | /// }; | 
|  | /// | 
|  | /// void test_S6() { | 
|  | ///   struct S6 a; | 
|  | ///   a.e = BAR; | 
|  | /// } | 
|  | /// @endcode | 
|  | /// For the declaration of BAR, this routine will return a different | 
|  | /// scope. The scope S will be the scope of the unnamed enumeration | 
|  | /// within S6. In C++, this routine will return the scope associated | 
|  | /// with S6, because the enumeration's scope is a transparent | 
|  | /// context but structures can contain non-field names. In C, this | 
|  | /// routine will return the translation unit scope, since the | 
|  | /// enumeration's scope is a transparent context and structures cannot | 
|  | /// contain non-field names. | 
|  | Scope *Sema::getNonFieldDeclScope(Scope *S) { | 
|  | while (((S->getFlags() & Scope::DeclScope) == 0) || | 
|  | (S->getEntity() && S->getEntity()->isTransparentContext()) || | 
|  | (S->isClassScope() && !getLangOpts().CPlusPlus)) | 
|  | S = S->getParent(); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// Looks up the declaration of "struct objc_super" and | 
|  | /// saves it for later use in building builtin declaration of | 
|  | /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such | 
|  | /// pre-existing declaration exists no action takes place. | 
|  | static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S, | 
|  | IdentifierInfo *II) { | 
|  | if (!II->isStr("objc_msgSendSuper")) | 
|  | return; | 
|  | ASTContext &Context = ThisSema.Context; | 
|  |  | 
|  | LookupResult Result(ThisSema, &Context.Idents.get("objc_super"), | 
|  | SourceLocation(), Sema::LookupTagName); | 
|  | ThisSema.LookupName(Result, S); | 
|  | if (Result.getResultKind() == LookupResult::Found) | 
|  | if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) | 
|  | Context.setObjCSuperType(Context.getTagDeclType(TD)); | 
|  | } | 
|  |  | 
|  | static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID, | 
|  | ASTContext::GetBuiltinTypeError Error) { | 
|  | switch (Error) { | 
|  | case ASTContext::GE_None: | 
|  | return ""; | 
|  | case ASTContext::GE_Missing_type: | 
|  | return BuiltinInfo.getHeaderName(ID); | 
|  | case ASTContext::GE_Missing_stdio: | 
|  | return "stdio.h"; | 
|  | case ASTContext::GE_Missing_setjmp: | 
|  | return "setjmp.h"; | 
|  | case ASTContext::GE_Missing_ucontext: | 
|  | return "ucontext.h"; | 
|  | } | 
|  | llvm_unreachable("unhandled error kind"); | 
|  | } | 
|  |  | 
|  | /// LazilyCreateBuiltin - The specified Builtin-ID was first used at | 
|  | /// file scope.  lazily create a decl for it. ForRedeclaration is true | 
|  | /// if we're creating this built-in in anticipation of redeclaring the | 
|  | /// built-in. | 
|  | NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, | 
|  | Scope *S, bool ForRedeclaration, | 
|  | SourceLocation Loc) { | 
|  | LookupPredefedObjCSuperType(*this, S, II); | 
|  |  | 
|  | ASTContext::GetBuiltinTypeError Error; | 
|  | QualType R = Context.GetBuiltinType(ID, Error); | 
|  | if (Error) { | 
|  | if (ForRedeclaration) | 
|  | Diag(Loc, diag::warn_implicit_decl_requires_sysheader) | 
|  | << getHeaderName(Context.BuiltinInfo, ID, Error) | 
|  | << Context.BuiltinInfo.getName(ID); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!ForRedeclaration && | 
|  | (Context.BuiltinInfo.isPredefinedLibFunction(ID) || | 
|  | Context.BuiltinInfo.isHeaderDependentFunction(ID))) { | 
|  | Diag(Loc, diag::ext_implicit_lib_function_decl) | 
|  | << Context.BuiltinInfo.getName(ID) << R; | 
|  | if (Context.BuiltinInfo.getHeaderName(ID) && | 
|  | !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc)) | 
|  | Diag(Loc, diag::note_include_header_or_declare) | 
|  | << Context.BuiltinInfo.getHeaderName(ID) | 
|  | << Context.BuiltinInfo.getName(ID); | 
|  | } | 
|  |  | 
|  | if (R.isNull()) | 
|  | return nullptr; | 
|  |  | 
|  | DeclContext *Parent = Context.getTranslationUnitDecl(); | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | LinkageSpecDecl *CLinkageDecl = | 
|  | LinkageSpecDecl::Create(Context, Parent, Loc, Loc, | 
|  | LinkageSpecDecl::lang_c, false); | 
|  | CLinkageDecl->setImplicit(); | 
|  | Parent->addDecl(CLinkageDecl); | 
|  | Parent = CLinkageDecl; | 
|  | } | 
|  |  | 
|  | FunctionDecl *New = FunctionDecl::Create(Context, | 
|  | Parent, | 
|  | Loc, Loc, II, R, /*TInfo=*/nullptr, | 
|  | SC_Extern, | 
|  | false, | 
|  | R->isFunctionProtoType()); | 
|  | New->setImplicit(); | 
|  |  | 
|  | // Create Decl objects for each parameter, adding them to the | 
|  | // FunctionDecl. | 
|  | if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) { | 
|  | SmallVector<ParmVarDecl*, 16> Params; | 
|  | for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { | 
|  | ParmVarDecl *parm = | 
|  | ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(), | 
|  | nullptr, FT->getParamType(i), /*TInfo=*/nullptr, | 
|  | SC_None, nullptr); | 
|  | parm->setScopeInfo(0, i); | 
|  | Params.push_back(parm); | 
|  | } | 
|  | New->setParams(Params); | 
|  | } | 
|  |  | 
|  | AddKnownFunctionAttributes(New); | 
|  | RegisterLocallyScopedExternCDecl(New, S); | 
|  |  | 
|  | // TUScope is the translation-unit scope to insert this function into. | 
|  | // FIXME: This is hideous. We need to teach PushOnScopeChains to | 
|  | // relate Scopes to DeclContexts, and probably eliminate CurContext | 
|  | // entirely, but we're not there yet. | 
|  | DeclContext *SavedContext = CurContext; | 
|  | CurContext = Parent; | 
|  | PushOnScopeChains(New, TUScope); | 
|  | CurContext = SavedContext; | 
|  | return New; | 
|  | } | 
|  |  | 
|  | /// Typedef declarations don't have linkage, but they still denote the same | 
|  | /// entity if their types are the same. | 
|  | /// FIXME: This is notionally doing the same thing as ASTReaderDecl's | 
|  | /// isSameEntity. | 
|  | static void filterNonConflictingPreviousTypedefDecls(Sema &S, | 
|  | TypedefNameDecl *Decl, | 
|  | LookupResult &Previous) { | 
|  | // This is only interesting when modules are enabled. | 
|  | if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) | 
|  | return; | 
|  |  | 
|  | // Empty sets are uninteresting. | 
|  | if (Previous.empty()) | 
|  | return; | 
|  |  | 
|  | LookupResult::Filter Filter = Previous.makeFilter(); | 
|  | while (Filter.hasNext()) { | 
|  | NamedDecl *Old = Filter.next(); | 
|  |  | 
|  | // Non-hidden declarations are never ignored. | 
|  | if (S.isVisible(Old)) | 
|  | continue; | 
|  |  | 
|  | // Declarations of the same entity are not ignored, even if they have | 
|  | // different linkages. | 
|  | if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { | 
|  | if (S.Context.hasSameType(OldTD->getUnderlyingType(), | 
|  | Decl->getUnderlyingType())) | 
|  | continue; | 
|  |  | 
|  | // If both declarations give a tag declaration a typedef name for linkage | 
|  | // purposes, then they declare the same entity. | 
|  | if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && | 
|  | Decl->getAnonDeclWithTypedefName()) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Filter.erase(); | 
|  | } | 
|  |  | 
|  | Filter.done(); | 
|  | } | 
|  |  | 
|  | bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { | 
|  | QualType OldType; | 
|  | if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) | 
|  | OldType = OldTypedef->getUnderlyingType(); | 
|  | else | 
|  | OldType = Context.getTypeDeclType(Old); | 
|  | QualType NewType = New->getUnderlyingType(); | 
|  |  | 
|  | if (NewType->isVariablyModifiedType()) { | 
|  | // Must not redefine a typedef with a variably-modified type. | 
|  | int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; | 
|  | Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) | 
|  | << Kind << NewType; | 
|  | if (Old->getLocation().isValid()) | 
|  | notePreviousDefinition(Old, New->getLocation()); | 
|  | New->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (OldType != NewType && | 
|  | !OldType->isDependentType() && | 
|  | !NewType->isDependentType() && | 
|  | !Context.hasSameType(OldType, NewType)) { | 
|  | int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; | 
|  | Diag(New->getLocation(), diag::err_redefinition_different_typedef) | 
|  | << Kind << NewType << OldType; | 
|  | if (Old->getLocation().isValid()) | 
|  | notePreviousDefinition(Old, New->getLocation()); | 
|  | New->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the | 
|  | /// same name and scope as a previous declaration 'Old'.  Figure out | 
|  | /// how to resolve this situation, merging decls or emitting | 
|  | /// diagnostics as appropriate. If there was an error, set New to be invalid. | 
|  | /// | 
|  | void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, | 
|  | LookupResult &OldDecls) { | 
|  | // If the new decl is known invalid already, don't bother doing any | 
|  | // merging checks. | 
|  | if (New->isInvalidDecl()) return; | 
|  |  | 
|  | // Allow multiple definitions for ObjC built-in typedefs. | 
|  | // FIXME: Verify the underlying types are equivalent! | 
|  | if (getLangOpts().ObjC) { | 
|  | const IdentifierInfo *TypeID = New->getIdentifier(); | 
|  | switch (TypeID->getLength()) { | 
|  | default: break; | 
|  | case 2: | 
|  | { | 
|  | if (!TypeID->isStr("id")) | 
|  | break; | 
|  | QualType T = New->getUnderlyingType(); | 
|  | if (!T->isPointerType()) | 
|  | break; | 
|  | if (!T->isVoidPointerType()) { | 
|  | QualType PT = T->getAs<PointerType>()->getPointeeType(); | 
|  | if (!PT->isStructureType()) | 
|  | break; | 
|  | } | 
|  | Context.setObjCIdRedefinitionType(T); | 
|  | // Install the built-in type for 'id', ignoring the current definition. | 
|  | New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); | 
|  | return; | 
|  | } | 
|  | case 5: | 
|  | if (!TypeID->isStr("Class")) | 
|  | break; | 
|  | Context.setObjCClassRedefinitionType(New->getUnderlyingType()); | 
|  | // Install the built-in type for 'Class', ignoring the current definition. | 
|  | New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); | 
|  | return; | 
|  | case 3: | 
|  | if (!TypeID->isStr("SEL")) | 
|  | break; | 
|  | Context.setObjCSelRedefinitionType(New->getUnderlyingType()); | 
|  | // Install the built-in type for 'SEL', ignoring the current definition. | 
|  | New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); | 
|  | return; | 
|  | } | 
|  | // Fall through - the typedef name was not a builtin type. | 
|  | } | 
|  |  | 
|  | // Verify the old decl was also a type. | 
|  | TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); | 
|  | if (!Old) { | 
|  | Diag(New->getLocation(), diag::err_redefinition_different_kind) | 
|  | << New->getDeclName(); | 
|  |  | 
|  | NamedDecl *OldD = OldDecls.getRepresentativeDecl(); | 
|  | if (OldD->getLocation().isValid()) | 
|  | notePreviousDefinition(OldD, New->getLocation()); | 
|  |  | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // If the old declaration is invalid, just give up here. | 
|  | if (Old->isInvalidDecl()) | 
|  | return New->setInvalidDecl(); | 
|  |  | 
|  | if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { | 
|  | auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); | 
|  | auto *NewTag = New->getAnonDeclWithTypedefName(); | 
|  | NamedDecl *Hidden = nullptr; | 
|  | if (OldTag && NewTag && | 
|  | OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && | 
|  | !hasVisibleDefinition(OldTag, &Hidden)) { | 
|  | // There is a definition of this tag, but it is not visible. Use it | 
|  | // instead of our tag. | 
|  | New->setTypeForDecl(OldTD->getTypeForDecl()); | 
|  | if (OldTD->isModed()) | 
|  | New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(), | 
|  | OldTD->getUnderlyingType()); | 
|  | else | 
|  | New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); | 
|  |  | 
|  | // Make the old tag definition visible. | 
|  | makeMergedDefinitionVisible(Hidden); | 
|  |  | 
|  | // If this was an unscoped enumeration, yank all of its enumerators | 
|  | // out of the scope. | 
|  | if (isa<EnumDecl>(NewTag)) { | 
|  | Scope *EnumScope = getNonFieldDeclScope(S); | 
|  | for (auto *D : NewTag->decls()) { | 
|  | auto *ED = cast<EnumConstantDecl>(D); | 
|  | assert(EnumScope->isDeclScope(ED)); | 
|  | EnumScope->RemoveDecl(ED); | 
|  | IdResolver.RemoveDecl(ED); | 
|  | ED->getLexicalDeclContext()->removeDecl(ED); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the typedef types are not identical, reject them in all languages and | 
|  | // with any extensions enabled. | 
|  | if (isIncompatibleTypedef(Old, New)) | 
|  | return; | 
|  |  | 
|  | // The types match.  Link up the redeclaration chain and merge attributes if | 
|  | // the old declaration was a typedef. | 
|  | if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { | 
|  | New->setPreviousDecl(Typedef); | 
|  | mergeDeclAttributes(New, Old); | 
|  | } | 
|  |  | 
|  | if (getLangOpts().MicrosoftExt) | 
|  | return; | 
|  |  | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | // C++ [dcl.typedef]p2: | 
|  | //   In a given non-class scope, a typedef specifier can be used to | 
|  | //   redefine the name of any type declared in that scope to refer | 
|  | //   to the type to which it already refers. | 
|  | if (!isa<CXXRecordDecl>(CurContext)) | 
|  | return; | 
|  |  | 
|  | // C++0x [dcl.typedef]p4: | 
|  | //   In a given class scope, a typedef specifier can be used to redefine | 
|  | //   any class-name declared in that scope that is not also a typedef-name | 
|  | //   to refer to the type to which it already refers. | 
|  | // | 
|  | // This wording came in via DR424, which was a correction to the | 
|  | // wording in DR56, which accidentally banned code like: | 
|  | // | 
|  | //   struct S { | 
|  | //     typedef struct A { } A; | 
|  | //   }; | 
|  | // | 
|  | // in the C++03 standard. We implement the C++0x semantics, which | 
|  | // allow the above but disallow | 
|  | // | 
|  | //   struct S { | 
|  | //     typedef int I; | 
|  | //     typedef int I; | 
|  | //   }; | 
|  | // | 
|  | // since that was the intent of DR56. | 
|  | if (!isa<TypedefNameDecl>(Old)) | 
|  | return; | 
|  |  | 
|  | Diag(New->getLocation(), diag::err_redefinition) | 
|  | << New->getDeclName(); | 
|  | notePreviousDefinition(Old, New->getLocation()); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // Modules always permit redefinition of typedefs, as does C11. | 
|  | if (getLangOpts().Modules || getLangOpts().C11) | 
|  | return; | 
|  |  | 
|  | // If we have a redefinition of a typedef in C, emit a warning.  This warning | 
|  | // is normally mapped to an error, but can be controlled with | 
|  | // -Wtypedef-redefinition.  If either the original or the redefinition is | 
|  | // in a system header, don't emit this for compatibility with GCC. | 
|  | if (getDiagnostics().getSuppressSystemWarnings() && | 
|  | // Some standard types are defined implicitly in Clang (e.g. OpenCL). | 
|  | (Old->isImplicit() || | 
|  | Context.getSourceManager().isInSystemHeader(Old->getLocation()) || | 
|  | Context.getSourceManager().isInSystemHeader(New->getLocation()))) | 
|  | return; | 
|  |  | 
|  | Diag(New->getLocation(), diag::ext_redefinition_of_typedef) | 
|  | << New->getDeclName(); | 
|  | notePreviousDefinition(Old, New->getLocation()); | 
|  | } | 
|  |  | 
|  | /// DeclhasAttr - returns true if decl Declaration already has the target | 
|  | /// attribute. | 
|  | static bool DeclHasAttr(const Decl *D, const Attr *A) { | 
|  | const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); | 
|  | const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); | 
|  | for (const auto *i : D->attrs()) | 
|  | if (i->getKind() == A->getKind()) { | 
|  | if (Ann) { | 
|  | if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) | 
|  | return true; | 
|  | continue; | 
|  | } | 
|  | // FIXME: Don't hardcode this check | 
|  | if (OA && isa<OwnershipAttr>(i)) | 
|  | return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isAttributeTargetADefinition(Decl *D) { | 
|  | if (VarDecl *VD = dyn_cast<VarDecl>(D)) | 
|  | return VD->isThisDeclarationADefinition(); | 
|  | if (TagDecl *TD = dyn_cast<TagDecl>(D)) | 
|  | return TD->isCompleteDefinition() || TD->isBeingDefined(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Merge alignment attributes from \p Old to \p New, taking into account the | 
|  | /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. | 
|  | /// | 
|  | /// \return \c true if any attributes were added to \p New. | 
|  | static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { | 
|  | // Look for alignas attributes on Old, and pick out whichever attribute | 
|  | // specifies the strictest alignment requirement. | 
|  | AlignedAttr *OldAlignasAttr = nullptr; | 
|  | AlignedAttr *OldStrictestAlignAttr = nullptr; | 
|  | unsigned OldAlign = 0; | 
|  | for (auto *I : Old->specific_attrs<AlignedAttr>()) { | 
|  | // FIXME: We have no way of representing inherited dependent alignments | 
|  | // in a case like: | 
|  | //   template<int A, int B> struct alignas(A) X; | 
|  | //   template<int A, int B> struct alignas(B) X {}; | 
|  | // For now, we just ignore any alignas attributes which are not on the | 
|  | // definition in such a case. | 
|  | if (I->isAlignmentDependent()) | 
|  | return false; | 
|  |  | 
|  | if (I->isAlignas()) | 
|  | OldAlignasAttr = I; | 
|  |  | 
|  | unsigned Align = I->getAlignment(S.Context); | 
|  | if (Align > OldAlign) { | 
|  | OldAlign = Align; | 
|  | OldStrictestAlignAttr = I; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look for alignas attributes on New. | 
|  | AlignedAttr *NewAlignasAttr = nullptr; | 
|  | unsigned NewAlign = 0; | 
|  | for (auto *I : New->specific_attrs<AlignedAttr>()) { | 
|  | if (I->isAlignmentDependent()) | 
|  | return false; | 
|  |  | 
|  | if (I->isAlignas()) | 
|  | NewAlignasAttr = I; | 
|  |  | 
|  | unsigned Align = I->getAlignment(S.Context); | 
|  | if (Align > NewAlign) | 
|  | NewAlign = Align; | 
|  | } | 
|  |  | 
|  | if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { | 
|  | // Both declarations have 'alignas' attributes. We require them to match. | 
|  | // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but | 
|  | // fall short. (If two declarations both have alignas, they must both match | 
|  | // every definition, and so must match each other if there is a definition.) | 
|  |  | 
|  | // If either declaration only contains 'alignas(0)' specifiers, then it | 
|  | // specifies the natural alignment for the type. | 
|  | if (OldAlign == 0 || NewAlign == 0) { | 
|  | QualType Ty; | 
|  | if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) | 
|  | Ty = VD->getType(); | 
|  | else | 
|  | Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); | 
|  |  | 
|  | if (OldAlign == 0) | 
|  | OldAlign = S.Context.getTypeAlign(Ty); | 
|  | if (NewAlign == 0) | 
|  | NewAlign = S.Context.getTypeAlign(Ty); | 
|  | } | 
|  |  | 
|  | if (OldAlign != NewAlign) { | 
|  | S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) | 
|  | << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() | 
|  | << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); | 
|  | S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { | 
|  | // C++11 [dcl.align]p6: | 
|  | //   if any declaration of an entity has an alignment-specifier, | 
|  | //   every defining declaration of that entity shall specify an | 
|  | //   equivalent alignment. | 
|  | // C11 6.7.5/7: | 
|  | //   If the definition of an object does not have an alignment | 
|  | //   specifier, any other declaration of that object shall also | 
|  | //   have no alignment specifier. | 
|  | S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) | 
|  | << OldAlignasAttr; | 
|  | S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) | 
|  | << OldAlignasAttr; | 
|  | } | 
|  |  | 
|  | bool AnyAdded = false; | 
|  |  | 
|  | // Ensure we have an attribute representing the strictest alignment. | 
|  | if (OldAlign > NewAlign) { | 
|  | AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); | 
|  | Clone->setInherited(true); | 
|  | New->addAttr(Clone); | 
|  | AnyAdded = true; | 
|  | } | 
|  |  | 
|  | // Ensure we have an alignas attribute if the old declaration had one. | 
|  | if (OldAlignasAttr && !NewAlignasAttr && | 
|  | !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { | 
|  | AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); | 
|  | Clone->setInherited(true); | 
|  | New->addAttr(Clone); | 
|  | AnyAdded = true; | 
|  | } | 
|  |  | 
|  | return AnyAdded; | 
|  | } | 
|  |  | 
|  | static bool mergeDeclAttribute(Sema &S, NamedDecl *D, | 
|  | const InheritableAttr *Attr, | 
|  | Sema::AvailabilityMergeKind AMK) { | 
|  | // This function copies an attribute Attr from a previous declaration to the | 
|  | // new declaration D if the new declaration doesn't itself have that attribute | 
|  | // yet or if that attribute allows duplicates. | 
|  | // If you're adding a new attribute that requires logic different from | 
|  | // "use explicit attribute on decl if present, else use attribute from | 
|  | // previous decl", for example if the attribute needs to be consistent | 
|  | // between redeclarations, you need to call a custom merge function here. | 
|  | InheritableAttr *NewAttr = nullptr; | 
|  | unsigned AttrSpellingListIndex = Attr->getSpellingListIndex(); | 
|  | if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) | 
|  | NewAttr = S.mergeAvailabilityAttr( | 
|  | D, AA->getRange(), AA->getPlatform(), AA->isImplicit(), | 
|  | AA->getIntroduced(), AA->getDeprecated(), AA->getObsoleted(), | 
|  | AA->getUnavailable(), AA->getMessage(), AA->getStrict(), | 
|  | AA->getReplacement(), AMK, AA->getPriority(), AttrSpellingListIndex); | 
|  | else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) | 
|  | NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(), | 
|  | AttrSpellingListIndex); | 
|  | else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) | 
|  | NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(), | 
|  | AttrSpellingListIndex); | 
|  | else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) | 
|  | NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(), | 
|  | AttrSpellingListIndex); | 
|  | else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) | 
|  | NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(), | 
|  | AttrSpellingListIndex); | 
|  | else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) | 
|  | NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(), | 
|  | FA->getFormatIdx(), FA->getFirstArg(), | 
|  | AttrSpellingListIndex); | 
|  | else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) | 
|  | NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(), | 
|  | AttrSpellingListIndex); | 
|  | else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) | 
|  | NewAttr = S.mergeCodeSegAttr(D, CSA->getRange(), CSA->getName(), | 
|  | AttrSpellingListIndex); | 
|  | else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) | 
|  | NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(), | 
|  | AttrSpellingListIndex, | 
|  | IA->getSemanticSpelling()); | 
|  | else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) | 
|  | NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(), | 
|  | &S.Context.Idents.get(AA->getSpelling()), | 
|  | AttrSpellingListIndex); | 
|  | else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && | 
|  | (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || | 
|  | isa<CUDAGlobalAttr>(Attr))) { | 
|  | // CUDA target attributes are part of function signature for | 
|  | // overloading purposes and must not be merged. | 
|  | return false; | 
|  | } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) | 
|  | NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex); | 
|  | else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) | 
|  | NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex); | 
|  | else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) | 
|  | NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA); | 
|  | else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr)) | 
|  | NewAttr = S.mergeCommonAttr(D, *CommonA); | 
|  | else if (isa<AlignedAttr>(Attr)) | 
|  | // AlignedAttrs are handled separately, because we need to handle all | 
|  | // such attributes on a declaration at the same time. | 
|  | NewAttr = nullptr; | 
|  | else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && | 
|  | (AMK == Sema::AMK_Override || | 
|  | AMK == Sema::AMK_ProtocolImplementation)) | 
|  | NewAttr = nullptr; | 
|  | else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) | 
|  | NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex, | 
|  | UA->getGuid()); | 
|  | else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr)) | 
|  | NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA); | 
|  | else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr)) | 
|  | NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA); | 
|  | else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) | 
|  | NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); | 
|  |  | 
|  | if (NewAttr) { | 
|  | NewAttr->setInherited(true); | 
|  | D->addAttr(NewAttr); | 
|  | if (isa<MSInheritanceAttr>(NewAttr)) | 
|  | S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static const NamedDecl *getDefinition(const Decl *D) { | 
|  | if (const TagDecl *TD = dyn_cast<TagDecl>(D)) | 
|  | return TD->getDefinition(); | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | const VarDecl *Def = VD->getDefinition(); | 
|  | if (Def) | 
|  | return Def; | 
|  | return VD->getActingDefinition(); | 
|  | } | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) | 
|  | return FD->getDefinition(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool hasAttribute(const Decl *D, attr::Kind Kind) { | 
|  | for (const auto *Attribute : D->attrs()) | 
|  | if (Attribute->getKind() == Kind) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// checkNewAttributesAfterDef - If we already have a definition, check that | 
|  | /// there are no new attributes in this declaration. | 
|  | static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { | 
|  | if (!New->hasAttrs()) | 
|  | return; | 
|  |  | 
|  | const NamedDecl *Def = getDefinition(Old); | 
|  | if (!Def || Def == New) | 
|  | return; | 
|  |  | 
|  | AttrVec &NewAttributes = New->getAttrs(); | 
|  | for (unsigned I = 0, E = NewAttributes.size(); I != E;) { | 
|  | const Attr *NewAttribute = NewAttributes[I]; | 
|  |  | 
|  | if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) { | 
|  | Sema::SkipBodyInfo SkipBody; | 
|  | S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody); | 
|  |  | 
|  | // If we're skipping this definition, drop the "alias" attribute. | 
|  | if (SkipBody.ShouldSkip) { | 
|  | NewAttributes.erase(NewAttributes.begin() + I); | 
|  | --E; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | VarDecl *VD = cast<VarDecl>(New); | 
|  | unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == | 
|  | VarDecl::TentativeDefinition | 
|  | ? diag::err_alias_after_tentative | 
|  | : diag::err_redefinition; | 
|  | S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); | 
|  | if (Diag == diag::err_redefinition) | 
|  | S.notePreviousDefinition(Def, VD->getLocation()); | 
|  | else | 
|  | S.Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | VD->setInvalidDecl(); | 
|  | } | 
|  | ++I; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { | 
|  | // Tentative definitions are only interesting for the alias check above. | 
|  | if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { | 
|  | ++I; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hasAttribute(Def, NewAttribute->getKind())) { | 
|  | ++I; | 
|  | continue; // regular attr merging will take care of validating this. | 
|  | } | 
|  |  | 
|  | if (isa<C11NoReturnAttr>(NewAttribute)) { | 
|  | // C's _Noreturn is allowed to be added to a function after it is defined. | 
|  | ++I; | 
|  | continue; | 
|  | } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { | 
|  | if (AA->isAlignas()) { | 
|  | // C++11 [dcl.align]p6: | 
|  | //   if any declaration of an entity has an alignment-specifier, | 
|  | //   every defining declaration of that entity shall specify an | 
|  | //   equivalent alignment. | 
|  | // C11 6.7.5/7: | 
|  | //   If the definition of an object does not have an alignment | 
|  | //   specifier, any other declaration of that object shall also | 
|  | //   have no alignment specifier. | 
|  | S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) | 
|  | << AA; | 
|  | S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) | 
|  | << AA; | 
|  | NewAttributes.erase(NewAttributes.begin() + I); | 
|  | --E; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | S.Diag(NewAttribute->getLocation(), | 
|  | diag::warn_attribute_precede_definition); | 
|  | S.Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | NewAttributes.erase(NewAttributes.begin() + I); | 
|  | --E; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. | 
|  | void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, | 
|  | AvailabilityMergeKind AMK) { | 
|  | if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { | 
|  | UsedAttr *NewAttr = OldAttr->clone(Context); | 
|  | NewAttr->setInherited(true); | 
|  | New->addAttr(NewAttr); | 
|  | } | 
|  |  | 
|  | if (!Old->hasAttrs() && !New->hasAttrs()) | 
|  | return; | 
|  |  | 
|  | // Attributes declared post-definition are currently ignored. | 
|  | checkNewAttributesAfterDef(*this, New, Old); | 
|  |  | 
|  | if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { | 
|  | if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { | 
|  | if (OldA->getLabel() != NewA->getLabel()) { | 
|  | // This redeclaration changes __asm__ label. | 
|  | Diag(New->getLocation(), diag::err_different_asm_label); | 
|  | Diag(OldA->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  | } else if (Old->isUsed()) { | 
|  | // This redeclaration adds an __asm__ label to a declaration that has | 
|  | // already been ODR-used. | 
|  | Diag(New->getLocation(), diag::err_late_asm_label_name) | 
|  | << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Re-declaration cannot add abi_tag's. | 
|  | if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { | 
|  | if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { | 
|  | for (const auto &NewTag : NewAbiTagAttr->tags()) { | 
|  | if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(), | 
|  | NewTag) == OldAbiTagAttr->tags_end()) { | 
|  | Diag(NewAbiTagAttr->getLocation(), | 
|  | diag::err_new_abi_tag_on_redeclaration) | 
|  | << NewTag; | 
|  | Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This redeclaration adds a section attribute. | 
|  | if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { | 
|  | if (auto *VD = dyn_cast<VarDecl>(New)) { | 
|  | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { | 
|  | Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Redeclaration adds code-seg attribute. | 
|  | const auto *NewCSA = New->getAttr<CodeSegAttr>(); | 
|  | if (NewCSA && !Old->hasAttr<CodeSegAttr>() && | 
|  | !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { | 
|  | Diag(New->getLocation(), diag::warn_mismatched_section) | 
|  | << 0 /*codeseg*/; | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  |  | 
|  | if (!Old->hasAttrs()) | 
|  | return; | 
|  |  | 
|  | bool foundAny = New->hasAttrs(); | 
|  |  | 
|  | // Ensure that any moving of objects within the allocated map is done before | 
|  | // we process them. | 
|  | if (!foundAny) New->setAttrs(AttrVec()); | 
|  |  | 
|  | for (auto *I : Old->specific_attrs<InheritableAttr>()) { | 
|  | // Ignore deprecated/unavailable/availability attributes if requested. | 
|  | AvailabilityMergeKind LocalAMK = AMK_None; | 
|  | if (isa<DeprecatedAttr>(I) || | 
|  | isa<UnavailableAttr>(I) || | 
|  | isa<AvailabilityAttr>(I)) { | 
|  | switch (AMK) { | 
|  | case AMK_None: | 
|  | continue; | 
|  |  | 
|  | case AMK_Redeclaration: | 
|  | case AMK_Override: | 
|  | case AMK_ProtocolImplementation: | 
|  | LocalAMK = AMK; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Already handled. | 
|  | if (isa<UsedAttr>(I)) | 
|  | continue; | 
|  |  | 
|  | if (mergeDeclAttribute(*this, New, I, LocalAMK)) | 
|  | foundAny = true; | 
|  | } | 
|  |  | 
|  | if (mergeAlignedAttrs(*this, New, Old)) | 
|  | foundAny = true; | 
|  |  | 
|  | if (!foundAny) New->dropAttrs(); | 
|  | } | 
|  |  | 
|  | /// mergeParamDeclAttributes - Copy attributes from the old parameter | 
|  | /// to the new one. | 
|  | static void mergeParamDeclAttributes(ParmVarDecl *newDecl, | 
|  | const ParmVarDecl *oldDecl, | 
|  | Sema &S) { | 
|  | // C++11 [dcl.attr.depend]p2: | 
|  | //   The first declaration of a function shall specify the | 
|  | //   carries_dependency attribute for its declarator-id if any declaration | 
|  | //   of the function specifies the carries_dependency attribute. | 
|  | const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); | 
|  | if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { | 
|  | S.Diag(CDA->getLocation(), | 
|  | diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; | 
|  | // Find the first declaration of the parameter. | 
|  | // FIXME: Should we build redeclaration chains for function parameters? | 
|  | const FunctionDecl *FirstFD = | 
|  | cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); | 
|  | const ParmVarDecl *FirstVD = | 
|  | FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); | 
|  | S.Diag(FirstVD->getLocation(), | 
|  | diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; | 
|  | } | 
|  |  | 
|  | if (!oldDecl->hasAttrs()) | 
|  | return; | 
|  |  | 
|  | bool foundAny = newDecl->hasAttrs(); | 
|  |  | 
|  | // Ensure that any moving of objects within the allocated map is | 
|  | // done before we process them. | 
|  | if (!foundAny) newDecl->setAttrs(AttrVec()); | 
|  |  | 
|  | for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { | 
|  | if (!DeclHasAttr(newDecl, I)) { | 
|  | InheritableAttr *newAttr = | 
|  | cast<InheritableParamAttr>(I->clone(S.Context)); | 
|  | newAttr->setInherited(true); | 
|  | newDecl->addAttr(newAttr); | 
|  | foundAny = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!foundAny) newDecl->dropAttrs(); | 
|  | } | 
|  |  | 
|  | static void mergeParamDeclTypes(ParmVarDecl *NewParam, | 
|  | const ParmVarDecl *OldParam, | 
|  | Sema &S) { | 
|  | if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) { | 
|  | if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) { | 
|  | if (*Oldnullability != *Newnullability) { | 
|  | S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) | 
|  | << DiagNullabilityKind( | 
|  | *Newnullability, | 
|  | ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) | 
|  | != 0)) | 
|  | << DiagNullabilityKind( | 
|  | *Oldnullability, | 
|  | ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) | 
|  | != 0)); | 
|  | S.Diag(OldParam->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  | } else { | 
|  | QualType NewT = NewParam->getType(); | 
|  | NewT = S.Context.getAttributedType( | 
|  | AttributedType::getNullabilityAttrKind(*Oldnullability), | 
|  | NewT, NewT); | 
|  | NewParam->setType(NewT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Used in MergeFunctionDecl to keep track of function parameters in | 
|  | /// C. | 
|  | struct GNUCompatibleParamWarning { | 
|  | ParmVarDecl *OldParm; | 
|  | ParmVarDecl *NewParm; | 
|  | QualType PromotedType; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// getSpecialMember - get the special member enum for a method. | 
|  | Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) { | 
|  | if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { | 
|  | if (Ctor->isDefaultConstructor()) | 
|  | return Sema::CXXDefaultConstructor; | 
|  |  | 
|  | if (Ctor->isCopyConstructor()) | 
|  | return Sema::CXXCopyConstructor; | 
|  |  | 
|  | if (Ctor->isMoveConstructor()) | 
|  | return Sema::CXXMoveConstructor; | 
|  | } else if (isa<CXXDestructorDecl>(MD)) { | 
|  | return Sema::CXXDestructor; | 
|  | } else if (MD->isCopyAssignmentOperator()) { | 
|  | return Sema::CXXCopyAssignment; | 
|  | } else if (MD->isMoveAssignmentOperator()) { | 
|  | return Sema::CXXMoveAssignment; | 
|  | } | 
|  |  | 
|  | return Sema::CXXInvalid; | 
|  | } | 
|  |  | 
|  | // Determine whether the previous declaration was a definition, implicit | 
|  | // declaration, or a declaration. | 
|  | template <typename T> | 
|  | static std::pair<diag::kind, SourceLocation> | 
|  | getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { | 
|  | diag::kind PrevDiag; | 
|  | SourceLocation OldLocation = Old->getLocation(); | 
|  | if (Old->isThisDeclarationADefinition()) | 
|  | PrevDiag = diag::note_previous_definition; | 
|  | else if (Old->isImplicit()) { | 
|  | PrevDiag = diag::note_previous_implicit_declaration; | 
|  | if (OldLocation.isInvalid()) | 
|  | OldLocation = New->getLocation(); | 
|  | } else | 
|  | PrevDiag = diag::note_previous_declaration; | 
|  | return std::make_pair(PrevDiag, OldLocation); | 
|  | } | 
|  |  | 
|  | /// canRedefineFunction - checks if a function can be redefined. Currently, | 
|  | /// only extern inline functions can be redefined, and even then only in | 
|  | /// GNU89 mode. | 
|  | static bool canRedefineFunction(const FunctionDecl *FD, | 
|  | const LangOptions& LangOpts) { | 
|  | return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && | 
|  | !LangOpts.CPlusPlus && | 
|  | FD->isInlineSpecified() && | 
|  | FD->getStorageClass() == SC_Extern); | 
|  | } | 
|  |  | 
|  | const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { | 
|  | const AttributedType *AT = T->getAs<AttributedType>(); | 
|  | while (AT && !AT->isCallingConv()) | 
|  | AT = AT->getModifiedType()->getAs<AttributedType>(); | 
|  | return AT; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { | 
|  | const DeclContext *DC = Old->getDeclContext(); | 
|  | if (DC->isRecord()) | 
|  | return false; | 
|  |  | 
|  | LanguageLinkage OldLinkage = Old->getLanguageLinkage(); | 
|  | if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) | 
|  | return true; | 
|  | if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template<typename T> static bool isExternC(T *D) { return D->isExternC(); } | 
|  | static bool isExternC(VarTemplateDecl *) { return false; } | 
|  |  | 
|  | /// Check whether a redeclaration of an entity introduced by a | 
|  | /// using-declaration is valid, given that we know it's not an overload | 
|  | /// (nor a hidden tag declaration). | 
|  | template<typename ExpectedDecl> | 
|  | static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, | 
|  | ExpectedDecl *New) { | 
|  | // C++11 [basic.scope.declarative]p4: | 
|  | //   Given a set of declarations in a single declarative region, each of | 
|  | //   which specifies the same unqualified name, | 
|  | //   -- they shall all refer to the same entity, or all refer to functions | 
|  | //      and function templates; or | 
|  | //   -- exactly one declaration shall declare a class name or enumeration | 
|  | //      name that is not a typedef name and the other declarations shall all | 
|  | //      refer to the same variable or enumerator, or all refer to functions | 
|  | //      and function templates; in this case the class name or enumeration | 
|  | //      name is hidden (3.3.10). | 
|  |  | 
|  | // C++11 [namespace.udecl]p14: | 
|  | //   If a function declaration in namespace scope or block scope has the | 
|  | //   same name and the same parameter-type-list as a function introduced | 
|  | //   by a using-declaration, and the declarations do not declare the same | 
|  | //   function, the program is ill-formed. | 
|  |  | 
|  | auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); | 
|  | if (Old && | 
|  | !Old->getDeclContext()->getRedeclContext()->Equals( | 
|  | New->getDeclContext()->getRedeclContext()) && | 
|  | !(isExternC(Old) && isExternC(New))) | 
|  | Old = nullptr; | 
|  |  | 
|  | if (!Old) { | 
|  | S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); | 
|  | S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); | 
|  | S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, | 
|  | const FunctionDecl *B) { | 
|  | assert(A->getNumParams() == B->getNumParams()); | 
|  |  | 
|  | auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { | 
|  | const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); | 
|  | const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); | 
|  | if (AttrA == AttrB) | 
|  | return true; | 
|  | return AttrA && AttrB && AttrA->getType() == AttrB->getType() && | 
|  | AttrA->isDynamic() == AttrB->isDynamic(); | 
|  | }; | 
|  |  | 
|  | return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq); | 
|  | } | 
|  |  | 
|  | /// If necessary, adjust the semantic declaration context for a qualified | 
|  | /// declaration to name the correct inline namespace within the qualifier. | 
|  | static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, | 
|  | DeclaratorDecl *OldD) { | 
|  | // The only case where we need to update the DeclContext is when | 
|  | // redeclaration lookup for a qualified name finds a declaration | 
|  | // in an inline namespace within the context named by the qualifier: | 
|  | // | 
|  | //   inline namespace N { int f(); } | 
|  | //   int ::f(); // Sema DC needs adjusting from :: to N::. | 
|  | // | 
|  | // For unqualified declarations, the semantic context *can* change | 
|  | // along the redeclaration chain (for local extern declarations, | 
|  | // extern "C" declarations, and friend declarations in particular). | 
|  | if (!NewD->getQualifier()) | 
|  | return; | 
|  |  | 
|  | // NewD is probably already in the right context. | 
|  | auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); | 
|  | auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); | 
|  | if (NamedDC->Equals(SemaDC)) | 
|  | return; | 
|  |  | 
|  | assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || | 
|  | NewD->isInvalidDecl() || OldD->isInvalidDecl()) && | 
|  | "unexpected context for redeclaration"); | 
|  |  | 
|  | auto *LexDC = NewD->getLexicalDeclContext(); | 
|  | auto FixSemaDC = [=](NamedDecl *D) { | 
|  | if (!D) | 
|  | return; | 
|  | D->setDeclContext(SemaDC); | 
|  | D->setLexicalDeclContext(LexDC); | 
|  | }; | 
|  |  | 
|  | FixSemaDC(NewD); | 
|  | if (auto *FD = dyn_cast<FunctionDecl>(NewD)) | 
|  | FixSemaDC(FD->getDescribedFunctionTemplate()); | 
|  | else if (auto *VD = dyn_cast<VarDecl>(NewD)) | 
|  | FixSemaDC(VD->getDescribedVarTemplate()); | 
|  | } | 
|  |  | 
|  | /// MergeFunctionDecl - We just parsed a function 'New' from | 
|  | /// declarator D which has the same name and scope as a previous | 
|  | /// declaration 'Old'.  Figure out how to resolve this situation, | 
|  | /// merging decls or emitting diagnostics as appropriate. | 
|  | /// | 
|  | /// In C++, New and Old must be declarations that are not | 
|  | /// overloaded. Use IsOverload to determine whether New and Old are | 
|  | /// overloaded, and to select the Old declaration that New should be | 
|  | /// merged with. | 
|  | /// | 
|  | /// Returns true if there was an error, false otherwise. | 
|  | bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, | 
|  | Scope *S, bool MergeTypeWithOld) { | 
|  | // Verify the old decl was also a function. | 
|  | FunctionDecl *Old = OldD->getAsFunction(); | 
|  | if (!Old) { | 
|  | if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { | 
|  | if (New->getFriendObjectKind()) { | 
|  | Diag(New->getLocation(), diag::err_using_decl_friend); | 
|  | Diag(Shadow->getTargetDecl()->getLocation(), | 
|  | diag::note_using_decl_target); | 
|  | Diag(Shadow->getUsingDecl()->getLocation(), | 
|  | diag::note_using_decl) << 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check whether the two declarations might declare the same function. | 
|  | if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New)) | 
|  | return true; | 
|  | OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl()); | 
|  | } else { | 
|  | Diag(New->getLocation(), diag::err_redefinition_different_kind) | 
|  | << New->getDeclName(); | 
|  | notePreviousDefinition(OldD, New->getLocation()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the old declaration is invalid, just give up here. | 
|  | if (Old->isInvalidDecl()) | 
|  | return true; | 
|  |  | 
|  | // Disallow redeclaration of some builtins. | 
|  | if (!getASTContext().canBuiltinBeRedeclared(Old)) { | 
|  | Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_previous_builtin_declaration) | 
|  | << Old << Old->getType(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | diag::kind PrevDiag; | 
|  | SourceLocation OldLocation; | 
|  | std::tie(PrevDiag, OldLocation) = | 
|  | getNoteDiagForInvalidRedeclaration(Old, New); | 
|  |  | 
|  | // Don't complain about this if we're in GNU89 mode and the old function | 
|  | // is an extern inline function. | 
|  | // Don't complain about specializations. They are not supposed to have | 
|  | // storage classes. | 
|  | if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && | 
|  | New->getStorageClass() == SC_Static && | 
|  | Old->hasExternalFormalLinkage() && | 
|  | !New->getTemplateSpecializationInfo() && | 
|  | !canRedefineFunction(Old, getLangOpts())) { | 
|  | if (getLangOpts().MicrosoftExt) { | 
|  | Diag(New->getLocation(), diag::ext_static_non_static) << New; | 
|  | Diag(OldLocation, PrevDiag); | 
|  | } else { | 
|  | Diag(New->getLocation(), diag::err_static_non_static) << New; | 
|  | Diag(OldLocation, PrevDiag); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (New->hasAttr<InternalLinkageAttr>() && | 
|  | !Old->hasAttr<InternalLinkageAttr>()) { | 
|  | Diag(New->getLocation(), diag::err_internal_linkage_redeclaration) | 
|  | << New->getDeclName(); | 
|  | notePreviousDefinition(Old, New->getLocation()); | 
|  | New->dropAttr<InternalLinkageAttr>(); | 
|  | } | 
|  |  | 
|  | if (CheckRedeclarationModuleOwnership(New, Old)) | 
|  | return true; | 
|  |  | 
|  | if (!getLangOpts().CPlusPlus) { | 
|  | bool OldOvl = Old->hasAttr<OverloadableAttr>(); | 
|  | if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { | 
|  | Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) | 
|  | << New << OldOvl; | 
|  |  | 
|  | // Try our best to find a decl that actually has the overloadable | 
|  | // attribute for the note. In most cases (e.g. programs with only one | 
|  | // broken declaration/definition), this won't matter. | 
|  | // | 
|  | // FIXME: We could do this if we juggled some extra state in | 
|  | // OverloadableAttr, rather than just removing it. | 
|  | const Decl *DiagOld = Old; | 
|  | if (OldOvl) { | 
|  | auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { | 
|  | const auto *A = D->getAttr<OverloadableAttr>(); | 
|  | return A && !A->isImplicit(); | 
|  | }); | 
|  | // If we've implicitly added *all* of the overloadable attrs to this | 
|  | // chain, emitting a "previous redecl" note is pointless. | 
|  | DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; | 
|  | } | 
|  |  | 
|  | if (DiagOld) | 
|  | Diag(DiagOld->getLocation(), | 
|  | diag::note_attribute_overloadable_prev_overload) | 
|  | << OldOvl; | 
|  |  | 
|  | if (OldOvl) | 
|  | New->addAttr(OverloadableAttr::CreateImplicit(Context)); | 
|  | else | 
|  | New->dropAttr<OverloadableAttr>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If a function is first declared with a calling convention, but is later | 
|  | // declared or defined without one, all following decls assume the calling | 
|  | // convention of the first. | 
|  | // | 
|  | // It's OK if a function is first declared without a calling convention, | 
|  | // but is later declared or defined with the default calling convention. | 
|  | // | 
|  | // To test if either decl has an explicit calling convention, we look for | 
|  | // AttributedType sugar nodes on the type as written.  If they are missing or | 
|  | // were canonicalized away, we assume the calling convention was implicit. | 
|  | // | 
|  | // Note also that we DO NOT return at this point, because we still have | 
|  | // other tests to run. | 
|  | QualType OldQType = Context.getCanonicalType(Old->getType()); | 
|  | QualType NewQType = Context.getCanonicalType(New->getType()); | 
|  | const FunctionType *OldType = cast<FunctionType>(OldQType); | 
|  | const FunctionType *NewType = cast<FunctionType>(NewQType); | 
|  | FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); | 
|  | FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); | 
|  | bool RequiresAdjustment = false; | 
|  |  | 
|  | if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { | 
|  | FunctionDecl *First = Old->getFirstDecl(); | 
|  | const FunctionType *FT = | 
|  | First->getType().getCanonicalType()->castAs<FunctionType>(); | 
|  | FunctionType::ExtInfo FI = FT->getExtInfo(); | 
|  | bool NewCCExplicit = getCallingConvAttributedType(New->getType()); | 
|  | if (!NewCCExplicit) { | 
|  | // Inherit the CC from the previous declaration if it was specified | 
|  | // there but not here. | 
|  | NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); | 
|  | RequiresAdjustment = true; | 
|  | } else if (New->getBuiltinID()) { | 
|  | // Calling Conventions on a Builtin aren't really useful and setting a | 
|  | // default calling convention and cdecl'ing some builtin redeclarations is | 
|  | // common, so warn and ignore the calling convention on the redeclaration. | 
|  | Diag(New->getLocation(), diag::warn_cconv_ignored) | 
|  | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) | 
|  | << (int)CallingConventionIgnoredReason::BuiltinFunction; | 
|  | NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); | 
|  | RequiresAdjustment = true; | 
|  | } else { | 
|  | // Calling conventions aren't compatible, so complain. | 
|  | bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); | 
|  | Diag(New->getLocation(), diag::err_cconv_change) | 
|  | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) | 
|  | << !FirstCCExplicit | 
|  | << (!FirstCCExplicit ? "" : | 
|  | FunctionType::getNameForCallConv(FI.getCC())); | 
|  |  | 
|  | // Put the note on the first decl, since it is the one that matters. | 
|  | Diag(First->getLocation(), diag::note_previous_declaration); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: diagnose the other way around? | 
|  | if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { | 
|  | NewTypeInfo = NewTypeInfo.withNoReturn(true); | 
|  | RequiresAdjustment = true; | 
|  | } | 
|  |  | 
|  | // Merge regparm attribute. | 
|  | if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || | 
|  | OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { | 
|  | if (NewTypeInfo.getHasRegParm()) { | 
|  | Diag(New->getLocation(), diag::err_regparm_mismatch) | 
|  | << NewType->getRegParmType() | 
|  | << OldType->getRegParmType(); | 
|  | Diag(OldLocation, diag::note_previous_declaration); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); | 
|  | RequiresAdjustment = true; | 
|  | } | 
|  |  | 
|  | // Merge ns_returns_retained attribute. | 
|  | if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { | 
|  | if (NewTypeInfo.getProducesResult()) { | 
|  | Diag(New->getLocation(), diag::err_function_attribute_mismatch) | 
|  | << "'ns_returns_retained'"; | 
|  | Diag(OldLocation, diag::note_previous_declaration); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | NewTypeInfo = NewTypeInfo.withProducesResult(true); | 
|  | RequiresAdjustment = true; | 
|  | } | 
|  |  | 
|  | if (OldTypeInfo.getNoCallerSavedRegs() != | 
|  | NewTypeInfo.getNoCallerSavedRegs()) { | 
|  | if (NewTypeInfo.getNoCallerSavedRegs()) { | 
|  | AnyX86NoCallerSavedRegistersAttr *Attr = | 
|  | New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); | 
|  | Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; | 
|  | Diag(OldLocation, diag::note_previous_declaration); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true); | 
|  | RequiresAdjustment = true; | 
|  | } | 
|  |  | 
|  | if (RequiresAdjustment) { | 
|  | const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); | 
|  | AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); | 
|  | New->setType(QualType(AdjustedType, 0)); | 
|  | NewQType = Context.getCanonicalType(New->getType()); | 
|  | } | 
|  |  | 
|  | // If this redeclaration makes the function inline, we may need to add it to | 
|  | // UndefinedButUsed. | 
|  | if (!Old->isInlined() && New->isInlined() && | 
|  | !New->hasAttr<GNUInlineAttr>() && | 
|  | !getLangOpts().GNUInline && | 
|  | Old->isUsed(false) && | 
|  | !Old->isDefined() && !New->isThisDeclarationADefinition()) | 
|  | UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), | 
|  | SourceLocation())); | 
|  |  | 
|  | // If this redeclaration makes it newly gnu_inline, we don't want to warn | 
|  | // about it. | 
|  | if (New->hasAttr<GNUInlineAttr>() && | 
|  | Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { | 
|  | UndefinedButUsed.erase(Old->getCanonicalDecl()); | 
|  | } | 
|  |  | 
|  | // If pass_object_size params don't match up perfectly, this isn't a valid | 
|  | // redeclaration. | 
|  | if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && | 
|  | !hasIdenticalPassObjectSizeAttrs(Old, New)) { | 
|  | Diag(New->getLocation(), diag::err_different_pass_object_size_params) | 
|  | << New->getDeclName(); | 
|  | Diag(OldLocation, PrevDiag) << Old << Old->getType(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | // C++1z [over.load]p2 | 
|  | //   Certain function declarations cannot be overloaded: | 
|  | //     -- Function declarations that differ only in the return type, | 
|  | //        the exception specification, or both cannot be overloaded. | 
|  |  | 
|  | // Check the exception specifications match. This may recompute the type of | 
|  | // both Old and New if it resolved exception specifications, so grab the | 
|  | // types again after this. Because this updates the type, we do this before | 
|  | // any of the other checks below, which may update the "de facto" NewQType | 
|  | // but do not necessarily update the type of New. | 
|  | if (CheckEquivalentExceptionSpec(Old, New)) | 
|  | return true; | 
|  | OldQType = Context.getCanonicalType(Old->getType()); | 
|  | NewQType = Context.getCanonicalType(New->getType()); | 
|  |  | 
|  | // Go back to the type source info to compare the declared return types, | 
|  | // per C++1y [dcl.type.auto]p13: | 
|  | //   Redeclarations or specializations of a function or function template | 
|  | //   with a declared return type that uses a placeholder type shall also | 
|  | //   use that placeholder, not a deduced type. | 
|  | QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); | 
|  | QualType NewDeclaredReturnType = New->getDeclaredReturnType(); | 
|  | if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && | 
|  | canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, | 
|  | OldDeclaredReturnType)) { | 
|  | QualType ResQT; | 
|  | if (NewDeclaredReturnType->isObjCObjectPointerType() && | 
|  | OldDeclaredReturnType->isObjCObjectPointerType()) | 
|  | // FIXME: This does the wrong thing for a deduced return type. | 
|  | ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); | 
|  | if (ResQT.isNull()) { | 
|  | if (New->isCXXClassMember() && New->isOutOfLine()) | 
|  | Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) | 
|  | << New << New->getReturnTypeSourceRange(); | 
|  | else | 
|  | Diag(New->getLocation(), diag::err_ovl_diff_return_type) | 
|  | << New->getReturnTypeSourceRange(); | 
|  | Diag(OldLocation, PrevDiag) << Old << Old->getType() | 
|  | << Old->getReturnTypeSourceRange(); | 
|  | return true; | 
|  | } | 
|  | else | 
|  | NewQType = ResQT; | 
|  | } | 
|  |  | 
|  | QualType OldReturnType = OldType->getReturnType(); | 
|  | QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); | 
|  | if (OldReturnType != NewReturnType) { | 
|  | // If this function has a deduced return type and has already been | 
|  | // defined, copy the deduced value from the old declaration. | 
|  | AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); | 
|  | if (OldAT && OldAT->isDeduced()) { | 
|  | New->setType( | 
|  | SubstAutoType(New->getType(), | 
|  | OldAT->isDependentType() ? Context.DependentTy | 
|  | : OldAT->getDeducedType())); | 
|  | NewQType = Context.getCanonicalType( | 
|  | SubstAutoType(NewQType, | 
|  | OldAT->isDependentType() ? Context.DependentTy | 
|  | : OldAT->getDeducedType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); | 
|  | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); | 
|  | if (OldMethod && NewMethod) { | 
|  | // Preserve triviality. | 
|  | NewMethod->setTrivial(OldMethod->isTrivial()); | 
|  |  | 
|  | // MSVC allows explicit template specialization at class scope: | 
|  | // 2 CXXMethodDecls referring to the same function will be injected. | 
|  | // We don't want a redeclaration error. | 
|  | bool IsClassScopeExplicitSpecialization = | 
|  | OldMethod->isFunctionTemplateSpecialization() && | 
|  | NewMethod->isFunctionTemplateSpecialization(); | 
|  | bool isFriend = NewMethod->getFriendObjectKind(); | 
|  |  | 
|  | if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && | 
|  | !IsClassScopeExplicitSpecialization) { | 
|  | //    -- Member function declarations with the same name and the | 
|  | //       same parameter types cannot be overloaded if any of them | 
|  | //       is a static member function declaration. | 
|  | if (OldMethod->isStatic() != NewMethod->isStatic()) { | 
|  | Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); | 
|  | Diag(OldLocation, PrevDiag) << Old << Old->getType(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [class.mem]p1: | 
|  | //   [...] A member shall not be declared twice in the | 
|  | //   member-specification, except that a nested class or member | 
|  | //   class template can be declared and then later defined. | 
|  | if (!inTemplateInstantiation()) { | 
|  | unsigned NewDiag; | 
|  | if (isa<CXXConstructorDecl>(OldMethod)) | 
|  | NewDiag = diag::err_constructor_redeclared; | 
|  | else if (isa<CXXDestructorDecl>(NewMethod)) | 
|  | NewDiag = diag::err_destructor_redeclared; | 
|  | else if (isa<CXXConversionDecl>(NewMethod)) | 
|  | NewDiag = diag::err_conv_function_redeclared; | 
|  | else | 
|  | NewDiag = diag::err_member_redeclared; | 
|  |  | 
|  | Diag(New->getLocation(), NewDiag); | 
|  | } else { | 
|  | Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) | 
|  | << New << New->getType(); | 
|  | } | 
|  | Diag(OldLocation, PrevDiag) << Old << Old->getType(); | 
|  | return true; | 
|  |  | 
|  | // Complain if this is an explicit declaration of a special | 
|  | // member that was initially declared implicitly. | 
|  | // | 
|  | // As an exception, it's okay to befriend such methods in order | 
|  | // to permit the implicit constructor/destructor/operator calls. | 
|  | } else if (OldMethod->isImplicit()) { | 
|  | if (isFriend) { | 
|  | NewMethod->setImplicit(); | 
|  | } else { | 
|  | Diag(NewMethod->getLocation(), | 
|  | diag::err_definition_of_implicitly_declared_member) | 
|  | << New << getSpecialMember(OldMethod); | 
|  | return true; | 
|  | } | 
|  | } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { | 
|  | Diag(NewMethod->getLocation(), | 
|  | diag::err_definition_of_explicitly_defaulted_member) | 
|  | << getSpecialMember(OldMethod); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++11 [dcl.attr.noreturn]p1: | 
|  | //   The first declaration of a function shall specify the noreturn | 
|  | //   attribute if any declaration of that function specifies the noreturn | 
|  | //   attribute. | 
|  | const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>(); | 
|  | if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) { | 
|  | Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl); | 
|  | Diag(Old->getFirstDecl()->getLocation(), | 
|  | diag::note_noreturn_missing_first_decl); | 
|  | } | 
|  |  | 
|  | // C++11 [dcl.attr.depend]p2: | 
|  | //   The first declaration of a function shall specify the | 
|  | //   carries_dependency attribute for its declarator-id if any declaration | 
|  | //   of the function specifies the carries_dependency attribute. | 
|  | const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); | 
|  | if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { | 
|  | Diag(CDA->getLocation(), | 
|  | diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; | 
|  | Diag(Old->getFirstDecl()->getLocation(), | 
|  | diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; | 
|  | } | 
|  |  | 
|  | // (C++98 8.3.5p3): | 
|  | //   All declarations for a function shall agree exactly in both the | 
|  | //   return type and the parameter-type-list. | 
|  | // We also want to respect all the extended bits except noreturn. | 
|  |  | 
|  | // noreturn should now match unless the old type info didn't have it. | 
|  | QualType OldQTypeForComparison = OldQType; | 
|  | if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { | 
|  | auto *OldType = OldQType->castAs<FunctionProtoType>(); | 
|  | const FunctionType *OldTypeForComparison | 
|  | = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); | 
|  | OldQTypeForComparison = QualType(OldTypeForComparison, 0); | 
|  | assert(OldQTypeForComparison.isCanonical()); | 
|  | } | 
|  |  | 
|  | if (haveIncompatibleLanguageLinkages(Old, New)) { | 
|  | // As a special case, retain the language linkage from previous | 
|  | // declarations of a friend function as an extension. | 
|  | // | 
|  | // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC | 
|  | // and is useful because there's otherwise no way to specify language | 
|  | // linkage within class scope. | 
|  | // | 
|  | // Check cautiously as the friend object kind isn't yet complete. | 
|  | if (New->getFriendObjectKind() != Decl::FOK_None) { | 
|  | Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; | 
|  | Diag(OldLocation, PrevDiag); | 
|  | } else { | 
|  | Diag(New->getLocation(), diag::err_different_language_linkage) << New; | 
|  | Diag(OldLocation, PrevDiag); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OldQTypeForComparison == NewQType) | 
|  | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); | 
|  |  | 
|  | // If the types are imprecise (due to dependent constructs in friends or | 
|  | // local extern declarations), it's OK if they differ. We'll check again | 
|  | // during instantiation. | 
|  | if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) | 
|  | return false; | 
|  |  | 
|  | // Fall through for conflicting redeclarations and redefinitions. | 
|  | } | 
|  |  | 
|  | // C: Function types need to be compatible, not identical. This handles | 
|  | // duplicate function decls like "void f(int); void f(enum X);" properly. | 
|  | if (!getLangOpts().CPlusPlus && | 
|  | Context.typesAreCompatible(OldQType, NewQType)) { | 
|  | const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); | 
|  | const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); | 
|  | const FunctionProtoType *OldProto = nullptr; | 
|  | if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && | 
|  | (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { | 
|  | // The old declaration provided a function prototype, but the | 
|  | // new declaration does not. Merge in the prototype. | 
|  | assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); | 
|  | SmallVector<QualType, 16> ParamTypes(OldProto->param_types()); | 
|  | NewQType = | 
|  | Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes, | 
|  | OldProto->getExtProtoInfo()); | 
|  | New->setType(NewQType); | 
|  | New->setHasInheritedPrototype(); | 
|  |  | 
|  | // Synthesize parameters with the same types. | 
|  | SmallVector<ParmVarDecl*, 16> Params; | 
|  | for (const auto &ParamType : OldProto->param_types()) { | 
|  | ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(), | 
|  | SourceLocation(), nullptr, | 
|  | ParamType, /*TInfo=*/nullptr, | 
|  | SC_None, nullptr); | 
|  | Param->setScopeInfo(0, Params.size()); | 
|  | Param->setImplicit(); | 
|  | Params.push_back(Param); | 
|  | } | 
|  |  | 
|  | New->setParams(Params); | 
|  | } | 
|  |  | 
|  | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); | 
|  | } | 
|  |  | 
|  | // GNU C permits a K&R definition to follow a prototype declaration | 
|  | // if the declared types of the parameters in the K&R definition | 
|  | // match the types in the prototype declaration, even when the | 
|  | // promoted types of the parameters from the K&R definition differ | 
|  | // from the types in the prototype. GCC then keeps the types from | 
|  | // the prototype. | 
|  | // | 
|  | // If a variadic prototype is followed by a non-variadic K&R definition, | 
|  | // the K&R definition becomes variadic.  This is sort of an edge case, but | 
|  | // it's legal per the standard depending on how you read C99 6.7.5.3p15 and | 
|  | // C99 6.9.1p8. | 
|  | if (!getLangOpts().CPlusPlus && | 
|  | Old->hasPrototype() && !New->hasPrototype() && | 
|  | New->getType()->getAs<FunctionProtoType>() && | 
|  | Old->getNumParams() == New->getNumParams()) { | 
|  | SmallVector<QualType, 16> ArgTypes; | 
|  | SmallVector<GNUCompatibleParamWarning, 16> Warnings; | 
|  | const FunctionProtoType *OldProto | 
|  | = Old->getType()->getAs<FunctionProtoType>(); | 
|  | const FunctionProtoType *NewProto | 
|  | = New->getType()->getAs<FunctionProtoType>(); | 
|  |  | 
|  | // Determine whether this is the GNU C extension. | 
|  | QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), | 
|  | NewProto->getReturnType()); | 
|  | bool LooseCompatible = !MergedReturn.isNull(); | 
|  | for (unsigned Idx = 0, End = Old->getNumParams(); | 
|  | LooseCompatible && Idx != End; ++Idx) { | 
|  | ParmVarDecl *OldParm = Old->getParamDecl(Idx); | 
|  | ParmVarDecl *NewParm = New->getParamDecl(Idx); | 
|  | if (Context.typesAreCompatible(OldParm->getType(), | 
|  | NewProto->getParamType(Idx))) { | 
|  | ArgTypes.push_back(NewParm->getType()); | 
|  | } else if (Context.typesAreCompatible(OldParm->getType(), | 
|  | NewParm->getType(), | 
|  | /*CompareUnqualified=*/true)) { | 
|  | GNUCompatibleParamWarning Warn = { OldParm, NewParm, | 
|  | NewProto->getParamType(Idx) }; | 
|  | Warnings.push_back(Warn); | 
|  | ArgTypes.push_back(NewParm->getType()); | 
|  | } else | 
|  | LooseCompatible = false; | 
|  | } | 
|  |  | 
|  | if (LooseCompatible) { | 
|  | for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { | 
|  | Diag(Warnings[Warn].NewParm->getLocation(), | 
|  | diag::ext_param_promoted_not_compatible_with_prototype) | 
|  | << Warnings[Warn].PromotedType | 
|  | << Warnings[Warn].OldParm->getType(); | 
|  | if (Warnings[Warn].OldParm->getLocation().isValid()) | 
|  | Diag(Warnings[Warn].OldParm->getLocation(), | 
|  | diag::note_previous_declaration); | 
|  | } | 
|  |  | 
|  | if (MergeTypeWithOld) | 
|  | New->setType(Context.getFunctionType(MergedReturn, ArgTypes, | 
|  | OldProto->getExtProtoInfo())); | 
|  | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); | 
|  | } | 
|  |  | 
|  | // Fall through to diagnose conflicting types. | 
|  | } | 
|  |  | 
|  | // A function that has already been declared has been redeclared or | 
|  | // defined with a different type; show an appropriate diagnostic. | 
|  |  | 
|  | // If the previous declaration was an implicitly-generated builtin | 
|  | // declaration, then at the very least we should use a specialized note. | 
|  | unsigned BuiltinID; | 
|  | if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { | 
|  | // If it's actually a library-defined builtin function like 'malloc' | 
|  | // or 'printf', just warn about the incompatible redeclaration. | 
|  | if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { | 
|  | Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; | 
|  | Diag(OldLocation, diag::note_previous_builtin_declaration) | 
|  | << Old << Old->getType(); | 
|  |  | 
|  | // If this is a global redeclaration, just forget hereafter | 
|  | // about the "builtin-ness" of the function. | 
|  | // | 
|  | // Doing this for local extern declarations is problematic.  If | 
|  | // the builtin declaration remains visible, a second invalid | 
|  | // local declaration will produce a hard error; if it doesn't | 
|  | // remain visible, a single bogus local redeclaration (which is | 
|  | // actually only a warning) could break all the downstream code. | 
|  | if (!New->getLexicalDeclContext()->isFunctionOrMethod()) | 
|  | New->getIdentifier()->revertBuiltin(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | PrevDiag = diag::note_previous_builtin_declaration; | 
|  | } | 
|  |  | 
|  | Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); | 
|  | Diag(OldLocation, PrevDiag) << Old << Old->getType(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Completes the merge of two function declarations that are | 
|  | /// known to be compatible. | 
|  | /// | 
|  | /// This routine handles the merging of attributes and other | 
|  | /// properties of function declarations from the old declaration to | 
|  | /// the new declaration, once we know that New is in fact a | 
|  | /// redeclaration of Old. | 
|  | /// | 
|  | /// \returns false | 
|  | bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, | 
|  | Scope *S, bool MergeTypeWithOld) { | 
|  | // Merge the attributes | 
|  | mergeDeclAttributes(New, Old); | 
|  |  | 
|  | // Merge "pure" flag. | 
|  | if (Old->isPure()) | 
|  | New->setPure(); | 
|  |  | 
|  | // Merge "used" flag. | 
|  | if (Old->getMostRecentDecl()->isUsed(false)) | 
|  | New->setIsUsed(); | 
|  |  | 
|  | // Merge attributes from the parameters.  These can mismatch with K&R | 
|  | // declarations. | 
|  | if (New->getNumParams() == Old->getNumParams()) | 
|  | for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { | 
|  | ParmVarDecl *NewParam = New->getParamDecl(i); | 
|  | ParmVarDecl *OldParam = Old->getParamDecl(i); | 
|  | mergeParamDeclAttributes(NewParam, OldParam, *this); | 
|  | mergeParamDeclTypes(NewParam, OldParam, *this); | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus) | 
|  | return MergeCXXFunctionDecl(New, Old, S); | 
|  |  | 
|  | // Merge the function types so the we get the composite types for the return | 
|  | // and argument types. Per C11 6.2.7/4, only update the type if the old decl | 
|  | // was visible. | 
|  | QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); | 
|  | if (!Merged.isNull() && MergeTypeWithOld) | 
|  | New->setType(Merged); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, | 
|  | ObjCMethodDecl *oldMethod) { | 
|  | // Merge the attributes, including deprecated/unavailable | 
|  | AvailabilityMergeKind MergeKind = | 
|  | isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) | 
|  | ? AMK_ProtocolImplementation | 
|  | : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration | 
|  | : AMK_Override; | 
|  |  | 
|  | mergeDeclAttributes(newMethod, oldMethod, MergeKind); | 
|  |  | 
|  | // Merge attributes from the parameters. | 
|  | ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), | 
|  | oe = oldMethod->param_end(); | 
|  | for (ObjCMethodDecl::param_iterator | 
|  | ni = newMethod->param_begin(), ne = newMethod->param_end(); | 
|  | ni != ne && oi != oe; ++ni, ++oi) | 
|  | mergeParamDeclAttributes(*ni, *oi, *this); | 
|  |  | 
|  | CheckObjCMethodOverride(newMethod, oldMethod); | 
|  | } | 
|  |  | 
|  | static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { | 
|  | assert(!S.Context.hasSameType(New->getType(), Old->getType())); | 
|  |  | 
|  | S.Diag(New->getLocation(), New->isThisDeclarationADefinition() | 
|  | ? diag::err_redefinition_different_type | 
|  | : diag::err_redeclaration_different_type) | 
|  | << New->getDeclName() << New->getType() << Old->getType(); | 
|  |  | 
|  | diag::kind PrevDiag; | 
|  | SourceLocation OldLocation; | 
|  | std::tie(PrevDiag, OldLocation) | 
|  | = getNoteDiagForInvalidRedeclaration(Old, New); | 
|  | S.Diag(OldLocation, PrevDiag); | 
|  | New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and | 
|  | /// scope as a previous declaration 'Old'.  Figure out how to merge their types, | 
|  | /// emitting diagnostics as appropriate. | 
|  | /// | 
|  | /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back | 
|  | /// to here in AddInitializerToDecl. We can't check them before the initializer | 
|  | /// is attached. | 
|  | void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, | 
|  | bool MergeTypeWithOld) { | 
|  | if (New->isInvalidDecl() || Old->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | QualType MergedT; | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | if (New->getType()->isUndeducedType()) { | 
|  | // We don't know what the new type is until the initializer is attached. | 
|  | return; | 
|  | } else if (Context.hasSameType(New->getType(), Old->getType())) { | 
|  | // These could still be something that needs exception specs checked. | 
|  | return MergeVarDeclExceptionSpecs(New, Old); | 
|  | } | 
|  | // C++ [basic.link]p10: | 
|  | //   [...] the types specified by all declarations referring to a given | 
|  | //   object or function shall be identical, except that declarations for an | 
|  | //   array object can specify array types that differ by the presence or | 
|  | //   absence of a major array bound (8.3.4). | 
|  | else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { | 
|  | const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); | 
|  | const ArrayType *NewArray = Context.getAsArrayType(New->getType()); | 
|  |  | 
|  | // We are merging a variable declaration New into Old. If it has an array | 
|  | // bound, and that bound differs from Old's bound, we should diagnose the | 
|  | // mismatch. | 
|  | if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { | 
|  | for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; | 
|  | PrevVD = PrevVD->getPreviousDecl()) { | 
|  | const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType()); | 
|  | if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) | 
|  | continue; | 
|  |  | 
|  | if (!Context.hasSameType(NewArray, PrevVDTy)) | 
|  | return diagnoseVarDeclTypeMismatch(*this, New, PrevVD); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { | 
|  | if (Context.hasSameType(OldArray->getElementType(), | 
|  | NewArray->getElementType())) | 
|  | MergedT = New->getType(); | 
|  | } | 
|  | // FIXME: Check visibility. New is hidden but has a complete type. If New | 
|  | // has no array bound, it should not inherit one from Old, if Old is not | 
|  | // visible. | 
|  | else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { | 
|  | if (Context.hasSameType(OldArray->getElementType(), | 
|  | NewArray->getElementType())) | 
|  | MergedT = Old->getType(); | 
|  | } | 
|  | } | 
|  | else if (New->getType()->isObjCObjectPointerType() && | 
|  | Old->getType()->isObjCObjectPointerType()) { | 
|  | MergedT = Context.mergeObjCGCQualifiers(New->getType(), | 
|  | Old->getType()); | 
|  | } | 
|  | } else { | 
|  | // C 6.2.7p2: | 
|  | //   All declarations that refer to the same object or function shall have | 
|  | //   compatible type. | 
|  | MergedT = Context.mergeTypes(New->getType(), Old->getType()); | 
|  | } | 
|  | if (MergedT.isNull()) { | 
|  | // It's OK if we couldn't merge types if either type is dependent, for a | 
|  | // block-scope variable. In other cases (static data members of class | 
|  | // templates, variable templates, ...), we require the types to be | 
|  | // equivalent. | 
|  | // FIXME: The C++ standard doesn't say anything about this. | 
|  | if ((New->getType()->isDependentType() || | 
|  | Old->getType()->isDependentType()) && New->isLocalVarDecl()) { | 
|  | // If the old type was dependent, we can't merge with it, so the new type | 
|  | // becomes dependent for now. We'll reproduce the original type when we | 
|  | // instantiate the TypeSourceInfo for the variable. | 
|  | if (!New->getType()->isDependentType() && MergeTypeWithOld) | 
|  | New->setType(Context.DependentTy); | 
|  | return; | 
|  | } | 
|  | return diagnoseVarDeclTypeMismatch(*this, New, Old); | 
|  | } | 
|  |  | 
|  | // Don't actually update the type on the new declaration if the old | 
|  | // declaration was an extern declaration in a different scope. | 
|  | if (MergeTypeWithOld) | 
|  | New->setType(MergedT); | 
|  | } | 
|  |  | 
|  | static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, | 
|  | LookupResult &Previous) { | 
|  | // C11 6.2.7p4: | 
|  | //   For an identifier with internal or external linkage declared | 
|  | //   in a scope in which a prior declaration of that identifier is | 
|  | //   visible, if the prior declaration specifies internal or | 
|  | //   external linkage, the type of the identifier at the later | 
|  | //   declaration becomes the composite type. | 
|  | // | 
|  | // If the variable isn't visible, we do not merge with its type. | 
|  | if (Previous.isShadowed()) | 
|  | return false; | 
|  |  | 
|  | if (S.getLangOpts().CPlusPlus) { | 
|  | // C++11 [dcl.array]p3: | 
|  | //   If there is a preceding declaration of the entity in the same | 
|  | //   scope in which the bound was specified, an omitted array bound | 
|  | //   is taken to be the same as in that earlier declaration. | 
|  | return NewVD->isPreviousDeclInSameBlockScope() || | 
|  | (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && | 
|  | !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); | 
|  | } else { | 
|  | // If the old declaration was function-local, don't merge with its | 
|  | // type unless we're in the same function. | 
|  | return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || | 
|  | OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// MergeVarDecl - We just parsed a variable 'New' which has the same name | 
|  | /// and scope as a previous declaration 'Old'.  Figure out how to resolve this | 
|  | /// situation, merging decls or emitting diagnostics as appropriate. | 
|  | /// | 
|  | /// Tentative definition rules (C99 6.9.2p2) are checked by | 
|  | /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative | 
|  | /// definitions here, since the initializer hasn't been attached. | 
|  | /// | 
|  | void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { | 
|  | // If the new decl is already invalid, don't do any other checking. | 
|  | if (New->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | if (!shouldLinkPossiblyHiddenDecl(Previous, New)) | 
|  | return; | 
|  |  | 
|  | VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); | 
|  |  | 
|  | // Verify the old decl was also a variable or variable template. | 
|  | VarDecl *Old = nullptr; | 
|  | VarTemplateDecl *OldTemplate = nullptr; | 
|  | if (Previous.isSingleResult()) { | 
|  | if (NewTemplate) { | 
|  | OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); | 
|  | Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; | 
|  |  | 
|  | if (auto *Shadow = | 
|  | dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) | 
|  | if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate)) | 
|  | return New->setInvalidDecl(); | 
|  | } else { | 
|  | Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); | 
|  |  | 
|  | if (auto *Shadow = | 
|  | dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) | 
|  | if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New)) | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | if (!Old) { | 
|  | Diag(New->getLocation(), diag::err_redefinition_different_kind) | 
|  | << New->getDeclName(); | 
|  | notePreviousDefinition(Previous.getRepresentativeDecl(), | 
|  | New->getLocation()); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // Ensure the template parameters are compatible. | 
|  | if (NewTemplate && | 
|  | !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), | 
|  | OldTemplate->getTemplateParameters(), | 
|  | /*Complain=*/true, TPL_TemplateMatch)) | 
|  | return New->setInvalidDecl(); | 
|  |  | 
|  | // C++ [class.mem]p1: | 
|  | //   A member shall not be declared twice in the member-specification [...] | 
|  | // | 
|  | // Here, we need only consider static data members. | 
|  | if (Old->isStaticDataMember() && !New->isOutOfLine()) { | 
|  | Diag(New->getLocation(), diag::err_duplicate_member) | 
|  | << New->getIdentifier(); | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | mergeDeclAttributes(New, Old); | 
|  | // Warn if an already-declared variable is made a weak_import in a subsequent | 
|  | // declaration | 
|  | if (New->hasAttr<WeakImportAttr>() && | 
|  | Old->getStorageClass() == SC_None && | 
|  | !Old->hasAttr<WeakImportAttr>()) { | 
|  | Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); | 
|  | notePreviousDefinition(Old, New->getLocation()); | 
|  | // Remove weak_import attribute on new declaration. | 
|  | New->dropAttr<WeakImportAttr>(); | 
|  | } | 
|  |  | 
|  | if (New->hasAttr<InternalLinkageAttr>() && | 
|  | !Old->hasAttr<InternalLinkageAttr>()) { | 
|  | Diag(New->getLocation(), diag::err_internal_linkage_redeclaration) | 
|  | << New->getDeclName(); | 
|  | notePreviousDefinition(Old, New->getLocation()); | 
|  | New->dropAttr<InternalLinkageAttr>(); | 
|  | } | 
|  |  | 
|  | // Merge the types. | 
|  | VarDecl *MostRecent = Old->getMostRecentDecl(); | 
|  | if (MostRecent != Old) { | 
|  | MergeVarDeclTypes(New, MostRecent, | 
|  | mergeTypeWithPrevious(*this, New, MostRecent, Previous)); | 
|  | if (New->isInvalidDecl()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); | 
|  | if (New->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | diag::kind PrevDiag; | 
|  | SourceLocation OldLocation; | 
|  | std::tie(PrevDiag, OldLocation) = | 
|  | getNoteDiagForInvalidRedeclaration(Old, New); | 
|  |  | 
|  | // [dcl.stc]p8: Check if we have a non-static decl followed by a static. | 
|  | if (New->getStorageClass() == SC_Static && | 
|  | !New->isStaticDataMember() && | 
|  | Old->hasExternalFormalLinkage()) { | 
|  | if (getLangOpts().MicrosoftExt) { | 
|  | Diag(New->getLocation(), diag::ext_static_non_static) | 
|  | << New->getDeclName(); | 
|  | Diag(OldLocation, PrevDiag); | 
|  | } else { | 
|  | Diag(New->getLocation(), diag::err_static_non_static) | 
|  | << New->getDeclName(); | 
|  | Diag(OldLocation, PrevDiag); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | // C99 6.2.2p4: | 
|  | //   For an identifier declared with the storage-class specifier | 
|  | //   extern in a scope in which a prior declaration of that | 
|  | //   identifier is visible,23) if the prior declaration specifies | 
|  | //   internal or external linkage, the linkage of the identifier at | 
|  | //   the later declaration is the same as the linkage specified at | 
|  | //   the prior declaration. If no prior declaration is visible, or | 
|  | //   if the prior declaration specifies no linkage, then the | 
|  | //   identifier has external linkage. | 
|  | if (New->hasExternalStorage() && Old->hasLinkage()) | 
|  | /* Okay */; | 
|  | else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && | 
|  | !New->isStaticDataMember() && | 
|  | Old->getCanonicalDecl()->getStorageClass() == SC_Static) { | 
|  | Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); | 
|  | Diag(OldLocation, PrevDiag); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // Check if extern is followed by non-extern and vice-versa. | 
|  | if (New->hasExternalStorage() && | 
|  | !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { | 
|  | Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); | 
|  | Diag(OldLocation, PrevDiag); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  | if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && | 
|  | !New->hasExternalStorage()) { | 
|  | Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); | 
|  | Diag(OldLocation, PrevDiag); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (CheckRedeclarationModuleOwnership(New, Old)) | 
|  | return; | 
|  |  | 
|  | // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. | 
|  |  | 
|  | // FIXME: The test for external storage here seems wrong? We still | 
|  | // need to check for mismatches. | 
|  | if (!New->hasExternalStorage() && !New->isFileVarDecl() && | 
|  | // Don't complain about out-of-line definitions of static members. | 
|  | !(Old->getLexicalDeclContext()->isRecord() && | 
|  | !New->getLexicalDeclContext()->isRecord())) { | 
|  | Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); | 
|  | Diag(OldLocation, PrevDiag); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { | 
|  | if (VarDecl *Def = Old->getDefinition()) { | 
|  | // C++1z [dcl.fcn.spec]p4: | 
|  | //   If the definition of a variable appears in a translation unit before | 
|  | //   its first declaration as inline, the program is ill-formed. | 
|  | Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this redeclaration makes the variable inline, we may need to add it to | 
|  | // UndefinedButUsed. | 
|  | if (!Old->isInline() && New->isInline() && Old->isUsed(false) && | 
|  | !Old->getDefinition() && !New->isThisDeclarationADefinition()) | 
|  | UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), | 
|  | SourceLocation())); | 
|  |  | 
|  | if (New->getTLSKind() != Old->getTLSKind()) { | 
|  | if (!Old->getTLSKind()) { | 
|  | Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); | 
|  | Diag(OldLocation, PrevDiag); | 
|  | } else if (!New->getTLSKind()) { | 
|  | Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); | 
|  | Diag(OldLocation, PrevDiag); | 
|  | } else { | 
|  | // Do not allow redeclaration to change the variable between requiring | 
|  | // static and dynamic initialization. | 
|  | // FIXME: GCC allows this, but uses the TLS keyword on the first | 
|  | // declaration to determine the kind. Do we need to be compatible here? | 
|  | Diag(New->getLocation(), diag::err_thread_thread_different_kind) | 
|  | << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); | 
|  | Diag(OldLocation, PrevDiag); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ doesn't have tentative definitions, so go right ahead and check here. | 
|  | if (getLangOpts().CPlusPlus && | 
|  | New->isThisDeclarationADefinition() == VarDecl::Definition) { | 
|  | if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && | 
|  | Old->getCanonicalDecl()->isConstexpr()) { | 
|  | // This definition won't be a definition any more once it's been merged. | 
|  | Diag(New->getLocation(), | 
|  | diag::warn_deprecated_redundant_constexpr_static_def); | 
|  | } else if (VarDecl *Def = Old->getDefinition()) { | 
|  | if (checkVarDeclRedefinition(Def, New)) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (haveIncompatibleLanguageLinkages(Old, New)) { | 
|  | Diag(New->getLocation(), diag::err_different_language_linkage) << New; | 
|  | Diag(OldLocation, PrevDiag); | 
|  | New->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Merge "used" flag. | 
|  | if (Old->getMostRecentDecl()->isUsed(false)) | 
|  | New->setIsUsed(); | 
|  |  | 
|  | // Keep a chain of previous declarations. | 
|  | New->setPreviousDecl(Old); | 
|  | if (NewTemplate) | 
|  | NewTemplate->setPreviousDecl(OldTemplate); | 
|  | adjustDeclContextForDeclaratorDecl(New, Old); | 
|  |  | 
|  | // Inherit access appropriately. | 
|  | New->setAccess(Old->getAccess()); | 
|  | if (NewTemplate) | 
|  | NewTemplate->setAccess(New->getAccess()); | 
|  |  | 
|  | if (Old->isInline()) | 
|  | New->setImplicitlyInline(); | 
|  | } | 
|  |  | 
|  | void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { | 
|  | SourceManager &SrcMgr = getSourceManager(); | 
|  | auto FNewDecLoc = SrcMgr.getDecomposedLoc(New); | 
|  | auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation()); | 
|  | auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first); | 
|  | auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first); | 
|  | auto &HSI = PP.getHeaderSearchInfo(); | 
|  | StringRef HdrFilename = | 
|  | SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation())); | 
|  |  | 
|  | auto noteFromModuleOrInclude = [&](Module *Mod, | 
|  | SourceLocation IncLoc) -> bool { | 
|  | // Redefinition errors with modules are common with non modular mapped | 
|  | // headers, example: a non-modular header H in module A that also gets | 
|  | // included directly in a TU. Pointing twice to the same header/definition | 
|  | // is confusing, try to get better diagnostics when modules is on. | 
|  | if (IncLoc.isValid()) { | 
|  | if (Mod) { | 
|  | Diag(IncLoc, diag::note_redefinition_modules_same_file) | 
|  | << HdrFilename.str() << Mod->getFullModuleName(); | 
|  | if (!Mod->DefinitionLoc.isInvalid()) | 
|  | Diag(Mod->DefinitionLoc, diag::note_defined_here) | 
|  | << Mod->getFullModuleName(); | 
|  | } else { | 
|  | Diag(IncLoc, diag::note_redefinition_include_same_file) | 
|  | << HdrFilename.str(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // Is it the same file and same offset? Provide more information on why | 
|  | // this leads to a redefinition error. | 
|  | bool EmittedDiag = false; | 
|  | if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { | 
|  | SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first); | 
|  | SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first); | 
|  | EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); | 
|  | EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); | 
|  |  | 
|  | // If the header has no guards, emit a note suggesting one. | 
|  | if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld)) | 
|  | Diag(Old->getLocation(), diag::note_use_ifdef_guards); | 
|  |  | 
|  | if (EmittedDiag) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Redefinition coming from different files or couldn't do better above. | 
|  | if (Old->getLocation().isValid()) | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | } | 
|  |  | 
|  | /// We've just determined that \p Old and \p New both appear to be definitions | 
|  | /// of the same variable. Either diagnose or fix the problem. | 
|  | bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { | 
|  | if (!hasVisibleDefinition(Old) && | 
|  | (New->getFormalLinkage() == InternalLinkage || | 
|  | New->isInline() || | 
|  | New->getDescribedVarTemplate() || | 
|  | New->getNumTemplateParameterLists() || | 
|  | New->getDeclContext()->isDependentContext())) { | 
|  | // The previous definition is hidden, and multiple definitions are | 
|  | // permitted (in separate TUs). Demote this to a declaration. | 
|  | New->demoteThisDefinitionToDeclaration(); | 
|  |  | 
|  | // Make the canonical definition visible. | 
|  | if (auto *OldTD = Old->getDescribedVarTemplate()) | 
|  | makeMergedDefinitionVisible(OldTD); | 
|  | makeMergedDefinitionVisible(Old); | 
|  | return false; | 
|  | } else { | 
|  | Diag(New->getLocation(), diag::err_redefinition) << New; | 
|  | notePreviousDefinition(Old, New->getLocation()); | 
|  | New->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with | 
|  | /// no declarator (e.g. "struct foo;") is parsed. | 
|  | Decl * | 
|  | Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, | 
|  | RecordDecl *&AnonRecord) { | 
|  | return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false, | 
|  | AnonRecord); | 
|  | } | 
|  |  | 
|  | // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to | 
|  | // disambiguate entities defined in different scopes. | 
|  | // While the VS2015 ABI fixes potential miscompiles, it is also breaks | 
|  | // compatibility. | 
|  | // We will pick our mangling number depending on which version of MSVC is being | 
|  | // targeted. | 
|  | static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { | 
|  | return LO.isCompatibleWithMSVC(LangOptions::MSVC2015) | 
|  | ? S->getMSCurManglingNumber() | 
|  | : S->getMSLastManglingNumber(); | 
|  | } | 
|  |  | 
|  | void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { | 
|  | if (!Context.getLangOpts().CPlusPlus) | 
|  | return; | 
|  |  | 
|  | if (isa<CXXRecordDecl>(Tag->getParent())) { | 
|  | // If this tag is the direct child of a class, number it if | 
|  | // it is anonymous. | 
|  | if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) | 
|  | return; | 
|  | MangleNumberingContext &MCtx = | 
|  | Context.getManglingNumberContext(Tag->getParent()); | 
|  | Context.setManglingNumber( | 
|  | Tag, MCtx.getManglingNumber( | 
|  | Tag, getMSManglingNumber(getLangOpts(), TagScope))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this tag isn't a direct child of a class, number it if it is local. | 
|  | Decl *ManglingContextDecl; | 
|  | if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext( | 
|  | Tag->getDeclContext(), ManglingContextDecl)) { | 
|  | Context.setManglingNumber( | 
|  | Tag, MCtx->getManglingNumber( | 
|  | Tag, getMSManglingNumber(getLangOpts(), TagScope))); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, | 
|  | TypedefNameDecl *NewTD) { | 
|  | if (TagFromDeclSpec->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // Do nothing if the tag already has a name for linkage purposes. | 
|  | if (TagFromDeclSpec->hasNameForLinkage()) | 
|  | return; | 
|  |  | 
|  | // A well-formed anonymous tag must always be a TUK_Definition. | 
|  | assert(TagFromDeclSpec->isThisDeclarationADefinition()); | 
|  |  | 
|  | // The type must match the tag exactly;  no qualifiers allowed. | 
|  | if (!Context.hasSameType(NewTD->getUnderlyingType(), | 
|  | Context.getTagDeclType(TagFromDeclSpec))) { | 
|  | if (getLangOpts().CPlusPlus) | 
|  | Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we've already computed linkage for the anonymous tag, then | 
|  | // adding a typedef name for the anonymous decl can change that | 
|  | // linkage, which might be a serious problem.  Diagnose this as | 
|  | // unsupported and ignore the typedef name.  TODO: we should | 
|  | // pursue this as a language defect and establish a formal rule | 
|  | // for how to handle it. | 
|  | if (TagFromDeclSpec->hasLinkageBeenComputed()) { | 
|  | Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage); | 
|  |  | 
|  | SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart(); | 
|  | tagLoc = getLocForEndOfToken(tagLoc); | 
|  |  | 
|  | llvm::SmallString<40> textToInsert; | 
|  | textToInsert += ' '; | 
|  | textToInsert += NewTD->getIdentifier()->getName(); | 
|  | Diag(tagLoc, diag::note_typedef_changes_linkage) | 
|  | << FixItHint::CreateInsertion(tagLoc, textToInsert); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, set this is the anon-decl typedef for the tag. | 
|  | TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); | 
|  | } | 
|  |  | 
|  | static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) { | 
|  | switch (T) { | 
|  | case DeclSpec::TST_class: | 
|  | return 0; | 
|  | case DeclSpec::TST_struct: | 
|  | return 1; | 
|  | case DeclSpec::TST_interface: | 
|  | return 2; | 
|  | case DeclSpec::TST_union: | 
|  | return 3; | 
|  | case DeclSpec::TST_enum: | 
|  | return 4; | 
|  | default: | 
|  | llvm_unreachable("unexpected type specifier"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with | 
|  | /// no declarator (e.g. "struct foo;") is parsed. It also accepts template | 
|  | /// parameters to cope with template friend declarations. | 
|  | Decl * | 
|  | Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, | 
|  | MultiTemplateParamsArg TemplateParams, | 
|  | bool IsExplicitInstantiation, | 
|  | RecordDecl *&AnonRecord) { | 
|  | Decl *TagD = nullptr; | 
|  | TagDecl *Tag = nullptr; | 
|  | if (DS.getTypeSpecType() == DeclSpec::TST_class || | 
|  | DS.getTypeSpecType() == DeclSpec::TST_struct || | 
|  | DS.getTypeSpecType() == DeclSpec::TST_interface || | 
|  | DS.getTypeSpecType() == DeclSpec::TST_union || | 
|  | DS.getTypeSpecType() == DeclSpec::TST_enum) { | 
|  | TagD = DS.getRepAsDecl(); | 
|  |  | 
|  | if (!TagD) // We probably had an error | 
|  | return nullptr; | 
|  |  | 
|  | // Note that the above type specs guarantee that the | 
|  | // type rep is a Decl, whereas in many of the others | 
|  | // it's a Type. | 
|  | if (isa<TagDecl>(TagD)) | 
|  | Tag = cast<TagDecl>(TagD); | 
|  | else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) | 
|  | Tag = CTD->getTemplatedDecl(); | 
|  | } | 
|  |  | 
|  | if (Tag) { | 
|  | handleTagNumbering(Tag, S); | 
|  | Tag->setFreeStanding(); | 
|  | if (Tag->isInvalidDecl()) | 
|  | return Tag; | 
|  | } | 
|  |  | 
|  | if (unsigned TypeQuals = DS.getTypeQualifiers()) { | 
|  | // Enforce C99 6.7.3p2: "Types other than pointer types derived from object | 
|  | // or incomplete types shall not be restrict-qualified." | 
|  | if (TypeQuals & DeclSpec::TQ_restrict) | 
|  | Diag(DS.getRestrictSpecLoc(), | 
|  | diag::err_typecheck_invalid_restrict_not_pointer_noarg) | 
|  | << DS.getSourceRange(); | 
|  | } | 
|  |  | 
|  | if (DS.isInlineSpecified()) | 
|  | Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) | 
|  | << getLangOpts().CPlusPlus17; | 
|  |  | 
|  | if (DS.hasConstexprSpecifier()) { | 
|  | // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations | 
|  | // and definitions of functions and variables. | 
|  | // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to | 
|  | // the declaration of a function or function template | 
|  | bool IsConsteval = DS.getConstexprSpecifier() == CSK_consteval; | 
|  | if (Tag) | 
|  | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) | 
|  | << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << IsConsteval; | 
|  | else | 
|  | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind) | 
|  | << IsConsteval; | 
|  | // Don't emit warnings after this error. | 
|  | return TagD; | 
|  | } | 
|  |  | 
|  | DiagnoseFunctionSpecifiers(DS); | 
|  |  | 
|  | if (DS.isFriendSpecified()) { | 
|  | // If we're dealing with a decl but not a TagDecl, assume that | 
|  | // whatever routines created it handled the friendship aspect. | 
|  | if (TagD && !Tag) | 
|  | return nullptr; | 
|  | return ActOnFriendTypeDecl(S, DS, TemplateParams); | 
|  | } | 
|  |  | 
|  | const CXXScopeSpec &SS = DS.getTypeSpecScope(); | 
|  | bool IsExplicitSpecialization = | 
|  | !TemplateParams.empty() && TemplateParams.back()->size() == 0; | 
|  | if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && | 
|  | !IsExplicitInstantiation && !IsExplicitSpecialization && | 
|  | !isa<ClassTemplatePartialSpecializationDecl>(Tag)) { | 
|  | // Per C++ [dcl.type.elab]p1, a class declaration cannot have a | 
|  | // nested-name-specifier unless it is an explicit instantiation | 
|  | // or an explicit specialization. | 
|  | // | 
|  | // FIXME: We allow class template partial specializations here too, per the | 
|  | // obvious intent of DR1819. | 
|  | // | 
|  | // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. | 
|  | Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) | 
|  | << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Track whether this decl-specifier declares anything. | 
|  | bool DeclaresAnything = true; | 
|  |  | 
|  | // Handle anonymous struct definitions. | 
|  | if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { | 
|  | if (!Record->getDeclName() && Record->isCompleteDefinition() && | 
|  | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { | 
|  | if (getLangOpts().CPlusPlus || | 
|  | Record->getDeclContext()->isRecord()) { | 
|  | // If CurContext is a DeclContext that can contain statements, | 
|  | // RecursiveASTVisitor won't visit the decls that | 
|  | // BuildAnonymousStructOrUnion() will put into CurContext. | 
|  | // Also store them here so that they can be part of the | 
|  | // DeclStmt that gets created in this case. | 
|  | // FIXME: Also return the IndirectFieldDecls created by | 
|  | // BuildAnonymousStructOr union, for the same reason? | 
|  | if (CurContext->isFunctionOrMethod()) | 
|  | AnonRecord = Record; | 
|  | return BuildAnonymousStructOrUnion(S, DS, AS, Record, | 
|  | Context.getPrintingPolicy()); | 
|  | } | 
|  |  | 
|  | DeclaresAnything = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C11 6.7.2.1p2: | 
|  | //   A struct-declaration that does not declare an anonymous structure or | 
|  | //   anonymous union shall contain a struct-declarator-list. | 
|  | // | 
|  | // This rule also existed in C89 and C99; the grammar for struct-declaration | 
|  | // did not permit a struct-declaration without a struct-declarator-list. | 
|  | if (!getLangOpts().CPlusPlus && CurContext->isRecord() && | 
|  | DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { | 
|  | // Check for Microsoft C extension: anonymous struct/union member. | 
|  | // Handle 2 kinds of anonymous struct/union: | 
|  | //   struct STRUCT; | 
|  | //   union UNION; | 
|  | // and | 
|  | //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct. | 
|  | //   UNION_TYPE;   <- where UNION_TYPE is a typedef union. | 
|  | if ((Tag && Tag->getDeclName()) || | 
|  | DS.getTypeSpecType() == DeclSpec::TST_typename) { | 
|  | RecordDecl *Record = nullptr; | 
|  | if (Tag) | 
|  | Record = dyn_cast<RecordDecl>(Tag); | 
|  | else if (const RecordType *RT = | 
|  | DS.getRepAsType().get()->getAsStructureType()) | 
|  | Record = RT->getDecl(); | 
|  | else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) | 
|  | Record = UT->getDecl(); | 
|  |  | 
|  | if (Record && getLangOpts().MicrosoftExt) { | 
|  | Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record) | 
|  | << Record->isUnion() << DS.getSourceRange(); | 
|  | return BuildMicrosoftCAnonymousStruct(S, DS, Record); | 
|  | } | 
|  |  | 
|  | DeclaresAnything = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Skip all the checks below if we have a type error. | 
|  | if (DS.getTypeSpecType() == DeclSpec::TST_error || | 
|  | (TagD && TagD->isInvalidDecl())) | 
|  | return TagD; | 
|  |  | 
|  | if (getLangOpts().CPlusPlus && | 
|  | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) | 
|  | if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) | 
|  | if (Enum->enumerator_begin() == Enum->enumerator_end() && | 
|  | !Enum->getIdentifier() && !Enum->isInvalidDecl()) | 
|  | DeclaresAnything = false; | 
|  |  | 
|  | if (!DS.isMissingDeclaratorOk()) { | 
|  | // Customize diagnostic for a typedef missing a name. | 
|  | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) | 
|  | Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name) | 
|  | << DS.getSourceRange(); | 
|  | else | 
|  | DeclaresAnything = false; | 
|  | } | 
|  |  | 
|  | if (DS.isModulePrivateSpecified() && | 
|  | Tag && Tag->getDeclContext()->isFunctionOrMethod()) | 
|  | Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) | 
|  | << Tag->getTagKind() | 
|  | << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); | 
|  |  | 
|  | ActOnDocumentableDecl(TagD); | 
|  |  | 
|  | // C 6.7/2: | 
|  | //   A declaration [...] shall declare at least a declarator [...], a tag, | 
|  | //   or the members of an enumeration. | 
|  | // C++ [dcl.dcl]p3: | 
|  | //   [If there are no declarators], and except for the declaration of an | 
|  | //   unnamed bit-field, the decl-specifier-seq shall introduce one or more | 
|  | //   names into the program, or shall redeclare a name introduced by a | 
|  | //   previous declaration. | 
|  | if (!DeclaresAnything) { | 
|  | // In C, we allow this as a (popular) extension / bug. Don't bother | 
|  | // producing further diagnostics for redundant qualifiers after this. | 
|  | Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); | 
|  | return TagD; | 
|  | } | 
|  |  | 
|  | // C++ [dcl.stc]p1: | 
|  | //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the | 
|  | //   init-declarator-list of the declaration shall not be empty. | 
|  | // C++ [dcl.fct.spec]p1: | 
|  | //   If a cv-qualifier appears in a decl-specifier-seq, the | 
|  | //   init-declarator-list of the declaration shall not be empty. | 
|  | // | 
|  | // Spurious qualifiers here appear to be valid in C. | 
|  | unsigned DiagID = diag::warn_standalone_specifier; | 
|  | if (getLangOpts().CPlusPlus) | 
|  | DiagID = diag::ext_standalone_specifier; | 
|  |  | 
|  | // Note that a linkage-specification sets a storage class, but | 
|  | // 'extern "C" struct foo;' is actually valid and not theoretically | 
|  | // useless. | 
|  | if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { | 
|  | if (SCS == DeclSpec::SCS_mutable) | 
|  | // Since mutable is not a viable storage class specifier in C, there is | 
|  | // no reason to treat it as an extension. Instead, diagnose as an error. | 
|  | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); | 
|  | else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) | 
|  | Diag(DS.getStorageClassSpecLoc(), DiagID) | 
|  | << DeclSpec::getSpecifierName(SCS); | 
|  | } | 
|  |  | 
|  | if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) | 
|  | Diag(DS.getThreadStorageClassSpecLoc(), DiagID) | 
|  | << DeclSpec::getSpecifierName(TSCS); | 
|  | if (DS.getTypeQualifiers()) { | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) | 
|  | Diag(DS.getConstSpecLoc(), DiagID) << "const"; | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) | 
|  | Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; | 
|  | // Restrict is covered above. | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) | 
|  | Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) | 
|  | Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned"; | 
|  | } | 
|  |  | 
|  | // Warn about ignored type attributes, for example: | 
|  | // __attribute__((aligned)) struct A; | 
|  | // Attributes should be placed after tag to apply to type declaration. | 
|  | if (!DS.getAttributes().empty()) { | 
|  | DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); | 
|  | if (TypeSpecType == DeclSpec::TST_class || | 
|  | TypeSpecType == DeclSpec::TST_struct || | 
|  | TypeSpecType == DeclSpec::TST_interface || | 
|  | TypeSpecType == DeclSpec::TST_union || | 
|  | TypeSpecType == DeclSpec::TST_enum) { | 
|  | for (const ParsedAttr &AL : DS.getAttributes()) | 
|  | Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) | 
|  | << AL.getName() << GetDiagnosticTypeSpecifierID(TypeSpecType); | 
|  | } | 
|  | } | 
|  |  | 
|  | return TagD; | 
|  | } | 
|  |  | 
|  | /// We are trying to inject an anonymous member into the given scope; | 
|  | /// check if there's an existing declaration that can't be overloaded. | 
|  | /// | 
|  | /// \return true if this is a forbidden redeclaration | 
|  | static bool CheckAnonMemberRedeclaration(Sema &SemaRef, | 
|  | Scope *S, | 
|  | DeclContext *Owner, | 
|  | DeclarationName Name, | 
|  | SourceLocation NameLoc, | 
|  | bool IsUnion) { | 
|  | LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, | 
|  | Sema::ForVisibleRedeclaration); | 
|  | if (!SemaRef.LookupName(R, S)) return false; | 
|  |  | 
|  | // Pick a representative declaration. | 
|  | NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); | 
|  | assert(PrevDecl && "Expected a non-null Decl"); | 
|  |  | 
|  | if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) | 
|  | return false; | 
|  |  | 
|  | SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) | 
|  | << IsUnion << Name; | 
|  | SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// InjectAnonymousStructOrUnionMembers - Inject the members of the | 
|  | /// anonymous struct or union AnonRecord into the owning context Owner | 
|  | /// and scope S. This routine will be invoked just after we realize | 
|  | /// that an unnamed union or struct is actually an anonymous union or | 
|  | /// struct, e.g., | 
|  | /// | 
|  | /// @code | 
|  | /// union { | 
|  | ///   int i; | 
|  | ///   float f; | 
|  | /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and | 
|  | ///    // f into the surrounding scope.x | 
|  | /// @endcode | 
|  | /// | 
|  | /// This routine is recursive, injecting the names of nested anonymous | 
|  | /// structs/unions into the owning context and scope as well. | 
|  | static bool | 
|  | InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, | 
|  | RecordDecl *AnonRecord, AccessSpecifier AS, | 
|  | SmallVectorImpl<NamedDecl *> &Chaining) { | 
|  | bool Invalid = false; | 
|  |  | 
|  | // Look every FieldDecl and IndirectFieldDecl with a name. | 
|  | for (auto *D : AnonRecord->decls()) { | 
|  | if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && | 
|  | cast<NamedDecl>(D)->getDeclName()) { | 
|  | ValueDecl *VD = cast<ValueDecl>(D); | 
|  | if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), | 
|  | VD->getLocation(), | 
|  | AnonRecord->isUnion())) { | 
|  | // C++ [class.union]p2: | 
|  | //   The names of the members of an anonymous union shall be | 
|  | //   distinct from the names of any other entity in the | 
|  | //   scope in which the anonymous union is declared. | 
|  | Invalid = true; | 
|  | } else { | 
|  | // C++ [class.union]p2: | 
|  | //   For the purpose of name lookup, after the anonymous union | 
|  | //   definition, the members of the anonymous union are | 
|  | //   considered to have been defined in the scope in which the | 
|  | //   anonymous union is declared. | 
|  | unsigned OldChainingSize = Chaining.size(); | 
|  | if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) | 
|  | Chaining.append(IF->chain_begin(), IF->chain_end()); | 
|  | else | 
|  | Chaining.push_back(VD); | 
|  |  | 
|  | assert(Chaining.size() >= 2); | 
|  | NamedDecl **NamedChain = | 
|  | new (SemaRef.Context)NamedDecl*[Chaining.size()]; | 
|  | for (unsigned i = 0; i < Chaining.size(); i++) | 
|  | NamedChain[i] = Chaining[i]; | 
|  |  | 
|  | IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( | 
|  | SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), | 
|  | VD->getType(), {NamedChain, Chaining.size()}); | 
|  |  | 
|  | for (const auto *Attr : VD->attrs()) | 
|  | IndirectField->addAttr(Attr->clone(SemaRef.Context)); | 
|  |  | 
|  | IndirectField->setAccess(AS); | 
|  | IndirectField->setImplicit(); | 
|  | SemaRef.PushOnScopeChains(IndirectField, S); | 
|  |  | 
|  | // That includes picking up the appropriate access specifier. | 
|  | if (AS != AS_none) IndirectField->setAccess(AS); | 
|  |  | 
|  | Chaining.resize(OldChainingSize); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to | 
|  | /// a VarDecl::StorageClass. Any error reporting is up to the caller: | 
|  | /// illegal input values are mapped to SC_None. | 
|  | static StorageClass | 
|  | StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { | 
|  | DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); | 
|  | assert(StorageClassSpec != DeclSpec::SCS_typedef && | 
|  | "Parser allowed 'typedef' as storage class VarDecl."); | 
|  | switch (StorageClassSpec) { | 
|  | case DeclSpec::SCS_unspecified:    return SC_None; | 
|  | case DeclSpec::SCS_extern: | 
|  | if (DS.isExternInLinkageSpec()) | 
|  | return SC_None; | 
|  | return SC_Extern; | 
|  | case DeclSpec::SCS_static:         return SC_Static; | 
|  | case DeclSpec::SCS_auto:           return SC_Auto; | 
|  | case DeclSpec::SCS_register:       return SC_Register; | 
|  | case DeclSpec::SCS_private_extern: return SC_PrivateExtern; | 
|  | // Illegal SCSs map to None: error reporting is up to the caller. | 
|  | case DeclSpec::SCS_mutable:        // Fall through. | 
|  | case DeclSpec::SCS_typedef:        return SC_None; | 
|  | } | 
|  | llvm_unreachable("unknown storage class specifier"); | 
|  | } | 
|  |  | 
|  | static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { | 
|  | assert(Record->hasInClassInitializer()); | 
|  |  | 
|  | for (const auto *I : Record->decls()) { | 
|  | const auto *FD = dyn_cast<FieldDecl>(I); | 
|  | if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) | 
|  | FD = IFD->getAnonField(); | 
|  | if (FD && FD->hasInClassInitializer()) | 
|  | return FD->getLocation(); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("couldn't find in-class initializer"); | 
|  | } | 
|  |  | 
|  | static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, | 
|  | SourceLocation DefaultInitLoc) { | 
|  | if (!Parent->isUnion() || !Parent->hasInClassInitializer()) | 
|  | return; | 
|  |  | 
|  | S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); | 
|  | S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; | 
|  | } | 
|  |  | 
|  | static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, | 
|  | CXXRecordDecl *AnonUnion) { | 
|  | if (!Parent->isUnion() || !Parent->hasInClassInitializer()) | 
|  | return; | 
|  |  | 
|  | checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); | 
|  | } | 
|  |  | 
|  | /// BuildAnonymousStructOrUnion - Handle the declaration of an | 
|  | /// anonymous structure or union. Anonymous unions are a C++ feature | 
|  | /// (C++ [class.union]) and a C11 feature; anonymous structures | 
|  | /// are a C11 feature and GNU C++ extension. | 
|  | Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, | 
|  | AccessSpecifier AS, | 
|  | RecordDecl *Record, | 
|  | const PrintingPolicy &Policy) { | 
|  | DeclContext *Owner = Record->getDeclContext(); | 
|  |  | 
|  | // Diagnose whether this anonymous struct/union is an extension. | 
|  | if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) | 
|  | Diag(Record->getLocation(), diag::ext_anonymous_union); | 
|  | else if (!Record->isUnion() && getLangOpts().CPlusPlus) | 
|  | Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); | 
|  | else if (!Record->isUnion() && !getLangOpts().C11) | 
|  | Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); | 
|  |  | 
|  | // C and C++ require different kinds of checks for anonymous | 
|  | // structs/unions. | 
|  | bool Invalid = false; | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | const char *PrevSpec = nullptr; | 
|  | unsigned DiagID; | 
|  | if (Record->isUnion()) { | 
|  | // C++ [class.union]p6: | 
|  | // C++17 [class.union.anon]p2: | 
|  | //   Anonymous unions declared in a named namespace or in the | 
|  | //   global namespace shall be declared static. | 
|  | DeclContext *OwnerScope = Owner->getRedeclContext(); | 
|  | if (DS.getStorageClassSpec() != DeclSpec::SCS_static && | 
|  | (OwnerScope->isTranslationUnit() || | 
|  | (OwnerScope->isNamespace() && | 
|  | !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) { | 
|  | Diag(Record->getLocation(), diag::err_anonymous_union_not_static) | 
|  | << FixItHint::CreateInsertion(Record->getLocation(), "static "); | 
|  |  | 
|  | // Recover by adding 'static'. | 
|  | DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), | 
|  | PrevSpec, DiagID, Policy); | 
|  | } | 
|  | // C++ [class.union]p6: | 
|  | //   A storage class is not allowed in a declaration of an | 
|  | //   anonymous union in a class scope. | 
|  | else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && | 
|  | isa<RecordDecl>(Owner)) { | 
|  | Diag(DS.getStorageClassSpecLoc(), | 
|  | diag::err_anonymous_union_with_storage_spec) | 
|  | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); | 
|  |  | 
|  | // Recover by removing the storage specifier. | 
|  | DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, | 
|  | SourceLocation(), | 
|  | PrevSpec, DiagID, Context.getPrintingPolicy()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ignore const/volatile/restrict qualifiers. | 
|  | if (DS.getTypeQualifiers()) { | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) | 
|  | Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) | 
|  | << Record->isUnion() << "const" | 
|  | << FixItHint::CreateRemoval(DS.getConstSpecLoc()); | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) | 
|  | Diag(DS.getVolatileSpecLoc(), | 
|  | diag::ext_anonymous_struct_union_qualified) | 
|  | << Record->isUnion() << "volatile" | 
|  | << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) | 
|  | Diag(DS.getRestrictSpecLoc(), | 
|  | diag::ext_anonymous_struct_union_qualified) | 
|  | << Record->isUnion() << "restrict" | 
|  | << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) | 
|  | Diag(DS.getAtomicSpecLoc(), | 
|  | diag::ext_anonymous_struct_union_qualified) | 
|  | << Record->isUnion() << "_Atomic" | 
|  | << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) | 
|  | Diag(DS.getUnalignedSpecLoc(), | 
|  | diag::ext_anonymous_struct_union_qualified) | 
|  | << Record->isUnion() << "__unaligned" | 
|  | << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); | 
|  |  | 
|  | DS.ClearTypeQualifiers(); | 
|  | } | 
|  |  | 
|  | // C++ [class.union]p2: | 
|  | //   The member-specification of an anonymous union shall only | 
|  | //   define non-static data members. [Note: nested types and | 
|  | //   functions cannot be declared within an anonymous union. ] | 
|  | for (auto *Mem : Record->decls()) { | 
|  | if (auto *FD = dyn_cast<FieldDecl>(Mem)) { | 
|  | // C++ [class.union]p3: | 
|  | //   An anonymous union shall not have private or protected | 
|  | //   members (clause 11). | 
|  | assert(FD->getAccess() != AS_none); | 
|  | if (FD->getAccess() != AS_public) { | 
|  | Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) | 
|  | << Record->isUnion() << (FD->getAccess() == AS_protected); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | // C++ [class.union]p1 | 
|  | //   An object of a class with a non-trivial constructor, a non-trivial | 
|  | //   copy constructor, a non-trivial destructor, or a non-trivial copy | 
|  | //   assignment operator cannot be a member of a union, nor can an | 
|  | //   array of such objects. | 
|  | if (CheckNontrivialField(FD)) | 
|  | Invalid = true; | 
|  | } else if (Mem->isImplicit()) { | 
|  | // Any implicit members are fine. | 
|  | } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { | 
|  | // This is a type that showed up in an | 
|  | // elaborated-type-specifier inside the anonymous struct or | 
|  | // union, but which actually declares a type outside of the | 
|  | // anonymous struct or union. It's okay. | 
|  | } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { | 
|  | if (!MemRecord->isAnonymousStructOrUnion() && | 
|  | MemRecord->getDeclName()) { | 
|  | // Visual C++ allows type definition in anonymous struct or union. | 
|  | if (getLangOpts().MicrosoftExt) | 
|  | Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) | 
|  | << Record->isUnion(); | 
|  | else { | 
|  | // This is a nested type declaration. | 
|  | Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) | 
|  | << Record->isUnion(); | 
|  | Invalid = true; | 
|  | } | 
|  | } else { | 
|  | // This is an anonymous type definition within another anonymous type. | 
|  | // This is a popular extension, provided by Plan9, MSVC and GCC, but | 
|  | // not part of standard C++. | 
|  | Diag(MemRecord->getLocation(), | 
|  | diag::ext_anonymous_record_with_anonymous_type) | 
|  | << Record->isUnion(); | 
|  | } | 
|  | } else if (isa<AccessSpecDecl>(Mem)) { | 
|  | // Any access specifier is fine. | 
|  | } else if (isa<StaticAssertDecl>(Mem)) { | 
|  | // In C++1z, static_assert declarations are also fine. | 
|  | } else { | 
|  | // We have something that isn't a non-static data | 
|  | // member. Complain about it. | 
|  | unsigned DK = diag::err_anonymous_record_bad_member; | 
|  | if (isa<TypeDecl>(Mem)) | 
|  | DK = diag::err_anonymous_record_with_type; | 
|  | else if (isa<FunctionDecl>(Mem)) | 
|  | DK = diag::err_anonymous_record_with_function; | 
|  | else if (isa<VarDecl>(Mem)) | 
|  | DK = diag::err_anonymous_record_with_static; | 
|  |  | 
|  | // Visual C++ allows type definition in anonymous struct or union. | 
|  | if (getLangOpts().MicrosoftExt && | 
|  | DK == diag::err_anonymous_record_with_type) | 
|  | Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) | 
|  | << Record->isUnion(); | 
|  | else { | 
|  | Diag(Mem->getLocation(), DK) << Record->isUnion(); | 
|  | Invalid = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++11 [class.union]p8 (DR1460): | 
|  | //   At most one variant member of a union may have a | 
|  | //   brace-or-equal-initializer. | 
|  | if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && | 
|  | Owner->isRecord()) | 
|  | checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), | 
|  | cast<CXXRecordDecl>(Record)); | 
|  | } | 
|  |  | 
|  | if (!Record->isUnion() && !Owner->isRecord()) { | 
|  | Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) | 
|  | << getLangOpts().CPlusPlus; | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | // C++ [dcl.dcl]p3: | 
|  | //   [If there are no declarators], and except for the declaration of an | 
|  | //   unnamed bit-field, the decl-specifier-seq shall introduce one or more | 
|  | //   names into the program | 
|  | // C++ [class.mem]p2: | 
|  | //   each such member-declaration shall either declare at least one member | 
|  | //   name of the class or declare at least one unnamed bit-field | 
|  | // | 
|  | // For C this is an error even for a named struct, and is diagnosed elsewhere. | 
|  | if (getLangOpts().CPlusPlus && Record->field_empty()) | 
|  | Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); | 
|  |  | 
|  | // Mock up a declarator. | 
|  | Declarator Dc(DS, DeclaratorContext::MemberContext); | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); | 
|  | assert(TInfo && "couldn't build declarator info for anonymous struct/union"); | 
|  |  | 
|  | // Create a declaration for this anonymous struct/union. | 
|  | NamedDecl *Anon = nullptr; | 
|  | if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { | 
|  | Anon = FieldDecl::Create( | 
|  | Context, OwningClass, DS.getBeginLoc(), Record->getLocation(), | 
|  | /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo, | 
|  | /*BitWidth=*/nullptr, /*Mutable=*/false, | 
|  | /*InitStyle=*/ICIS_NoInit); | 
|  | Anon->setAccess(AS); | 
|  | if (getLangOpts().CPlusPlus) | 
|  | FieldCollector->Add(cast<FieldDecl>(Anon)); | 
|  | } else { | 
|  | DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); | 
|  | StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); | 
|  | if (SCSpec == DeclSpec::SCS_mutable) { | 
|  | // mutable can only appear on non-static class members, so it's always | 
|  | // an error here | 
|  | Diag(Record->getLocation(), diag::err_mutable_nonmember); | 
|  | Invalid = true; | 
|  | SC = SC_None; | 
|  | } | 
|  |  | 
|  | Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(), | 
|  | Record->getLocation(), /*IdentifierInfo=*/nullptr, | 
|  | Context.getTypeDeclType(Record), TInfo, SC); | 
|  |  | 
|  | // Default-initialize the implicit variable. This initialization will be | 
|  | // trivial in almost all cases, except if a union member has an in-class | 
|  | // initializer: | 
|  | //   union { int n = 0; }; | 
|  | ActOnUninitializedDecl(Anon); | 
|  | } | 
|  | Anon->setImplicit(); | 
|  |  | 
|  | // Mark this as an anonymous struct/union type. | 
|  | Record->setAnonymousStructOrUnion(true); | 
|  |  | 
|  | // Add the anonymous struct/union object to the current | 
|  | // context. We'll be referencing this object when we refer to one of | 
|  | // its members. | 
|  | Owner->addDecl(Anon); | 
|  |  | 
|  | // Inject the members of the anonymous struct/union into the owning | 
|  | // context and into the identifier resolver chain for name lookup | 
|  | // purposes. | 
|  | SmallVector<NamedDecl*, 2> Chain; | 
|  | Chain.push_back(Anon); | 
|  |  | 
|  | if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain)) | 
|  | Invalid = true; | 
|  |  | 
|  | if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { | 
|  | if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { | 
|  | Decl *ManglingContextDecl; | 
|  | if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext( | 
|  | NewVD->getDeclContext(), ManglingContextDecl)) { | 
|  | Context.setManglingNumber( | 
|  | NewVD, MCtx->getManglingNumber( | 
|  | NewVD, getMSManglingNumber(getLangOpts(), S))); | 
|  | Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Invalid) | 
|  | Anon->setInvalidDecl(); | 
|  |  | 
|  | return Anon; | 
|  | } | 
|  |  | 
|  | /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an | 
|  | /// Microsoft C anonymous structure. | 
|  | /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx | 
|  | /// Example: | 
|  | /// | 
|  | /// struct A { int a; }; | 
|  | /// struct B { struct A; int b; }; | 
|  | /// | 
|  | /// void foo() { | 
|  | ///   B var; | 
|  | ///   var.a = 3; | 
|  | /// } | 
|  | /// | 
|  | Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, | 
|  | RecordDecl *Record) { | 
|  | assert(Record && "expected a record!"); | 
|  |  | 
|  | // Mock up a declarator. | 
|  | Declarator Dc(DS, DeclaratorContext::TypeNameContext); | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); | 
|  | assert(TInfo && "couldn't build declarator info for anonymous struct"); | 
|  |  | 
|  | auto *ParentDecl = cast<RecordDecl>(CurContext); | 
|  | QualType RecTy = Context.getTypeDeclType(Record); | 
|  |  | 
|  | // Create a declaration for this anonymous struct. | 
|  | NamedDecl *Anon = | 
|  | FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(), | 
|  | /*IdentifierInfo=*/nullptr, RecTy, TInfo, | 
|  | /*BitWidth=*/nullptr, /*Mutable=*/false, | 
|  | /*InitStyle=*/ICIS_NoInit); | 
|  | Anon->setImplicit(); | 
|  |  | 
|  | // Add the anonymous struct object to the current context. | 
|  | CurContext->addDecl(Anon); | 
|  |  | 
|  | // Inject the members of the anonymous struct into the current | 
|  | // context and into the identifier resolver chain for name lookup | 
|  | // purposes. | 
|  | SmallVector<NamedDecl*, 2> Chain; | 
|  | Chain.push_back(Anon); | 
|  |  | 
|  | RecordDecl *RecordDef = Record->getDefinition(); | 
|  | if (RequireCompleteType(Anon->getLocation(), RecTy, | 
|  | diag::err_field_incomplete) || | 
|  | InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef, | 
|  | AS_none, Chain)) { | 
|  | Anon->setInvalidDecl(); | 
|  | ParentDecl->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | return Anon; | 
|  | } | 
|  |  | 
|  | /// GetNameForDeclarator - Determine the full declaration name for the | 
|  | /// given Declarator. | 
|  | DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { | 
|  | return GetNameFromUnqualifiedId(D.getName()); | 
|  | } | 
|  |  | 
|  | /// Retrieves the declaration name from a parsed unqualified-id. | 
|  | DeclarationNameInfo | 
|  | Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { | 
|  | DeclarationNameInfo NameInfo; | 
|  | NameInfo.setLoc(Name.StartLocation); | 
|  |  | 
|  | switch (Name.getKind()) { | 
|  |  | 
|  | case UnqualifiedIdKind::IK_ImplicitSelfParam: | 
|  | case UnqualifiedIdKind::IK_Identifier: | 
|  | NameInfo.setName(Name.Identifier); | 
|  | return NameInfo; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_DeductionGuideName: { | 
|  | // C++ [temp.deduct.guide]p3: | 
|  | //   The simple-template-id shall name a class template specialization. | 
|  | //   The template-name shall be the same identifier as the template-name | 
|  | //   of the simple-template-id. | 
|  | // These together intend to imply that the template-name shall name a | 
|  | // class template. | 
|  | // FIXME: template<typename T> struct X {}; | 
|  | //        template<typename T> using Y = X<T>; | 
|  | //        Y(int) -> Y<int>; | 
|  | //   satisfies these rules but does not name a class template. | 
|  | TemplateName TN = Name.TemplateName.get().get(); | 
|  | auto *Template = TN.getAsTemplateDecl(); | 
|  | if (!Template || !isa<ClassTemplateDecl>(Template)) { | 
|  | Diag(Name.StartLocation, | 
|  | diag::err_deduction_guide_name_not_class_template) | 
|  | << (int)getTemplateNameKindForDiagnostics(TN) << TN; | 
|  | if (Template) | 
|  | Diag(Template->getLocation(), diag::note_template_decl_here); | 
|  | return DeclarationNameInfo(); | 
|  | } | 
|  |  | 
|  | NameInfo.setName( | 
|  | Context.DeclarationNames.getCXXDeductionGuideName(Template)); | 
|  | return NameInfo; | 
|  | } | 
|  |  | 
|  | case UnqualifiedIdKind::IK_OperatorFunctionId: | 
|  | NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( | 
|  | Name.OperatorFunctionId.Operator)); | 
|  | NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc | 
|  | = Name.OperatorFunctionId.SymbolLocations[0]; | 
|  | NameInfo.getInfo().CXXOperatorName.EndOpNameLoc | 
|  | = Name.EndLocation.getRawEncoding(); | 
|  | return NameInfo; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_LiteralOperatorId: | 
|  | NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( | 
|  | Name.Identifier)); | 
|  | NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); | 
|  | return NameInfo; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_ConversionFunctionId: { | 
|  | TypeSourceInfo *TInfo; | 
|  | QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); | 
|  | if (Ty.isNull()) | 
|  | return DeclarationNameInfo(); | 
|  | NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( | 
|  | Context.getCanonicalType(Ty))); | 
|  | NameInfo.setNamedTypeInfo(TInfo); | 
|  | return NameInfo; | 
|  | } | 
|  |  | 
|  | case UnqualifiedIdKind::IK_ConstructorName: { | 
|  | TypeSourceInfo *TInfo; | 
|  | QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); | 
|  | if (Ty.isNull()) | 
|  | return DeclarationNameInfo(); | 
|  | NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(Ty))); | 
|  | NameInfo.setNamedTypeInfo(TInfo); | 
|  | return NameInfo; | 
|  | } | 
|  |  | 
|  | case UnqualifiedIdKind::IK_ConstructorTemplateId: { | 
|  | // In well-formed code, we can only have a constructor | 
|  | // template-id that refers to the current context, so go there | 
|  | // to find the actual type being constructed. | 
|  | CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); | 
|  | if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) | 
|  | return DeclarationNameInfo(); | 
|  |  | 
|  | // Determine the type of the class being constructed. | 
|  | QualType CurClassType = Context.getTypeDeclType(CurClass); | 
|  |  | 
|  | // FIXME: Check two things: that the template-id names the same type as | 
|  | // CurClassType, and that the template-id does not occur when the name | 
|  | // was qualified. | 
|  |  | 
|  | NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(CurClassType))); | 
|  | // FIXME: should we retrieve TypeSourceInfo? | 
|  | NameInfo.setNamedTypeInfo(nullptr); | 
|  | return NameInfo; | 
|  | } | 
|  |  | 
|  | case UnqualifiedIdKind::IK_DestructorName: { | 
|  | TypeSourceInfo *TInfo; | 
|  | QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); | 
|  | if (Ty.isNull()) | 
|  | return DeclarationNameInfo(); | 
|  | NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( | 
|  | Context.getCanonicalType(Ty))); | 
|  | NameInfo.setNamedTypeInfo(TInfo); | 
|  | return NameInfo; | 
|  | } | 
|  |  | 
|  | case UnqualifiedIdKind::IK_TemplateId: { | 
|  | TemplateName TName = Name.TemplateId->Template.get(); | 
|  | SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; | 
|  | return Context.getNameForTemplate(TName, TNameLoc); | 
|  | } | 
|  |  | 
|  | } // switch (Name.getKind()) | 
|  |  | 
|  | llvm_unreachable("Unknown name kind"); | 
|  | } | 
|  |  | 
|  | static QualType getCoreType(QualType Ty) { | 
|  | do { | 
|  | if (Ty->isPointerType() || Ty->isReferenceType()) | 
|  | Ty = Ty->getPointeeType(); | 
|  | else if (Ty->isArrayType()) | 
|  | Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); | 
|  | else | 
|  | return Ty.withoutLocalFastQualifiers(); | 
|  | } while (true); | 
|  | } | 
|  |  | 
|  | /// hasSimilarParameters - Determine whether the C++ functions Declaration | 
|  | /// and Definition have "nearly" matching parameters. This heuristic is | 
|  | /// used to improve diagnostics in the case where an out-of-line function | 
|  | /// definition doesn't match any declaration within the class or namespace. | 
|  | /// Also sets Params to the list of indices to the parameters that differ | 
|  | /// between the declaration and the definition. If hasSimilarParameters | 
|  | /// returns true and Params is empty, then all of the parameters match. | 
|  | static bool hasSimilarParameters(ASTContext &Context, | 
|  | FunctionDecl *Declaration, | 
|  | FunctionDecl *Definition, | 
|  | SmallVectorImpl<unsigned> &Params) { | 
|  | Params.clear(); | 
|  | if (Declaration->param_size() != Definition->param_size()) | 
|  | return false; | 
|  | for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { | 
|  | QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); | 
|  | QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); | 
|  |  | 
|  | // The parameter types are identical | 
|  | if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy)) | 
|  | continue; | 
|  |  | 
|  | QualType DeclParamBaseTy = getCoreType(DeclParamTy); | 
|  | QualType DefParamBaseTy = getCoreType(DefParamTy); | 
|  | const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); | 
|  | const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); | 
|  |  | 
|  | if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || | 
|  | (DeclTyName && DeclTyName == DefTyName)) | 
|  | Params.push_back(Idx); | 
|  | else  // The two parameters aren't even close | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// NeedsRebuildingInCurrentInstantiation - Checks whether the given | 
|  | /// declarator needs to be rebuilt in the current instantiation. | 
|  | /// Any bits of declarator which appear before the name are valid for | 
|  | /// consideration here.  That's specifically the type in the decl spec | 
|  | /// and the base type in any member-pointer chunks. | 
|  | static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, | 
|  | DeclarationName Name) { | 
|  | // The types we specifically need to rebuild are: | 
|  | //   - typenames, typeofs, and decltypes | 
|  | //   - types which will become injected class names | 
|  | // Of course, we also need to rebuild any type referencing such a | 
|  | // type.  It's safest to just say "dependent", but we call out a | 
|  | // few cases here. | 
|  |  | 
|  | DeclSpec &DS = D.getMutableDeclSpec(); | 
|  | switch (DS.getTypeSpecType()) { | 
|  | case DeclSpec::TST_typename: | 
|  | case DeclSpec::TST_typeofType: | 
|  | case DeclSpec::TST_underlyingType: | 
|  | case DeclSpec::TST_atomic: { | 
|  | // Grab the type from the parser. | 
|  | TypeSourceInfo *TSI = nullptr; | 
|  | QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); | 
|  | if (T.isNull() || !T->isDependentType()) break; | 
|  |  | 
|  | // Make sure there's a type source info.  This isn't really much | 
|  | // of a waste; most dependent types should have type source info | 
|  | // attached already. | 
|  | if (!TSI) | 
|  | TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); | 
|  |  | 
|  | // Rebuild the type in the current instantiation. | 
|  | TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); | 
|  | if (!TSI) return true; | 
|  |  | 
|  | // Store the new type back in the decl spec. | 
|  | ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); | 
|  | DS.UpdateTypeRep(LocType); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case DeclSpec::TST_decltype: | 
|  | case DeclSpec::TST_typeofExpr: { | 
|  | Expr *E = DS.getRepAsExpr(); | 
|  | ExprResult Result = S.RebuildExprInCurrentInstantiation(E); | 
|  | if (Result.isInvalid()) return true; | 
|  | DS.UpdateExprRep(Result.get()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | // Nothing to do for these decl specs. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // It doesn't matter what order we do this in. | 
|  | for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { | 
|  | DeclaratorChunk &Chunk = D.getTypeObject(I); | 
|  |  | 
|  | // The only type information in the declarator which can come | 
|  | // before the declaration name is the base type of a member | 
|  | // pointer. | 
|  | if (Chunk.Kind != DeclaratorChunk::MemberPointer) | 
|  | continue; | 
|  |  | 
|  | // Rebuild the scope specifier in-place. | 
|  | CXXScopeSpec &SS = Chunk.Mem.Scope(); | 
|  | if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { | 
|  | D.setFunctionDefinitionKind(FDK_Declaration); | 
|  | Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); | 
|  |  | 
|  | if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && | 
|  | Dcl && Dcl->getDeclContext()->isFileContext()) | 
|  | Dcl->setTopLevelDeclInObjCContainer(); | 
|  |  | 
|  | if (getLangOpts().OpenCL) | 
|  | setCurrentOpenCLExtensionForDecl(Dcl); | 
|  |  | 
|  | return Dcl; | 
|  | } | 
|  |  | 
|  | /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: | 
|  | ///   If T is the name of a class, then each of the following shall have a | 
|  | ///   name different from T: | 
|  | ///     - every static data member of class T; | 
|  | ///     - every member function of class T | 
|  | ///     - every member of class T that is itself a type; | 
|  | /// \returns true if the declaration name violates these rules. | 
|  | bool Sema::DiagnoseClassNameShadow(DeclContext *DC, | 
|  | DeclarationNameInfo NameInfo) { | 
|  | DeclarationName Name = NameInfo.getName(); | 
|  |  | 
|  | CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC); | 
|  | while (Record && Record->isAnonymousStructOrUnion()) | 
|  | Record = dyn_cast<CXXRecordDecl>(Record->getParent()); | 
|  | if (Record && Record->getIdentifier() && Record->getDeclName() == Name) { | 
|  | Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Diagnose a declaration whose declarator-id has the given | 
|  | /// nested-name-specifier. | 
|  | /// | 
|  | /// \param SS The nested-name-specifier of the declarator-id. | 
|  | /// | 
|  | /// \param DC The declaration context to which the nested-name-specifier | 
|  | /// resolves. | 
|  | /// | 
|  | /// \param Name The name of the entity being declared. | 
|  | /// | 
|  | /// \param Loc The location of the name of the entity being declared. | 
|  | /// | 
|  | /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus | 
|  | /// we're declaring an explicit / partial specialization / instantiation. | 
|  | /// | 
|  | /// \returns true if we cannot safely recover from this error, false otherwise. | 
|  | bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, | 
|  | DeclarationName Name, | 
|  | SourceLocation Loc, bool IsTemplateId) { | 
|  | DeclContext *Cur = CurContext; | 
|  | while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) | 
|  | Cur = Cur->getParent(); | 
|  |  | 
|  | // If the user provided a superfluous scope specifier that refers back to the | 
|  | // class in which the entity is already declared, diagnose and ignore it. | 
|  | // | 
|  | // class X { | 
|  | //   void X::f(); | 
|  | // }; | 
|  | // | 
|  | // Note, it was once ill-formed to give redundant qualification in all | 
|  | // contexts, but that rule was removed by DR482. | 
|  | if (Cur->Equals(DC)) { | 
|  | if (Cur->isRecord()) { | 
|  | Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification | 
|  | : diag::err_member_extra_qualification) | 
|  | << Name << FixItHint::CreateRemoval(SS.getRange()); | 
|  | SS.clear(); | 
|  | } else { | 
|  | Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check whether the qualifying scope encloses the scope of the original | 
|  | // declaration. For a template-id, we perform the checks in | 
|  | // CheckTemplateSpecializationScope. | 
|  | if (!Cur->Encloses(DC) && !IsTemplateId) { | 
|  | if (Cur->isRecord()) | 
|  | Diag(Loc, diag::err_member_qualification) | 
|  | << Name << SS.getRange(); | 
|  | else if (isa<TranslationUnitDecl>(DC)) | 
|  | Diag(Loc, diag::err_invalid_declarator_global_scope) | 
|  | << Name << SS.getRange(); | 
|  | else if (isa<FunctionDecl>(Cur)) | 
|  | Diag(Loc, diag::err_invalid_declarator_in_function) | 
|  | << Name << SS.getRange(); | 
|  | else if (isa<BlockDecl>(Cur)) | 
|  | Diag(Loc, diag::err_invalid_declarator_in_block) | 
|  | << Name << SS.getRange(); | 
|  | else | 
|  | Diag(Loc, diag::err_invalid_declarator_scope) | 
|  | << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Cur->isRecord()) { | 
|  | // Cannot qualify members within a class. | 
|  | Diag(Loc, diag::err_member_qualification) | 
|  | << Name << SS.getRange(); | 
|  | SS.clear(); | 
|  |  | 
|  | // C++ constructors and destructors with incorrect scopes can break | 
|  | // our AST invariants by having the wrong underlying types. If | 
|  | // that's the case, then drop this declaration entirely. | 
|  | if ((Name.getNameKind() == DeclarationName::CXXConstructorName || | 
|  | Name.getNameKind() == DeclarationName::CXXDestructorName) && | 
|  | !Context.hasSameType(Name.getCXXNameType(), | 
|  | Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // C++11 [dcl.meaning]p1: | 
|  | //   [...] "The nested-name-specifier of the qualified declarator-id shall | 
|  | //   not begin with a decltype-specifer" | 
|  | NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); | 
|  | while (SpecLoc.getPrefix()) | 
|  | SpecLoc = SpecLoc.getPrefix(); | 
|  | if (dyn_cast_or_null<DecltypeType>( | 
|  | SpecLoc.getNestedNameSpecifier()->getAsType())) | 
|  | Diag(Loc, diag::err_decltype_in_declarator) | 
|  | << SpecLoc.getTypeLoc().getSourceRange(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, | 
|  | MultiTemplateParamsArg TemplateParamLists) { | 
|  | // TODO: consider using NameInfo for diagnostic. | 
|  | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
|  | DeclarationName Name = NameInfo.getName(); | 
|  |  | 
|  | // All of these full declarators require an identifier.  If it doesn't have | 
|  | // one, the ParsedFreeStandingDeclSpec action should be used. | 
|  | if (D.isDecompositionDeclarator()) { | 
|  | return ActOnDecompositionDeclarator(S, D, TemplateParamLists); | 
|  | } else if (!Name) { | 
|  | if (!D.isInvalidType())  // Reject this if we think it is valid. | 
|  | Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident) | 
|  | << D.getDeclSpec().getSourceRange() << D.getSourceRange(); | 
|  | return nullptr; | 
|  | } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) | 
|  | return nullptr; | 
|  |  | 
|  | // The scope passed in may not be a decl scope.  Zip up the scope tree until | 
|  | // we find one that is. | 
|  | while ((S->getFlags() & Scope::DeclScope) == 0 || | 
|  | (S->getFlags() & Scope::TemplateParamScope) != 0) | 
|  | S = S->getParent(); | 
|  |  | 
|  | DeclContext *DC = CurContext; | 
|  | if (D.getCXXScopeSpec().isInvalid()) | 
|  | D.setInvalidType(); | 
|  | else if (D.getCXXScopeSpec().isSet()) { | 
|  | if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), | 
|  | UPPC_DeclarationQualifier)) | 
|  | return nullptr; | 
|  |  | 
|  | bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); | 
|  | DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); | 
|  | if (!DC || isa<EnumDecl>(DC)) { | 
|  | // If we could not compute the declaration context, it's because the | 
|  | // declaration context is dependent but does not refer to a class, | 
|  | // class template, or class template partial specialization. Complain | 
|  | // and return early, to avoid the coming semantic disaster. | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_template_qualified_declarator_no_match) | 
|  | << D.getCXXScopeSpec().getScopeRep() | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | return nullptr; | 
|  | } | 
|  | bool IsDependentContext = DC->isDependentContext(); | 
|  |  | 
|  | if (!IsDependentContext && | 
|  | RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) | 
|  | return nullptr; | 
|  |  | 
|  | // If a class is incomplete, do not parse entities inside it. | 
|  | if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_member_def_undefined_record) | 
|  | << Name << DC << D.getCXXScopeSpec().getRange(); | 
|  | return nullptr; | 
|  | } | 
|  | if (!D.getDeclSpec().isFriendSpecified()) { | 
|  | if (diagnoseQualifiedDeclaration( | 
|  | D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(), | 
|  | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) { | 
|  | if (DC->isRecord()) | 
|  | return nullptr; | 
|  |  | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether we need to rebuild the type of the given | 
|  | // declaration in the current instantiation. | 
|  | if (EnteringContext && IsDependentContext && | 
|  | TemplateParamLists.size() != 0) { | 
|  | ContextRAII SavedContext(*this, DC); | 
|  | if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | QualType R = TInfo->getType(); | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | 
|  | UPPC_DeclarationType)) | 
|  | D.setInvalidType(); | 
|  |  | 
|  | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | 
|  | forRedeclarationInCurContext()); | 
|  |  | 
|  | // See if this is a redefinition of a variable in the same scope. | 
|  | if (!D.getCXXScopeSpec().isSet()) { | 
|  | bool IsLinkageLookup = false; | 
|  | bool CreateBuiltins = false; | 
|  |  | 
|  | // If the declaration we're planning to build will be a function | 
|  | // or object with linkage, then look for another declaration with | 
|  | // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). | 
|  | // | 
|  | // If the declaration we're planning to build will be declared with | 
|  | // external linkage in the translation unit, create any builtin with | 
|  | // the same name. | 
|  | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) | 
|  | /* Do nothing*/; | 
|  | else if (CurContext->isFunctionOrMethod() && | 
|  | (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || | 
|  | R->isFunctionType())) { | 
|  | IsLinkageLookup = true; | 
|  | CreateBuiltins = | 
|  | CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); | 
|  | } else if (CurContext->getRedeclContext()->isTranslationUnit() && | 
|  | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) | 
|  | CreateBuiltins = true; | 
|  |  | 
|  | if (IsLinkageLookup) { | 
|  | Previous.clear(LookupRedeclarationWithLinkage); | 
|  | Previous.setRedeclarationKind(ForExternalRedeclaration); | 
|  | } | 
|  |  | 
|  | LookupName(Previous, S, CreateBuiltins); | 
|  | } else { // Something like "int foo::x;" | 
|  | LookupQualifiedName(Previous, DC); | 
|  |  | 
|  | // C++ [dcl.meaning]p1: | 
|  | //   When the declarator-id is qualified, the declaration shall refer to a | 
|  | //  previously declared member of the class or namespace to which the | 
|  | //  qualifier refers (or, in the case of a namespace, of an element of the | 
|  | //  inline namespace set of that namespace (7.3.1)) or to a specialization | 
|  | //  thereof; [...] | 
|  | // | 
|  | // Note that we already checked the context above, and that we do not have | 
|  | // enough information to make sure that Previous contains the declaration | 
|  | // we want to match. For example, given: | 
|  | // | 
|  | //   class X { | 
|  | //     void f(); | 
|  | //     void f(float); | 
|  | //   }; | 
|  | // | 
|  | //   void X::f(int) { } // ill-formed | 
|  | // | 
|  | // In this case, Previous will point to the overload set | 
|  | // containing the two f's declared in X, but neither of them | 
|  | // matches. | 
|  |  | 
|  | // C++ [dcl.meaning]p1: | 
|  | //   [...] the member shall not merely have been introduced by a | 
|  | //   using-declaration in the scope of the class or namespace nominated by | 
|  | //   the nested-name-specifier of the declarator-id. | 
|  | RemoveUsingDecls(Previous); | 
|  | } | 
|  |  | 
|  | if (Previous.isSingleResult() && | 
|  | Previous.getFoundDecl()->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | if (!D.isInvalidType()) | 
|  | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), | 
|  | Previous.getFoundDecl()); | 
|  |  | 
|  | // Just pretend that we didn't see the previous declaration. | 
|  | Previous.clear(); | 
|  | } | 
|  |  | 
|  | if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo)) | 
|  | // Forget that the previous declaration is the injected-class-name. | 
|  | Previous.clear(); | 
|  |  | 
|  | // In C++, the previous declaration we find might be a tag type | 
|  | // (class or enum). In this case, the new declaration will hide the | 
|  | // tag type. Note that this applies to functions, function templates, and | 
|  | // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates. | 
|  | if (Previous.isSingleTagDecl() && | 
|  | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && | 
|  | (TemplateParamLists.size() == 0 || R->isFunctionType())) | 
|  | Previous.clear(); | 
|  |  | 
|  | // Check that there are no default arguments other than in the parameters | 
|  | // of a function declaration (C++ only). | 
|  | if (getLangOpts().CPlusPlus) | 
|  | CheckExtraCXXDefaultArguments(D); | 
|  |  | 
|  | NamedDecl *New; | 
|  |  | 
|  | bool AddToScope = true; | 
|  | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { | 
|  | if (TemplateParamLists.size()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_template_typedef); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); | 
|  | } else if (R->isFunctionType()) { | 
|  | New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, | 
|  | TemplateParamLists, | 
|  | AddToScope); | 
|  | } else { | 
|  | New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, | 
|  | AddToScope); | 
|  | } | 
|  |  | 
|  | if (!New) | 
|  | return nullptr; | 
|  |  | 
|  | // If this has an identifier and is not a function template specialization, | 
|  | // add it to the scope stack. | 
|  | if (New->getDeclName() && AddToScope) | 
|  | PushOnScopeChains(New, S); | 
|  |  | 
|  | if (isInOpenMPDeclareTargetContext()) | 
|  | checkDeclIsAllowedInOpenMPTarget(nullptr, New); | 
|  |  | 
|  | return New; | 
|  | } | 
|  |  | 
|  | /// Helper method to turn variable array types into constant array | 
|  | /// types in certain situations which would otherwise be errors (for | 
|  | /// GCC compatibility). | 
|  | static QualType TryToFixInvalidVariablyModifiedType(QualType T, | 
|  | ASTContext &Context, | 
|  | bool &SizeIsNegative, | 
|  | llvm::APSInt &Oversized) { | 
|  | // This method tries to turn a variable array into a constant | 
|  | // array even when the size isn't an ICE.  This is necessary | 
|  | // for compatibility with code that depends on gcc's buggy | 
|  | // constant expression folding, like struct {char x[(int)(char*)2];} | 
|  | SizeIsNegative = false; | 
|  | Oversized = 0; | 
|  |  | 
|  | if (T->isDependentType()) | 
|  | return QualType(); | 
|  |  | 
|  | QualifierCollector Qs; | 
|  | const Type *Ty = Qs.strip(T); | 
|  |  | 
|  | if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { | 
|  | QualType Pointee = PTy->getPointeeType(); | 
|  | QualType FixedType = | 
|  | TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, | 
|  | Oversized); | 
|  | if (FixedType.isNull()) return FixedType; | 
|  | FixedType = Context.getPointerType(FixedType); | 
|  | return Qs.apply(Context, FixedType); | 
|  | } | 
|  | if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { | 
|  | QualType Inner = PTy->getInnerType(); | 
|  | QualType FixedType = | 
|  | TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, | 
|  | Oversized); | 
|  | if (FixedType.isNull()) return FixedType; | 
|  | FixedType = Context.getParenType(FixedType); | 
|  | return Qs.apply(Context, FixedType); | 
|  | } | 
|  |  | 
|  | const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); | 
|  | if (!VLATy) | 
|  | return QualType(); | 
|  | // FIXME: We should probably handle this case | 
|  | if (VLATy->getElementType()->isVariablyModifiedType()) | 
|  | return QualType(); | 
|  |  | 
|  | Expr::EvalResult Result; | 
|  | if (!VLATy->getSizeExpr() || | 
|  | !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context)) | 
|  | return QualType(); | 
|  |  | 
|  | llvm::APSInt Res = Result.Val.getInt(); | 
|  |  | 
|  | // Check whether the array size is negative. | 
|  | if (Res.isSigned() && Res.isNegative()) { | 
|  | SizeIsNegative = true; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // Check whether the array is too large to be addressed. | 
|  | unsigned ActiveSizeBits | 
|  | = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(), | 
|  | Res); | 
|  | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { | 
|  | Oversized = Res; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | return Context.getConstantArrayType(VLATy->getElementType(), | 
|  | Res, ArrayType::Normal, 0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { | 
|  | SrcTL = SrcTL.getUnqualifiedLoc(); | 
|  | DstTL = DstTL.getUnqualifiedLoc(); | 
|  | if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { | 
|  | PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); | 
|  | FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), | 
|  | DstPTL.getPointeeLoc()); | 
|  | DstPTL.setStarLoc(SrcPTL.getStarLoc()); | 
|  | return; | 
|  | } | 
|  | if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { | 
|  | ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); | 
|  | FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), | 
|  | DstPTL.getInnerLoc()); | 
|  | DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); | 
|  | DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); | 
|  | return; | 
|  | } | 
|  | ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); | 
|  | ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); | 
|  | TypeLoc SrcElemTL = SrcATL.getElementLoc(); | 
|  | TypeLoc DstElemTL = DstATL.getElementLoc(); | 
|  | DstElemTL.initializeFullCopy(SrcElemTL); | 
|  | DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); | 
|  | DstATL.setSizeExpr(SrcATL.getSizeExpr()); | 
|  | DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); | 
|  | } | 
|  |  | 
|  | /// Helper method to turn variable array types into constant array | 
|  | /// types in certain situations which would otherwise be errors (for | 
|  | /// GCC compatibility). | 
|  | static TypeSourceInfo* | 
|  | TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, | 
|  | ASTContext &Context, | 
|  | bool &SizeIsNegative, | 
|  | llvm::APSInt &Oversized) { | 
|  | QualType FixedTy | 
|  | = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, | 
|  | SizeIsNegative, Oversized); | 
|  | if (FixedTy.isNull()) | 
|  | return nullptr; | 
|  | TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); | 
|  | FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), | 
|  | FixedTInfo->getTypeLoc()); | 
|  | return FixedTInfo; | 
|  | } | 
|  |  | 
|  | /// Register the given locally-scoped extern "C" declaration so | 
|  | /// that it can be found later for redeclarations. We include any extern "C" | 
|  | /// declaration that is not visible in the translation unit here, not just | 
|  | /// function-scope declarations. | 
|  | void | 
|  | Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { | 
|  | if (!getLangOpts().CPlusPlus && | 
|  | ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) | 
|  | // Don't need to track declarations in the TU in C. | 
|  | return; | 
|  |  | 
|  | // Note that we have a locally-scoped external with this name. | 
|  | Context.getExternCContextDecl()->makeDeclVisibleInContext(ND); | 
|  | } | 
|  |  | 
|  | NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { | 
|  | // FIXME: We can have multiple results via __attribute__((overloadable)). | 
|  | auto Result = Context.getExternCContextDecl()->lookup(Name); | 
|  | return Result.empty() ? nullptr : *Result.begin(); | 
|  | } | 
|  |  | 
|  | /// Diagnose function specifiers on a declaration of an identifier that | 
|  | /// does not identify a function. | 
|  | void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { | 
|  | // FIXME: We should probably indicate the identifier in question to avoid | 
|  | // confusion for constructs like "virtual int a(), b;" | 
|  | if (DS.isVirtualSpecified()) | 
|  | Diag(DS.getVirtualSpecLoc(), | 
|  | diag::err_virtual_non_function); | 
|  |  | 
|  | if (DS.hasExplicitSpecifier()) | 
|  | Diag(DS.getExplicitSpecLoc(), | 
|  | diag::err_explicit_non_function); | 
|  |  | 
|  | if (DS.isNoreturnSpecified()) | 
|  | Diag(DS.getNoreturnSpecLoc(), | 
|  | diag::err_noreturn_non_function); | 
|  | } | 
|  |  | 
|  | NamedDecl* | 
|  | Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, | 
|  | TypeSourceInfo *TInfo, LookupResult &Previous) { | 
|  | // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). | 
|  | if (D.getCXXScopeSpec().isSet()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | D.setInvalidType(); | 
|  | // Pretend we didn't see the scope specifier. | 
|  | DC = CurContext; | 
|  | Previous.clear(); | 
|  | } | 
|  |  | 
|  | DiagnoseFunctionSpecifiers(D.getDeclSpec()); | 
|  |  | 
|  | if (D.getDeclSpec().isInlineSpecified()) | 
|  | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) | 
|  | << getLangOpts().CPlusPlus17; | 
|  | if (D.getDeclSpec().hasConstexprSpecifier()) | 
|  | Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) | 
|  | << 1 << (D.getDeclSpec().getConstexprSpecifier() == CSK_consteval); | 
|  |  | 
|  | if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) { | 
|  | if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName) | 
|  | Diag(D.getName().StartLocation, | 
|  | diag::err_deduction_guide_invalid_specifier) | 
|  | << "typedef"; | 
|  | else | 
|  | Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) | 
|  | << D.getName().getSourceRange(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); | 
|  | if (!NewTD) return nullptr; | 
|  |  | 
|  | // Handle attributes prior to checking for duplicates in MergeVarDecl | 
|  | ProcessDeclAttributes(S, NewTD, D); | 
|  |  | 
|  | CheckTypedefForVariablyModifiedType(S, NewTD); | 
|  |  | 
|  | bool Redeclaration = D.isRedeclaration(); | 
|  | NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); | 
|  | D.setRedeclaration(Redeclaration); | 
|  | return ND; | 
|  | } | 
|  |  | 
|  | void | 
|  | Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { | 
|  | // C99 6.7.7p2: If a typedef name specifies a variably modified type | 
|  | // then it shall have block scope. | 
|  | // Note that variably modified types must be fixed before merging the decl so | 
|  | // that redeclarations will match. | 
|  | TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); | 
|  | QualType T = TInfo->getType(); | 
|  | if (T->isVariablyModifiedType()) { | 
|  | setFunctionHasBranchProtectedScope(); | 
|  |  | 
|  | if (S->getFnParent() == nullptr) { | 
|  | bool SizeIsNegative; | 
|  | llvm::APSInt Oversized; | 
|  | TypeSourceInfo *FixedTInfo = | 
|  | TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, | 
|  | SizeIsNegative, | 
|  | Oversized); | 
|  | if (FixedTInfo) { | 
|  | Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size); | 
|  | NewTD->setTypeSourceInfo(FixedTInfo); | 
|  | } else { | 
|  | if (SizeIsNegative) | 
|  | Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); | 
|  | else if (T->isVariableArrayType()) | 
|  | Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); | 
|  | else if (Oversized.getBoolValue()) | 
|  | Diag(NewTD->getLocation(), diag::err_array_too_large) | 
|  | << Oversized.toString(10); | 
|  | else | 
|  | Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); | 
|  | NewTD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which | 
|  | /// declares a typedef-name, either using the 'typedef' type specifier or via | 
|  | /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. | 
|  | NamedDecl* | 
|  | Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, | 
|  | LookupResult &Previous, bool &Redeclaration) { | 
|  |  | 
|  | // Find the shadowed declaration before filtering for scope. | 
|  | NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous); | 
|  |  | 
|  | // Merge the decl with the existing one if appropriate. If the decl is | 
|  | // in an outer scope, it isn't the same thing. | 
|  | FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, | 
|  | /*AllowInlineNamespace*/false); | 
|  | filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous); | 
|  | if (!Previous.empty()) { | 
|  | Redeclaration = true; | 
|  | MergeTypedefNameDecl(S, NewTD, Previous); | 
|  | } | 
|  |  | 
|  | if (ShadowedDecl && !Redeclaration) | 
|  | CheckShadow(NewTD, ShadowedDecl, Previous); | 
|  |  | 
|  | // If this is the C FILE type, notify the AST context. | 
|  | if (IdentifierInfo *II = NewTD->getIdentifier()) | 
|  | if (!NewTD->isInvalidDecl() && | 
|  | NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | 
|  | if (II->isStr("FILE")) | 
|  | Context.setFILEDecl(NewTD); | 
|  | else if (II->isStr("jmp_buf")) | 
|  | Context.setjmp_bufDecl(NewTD); | 
|  | else if (II->isStr("sigjmp_buf")) | 
|  | Context.setsigjmp_bufDecl(NewTD); | 
|  | else if (II->isStr("ucontext_t")) | 
|  | Context.setucontext_tDecl(NewTD); | 
|  | } | 
|  |  | 
|  | return NewTD; | 
|  | } | 
|  |  | 
|  | /// Determines whether the given declaration is an out-of-scope | 
|  | /// previous declaration. | 
|  | /// | 
|  | /// This routine should be invoked when name lookup has found a | 
|  | /// previous declaration (PrevDecl) that is not in the scope where a | 
|  | /// new declaration by the same name is being introduced. If the new | 
|  | /// declaration occurs in a local scope, previous declarations with | 
|  | /// linkage may still be considered previous declarations (C99 | 
|  | /// 6.2.2p4-5, C++ [basic.link]p6). | 
|  | /// | 
|  | /// \param PrevDecl the previous declaration found by name | 
|  | /// lookup | 
|  | /// | 
|  | /// \param DC the context in which the new declaration is being | 
|  | /// declared. | 
|  | /// | 
|  | /// \returns true if PrevDecl is an out-of-scope previous declaration | 
|  | /// for a new delcaration with the same name. | 
|  | static bool | 
|  | isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, | 
|  | ASTContext &Context) { | 
|  | if (!PrevDecl) | 
|  | return false; | 
|  |  | 
|  | if (!PrevDecl->hasLinkage()) | 
|  | return false; | 
|  |  | 
|  | if (Context.getLangOpts().CPlusPlus) { | 
|  | // C++ [basic.link]p6: | 
|  | //   If there is a visible declaration of an entity with linkage | 
|  | //   having the same name and type, ignoring entities declared | 
|  | //   outside the innermost enclosing namespace scope, the block | 
|  | //   scope declaration declares that same entity and receives the | 
|  | //   linkage of the previous declaration. | 
|  | DeclContext *OuterContext = DC->getRedeclContext(); | 
|  | if (!OuterContext->isFunctionOrMethod()) | 
|  | // This rule only applies to block-scope declarations. | 
|  | return false; | 
|  |  | 
|  | DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); | 
|  | if (PrevOuterContext->isRecord()) | 
|  | // We found a member function: ignore it. | 
|  | return false; | 
|  |  | 
|  | // Find the innermost enclosing namespace for the new and | 
|  | // previous declarations. | 
|  | OuterContext = OuterContext->getEnclosingNamespaceContext(); | 
|  | PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); | 
|  |  | 
|  | // The previous declaration is in a different namespace, so it | 
|  | // isn't the same function. | 
|  | if (!OuterContext->Equals(PrevOuterContext)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) { | 
|  | CXXScopeSpec &SS = D.getCXXScopeSpec(); | 
|  | if (!SS.isSet()) return; | 
|  | DD->setQualifierInfo(SS.getWithLocInContext(S.Context)); | 
|  | } | 
|  |  | 
|  | bool Sema::inferObjCARCLifetime(ValueDecl *decl) { | 
|  | QualType type = decl->getType(); | 
|  | Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); | 
|  | if (lifetime == Qualifiers::OCL_Autoreleasing) { | 
|  | // Various kinds of declaration aren't allowed to be __autoreleasing. | 
|  | unsigned kind = -1U; | 
|  | if (VarDecl *var = dyn_cast<VarDecl>(decl)) { | 
|  | if (var->hasAttr<BlocksAttr>()) | 
|  | kind = 0; // __block | 
|  | else if (!var->hasLocalStorage()) | 
|  | kind = 1; // global | 
|  | } else if (isa<ObjCIvarDecl>(decl)) { | 
|  | kind = 3; // ivar | 
|  | } else if (isa<FieldDecl>(decl)) { | 
|  | kind = 2; // field | 
|  | } | 
|  |  | 
|  | if (kind != -1U) { | 
|  | Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) | 
|  | << kind; | 
|  | } | 
|  | } else if (lifetime == Qualifiers::OCL_None) { | 
|  | // Try to infer lifetime. | 
|  | if (!type->isObjCLifetimeType()) | 
|  | return false; | 
|  |  | 
|  | lifetime = type->getObjCARCImplicitLifetime(); | 
|  | type = Context.getLifetimeQualifiedType(type, lifetime); | 
|  | decl->setType(type); | 
|  | } | 
|  |  | 
|  | if (VarDecl *var = dyn_cast<VarDecl>(decl)) { | 
|  | // Thread-local variables cannot have lifetime. | 
|  | if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && | 
|  | var->getTLSKind()) { | 
|  | Diag(var->getLocation(), diag::err_arc_thread_ownership) | 
|  | << var->getType(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { | 
|  | // Ensure that an auto decl is deduced otherwise the checks below might cache | 
|  | // the wrong linkage. | 
|  | assert(S.ParsingInitForAutoVars.count(&ND) == 0); | 
|  |  | 
|  | // 'weak' only applies to declarations with external linkage. | 
|  | if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { | 
|  | if (!ND.isExternallyVisible()) { | 
|  | S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); | 
|  | ND.dropAttr<WeakAttr>(); | 
|  | } | 
|  | } | 
|  | if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { | 
|  | if (ND.isExternallyVisible()) { | 
|  | S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); | 
|  | ND.dropAttr<WeakRefAttr>(); | 
|  | ND.dropAttr<AliasAttr>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *VD = dyn_cast<VarDecl>(&ND)) { | 
|  | if (VD->hasInit()) { | 
|  | if (const auto *Attr = VD->getAttr<AliasAttr>()) { | 
|  | assert(VD->isThisDeclarationADefinition() && | 
|  | !VD->isExternallyVisible() && "Broken AliasAttr handled late!"); | 
|  | S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0; | 
|  | VD->dropAttr<AliasAttr>(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // 'selectany' only applies to externally visible variable declarations. | 
|  | // It does not apply to functions. | 
|  | if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { | 
|  | if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { | 
|  | S.Diag(Attr->getLocation(), | 
|  | diag::err_attribute_selectany_non_extern_data); | 
|  | ND.dropAttr<SelectAnyAttr>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const InheritableAttr *Attr = getDLLAttr(&ND)) { | 
|  | auto *VD = dyn_cast<VarDecl>(&ND); | 
|  | bool IsAnonymousNS = false; | 
|  | bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); | 
|  | if (VD) { | 
|  | const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext()); | 
|  | while (NS && !IsAnonymousNS) { | 
|  | IsAnonymousNS = NS->isAnonymousNamespace(); | 
|  | NS = dyn_cast<NamespaceDecl>(NS->getParent()); | 
|  | } | 
|  | } | 
|  | // dll attributes require external linkage. Static locals may have external | 
|  | // linkage but still cannot be explicitly imported or exported. | 
|  | // In Microsoft mode, a variable defined in anonymous namespace must have | 
|  | // external linkage in order to be exported. | 
|  | bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft; | 
|  | if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) || | 
|  | (!AnonNSInMicrosoftMode && | 
|  | (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) { | 
|  | S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) | 
|  | << &ND << Attr; | 
|  | ND.setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Virtual functions cannot be marked as 'notail'. | 
|  | if (auto *Attr = ND.getAttr<NotTailCalledAttr>()) | 
|  | if (auto *MD = dyn_cast<CXXMethodDecl>(&ND)) | 
|  | if (MD->isVirtual()) { | 
|  | S.Diag(ND.getLocation(), | 
|  | diag::err_invalid_attribute_on_virtual_function) | 
|  | << Attr; | 
|  | ND.dropAttr<NotTailCalledAttr>(); | 
|  | } | 
|  |  | 
|  | // Check the attributes on the function type, if any. | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) { | 
|  | // Don't declare this variable in the second operand of the for-statement; | 
|  | // GCC miscompiles that by ending its lifetime before evaluating the | 
|  | // third operand. See gcc.gnu.org/PR86769. | 
|  | AttributedTypeLoc ATL; | 
|  | for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc(); | 
|  | (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); | 
|  | TL = ATL.getModifiedLoc()) { | 
|  | // The [[lifetimebound]] attribute can be applied to the implicit object | 
|  | // parameter of a non-static member function (other than a ctor or dtor) | 
|  | // by applying it to the function type. | 
|  | if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) { | 
|  | const auto *MD = dyn_cast<CXXMethodDecl>(FD); | 
|  | if (!MD || MD->isStatic()) { | 
|  | S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param) | 
|  | << !MD << A->getRange(); | 
|  | } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) { | 
|  | S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor) | 
|  | << isa<CXXDestructorDecl>(MD) << A->getRange(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, | 
|  | NamedDecl *NewDecl, | 
|  | bool IsSpecialization, | 
|  | bool IsDefinition) { | 
|  | if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | bool IsTemplate = false; | 
|  | if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) { | 
|  | OldDecl = OldTD->getTemplatedDecl(); | 
|  | IsTemplate = true; | 
|  | if (!IsSpecialization) | 
|  | IsDefinition = false; | 
|  | } | 
|  | if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) { | 
|  | NewDecl = NewTD->getTemplatedDecl(); | 
|  | IsTemplate = true; | 
|  | } | 
|  |  | 
|  | if (!OldDecl || !NewDecl) | 
|  | return; | 
|  |  | 
|  | const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); | 
|  | const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); | 
|  | const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); | 
|  | const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); | 
|  |  | 
|  | // dllimport and dllexport are inheritable attributes so we have to exclude | 
|  | // inherited attribute instances. | 
|  | bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || | 
|  | (NewExportAttr && !NewExportAttr->isInherited()); | 
|  |  | 
|  | // A redeclaration is not allowed to add a dllimport or dllexport attribute, | 
|  | // the only exception being explicit specializations. | 
|  | // Implicitly generated declarations are also excluded for now because there | 
|  | // is no other way to switch these to use dllimport or dllexport. | 
|  | bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; | 
|  |  | 
|  | if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { | 
|  | // Allow with a warning for free functions and global variables. | 
|  | bool JustWarn = false; | 
|  | if (!OldDecl->isCXXClassMember()) { | 
|  | auto *VD = dyn_cast<VarDecl>(OldDecl); | 
|  | if (VD && !VD->getDescribedVarTemplate()) | 
|  | JustWarn = true; | 
|  | auto *FD = dyn_cast<FunctionDecl>(OldDecl); | 
|  | if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) | 
|  | JustWarn = true; | 
|  | } | 
|  |  | 
|  | // We cannot change a declaration that's been used because IR has already | 
|  | // been emitted. Dllimported functions will still work though (modulo | 
|  | // address equality) as they can use the thunk. | 
|  | if (OldDecl->isUsed()) | 
|  | if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr) | 
|  | JustWarn = false; | 
|  |  | 
|  | unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration | 
|  | : diag::err_attribute_dll_redeclaration; | 
|  | S.Diag(NewDecl->getLocation(), DiagID) | 
|  | << NewDecl | 
|  | << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); | 
|  | S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); | 
|  | if (!JustWarn) { | 
|  | NewDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // A redeclaration is not allowed to drop a dllimport attribute, the only | 
|  | // exceptions being inline function definitions (except for function | 
|  | // templates), local extern declarations, qualified friend declarations or | 
|  | // special MSVC extension: in the last case, the declaration is treated as if | 
|  | // it were marked dllexport. | 
|  | bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; | 
|  | bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); | 
|  | if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) { | 
|  | // Ignore static data because out-of-line definitions are diagnosed | 
|  | // separately. | 
|  | IsStaticDataMember = VD->isStaticDataMember(); | 
|  | IsDefinition = VD->isThisDeclarationADefinition(S.Context) != | 
|  | VarDecl::DeclarationOnly; | 
|  | } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) { | 
|  | IsInline = FD->isInlined(); | 
|  | IsQualifiedFriend = FD->getQualifier() && | 
|  | FD->getFriendObjectKind() == Decl::FOK_Declared; | 
|  | } | 
|  |  | 
|  | if (OldImportAttr && !HasNewAttr && | 
|  | (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember && | 
|  | !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { | 
|  | if (IsMicrosoft && IsDefinition) { | 
|  | S.Diag(NewDecl->getLocation(), | 
|  | diag::warn_redeclaration_without_import_attribute) | 
|  | << NewDecl; | 
|  | S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); | 
|  | NewDecl->dropAttr<DLLImportAttr>(); | 
|  | NewDecl->addAttr(::new (S.Context) DLLExportAttr( | 
|  | NewImportAttr->getRange(), S.Context, | 
|  | NewImportAttr->getSpellingListIndex())); | 
|  | } else { | 
|  | S.Diag(NewDecl->getLocation(), | 
|  | diag::warn_redeclaration_without_attribute_prev_attribute_ignored) | 
|  | << NewDecl << OldImportAttr; | 
|  | S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); | 
|  | S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); | 
|  | OldDecl->dropAttr<DLLImportAttr>(); | 
|  | NewDecl->dropAttr<DLLImportAttr>(); | 
|  | } | 
|  | } else if (IsInline && OldImportAttr && !IsMicrosoft) { | 
|  | // In MinGW, seeing a function declared inline drops the dllimport | 
|  | // attribute. | 
|  | OldDecl->dropAttr<DLLImportAttr>(); | 
|  | NewDecl->dropAttr<DLLImportAttr>(); | 
|  | S.Diag(NewDecl->getLocation(), | 
|  | diag::warn_dllimport_dropped_from_inline_function) | 
|  | << NewDecl << OldImportAttr; | 
|  | } | 
|  |  | 
|  | // A specialization of a class template member function is processed here | 
|  | // since it's a redeclaration. If the parent class is dllexport, the | 
|  | // specialization inherits that attribute. This doesn't happen automatically | 
|  | // since the parent class isn't instantiated until later. | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) { | 
|  | if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization && | 
|  | !NewImportAttr && !NewExportAttr) { | 
|  | if (const DLLExportAttr *ParentExportAttr = | 
|  | MD->getParent()->getAttr<DLLExportAttr>()) { | 
|  | DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context); | 
|  | NewAttr->setInherited(true); | 
|  | NewDecl->addAttr(NewAttr); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Given that we are within the definition of the given function, | 
|  | /// will that definition behave like C99's 'inline', where the | 
|  | /// definition is discarded except for optimization purposes? | 
|  | static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { | 
|  | // Try to avoid calling GetGVALinkageForFunction. | 
|  |  | 
|  | // All cases of this require the 'inline' keyword. | 
|  | if (!FD->isInlined()) return false; | 
|  |  | 
|  | // This is only possible in C++ with the gnu_inline attribute. | 
|  | if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) | 
|  | return false; | 
|  |  | 
|  | // Okay, go ahead and call the relatively-more-expensive function. | 
|  | return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; | 
|  | } | 
|  |  | 
|  | /// Determine whether a variable is extern "C" prior to attaching | 
|  | /// an initializer. We can't just call isExternC() here, because that | 
|  | /// will also compute and cache whether the declaration is externally | 
|  | /// visible, which might change when we attach the initializer. | 
|  | /// | 
|  | /// This can only be used if the declaration is known to not be a | 
|  | /// redeclaration of an internal linkage declaration. | 
|  | /// | 
|  | /// For instance: | 
|  | /// | 
|  | ///   auto x = []{}; | 
|  | /// | 
|  | /// Attaching the initializer here makes this declaration not externally | 
|  | /// visible, because its type has internal linkage. | 
|  | /// | 
|  | /// FIXME: This is a hack. | 
|  | template<typename T> | 
|  | static bool isIncompleteDeclExternC(Sema &S, const T *D) { | 
|  | if (S.getLangOpts().CPlusPlus) { | 
|  | // In C++, the overloadable attribute negates the effects of extern "C". | 
|  | if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) | 
|  | return false; | 
|  |  | 
|  | // So do CUDA's host/device attributes. | 
|  | if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || | 
|  | D->template hasAttr<CUDAHostAttr>())) | 
|  | return false; | 
|  | } | 
|  | return D->isExternC(); | 
|  | } | 
|  |  | 
|  | static bool shouldConsiderLinkage(const VarDecl *VD) { | 
|  | const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); | 
|  | if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) || | 
|  | isa<OMPDeclareMapperDecl>(DC)) | 
|  | return VD->hasExternalStorage(); | 
|  | if (DC->isFileContext()) | 
|  | return true; | 
|  | if (DC->isRecord()) | 
|  | return false; | 
|  | llvm_unreachable("Unexpected context"); | 
|  | } | 
|  |  | 
|  | static bool shouldConsiderLinkage(const FunctionDecl *FD) { | 
|  | const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); | 
|  | if (DC->isFileContext() || DC->isFunctionOrMethod() || | 
|  | isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC)) | 
|  | return true; | 
|  | if (DC->isRecord()) | 
|  | return false; | 
|  | llvm_unreachable("Unexpected context"); | 
|  | } | 
|  |  | 
|  | static bool hasParsedAttr(Scope *S, const Declarator &PD, | 
|  | ParsedAttr::Kind Kind) { | 
|  | // Check decl attributes on the DeclSpec. | 
|  | if (PD.getDeclSpec().getAttributes().hasAttribute(Kind)) | 
|  | return true; | 
|  |  | 
|  | // Walk the declarator structure, checking decl attributes that were in a type | 
|  | // position to the decl itself. | 
|  | for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { | 
|  | if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Finally, check attributes on the decl itself. | 
|  | return PD.getAttributes().hasAttribute(Kind); | 
|  | } | 
|  |  | 
|  | /// Adjust the \c DeclContext for a function or variable that might be a | 
|  | /// function-local external declaration. | 
|  | bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { | 
|  | if (!DC->isFunctionOrMethod()) | 
|  | return false; | 
|  |  | 
|  | // If this is a local extern function or variable declared within a function | 
|  | // template, don't add it into the enclosing namespace scope until it is | 
|  | // instantiated; it might have a dependent type right now. | 
|  | if (DC->isDependentContext()) | 
|  | return true; | 
|  |  | 
|  | // C++11 [basic.link]p7: | 
|  | //   When a block scope declaration of an entity with linkage is not found to | 
|  | //   refer to some other declaration, then that entity is a member of the | 
|  | //   innermost enclosing namespace. | 
|  | // | 
|  | // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a | 
|  | // semantically-enclosing namespace, not a lexically-enclosing one. | 
|  | while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) | 
|  | DC = DC->getParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns true if given declaration has external C language linkage. | 
|  | static bool isDeclExternC(const Decl *D) { | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) | 
|  | return FD->isExternC(); | 
|  | if (const auto *VD = dyn_cast<VarDecl>(D)) | 
|  | return VD->isExternC(); | 
|  |  | 
|  | llvm_unreachable("Unknown type of decl!"); | 
|  | } | 
|  |  | 
|  | NamedDecl *Sema::ActOnVariableDeclarator( | 
|  | Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, | 
|  | LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, | 
|  | bool &AddToScope, ArrayRef<BindingDecl *> Bindings) { | 
|  | QualType R = TInfo->getType(); | 
|  | DeclarationName Name = GetNameForDeclarator(D).getName(); | 
|  |  | 
|  | IdentifierInfo *II = Name.getAsIdentifierInfo(); | 
|  |  | 
|  | if (D.isDecompositionDeclarator()) { | 
|  | // Take the name of the first declarator as our name for diagnostic | 
|  | // purposes. | 
|  | auto &Decomp = D.getDecompositionDeclarator(); | 
|  | if (!Decomp.bindings().empty()) { | 
|  | II = Decomp.bindings()[0].Name; | 
|  | Name = II; | 
|  | } | 
|  | } else if (!II) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (getLangOpts().OpenCL) { | 
|  | // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument. | 
|  | // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function | 
|  | // argument. | 
|  | if (R->isImageType() || R->isPipeType()) { | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_opencl_type_can_only_be_used_as_function_parameter) | 
|  | << R; | 
|  | D.setInvalidType(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // OpenCL v1.2 s6.9.r: | 
|  | // The event type cannot be used to declare a program scope variable. | 
|  | // OpenCL v2.0 s6.9.q: | 
|  | // The clk_event_t and reserve_id_t types cannot be declared in program scope. | 
|  | if (NULL == S->getParent()) { | 
|  | if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) { | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_invalid_type_for_program_scope_var) << R; | 
|  | D.setInvalidType(); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. | 
|  | QualType NR = R; | 
|  | while (NR->isPointerType()) { | 
|  | if (NR->isFunctionPointerType()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer); | 
|  | D.setInvalidType(); | 
|  | break; | 
|  | } | 
|  | NR = NR->getPointeeType(); | 
|  | } | 
|  |  | 
|  | if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) { | 
|  | // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and | 
|  | // half array type (unless the cl_khr_fp16 extension is enabled). | 
|  | if (Context.getBaseElementType(R)->isHalfType()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R; | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (R->isSamplerT()) { | 
|  | // OpenCL v1.2 s6.9.b p4: | 
|  | // The sampler type cannot be used with the __local and __global address | 
|  | // space qualifiers. | 
|  | if (R.getAddressSpace() == LangAS::opencl_local || | 
|  | R.getAddressSpace() == LangAS::opencl_global) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace); | 
|  | } | 
|  |  | 
|  | // OpenCL v1.2 s6.12.14.1: | 
|  | // A global sampler must be declared with either the constant address | 
|  | // space qualifier or with the const qualifier. | 
|  | if (DC->isTranslationUnit() && | 
|  | !(R.getAddressSpace() == LangAS::opencl_constant || | 
|  | R.isConstQualified())) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // OpenCL v1.2 s6.9.r: | 
|  | // The event type cannot be used with the __local, __constant and __global | 
|  | // address space qualifiers. | 
|  | if (R->isEventT()) { | 
|  | if (R.getAddressSpace() != LangAS::opencl_private) { | 
|  | Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // OpenCL C++ 1.0 s2.9: the thread_local storage qualifier is not | 
|  | // supported.  OpenCL C does not support thread_local either, and | 
|  | // also reject all other thread storage class specifiers. | 
|  | DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec(); | 
|  | if (TSC != TSCS_unspecified) { | 
|  | bool IsCXX = getLangOpts().OpenCLCPlusPlus; | 
|  | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | 
|  | diag::err_opencl_unknown_type_specifier) | 
|  | << IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString() | 
|  | << DeclSpec::getSpecifierName(TSC) << 1; | 
|  | D.setInvalidType(); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); | 
|  | StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); | 
|  |  | 
|  | // dllimport globals without explicit storage class are treated as extern. We | 
|  | // have to change the storage class this early to get the right DeclContext. | 
|  | if (SC == SC_None && !DC->isRecord() && | 
|  | hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) && | 
|  | !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport)) | 
|  | SC = SC_Extern; | 
|  |  | 
|  | DeclContext *OriginalDC = DC; | 
|  | bool IsLocalExternDecl = SC == SC_Extern && | 
|  | adjustContextForLocalExternDecl(DC); | 
|  |  | 
|  | if (SCSpec == DeclSpec::SCS_mutable) { | 
|  | // mutable can only appear on non-static class members, so it's always | 
|  | // an error here | 
|  | Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); | 
|  | D.setInvalidType(); | 
|  | SC = SC_None; | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && | 
|  | !D.getAsmLabel() && !getSourceManager().isInSystemMacro( | 
|  | D.getDeclSpec().getStorageClassSpecLoc())) { | 
|  | // In C++11, the 'register' storage class specifier is deprecated. | 
|  | // Suppress the warning in system macros, it's used in macros in some | 
|  | // popular C system headers, such as in glibc's htonl() macro. | 
|  | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
|  | getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class | 
|  | : diag::warn_deprecated_register) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | 
|  | } | 
|  |  | 
|  | DiagnoseFunctionSpecifiers(D.getDeclSpec()); | 
|  |  | 
|  | if (!DC->isRecord() && S->getFnParent() == nullptr) { | 
|  | // C99 6.9p2: The storage-class specifiers auto and register shall not | 
|  | // appear in the declaration specifiers in an external declaration. | 
|  | // Global Register+Asm is a GNU extension we support. | 
|  | if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool IsMemberSpecialization = false; | 
|  | bool IsVariableTemplateSpecialization = false; | 
|  | bool IsPartialSpecialization = false; | 
|  | bool IsVariableTemplate = false; | 
|  | VarDecl *NewVD = nullptr; | 
|  | VarTemplateDecl *NewTemplate = nullptr; | 
|  | TemplateParameterList *TemplateParams = nullptr; | 
|  | if (!getLangOpts().CPlusPlus) { | 
|  | NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), | 
|  | II, R, TInfo, SC); | 
|  |  | 
|  | if (R->getContainedDeducedType()) | 
|  | ParsingInitForAutoVars.insert(NewVD); | 
|  |  | 
|  | if (D.isInvalidType()) | 
|  | NewVD->setInvalidDecl(); | 
|  |  | 
|  | if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() && | 
|  | NewVD->hasLocalStorage()) | 
|  | checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(), | 
|  | NTCUC_AutoVar, NTCUK_Destruct); | 
|  | } else { | 
|  | bool Invalid = false; | 
|  |  | 
|  | if (DC->isRecord() && !CurContext->isRecord()) { | 
|  | // This is an out-of-line definition of a static data member. | 
|  | switch (SC) { | 
|  | case SC_None: | 
|  | break; | 
|  | case SC_Static: | 
|  | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
|  | diag::err_static_out_of_line) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | 
|  | break; | 
|  | case SC_Auto: | 
|  | case SC_Register: | 
|  | case SC_Extern: | 
|  | // [dcl.stc] p2: The auto or register specifiers shall be applied only | 
|  | // to names of variables declared in a block or to function parameters. | 
|  | // [dcl.stc] p6: The extern specifier cannot be used in the declaration | 
|  | // of class members | 
|  |  | 
|  | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
|  | diag::err_storage_class_for_static_member) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | 
|  | break; | 
|  | case SC_PrivateExtern: | 
|  | llvm_unreachable("C storage class in c++!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SC == SC_Static && CurContext->isRecord()) { | 
|  | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { | 
|  | if (RD->isLocalClass()) | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_static_data_member_not_allowed_in_local_class) | 
|  | << Name << RD->getDeclName(); | 
|  |  | 
|  | // C++98 [class.union]p1: If a union contains a static data member, | 
|  | // the program is ill-formed. C++11 drops this restriction. | 
|  | if (RD->isUnion()) | 
|  | Diag(D.getIdentifierLoc(), | 
|  | getLangOpts().CPlusPlus11 | 
|  | ? diag::warn_cxx98_compat_static_data_member_in_union | 
|  | : diag::ext_static_data_member_in_union) << Name; | 
|  | // We conservatively disallow static data members in anonymous structs. | 
|  | else if (!RD->getDeclName()) | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_static_data_member_not_allowed_in_anon_struct) | 
|  | << Name << RD->isUnion(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Match up the template parameter lists with the scope specifier, then | 
|  | // determine whether we have a template or a template specialization. | 
|  | TemplateParams = MatchTemplateParametersToScopeSpecifier( | 
|  | D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), | 
|  | D.getCXXScopeSpec(), | 
|  | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId | 
|  | ? D.getName().TemplateId | 
|  | : nullptr, | 
|  | TemplateParamLists, | 
|  | /*never a friend*/ false, IsMemberSpecialization, Invalid); | 
|  |  | 
|  | if (TemplateParams) { | 
|  | if (!TemplateParams->size() && | 
|  | D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { | 
|  | // There is an extraneous 'template<>' for this variable. Complain | 
|  | // about it, but allow the declaration of the variable. | 
|  | Diag(TemplateParams->getTemplateLoc(), | 
|  | diag::err_template_variable_noparams) | 
|  | << II | 
|  | << SourceRange(TemplateParams->getTemplateLoc(), | 
|  | TemplateParams->getRAngleLoc()); | 
|  | TemplateParams = nullptr; | 
|  | } else { | 
|  | if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { | 
|  | // This is an explicit specialization or a partial specialization. | 
|  | // FIXME: Check that we can declare a specialization here. | 
|  | IsVariableTemplateSpecialization = true; | 
|  | IsPartialSpecialization = TemplateParams->size() > 0; | 
|  | } else { // if (TemplateParams->size() > 0) | 
|  | // This is a template declaration. | 
|  | IsVariableTemplate = true; | 
|  |  | 
|  | // Check that we can declare a template here. | 
|  | if (CheckTemplateDeclScope(S, TemplateParams)) | 
|  | return nullptr; | 
|  |  | 
|  | // Only C++1y supports variable templates (N3651). | 
|  | Diag(D.getIdentifierLoc(), | 
|  | getLangOpts().CPlusPlus14 | 
|  | ? diag::warn_cxx11_compat_variable_template | 
|  | : diag::ext_variable_template); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | assert((Invalid || | 
|  | D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && | 
|  | "should have a 'template<>' for this decl"); | 
|  | } | 
|  |  | 
|  | if (IsVariableTemplateSpecialization) { | 
|  | SourceLocation TemplateKWLoc = | 
|  | TemplateParamLists.size() > 0 | 
|  | ? TemplateParamLists[0]->getTemplateLoc() | 
|  | : SourceLocation(); | 
|  | DeclResult Res = ActOnVarTemplateSpecialization( | 
|  | S, D, TInfo, TemplateKWLoc, TemplateParams, SC, | 
|  | IsPartialSpecialization); | 
|  | if (Res.isInvalid()) | 
|  | return nullptr; | 
|  | NewVD = cast<VarDecl>(Res.get()); | 
|  | AddToScope = false; | 
|  | } else if (D.isDecompositionDeclarator()) { | 
|  | NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(), | 
|  | D.getIdentifierLoc(), R, TInfo, SC, | 
|  | Bindings); | 
|  | } else | 
|  | NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), | 
|  | D.getIdentifierLoc(), II, R, TInfo, SC); | 
|  |  | 
|  | // If this is supposed to be a variable template, create it as such. | 
|  | if (IsVariableTemplate) { | 
|  | NewTemplate = | 
|  | VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, | 
|  | TemplateParams, NewVD); | 
|  | NewVD->setDescribedVarTemplate(NewTemplate); | 
|  | } | 
|  |  | 
|  | // If this decl has an auto type in need of deduction, make a note of the | 
|  | // Decl so we can diagnose uses of it in its own initializer. | 
|  | if (R->getContainedDeducedType()) | 
|  | ParsingInitForAutoVars.insert(NewVD); | 
|  |  | 
|  | if (D.isInvalidType() || Invalid) { | 
|  | NewVD->setInvalidDecl(); | 
|  | if (NewTemplate) | 
|  | NewTemplate->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | SetNestedNameSpecifier(*this, NewVD, D); | 
|  |  | 
|  | // If we have any template parameter lists that don't directly belong to | 
|  | // the variable (matching the scope specifier), store them. | 
|  | unsigned VDTemplateParamLists = TemplateParams ? 1 : 0; | 
|  | if (TemplateParamLists.size() > VDTemplateParamLists) | 
|  | NewVD->setTemplateParameterListsInfo( | 
|  | Context, TemplateParamLists.drop_back(VDTemplateParamLists)); | 
|  |  | 
|  | if (D.getDeclSpec().hasConstexprSpecifier()) { | 
|  | NewVD->setConstexpr(true); | 
|  | // C++1z [dcl.spec.constexpr]p1: | 
|  | //   A static data member declared with the constexpr specifier is | 
|  | //   implicitly an inline variable. | 
|  | if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17) | 
|  | NewVD->setImplicitlyInline(); | 
|  | if (D.getDeclSpec().getConstexprSpecifier() == CSK_consteval) | 
|  | Diag(D.getDeclSpec().getConstexprSpecLoc(), | 
|  | diag::err_constexpr_wrong_decl_kind) | 
|  | << /*consteval*/ 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (D.getDeclSpec().isInlineSpecified()) { | 
|  | if (!getLangOpts().CPlusPlus) { | 
|  | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) | 
|  | << 0; | 
|  | } else if (CurContext->isFunctionOrMethod()) { | 
|  | // 'inline' is not allowed on block scope variable declaration. | 
|  | Diag(D.getDeclSpec().getInlineSpecLoc(), | 
|  | diag::err_inline_declaration_block_scope) << Name | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); | 
|  | } else { | 
|  | Diag(D.getDeclSpec().getInlineSpecLoc(), | 
|  | getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable | 
|  | : diag::ext_inline_variable); | 
|  | NewVD->setInlineSpecified(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set the lexical context. If the declarator has a C++ scope specifier, the | 
|  | // lexical context will be different from the semantic context. | 
|  | NewVD->setLexicalDeclContext(CurContext); | 
|  | if (NewTemplate) | 
|  | NewTemplate->setLexicalDeclContext(CurContext); | 
|  |  | 
|  | if (IsLocalExternDecl) { | 
|  | if (D.isDecompositionDeclarator()) | 
|  | for (auto *B : Bindings) | 
|  | B->setLocalExternDecl(); | 
|  | else | 
|  | NewVD->setLocalExternDecl(); | 
|  | } | 
|  |  | 
|  | bool EmitTLSUnsupportedError = false; | 
|  | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { | 
|  | // C++11 [dcl.stc]p4: | 
|  | //   When thread_local is applied to a variable of block scope the | 
|  | //   storage-class-specifier static is implied if it does not appear | 
|  | //   explicitly. | 
|  | // Core issue: 'static' is not implied if the variable is declared | 
|  | //   'extern'. | 
|  | if (NewVD->hasLocalStorage() && | 
|  | (SCSpec != DeclSpec::SCS_unspecified || | 
|  | TSCS != DeclSpec::TSCS_thread_local || | 
|  | !DC->isFunctionOrMethod())) | 
|  | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | 
|  | diag::err_thread_non_global) | 
|  | << DeclSpec::getSpecifierName(TSCS); | 
|  | else if (!Context.getTargetInfo().isTLSSupported()) { | 
|  | if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) { | 
|  | // Postpone error emission until we've collected attributes required to | 
|  | // figure out whether it's a host or device variable and whether the | 
|  | // error should be ignored. | 
|  | EmitTLSUnsupportedError = true; | 
|  | // We still need to mark the variable as TLS so it shows up in AST with | 
|  | // proper storage class for other tools to use even if we're not going | 
|  | // to emit any code for it. | 
|  | NewVD->setTSCSpec(TSCS); | 
|  | } else | 
|  | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | 
|  | diag::err_thread_unsupported); | 
|  | } else | 
|  | NewVD->setTSCSpec(TSCS); | 
|  | } | 
|  |  | 
|  | // C99 6.7.4p3 | 
|  | //   An inline definition of a function with external linkage shall | 
|  | //   not contain a definition of a modifiable object with static or | 
|  | //   thread storage duration... | 
|  | // We only apply this when the function is required to be defined | 
|  | // elsewhere, i.e. when the function is not 'extern inline'.  Note | 
|  | // that a local variable with thread storage duration still has to | 
|  | // be marked 'static'.  Also note that it's possible to get these | 
|  | // semantics in C++ using __attribute__((gnu_inline)). | 
|  | if (SC == SC_Static && S->getFnParent() != nullptr && | 
|  | !NewVD->getType().isConstQualified()) { | 
|  | FunctionDecl *CurFD = getCurFunctionDecl(); | 
|  | if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { | 
|  | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
|  | diag::warn_static_local_in_extern_inline); | 
|  | MaybeSuggestAddingStaticToDecl(CurFD); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) { | 
|  | if (IsVariableTemplateSpecialization) | 
|  | Diag(NewVD->getLocation(), diag::err_module_private_specialization) | 
|  | << (IsPartialSpecialization ? 1 : 0) | 
|  | << FixItHint::CreateRemoval( | 
|  | D.getDeclSpec().getModulePrivateSpecLoc()); | 
|  | else if (IsMemberSpecialization) | 
|  | Diag(NewVD->getLocation(), diag::err_module_private_specialization) | 
|  | << 2 | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); | 
|  | else if (NewVD->hasLocalStorage()) | 
|  | Diag(NewVD->getLocation(), diag::err_module_private_local) | 
|  | << 0 << NewVD->getDeclName() | 
|  | << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); | 
|  | else { | 
|  | NewVD->setModulePrivate(); | 
|  | if (NewTemplate) | 
|  | NewTemplate->setModulePrivate(); | 
|  | for (auto *B : Bindings) | 
|  | B->setModulePrivate(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle attributes prior to checking for duplicates in MergeVarDecl | 
|  | ProcessDeclAttributes(S, NewVD, D); | 
|  |  | 
|  | if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) { | 
|  | if (EmitTLSUnsupportedError && | 
|  | ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) || | 
|  | (getLangOpts().OpenMPIsDevice && | 
|  | NewVD->hasAttr<OMPDeclareTargetDeclAttr>()))) | 
|  | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | 
|  | diag::err_thread_unsupported); | 
|  | // CUDA B.2.5: "__shared__ and __constant__ variables have implied static | 
|  | // storage [duration]." | 
|  | if (SC == SC_None && S->getFnParent() != nullptr && | 
|  | (NewVD->hasAttr<CUDASharedAttr>() || | 
|  | NewVD->hasAttr<CUDAConstantAttr>())) { | 
|  | NewVD->setStorageClass(SC_Static); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ensure that dllimport globals without explicit storage class are treated as | 
|  | // extern. The storage class is set above using parsed attributes. Now we can | 
|  | // check the VarDecl itself. | 
|  | assert(!NewVD->hasAttr<DLLImportAttr>() || | 
|  | NewVD->getAttr<DLLImportAttr>()->isInherited() || | 
|  | NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); | 
|  |  | 
|  | // In auto-retain/release, infer strong retension for variables of | 
|  | // retainable type. | 
|  | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) | 
|  | NewVD->setInvalidDecl(); | 
|  |  | 
|  | // Handle GNU asm-label extension (encoded as an attribute). | 
|  | if (Expr *E = (Expr*)D.getAsmLabel()) { | 
|  | // The parser guarantees this is a string. | 
|  | StringLiteral *SE = cast<StringLiteral>(E); | 
|  | StringRef Label = SE->getString(); | 
|  | if (S->getFnParent() != nullptr) { | 
|  | switch (SC) { | 
|  | case SC_None: | 
|  | case SC_Auto: | 
|  | Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; | 
|  | break; | 
|  | case SC_Register: | 
|  | // Local Named register | 
|  | if (!Context.getTargetInfo().isValidGCCRegisterName(Label) && | 
|  | DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) | 
|  | Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; | 
|  | break; | 
|  | case SC_Static: | 
|  | case SC_Extern: | 
|  | case SC_PrivateExtern: | 
|  | break; | 
|  | } | 
|  | } else if (SC == SC_Register) { | 
|  | // Global Named register | 
|  | if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) { | 
|  | const auto &TI = Context.getTargetInfo(); | 
|  | bool HasSizeMismatch; | 
|  |  | 
|  | if (!TI.isValidGCCRegisterName(Label)) | 
|  | Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; | 
|  | else if (!TI.validateGlobalRegisterVariable(Label, | 
|  | Context.getTypeSize(R), | 
|  | HasSizeMismatch)) | 
|  | Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label; | 
|  | else if (HasSizeMismatch) | 
|  | Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label; | 
|  | } | 
|  |  | 
|  | if (!R->isIntegralType(Context) && !R->isPointerType()) { | 
|  | Diag(D.getBeginLoc(), diag::err_asm_bad_register_type); | 
|  | NewVD->setInvalidDecl(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), | 
|  | Context, Label, 0)); | 
|  | } else if (!ExtnameUndeclaredIdentifiers.empty()) { | 
|  | llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = | 
|  | ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); | 
|  | if (I != ExtnameUndeclaredIdentifiers.end()) { | 
|  | if (isDeclExternC(NewVD)) { | 
|  | NewVD->addAttr(I->second); | 
|  | ExtnameUndeclaredIdentifiers.erase(I); | 
|  | } else | 
|  | Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied) | 
|  | << /*Variable*/1 << NewVD; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find the shadowed declaration before filtering for scope. | 
|  | NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() | 
|  | ? getShadowedDeclaration(NewVD, Previous) | 
|  | : nullptr; | 
|  |  | 
|  | // Don't consider existing declarations that are in a different | 
|  | // scope and are out-of-semantic-context declarations (if the new | 
|  | // declaration has linkage). | 
|  | FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), | 
|  | D.getCXXScopeSpec().isNotEmpty() || | 
|  | IsMemberSpecialization || | 
|  | IsVariableTemplateSpecialization); | 
|  |  | 
|  | // Check whether the previous declaration is in the same block scope. This | 
|  | // affects whether we merge types with it, per C++11 [dcl.array]p3. | 
|  | if (getLangOpts().CPlusPlus && | 
|  | NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) | 
|  | NewVD->setPreviousDeclInSameBlockScope( | 
|  | Previous.isSingleResult() && !Previous.isShadowed() && | 
|  | isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); | 
|  |  | 
|  | if (!getLangOpts().CPlusPlus) { | 
|  | D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); | 
|  | } else { | 
|  | // If this is an explicit specialization of a static data member, check it. | 
|  | if (IsMemberSpecialization && !NewVD->isInvalidDecl() && | 
|  | CheckMemberSpecialization(NewVD, Previous)) | 
|  | NewVD->setInvalidDecl(); | 
|  |  | 
|  | // Merge the decl with the existing one if appropriate. | 
|  | if (!Previous.empty()) { | 
|  | if (Previous.isSingleResult() && | 
|  | isa<FieldDecl>(Previous.getFoundDecl()) && | 
|  | D.getCXXScopeSpec().isSet()) { | 
|  | // The user tried to define a non-static data member | 
|  | // out-of-line (C++ [dcl.meaning]p1). | 
|  | Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | Previous.clear(); | 
|  | NewVD->setInvalidDecl(); | 
|  | } | 
|  | } else if (D.getCXXScopeSpec().isSet()) { | 
|  | // No previous declaration in the qualifying scope. | 
|  | Diag(D.getIdentifierLoc(), diag::err_no_member) | 
|  | << Name << computeDeclContext(D.getCXXScopeSpec(), true) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | NewVD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (!IsVariableTemplateSpecialization) | 
|  | D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); | 
|  |  | 
|  | if (NewTemplate) { | 
|  | VarTemplateDecl *PrevVarTemplate = | 
|  | NewVD->getPreviousDecl() | 
|  | ? NewVD->getPreviousDecl()->getDescribedVarTemplate() | 
|  | : nullptr; | 
|  |  | 
|  | // Check the template parameter list of this declaration, possibly | 
|  | // merging in the template parameter list from the previous variable | 
|  | // template declaration. | 
|  | if (CheckTemplateParameterList( | 
|  | TemplateParams, | 
|  | PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() | 
|  | : nullptr, | 
|  | (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && | 
|  | DC->isDependentContext()) | 
|  | ? TPC_ClassTemplateMember | 
|  | : TPC_VarTemplate)) | 
|  | NewVD->setInvalidDecl(); | 
|  |  | 
|  | // If we are providing an explicit specialization of a static variable | 
|  | // template, make a note of that. | 
|  | if (PrevVarTemplate && | 
|  | PrevVarTemplate->getInstantiatedFromMemberTemplate()) | 
|  | PrevVarTemplate->setMemberSpecialization(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Diagnose shadowed variables iff this isn't a redeclaration. | 
|  | if (ShadowedDecl && !D.isRedeclaration()) | 
|  | CheckShadow(NewVD, ShadowedDecl, Previous); | 
|  |  | 
|  | ProcessPragmaWeak(S, NewVD); | 
|  |  | 
|  | // If this is the first declaration of an extern C variable, update | 
|  | // the map of such variables. | 
|  | if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && | 
|  | isIncompleteDeclExternC(*this, NewVD)) | 
|  | RegisterLocallyScopedExternCDecl(NewVD, S); | 
|  |  | 
|  | if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { | 
|  | Decl *ManglingContextDecl; | 
|  | if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext( | 
|  | NewVD->getDeclContext(), ManglingContextDecl)) { | 
|  | Context.setManglingNumber( | 
|  | NewVD, MCtx->getManglingNumber( | 
|  | NewVD, getMSManglingNumber(getLangOpts(), S))); | 
|  | Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Special handling of variable named 'main'. | 
|  | if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") && | 
|  | NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() && | 
|  | !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) { | 
|  |  | 
|  | // C++ [basic.start.main]p3 | 
|  | // A program that declares a variable main at global scope is ill-formed. | 
|  | if (getLangOpts().CPlusPlus) | 
|  | Diag(D.getBeginLoc(), diag::err_main_global_variable); | 
|  |  | 
|  | // In C, and external-linkage variable named main results in undefined | 
|  | // behavior. | 
|  | else if (NewVD->hasExternalFormalLinkage()) | 
|  | Diag(D.getBeginLoc(), diag::warn_main_redefined); | 
|  | } | 
|  |  | 
|  | if (D.isRedeclaration() && !Previous.empty()) { | 
|  | NamedDecl *Prev = Previous.getRepresentativeDecl(); | 
|  | checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization, | 
|  | D.isFunctionDefinition()); | 
|  | } | 
|  |  | 
|  | if (NewTemplate) { | 
|  | if (NewVD->isInvalidDecl()) | 
|  | NewTemplate->setInvalidDecl(); | 
|  | ActOnDocumentableDecl(NewTemplate); | 
|  | return NewTemplate; | 
|  | } | 
|  |  | 
|  | if (IsMemberSpecialization && !NewVD->isInvalidDecl()) | 
|  | CompleteMemberSpecialization(NewVD, Previous); | 
|  |  | 
|  | return NewVD; | 
|  | } | 
|  |  | 
|  | /// Enum describing the %select options in diag::warn_decl_shadow. | 
|  | enum ShadowedDeclKind { | 
|  | SDK_Local, | 
|  | SDK_Global, | 
|  | SDK_StaticMember, | 
|  | SDK_Field, | 
|  | SDK_Typedef, | 
|  | SDK_Using | 
|  | }; | 
|  |  | 
|  | /// Determine what kind of declaration we're shadowing. | 
|  | static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl, | 
|  | const DeclContext *OldDC) { | 
|  | if (isa<TypeAliasDecl>(ShadowedDecl)) | 
|  | return SDK_Using; | 
|  | else if (isa<TypedefDecl>(ShadowedDecl)) | 
|  | return SDK_Typedef; | 
|  | else if (isa<RecordDecl>(OldDC)) | 
|  | return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember; | 
|  |  | 
|  | return OldDC->isFileContext() ? SDK_Global : SDK_Local; | 
|  | } | 
|  |  | 
|  | /// Return the location of the capture if the given lambda captures the given | 
|  | /// variable \p VD, or an invalid source location otherwise. | 
|  | static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI, | 
|  | const VarDecl *VD) { | 
|  | for (const Capture &Capture : LSI->Captures) { | 
|  | if (Capture.isVariableCapture() && Capture.getVariable() == VD) | 
|  | return Capture.getLocation(); | 
|  | } | 
|  | return SourceLocation(); | 
|  | } | 
|  |  | 
|  | static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags, | 
|  | const LookupResult &R) { | 
|  | // Only diagnose if we're shadowing an unambiguous field or variable. | 
|  | if (R.getResultKind() != LookupResult::Found) | 
|  | return false; | 
|  |  | 
|  | // Return false if warning is ignored. | 
|  | return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()); | 
|  | } | 
|  |  | 
|  | /// Return the declaration shadowed by the given variable \p D, or null | 
|  | /// if it doesn't shadow any declaration or shadowing warnings are disabled. | 
|  | NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D, | 
|  | const LookupResult &R) { | 
|  | if (!shouldWarnIfShadowedDecl(Diags, R)) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't diagnose declarations at file scope. | 
|  | if (D->hasGlobalStorage()) | 
|  | return nullptr; | 
|  |  | 
|  | NamedDecl *ShadowedDecl = R.getFoundDecl(); | 
|  | return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl) | 
|  | ? ShadowedDecl | 
|  | : nullptr; | 
|  | } | 
|  |  | 
|  | /// Return the declaration shadowed by the given typedef \p D, or null | 
|  | /// if it doesn't shadow any declaration or shadowing warnings are disabled. | 
|  | NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D, | 
|  | const LookupResult &R) { | 
|  | // Don't warn if typedef declaration is part of a class | 
|  | if (D->getDeclContext()->isRecord()) | 
|  | return nullptr; | 
|  |  | 
|  | if (!shouldWarnIfShadowedDecl(Diags, R)) | 
|  | return nullptr; | 
|  |  | 
|  | NamedDecl *ShadowedDecl = R.getFoundDecl(); | 
|  | return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr; | 
|  | } | 
|  |  | 
|  | /// Diagnose variable or built-in function shadowing.  Implements | 
|  | /// -Wshadow. | 
|  | /// | 
|  | /// This method is called whenever a VarDecl is added to a "useful" | 
|  | /// scope. | 
|  | /// | 
|  | /// \param ShadowedDecl the declaration that is shadowed by the given variable | 
|  | /// \param R the lookup of the name | 
|  | /// | 
|  | void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, | 
|  | const LookupResult &R) { | 
|  | DeclContext *NewDC = D->getDeclContext(); | 
|  |  | 
|  | if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) { | 
|  | // Fields are not shadowed by variables in C++ static methods. | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) | 
|  | if (MD->isStatic()) | 
|  | return; | 
|  |  | 
|  | // Fields shadowed by constructor parameters are a special case. Usually | 
|  | // the constructor initializes the field with the parameter. | 
|  | if (isa<CXXConstructorDecl>(NewDC)) | 
|  | if (const auto PVD = dyn_cast<ParmVarDecl>(D)) { | 
|  | // Remember that this was shadowed so we can either warn about its | 
|  | // modification or its existence depending on warning settings. | 
|  | ShadowingDecls.insert({PVD->getCanonicalDecl(), FD}); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) | 
|  | if (shadowedVar->isExternC()) { | 
|  | // For shadowing external vars, make sure that we point to the global | 
|  | // declaration, not a locally scoped extern declaration. | 
|  | for (auto I : shadowedVar->redecls()) | 
|  | if (I->isFileVarDecl()) { | 
|  | ShadowedDecl = I; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext(); | 
|  |  | 
|  | unsigned WarningDiag = diag::warn_decl_shadow; | 
|  | SourceLocation CaptureLoc; | 
|  | if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC && | 
|  | isa<CXXMethodDecl>(NewDC)) { | 
|  | if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) { | 
|  | if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) { | 
|  | if (RD->getLambdaCaptureDefault() == LCD_None) { | 
|  | // Try to avoid warnings for lambdas with an explicit capture list. | 
|  | const auto *LSI = cast<LambdaScopeInfo>(getCurFunction()); | 
|  | // Warn only when the lambda captures the shadowed decl explicitly. | 
|  | CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl)); | 
|  | if (CaptureLoc.isInvalid()) | 
|  | WarningDiag = diag::warn_decl_shadow_uncaptured_local; | 
|  | } else { | 
|  | // Remember that this was shadowed so we can avoid the warning if the | 
|  | // shadowed decl isn't captured and the warning settings allow it. | 
|  | cast<LambdaScopeInfo>(getCurFunction()) | 
|  | ->ShadowingDecls.push_back( | 
|  | {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)}); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) { | 
|  | // A variable can't shadow a local variable in an enclosing scope, if | 
|  | // they are separated by a non-capturing declaration context. | 
|  | for (DeclContext *ParentDC = NewDC; | 
|  | ParentDC && !ParentDC->Equals(OldDC); | 
|  | ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) { | 
|  | // Only block literals, captured statements, and lambda expressions | 
|  | // can capture; other scopes don't. | 
|  | if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) && | 
|  | !isLambdaCallOperator(ParentDC)) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only warn about certain kinds of shadowing for class members. | 
|  | if (NewDC && NewDC->isRecord()) { | 
|  | // In particular, don't warn about shadowing non-class members. | 
|  | if (!OldDC->isRecord()) | 
|  | return; | 
|  |  | 
|  | // TODO: should we warn about static data members shadowing | 
|  | // static data members from base classes? | 
|  |  | 
|  | // TODO: don't diagnose for inaccessible shadowed members. | 
|  | // This is hard to do perfectly because we might friend the | 
|  | // shadowing context, but that's just a false negative. | 
|  | } | 
|  |  | 
|  |  | 
|  | DeclarationName Name = R.getLookupName(); | 
|  |  | 
|  | // Emit warning and note. | 
|  | if (getSourceManager().isInSystemMacro(R.getNameLoc())) | 
|  | return; | 
|  | ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC); | 
|  | Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC; | 
|  | if (!CaptureLoc.isInvalid()) | 
|  | Diag(CaptureLoc, diag::note_var_explicitly_captured_here) | 
|  | << Name << /*explicitly*/ 1; | 
|  | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  |  | 
|  | /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD | 
|  | /// when these variables are captured by the lambda. | 
|  | void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) { | 
|  | for (const auto &Shadow : LSI->ShadowingDecls) { | 
|  | const VarDecl *ShadowedDecl = Shadow.ShadowedDecl; | 
|  | // Try to avoid the warning when the shadowed decl isn't captured. | 
|  | SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl); | 
|  | const DeclContext *OldDC = ShadowedDecl->getDeclContext(); | 
|  | Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid() | 
|  | ? diag::warn_decl_shadow_uncaptured_local | 
|  | : diag::warn_decl_shadow) | 
|  | << Shadow.VD->getDeclName() | 
|  | << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC; | 
|  | if (!CaptureLoc.isInvalid()) | 
|  | Diag(CaptureLoc, diag::note_var_explicitly_captured_here) | 
|  | << Shadow.VD->getDeclName() << /*explicitly*/ 0; | 
|  | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check -Wshadow without the advantage of a previous lookup. | 
|  | void Sema::CheckShadow(Scope *S, VarDecl *D) { | 
|  | if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) | 
|  | return; | 
|  |  | 
|  | LookupResult R(*this, D->getDeclName(), D->getLocation(), | 
|  | Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); | 
|  | LookupName(R, S); | 
|  | if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R)) | 
|  | CheckShadow(D, ShadowedDecl, R); | 
|  | } | 
|  |  | 
|  | /// Check if 'E', which is an expression that is about to be modified, refers | 
|  | /// to a constructor parameter that shadows a field. | 
|  | void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) { | 
|  | // Quickly ignore expressions that can't be shadowing ctor parameters. | 
|  | if (!getLangOpts().CPlusPlus || ShadowingDecls.empty()) | 
|  | return; | 
|  | E = E->IgnoreParenImpCasts(); | 
|  | auto *DRE = dyn_cast<DeclRefExpr>(E); | 
|  | if (!DRE) | 
|  | return; | 
|  | const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); | 
|  | auto I = ShadowingDecls.find(D); | 
|  | if (I == ShadowingDecls.end()) | 
|  | return; | 
|  | const NamedDecl *ShadowedDecl = I->second; | 
|  | const DeclContext *OldDC = ShadowedDecl->getDeclContext(); | 
|  | Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC; | 
|  | Diag(D->getLocation(), diag::note_var_declared_here) << D; | 
|  | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); | 
|  |  | 
|  | // Avoid issuing multiple warnings about the same decl. | 
|  | ShadowingDecls.erase(I); | 
|  | } | 
|  |  | 
|  | /// Check for conflict between this global or extern "C" declaration and | 
|  | /// previous global or extern "C" declarations. This is only used in C++. | 
|  | template<typename T> | 
|  | static bool checkGlobalOrExternCConflict( | 
|  | Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { | 
|  | assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""); | 
|  | NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); | 
|  |  | 
|  | if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { | 
|  | // The common case: this global doesn't conflict with any extern "C" | 
|  | // declaration. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Prev) { | 
|  | if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { | 
|  | // Both the old and new declarations have C language linkage. This is a | 
|  | // redeclaration. | 
|  | Previous.clear(); | 
|  | Previous.addDecl(Prev); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This is a global, non-extern "C" declaration, and there is a previous | 
|  | // non-global extern "C" declaration. Diagnose if this is a variable | 
|  | // declaration. | 
|  | if (!isa<VarDecl>(ND)) | 
|  | return false; | 
|  | } else { | 
|  | // The declaration is extern "C". Check for any declaration in the | 
|  | // translation unit which might conflict. | 
|  | if (IsGlobal) { | 
|  | // We have already performed the lookup into the translation unit. | 
|  | IsGlobal = false; | 
|  | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | 
|  | I != E; ++I) { | 
|  | if (isa<VarDecl>(*I)) { | 
|  | Prev = *I; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | DeclContext::lookup_result R = | 
|  | S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); | 
|  | for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); | 
|  | I != E; ++I) { | 
|  | if (isa<VarDecl>(*I)) { | 
|  | Prev = *I; | 
|  | break; | 
|  | } | 
|  | // FIXME: If we have any other entity with this name in global scope, | 
|  | // the declaration is ill-formed, but that is a defect: it breaks the | 
|  | // 'stat' hack, for instance. Only variables can have mangled name | 
|  | // clashes with extern "C" declarations, so only they deserve a | 
|  | // diagnostic. | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Prev) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Use the first declaration's location to ensure we point at something which | 
|  | // is lexically inside an extern "C" linkage-spec. | 
|  | assert(Prev && "should have found a previous declaration to diagnose"); | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) | 
|  | Prev = FD->getFirstDecl(); | 
|  | else | 
|  | Prev = cast<VarDecl>(Prev)->getFirstDecl(); | 
|  |  | 
|  | S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) | 
|  | << IsGlobal << ND; | 
|  | S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) | 
|  | << IsGlobal; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Apply special rules for handling extern "C" declarations. Returns \c true | 
|  | /// if we have found that this is a redeclaration of some prior entity. | 
|  | /// | 
|  | /// Per C++ [dcl.link]p6: | 
|  | ///   Two declarations [for a function or variable] with C language linkage | 
|  | ///   with the same name that appear in different scopes refer to the same | 
|  | ///   [entity]. An entity with C language linkage shall not be declared with | 
|  | ///   the same name as an entity in global scope. | 
|  | template<typename T> | 
|  | static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, | 
|  | LookupResult &Previous) { | 
|  | if (!S.getLangOpts().CPlusPlus) { | 
|  | // In C, when declaring a global variable, look for a corresponding 'extern' | 
|  | // variable declared in function scope. We don't need this in C++, because | 
|  | // we find local extern decls in the surrounding file-scope DeclContext. | 
|  | if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | 
|  | if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { | 
|  | Previous.clear(); | 
|  | Previous.addDecl(Prev); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // A declaration in the translation unit can conflict with an extern "C" | 
|  | // declaration. | 
|  | if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) | 
|  | return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); | 
|  |  | 
|  | // An extern "C" declaration can conflict with a declaration in the | 
|  | // translation unit or can be a redeclaration of an extern "C" declaration | 
|  | // in another scope. | 
|  | if (isIncompleteDeclExternC(S,ND)) | 
|  | return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); | 
|  |  | 
|  | // Neither global nor extern "C": nothing to do. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { | 
|  | // If the decl is already known invalid, don't check it. | 
|  | if (NewVD->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | QualType T = NewVD->getType(); | 
|  |  | 
|  | // Defer checking an 'auto' type until its initializer is attached. | 
|  | if (T->isUndeducedType()) | 
|  | return; | 
|  |  | 
|  | if (NewVD->hasAttrs()) | 
|  | CheckAlignasUnderalignment(NewVD); | 
|  |  | 
|  | if (T->isObjCObjectType()) { | 
|  | Diag(NewVD->getLocation(), diag::err_statically_allocated_object) | 
|  | << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); | 
|  | T = Context.getObjCObjectPointerType(T); | 
|  | NewVD->setType(T); | 
|  | } | 
|  |  | 
|  | // Emit an error if an address space was applied to decl with local storage. | 
|  | // This includes arrays of objects with address space qualifiers, but not | 
|  | // automatic variables that point to other address spaces. | 
|  | // ISO/IEC TR 18037 S5.1.2 | 
|  | if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() && | 
|  | T.getAddressSpace() != LangAS::Default) { | 
|  | Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0; | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // OpenCL v1.2 s6.8 - The static qualifier is valid only in program | 
|  | // scope. | 
|  | if (getLangOpts().OpenCLVersion == 120 && | 
|  | !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") && | 
|  | NewVD->isStaticLocal()) { | 
|  | Diag(NewVD->getLocation(), diag::err_static_function_scope); | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (getLangOpts().OpenCL) { | 
|  | // OpenCL v2.0 s6.12.5 - The __block storage type is not supported. | 
|  | if (NewVD->hasAttr<BlocksAttr>()) { | 
|  | Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (T->isBlockPointerType()) { | 
|  | // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and | 
|  | // can't use 'extern' storage class. | 
|  | if (!T.isConstQualified()) { | 
|  | Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration) | 
|  | << 0 /*const*/; | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | if (NewVD->hasExternalStorage()) { | 
|  | Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration); | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the | 
|  | // __constant address space. | 
|  | // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static | 
|  | // variables inside a function can also be declared in the global | 
|  | // address space. | 
|  | // OpenCL C++ v1.0 s2.5 inherits rule from OpenCL C v2.0 and allows local | 
|  | // address space additionally. | 
|  | // FIXME: Add local AS for OpenCL C++. | 
|  | if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() || | 
|  | NewVD->hasExternalStorage()) { | 
|  | if (!T->isSamplerT() && | 
|  | !(T.getAddressSpace() == LangAS::opencl_constant || | 
|  | (T.getAddressSpace() == LangAS::opencl_global && | 
|  | (getLangOpts().OpenCLVersion == 200 || | 
|  | getLangOpts().OpenCLCPlusPlus)))) { | 
|  | int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1; | 
|  | if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus) | 
|  | Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) | 
|  | << Scope << "global or constant"; | 
|  | else | 
|  | Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) | 
|  | << Scope << "constant"; | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | if (T.getAddressSpace() == LangAS::opencl_global) { | 
|  | Diag(NewVD->getLocation(), diag::err_opencl_function_variable) | 
|  | << 1 /*is any function*/ << "global"; | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | if (T.getAddressSpace() == LangAS::opencl_constant || | 
|  | T.getAddressSpace() == LangAS::opencl_local) { | 
|  | FunctionDecl *FD = getCurFunctionDecl(); | 
|  | // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables | 
|  | // in functions. | 
|  | if (FD && !FD->hasAttr<OpenCLKernelAttr>()) { | 
|  | if (T.getAddressSpace() == LangAS::opencl_constant) | 
|  | Diag(NewVD->getLocation(), diag::err_opencl_function_variable) | 
|  | << 0 /*non-kernel only*/ << "constant"; | 
|  | else | 
|  | Diag(NewVD->getLocation(), diag::err_opencl_function_variable) | 
|  | << 0 /*non-kernel only*/ << "local"; | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be | 
|  | // in the outermost scope of a kernel function. | 
|  | if (FD && FD->hasAttr<OpenCLKernelAttr>()) { | 
|  | if (!getCurScope()->isFunctionScope()) { | 
|  | if (T.getAddressSpace() == LangAS::opencl_constant) | 
|  | Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) | 
|  | << "constant"; | 
|  | else | 
|  | Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) | 
|  | << "local"; | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } else if (T.getAddressSpace() != LangAS::opencl_private) { | 
|  | // Do not allow other address spaces on automatic variable. | 
|  | Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1; | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NewVD->hasLocalStorage() && T.isObjCGCWeak() | 
|  | && !NewVD->hasAttr<BlocksAttr>()) { | 
|  | if (getLangOpts().getGC() != LangOptions::NonGC) | 
|  | Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); | 
|  | else { | 
|  | assert(!getLangOpts().ObjCAutoRefCount); | 
|  | Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool isVM = T->isVariablyModifiedType(); | 
|  | if (isVM || NewVD->hasAttr<CleanupAttr>() || | 
|  | NewVD->hasAttr<BlocksAttr>()) | 
|  | setFunctionHasBranchProtectedScope(); | 
|  |  | 
|  | if ((isVM && NewVD->hasLinkage()) || | 
|  | (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { | 
|  | bool SizeIsNegative; | 
|  | llvm::APSInt Oversized; | 
|  | TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( | 
|  | NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized); | 
|  | QualType FixedT; | 
|  | if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType()) | 
|  | FixedT = FixedTInfo->getType(); | 
|  | else if (FixedTInfo) { | 
|  | // Type and type-as-written are canonically different. We need to fix up | 
|  | // both types separately. | 
|  | FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, | 
|  | Oversized); | 
|  | } | 
|  | if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) { | 
|  | const VariableArrayType *VAT = Context.getAsVariableArrayType(T); | 
|  | // FIXME: This won't give the correct result for | 
|  | // int a[10][n]; | 
|  | SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); | 
|  |  | 
|  | if (NewVD->isFileVarDecl()) | 
|  | Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) | 
|  | << SizeRange; | 
|  | else if (NewVD->isStaticLocal()) | 
|  | Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) | 
|  | << SizeRange; | 
|  | else | 
|  | Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) | 
|  | << SizeRange; | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!FixedTInfo) { | 
|  | if (NewVD->isFileVarDecl()) | 
|  | Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); | 
|  | else | 
|  | Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size); | 
|  | NewVD->setType(FixedT); | 
|  | NewVD->setTypeSourceInfo(FixedTInfo); | 
|  | } | 
|  |  | 
|  | if (T->isVoidType()) { | 
|  | // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names | 
|  | //                    of objects and functions. | 
|  | if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { | 
|  | Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) | 
|  | << T; | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { | 
|  | Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isVM && NewVD->hasAttr<BlocksAttr>()) { | 
|  | Diag(NewVD->getLocation(), diag::err_block_on_vm); | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (NewVD->isConstexpr() && !T->isDependentType() && | 
|  | RequireLiteralType(NewVD->getLocation(), T, | 
|  | diag::err_constexpr_var_non_literal)) { | 
|  | NewVD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Perform semantic checking on a newly-created variable | 
|  | /// declaration. | 
|  | /// | 
|  | /// This routine performs all of the type-checking required for a | 
|  | /// variable declaration once it has been built. It is used both to | 
|  | /// check variables after they have been parsed and their declarators | 
|  | /// have been translated into a declaration, and to check variables | 
|  | /// that have been instantiated from a template. | 
|  | /// | 
|  | /// Sets NewVD->isInvalidDecl() if an error was encountered. | 
|  | /// | 
|  | /// Returns true if the variable declaration is a redeclaration. | 
|  | bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { | 
|  | CheckVariableDeclarationType(NewVD); | 
|  |  | 
|  | // If the decl is already known invalid, don't check it. | 
|  | if (NewVD->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | // If we did not find anything by this name, look for a non-visible | 
|  | // extern "C" declaration with the same name. | 
|  | if (Previous.empty() && | 
|  | checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) | 
|  | Previous.setShadowed(); | 
|  |  | 
|  | if (!Previous.empty()) { | 
|  | MergeVarDecl(NewVD, Previous); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct FindOverriddenMethod { | 
|  | Sema *S; | 
|  | CXXMethodDecl *Method; | 
|  |  | 
|  | /// Member lookup function that determines whether a given C++ | 
|  | /// method overrides a method in a base class, to be used with | 
|  | /// CXXRecordDecl::lookupInBases(). | 
|  | bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { | 
|  | RecordDecl *BaseRecord = | 
|  | Specifier->getType()->getAs<RecordType>()->getDecl(); | 
|  |  | 
|  | DeclarationName Name = Method->getDeclName(); | 
|  |  | 
|  | // FIXME: Do we care about other names here too? | 
|  | if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | 
|  | // We really want to find the base class destructor here. | 
|  | QualType T = S->Context.getTypeDeclType(BaseRecord); | 
|  | CanQualType CT = S->Context.getCanonicalType(T); | 
|  |  | 
|  | Name = S->Context.DeclarationNames.getCXXDestructorName(CT); | 
|  | } | 
|  |  | 
|  | for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty(); | 
|  | Path.Decls = Path.Decls.slice(1)) { | 
|  | NamedDecl *D = Path.Decls.front(); | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (MD->isVirtual() && !S->IsOverload(Method, MD, false)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Report an error regarding overriding, along with any relevant | 
|  | /// overridden methods. | 
|  | /// | 
|  | /// \param DiagID the primary error to report. | 
|  | /// \param MD the overriding method. | 
|  | /// \param OEK which overrides to include as notes. | 
|  | static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD, | 
|  | OverrideErrorKind OEK = OEK_All) { | 
|  | S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); | 
|  | for (const CXXMethodDecl *O : MD->overridden_methods()) { | 
|  | // This check (& the OEK parameter) could be replaced by a predicate, but | 
|  | // without lambdas that would be overkill. This is still nicer than writing | 
|  | // out the diag loop 3 times. | 
|  | if ((OEK == OEK_All) || | 
|  | (OEK == OEK_NonDeleted && !O->isDeleted()) || | 
|  | (OEK == OEK_Deleted && O->isDeleted())) | 
|  | S.Diag(O->getLocation(), diag::note_overridden_virtual_function); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AddOverriddenMethods - See if a method overrides any in the base classes, | 
|  | /// and if so, check that it's a valid override and remember it. | 
|  | bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { | 
|  | // Look for methods in base classes that this method might override. | 
|  | CXXBasePaths Paths; | 
|  | FindOverriddenMethod FOM; | 
|  | FOM.Method = MD; | 
|  | FOM.S = this; | 
|  | bool hasDeletedOverridenMethods = false; | 
|  | bool hasNonDeletedOverridenMethods = false; | 
|  | bool AddedAny = false; | 
|  | if (DC->lookupInBases(FOM, Paths)) { | 
|  | for (auto *I : Paths.found_decls()) { | 
|  | if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) { | 
|  | MD->addOverriddenMethod(OldMD->getCanonicalDecl()); | 
|  | if (!CheckOverridingFunctionReturnType(MD, OldMD) && | 
|  | !CheckOverridingFunctionAttributes(MD, OldMD) && | 
|  | !CheckOverridingFunctionExceptionSpec(MD, OldMD) && | 
|  | !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) { | 
|  | hasDeletedOverridenMethods |= OldMD->isDeleted(); | 
|  | hasNonDeletedOverridenMethods |= !OldMD->isDeleted(); | 
|  | AddedAny = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hasDeletedOverridenMethods && !MD->isDeleted()) { | 
|  | ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted); | 
|  | } | 
|  | if (hasNonDeletedOverridenMethods && MD->isDeleted()) { | 
|  | ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted); | 
|  | } | 
|  |  | 
|  | return AddedAny; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Struct for holding all of the extra arguments needed by | 
|  | // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. | 
|  | struct ActOnFDArgs { | 
|  | Scope *S; | 
|  | Declarator &D; | 
|  | MultiTemplateParamsArg TemplateParamLists; | 
|  | bool AddToScope; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Callback to only accept typo corrections that have a non-zero edit distance. | 
|  | // Also only accept corrections that have the same parent decl. | 
|  | class DifferentNameValidatorCCC final : public CorrectionCandidateCallback { | 
|  | public: | 
|  | DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, | 
|  | CXXRecordDecl *Parent) | 
|  | : Context(Context), OriginalFD(TypoFD), | 
|  | ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} | 
|  |  | 
|  | bool ValidateCandidate(const TypoCorrection &candidate) override { | 
|  | if (candidate.getEditDistance() == 0) | 
|  | return false; | 
|  |  | 
|  | SmallVector<unsigned, 1> MismatchedParams; | 
|  | for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), | 
|  | CDeclEnd = candidate.end(); | 
|  | CDecl != CDeclEnd; ++CDecl) { | 
|  | FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); | 
|  |  | 
|  | if (FD && !FD->hasBody() && | 
|  | hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | CXXRecordDecl *Parent = MD->getParent(); | 
|  | if (Parent && Parent->getCanonicalDecl() == ExpectedParent) | 
|  | return true; | 
|  | } else if (!ExpectedParent) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<CorrectionCandidateCallback> clone() override { | 
|  | return llvm::make_unique<DifferentNameValidatorCCC>(*this); | 
|  | } | 
|  |  | 
|  | private: | 
|  | ASTContext &Context; | 
|  | FunctionDecl *OriginalFD; | 
|  | CXXRecordDecl *ExpectedParent; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) { | 
|  | TypoCorrectedFunctionDefinitions.insert(F); | 
|  | } | 
|  |  | 
|  | /// Generate diagnostics for an invalid function redeclaration. | 
|  | /// | 
|  | /// This routine handles generating the diagnostic messages for an invalid | 
|  | /// function redeclaration, including finding possible similar declarations | 
|  | /// or performing typo correction if there are no previous declarations with | 
|  | /// the same name. | 
|  | /// | 
|  | /// Returns a NamedDecl iff typo correction was performed and substituting in | 
|  | /// the new declaration name does not cause new errors. | 
|  | static NamedDecl *DiagnoseInvalidRedeclaration( | 
|  | Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, | 
|  | ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { | 
|  | DeclarationName Name = NewFD->getDeclName(); | 
|  | DeclContext *NewDC = NewFD->getDeclContext(); | 
|  | SmallVector<unsigned, 1> MismatchedParams; | 
|  | SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; | 
|  | TypoCorrection Correction; | 
|  | bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); | 
|  | unsigned DiagMsg = | 
|  | IsLocalFriend ? diag::err_no_matching_local_friend : | 
|  | NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match : | 
|  | diag::err_member_decl_does_not_match; | 
|  | LookupResult Prev(SemaRef, Name, NewFD->getLocation(), | 
|  | IsLocalFriend ? Sema::LookupLocalFriendName | 
|  | : Sema::LookupOrdinaryName, | 
|  | Sema::ForVisibleRedeclaration); | 
|  |  | 
|  | NewFD->setInvalidDecl(); | 
|  | if (IsLocalFriend) | 
|  | SemaRef.LookupName(Prev, S); | 
|  | else | 
|  | SemaRef.LookupQualifiedName(Prev, NewDC); | 
|  | assert(!Prev.isAmbiguous() && | 
|  | "Cannot have an ambiguity in previous-declaration lookup"); | 
|  | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); | 
|  | DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD, | 
|  | MD ? MD->getParent() : nullptr); | 
|  | if (!Prev.empty()) { | 
|  | for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); | 
|  | Func != FuncEnd; ++Func) { | 
|  | FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); | 
|  | if (FD && | 
|  | hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { | 
|  | // Add 1 to the index so that 0 can mean the mismatch didn't | 
|  | // involve a parameter | 
|  | unsigned ParamNum = | 
|  | MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; | 
|  | NearMatches.push_back(std::make_pair(FD, ParamNum)); | 
|  | } | 
|  | } | 
|  | // If the qualified name lookup yielded nothing, try typo correction | 
|  | } else if ((Correction = SemaRef.CorrectTypo( | 
|  | Prev.getLookupNameInfo(), Prev.getLookupKind(), S, | 
|  | &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery, | 
|  | IsLocalFriend ? nullptr : NewDC))) { | 
|  | // Set up everything for the call to ActOnFunctionDeclarator | 
|  | ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), | 
|  | ExtraArgs.D.getIdentifierLoc()); | 
|  | Previous.clear(); | 
|  | Previous.setLookupName(Correction.getCorrection()); | 
|  | for (TypoCorrection::decl_iterator CDecl = Correction.begin(), | 
|  | CDeclEnd = Correction.end(); | 
|  | CDecl != CDeclEnd; ++CDecl) { | 
|  | FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); | 
|  | if (FD && !FD->hasBody() && | 
|  | hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { | 
|  | Previous.addDecl(FD); | 
|  | } | 
|  | } | 
|  | bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); | 
|  |  | 
|  | NamedDecl *Result; | 
|  | // Retry building the function declaration with the new previous | 
|  | // declarations, and with errors suppressed. | 
|  | { | 
|  | // Trap errors. | 
|  | Sema::SFINAETrap Trap(SemaRef); | 
|  |  | 
|  | // TODO: Refactor ActOnFunctionDeclarator so that we can call only the | 
|  | // pieces need to verify the typo-corrected C++ declaration and hopefully | 
|  | // eliminate the need for the parameter pack ExtraArgs. | 
|  | Result = SemaRef.ActOnFunctionDeclarator( | 
|  | ExtraArgs.S, ExtraArgs.D, | 
|  | Correction.getCorrectionDecl()->getDeclContext(), | 
|  | NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, | 
|  | ExtraArgs.AddToScope); | 
|  |  | 
|  | if (Trap.hasErrorOccurred()) | 
|  | Result = nullptr; | 
|  | } | 
|  |  | 
|  | if (Result) { | 
|  | // Determine which correction we picked. | 
|  | Decl *Canonical = Result->getCanonicalDecl(); | 
|  | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | 
|  | I != E; ++I) | 
|  | if ((*I)->getCanonicalDecl() == Canonical) | 
|  | Correction.setCorrectionDecl(*I); | 
|  |  | 
|  | // Let Sema know about the correction. | 
|  | SemaRef.MarkTypoCorrectedFunctionDefinition(Result); | 
|  | SemaRef.diagnoseTypo( | 
|  | Correction, | 
|  | SemaRef.PDiag(IsLocalFriend | 
|  | ? diag::err_no_matching_local_friend_suggest | 
|  | : diag::err_member_decl_does_not_match_suggest) | 
|  | << Name << NewDC << IsDefinition); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Pretend the typo correction never occurred | 
|  | ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), | 
|  | ExtraArgs.D.getIdentifierLoc()); | 
|  | ExtraArgs.D.setRedeclaration(wasRedeclaration); | 
|  | Previous.clear(); | 
|  | Previous.setLookupName(Name); | 
|  | } | 
|  |  | 
|  | SemaRef.Diag(NewFD->getLocation(), DiagMsg) | 
|  | << Name << NewDC << IsDefinition << NewFD->getLocation(); | 
|  |  | 
|  | bool NewFDisConst = false; | 
|  | if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) | 
|  | NewFDisConst = NewMD->isConst(); | 
|  |  | 
|  | for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator | 
|  | NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); | 
|  | NearMatch != NearMatchEnd; ++NearMatch) { | 
|  | FunctionDecl *FD = NearMatch->first; | 
|  | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); | 
|  | bool FDisConst = MD && MD->isConst(); | 
|  | bool IsMember = MD || !IsLocalFriend; | 
|  |  | 
|  | // FIXME: These notes are poorly worded for the local friend case. | 
|  | if (unsigned Idx = NearMatch->second) { | 
|  | ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); | 
|  | SourceLocation Loc = FDParam->getTypeSpecStartLoc(); | 
|  | if (Loc.isInvalid()) Loc = FD->getLocation(); | 
|  | SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match | 
|  | : diag::note_local_decl_close_param_match) | 
|  | << Idx << FDParam->getType() | 
|  | << NewFD->getParamDecl(Idx - 1)->getType(); | 
|  | } else if (FDisConst != NewFDisConst) { | 
|  | SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) | 
|  | << NewFDisConst << FD->getSourceRange().getEnd(); | 
|  | } else | 
|  | SemaRef.Diag(FD->getLocation(), | 
|  | IsMember ? diag::note_member_def_close_match | 
|  | : diag::note_local_decl_close_match); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { | 
|  | switch (D.getDeclSpec().getStorageClassSpec()) { | 
|  | default: llvm_unreachable("Unknown storage class!"); | 
|  | case DeclSpec::SCS_auto: | 
|  | case DeclSpec::SCS_register: | 
|  | case DeclSpec::SCS_mutable: | 
|  | SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
|  | diag::err_typecheck_sclass_func); | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | D.setInvalidType(); | 
|  | break; | 
|  | case DeclSpec::SCS_unspecified: break; | 
|  | case DeclSpec::SCS_extern: | 
|  | if (D.getDeclSpec().isExternInLinkageSpec()) | 
|  | return SC_None; | 
|  | return SC_Extern; | 
|  | case DeclSpec::SCS_static: { | 
|  | if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { | 
|  | // C99 6.7.1p5: | 
|  | //   The declaration of an identifier for a function that has | 
|  | //   block scope shall have no explicit storage-class specifier | 
|  | //   other than extern | 
|  | // See also (C++ [dcl.stc]p4). | 
|  | SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
|  | diag::err_static_block_func); | 
|  | break; | 
|  | } else | 
|  | return SC_Static; | 
|  | } | 
|  | case DeclSpec::SCS_private_extern: return SC_PrivateExtern; | 
|  | } | 
|  |  | 
|  | // No explicit storage class has already been returned | 
|  | return SC_None; | 
|  | } | 
|  |  | 
|  | static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, | 
|  | DeclContext *DC, QualType &R, | 
|  | TypeSourceInfo *TInfo, | 
|  | StorageClass SC, | 
|  | bool &IsVirtualOkay) { | 
|  | DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); | 
|  | DeclarationName Name = NameInfo.getName(); | 
|  |  | 
|  | FunctionDecl *NewFD = nullptr; | 
|  | bool isInline = D.getDeclSpec().isInlineSpecified(); | 
|  |  | 
|  | if (!SemaRef.getLangOpts().CPlusPlus) { | 
|  | // Determine whether the function was written with a | 
|  | // prototype. This true when: | 
|  | //   - there is a prototype in the declarator, or | 
|  | //   - the type R of the function is some kind of typedef or other non- | 
|  | //     attributed reference to a type name (which eventually refers to a | 
|  | //     function type). | 
|  | bool HasPrototype = | 
|  | (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || | 
|  | (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType()); | 
|  |  | 
|  | NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo, | 
|  | R, TInfo, SC, isInline, HasPrototype, | 
|  | CSK_unspecified); | 
|  | if (D.isInvalidType()) | 
|  | NewFD->setInvalidDecl(); | 
|  |  | 
|  | return NewFD; | 
|  | } | 
|  |  | 
|  | ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier(); | 
|  | ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); | 
|  | // Check that the return type is not an abstract class type. | 
|  | // For record types, this is done by the AbstractClassUsageDiagnoser once | 
|  | // the class has been completely parsed. | 
|  | if (!DC->isRecord() && | 
|  | SemaRef.RequireNonAbstractType( | 
|  | D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(), | 
|  | diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType)) | 
|  | D.setInvalidType(); | 
|  |  | 
|  | if (Name.getNameKind() == DeclarationName::CXXConstructorName) { | 
|  | // This is a C++ constructor declaration. | 
|  | assert(DC->isRecord() && | 
|  | "Constructors can only be declared in a member context"); | 
|  |  | 
|  | R = SemaRef.CheckConstructorDeclarator(D, R, SC); | 
|  | return CXXConstructorDecl::Create( | 
|  | SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, | 
|  | TInfo, ExplicitSpecifier, isInline, | 
|  | /*isImplicitlyDeclared=*/false, ConstexprKind); | 
|  |  | 
|  | } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | 
|  | // This is a C++ destructor declaration. | 
|  | if (DC->isRecord()) { | 
|  | R = SemaRef.CheckDestructorDeclarator(D, R, SC); | 
|  | CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); | 
|  | CXXDestructorDecl *NewDD = | 
|  | CXXDestructorDecl::Create(SemaRef.Context, Record, D.getBeginLoc(), | 
|  | NameInfo, R, TInfo, isInline, | 
|  | /*isImplicitlyDeclared=*/false); | 
|  |  | 
|  | // If the destructor needs an implicit exception specification, set it | 
|  | // now. FIXME: It'd be nice to be able to create the right type to start | 
|  | // with, but the type needs to reference the destructor declaration. | 
|  | if (SemaRef.getLangOpts().CPlusPlus11) | 
|  | SemaRef.AdjustDestructorExceptionSpec(NewDD); | 
|  |  | 
|  | IsVirtualOkay = true; | 
|  | return NewDD; | 
|  |  | 
|  | } else { | 
|  | SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); | 
|  | D.setInvalidType(); | 
|  |  | 
|  | // Create a FunctionDecl to satisfy the function definition parsing | 
|  | // code path. | 
|  | return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), | 
|  | D.getIdentifierLoc(), Name, R, TInfo, SC, | 
|  | isInline, | 
|  | /*hasPrototype=*/true, ConstexprKind); | 
|  | } | 
|  |  | 
|  | } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { | 
|  | if (!DC->isRecord()) { | 
|  | SemaRef.Diag(D.getIdentifierLoc(), | 
|  | diag::err_conv_function_not_member); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SemaRef.CheckConversionDeclarator(D, R, SC); | 
|  | IsVirtualOkay = true; | 
|  | return CXXConversionDecl::Create( | 
|  | SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, | 
|  | TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation()); | 
|  |  | 
|  | } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { | 
|  | SemaRef.CheckDeductionGuideDeclarator(D, R, SC); | 
|  |  | 
|  | return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), | 
|  | ExplicitSpecifier, NameInfo, R, TInfo, | 
|  | D.getEndLoc()); | 
|  | } else if (DC->isRecord()) { | 
|  | // If the name of the function is the same as the name of the record, | 
|  | // then this must be an invalid constructor that has a return type. | 
|  | // (The parser checks for a return type and makes the declarator a | 
|  | // constructor if it has no return type). | 
|  | if (Name.getAsIdentifierInfo() && | 
|  | Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ | 
|  | SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) | 
|  | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // This is a C++ method declaration. | 
|  | CXXMethodDecl *Ret = CXXMethodDecl::Create( | 
|  | SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, | 
|  | TInfo, SC, isInline, ConstexprKind, SourceLocation()); | 
|  | IsVirtualOkay = !Ret->isStatic(); | 
|  | return Ret; | 
|  | } else { | 
|  | bool isFriend = | 
|  | SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified(); | 
|  | if (!isFriend && SemaRef.CurContext->isRecord()) | 
|  | return nullptr; | 
|  |  | 
|  | // Determine whether the function was written with a | 
|  | // prototype. This true when: | 
|  | //   - we're in C++ (where every function has a prototype), | 
|  | return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo, | 
|  | R, TInfo, SC, isInline, true /*HasPrototype*/, | 
|  | ConstexprKind); | 
|  | } | 
|  | } | 
|  |  | 
|  | enum OpenCLParamType { | 
|  | ValidKernelParam, | 
|  | PtrPtrKernelParam, | 
|  | PtrKernelParam, | 
|  | InvalidAddrSpacePtrKernelParam, | 
|  | InvalidKernelParam, | 
|  | RecordKernelParam | 
|  | }; | 
|  |  | 
|  | static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) { | 
|  | // Size dependent types are just typedefs to normal integer types | 
|  | // (e.g. unsigned long), so we cannot distinguish them from other typedefs to | 
|  | // integers other than by their names. | 
|  | StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"}; | 
|  |  | 
|  | // Remove typedefs one by one until we reach a typedef | 
|  | // for a size dependent type. | 
|  | QualType DesugaredTy = Ty; | 
|  | do { | 
|  | ArrayRef<StringRef> Names(SizeTypeNames); | 
|  | auto Match = llvm::find(Names, DesugaredTy.getAsString()); | 
|  | if (Names.end() != Match) | 
|  | return true; | 
|  |  | 
|  | Ty = DesugaredTy; | 
|  | DesugaredTy = Ty.getSingleStepDesugaredType(C); | 
|  | } while (DesugaredTy != Ty); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) { | 
|  | if (PT->isPointerType()) { | 
|  | QualType PointeeType = PT->getPointeeType(); | 
|  | if (PointeeType->isPointerType()) | 
|  | return PtrPtrKernelParam; | 
|  | if (PointeeType.getAddressSpace() == LangAS::opencl_generic || | 
|  | PointeeType.getAddressSpace() == LangAS::opencl_private || | 
|  | PointeeType.getAddressSpace() == LangAS::Default) | 
|  | return InvalidAddrSpacePtrKernelParam; | 
|  | return PtrKernelParam; | 
|  | } | 
|  |  | 
|  | // OpenCL v1.2 s6.9.k: | 
|  | // Arguments to kernel functions in a program cannot be declared with the | 
|  | // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and | 
|  | // uintptr_t or a struct and/or union that contain fields declared to be one | 
|  | // of these built-in scalar types. | 
|  | if (isOpenCLSizeDependentType(S.getASTContext(), PT)) | 
|  | return InvalidKernelParam; | 
|  |  | 
|  | if (PT->isImageType()) | 
|  | return PtrKernelParam; | 
|  |  | 
|  | if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT()) | 
|  | return InvalidKernelParam; | 
|  |  | 
|  | // OpenCL extension spec v1.2 s9.5: | 
|  | // This extension adds support for half scalar and vector types as built-in | 
|  | // types that can be used for arithmetic operations, conversions etc. | 
|  | if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType()) | 
|  | return InvalidKernelParam; | 
|  |  | 
|  | if (PT->isRecordType()) | 
|  | return RecordKernelParam; | 
|  |  | 
|  | // Look into an array argument to check if it has a forbidden type. | 
|  | if (PT->isArrayType()) { | 
|  | const Type *UnderlyingTy = PT->getPointeeOrArrayElementType(); | 
|  | // Call ourself to check an underlying type of an array. Since the | 
|  | // getPointeeOrArrayElementType returns an innermost type which is not an | 
|  | // array, this recursive call only happens once. | 
|  | return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0)); | 
|  | } | 
|  |  | 
|  | return ValidKernelParam; | 
|  | } | 
|  |  | 
|  | static void checkIsValidOpenCLKernelParameter( | 
|  | Sema &S, | 
|  | Declarator &D, | 
|  | ParmVarDecl *Param, | 
|  | llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { | 
|  | QualType PT = Param->getType(); | 
|  |  | 
|  | // Cache the valid types we encounter to avoid rechecking structs that are | 
|  | // used again | 
|  | if (ValidTypes.count(PT.getTypePtr())) | 
|  | return; | 
|  |  | 
|  | switch (getOpenCLKernelParameterType(S, PT)) { | 
|  | case PtrPtrKernelParam: | 
|  | // OpenCL v1.2 s6.9.a: | 
|  | // A kernel function argument cannot be declared as a | 
|  | // pointer to a pointer type. | 
|  | S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); | 
|  | D.setInvalidType(); | 
|  | return; | 
|  |  | 
|  | case InvalidAddrSpacePtrKernelParam: | 
|  | // OpenCL v1.0 s6.5: | 
|  | // __kernel function arguments declared to be a pointer of a type can point | 
|  | // to one of the following address spaces only : __global, __local or | 
|  | // __constant. | 
|  | S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space); | 
|  | D.setInvalidType(); | 
|  | return; | 
|  |  | 
|  | // OpenCL v1.2 s6.9.k: | 
|  | // Arguments to kernel functions in a program cannot be declared with the | 
|  | // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and | 
|  | // uintptr_t or a struct and/or union that contain fields declared to be | 
|  | // one of these built-in scalar types. | 
|  |  | 
|  | case InvalidKernelParam: | 
|  | // OpenCL v1.2 s6.8 n: | 
|  | // A kernel function argument cannot be declared | 
|  | // of event_t type. | 
|  | // Do not diagnose half type since it is diagnosed as invalid argument | 
|  | // type for any function elsewhere. | 
|  | if (!PT->isHalfType()) { | 
|  | S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; | 
|  |  | 
|  | // Explain what typedefs are involved. | 
|  | const TypedefType *Typedef = nullptr; | 
|  | while ((Typedef = PT->getAs<TypedefType>())) { | 
|  | SourceLocation Loc = Typedef->getDecl()->getLocation(); | 
|  | // SourceLocation may be invalid for a built-in type. | 
|  | if (Loc.isValid()) | 
|  | S.Diag(Loc, diag::note_entity_declared_at) << PT; | 
|  | PT = Typedef->desugar(); | 
|  | } | 
|  | } | 
|  |  | 
|  | D.setInvalidType(); | 
|  | return; | 
|  |  | 
|  | case PtrKernelParam: | 
|  | case ValidKernelParam: | 
|  | ValidTypes.insert(PT.getTypePtr()); | 
|  | return; | 
|  |  | 
|  | case RecordKernelParam: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Track nested structs we will inspect | 
|  | SmallVector<const Decl *, 4> VisitStack; | 
|  |  | 
|  | // Track where we are in the nested structs. Items will migrate from | 
|  | // VisitStack to HistoryStack as we do the DFS for bad field. | 
|  | SmallVector<const FieldDecl *, 4> HistoryStack; | 
|  | HistoryStack.push_back(nullptr); | 
|  |  | 
|  | // At this point we already handled everything except of a RecordType or | 
|  | // an ArrayType of a RecordType. | 
|  | assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."); | 
|  | const RecordType *RecTy = | 
|  | PT->getPointeeOrArrayElementType()->getAs<RecordType>(); | 
|  | const RecordDecl *OrigRecDecl = RecTy->getDecl(); | 
|  |  | 
|  | VisitStack.push_back(RecTy->getDecl()); | 
|  | assert(VisitStack.back() && "First decl null?"); | 
|  |  | 
|  | do { | 
|  | const Decl *Next = VisitStack.pop_back_val(); | 
|  | if (!Next) { | 
|  | assert(!HistoryStack.empty()); | 
|  | // Found a marker, we have gone up a level | 
|  | if (const FieldDecl *Hist = HistoryStack.pop_back_val()) | 
|  | ValidTypes.insert(Hist->getType().getTypePtr()); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Adds everything except the original parameter declaration (which is not a | 
|  | // field itself) to the history stack. | 
|  | const RecordDecl *RD; | 
|  | if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { | 
|  | HistoryStack.push_back(Field); | 
|  |  | 
|  | QualType FieldTy = Field->getType(); | 
|  | // Other field types (known to be valid or invalid) are handled while we | 
|  | // walk around RecordDecl::fields(). | 
|  | assert((FieldTy->isArrayType() || FieldTy->isRecordType()) && | 
|  | "Unexpected type."); | 
|  | const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType(); | 
|  |  | 
|  | RD = FieldRecTy->castAs<RecordType>()->getDecl(); | 
|  | } else { | 
|  | RD = cast<RecordDecl>(Next); | 
|  | } | 
|  |  | 
|  | // Add a null marker so we know when we've gone back up a level | 
|  | VisitStack.push_back(nullptr); | 
|  |  | 
|  | for (const auto *FD : RD->fields()) { | 
|  | QualType QT = FD->getType(); | 
|  |  | 
|  | if (ValidTypes.count(QT.getTypePtr())) | 
|  | continue; | 
|  |  | 
|  | OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT); | 
|  | if (ParamType == ValidKernelParam) | 
|  | continue; | 
|  |  | 
|  | if (ParamType == RecordKernelParam) { | 
|  | VisitStack.push_back(FD); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // OpenCL v1.2 s6.9.p: | 
|  | // Arguments to kernel functions that are declared to be a struct or union | 
|  | // do not allow OpenCL objects to be passed as elements of the struct or | 
|  | // union. | 
|  | if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || | 
|  | ParamType == InvalidAddrSpacePtrKernelParam) { | 
|  | S.Diag(Param->getLocation(), | 
|  | diag::err_record_with_pointers_kernel_param) | 
|  | << PT->isUnionType() | 
|  | << PT; | 
|  | } else { | 
|  | S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; | 
|  | } | 
|  |  | 
|  | S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type) | 
|  | << OrigRecDecl->getDeclName(); | 
|  |  | 
|  | // We have an error, now let's go back up through history and show where | 
|  | // the offending field came from | 
|  | for (ArrayRef<const FieldDecl *>::const_iterator | 
|  | I = HistoryStack.begin() + 1, | 
|  | E = HistoryStack.end(); | 
|  | I != E; ++I) { | 
|  | const FieldDecl *OuterField = *I; | 
|  | S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) | 
|  | << OuterField->getType(); | 
|  | } | 
|  |  | 
|  | S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) | 
|  | << QT->isPointerType() | 
|  | << QT; | 
|  | D.setInvalidType(); | 
|  | return; | 
|  | } | 
|  | } while (!VisitStack.empty()); | 
|  | } | 
|  |  | 
|  | /// Find the DeclContext in which a tag is implicitly declared if we see an | 
|  | /// elaborated type specifier in the specified context, and lookup finds | 
|  | /// nothing. | 
|  | static DeclContext *getTagInjectionContext(DeclContext *DC) { | 
|  | while (!DC->isFileContext() && !DC->isFunctionOrMethod()) | 
|  | DC = DC->getParent(); | 
|  | return DC; | 
|  | } | 
|  |  | 
|  | /// Find the Scope in which a tag is implicitly declared if we see an | 
|  | /// elaborated type specifier in the specified context, and lookup finds | 
|  | /// nothing. | 
|  | static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) { | 
|  | while (S->isClassScope() || | 
|  | (LangOpts.CPlusPlus && | 
|  | S->isFunctionPrototypeScope()) || | 
|  | ((S->getFlags() & Scope::DeclScope) == 0) || | 
|  | (S->getEntity() && S->getEntity()->isTransparentContext())) | 
|  | S = S->getParent(); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | NamedDecl* | 
|  | Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, | 
|  | TypeSourceInfo *TInfo, LookupResult &Previous, | 
|  | MultiTemplateParamsArg TemplateParamLists, | 
|  | bool &AddToScope) { | 
|  | QualType R = TInfo->getType(); | 
|  |  | 
|  | assert(R->isFunctionType()); | 
|  |  | 
|  | // TODO: consider using NameInfo for diagnostic. | 
|  | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
|  | DeclarationName Name = NameInfo.getName(); | 
|  | StorageClass SC = getFunctionStorageClass(*this, D); | 
|  |  | 
|  | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) | 
|  | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | 
|  | diag::err_invalid_thread) | 
|  | << DeclSpec::getSpecifierName(TSCS); | 
|  |  | 
|  | if (D.isFirstDeclarationOfMember()) | 
|  | adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(), | 
|  | D.getIdentifierLoc()); | 
|  |  | 
|  | bool isFriend = false; | 
|  | FunctionTemplateDecl *FunctionTemplate = nullptr; | 
|  | bool isMemberSpecialization = false; | 
|  | bool isFunctionTemplateSpecialization = false; | 
|  |  | 
|  | bool isDependentClassScopeExplicitSpecialization = false; | 
|  | bool HasExplicitTemplateArgs = false; | 
|  | TemplateArgumentListInfo TemplateArgs; | 
|  |  | 
|  | bool isVirtualOkay = false; | 
|  |  | 
|  | DeclContext *OriginalDC = DC; | 
|  | bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); | 
|  |  | 
|  | FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, | 
|  | isVirtualOkay); | 
|  | if (!NewFD) return nullptr; | 
|  |  | 
|  | if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) | 
|  | NewFD->setTopLevelDeclInObjCContainer(); | 
|  |  | 
|  | // Set the lexical context. If this is a function-scope declaration, or has a | 
|  | // C++ scope specifier, or is the object of a friend declaration, the lexical | 
|  | // context will be different from the semantic context. | 
|  | NewFD->setLexicalDeclContext(CurContext); | 
|  |  | 
|  | if (IsLocalExternDecl) | 
|  | NewFD->setLocalExternDecl(); | 
|  |  | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | bool isInline = D.getDeclSpec().isInlineSpecified(); | 
|  | bool isVirtual = D.getDeclSpec().isVirtualSpecified(); | 
|  | bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier(); | 
|  | ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); | 
|  | isFriend = D.getDeclSpec().isFriendSpecified(); | 
|  | if (isFriend && !isInline && D.isFunctionDefinition()) { | 
|  | // C++ [class.friend]p5 | 
|  | //   A function can be defined in a friend declaration of a | 
|  | //   class . . . . Such a function is implicitly inline. | 
|  | NewFD->setImplicitlyInline(); | 
|  | } | 
|  |  | 
|  | // If this is a method defined in an __interface, and is not a constructor | 
|  | // or an overloaded operator, then set the pure flag (isVirtual will already | 
|  | // return true). | 
|  | if (const CXXRecordDecl *Parent = | 
|  | dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { | 
|  | if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) | 
|  | NewFD->setPure(true); | 
|  |  | 
|  | // C++ [class.union]p2 | 
|  | //   A union can have member functions, but not virtual functions. | 
|  | if (isVirtual && Parent->isUnion()) | 
|  | Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union); | 
|  | } | 
|  |  | 
|  | SetNestedNameSpecifier(*this, NewFD, D); | 
|  | isMemberSpecialization = false; | 
|  | isFunctionTemplateSpecialization = false; | 
|  | if (D.isInvalidType()) | 
|  | NewFD->setInvalidDecl(); | 
|  |  | 
|  | // Match up the template parameter lists with the scope specifier, then | 
|  | // determine whether we have a template or a template specialization. | 
|  | bool Invalid = false; | 
|  | if (TemplateParameterList *TemplateParams = | 
|  | MatchTemplateParametersToScopeSpecifier( | 
|  | D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), | 
|  | D.getCXXScopeSpec(), | 
|  | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId | 
|  | ? D.getName().TemplateId | 
|  | : nullptr, | 
|  | TemplateParamLists, isFriend, isMemberSpecialization, | 
|  | Invalid)) { | 
|  | if (TemplateParams->size() > 0) { | 
|  | // This is a function template | 
|  |  | 
|  | // Check that we can declare a template here. | 
|  | if (CheckTemplateDeclScope(S, TemplateParams)) | 
|  | NewFD->setInvalidDecl(); | 
|  |  | 
|  | // A destructor cannot be a template. | 
|  | if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | 
|  | Diag(NewFD->getLocation(), diag::err_destructor_template); | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // If we're adding a template to a dependent context, we may need to | 
|  | // rebuilding some of the types used within the template parameter list, | 
|  | // now that we know what the current instantiation is. | 
|  | if (DC->isDependentContext()) { | 
|  | ContextRAII SavedContext(*this, DC); | 
|  | if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, | 
|  | NewFD->getLocation(), | 
|  | Name, TemplateParams, | 
|  | NewFD); | 
|  | FunctionTemplate->setLexicalDeclContext(CurContext); | 
|  | NewFD->setDescribedFunctionTemplate(FunctionTemplate); | 
|  |  | 
|  | // For source fidelity, store the other template param lists. | 
|  | if (TemplateParamLists.size() > 1) { | 
|  | NewFD->setTemplateParameterListsInfo(Context, | 
|  | TemplateParamLists.drop_back(1)); | 
|  | } | 
|  | } else { | 
|  | // This is a function template specialization. | 
|  | isFunctionTemplateSpecialization = true; | 
|  | // For source fidelity, store all the template param lists. | 
|  | if (TemplateParamLists.size() > 0) | 
|  | NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); | 
|  |  | 
|  | // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". | 
|  | if (isFriend) { | 
|  | // We want to remove the "template<>", found here. | 
|  | SourceRange RemoveRange = TemplateParams->getSourceRange(); | 
|  |  | 
|  | // If we remove the template<> and the name is not a | 
|  | // template-id, we're actually silently creating a problem: | 
|  | // the friend declaration will refer to an untemplated decl, | 
|  | // and clearly the user wants a template specialization.  So | 
|  | // we need to insert '<>' after the name. | 
|  | SourceLocation InsertLoc; | 
|  | if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { | 
|  | InsertLoc = D.getName().getSourceRange().getEnd(); | 
|  | InsertLoc = getLocForEndOfToken(InsertLoc); | 
|  | } | 
|  |  | 
|  | Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) | 
|  | << Name << RemoveRange | 
|  | << FixItHint::CreateRemoval(RemoveRange) | 
|  | << FixItHint::CreateInsertion(InsertLoc, "<>"); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // All template param lists were matched against the scope specifier: | 
|  | // this is NOT (an explicit specialization of) a template. | 
|  | if (TemplateParamLists.size() > 0) | 
|  | // For source fidelity, store all the template param lists. | 
|  | NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); | 
|  | } | 
|  |  | 
|  | if (Invalid) { | 
|  | NewFD->setInvalidDecl(); | 
|  | if (FunctionTemplate) | 
|  | FunctionTemplate->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.spec]p5: | 
|  | //   The virtual specifier shall only be used in declarations of | 
|  | //   nonstatic class member functions that appear within a | 
|  | //   member-specification of a class declaration; see 10.3. | 
|  | // | 
|  | if (isVirtual && !NewFD->isInvalidDecl()) { | 
|  | if (!isVirtualOkay) { | 
|  | Diag(D.getDeclSpec().getVirtualSpecLoc(), | 
|  | diag::err_virtual_non_function); | 
|  | } else if (!CurContext->isRecord()) { | 
|  | // 'virtual' was specified outside of the class. | 
|  | Diag(D.getDeclSpec().getVirtualSpecLoc(), | 
|  | diag::err_virtual_out_of_class) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); | 
|  | } else if (NewFD->getDescribedFunctionTemplate()) { | 
|  | // C++ [temp.mem]p3: | 
|  | //  A member function template shall not be virtual. | 
|  | Diag(D.getDeclSpec().getVirtualSpecLoc(), | 
|  | diag::err_virtual_member_function_template) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); | 
|  | } else { | 
|  | // Okay: Add virtual to the method. | 
|  | NewFD->setVirtualAsWritten(true); | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus14 && | 
|  | NewFD->getReturnType()->isUndeducedType()) | 
|  | Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus14 && | 
|  | (NewFD->isDependentContext() || | 
|  | (isFriend && CurContext->isDependentContext())) && | 
|  | NewFD->getReturnType()->isUndeducedType()) { | 
|  | // If the function template is referenced directly (for instance, as a | 
|  | // member of the current instantiation), pretend it has a dependent type. | 
|  | // This is not really justified by the standard, but is the only sane | 
|  | // thing to do. | 
|  | // FIXME: For a friend function, we have not marked the function as being | 
|  | // a friend yet, so 'isDependentContext' on the FD doesn't work. | 
|  | const FunctionProtoType *FPT = | 
|  | NewFD->getType()->castAs<FunctionProtoType>(); | 
|  | QualType Result = | 
|  | SubstAutoType(FPT->getReturnType(), Context.DependentTy); | 
|  | NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), | 
|  | FPT->getExtProtoInfo())); | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.spec]p3: | 
|  | //  The inline specifier shall not appear on a block scope function | 
|  | //  declaration. | 
|  | if (isInline && !NewFD->isInvalidDecl()) { | 
|  | if (CurContext->isFunctionOrMethod()) { | 
|  | // 'inline' is not allowed on block scope function declaration. | 
|  | Diag(D.getDeclSpec().getInlineSpecLoc(), | 
|  | diag::err_inline_declaration_block_scope) << Name | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.spec]p6: | 
|  | //  The explicit specifier shall be used only in the declaration of a | 
|  | //  constructor or conversion function within its class definition; | 
|  | //  see 12.3.1 and 12.3.2. | 
|  | if (hasExplicit && !NewFD->isInvalidDecl() && | 
|  | !isa<CXXDeductionGuideDecl>(NewFD)) { | 
|  | if (!CurContext->isRecord()) { | 
|  | // 'explicit' was specified outside of the class. | 
|  | Diag(D.getDeclSpec().getExplicitSpecLoc(), | 
|  | diag::err_explicit_out_of_class) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); | 
|  | } else if (!isa<CXXConstructorDecl>(NewFD) && | 
|  | !isa<CXXConversionDecl>(NewFD)) { | 
|  | // 'explicit' was specified on a function that wasn't a constructor | 
|  | // or conversion function. | 
|  | Diag(D.getDeclSpec().getExplicitSpecLoc(), | 
|  | diag::err_explicit_non_ctor_or_conv_function) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstexprKind != CSK_unspecified) { | 
|  | // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors | 
|  | // are implicitly inline. | 
|  | NewFD->setImplicitlyInline(); | 
|  |  | 
|  | // C++11 [dcl.constexpr]p3: functions declared constexpr are required to | 
|  | // be either constructors or to return a literal type. Therefore, | 
|  | // destructors cannot be declared constexpr. | 
|  | if (isa<CXXDestructorDecl>(NewFD)) | 
|  | Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor) | 
|  | << (ConstexprKind == CSK_consteval); | 
|  | } | 
|  |  | 
|  | // If __module_private__ was specified, mark the function accordingly. | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) { | 
|  | if (isFunctionTemplateSpecialization) { | 
|  | SourceLocation ModulePrivateLoc | 
|  | = D.getDeclSpec().getModulePrivateSpecLoc(); | 
|  | Diag(ModulePrivateLoc, diag::err_module_private_specialization) | 
|  | << 0 | 
|  | << FixItHint::CreateRemoval(ModulePrivateLoc); | 
|  | } else { | 
|  | NewFD->setModulePrivate(); | 
|  | if (FunctionTemplate) | 
|  | FunctionTemplate->setModulePrivate(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isFriend) { | 
|  | if (FunctionTemplate) { | 
|  | FunctionTemplate->setObjectOfFriendDecl(); | 
|  | FunctionTemplate->setAccess(AS_public); | 
|  | } | 
|  | NewFD->setObjectOfFriendDecl(); | 
|  | NewFD->setAccess(AS_public); | 
|  | } | 
|  |  | 
|  | // If a function is defined as defaulted or deleted, mark it as such now. | 
|  | // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function | 
|  | // definition kind to FDK_Definition. | 
|  | switch (D.getFunctionDefinitionKind()) { | 
|  | case FDK_Declaration: | 
|  | case FDK_Definition: | 
|  | break; | 
|  |  | 
|  | case FDK_Defaulted: | 
|  | NewFD->setDefaulted(); | 
|  | break; | 
|  |  | 
|  | case FDK_Deleted: | 
|  | NewFD->setDeletedAsWritten(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && | 
|  | D.isFunctionDefinition()) { | 
|  | // C++ [class.mfct]p2: | 
|  | //   A member function may be defined (8.4) in its class definition, in | 
|  | //   which case it is an inline member function (7.1.2) | 
|  | NewFD->setImplicitlyInline(); | 
|  | } | 
|  |  | 
|  | if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && | 
|  | !CurContext->isRecord()) { | 
|  | // C++ [class.static]p1: | 
|  | //   A data or function member of a class may be declared static | 
|  | //   in a class definition, in which case it is a static member of | 
|  | //   the class. | 
|  |  | 
|  | // Complain about the 'static' specifier if it's on an out-of-line | 
|  | // member function definition. | 
|  |  | 
|  | // MSVC permits the use of a 'static' storage specifier on an out-of-line | 
|  | // member function template declaration and class member template | 
|  | // declaration (MSVC versions before 2015), warn about this. | 
|  | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
|  | ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && | 
|  | cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) || | 
|  | (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate())) | 
|  | ? diag::ext_static_out_of_line : diag::err_static_out_of_line) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | 
|  | } | 
|  |  | 
|  | // C++11 [except.spec]p15: | 
|  | //   A deallocation function with no exception-specification is treated | 
|  | //   as if it were specified with noexcept(true). | 
|  | const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); | 
|  | if ((Name.getCXXOverloadedOperator() == OO_Delete || | 
|  | Name.getCXXOverloadedOperator() == OO_Array_Delete) && | 
|  | getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) | 
|  | NewFD->setType(Context.getFunctionType( | 
|  | FPT->getReturnType(), FPT->getParamTypes(), | 
|  | FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept))); | 
|  | } | 
|  |  | 
|  | // Filter out previous declarations that don't match the scope. | 
|  | FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), | 
|  | D.getCXXScopeSpec().isNotEmpty() || | 
|  | isMemberSpecialization || | 
|  | isFunctionTemplateSpecialization); | 
|  |  | 
|  | // Handle GNU asm-label extension (encoded as an attribute). | 
|  | if (Expr *E = (Expr*) D.getAsmLabel()) { | 
|  | // The parser guarantees this is a string. | 
|  | StringLiteral *SE = cast<StringLiteral>(E); | 
|  | NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context, | 
|  | SE->getString(), 0)); | 
|  | } else if (!ExtnameUndeclaredIdentifiers.empty()) { | 
|  | llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = | 
|  | ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); | 
|  | if (I != ExtnameUndeclaredIdentifiers.end()) { | 
|  | if (isDeclExternC(NewFD)) { | 
|  | NewFD->addAttr(I->second); | 
|  | ExtnameUndeclaredIdentifiers.erase(I); | 
|  | } else | 
|  | Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied) | 
|  | << /*Variable*/0 << NewFD; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy the parameter declarations from the declarator D to the function | 
|  | // declaration NewFD, if they are available.  First scavenge them into Params. | 
|  | SmallVector<ParmVarDecl*, 16> Params; | 
|  | unsigned FTIIdx; | 
|  | if (D.isFunctionDeclarator(FTIIdx)) { | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun; | 
|  |  | 
|  | // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs | 
|  | // function that takes no arguments, not a function that takes a | 
|  | // single void argument. | 
|  | // We let through "const void" here because Sema::GetTypeForDeclarator | 
|  | // already checks for that case. | 
|  | if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { | 
|  | for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); | 
|  | assert(Param->getDeclContext() != NewFD && "Was set before ?"); | 
|  | Param->setDeclContext(NewFD); | 
|  | Params.push_back(Param); | 
|  |  | 
|  | if (Param->isInvalidDecl()) | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!getLangOpts().CPlusPlus) { | 
|  | // In C, find all the tag declarations from the prototype and move them | 
|  | // into the function DeclContext. Remove them from the surrounding tag | 
|  | // injection context of the function, which is typically but not always | 
|  | // the TU. | 
|  | DeclContext *PrototypeTagContext = | 
|  | getTagInjectionContext(NewFD->getLexicalDeclContext()); | 
|  | for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) { | 
|  | auto *TD = dyn_cast<TagDecl>(NonParmDecl); | 
|  |  | 
|  | // We don't want to reparent enumerators. Look at their parent enum | 
|  | // instead. | 
|  | if (!TD) { | 
|  | if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl)) | 
|  | TD = cast<EnumDecl>(ECD->getDeclContext()); | 
|  | } | 
|  | if (!TD) | 
|  | continue; | 
|  | DeclContext *TagDC = TD->getLexicalDeclContext(); | 
|  | if (!TagDC->containsDecl(TD)) | 
|  | continue; | 
|  | TagDC->removeDecl(TD); | 
|  | TD->setDeclContext(NewFD); | 
|  | NewFD->addDecl(TD); | 
|  |  | 
|  | // Preserve the lexical DeclContext if it is not the surrounding tag | 
|  | // injection context of the FD. In this example, the semantic context of | 
|  | // E will be f and the lexical context will be S, while both the | 
|  | // semantic and lexical contexts of S will be f: | 
|  | //   void f(struct S { enum E { a } f; } s); | 
|  | if (TagDC != PrototypeTagContext) | 
|  | TD->setLexicalDeclContext(TagDC); | 
|  | } | 
|  | } | 
|  | } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { | 
|  | // When we're declaring a function with a typedef, typeof, etc as in the | 
|  | // following example, we'll need to synthesize (unnamed) | 
|  | // parameters for use in the declaration. | 
|  | // | 
|  | // @code | 
|  | // typedef void fn(int); | 
|  | // fn f; | 
|  | // @endcode | 
|  |  | 
|  | // Synthesize a parameter for each argument type. | 
|  | for (const auto &AI : FT->param_types()) { | 
|  | ParmVarDecl *Param = | 
|  | BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); | 
|  | Param->setScopeInfo(0, Params.size()); | 
|  | Params.push_back(Param); | 
|  | } | 
|  | } else { | 
|  | assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && | 
|  | "Should not need args for typedef of non-prototype fn"); | 
|  | } | 
|  |  | 
|  | // Finally, we know we have the right number of parameters, install them. | 
|  | NewFD->setParams(Params); | 
|  |  | 
|  | if (D.getDeclSpec().isNoreturnSpecified()) | 
|  | NewFD->addAttr( | 
|  | ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(), | 
|  | Context, 0)); | 
|  |  | 
|  | // Functions returning a variably modified type violate C99 6.7.5.2p2 | 
|  | // because all functions have linkage. | 
|  | if (!NewFD->isInvalidDecl() && | 
|  | NewFD->getReturnType()->isVariablyModifiedType()) { | 
|  | Diag(NewFD->getLocation(), diag::err_vm_func_decl); | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // Apply an implicit SectionAttr if '#pragma clang section text' is active | 
|  | if (PragmaClangTextSection.Valid && D.isFunctionDefinition() && | 
|  | !NewFD->hasAttr<SectionAttr>()) { | 
|  | NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context, | 
|  | PragmaClangTextSection.SectionName, | 
|  | PragmaClangTextSection.PragmaLocation)); | 
|  | } | 
|  |  | 
|  | // Apply an implicit SectionAttr if #pragma code_seg is active. | 
|  | if (CodeSegStack.CurrentValue && D.isFunctionDefinition() && | 
|  | !NewFD->hasAttr<SectionAttr>()) { | 
|  | NewFD->addAttr( | 
|  | SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate, | 
|  | CodeSegStack.CurrentValue->getString(), | 
|  | CodeSegStack.CurrentPragmaLocation)); | 
|  | if (UnifySection(CodeSegStack.CurrentValue->getString(), | 
|  | ASTContext::PSF_Implicit | ASTContext::PSF_Execute | | 
|  | ASTContext::PSF_Read, | 
|  | NewFD)) | 
|  | NewFD->dropAttr<SectionAttr>(); | 
|  | } | 
|  |  | 
|  | // Apply an implicit CodeSegAttr from class declspec or | 
|  | // apply an implicit SectionAttr from #pragma code_seg if active. | 
|  | if (!NewFD->hasAttr<CodeSegAttr>()) { | 
|  | if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD, | 
|  | D.isFunctionDefinition())) { | 
|  | NewFD->addAttr(SAttr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle attributes. | 
|  | ProcessDeclAttributes(S, NewFD, D); | 
|  |  | 
|  | if (getLangOpts().OpenCL) { | 
|  | // OpenCL v1.1 s6.5: Using an address space qualifier in a function return | 
|  | // type declaration will generate a compilation error. | 
|  | LangAS AddressSpace = NewFD->getReturnType().getAddressSpace(); | 
|  | if (AddressSpace != LangAS::Default) { | 
|  | Diag(NewFD->getLocation(), | 
|  | diag::err_opencl_return_value_with_address_space); | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!getLangOpts().CPlusPlus) { | 
|  | // Perform semantic checking on the function declaration. | 
|  | if (!NewFD->isInvalidDecl() && NewFD->isMain()) | 
|  | CheckMain(NewFD, D.getDeclSpec()); | 
|  |  | 
|  | if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) | 
|  | CheckMSVCRTEntryPoint(NewFD); | 
|  |  | 
|  | if (!NewFD->isInvalidDecl()) | 
|  | D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, | 
|  | isMemberSpecialization)); | 
|  | else if (!Previous.empty()) | 
|  | // Recover gracefully from an invalid redeclaration. | 
|  | D.setRedeclaration(true); | 
|  | assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || | 
|  | Previous.getResultKind() != LookupResult::FoundOverloaded) && | 
|  | "previous declaration set still overloaded"); | 
|  |  | 
|  | // Diagnose no-prototype function declarations with calling conventions that | 
|  | // don't support variadic calls. Only do this in C and do it after merging | 
|  | // possibly prototyped redeclarations. | 
|  | const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); | 
|  | if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) { | 
|  | CallingConv CC = FT->getExtInfo().getCC(); | 
|  | if (!supportsVariadicCall(CC)) { | 
|  | // Windows system headers sometimes accidentally use stdcall without | 
|  | // (void) parameters, so we relax this to a warning. | 
|  | int DiagID = | 
|  | CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; | 
|  | Diag(NewFD->getLocation(), DiagID) | 
|  | << FunctionType::getNameForCallConv(CC); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() || | 
|  | NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion()) | 
|  | checkNonTrivialCUnion(NewFD->getReturnType(), | 
|  | NewFD->getReturnTypeSourceRange().getBegin(), | 
|  | NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy); | 
|  | } else { | 
|  | // C++11 [replacement.functions]p3: | 
|  | //  The program's definitions shall not be specified as inline. | 
|  | // | 
|  | // N.B. We diagnose declarations instead of definitions per LWG issue 2340. | 
|  | // | 
|  | // Suppress the diagnostic if the function is __attribute__((used)), since | 
|  | // that forces an external definition to be emitted. | 
|  | if (D.getDeclSpec().isInlineSpecified() && | 
|  | NewFD->isReplaceableGlobalAllocationFunction() && | 
|  | !NewFD->hasAttr<UsedAttr>()) | 
|  | Diag(D.getDeclSpec().getInlineSpecLoc(), | 
|  | diag::ext_operator_new_delete_declared_inline) | 
|  | << NewFD->getDeclName(); | 
|  |  | 
|  | // If the declarator is a template-id, translate the parser's template | 
|  | // argument list into our AST format. | 
|  | if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { | 
|  | TemplateIdAnnotation *TemplateId = D.getName().TemplateId; | 
|  | TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); | 
|  | TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); | 
|  | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | 
|  | TemplateId->NumArgs); | 
|  | translateTemplateArguments(TemplateArgsPtr, | 
|  | TemplateArgs); | 
|  |  | 
|  | HasExplicitTemplateArgs = true; | 
|  |  | 
|  | if (NewFD->isInvalidDecl()) { | 
|  | HasExplicitTemplateArgs = false; | 
|  | } else if (FunctionTemplate) { | 
|  | // Function template with explicit template arguments. | 
|  | Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) | 
|  | << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); | 
|  |  | 
|  | HasExplicitTemplateArgs = false; | 
|  | } else { | 
|  | assert((isFunctionTemplateSpecialization || | 
|  | D.getDeclSpec().isFriendSpecified()) && | 
|  | "should have a 'template<>' for this decl"); | 
|  | // "friend void foo<>(int);" is an implicit specialization decl. | 
|  | isFunctionTemplateSpecialization = true; | 
|  | } | 
|  | } else if (isFriend && isFunctionTemplateSpecialization) { | 
|  | // This combination is only possible in a recovery case;  the user | 
|  | // wrote something like: | 
|  | //   template <> friend void foo(int); | 
|  | // which we're recovering from as if the user had written: | 
|  | //   friend void foo<>(int); | 
|  | // Go ahead and fake up a template id. | 
|  | HasExplicitTemplateArgs = true; | 
|  | TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); | 
|  | TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); | 
|  | } | 
|  |  | 
|  | // We do not add HD attributes to specializations here because | 
|  | // they may have different constexpr-ness compared to their | 
|  | // templates and, after maybeAddCUDAHostDeviceAttrs() is applied, | 
|  | // may end up with different effective targets. Instead, a | 
|  | // specialization inherits its target attributes from its template | 
|  | // in the CheckFunctionTemplateSpecialization() call below. | 
|  | if (getLangOpts().CUDA & !isFunctionTemplateSpecialization) | 
|  | maybeAddCUDAHostDeviceAttrs(NewFD, Previous); | 
|  |  | 
|  | // If it's a friend (and only if it's a friend), it's possible | 
|  | // that either the specialized function type or the specialized | 
|  | // template is dependent, and therefore matching will fail.  In | 
|  | // this case, don't check the specialization yet. | 
|  | bool InstantiationDependent = false; | 
|  | if (isFunctionTemplateSpecialization && isFriend && | 
|  | (NewFD->getType()->isDependentType() || DC->isDependentContext() || | 
|  | TemplateSpecializationType::anyDependentTemplateArguments( | 
|  | TemplateArgs, | 
|  | InstantiationDependent))) { | 
|  | assert(HasExplicitTemplateArgs && | 
|  | "friend function specialization without template args"); | 
|  | if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, | 
|  | Previous)) | 
|  | NewFD->setInvalidDecl(); | 
|  | } else if (isFunctionTemplateSpecialization) { | 
|  | if (CurContext->isDependentContext() && CurContext->isRecord() | 
|  | && !isFriend) { | 
|  | isDependentClassScopeExplicitSpecialization = true; | 
|  | } else if (!NewFD->isInvalidDecl() && | 
|  | CheckFunctionTemplateSpecialization( | 
|  | NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), | 
|  | Previous)) | 
|  | NewFD->setInvalidDecl(); | 
|  |  | 
|  | // C++ [dcl.stc]p1: | 
|  | //   A storage-class-specifier shall not be specified in an explicit | 
|  | //   specialization (14.7.3) | 
|  | FunctionTemplateSpecializationInfo *Info = | 
|  | NewFD->getTemplateSpecializationInfo(); | 
|  | if (Info && SC != SC_None) { | 
|  | if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) | 
|  | Diag(NewFD->getLocation(), | 
|  | diag::err_explicit_specialization_inconsistent_storage_class) | 
|  | << SC | 
|  | << FixItHint::CreateRemoval( | 
|  | D.getDeclSpec().getStorageClassSpecLoc()); | 
|  |  | 
|  | else | 
|  | Diag(NewFD->getLocation(), | 
|  | diag::ext_explicit_specialization_storage_class) | 
|  | << FixItHint::CreateRemoval( | 
|  | D.getDeclSpec().getStorageClassSpecLoc()); | 
|  | } | 
|  | } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) { | 
|  | if (CheckMemberSpecialization(NewFD, Previous)) | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // Perform semantic checking on the function declaration. | 
|  | if (!isDependentClassScopeExplicitSpecialization) { | 
|  | if (!NewFD->isInvalidDecl() && NewFD->isMain()) | 
|  | CheckMain(NewFD, D.getDeclSpec()); | 
|  |  | 
|  | if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) | 
|  | CheckMSVCRTEntryPoint(NewFD); | 
|  |  | 
|  | if (!NewFD->isInvalidDecl()) | 
|  | D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, | 
|  | isMemberSpecialization)); | 
|  | else if (!Previous.empty()) | 
|  | // Recover gracefully from an invalid redeclaration. | 
|  | D.setRedeclaration(true); | 
|  | } | 
|  |  | 
|  | assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || | 
|  | Previous.getResultKind() != LookupResult::FoundOverloaded) && | 
|  | "previous declaration set still overloaded"); | 
|  |  | 
|  | NamedDecl *PrincipalDecl = (FunctionTemplate | 
|  | ? cast<NamedDecl>(FunctionTemplate) | 
|  | : NewFD); | 
|  |  | 
|  | if (isFriend && NewFD->getPreviousDecl()) { | 
|  | AccessSpecifier Access = AS_public; | 
|  | if (!NewFD->isInvalidDecl()) | 
|  | Access = NewFD->getPreviousDecl()->getAccess(); | 
|  |  | 
|  | NewFD->setAccess(Access); | 
|  | if (FunctionTemplate) FunctionTemplate->setAccess(Access); | 
|  | } | 
|  |  | 
|  | if (NewFD->isOverloadedOperator() && !DC->isRecord() && | 
|  | PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) | 
|  | PrincipalDecl->setNonMemberOperator(); | 
|  |  | 
|  | // If we have a function template, check the template parameter | 
|  | // list. This will check and merge default template arguments. | 
|  | if (FunctionTemplate) { | 
|  | FunctionTemplateDecl *PrevTemplate = | 
|  | FunctionTemplate->getPreviousDecl(); | 
|  | CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), | 
|  | PrevTemplate ? PrevTemplate->getTemplateParameters() | 
|  | : nullptr, | 
|  | D.getDeclSpec().isFriendSpecified() | 
|  | ? (D.isFunctionDefinition() | 
|  | ? TPC_FriendFunctionTemplateDefinition | 
|  | : TPC_FriendFunctionTemplate) | 
|  | : (D.getCXXScopeSpec().isSet() && | 
|  | DC && DC->isRecord() && | 
|  | DC->isDependentContext()) | 
|  | ? TPC_ClassTemplateMember | 
|  | : TPC_FunctionTemplate); | 
|  | } | 
|  |  | 
|  | if (NewFD->isInvalidDecl()) { | 
|  | // Ignore all the rest of this. | 
|  | } else if (!D.isRedeclaration()) { | 
|  | struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, | 
|  | AddToScope }; | 
|  | // Fake up an access specifier if it's supposed to be a class member. | 
|  | if (isa<CXXRecordDecl>(NewFD->getDeclContext())) | 
|  | NewFD->setAccess(AS_public); | 
|  |  | 
|  | // Qualified decls generally require a previous declaration. | 
|  | if (D.getCXXScopeSpec().isSet()) { | 
|  | // ...with the major exception of templated-scope or | 
|  | // dependent-scope friend declarations. | 
|  |  | 
|  | // TODO: we currently also suppress this check in dependent | 
|  | // contexts because (1) the parameter depth will be off when | 
|  | // matching friend templates and (2) we might actually be | 
|  | // selecting a friend based on a dependent factor.  But there | 
|  | // are situations where these conditions don't apply and we | 
|  | // can actually do this check immediately. | 
|  | // | 
|  | // Unless the scope is dependent, it's always an error if qualified | 
|  | // redeclaration lookup found nothing at all. Diagnose that now; | 
|  | // nothing will diagnose that error later. | 
|  | if (isFriend && | 
|  | (D.getCXXScopeSpec().getScopeRep()->isDependent() || | 
|  | (!Previous.empty() && CurContext->isDependentContext()))) { | 
|  | // ignore these | 
|  | } else { | 
|  | // The user tried to provide an out-of-line definition for a | 
|  | // function that is a member of a class or namespace, but there | 
|  | // was no such member function declared (C++ [class.mfct]p2, | 
|  | // C++ [namespace.memdef]p2). For example: | 
|  | // | 
|  | // class X { | 
|  | //   void f() const; | 
|  | // }; | 
|  | // | 
|  | // void X::f() { } // ill-formed | 
|  | // | 
|  | // Complain about this problem, and attempt to suggest close | 
|  | // matches (e.g., those that differ only in cv-qualifiers and | 
|  | // whether the parameter types are references). | 
|  |  | 
|  | if (NamedDecl *Result = DiagnoseInvalidRedeclaration( | 
|  | *this, Previous, NewFD, ExtraArgs, false, nullptr)) { | 
|  | AddToScope = ExtraArgs.AddToScope; | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Unqualified local friend declarations are required to resolve | 
|  | // to something. | 
|  | } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { | 
|  | if (NamedDecl *Result = DiagnoseInvalidRedeclaration( | 
|  | *this, Previous, NewFD, ExtraArgs, true, S)) { | 
|  | AddToScope = ExtraArgs.AddToScope; | 
|  | return Result; | 
|  | } | 
|  | } | 
|  | } else if (!D.isFunctionDefinition() && | 
|  | isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && | 
|  | !isFriend && !isFunctionTemplateSpecialization && | 
|  | !isMemberSpecialization) { | 
|  | // An out-of-line member function declaration must also be a | 
|  | // definition (C++ [class.mfct]p2). | 
|  | // Note that this is not the case for explicit specializations of | 
|  | // function templates or member functions of class templates, per | 
|  | // C++ [temp.expl.spec]p2. We also allow these declarations as an | 
|  | // extension for compatibility with old SWIG code which likes to | 
|  | // generate them. | 
|  | Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | ProcessPragmaWeak(S, NewFD); | 
|  | checkAttributesAfterMerging(*this, *NewFD); | 
|  |  | 
|  | AddKnownFunctionAttributes(NewFD); | 
|  |  | 
|  | if (NewFD->hasAttr<OverloadableAttr>() && | 
|  | !NewFD->getType()->getAs<FunctionProtoType>()) { | 
|  | Diag(NewFD->getLocation(), | 
|  | diag::err_attribute_overloadable_no_prototype) | 
|  | << NewFD; | 
|  |  | 
|  | // Turn this into a variadic function with no parameters. | 
|  | const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); | 
|  | FunctionProtoType::ExtProtoInfo EPI( | 
|  | Context.getDefaultCallingConvention(true, false)); | 
|  | EPI.Variadic = true; | 
|  | EPI.ExtInfo = FT->getExtInfo(); | 
|  |  | 
|  | QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI); | 
|  | NewFD->setType(R); | 
|  | } | 
|  |  | 
|  | // If there's a #pragma GCC visibility in scope, and this isn't a class | 
|  | // member, set the visibility of this function. | 
|  | if (!DC->isRecord() && NewFD->isExternallyVisible()) | 
|  | AddPushedVisibilityAttribute(NewFD); | 
|  |  | 
|  | // If there's a #pragma clang arc_cf_code_audited in scope, consider | 
|  | // marking the function. | 
|  | AddCFAuditedAttribute(NewFD); | 
|  |  | 
|  | // If this is a function definition, check if we have to apply optnone due to | 
|  | // a pragma. | 
|  | if(D.isFunctionDefinition()) | 
|  | AddRangeBasedOptnone(NewFD); | 
|  |  | 
|  | // If this is the first declaration of an extern C variable, update | 
|  | // the map of such variables. | 
|  | if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && | 
|  | isIncompleteDeclExternC(*this, NewFD)) | 
|  | RegisterLocallyScopedExternCDecl(NewFD, S); | 
|  |  | 
|  | // Set this FunctionDecl's range up to the right paren. | 
|  | NewFD->setRangeEnd(D.getSourceRange().getEnd()); | 
|  |  | 
|  | if (D.isRedeclaration() && !Previous.empty()) { | 
|  | NamedDecl *Prev = Previous.getRepresentativeDecl(); | 
|  | checkDLLAttributeRedeclaration(*this, Prev, NewFD, | 
|  | isMemberSpecialization || | 
|  | isFunctionTemplateSpecialization, | 
|  | D.isFunctionDefinition()); | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CUDA) { | 
|  | IdentifierInfo *II = NewFD->getIdentifier(); | 
|  | if (II && II->isStr(getCudaConfigureFuncName()) && | 
|  | !NewFD->isInvalidDecl() && | 
|  | NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | 
|  | if (!R->getAs<FunctionType>()->getReturnType()->isScalarType()) | 
|  | Diag(NewFD->getLocation(), diag::err_config_scalar_return) | 
|  | << getCudaConfigureFuncName(); | 
|  | Context.setcudaConfigureCallDecl(NewFD); | 
|  | } | 
|  |  | 
|  | // Variadic functions, other than a *declaration* of printf, are not allowed | 
|  | // in device-side CUDA code, unless someone passed | 
|  | // -fcuda-allow-variadic-functions. | 
|  | if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() && | 
|  | (NewFD->hasAttr<CUDADeviceAttr>() || | 
|  | NewFD->hasAttr<CUDAGlobalAttr>()) && | 
|  | !(II && II->isStr("printf") && NewFD->isExternC() && | 
|  | !D.isFunctionDefinition())) { | 
|  | Diag(NewFD->getLocation(), diag::err_variadic_device_fn); | 
|  | } | 
|  | } | 
|  |  | 
|  | MarkUnusedFileScopedDecl(NewFD); | 
|  |  | 
|  |  | 
|  |  | 
|  | if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) { | 
|  | // OpenCL v1.2 s6.8 static is invalid for kernel functions. | 
|  | if ((getLangOpts().OpenCLVersion >= 120) | 
|  | && (SC == SC_Static)) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_static_kernel); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // OpenCL v1.2, s6.9 -- Kernels can only have return type void. | 
|  | if (!NewFD->getReturnType()->isVoidType()) { | 
|  | SourceRange RTRange = NewFD->getReturnTypeSourceRange(); | 
|  | Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) | 
|  | << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") | 
|  | : FixItHint()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | llvm::SmallPtrSet<const Type *, 16> ValidTypes; | 
|  | for (auto Param : NewFD->parameters()) | 
|  | checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); | 
|  |  | 
|  | if (getLangOpts().OpenCLCPlusPlus) { | 
|  | if (DC->isRecord()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_method_kernel); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | if (FunctionTemplate) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_template_kernel); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | if (FunctionTemplate) { | 
|  | if (NewFD->isInvalidDecl()) | 
|  | FunctionTemplate->setInvalidDecl(); | 
|  | return FunctionTemplate; | 
|  | } | 
|  |  | 
|  | if (isMemberSpecialization && !NewFD->isInvalidDecl()) | 
|  | CompleteMemberSpecialization(NewFD, Previous); | 
|  | } | 
|  |  | 
|  | for (const ParmVarDecl *Param : NewFD->parameters()) { | 
|  | QualType PT = Param->getType(); | 
|  |  | 
|  | // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value | 
|  | // types. | 
|  | if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) { | 
|  | if(const PipeType *PipeTy = PT->getAs<PipeType>()) { | 
|  | QualType ElemTy = PipeTy->getElementType(); | 
|  | if (ElemTy->isReferenceType() || ElemTy->isPointerType()) { | 
|  | Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type ); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Here we have an function template explicit specialization at class scope. | 
|  | // The actual specialization will be postponed to template instatiation | 
|  | // time via the ClassScopeFunctionSpecializationDecl node. | 
|  | if (isDependentClassScopeExplicitSpecialization) { | 
|  | ClassScopeFunctionSpecializationDecl *NewSpec = | 
|  | ClassScopeFunctionSpecializationDecl::Create( | 
|  | Context, CurContext, NewFD->getLocation(), | 
|  | cast<CXXMethodDecl>(NewFD), | 
|  | HasExplicitTemplateArgs, TemplateArgs); | 
|  | CurContext->addDecl(NewSpec); | 
|  | AddToScope = false; | 
|  | } | 
|  |  | 
|  | // Diagnose availability attributes. Availability cannot be used on functions | 
|  | // that are run during load/unload. | 
|  | if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) { | 
|  | if (NewFD->hasAttr<ConstructorAttr>()) { | 
|  | Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) | 
|  | << 1; | 
|  | NewFD->dropAttr<AvailabilityAttr>(); | 
|  | } | 
|  | if (NewFD->hasAttr<DestructorAttr>()) { | 
|  | Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) | 
|  | << 2; | 
|  | NewFD->dropAttr<AvailabilityAttr>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return NewFD; | 
|  | } | 
|  |  | 
|  | /// Return a CodeSegAttr from a containing class.  The Microsoft docs say | 
|  | /// when __declspec(code_seg) "is applied to a class, all member functions of | 
|  | /// the class and nested classes -- this includes compiler-generated special | 
|  | /// member functions -- are put in the specified segment." | 
|  | /// The actual behavior is a little more complicated. The Microsoft compiler | 
|  | /// won't check outer classes if there is an active value from #pragma code_seg. | 
|  | /// The CodeSeg is always applied from the direct parent but only from outer | 
|  | /// classes when the #pragma code_seg stack is empty. See: | 
|  | /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer | 
|  | /// available since MS has removed the page. | 
|  | static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) { | 
|  | const auto *Method = dyn_cast<CXXMethodDecl>(FD); | 
|  | if (!Method) | 
|  | return nullptr; | 
|  | const CXXRecordDecl *Parent = Method->getParent(); | 
|  | if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { | 
|  | Attr *NewAttr = SAttr->clone(S.getASTContext()); | 
|  | NewAttr->setImplicit(true); | 
|  | return NewAttr; | 
|  | } | 
|  |  | 
|  | // The Microsoft compiler won't check outer classes for the CodeSeg | 
|  | // when the #pragma code_seg stack is active. | 
|  | if (S.CodeSegStack.CurrentValue) | 
|  | return nullptr; | 
|  |  | 
|  | while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) { | 
|  | if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { | 
|  | Attr *NewAttr = SAttr->clone(S.getASTContext()); | 
|  | NewAttr->setImplicit(true); | 
|  | return NewAttr; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a | 
|  | /// containing class. Otherwise it will return implicit SectionAttr if the | 
|  | /// function is a definition and there is an active value on CodeSegStack | 
|  | /// (from the current #pragma code-seg value). | 
|  | /// | 
|  | /// \param FD Function being declared. | 
|  | /// \param IsDefinition Whether it is a definition or just a declarartion. | 
|  | /// \returns A CodeSegAttr or SectionAttr to apply to the function or | 
|  | ///          nullptr if no attribute should be added. | 
|  | Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, | 
|  | bool IsDefinition) { | 
|  | if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD)) | 
|  | return A; | 
|  | if (!FD->hasAttr<SectionAttr>() && IsDefinition && | 
|  | CodeSegStack.CurrentValue) { | 
|  | return SectionAttr::CreateImplicit(getASTContext(), | 
|  | SectionAttr::Declspec_allocate, | 
|  | CodeSegStack.CurrentValue->getString(), | 
|  | CodeSegStack.CurrentPragmaLocation); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Determines if we can perform a correct type check for \p D as a | 
|  | /// redeclaration of \p PrevDecl. If not, we can generally still perform a | 
|  | /// best-effort check. | 
|  | /// | 
|  | /// \param NewD The new declaration. | 
|  | /// \param OldD The old declaration. | 
|  | /// \param NewT The portion of the type of the new declaration to check. | 
|  | /// \param OldT The portion of the type of the old declaration to check. | 
|  | bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, | 
|  | QualType NewT, QualType OldT) { | 
|  | if (!NewD->getLexicalDeclContext()->isDependentContext()) | 
|  | return true; | 
|  |  | 
|  | // For dependently-typed local extern declarations and friends, we can't | 
|  | // perform a correct type check in general until instantiation: | 
|  | // | 
|  | //   int f(); | 
|  | //   template<typename T> void g() { T f(); } | 
|  | // | 
|  | // (valid if g() is only instantiated with T = int). | 
|  | if (NewT->isDependentType() && | 
|  | (NewD->isLocalExternDecl() || NewD->getFriendObjectKind())) | 
|  | return false; | 
|  |  | 
|  | // Similarly, if the previous declaration was a dependent local extern | 
|  | // declaration, we don't really know its type yet. | 
|  | if (OldT->isDependentType() && OldD->isLocalExternDecl()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Checks if the new declaration declared in dependent context must be | 
|  | /// put in the same redeclaration chain as the specified declaration. | 
|  | /// | 
|  | /// \param D Declaration that is checked. | 
|  | /// \param PrevDecl Previous declaration found with proper lookup method for the | 
|  | ///                 same declaration name. | 
|  | /// \returns True if D must be added to the redeclaration chain which PrevDecl | 
|  | ///          belongs to. | 
|  | /// | 
|  | bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) { | 
|  | if (!D->getLexicalDeclContext()->isDependentContext()) | 
|  | return true; | 
|  |  | 
|  | // Don't chain dependent friend function definitions until instantiation, to | 
|  | // permit cases like | 
|  | // | 
|  | //   void func(); | 
|  | //   template<typename T> class C1 { friend void func() {} }; | 
|  | //   template<typename T> class C2 { friend void func() {} }; | 
|  | // | 
|  | // ... which is valid if only one of C1 and C2 is ever instantiated. | 
|  | // | 
|  | // FIXME: This need only apply to function definitions. For now, we proxy | 
|  | // this by checking for a file-scope function. We do not want this to apply | 
|  | // to friend declarations nominating member functions, because that gets in | 
|  | // the way of access checks. | 
|  | if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext()) | 
|  | return false; | 
|  |  | 
|  | auto *VD = dyn_cast<ValueDecl>(D); | 
|  | auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl); | 
|  | return !VD || !PrevVD || | 
|  | canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(), | 
|  | PrevVD->getType()); | 
|  | } | 
|  |  | 
|  | /// Check the target attribute of the function for MultiVersion | 
|  | /// validity. | 
|  | /// | 
|  | /// Returns true if there was an error, false otherwise. | 
|  | static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) { | 
|  | const auto *TA = FD->getAttr<TargetAttr>(); | 
|  | assert(TA && "MultiVersion Candidate requires a target attribute"); | 
|  | TargetAttr::ParsedTargetAttr ParseInfo = TA->parse(); | 
|  | const TargetInfo &TargetInfo = S.Context.getTargetInfo(); | 
|  | enum ErrType { Feature = 0, Architecture = 1 }; | 
|  |  | 
|  | if (!ParseInfo.Architecture.empty() && | 
|  | !TargetInfo.validateCpuIs(ParseInfo.Architecture)) { | 
|  | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) | 
|  | << Architecture << ParseInfo.Architecture; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (const auto &Feat : ParseInfo.Features) { | 
|  | auto BareFeat = StringRef{Feat}.substr(1); | 
|  | if (Feat[0] == '-') { | 
|  | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) | 
|  | << Feature << ("no-" + BareFeat).str(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!TargetInfo.validateCpuSupports(BareFeat) || | 
|  | !TargetInfo.isValidFeatureName(BareFeat)) { | 
|  | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) | 
|  | << Feature << BareFeat; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool HasNonMultiVersionAttributes(const FunctionDecl *FD, | 
|  | MultiVersionKind MVType) { | 
|  | for (const Attr *A : FD->attrs()) { | 
|  | switch (A->getKind()) { | 
|  | case attr::CPUDispatch: | 
|  | case attr::CPUSpecific: | 
|  | if (MVType != MultiVersionKind::CPUDispatch && | 
|  | MVType != MultiVersionKind::CPUSpecific) | 
|  | return true; | 
|  | break; | 
|  | case attr::Target: | 
|  | if (MVType != MultiVersionKind::Target) | 
|  | return true; | 
|  | break; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD, | 
|  | const FunctionDecl *NewFD, | 
|  | bool CausesMV, | 
|  | MultiVersionKind MVType) { | 
|  | enum DoesntSupport { | 
|  | FuncTemplates = 0, | 
|  | VirtFuncs = 1, | 
|  | DeducedReturn = 2, | 
|  | Constructors = 3, | 
|  | Destructors = 4, | 
|  | DeletedFuncs = 5, | 
|  | DefaultedFuncs = 6, | 
|  | ConstexprFuncs = 7, | 
|  | ConstevalFuncs = 8, | 
|  | }; | 
|  | enum Different { | 
|  | CallingConv = 0, | 
|  | ReturnType = 1, | 
|  | ConstexprSpec = 2, | 
|  | InlineSpec = 3, | 
|  | StorageClass = 4, | 
|  | Linkage = 5 | 
|  | }; | 
|  |  | 
|  | bool IsCPUSpecificCPUDispatchMVType = | 
|  | MVType == MultiVersionKind::CPUDispatch || | 
|  | MVType == MultiVersionKind::CPUSpecific; | 
|  |  | 
|  | if (OldFD && !OldFD->getType()->getAs<FunctionProtoType>()) { | 
|  | S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto); | 
|  | S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!NewFD->getType()->getAs<FunctionProtoType>()) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto); | 
|  |  | 
|  | if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { | 
|  | S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); | 
|  | if (OldFD) | 
|  | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For now, disallow all other attributes.  These should be opt-in, but | 
|  | // an analysis of all of them is a future FIXME. | 
|  | if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) { | 
|  | S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs) | 
|  | << IsCPUSpecificCPUDispatchMVType; | 
|  | S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (HasNonMultiVersionAttributes(NewFD, MVType)) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs) | 
|  | << IsCPUSpecificCPUDispatchMVType; | 
|  |  | 
|  | if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) | 
|  | << IsCPUSpecificCPUDispatchMVType << FuncTemplates; | 
|  |  | 
|  | if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) { | 
|  | if (NewCXXFD->isVirtual()) | 
|  | return S.Diag(NewCXXFD->getLocation(), | 
|  | diag::err_multiversion_doesnt_support) | 
|  | << IsCPUSpecificCPUDispatchMVType << VirtFuncs; | 
|  |  | 
|  | if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD)) | 
|  | return S.Diag(NewCXXCtor->getLocation(), | 
|  | diag::err_multiversion_doesnt_support) | 
|  | << IsCPUSpecificCPUDispatchMVType << Constructors; | 
|  |  | 
|  | if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD)) | 
|  | return S.Diag(NewCXXDtor->getLocation(), | 
|  | diag::err_multiversion_doesnt_support) | 
|  | << IsCPUSpecificCPUDispatchMVType << Destructors; | 
|  | } | 
|  |  | 
|  | if (NewFD->isDeleted()) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) | 
|  | << IsCPUSpecificCPUDispatchMVType << DeletedFuncs; | 
|  |  | 
|  | if (NewFD->isDefaulted()) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) | 
|  | << IsCPUSpecificCPUDispatchMVType << DefaultedFuncs; | 
|  |  | 
|  | if (NewFD->isConstexpr() && (MVType == MultiVersionKind::CPUDispatch || | 
|  | MVType == MultiVersionKind::CPUSpecific)) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) | 
|  | << IsCPUSpecificCPUDispatchMVType | 
|  | << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs); | 
|  |  | 
|  | QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType()); | 
|  | const auto *NewType = cast<FunctionType>(NewQType); | 
|  | QualType NewReturnType = NewType->getReturnType(); | 
|  |  | 
|  | if (NewReturnType->isUndeducedType()) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) | 
|  | << IsCPUSpecificCPUDispatchMVType << DeducedReturn; | 
|  |  | 
|  | // Only allow transition to MultiVersion if it hasn't been used. | 
|  | if (OldFD && CausesMV && OldFD->isUsed(false)) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); | 
|  |  | 
|  | // Ensure the return type is identical. | 
|  | if (OldFD) { | 
|  | QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType()); | 
|  | const auto *OldType = cast<FunctionType>(OldQType); | 
|  | FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); | 
|  | FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); | 
|  |  | 
|  | if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) | 
|  | << CallingConv; | 
|  |  | 
|  | QualType OldReturnType = OldType->getReturnType(); | 
|  |  | 
|  | if (OldReturnType != NewReturnType) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) | 
|  | << ReturnType; | 
|  |  | 
|  | if (OldFD->getConstexprKind() != NewFD->getConstexprKind()) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) | 
|  | << ConstexprSpec; | 
|  |  | 
|  | if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified()) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) | 
|  | << InlineSpec; | 
|  |  | 
|  | if (OldFD->getStorageClass() != NewFD->getStorageClass()) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) | 
|  | << StorageClass; | 
|  |  | 
|  | if (OldFD->isExternC() != NewFD->isExternC()) | 
|  | return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) | 
|  | << Linkage; | 
|  |  | 
|  | if (S.CheckEquivalentExceptionSpec( | 
|  | OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(), | 
|  | NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation())) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check the validity of a multiversion function declaration that is the | 
|  | /// first of its kind. Also sets the multiversion'ness' of the function itself. | 
|  | /// | 
|  | /// This sets NewFD->isInvalidDecl() to true if there was an error. | 
|  | /// | 
|  | /// Returns true if there was an error, false otherwise. | 
|  | static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD, | 
|  | MultiVersionKind MVType, | 
|  | const TargetAttr *TA) { | 
|  | assert(MVType != MultiVersionKind::None && | 
|  | "Function lacks multiversion attribute"); | 
|  |  | 
|  | // Target only causes MV if it is default, otherwise this is a normal | 
|  | // function. | 
|  | if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion()) | 
|  | return false; | 
|  |  | 
|  | if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) { | 
|  | FD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) { | 
|  | FD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FD->setIsMultiVersion(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) { | 
|  | for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) { | 
|  | if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool CheckTargetCausesMultiVersioning( | 
|  | Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA, | 
|  | bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, | 
|  | LookupResult &Previous) { | 
|  | const auto *OldTA = OldFD->getAttr<TargetAttr>(); | 
|  | TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse(); | 
|  | // Sort order doesn't matter, it just needs to be consistent. | 
|  | llvm::sort(NewParsed.Features); | 
|  |  | 
|  | // If the old decl is NOT MultiVersioned yet, and we don't cause that | 
|  | // to change, this is a simple redeclaration. | 
|  | if (!NewTA->isDefaultVersion() && | 
|  | (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, this decl causes MultiVersioning. | 
|  | if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { | 
|  | S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); | 
|  | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true, | 
|  | MultiVersionKind::Target)) { | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (CheckMultiVersionValue(S, NewFD)) { | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this is 'default', permit the forward declaration. | 
|  | if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) { | 
|  | Redeclaration = true; | 
|  | OldDecl = OldFD; | 
|  | OldFD->setIsMultiVersion(); | 
|  | NewFD->setIsMultiVersion(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CheckMultiVersionValue(S, OldFD)) { | 
|  | S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TargetAttr::ParsedTargetAttr OldParsed = | 
|  | OldTA->parse(std::less<std::string>()); | 
|  |  | 
|  | if (OldParsed == NewParsed) { | 
|  | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); | 
|  | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (const auto *FD : OldFD->redecls()) { | 
|  | const auto *CurTA = FD->getAttr<TargetAttr>(); | 
|  | // We allow forward declarations before ANY multiversioning attributes, but | 
|  | // nothing after the fact. | 
|  | if (PreviousDeclsHaveMultiVersionAttribute(FD) && | 
|  | (!CurTA || CurTA->isInherited())) { | 
|  | S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl) | 
|  | << 0; | 
|  | S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | OldFD->setIsMultiVersion(); | 
|  | NewFD->setIsMultiVersion(); | 
|  | Redeclaration = false; | 
|  | MergeTypeWithPrevious = false; | 
|  | OldDecl = nullptr; | 
|  | Previous.clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check the validity of a new function declaration being added to an existing | 
|  | /// multiversioned declaration collection. | 
|  | static bool CheckMultiVersionAdditionalDecl( | 
|  | Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, | 
|  | MultiVersionKind NewMVType, const TargetAttr *NewTA, | 
|  | const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec, | 
|  | bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, | 
|  | LookupResult &Previous) { | 
|  |  | 
|  | MultiVersionKind OldMVType = OldFD->getMultiVersionKind(); | 
|  | // Disallow mixing of multiversioning types. | 
|  | if ((OldMVType == MultiVersionKind::Target && | 
|  | NewMVType != MultiVersionKind::Target) || | 
|  | (NewMVType == MultiVersionKind::Target && | 
|  | OldMVType != MultiVersionKind::Target)) { | 
|  | S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); | 
|  | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TargetAttr::ParsedTargetAttr NewParsed; | 
|  | if (NewTA) { | 
|  | NewParsed = NewTA->parse(); | 
|  | llvm::sort(NewParsed.Features); | 
|  | } | 
|  |  | 
|  | bool UseMemberUsingDeclRules = | 
|  | S.CurContext->isRecord() && !NewFD->getFriendObjectKind(); | 
|  |  | 
|  | // Next, check ALL non-overloads to see if this is a redeclaration of a | 
|  | // previous member of the MultiVersion set. | 
|  | for (NamedDecl *ND : Previous) { | 
|  | FunctionDecl *CurFD = ND->getAsFunction(); | 
|  | if (!CurFD) | 
|  | continue; | 
|  | if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules)) | 
|  | continue; | 
|  |  | 
|  | if (NewMVType == MultiVersionKind::Target) { | 
|  | const auto *CurTA = CurFD->getAttr<TargetAttr>(); | 
|  | if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) { | 
|  | NewFD->setIsMultiVersion(); | 
|  | Redeclaration = true; | 
|  | OldDecl = ND; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | TargetAttr::ParsedTargetAttr CurParsed = | 
|  | CurTA->parse(std::less<std::string>()); | 
|  | if (CurParsed == NewParsed) { | 
|  | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); | 
|  | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>(); | 
|  | const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>(); | 
|  | // Handle CPUDispatch/CPUSpecific versions. | 
|  | // Only 1 CPUDispatch function is allowed, this will make it go through | 
|  | // the redeclaration errors. | 
|  | if (NewMVType == MultiVersionKind::CPUDispatch && | 
|  | CurFD->hasAttr<CPUDispatchAttr>()) { | 
|  | if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() && | 
|  | std::equal( | 
|  | CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(), | 
|  | NewCPUDisp->cpus_begin(), | 
|  | [](const IdentifierInfo *Cur, const IdentifierInfo *New) { | 
|  | return Cur->getName() == New->getName(); | 
|  | })) { | 
|  | NewFD->setIsMultiVersion(); | 
|  | Redeclaration = true; | 
|  | OldDecl = ND; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the declarations don't match, this is an error condition. | 
|  | S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch); | 
|  | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  | if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) { | 
|  |  | 
|  | if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() && | 
|  | std::equal( | 
|  | CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(), | 
|  | NewCPUSpec->cpus_begin(), | 
|  | [](const IdentifierInfo *Cur, const IdentifierInfo *New) { | 
|  | return Cur->getName() == New->getName(); | 
|  | })) { | 
|  | NewFD->setIsMultiVersion(); | 
|  | Redeclaration = true; | 
|  | OldDecl = ND; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Only 1 version of CPUSpecific is allowed for each CPU. | 
|  | for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) { | 
|  | for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) { | 
|  | if (CurII == NewII) { | 
|  | S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs) | 
|  | << NewII; | 
|  | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // If the two decls aren't the same MVType, there is no possible error | 
|  | // condition. | 
|  | } | 
|  | } | 
|  |  | 
|  | // Else, this is simply a non-redecl case.  Checking the 'value' is only | 
|  | // necessary in the Target case, since The CPUSpecific/Dispatch cases are | 
|  | // handled in the attribute adding step. | 
|  | if (NewMVType == MultiVersionKind::Target && | 
|  | CheckMultiVersionValue(S, NewFD)) { | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, | 
|  | !OldFD->isMultiVersion(), NewMVType)) { | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Permit forward declarations in the case where these two are compatible. | 
|  | if (!OldFD->isMultiVersion()) { | 
|  | OldFD->setIsMultiVersion(); | 
|  | NewFD->setIsMultiVersion(); | 
|  | Redeclaration = true; | 
|  | OldDecl = OldFD; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | NewFD->setIsMultiVersion(); | 
|  | Redeclaration = false; | 
|  | MergeTypeWithPrevious = false; | 
|  | OldDecl = nullptr; | 
|  | Previous.clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Check the validity of a mulitversion function declaration. | 
|  | /// Also sets the multiversion'ness' of the function itself. | 
|  | /// | 
|  | /// This sets NewFD->isInvalidDecl() to true if there was an error. | 
|  | /// | 
|  | /// Returns true if there was an error, false otherwise. | 
|  | static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD, | 
|  | bool &Redeclaration, NamedDecl *&OldDecl, | 
|  | bool &MergeTypeWithPrevious, | 
|  | LookupResult &Previous) { | 
|  | const auto *NewTA = NewFD->getAttr<TargetAttr>(); | 
|  | const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>(); | 
|  | const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>(); | 
|  |  | 
|  | // Mixing Multiversioning types is prohibited. | 
|  | if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) || | 
|  | (NewCPUDisp && NewCPUSpec)) { | 
|  | S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MultiVersionKind  MVType = NewFD->getMultiVersionKind(); | 
|  |  | 
|  | // Main isn't allowed to become a multiversion function, however it IS | 
|  | // permitted to have 'main' be marked with the 'target' optimization hint. | 
|  | if (NewFD->isMain()) { | 
|  | if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) || | 
|  | MVType == MultiVersionKind::CPUDispatch || | 
|  | MVType == MultiVersionKind::CPUSpecific) { | 
|  | S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main); | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!OldDecl || !OldDecl->getAsFunction() || | 
|  | OldDecl->getDeclContext()->getRedeclContext() != | 
|  | NewFD->getDeclContext()->getRedeclContext()) { | 
|  | // If there's no previous declaration, AND this isn't attempting to cause | 
|  | // multiversioning, this isn't an error condition. | 
|  | if (MVType == MultiVersionKind::None) | 
|  | return false; | 
|  | return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA); | 
|  | } | 
|  |  | 
|  | FunctionDecl *OldFD = OldDecl->getAsFunction(); | 
|  |  | 
|  | if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None) | 
|  | return false; | 
|  |  | 
|  | if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) { | 
|  | S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl) | 
|  | << (OldFD->getMultiVersionKind() != MultiVersionKind::Target); | 
|  | NewFD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Handle the target potentially causes multiversioning case. | 
|  | if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target) | 
|  | return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA, | 
|  | Redeclaration, OldDecl, | 
|  | MergeTypeWithPrevious, Previous); | 
|  |  | 
|  | // At this point, we have a multiversion function decl (in OldFD) AND an | 
|  | // appropriate attribute in the current function decl.  Resolve that these are | 
|  | // still compatible with previous declarations. | 
|  | return CheckMultiVersionAdditionalDecl( | 
|  | S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration, | 
|  | OldDecl, MergeTypeWithPrevious, Previous); | 
|  | } | 
|  |  | 
|  | /// Perform semantic checking of a new function declaration. | 
|  | /// | 
|  | /// Performs semantic analysis of the new function declaration | 
|  | /// NewFD. This routine performs all semantic checking that does not | 
|  | /// require the actual declarator involved in the declaration, and is | 
|  | /// used both for the declaration of functions as they are parsed | 
|  | /// (called via ActOnDeclarator) and for the declaration of functions | 
|  | /// that have been instantiated via C++ template instantiation (called | 
|  | /// via InstantiateDecl). | 
|  | /// | 
|  | /// \param IsMemberSpecialization whether this new function declaration is | 
|  | /// a member specialization (that replaces any definition provided by the | 
|  | /// previous declaration). | 
|  | /// | 
|  | /// This sets NewFD->isInvalidDecl() to true if there was an error. | 
|  | /// | 
|  | /// \returns true if the function declaration is a redeclaration. | 
|  | bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, | 
|  | LookupResult &Previous, | 
|  | bool IsMemberSpecialization) { | 
|  | assert(!NewFD->getReturnType()->isVariablyModifiedType() && | 
|  | "Variably modified return types are not handled here"); | 
|  |  | 
|  | // Determine whether the type of this function should be merged with | 
|  | // a previous visible declaration. This never happens for functions in C++, | 
|  | // and always happens in C if the previous declaration was visible. | 
|  | bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && | 
|  | !Previous.isShadowed(); | 
|  |  | 
|  | bool Redeclaration = false; | 
|  | NamedDecl *OldDecl = nullptr; | 
|  | bool MayNeedOverloadableChecks = false; | 
|  |  | 
|  | // Merge or overload the declaration with an existing declaration of | 
|  | // the same name, if appropriate. | 
|  | if (!Previous.empty()) { | 
|  | // Determine whether NewFD is an overload of PrevDecl or | 
|  | // a declaration that requires merging. If it's an overload, | 
|  | // there's no more work to do here; we'll just add the new | 
|  | // function to the scope. | 
|  | if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) { | 
|  | NamedDecl *Candidate = Previous.getRepresentativeDecl(); | 
|  | if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { | 
|  | Redeclaration = true; | 
|  | OldDecl = Candidate; | 
|  | } | 
|  | } else { | 
|  | MayNeedOverloadableChecks = true; | 
|  | switch (CheckOverload(S, NewFD, Previous, OldDecl, | 
|  | /*NewIsUsingDecl*/ false)) { | 
|  | case Ovl_Match: | 
|  | Redeclaration = true; | 
|  | break; | 
|  |  | 
|  | case Ovl_NonFunction: | 
|  | Redeclaration = true; | 
|  | break; | 
|  |  | 
|  | case Ovl_Overload: | 
|  | Redeclaration = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for a previous extern "C" declaration with this name. | 
|  | if (!Redeclaration && | 
|  | checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { | 
|  | if (!Previous.empty()) { | 
|  | // This is an extern "C" declaration with the same name as a previous | 
|  | // declaration, and thus redeclares that entity... | 
|  | Redeclaration = true; | 
|  | OldDecl = Previous.getFoundDecl(); | 
|  | MergeTypeWithPrevious = false; | 
|  |  | 
|  | // ... except in the presence of __attribute__((overloadable)). | 
|  | if (OldDecl->hasAttr<OverloadableAttr>() || | 
|  | NewFD->hasAttr<OverloadableAttr>()) { | 
|  | if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { | 
|  | MayNeedOverloadableChecks = true; | 
|  | Redeclaration = false; | 
|  | OldDecl = nullptr; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, | 
|  | MergeTypeWithPrevious, Previous)) | 
|  | return Redeclaration; | 
|  |  | 
|  | // C++11 [dcl.constexpr]p8: | 
|  | //   A constexpr specifier for a non-static member function that is not | 
|  | //   a constructor declares that member function to be const. | 
|  | // | 
|  | // This needs to be delayed until we know whether this is an out-of-line | 
|  | // definition of a static member function. | 
|  | // | 
|  | // This rule is not present in C++1y, so we produce a backwards | 
|  | // compatibility warning whenever it happens in C++11. | 
|  | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); | 
|  | if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && | 
|  | !MD->isStatic() && !isa<CXXConstructorDecl>(MD) && | 
|  | !MD->getMethodQualifiers().hasConst()) { | 
|  | CXXMethodDecl *OldMD = nullptr; | 
|  | if (OldDecl) | 
|  | OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction()); | 
|  | if (!OldMD || !OldMD->isStatic()) { | 
|  | const FunctionProtoType *FPT = | 
|  | MD->getType()->castAs<FunctionProtoType>(); | 
|  | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
|  | EPI.TypeQuals.addConst(); | 
|  | MD->setType(Context.getFunctionType(FPT->getReturnType(), | 
|  | FPT->getParamTypes(), EPI)); | 
|  |  | 
|  | // Warn that we did this, if we're not performing template instantiation. | 
|  | // In that case, we'll have warned already when the template was defined. | 
|  | if (!inTemplateInstantiation()) { | 
|  | SourceLocation AddConstLoc; | 
|  | if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() | 
|  | .IgnoreParens().getAs<FunctionTypeLoc>()) | 
|  | AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); | 
|  |  | 
|  | Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) | 
|  | << FixItHint::CreateInsertion(AddConstLoc, " const"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Redeclaration) { | 
|  | // NewFD and OldDecl represent declarations that need to be | 
|  | // merged. | 
|  | if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) { | 
|  | NewFD->setInvalidDecl(); | 
|  | return Redeclaration; | 
|  | } | 
|  |  | 
|  | Previous.clear(); | 
|  | Previous.addDecl(OldDecl); | 
|  |  | 
|  | if (FunctionTemplateDecl *OldTemplateDecl = | 
|  | dyn_cast<FunctionTemplateDecl>(OldDecl)) { | 
|  | auto *OldFD = OldTemplateDecl->getTemplatedDecl(); | 
|  | FunctionTemplateDecl *NewTemplateDecl | 
|  | = NewFD->getDescribedFunctionTemplate(); | 
|  | assert(NewTemplateDecl && "Template/non-template mismatch"); | 
|  |  | 
|  | // The call to MergeFunctionDecl above may have created some state in | 
|  | // NewTemplateDecl that needs to be merged with OldTemplateDecl before we | 
|  | // can add it as a redeclaration. | 
|  | NewTemplateDecl->mergePrevDecl(OldTemplateDecl); | 
|  |  | 
|  | NewFD->setPreviousDeclaration(OldFD); | 
|  | adjustDeclContextForDeclaratorDecl(NewFD, OldFD); | 
|  | if (NewFD->isCXXClassMember()) { | 
|  | NewFD->setAccess(OldTemplateDecl->getAccess()); | 
|  | NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); | 
|  | } | 
|  |  | 
|  | // If this is an explicit specialization of a member that is a function | 
|  | // template, mark it as a member specialization. | 
|  | if (IsMemberSpecialization && | 
|  | NewTemplateDecl->getInstantiatedFromMemberTemplate()) { | 
|  | NewTemplateDecl->setMemberSpecialization(); | 
|  | assert(OldTemplateDecl->isMemberSpecialization()); | 
|  | // Explicit specializations of a member template do not inherit deleted | 
|  | // status from the parent member template that they are specializing. | 
|  | if (OldFD->isDeleted()) { | 
|  | // FIXME: This assert will not hold in the presence of modules. | 
|  | assert(OldFD->getCanonicalDecl() == OldFD); | 
|  | // FIXME: We need an update record for this AST mutation. | 
|  | OldFD->setDeletedAsWritten(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | } else { | 
|  | if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) { | 
|  | auto *OldFD = cast<FunctionDecl>(OldDecl); | 
|  | // This needs to happen first so that 'inline' propagates. | 
|  | NewFD->setPreviousDeclaration(OldFD); | 
|  | adjustDeclContextForDeclaratorDecl(NewFD, OldFD); | 
|  | if (NewFD->isCXXClassMember()) | 
|  | NewFD->setAccess(OldFD->getAccess()); | 
|  | } | 
|  | } | 
|  | } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks && | 
|  | !NewFD->getAttr<OverloadableAttr>()) { | 
|  | assert((Previous.empty() || | 
|  | llvm::any_of(Previous, | 
|  | [](const NamedDecl *ND) { | 
|  | return ND->hasAttr<OverloadableAttr>(); | 
|  | })) && | 
|  | "Non-redecls shouldn't happen without overloadable present"); | 
|  |  | 
|  | auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) { | 
|  | const auto *FD = dyn_cast<FunctionDecl>(ND); | 
|  | return FD && !FD->hasAttr<OverloadableAttr>(); | 
|  | }); | 
|  |  | 
|  | if (OtherUnmarkedIter != Previous.end()) { | 
|  | Diag(NewFD->getLocation(), | 
|  | diag::err_attribute_overloadable_multiple_unmarked_overloads); | 
|  | Diag((*OtherUnmarkedIter)->getLocation(), | 
|  | diag::note_attribute_overloadable_prev_overload) | 
|  | << false; | 
|  |  | 
|  | NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Semantic checking for this function declaration (in isolation). | 
|  |  | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | // C++-specific checks. | 
|  | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { | 
|  | CheckConstructor(Constructor); | 
|  | } else if (CXXDestructorDecl *Destructor = | 
|  | dyn_cast<CXXDestructorDecl>(NewFD)) { | 
|  | CXXRecordDecl *Record = Destructor->getParent(); | 
|  | QualType ClassType = Context.getTypeDeclType(Record); | 
|  |  | 
|  | // FIXME: Shouldn't we be able to perform this check even when the class | 
|  | // type is dependent? Both gcc and edg can handle that. | 
|  | if (!ClassType->isDependentType()) { | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXDestructorName( | 
|  | Context.getCanonicalType(ClassType)); | 
|  | if (NewFD->getDeclName() != Name) { | 
|  | Diag(NewFD->getLocation(), diag::err_destructor_name); | 
|  | NewFD->setInvalidDecl(); | 
|  | return Redeclaration; | 
|  | } | 
|  | } | 
|  | } else if (CXXConversionDecl *Conversion | 
|  | = dyn_cast<CXXConversionDecl>(NewFD)) { | 
|  | ActOnConversionDeclarator(Conversion); | 
|  | } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) { | 
|  | if (auto *TD = Guide->getDescribedFunctionTemplate()) | 
|  | CheckDeductionGuideTemplate(TD); | 
|  |  | 
|  | // A deduction guide is not on the list of entities that can be | 
|  | // explicitly specialized. | 
|  | if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) | 
|  | Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized) | 
|  | << /*explicit specialization*/ 1; | 
|  | } | 
|  |  | 
|  | // Find any virtual functions that this function overrides. | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { | 
|  | if (!Method->isFunctionTemplateSpecialization() && | 
|  | !Method->getDescribedFunctionTemplate() && | 
|  | Method->isCanonicalDecl()) { | 
|  | if (AddOverriddenMethods(Method->getParent(), Method)) { | 
|  | // If the function was marked as "static", we have a problem. | 
|  | if (NewFD->getStorageClass() == SC_Static) { | 
|  | ReportOverrides(*this, diag::err_static_overrides_virtual, Method); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Method->isStatic()) | 
|  | checkThisInStaticMemberFunctionType(Method); | 
|  | } | 
|  |  | 
|  | // Extra checking for C++ overloaded operators (C++ [over.oper]). | 
|  | if (NewFD->isOverloadedOperator() && | 
|  | CheckOverloadedOperatorDeclaration(NewFD)) { | 
|  | NewFD->setInvalidDecl(); | 
|  | return Redeclaration; | 
|  | } | 
|  |  | 
|  | // Extra checking for C++0x literal operators (C++0x [over.literal]). | 
|  | if (NewFD->getLiteralIdentifier() && | 
|  | CheckLiteralOperatorDeclaration(NewFD)) { | 
|  | NewFD->setInvalidDecl(); | 
|  | return Redeclaration; | 
|  | } | 
|  |  | 
|  | // In C++, check default arguments now that we have merged decls. Unless | 
|  | // the lexical context is the class, because in this case this is done | 
|  | // during delayed parsing anyway. | 
|  | if (!CurContext->isRecord()) | 
|  | CheckCXXDefaultArguments(NewFD); | 
|  |  | 
|  | // If this function declares a builtin function, check the type of this | 
|  | // declaration against the expected type for the builtin. | 
|  | if (unsigned BuiltinID = NewFD->getBuiltinID()) { | 
|  | ASTContext::GetBuiltinTypeError Error; | 
|  | LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier()); | 
|  | QualType T = Context.GetBuiltinType(BuiltinID, Error); | 
|  | // If the type of the builtin differs only in its exception | 
|  | // specification, that's OK. | 
|  | // FIXME: If the types do differ in this way, it would be better to | 
|  | // retain the 'noexcept' form of the type. | 
|  | if (!T.isNull() && | 
|  | !Context.hasSameFunctionTypeIgnoringExceptionSpec(T, | 
|  | NewFD->getType())) | 
|  | // The type of this function differs from the type of the builtin, | 
|  | // so forget about the builtin entirely. | 
|  | Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents); | 
|  | } | 
|  |  | 
|  | // If this function is declared as being extern "C", then check to see if | 
|  | // the function returns a UDT (class, struct, or union type) that is not C | 
|  | // compatible, and if it does, warn the user. | 
|  | // But, issue any diagnostic on the first declaration only. | 
|  | if (Previous.empty() && NewFD->isExternC()) { | 
|  | QualType R = NewFD->getReturnType(); | 
|  | if (R->isIncompleteType() && !R->isVoidType()) | 
|  | Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) | 
|  | << NewFD << R; | 
|  | else if (!R.isPODType(Context) && !R->isVoidType() && | 
|  | !R->isObjCObjectPointerType()) | 
|  | Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; | 
|  | } | 
|  |  | 
|  | // C++1z [dcl.fct]p6: | 
|  | //   [...] whether the function has a non-throwing exception-specification | 
|  | //   [is] part of the function type | 
|  | // | 
|  | // This results in an ABI break between C++14 and C++17 for functions whose | 
|  | // declared type includes an exception-specification in a parameter or | 
|  | // return type. (Exception specifications on the function itself are OK in | 
|  | // most cases, and exception specifications are not permitted in most other | 
|  | // contexts where they could make it into a mangling.) | 
|  | if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) { | 
|  | auto HasNoexcept = [&](QualType T) -> bool { | 
|  | // Strip off declarator chunks that could be between us and a function | 
|  | // type. We don't need to look far, exception specifications are very | 
|  | // restricted prior to C++17. | 
|  | if (auto *RT = T->getAs<ReferenceType>()) | 
|  | T = RT->getPointeeType(); | 
|  | else if (T->isAnyPointerType()) | 
|  | T = T->getPointeeType(); | 
|  | else if (auto *MPT = T->getAs<MemberPointerType>()) | 
|  | T = MPT->getPointeeType(); | 
|  | if (auto *FPT = T->getAs<FunctionProtoType>()) | 
|  | if (FPT->isNothrow()) | 
|  | return true; | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | auto *FPT = NewFD->getType()->castAs<FunctionProtoType>(); | 
|  | bool AnyNoexcept = HasNoexcept(FPT->getReturnType()); | 
|  | for (QualType T : FPT->param_types()) | 
|  | AnyNoexcept |= HasNoexcept(T); | 
|  | if (AnyNoexcept) | 
|  | Diag(NewFD->getLocation(), | 
|  | diag::warn_cxx17_compat_exception_spec_in_signature) | 
|  | << NewFD; | 
|  | } | 
|  |  | 
|  | if (!Redeclaration && LangOpts.CUDA) | 
|  | checkCUDATargetOverload(NewFD, Previous); | 
|  | } | 
|  | return Redeclaration; | 
|  | } | 
|  |  | 
|  | void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { | 
|  | // C++11 [basic.start.main]p3: | 
|  | //   A program that [...] declares main to be inline, static or | 
|  | //   constexpr is ill-formed. | 
|  | // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall | 
|  | //   appear in a declaration of main. | 
|  | // static main is not an error under C99, but we should warn about it. | 
|  | // We accept _Noreturn main as an extension. | 
|  | if (FD->getStorageClass() == SC_Static) | 
|  | Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus | 
|  | ? diag::err_static_main : diag::warn_static_main) | 
|  | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); | 
|  | if (FD->isInlineSpecified()) | 
|  | Diag(DS.getInlineSpecLoc(), diag::err_inline_main) | 
|  | << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); | 
|  | if (DS.isNoreturnSpecified()) { | 
|  | SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); | 
|  | SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); | 
|  | Diag(NoreturnLoc, diag::ext_noreturn_main); | 
|  | Diag(NoreturnLoc, diag::note_main_remove_noreturn) | 
|  | << FixItHint::CreateRemoval(NoreturnRange); | 
|  | } | 
|  | if (FD->isConstexpr()) { | 
|  | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) | 
|  | << FD->isConsteval() | 
|  | << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); | 
|  | FD->setConstexprKind(CSK_unspecified); | 
|  | } | 
|  |  | 
|  | if (getLangOpts().OpenCL) { | 
|  | Diag(FD->getLocation(), diag::err_opencl_no_main) | 
|  | << FD->hasAttr<OpenCLKernelAttr>(); | 
|  | FD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | QualType T = FD->getType(); | 
|  | assert(T->isFunctionType() && "function decl is not of function type"); | 
|  | const FunctionType* FT = T->castAs<FunctionType>(); | 
|  |  | 
|  | // Set default calling convention for main() | 
|  | if (FT->getCallConv() != CC_C) { | 
|  | FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C)); | 
|  | FD->setType(QualType(FT, 0)); | 
|  | T = Context.getCanonicalType(FD->getType()); | 
|  | } | 
|  |  | 
|  | if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { | 
|  | // In C with GNU extensions we allow main() to have non-integer return | 
|  | // type, but we should warn about the extension, and we disable the | 
|  | // implicit-return-zero rule. | 
|  |  | 
|  | // GCC in C mode accepts qualified 'int'. | 
|  | if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) | 
|  | FD->setHasImplicitReturnZero(true); | 
|  | else { | 
|  | Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); | 
|  | SourceRange RTRange = FD->getReturnTypeSourceRange(); | 
|  | if (RTRange.isValid()) | 
|  | Diag(RTRange.getBegin(), diag::note_main_change_return_type) | 
|  | << FixItHint::CreateReplacement(RTRange, "int"); | 
|  | } | 
|  | } else { | 
|  | // In C and C++, main magically returns 0 if you fall off the end; | 
|  | // set the flag which tells us that. | 
|  | // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. | 
|  |  | 
|  | // All the standards say that main() should return 'int'. | 
|  | if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) | 
|  | FD->setHasImplicitReturnZero(true); | 
|  | else { | 
|  | // Otherwise, this is just a flat-out error. | 
|  | SourceRange RTRange = FD->getReturnTypeSourceRange(); | 
|  | Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) | 
|  | << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") | 
|  | : FixItHint()); | 
|  | FD->setInvalidDecl(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Treat protoless main() as nullary. | 
|  | if (isa<FunctionNoProtoType>(FT)) return; | 
|  |  | 
|  | const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); | 
|  | unsigned nparams = FTP->getNumParams(); | 
|  | assert(FD->getNumParams() == nparams); | 
|  |  | 
|  | bool HasExtraParameters = (nparams > 3); | 
|  |  | 
|  | if (FTP->isVariadic()) { | 
|  | Diag(FD->getLocation(), diag::ext_variadic_main); | 
|  | // FIXME: if we had information about the location of the ellipsis, we | 
|  | // could add a FixIt hint to remove it as a parameter. | 
|  | } | 
|  |  | 
|  | // Darwin passes an undocumented fourth argument of type char**.  If | 
|  | // other platforms start sprouting these, the logic below will start | 
|  | // getting shifty. | 
|  | if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) | 
|  | HasExtraParameters = false; | 
|  |  | 
|  | if (HasExtraParameters) { | 
|  | Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; | 
|  | FD->setInvalidDecl(true); | 
|  | nparams = 3; | 
|  | } | 
|  |  | 
|  | // FIXME: a lot of the following diagnostics would be improved | 
|  | // if we had some location information about types. | 
|  |  | 
|  | QualType CharPP = | 
|  | Context.getPointerType(Context.getPointerType(Context.CharTy)); | 
|  | QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; | 
|  |  | 
|  | for (unsigned i = 0; i < nparams; ++i) { | 
|  | QualType AT = FTP->getParamType(i); | 
|  |  | 
|  | bool mismatch = true; | 
|  |  | 
|  | if (Context.hasSameUnqualifiedType(AT, Expected[i])) | 
|  | mismatch = false; | 
|  | else if (Expected[i] == CharPP) { | 
|  | // As an extension, the following forms are okay: | 
|  | //   char const ** | 
|  | //   char const * const * | 
|  | //   char * const * | 
|  |  | 
|  | QualifierCollector qs; | 
|  | const PointerType* PT; | 
|  | if ((PT = qs.strip(AT)->getAs<PointerType>()) && | 
|  | (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && | 
|  | Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), | 
|  | Context.CharTy)) { | 
|  | qs.removeConst(); | 
|  | mismatch = !qs.empty(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mismatch) { | 
|  | Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; | 
|  | // TODO: suggest replacing given type with expected type | 
|  | FD->setInvalidDecl(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nparams == 1 && !FD->isInvalidDecl()) { | 
|  | Diag(FD->getLocation(), diag::warn_main_one_arg); | 
|  | } | 
|  |  | 
|  | if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { | 
|  | Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; | 
|  | FD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { | 
|  | QualType T = FD->getType(); | 
|  | assert(T->isFunctionType() && "function decl is not of function type"); | 
|  | const FunctionType *FT = T->castAs<FunctionType>(); | 
|  |  | 
|  | // Set an implicit return of 'zero' if the function can return some integral, | 
|  | // enumeration, pointer or nullptr type. | 
|  | if (FT->getReturnType()->isIntegralOrEnumerationType() || | 
|  | FT->getReturnType()->isAnyPointerType() || | 
|  | FT->getReturnType()->isNullPtrType()) | 
|  | // DllMain is exempt because a return value of zero means it failed. | 
|  | if (FD->getName() != "DllMain") | 
|  | FD->setHasImplicitReturnZero(true); | 
|  |  | 
|  | if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { | 
|  | Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; | 
|  | FD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { | 
|  | // FIXME: Need strict checking.  In C89, we need to check for | 
|  | // any assignment, increment, decrement, function-calls, or | 
|  | // commas outside of a sizeof.  In C99, it's the same list, | 
|  | // except that the aforementioned are allowed in unevaluated | 
|  | // expressions.  Everything else falls under the | 
|  | // "may accept other forms of constant expressions" exception. | 
|  | // (We never end up here for C++, so the constant expression | 
|  | // rules there don't matter.) | 
|  | const Expr *Culprit; | 
|  | if (Init->isConstantInitializer(Context, false, &Culprit)) | 
|  | return false; | 
|  | Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) | 
|  | << Culprit->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Visits an initialization expression to see if OrigDecl is evaluated in | 
|  | // its own initialization and throws a warning if it does. | 
|  | class SelfReferenceChecker | 
|  | : public EvaluatedExprVisitor<SelfReferenceChecker> { | 
|  | Sema &S; | 
|  | Decl *OrigDecl; | 
|  | bool isRecordType; | 
|  | bool isPODType; | 
|  | bool isReferenceType; | 
|  |  | 
|  | bool isInitList; | 
|  | llvm::SmallVector<unsigned, 4> InitFieldIndex; | 
|  |  | 
|  | public: | 
|  | typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; | 
|  |  | 
|  | SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), | 
|  | S(S), OrigDecl(OrigDecl) { | 
|  | isPODType = false; | 
|  | isRecordType = false; | 
|  | isReferenceType = false; | 
|  | isInitList = false; | 
|  | if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { | 
|  | isPODType = VD->getType().isPODType(S.Context); | 
|  | isRecordType = VD->getType()->isRecordType(); | 
|  | isReferenceType = VD->getType()->isReferenceType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For most expressions, just call the visitor.  For initializer lists, | 
|  | // track the index of the field being initialized since fields are | 
|  | // initialized in order allowing use of previously initialized fields. | 
|  | void CheckExpr(Expr *E) { | 
|  | InitListExpr *InitList = dyn_cast<InitListExpr>(E); | 
|  | if (!InitList) { | 
|  | Visit(E); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Track and increment the index here. | 
|  | isInitList = true; | 
|  | InitFieldIndex.push_back(0); | 
|  | for (auto Child : InitList->children()) { | 
|  | CheckExpr(cast<Expr>(Child)); | 
|  | ++InitFieldIndex.back(); | 
|  | } | 
|  | InitFieldIndex.pop_back(); | 
|  | } | 
|  |  | 
|  | // Returns true if MemberExpr is checked and no further checking is needed. | 
|  | // Returns false if additional checking is required. | 
|  | bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { | 
|  | llvm::SmallVector<FieldDecl*, 4> Fields; | 
|  | Expr *Base = E; | 
|  | bool ReferenceField = false; | 
|  |  | 
|  | // Get the field members used. | 
|  | while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { | 
|  | FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); | 
|  | if (!FD) | 
|  | return false; | 
|  | Fields.push_back(FD); | 
|  | if (FD->getType()->isReferenceType()) | 
|  | ReferenceField = true; | 
|  | Base = ME->getBase()->IgnoreParenImpCasts(); | 
|  | } | 
|  |  | 
|  | // Keep checking only if the base Decl is the same. | 
|  | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base); | 
|  | if (!DRE || DRE->getDecl() != OrigDecl) | 
|  | return false; | 
|  |  | 
|  | // A reference field can be bound to an unininitialized field. | 
|  | if (CheckReference && !ReferenceField) | 
|  | return true; | 
|  |  | 
|  | // Convert FieldDecls to their index number. | 
|  | llvm::SmallVector<unsigned, 4> UsedFieldIndex; | 
|  | for (const FieldDecl *I : llvm::reverse(Fields)) | 
|  | UsedFieldIndex.push_back(I->getFieldIndex()); | 
|  |  | 
|  | // See if a warning is needed by checking the first difference in index | 
|  | // numbers.  If field being used has index less than the field being | 
|  | // initialized, then the use is safe. | 
|  | for (auto UsedIter = UsedFieldIndex.begin(), | 
|  | UsedEnd = UsedFieldIndex.end(), | 
|  | OrigIter = InitFieldIndex.begin(), | 
|  | OrigEnd = InitFieldIndex.end(); | 
|  | UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { | 
|  | if (*UsedIter < *OrigIter) | 
|  | return true; | 
|  | if (*UsedIter > *OrigIter) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // TODO: Add a different warning which will print the field names. | 
|  | HandleDeclRefExpr(DRE); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For most expressions, the cast is directly above the DeclRefExpr. | 
|  | // For conditional operators, the cast can be outside the conditional | 
|  | // operator if both expressions are DeclRefExpr's. | 
|  | void HandleValue(Expr *E) { | 
|  | E = E->IgnoreParens(); | 
|  | if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { | 
|  | HandleDeclRefExpr(DRE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { | 
|  | Visit(CO->getCond()); | 
|  | HandleValue(CO->getTrueExpr()); | 
|  | HandleValue(CO->getFalseExpr()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (BinaryConditionalOperator *BCO = | 
|  | dyn_cast<BinaryConditionalOperator>(E)) { | 
|  | Visit(BCO->getCond()); | 
|  | HandleValue(BCO->getFalseExpr()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { | 
|  | HandleValue(OVE->getSourceExpr()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | if (BO->getOpcode() == BO_Comma) { | 
|  | Visit(BO->getLHS()); | 
|  | HandleValue(BO->getRHS()); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<MemberExpr>(E)) { | 
|  | if (isInitList) { | 
|  | if (CheckInitListMemberExpr(cast<MemberExpr>(E), | 
|  | false /*CheckReference*/)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | Expr *Base = E->IgnoreParenImpCasts(); | 
|  | while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { | 
|  | // Check for static member variables and don't warn on them. | 
|  | if (!isa<FieldDecl>(ME->getMemberDecl())) | 
|  | return; | 
|  | Base = ME->getBase()->IgnoreParenImpCasts(); | 
|  | } | 
|  | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) | 
|  | HandleDeclRefExpr(DRE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Visit(E); | 
|  | } | 
|  |  | 
|  | // Reference types not handled in HandleValue are handled here since all | 
|  | // uses of references are bad, not just r-value uses. | 
|  | void VisitDeclRefExpr(DeclRefExpr *E) { | 
|  | if (isReferenceType) | 
|  | HandleDeclRefExpr(E); | 
|  | } | 
|  |  | 
|  | void VisitImplicitCastExpr(ImplicitCastExpr *E) { | 
|  | if (E->getCastKind() == CK_LValueToRValue) { | 
|  | HandleValue(E->getSubExpr()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Inherited::VisitImplicitCastExpr(E); | 
|  | } | 
|  |  | 
|  | void VisitMemberExpr(MemberExpr *E) { | 
|  | if (isInitList) { | 
|  | if (CheckInitListMemberExpr(E, true /*CheckReference*/)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Don't warn on arrays since they can be treated as pointers. | 
|  | if (E->getType()->canDecayToPointerType()) return; | 
|  |  | 
|  | // Warn when a non-static method call is followed by non-static member | 
|  | // field accesses, which is followed by a DeclRefExpr. | 
|  | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); | 
|  | bool Warn = (MD && !MD->isStatic()); | 
|  | Expr *Base = E->getBase()->IgnoreParenImpCasts(); | 
|  | while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { | 
|  | if (!isa<FieldDecl>(ME->getMemberDecl())) | 
|  | Warn = false; | 
|  | Base = ME->getBase()->IgnoreParenImpCasts(); | 
|  | } | 
|  |  | 
|  | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { | 
|  | if (Warn) | 
|  | HandleDeclRefExpr(DRE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. | 
|  | // Visit that expression. | 
|  | Visit(Base); | 
|  | } | 
|  |  | 
|  | void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { | 
|  | Expr *Callee = E->getCallee(); | 
|  |  | 
|  | if (isa<UnresolvedLookupExpr>(Callee)) | 
|  | return Inherited::VisitCXXOperatorCallExpr(E); | 
|  |  | 
|  | Visit(Callee); | 
|  | for (auto Arg: E->arguments()) | 
|  | HandleValue(Arg->IgnoreParenImpCasts()); | 
|  | } | 
|  |  | 
|  | void VisitUnaryOperator(UnaryOperator *E) { | 
|  | // For POD record types, addresses of its own members are well-defined. | 
|  | if (E->getOpcode() == UO_AddrOf && isRecordType && | 
|  | isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { | 
|  | if (!isPODType) | 
|  | HandleValue(E->getSubExpr()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (E->isIncrementDecrementOp()) { | 
|  | HandleValue(E->getSubExpr()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Inherited::VisitUnaryOperator(E); | 
|  | } | 
|  |  | 
|  | void VisitObjCMessageExpr(ObjCMessageExpr *E) {} | 
|  |  | 
|  | void VisitCXXConstructExpr(CXXConstructExpr *E) { | 
|  | if (E->getConstructor()->isCopyConstructor()) { | 
|  | Expr *ArgExpr = E->getArg(0); | 
|  | if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) | 
|  | if (ILE->getNumInits() == 1) | 
|  | ArgExpr = ILE->getInit(0); | 
|  | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) | 
|  | if (ICE->getCastKind() == CK_NoOp) | 
|  | ArgExpr = ICE->getSubExpr(); | 
|  | HandleValue(ArgExpr); | 
|  | return; | 
|  | } | 
|  | Inherited::VisitCXXConstructExpr(E); | 
|  | } | 
|  |  | 
|  | void VisitCallExpr(CallExpr *E) { | 
|  | // Treat std::move as a use. | 
|  | if (E->isCallToStdMove()) { | 
|  | HandleValue(E->getArg(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Inherited::VisitCallExpr(E); | 
|  | } | 
|  |  | 
|  | void VisitBinaryOperator(BinaryOperator *E) { | 
|  | if (E->isCompoundAssignmentOp()) { | 
|  | HandleValue(E->getLHS()); | 
|  | Visit(E->getRHS()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Inherited::VisitBinaryOperator(E); | 
|  | } | 
|  |  | 
|  | // A custom visitor for BinaryConditionalOperator is needed because the | 
|  | // regular visitor would check the condition and true expression separately | 
|  | // but both point to the same place giving duplicate diagnostics. | 
|  | void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { | 
|  | Visit(E->getCond()); | 
|  | Visit(E->getFalseExpr()); | 
|  | } | 
|  |  | 
|  | void HandleDeclRefExpr(DeclRefExpr *DRE) { | 
|  | Decl* ReferenceDecl = DRE->getDecl(); | 
|  | if (OrigDecl != ReferenceDecl) return; | 
|  | unsigned diag; | 
|  | if (isReferenceType) { | 
|  | diag = diag::warn_uninit_self_reference_in_reference_init; | 
|  | } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { | 
|  | diag = diag::warn_static_self_reference_in_init; | 
|  | } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) || | 
|  | isa<NamespaceDecl>(OrigDecl->getDeclContext()) || | 
|  | DRE->getDecl()->getType()->isRecordType()) { | 
|  | diag = diag::warn_uninit_self_reference_in_init; | 
|  | } else { | 
|  | // Local variables will be handled by the CFG analysis. | 
|  | return; | 
|  | } | 
|  |  | 
|  | S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE, | 
|  | S.PDiag(diag) | 
|  | << DRE->getDecl() << OrigDecl->getLocation() | 
|  | << DRE->getSourceRange()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// CheckSelfReference - Warns if OrigDecl is used in expression E. | 
|  | static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, | 
|  | bool DirectInit) { | 
|  | // Parameters arguments are occassionially constructed with itself, | 
|  | // for instance, in recursive functions.  Skip them. | 
|  | if (isa<ParmVarDecl>(OrigDecl)) | 
|  | return; | 
|  |  | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | // Skip checking T a = a where T is not a record or reference type. | 
|  | // Doing so is a way to silence uninitialized warnings. | 
|  | if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) | 
|  | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) | 
|  | if (ICE->getCastKind() == CK_LValueToRValue) | 
|  | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) | 
|  | if (DRE->getDecl() == OrigDecl) | 
|  | return; | 
|  |  | 
|  | SelfReferenceChecker(S, OrigDecl).CheckExpr(E); | 
|  | } | 
|  | } // end anonymous namespace | 
|  |  | 
|  | namespace { | 
|  | // Simple wrapper to add the name of a variable or (if no variable is | 
|  | // available) a DeclarationName into a diagnostic. | 
|  | struct VarDeclOrName { | 
|  | VarDecl *VDecl; | 
|  | DeclarationName Name; | 
|  |  | 
|  | friend const Sema::SemaDiagnosticBuilder & | 
|  | operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) { | 
|  | return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name; | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl, | 
|  | DeclarationName Name, QualType Type, | 
|  | TypeSourceInfo *TSI, | 
|  | SourceRange Range, bool DirectInit, | 
|  | Expr *Init) { | 
|  | bool IsInitCapture = !VDecl; | 
|  | assert((!VDecl || !VDecl->isInitCapture()) && | 
|  | "init captures are expected to be deduced prior to initialization"); | 
|  |  | 
|  | VarDeclOrName VN{VDecl, Name}; | 
|  |  | 
|  | DeducedType *Deduced = Type->getContainedDeducedType(); | 
|  | assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type"); | 
|  |  | 
|  | // C++11 [dcl.spec.auto]p3 | 
|  | if (!Init) { | 
|  | assert(VDecl && "no init for init capture deduction?"); | 
|  |  | 
|  | // Except for class argument deduction, and then for an initializing | 
|  | // declaration only, i.e. no static at class scope or extern. | 
|  | if (!isa<DeducedTemplateSpecializationType>(Deduced) || | 
|  | VDecl->hasExternalStorage() || | 
|  | VDecl->isStaticDataMember()) { | 
|  | Diag(VDecl->getLocation(), diag::err_auto_var_requires_init) | 
|  | << VDecl->getDeclName() << Type; | 
|  | return QualType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | ArrayRef<Expr*> DeduceInits; | 
|  | if (Init) | 
|  | DeduceInits = Init; | 
|  |  | 
|  | if (DirectInit) { | 
|  | if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init)) | 
|  | DeduceInits = PL->exprs(); | 
|  | } | 
|  |  | 
|  | if (isa<DeducedTemplateSpecializationType>(Deduced)) { | 
|  | assert(VDecl && "non-auto type for init capture deduction?"); | 
|  | InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); | 
|  | InitializationKind Kind = InitializationKind::CreateForInit( | 
|  | VDecl->getLocation(), DirectInit, Init); | 
|  | // FIXME: Initialization should not be taking a mutable list of inits. | 
|  | SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end()); | 
|  | return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, | 
|  | InitsCopy); | 
|  | } | 
|  |  | 
|  | if (DirectInit) { | 
|  | if (auto *IL = dyn_cast<InitListExpr>(Init)) | 
|  | DeduceInits = IL->inits(); | 
|  | } | 
|  |  | 
|  | // Deduction only works if we have exactly one source expression. | 
|  | if (DeduceInits.empty()) { | 
|  | // It isn't possible to write this directly, but it is possible to | 
|  | // end up in this situation with "auto x(some_pack...);" | 
|  | Diag(Init->getBeginLoc(), IsInitCapture | 
|  | ? diag::err_init_capture_no_expression | 
|  | : diag::err_auto_var_init_no_expression) | 
|  | << VN << Type << Range; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | if (DeduceInits.size() > 1) { | 
|  | Diag(DeduceInits[1]->getBeginLoc(), | 
|  | IsInitCapture ? diag::err_init_capture_multiple_expressions | 
|  | : diag::err_auto_var_init_multiple_expressions) | 
|  | << VN << Type << Range; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | Expr *DeduceInit = DeduceInits[0]; | 
|  | if (DirectInit && isa<InitListExpr>(DeduceInit)) { | 
|  | Diag(Init->getBeginLoc(), IsInitCapture | 
|  | ? diag::err_init_capture_paren_braces | 
|  | : diag::err_auto_var_init_paren_braces) | 
|  | << isa<InitListExpr>(Init) << VN << Type << Range; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // Expressions default to 'id' when we're in a debugger. | 
|  | bool DefaultedAnyToId = false; | 
|  | if (getLangOpts().DebuggerCastResultToId && | 
|  | Init->getType() == Context.UnknownAnyTy && !IsInitCapture) { | 
|  | ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); | 
|  | if (Result.isInvalid()) { | 
|  | return QualType(); | 
|  | } | 
|  | Init = Result.get(); | 
|  | DefaultedAnyToId = true; | 
|  | } | 
|  |  | 
|  | // C++ [dcl.decomp]p1: | 
|  | //   If the assignment-expression [...] has array type A and no ref-qualifier | 
|  | //   is present, e has type cv A | 
|  | if (VDecl && isa<DecompositionDecl>(VDecl) && | 
|  | Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) && | 
|  | DeduceInit->getType()->isConstantArrayType()) | 
|  | return Context.getQualifiedType(DeduceInit->getType(), | 
|  | Type.getQualifiers()); | 
|  |  | 
|  | QualType DeducedType; | 
|  | if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) { | 
|  | if (!IsInitCapture) | 
|  | DiagnoseAutoDeductionFailure(VDecl, DeduceInit); | 
|  | else if (isa<InitListExpr>(Init)) | 
|  | Diag(Range.getBegin(), | 
|  | diag::err_init_capture_deduction_failure_from_init_list) | 
|  | << VN | 
|  | << (DeduceInit->getType().isNull() ? TSI->getType() | 
|  | : DeduceInit->getType()) | 
|  | << DeduceInit->getSourceRange(); | 
|  | else | 
|  | Diag(Range.getBegin(), diag::err_init_capture_deduction_failure) | 
|  | << VN << TSI->getType() | 
|  | << (DeduceInit->getType().isNull() ? TSI->getType() | 
|  | : DeduceInit->getType()) | 
|  | << DeduceInit->getSourceRange(); | 
|  | } | 
|  |  | 
|  | // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using | 
|  | // 'id' instead of a specific object type prevents most of our usual | 
|  | // checks. | 
|  | // We only want to warn outside of template instantiations, though: | 
|  | // inside a template, the 'id' could have come from a parameter. | 
|  | if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture && | 
|  | !DeducedType.isNull() && DeducedType->isObjCIdType()) { | 
|  | SourceLocation Loc = TSI->getTypeLoc().getBeginLoc(); | 
|  | Diag(Loc, diag::warn_auto_var_is_id) << VN << Range; | 
|  | } | 
|  |  | 
|  | return DeducedType; | 
|  | } | 
|  |  | 
|  | bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, | 
|  | Expr *Init) { | 
|  | QualType DeducedType = deduceVarTypeFromInitializer( | 
|  | VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(), | 
|  | VDecl->getSourceRange(), DirectInit, Init); | 
|  | if (DeducedType.isNull()) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | VDecl->setType(DeducedType); | 
|  | assert(VDecl->isLinkageValid()); | 
|  |  | 
|  | // In ARC, infer lifetime. | 
|  | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) | 
|  | VDecl->setInvalidDecl(); | 
|  |  | 
|  | // If this is a redeclaration, check that the type we just deduced matches | 
|  | // the previously declared type. | 
|  | if (VarDecl *Old = VDecl->getPreviousDecl()) { | 
|  | // We never need to merge the type, because we cannot form an incomplete | 
|  | // array of auto, nor deduce such a type. | 
|  | MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false); | 
|  | } | 
|  |  | 
|  | // Check the deduced type is valid for a variable declaration. | 
|  | CheckVariableDeclarationType(VDecl); | 
|  | return VDecl->isInvalidDecl(); | 
|  | } | 
|  |  | 
|  | void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init, | 
|  | SourceLocation Loc) { | 
|  | if (auto *CE = dyn_cast<ConstantExpr>(Init)) | 
|  | Init = CE->getSubExpr(); | 
|  |  | 
|  | QualType InitType = Init->getType(); | 
|  | assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | 
|  | InitType.hasNonTrivialToPrimitiveCopyCUnion()) && | 
|  | "shouldn't be called if type doesn't have a non-trivial C struct"); | 
|  | if (auto *ILE = dyn_cast<InitListExpr>(Init)) { | 
|  | for (auto I : ILE->inits()) { | 
|  | if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() && | 
|  | !I->getType().hasNonTrivialToPrimitiveCopyCUnion()) | 
|  | continue; | 
|  | SourceLocation SL = I->getExprLoc(); | 
|  | checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isa<ImplicitValueInitExpr>(Init)) { | 
|  | if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) | 
|  | checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject, | 
|  | NTCUK_Init); | 
|  | } else { | 
|  | // Assume all other explicit initializers involving copying some existing | 
|  | // object. | 
|  | // TODO: ignore any explicit initializers where we can guarantee | 
|  | // copy-elision. | 
|  | if (InitType.hasNonTrivialToPrimitiveCopyCUnion()) | 
|  | checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct DiagNonTrivalCUnionDefaultInitializeVisitor | 
|  | : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, | 
|  | void> { | 
|  | using Super = | 
|  | DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, | 
|  | void>; | 
|  |  | 
|  | DiagNonTrivalCUnionDefaultInitializeVisitor( | 
|  | QualType OrigTy, SourceLocation OrigLoc, | 
|  | Sema::NonTrivialCUnionContext UseContext, Sema &S) | 
|  | : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} | 
|  |  | 
|  | void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT, | 
|  | const FieldDecl *FD, bool InNonTrivialUnion) { | 
|  | if (const auto *AT = S.Context.getAsArrayType(QT)) | 
|  | return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, | 
|  | InNonTrivialUnion); | 
|  | return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion); | 
|  | } | 
|  |  | 
|  | void visitARCStrong(QualType QT, const FieldDecl *FD, | 
|  | bool InNonTrivialUnion) { | 
|  | if (InNonTrivialUnion) | 
|  | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | 
|  | << 1 << 0 << QT << FD->getName(); | 
|  | } | 
|  |  | 
|  | void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | 
|  | if (InNonTrivialUnion) | 
|  | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | 
|  | << 1 << 0 << QT << FD->getName(); | 
|  | } | 
|  |  | 
|  | void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | 
|  | const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); | 
|  | if (RD->isUnion()) { | 
|  | if (OrigLoc.isValid()) { | 
|  | bool IsUnion = false; | 
|  | if (auto *OrigRD = OrigTy->getAsRecordDecl()) | 
|  | IsUnion = OrigRD->isUnion(); | 
|  | S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) | 
|  | << 0 << OrigTy << IsUnion << UseContext; | 
|  | // Reset OrigLoc so that this diagnostic is emitted only once. | 
|  | OrigLoc = SourceLocation(); | 
|  | } | 
|  | InNonTrivialUnion = true; | 
|  | } | 
|  |  | 
|  | if (InNonTrivialUnion) | 
|  | S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) | 
|  | << 0 << 0 << QT.getUnqualifiedType() << ""; | 
|  |  | 
|  | for (const FieldDecl *FD : RD->fields()) | 
|  | asDerived().visit(FD->getType(), FD, InNonTrivialUnion); | 
|  | } | 
|  |  | 
|  | void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} | 
|  |  | 
|  | // The non-trivial C union type or the struct/union type that contains a | 
|  | // non-trivial C union. | 
|  | QualType OrigTy; | 
|  | SourceLocation OrigLoc; | 
|  | Sema::NonTrivialCUnionContext UseContext; | 
|  | Sema &S; | 
|  | }; | 
|  |  | 
|  | struct DiagNonTrivalCUnionDestructedTypeVisitor | 
|  | : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> { | 
|  | using Super = | 
|  | DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>; | 
|  |  | 
|  | DiagNonTrivalCUnionDestructedTypeVisitor( | 
|  | QualType OrigTy, SourceLocation OrigLoc, | 
|  | Sema::NonTrivialCUnionContext UseContext, Sema &S) | 
|  | : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} | 
|  |  | 
|  | void visitWithKind(QualType::DestructionKind DK, QualType QT, | 
|  | const FieldDecl *FD, bool InNonTrivialUnion) { | 
|  | if (const auto *AT = S.Context.getAsArrayType(QT)) | 
|  | return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, | 
|  | InNonTrivialUnion); | 
|  | return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion); | 
|  | } | 
|  |  | 
|  | void visitARCStrong(QualType QT, const FieldDecl *FD, | 
|  | bool InNonTrivialUnion) { | 
|  | if (InNonTrivialUnion) | 
|  | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | 
|  | << 1 << 1 << QT << FD->getName(); | 
|  | } | 
|  |  | 
|  | void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | 
|  | if (InNonTrivialUnion) | 
|  | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | 
|  | << 1 << 1 << QT << FD->getName(); | 
|  | } | 
|  |  | 
|  | void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | 
|  | const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); | 
|  | if (RD->isUnion()) { | 
|  | if (OrigLoc.isValid()) { | 
|  | bool IsUnion = false; | 
|  | if (auto *OrigRD = OrigTy->getAsRecordDecl()) | 
|  | IsUnion = OrigRD->isUnion(); | 
|  | S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) | 
|  | << 1 << OrigTy << IsUnion << UseContext; | 
|  | // Reset OrigLoc so that this diagnostic is emitted only once. | 
|  | OrigLoc = SourceLocation(); | 
|  | } | 
|  | InNonTrivialUnion = true; | 
|  | } | 
|  |  | 
|  | if (InNonTrivialUnion) | 
|  | S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) | 
|  | << 0 << 1 << QT.getUnqualifiedType() << ""; | 
|  |  | 
|  | for (const FieldDecl *FD : RD->fields()) | 
|  | asDerived().visit(FD->getType(), FD, InNonTrivialUnion); | 
|  | } | 
|  |  | 
|  | void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} | 
|  | void visitCXXDestructor(QualType QT, const FieldDecl *FD, | 
|  | bool InNonTrivialUnion) {} | 
|  |  | 
|  | // The non-trivial C union type or the struct/union type that contains a | 
|  | // non-trivial C union. | 
|  | QualType OrigTy; | 
|  | SourceLocation OrigLoc; | 
|  | Sema::NonTrivialCUnionContext UseContext; | 
|  | Sema &S; | 
|  | }; | 
|  |  | 
|  | struct DiagNonTrivalCUnionCopyVisitor | 
|  | : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> { | 
|  | using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>; | 
|  |  | 
|  | DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc, | 
|  | Sema::NonTrivialCUnionContext UseContext, | 
|  | Sema &S) | 
|  | : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} | 
|  |  | 
|  | void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT, | 
|  | const FieldDecl *FD, bool InNonTrivialUnion) { | 
|  | if (const auto *AT = S.Context.getAsArrayType(QT)) | 
|  | return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, | 
|  | InNonTrivialUnion); | 
|  | return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion); | 
|  | } | 
|  |  | 
|  | void visitARCStrong(QualType QT, const FieldDecl *FD, | 
|  | bool InNonTrivialUnion) { | 
|  | if (InNonTrivialUnion) | 
|  | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | 
|  | << 1 << 2 << QT << FD->getName(); | 
|  | } | 
|  |  | 
|  | void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | 
|  | if (InNonTrivialUnion) | 
|  | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | 
|  | << 1 << 2 << QT << FD->getName(); | 
|  | } | 
|  |  | 
|  | void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | 
|  | const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); | 
|  | if (RD->isUnion()) { | 
|  | if (OrigLoc.isValid()) { | 
|  | bool IsUnion = false; | 
|  | if (auto *OrigRD = OrigTy->getAsRecordDecl()) | 
|  | IsUnion = OrigRD->isUnion(); | 
|  | S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) | 
|  | << 2 << OrigTy << IsUnion << UseContext; | 
|  | // Reset OrigLoc so that this diagnostic is emitted only once. | 
|  | OrigLoc = SourceLocation(); | 
|  | } | 
|  | InNonTrivialUnion = true; | 
|  | } | 
|  |  | 
|  | if (InNonTrivialUnion) | 
|  | S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) | 
|  | << 0 << 2 << QT.getUnqualifiedType() << ""; | 
|  |  | 
|  | for (const FieldDecl *FD : RD->fields()) | 
|  | asDerived().visit(FD->getType(), FD, InNonTrivialUnion); | 
|  | } | 
|  |  | 
|  | void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT, | 
|  | const FieldDecl *FD, bool InNonTrivialUnion) {} | 
|  | void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} | 
|  | void visitVolatileTrivial(QualType QT, const FieldDecl *FD, | 
|  | bool InNonTrivialUnion) {} | 
|  |  | 
|  | // The non-trivial C union type or the struct/union type that contains a | 
|  | // non-trivial C union. | 
|  | QualType OrigTy; | 
|  | SourceLocation OrigLoc; | 
|  | Sema::NonTrivialCUnionContext UseContext; | 
|  | Sema &S; | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc, | 
|  | NonTrivialCUnionContext UseContext, | 
|  | unsigned NonTrivialKind) { | 
|  | assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | 
|  | QT.hasNonTrivialToPrimitiveDestructCUnion() || | 
|  | QT.hasNonTrivialToPrimitiveCopyCUnion()) && | 
|  | "shouldn't be called if type doesn't have a non-trivial C union"); | 
|  |  | 
|  | if ((NonTrivialKind & NTCUK_Init) && | 
|  | QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) | 
|  | DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this) | 
|  | .visit(QT, nullptr, false); | 
|  | if ((NonTrivialKind & NTCUK_Destruct) && | 
|  | QT.hasNonTrivialToPrimitiveDestructCUnion()) | 
|  | DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this) | 
|  | .visit(QT, nullptr, false); | 
|  | if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion()) | 
|  | DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this) | 
|  | .visit(QT, nullptr, false); | 
|  | } | 
|  |  | 
|  | /// AddInitializerToDecl - Adds the initializer Init to the | 
|  | /// declaration dcl. If DirectInit is true, this is C++ direct | 
|  | /// initialization rather than copy initialization. | 
|  | void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { | 
|  | // If there is no declaration, there was an error parsing it.  Just ignore | 
|  | // the initializer. | 
|  | if (!RealDecl || RealDecl->isInvalidDecl()) { | 
|  | CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { | 
|  | // Pure-specifiers are handled in ActOnPureSpecifier. | 
|  | Diag(Method->getLocation(), diag::err_member_function_initialization) | 
|  | << Method->getDeclName() << Init->getSourceRange(); | 
|  | Method->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); | 
|  | if (!VDecl) { | 
|  | assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); | 
|  | Diag(RealDecl->getLocation(), diag::err_illegal_initializer); | 
|  | RealDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. | 
|  | if (VDecl->getType()->isUndeducedType()) { | 
|  | // Attempt typo correction early so that the type of the init expression can | 
|  | // be deduced based on the chosen correction if the original init contains a | 
|  | // TypoExpr. | 
|  | ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl); | 
|  | if (!Res.isUsable()) { | 
|  | RealDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | Init = Res.get(); | 
|  |  | 
|  | if (DeduceVariableDeclarationType(VDecl, DirectInit, Init)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // dllimport cannot be used on variable definitions. | 
|  | if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { | 
|  | Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { | 
|  | // C99 6.7.8p5. C++ has no such restriction, but that is a defect. | 
|  | Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!VDecl->getType()->isDependentType()) { | 
|  | // A definition must end up with a complete type, which means it must be | 
|  | // complete with the restriction that an array type might be completed by | 
|  | // the initializer; note that later code assumes this restriction. | 
|  | QualType BaseDeclType = VDecl->getType(); | 
|  | if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) | 
|  | BaseDeclType = Array->getElementType(); | 
|  | if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | RealDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The variable can not have an abstract class type. | 
|  | if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) | 
|  | VDecl->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // If adding the initializer will turn this declaration into a definition, | 
|  | // and we already have a definition for this variable, diagnose or otherwise | 
|  | // handle the situation. | 
|  | VarDecl *Def; | 
|  | if ((Def = VDecl->getDefinition()) && Def != VDecl && | 
|  | (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) && | 
|  | !VDecl->isThisDeclarationADemotedDefinition() && | 
|  | checkVarDeclRedefinition(Def, VDecl)) | 
|  | return; | 
|  |  | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | // C++ [class.static.data]p4 | 
|  | //   If a static data member is of const integral or const | 
|  | //   enumeration type, its declaration in the class definition can | 
|  | //   specify a constant-initializer which shall be an integral | 
|  | //   constant expression (5.19). In that case, the member can appear | 
|  | //   in integral constant expressions. The member shall still be | 
|  | //   defined in a namespace scope if it is used in the program and the | 
|  | //   namespace scope definition shall not contain an initializer. | 
|  | // | 
|  | // We already performed a redefinition check above, but for static | 
|  | // data members we also need to check whether there was an in-class | 
|  | // declaration with an initializer. | 
|  | if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) { | 
|  | Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) | 
|  | << VDecl->getDeclName(); | 
|  | Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(), | 
|  | diag::note_previous_initializer) | 
|  | << 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (VDecl->hasLocalStorage()) | 
|  | setFunctionHasBranchProtectedScope(); | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside | 
|  | // a kernel function cannot be initialized." | 
|  | if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) { | 
|  | Diag(VDecl->getLocation(), diag::err_local_cant_init); | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get the decls type and save a reference for later, since | 
|  | // CheckInitializerTypes may change it. | 
|  | QualType DclT = VDecl->getType(), SavT = DclT; | 
|  |  | 
|  | // Expressions default to 'id' when we're in a debugger | 
|  | // and we are assigning it to a variable of Objective-C pointer type. | 
|  | if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && | 
|  | Init->getType() == Context.UnknownAnyTy) { | 
|  | ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); | 
|  | if (Result.isInvalid()) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | Init = Result.get(); | 
|  | } | 
|  |  | 
|  | // Perform the initialization. | 
|  | ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); | 
|  | if (!VDecl->isInvalidDecl()) { | 
|  | InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); | 
|  | InitializationKind Kind = InitializationKind::CreateForInit( | 
|  | VDecl->getLocation(), DirectInit, Init); | 
|  |  | 
|  | MultiExprArg Args = Init; | 
|  | if (CXXDirectInit) | 
|  | Args = MultiExprArg(CXXDirectInit->getExprs(), | 
|  | CXXDirectInit->getNumExprs()); | 
|  |  | 
|  | // Try to correct any TypoExprs in the initialization arguments. | 
|  | for (size_t Idx = 0; Idx < Args.size(); ++Idx) { | 
|  | ExprResult Res = CorrectDelayedTyposInExpr( | 
|  | Args[Idx], VDecl, [this, Entity, Kind](Expr *E) { | 
|  | InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E)); | 
|  | return Init.Failed() ? ExprError() : E; | 
|  | }); | 
|  | if (Res.isInvalid()) { | 
|  | VDecl->setInvalidDecl(); | 
|  | } else if (Res.get() != Args[Idx]) { | 
|  | Args[Idx] = Res.get(); | 
|  | } | 
|  | } | 
|  | if (VDecl->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, Args, | 
|  | /*TopLevelOfInitList=*/false, | 
|  | /*TreatUnavailableAsInvalid=*/false); | 
|  | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); | 
|  | if (Result.isInvalid()) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Init = Result.getAs<Expr>(); | 
|  | } | 
|  |  | 
|  | // Check for self-references within variable initializers. | 
|  | // Variables declared within a function/method body (except for references) | 
|  | // are handled by a dataflow analysis. | 
|  | if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || | 
|  | VDecl->getType()->isReferenceType()) { | 
|  | CheckSelfReference(*this, RealDecl, Init, DirectInit); | 
|  | } | 
|  |  | 
|  | // If the type changed, it means we had an incomplete type that was | 
|  | // completed by the initializer. For example: | 
|  | //   int ary[] = { 1, 3, 5 }; | 
|  | // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. | 
|  | if (!VDecl->isInvalidDecl() && (DclT != SavT)) | 
|  | VDecl->setType(DclT); | 
|  |  | 
|  | if (!VDecl->isInvalidDecl()) { | 
|  | checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); | 
|  |  | 
|  | if (VDecl->hasAttr<BlocksAttr>()) | 
|  | checkRetainCycles(VDecl, Init); | 
|  |  | 
|  | // It is safe to assign a weak reference into a strong variable. | 
|  | // Although this code can still have problems: | 
|  | //   id x = self.weakProp; | 
|  | //   id y = self.weakProp; | 
|  | // we do not warn to warn spuriously when 'x' and 'y' are on separate | 
|  | // paths through the function. This should be revisited if | 
|  | // -Wrepeated-use-of-weak is made flow-sensitive. | 
|  | if (FunctionScopeInfo *FSI = getCurFunction()) | 
|  | if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong || | 
|  | VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) && | 
|  | !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, | 
|  | Init->getBeginLoc())) | 
|  | FSI->markSafeWeakUse(Init); | 
|  | } | 
|  |  | 
|  | // The initialization is usually a full-expression. | 
|  | // | 
|  | // FIXME: If this is a braced initialization of an aggregate, it is not | 
|  | // an expression, and each individual field initializer is a separate | 
|  | // full-expression. For instance, in: | 
|  | // | 
|  | //   struct Temp { ~Temp(); }; | 
|  | //   struct S { S(Temp); }; | 
|  | //   struct T { S a, b; } t = { Temp(), Temp() } | 
|  | // | 
|  | // we should destroy the first Temp before constructing the second. | 
|  | ExprResult Result = | 
|  | ActOnFinishFullExpr(Init, VDecl->getLocation(), | 
|  | /*DiscardedValue*/ false, VDecl->isConstexpr()); | 
|  | if (Result.isInvalid()) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | Init = Result.get(); | 
|  |  | 
|  | // Attach the initializer to the decl. | 
|  | VDecl->setInit(Init); | 
|  |  | 
|  | if (VDecl->isLocalVarDecl()) { | 
|  | // Don't check the initializer if the declaration is malformed. | 
|  | if (VDecl->isInvalidDecl()) { | 
|  | // do nothing | 
|  |  | 
|  | // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized. | 
|  | // This is true even in OpenCL C++. | 
|  | } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) { | 
|  | CheckForConstantInitializer(Init, DclT); | 
|  |  | 
|  | // Otherwise, C++ does not restrict the initializer. | 
|  | } else if (getLangOpts().CPlusPlus) { | 
|  | // do nothing | 
|  |  | 
|  | // C99 6.7.8p4: All the expressions in an initializer for an object that has | 
|  | // static storage duration shall be constant expressions or string literals. | 
|  | } else if (VDecl->getStorageClass() == SC_Static) { | 
|  | CheckForConstantInitializer(Init, DclT); | 
|  |  | 
|  | // C89 is stricter than C99 for aggregate initializers. | 
|  | // C89 6.5.7p3: All the expressions [...] in an initializer list | 
|  | // for an object that has aggregate or union type shall be | 
|  | // constant expressions. | 
|  | } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && | 
|  | isa<InitListExpr>(Init)) { | 
|  | const Expr *Culprit; | 
|  | if (!Init->isConstantInitializer(Context, false, &Culprit)) { | 
|  | Diag(Culprit->getExprLoc(), | 
|  | diag::ext_aggregate_init_not_constant) | 
|  | << Culprit->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *E = dyn_cast<ExprWithCleanups>(Init)) | 
|  | if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens())) | 
|  | if (VDecl->hasLocalStorage()) | 
|  | BE->getBlockDecl()->setCanAvoidCopyToHeap(); | 
|  | } else if (VDecl->isStaticDataMember() && !VDecl->isInline() && | 
|  | VDecl->getLexicalDeclContext()->isRecord()) { | 
|  | // This is an in-class initialization for a static data member, e.g., | 
|  | // | 
|  | // struct S { | 
|  | //   static const int value = 17; | 
|  | // }; | 
|  |  | 
|  | // C++ [class.mem]p4: | 
|  | //   A member-declarator can contain a constant-initializer only | 
|  | //   if it declares a static member (9.4) of const integral or | 
|  | //   const enumeration type, see 9.4.2. | 
|  | // | 
|  | // C++11 [class.static.data]p3: | 
|  | //   If a non-volatile non-inline const static data member is of integral | 
|  | //   or enumeration type, its declaration in the class definition can | 
|  | //   specify a brace-or-equal-initializer in which every initializer-clause | 
|  | //   that is an assignment-expression is a constant expression. A static | 
|  | //   data member of literal type can be declared in the class definition | 
|  | //   with the constexpr specifier; if so, its declaration shall specify a | 
|  | //   brace-or-equal-initializer in which every initializer-clause that is | 
|  | //   an assignment-expression is a constant expression. | 
|  |  | 
|  | // Do nothing on dependent types. | 
|  | if (DclT->isDependentType()) { | 
|  |  | 
|  | // Allow any 'static constexpr' members, whether or not they are of literal | 
|  | // type. We separately check that every constexpr variable is of literal | 
|  | // type. | 
|  | } else if (VDecl->isConstexpr()) { | 
|  |  | 
|  | // Require constness. | 
|  | } else if (!DclT.isConstQualified()) { | 
|  | Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) | 
|  | << Init->getSourceRange(); | 
|  | VDecl->setInvalidDecl(); | 
|  |  | 
|  | // We allow integer constant expressions in all cases. | 
|  | } else if (DclT->isIntegralOrEnumerationType()) { | 
|  | // Check whether the expression is a constant expression. | 
|  | SourceLocation Loc; | 
|  | if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) | 
|  | // In C++11, a non-constexpr const static data member with an | 
|  | // in-class initializer cannot be volatile. | 
|  | Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); | 
|  | else if (Init->isValueDependent()) | 
|  | ; // Nothing to check. | 
|  | else if (Init->isIntegerConstantExpr(Context, &Loc)) | 
|  | ; // Ok, it's an ICE! | 
|  | else if (Init->getType()->isScopedEnumeralType() && | 
|  | Init->isCXX11ConstantExpr(Context)) | 
|  | ; // Ok, it is a scoped-enum constant expression. | 
|  | else if (Init->isEvaluatable(Context)) { | 
|  | // If we can constant fold the initializer through heroics, accept it, | 
|  | // but report this as a use of an extension for -pedantic. | 
|  | Diag(Loc, diag::ext_in_class_initializer_non_constant) | 
|  | << Init->getSourceRange(); | 
|  | } else { | 
|  | // Otherwise, this is some crazy unknown case.  Report the issue at the | 
|  | // location provided by the isIntegerConstantExpr failed check. | 
|  | Diag(Loc, diag::err_in_class_initializer_non_constant) | 
|  | << Init->getSourceRange(); | 
|  | VDecl->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // We allow foldable floating-point constants as an extension. | 
|  | } else if (DclT->isFloatingType()) { // also permits complex, which is ok | 
|  | // In C++98, this is a GNU extension. In C++11, it is not, but we support | 
|  | // it anyway and provide a fixit to add the 'constexpr'. | 
|  | if (getLangOpts().CPlusPlus11) { | 
|  | Diag(VDecl->getLocation(), | 
|  | diag::ext_in_class_initializer_float_type_cxx11) | 
|  | << DclT << Init->getSourceRange(); | 
|  | Diag(VDecl->getBeginLoc(), | 
|  | diag::note_in_class_initializer_float_type_cxx11) | 
|  | << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); | 
|  | } else { | 
|  | Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) | 
|  | << DclT << Init->getSourceRange(); | 
|  |  | 
|  | if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { | 
|  | Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) | 
|  | << Init->getSourceRange(); | 
|  | VDecl->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Suggest adding 'constexpr' in C++11 for literal types. | 
|  | } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { | 
|  | Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) | 
|  | << DclT << Init->getSourceRange() | 
|  | << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); | 
|  | VDecl->setConstexpr(true); | 
|  |  | 
|  | } else { | 
|  | Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) | 
|  | << DclT << Init->getSourceRange(); | 
|  | VDecl->setInvalidDecl(); | 
|  | } | 
|  | } else if (VDecl->isFileVarDecl()) { | 
|  | // In C, extern is typically used to avoid tentative definitions when | 
|  | // declaring variables in headers, but adding an intializer makes it a | 
|  | // definition. This is somewhat confusing, so GCC and Clang both warn on it. | 
|  | // In C++, extern is often used to give implictly static const variables | 
|  | // external linkage, so don't warn in that case. If selectany is present, | 
|  | // this might be header code intended for C and C++ inclusion, so apply the | 
|  | // C++ rules. | 
|  | if (VDecl->getStorageClass() == SC_Extern && | 
|  | ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) || | 
|  | !Context.getBaseElementType(VDecl->getType()).isConstQualified()) && | 
|  | !(getLangOpts().CPlusPlus && VDecl->isExternC()) && | 
|  | !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) | 
|  | Diag(VDecl->getLocation(), diag::warn_extern_init); | 
|  |  | 
|  | // In Microsoft C++ mode, a const variable defined in namespace scope has | 
|  | // external linkage by default if the variable is declared with | 
|  | // __declspec(dllexport). | 
|  | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
|  | getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() && | 
|  | VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition()) | 
|  | VDecl->setStorageClass(SC_Extern); | 
|  |  | 
|  | // C99 6.7.8p4. All file scoped initializers need to be constant. | 
|  | if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) | 
|  | CheckForConstantInitializer(Init, DclT); | 
|  | } | 
|  |  | 
|  | QualType InitType = Init->getType(); | 
|  | if (!InitType.isNull() && | 
|  | (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | 
|  | InitType.hasNonTrivialToPrimitiveCopyCUnion())) | 
|  | checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc()); | 
|  |  | 
|  | // We will represent direct-initialization similarly to copy-initialization: | 
|  | //    int x(1);  -as-> int x = 1; | 
|  | //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); | 
|  | // | 
|  | // Clients that want to distinguish between the two forms, can check for | 
|  | // direct initializer using VarDecl::getInitStyle(). | 
|  | // A major benefit is that clients that don't particularly care about which | 
|  | // exactly form was it (like the CodeGen) can handle both cases without | 
|  | // special case code. | 
|  |  | 
|  | // C++ 8.5p11: | 
|  | // The form of initialization (using parentheses or '=') is generally | 
|  | // insignificant, but does matter when the entity being initialized has a | 
|  | // class type. | 
|  | if (CXXDirectInit) { | 
|  | assert(DirectInit && "Call-style initializer must be direct init."); | 
|  | VDecl->setInitStyle(VarDecl::CallInit); | 
|  | } else if (DirectInit) { | 
|  | // This must be list-initialization. No other way is direct-initialization. | 
|  | VDecl->setInitStyle(VarDecl::ListInit); | 
|  | } | 
|  |  | 
|  | CheckCompleteVariableDeclaration(VDecl); | 
|  | } | 
|  |  | 
|  | /// ActOnInitializerError - Given that there was an error parsing an | 
|  | /// initializer for the given declaration, try to return to some form | 
|  | /// of sanity. | 
|  | void Sema::ActOnInitializerError(Decl *D) { | 
|  | // Our main concern here is re-establishing invariants like "a | 
|  | // variable's type is either dependent or complete". | 
|  | if (!D || D->isInvalidDecl()) return; | 
|  |  | 
|  | VarDecl *VD = dyn_cast<VarDecl>(D); | 
|  | if (!VD) return; | 
|  |  | 
|  | // Bindings are not usable if we can't make sense of the initializer. | 
|  | if (auto *DD = dyn_cast<DecompositionDecl>(D)) | 
|  | for (auto *BD : DD->bindings()) | 
|  | BD->setInvalidDecl(); | 
|  |  | 
|  | // Auto types are meaningless if we can't make sense of the initializer. | 
|  | if (ParsingInitForAutoVars.count(D)) { | 
|  | D->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | QualType Ty = VD->getType(); | 
|  | if (Ty->isDependentType()) return; | 
|  |  | 
|  | // Require a complete type. | 
|  | if (RequireCompleteType(VD->getLocation(), | 
|  | Context.getBaseElementType(Ty), | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | VD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Require a non-abstract type. | 
|  | if (RequireNonAbstractType(VD->getLocation(), Ty, | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) { | 
|  | VD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Don't bother complaining about constructors or destructors, | 
|  | // though. | 
|  | } | 
|  |  | 
|  | void Sema::ActOnUninitializedDecl(Decl *RealDecl) { | 
|  | // If there is no declaration, there was an error parsing it. Just ignore it. | 
|  | if (!RealDecl) | 
|  | return; | 
|  |  | 
|  | if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { | 
|  | QualType Type = Var->getType(); | 
|  |  | 
|  | // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory. | 
|  | if (isa<DecompositionDecl>(RealDecl)) { | 
|  | Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var; | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Type->isUndeducedType() && | 
|  | DeduceVariableDeclarationType(Var, false, nullptr)) | 
|  | return; | 
|  |  | 
|  | // C++11 [class.static.data]p3: A static data member can be declared with | 
|  | // the constexpr specifier; if so, its declaration shall specify | 
|  | // a brace-or-equal-initializer. | 
|  | // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to | 
|  | // the definition of a variable [...] or the declaration of a static data | 
|  | // member. | 
|  | if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() && | 
|  | !Var->isThisDeclarationADemotedDefinition()) { | 
|  | if (Var->isStaticDataMember()) { | 
|  | // C++1z removes the relevant rule; the in-class declaration is always | 
|  | // a definition there. | 
|  | if (!getLangOpts().CPlusPlus17) { | 
|  | Diag(Var->getLocation(), | 
|  | diag::err_constexpr_static_mem_var_requires_init) | 
|  | << Var->getDeclName(); | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // OpenCL v1.1 s6.5.3: variables declared in the constant address space must | 
|  | // be initialized. | 
|  | if (!Var->isInvalidDecl() && | 
|  | Var->getType().getAddressSpace() == LangAS::opencl_constant && | 
|  | Var->getStorageClass() != SC_Extern && !Var->getInit()) { | 
|  | Diag(Var->getLocation(), diag::err_opencl_constant_no_init); | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition(); | 
|  | if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly && | 
|  | Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion()) | 
|  | checkNonTrivialCUnion(Var->getType(), Var->getLocation(), | 
|  | NTCUC_DefaultInitializedObject, NTCUK_Init); | 
|  |  | 
|  |  | 
|  | switch (DefKind) { | 
|  | case VarDecl::Definition: | 
|  | if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) | 
|  | break; | 
|  |  | 
|  | // We have an out-of-line definition of a static data member | 
|  | // that has an in-class initializer, so we type-check this like | 
|  | // a declaration. | 
|  | // | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | case VarDecl::DeclarationOnly: | 
|  | // It's only a declaration. | 
|  |  | 
|  | // Block scope. C99 6.7p7: If an identifier for an object is | 
|  | // declared with no linkage (C99 6.2.2p6), the type for the | 
|  | // object shall be complete. | 
|  | if (!Type->isDependentType() && Var->isLocalVarDecl() && | 
|  | !Var->hasLinkage() && !Var->isInvalidDecl() && | 
|  | RequireCompleteType(Var->getLocation(), Type, | 
|  | diag::err_typecheck_decl_incomplete_type)) | 
|  | Var->setInvalidDecl(); | 
|  |  | 
|  | // Make sure that the type is not abstract. | 
|  | if (!Type->isDependentType() && !Var->isInvalidDecl() && | 
|  | RequireNonAbstractType(Var->getLocation(), Type, | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) | 
|  | Var->setInvalidDecl(); | 
|  | if (!Type->isDependentType() && !Var->isInvalidDecl() && | 
|  | Var->getStorageClass() == SC_PrivateExtern) { | 
|  | Diag(Var->getLocation(), diag::warn_private_extern); | 
|  | Diag(Var->getLocation(), diag::note_private_extern); | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | case VarDecl::TentativeDefinition: | 
|  | // File scope. C99 6.9.2p2: A declaration of an identifier for an | 
|  | // object that has file scope without an initializer, and without a | 
|  | // storage-class specifier or with the storage-class specifier "static", | 
|  | // constitutes a tentative definition. Note: A tentative definition with | 
|  | // external linkage is valid (C99 6.2.2p5). | 
|  | if (!Var->isInvalidDecl()) { | 
|  | if (const IncompleteArrayType *ArrayT | 
|  | = Context.getAsIncompleteArrayType(Type)) { | 
|  | if (RequireCompleteType(Var->getLocation(), | 
|  | ArrayT->getElementType(), | 
|  | diag::err_illegal_decl_array_incomplete_type)) | 
|  | Var->setInvalidDecl(); | 
|  | } else if (Var->getStorageClass() == SC_Static) { | 
|  | // C99 6.9.2p3: If the declaration of an identifier for an object is | 
|  | // a tentative definition and has internal linkage (C99 6.2.2p3), the | 
|  | // declared type shall not be an incomplete type. | 
|  | // NOTE: code such as the following | 
|  | //     static struct s; | 
|  | //     struct s { int a; }; | 
|  | // is accepted by gcc. Hence here we issue a warning instead of | 
|  | // an error and we do not invalidate the static declaration. | 
|  | // NOTE: to avoid multiple warnings, only check the first declaration. | 
|  | if (Var->isFirstDecl()) | 
|  | RequireCompleteType(Var->getLocation(), Type, | 
|  | diag::ext_typecheck_decl_incomplete_type); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Record the tentative definition; we're done. | 
|  | if (!Var->isInvalidDecl()) | 
|  | TentativeDefinitions.push_back(Var); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Provide a specific diagnostic for uninitialized variable | 
|  | // definitions with incomplete array type. | 
|  | if (Type->isIncompleteArrayType()) { | 
|  | Diag(Var->getLocation(), | 
|  | diag::err_typecheck_incomplete_array_needs_initializer); | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Provide a specific diagnostic for uninitialized variable | 
|  | // definitions with reference type. | 
|  | if (Type->isReferenceType()) { | 
|  | Diag(Var->getLocation(), diag::err_reference_var_requires_init) | 
|  | << Var->getDeclName() | 
|  | << SourceRange(Var->getLocation(), Var->getLocation()); | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Do not attempt to type-check the default initializer for a | 
|  | // variable with dependent type. | 
|  | if (Type->isDependentType()) | 
|  | return; | 
|  |  | 
|  | if (Var->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | if (!Var->hasAttr<AliasAttr>()) { | 
|  | if (RequireCompleteType(Var->getLocation(), | 
|  | Context.getBaseElementType(Type), | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The variable can not have an abstract class type. | 
|  | if (RequireNonAbstractType(Var->getLocation(), Type, | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) { | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check for jumps past the implicit initializer.  C++0x | 
|  | // clarifies that this applies to a "variable with automatic | 
|  | // storage duration", not a "local variable". | 
|  | // C++11 [stmt.dcl]p3 | 
|  | //   A program that jumps from a point where a variable with automatic | 
|  | //   storage duration is not in scope to a point where it is in scope is | 
|  | //   ill-formed unless the variable has scalar type, class type with a | 
|  | //   trivial default constructor and a trivial destructor, a cv-qualified | 
|  | //   version of one of these types, or an array of one of the preceding | 
|  | //   types and is declared without an initializer. | 
|  | if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { | 
|  | if (const RecordType *Record | 
|  | = Context.getBaseElementType(Type)->getAs<RecordType>()) { | 
|  | CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); | 
|  | // Mark the function (if we're in one) for further checking even if the | 
|  | // looser rules of C++11 do not require such checks, so that we can | 
|  | // diagnose incompatibilities with C++98. | 
|  | if (!CXXRecord->isPOD()) | 
|  | setFunctionHasBranchProtectedScope(); | 
|  | } | 
|  | } | 
|  | // In OpenCL, we can't initialize objects in the __local address space, | 
|  | // even implicitly, so don't synthesize an implicit initializer. | 
|  | if (getLangOpts().OpenCL && | 
|  | Var->getType().getAddressSpace() == LangAS::opencl_local) | 
|  | return; | 
|  | // C++03 [dcl.init]p9: | 
|  | //   If no initializer is specified for an object, and the | 
|  | //   object is of (possibly cv-qualified) non-POD class type (or | 
|  | //   array thereof), the object shall be default-initialized; if | 
|  | //   the object is of const-qualified type, the underlying class | 
|  | //   type shall have a user-declared default | 
|  | //   constructor. Otherwise, if no initializer is specified for | 
|  | //   a non- static object, the object and its subobjects, if | 
|  | //   any, have an indeterminate initial value); if the object | 
|  | //   or any of its subobjects are of const-qualified type, the | 
|  | //   program is ill-formed. | 
|  | // C++0x [dcl.init]p11: | 
|  | //   If no initializer is specified for an object, the object is | 
|  | //   default-initialized; [...]. | 
|  | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); | 
|  | InitializationKind Kind | 
|  | = InitializationKind::CreateDefault(Var->getLocation()); | 
|  |  | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, None); | 
|  | ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None); | 
|  | if (Init.isInvalid()) | 
|  | Var->setInvalidDecl(); | 
|  | else if (Init.get()) { | 
|  | Var->setInit(MaybeCreateExprWithCleanups(Init.get())); | 
|  | // This is important for template substitution. | 
|  | Var->setInitStyle(VarDecl::CallInit); | 
|  | } | 
|  |  | 
|  | CheckCompleteVariableDeclaration(Var); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnCXXForRangeDecl(Decl *D) { | 
|  | // If there is no declaration, there was an error parsing it. Ignore it. | 
|  | if (!D) | 
|  | return; | 
|  |  | 
|  | VarDecl *VD = dyn_cast<VarDecl>(D); | 
|  | if (!VD) { | 
|  | Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); | 
|  | D->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | VD->setCXXForRangeDecl(true); | 
|  |  | 
|  | // for-range-declaration cannot be given a storage class specifier. | 
|  | int Error = -1; | 
|  | switch (VD->getStorageClass()) { | 
|  | case SC_None: | 
|  | break; | 
|  | case SC_Extern: | 
|  | Error = 0; | 
|  | break; | 
|  | case SC_Static: | 
|  | Error = 1; | 
|  | break; | 
|  | case SC_PrivateExtern: | 
|  | Error = 2; | 
|  | break; | 
|  | case SC_Auto: | 
|  | Error = 3; | 
|  | break; | 
|  | case SC_Register: | 
|  | Error = 4; | 
|  | break; | 
|  | } | 
|  | if (Error != -1) { | 
|  | Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) | 
|  | << VD->getDeclName() << Error; | 
|  | D->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | StmtResult | 
|  | Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, | 
|  | IdentifierInfo *Ident, | 
|  | ParsedAttributes &Attrs, | 
|  | SourceLocation AttrEnd) { | 
|  | // C++1y [stmt.iter]p1: | 
|  | //   A range-based for statement of the form | 
|  | //      for ( for-range-identifier : for-range-initializer ) statement | 
|  | //   is equivalent to | 
|  | //      for ( auto&& for-range-identifier : for-range-initializer ) statement | 
|  | DeclSpec DS(Attrs.getPool().getFactory()); | 
|  |  | 
|  | const char *PrevSpec; | 
|  | unsigned DiagID; | 
|  | DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, | 
|  | getPrintingPolicy()); | 
|  |  | 
|  | Declarator D(DS, DeclaratorContext::ForContext); | 
|  | D.SetIdentifier(Ident, IdentLoc); | 
|  | D.takeAttributes(Attrs, AttrEnd); | 
|  |  | 
|  | D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false), | 
|  | IdentLoc); | 
|  | Decl *Var = ActOnDeclarator(S, D); | 
|  | cast<VarDecl>(Var)->setCXXForRangeDecl(true); | 
|  | FinalizeDeclaration(Var); | 
|  | return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, | 
|  | AttrEnd.isValid() ? AttrEnd : IdentLoc); | 
|  | } | 
|  |  | 
|  | void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { | 
|  | if (var->isInvalidDecl()) return; | 
|  |  | 
|  | if (getLangOpts().OpenCL) { | 
|  | // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an | 
|  | // initialiser | 
|  | if (var->getTypeSourceInfo()->getType()->isBlockPointerType() && | 
|  | !var->hasInit()) { | 
|  | Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration) | 
|  | << 1 /*Init*/; | 
|  | var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // In Objective-C, don't allow jumps past the implicit initialization of a | 
|  | // local retaining variable. | 
|  | if (getLangOpts().ObjC && | 
|  | var->hasLocalStorage()) { | 
|  | switch (var->getType().getObjCLifetime()) { | 
|  | case Qualifiers::OCL_None: | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Weak: | 
|  | case Qualifiers::OCL_Strong: | 
|  | setFunctionHasBranchProtectedScope(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (var->hasLocalStorage() && | 
|  | var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) | 
|  | setFunctionHasBranchProtectedScope(); | 
|  |  | 
|  | // Warn about externally-visible variables being defined without a | 
|  | // prior declaration.  We only want to do this for global | 
|  | // declarations, but we also specifically need to avoid doing it for | 
|  | // class members because the linkage of an anonymous class can | 
|  | // change if it's later given a typedef name. | 
|  | if (var->isThisDeclarationADefinition() && | 
|  | var->getDeclContext()->getRedeclContext()->isFileContext() && | 
|  | var->isExternallyVisible() && var->hasLinkage() && | 
|  | !var->isInline() && !var->getDescribedVarTemplate() && | 
|  | !isTemplateInstantiation(var->getTemplateSpecializationKind()) && | 
|  | !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, | 
|  | var->getLocation())) { | 
|  | // Find a previous declaration that's not a definition. | 
|  | VarDecl *prev = var->getPreviousDecl(); | 
|  | while (prev && prev->isThisDeclarationADefinition()) | 
|  | prev = prev->getPreviousDecl(); | 
|  |  | 
|  | if (!prev) { | 
|  | Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; | 
|  | Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) | 
|  | << /* variable */ 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Cache the result of checking for constant initialization. | 
|  | Optional<bool> CacheHasConstInit; | 
|  | const Expr *CacheCulprit = nullptr; | 
|  | auto checkConstInit = [&]() mutable { | 
|  | if (!CacheHasConstInit) | 
|  | CacheHasConstInit = var->getInit()->isConstantInitializer( | 
|  | Context, var->getType()->isReferenceType(), &CacheCulprit); | 
|  | return *CacheHasConstInit; | 
|  | }; | 
|  |  | 
|  | if (var->getTLSKind() == VarDecl::TLS_Static) { | 
|  | if (var->getType().isDestructedType()) { | 
|  | // GNU C++98 edits for __thread, [basic.start.term]p3: | 
|  | //   The type of an object with thread storage duration shall not | 
|  | //   have a non-trivial destructor. | 
|  | Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); | 
|  | if (getLangOpts().CPlusPlus11) | 
|  | Diag(var->getLocation(), diag::note_use_thread_local); | 
|  | } else if (getLangOpts().CPlusPlus && var->hasInit()) { | 
|  | if (!checkConstInit()) { | 
|  | // GNU C++98 edits for __thread, [basic.start.init]p4: | 
|  | //   An object of thread storage duration shall not require dynamic | 
|  | //   initialization. | 
|  | // FIXME: Need strict checking here. | 
|  | Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init) | 
|  | << CacheCulprit->getSourceRange(); | 
|  | if (getLangOpts().CPlusPlus11) | 
|  | Diag(var->getLocation(), diag::note_use_thread_local); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Apply section attributes and pragmas to global variables. | 
|  | bool GlobalStorage = var->hasGlobalStorage(); | 
|  | if (GlobalStorage && var->isThisDeclarationADefinition() && | 
|  | !inTemplateInstantiation()) { | 
|  | PragmaStack<StringLiteral *> *Stack = nullptr; | 
|  | int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read; | 
|  | if (var->getType().isConstQualified()) | 
|  | Stack = &ConstSegStack; | 
|  | else if (!var->getInit()) { | 
|  | Stack = &BSSSegStack; | 
|  | SectionFlags |= ASTContext::PSF_Write; | 
|  | } else { | 
|  | Stack = &DataSegStack; | 
|  | SectionFlags |= ASTContext::PSF_Write; | 
|  | } | 
|  | if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) { | 
|  | var->addAttr(SectionAttr::CreateImplicit( | 
|  | Context, SectionAttr::Declspec_allocate, | 
|  | Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation)); | 
|  | } | 
|  | if (const SectionAttr *SA = var->getAttr<SectionAttr>()) | 
|  | if (UnifySection(SA->getName(), SectionFlags, var)) | 
|  | var->dropAttr<SectionAttr>(); | 
|  |  | 
|  | // Apply the init_seg attribute if this has an initializer.  If the | 
|  | // initializer turns out to not be dynamic, we'll end up ignoring this | 
|  | // attribute. | 
|  | if (CurInitSeg && var->getInit()) | 
|  | var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), | 
|  | CurInitSegLoc)); | 
|  | } | 
|  |  | 
|  | // All the following checks are C++ only. | 
|  | if (!getLangOpts().CPlusPlus) { | 
|  | // If this variable must be emitted, add it as an initializer for the | 
|  | // current module. | 
|  | if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) | 
|  | Context.addModuleInitializer(ModuleScopes.back().Module, var); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (auto *DD = dyn_cast<DecompositionDecl>(var)) | 
|  | CheckCompleteDecompositionDeclaration(DD); | 
|  |  | 
|  | QualType type = var->getType(); | 
|  | if (type->isDependentType()) return; | 
|  |  | 
|  | if (var->hasAttr<BlocksAttr>()) | 
|  | getCurFunction()->addByrefBlockVar(var); | 
|  |  | 
|  | Expr *Init = var->getInit(); | 
|  | bool IsGlobal = GlobalStorage && !var->isStaticLocal(); | 
|  | QualType baseType = Context.getBaseElementType(type); | 
|  |  | 
|  | if (Init && !Init->isValueDependent()) { | 
|  | if (var->isConstexpr()) { | 
|  | SmallVector<PartialDiagnosticAt, 8> Notes; | 
|  | if (!var->evaluateValue(Notes) || !var->isInitICE()) { | 
|  | SourceLocation DiagLoc = var->getLocation(); | 
|  | // If the note doesn't add any useful information other than a source | 
|  | // location, fold it into the primary diagnostic. | 
|  | if (Notes.size() == 1 && Notes[0].second.getDiagID() == | 
|  | diag::note_invalid_subexpr_in_const_expr) { | 
|  | DiagLoc = Notes[0].first; | 
|  | Notes.clear(); | 
|  | } | 
|  | Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) | 
|  | << var << Init->getSourceRange(); | 
|  | for (unsigned I = 0, N = Notes.size(); I != N; ++I) | 
|  | Diag(Notes[I].first, Notes[I].second); | 
|  | } | 
|  | } else if (var->mightBeUsableInConstantExpressions(Context)) { | 
|  | // Check whether the initializer of a const variable of integral or | 
|  | // enumeration type is an ICE now, since we can't tell whether it was | 
|  | // initialized by a constant expression if we check later. | 
|  | var->checkInitIsICE(); | 
|  | } | 
|  |  | 
|  | // Don't emit further diagnostics about constexpr globals since they | 
|  | // were just diagnosed. | 
|  | if (!var->isConstexpr() && GlobalStorage && | 
|  | var->hasAttr<RequireConstantInitAttr>()) { | 
|  | // FIXME: Need strict checking in C++03 here. | 
|  | bool DiagErr = getLangOpts().CPlusPlus11 | 
|  | ? !var->checkInitIsICE() : !checkConstInit(); | 
|  | if (DiagErr) { | 
|  | auto attr = var->getAttr<RequireConstantInitAttr>(); | 
|  | Diag(var->getLocation(), diag::err_require_constant_init_failed) | 
|  | << Init->getSourceRange(); | 
|  | Diag(attr->getLocation(), diag::note_declared_required_constant_init_here) | 
|  | << attr->getRange(); | 
|  | if (getLangOpts().CPlusPlus11) { | 
|  | APValue Value; | 
|  | SmallVector<PartialDiagnosticAt, 8> Notes; | 
|  | Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes); | 
|  | for (auto &it : Notes) | 
|  | Diag(it.first, it.second); | 
|  | } else { | 
|  | Diag(CacheCulprit->getExprLoc(), | 
|  | diag::note_invalid_subexpr_in_const_expr) | 
|  | << CacheCulprit->getSourceRange(); | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (!var->isConstexpr() && IsGlobal && | 
|  | !getDiagnostics().isIgnored(diag::warn_global_constructor, | 
|  | var->getLocation())) { | 
|  | // Warn about globals which don't have a constant initializer.  Don't | 
|  | // warn about globals with a non-trivial destructor because we already | 
|  | // warned about them. | 
|  | CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); | 
|  | if (!(RD && !RD->hasTrivialDestructor())) { | 
|  | if (!checkConstInit()) | 
|  | Diag(var->getLocation(), diag::warn_global_constructor) | 
|  | << Init->getSourceRange(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Require the destructor. | 
|  | if (const RecordType *recordType = baseType->getAs<RecordType>()) | 
|  | FinalizeVarWithDestructor(var, recordType); | 
|  |  | 
|  | // If this variable must be emitted, add it as an initializer for the current | 
|  | // module. | 
|  | if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) | 
|  | Context.addModuleInitializer(ModuleScopes.back().Module, var); | 
|  | } | 
|  |  | 
|  | /// Determines if a variable's alignment is dependent. | 
|  | static bool hasDependentAlignment(VarDecl *VD) { | 
|  | if (VD->getType()->isDependentType()) | 
|  | return true; | 
|  | for (auto *I : VD->specific_attrs<AlignedAttr>()) | 
|  | if (I->isAlignmentDependent()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check if VD needs to be dllexport/dllimport due to being in a | 
|  | /// dllexport/import function. | 
|  | void Sema::CheckStaticLocalForDllExport(VarDecl *VD) { | 
|  | assert(VD->isStaticLocal()); | 
|  |  | 
|  | auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); | 
|  |  | 
|  | // Find outermost function when VD is in lambda function. | 
|  | while (FD && !getDLLAttr(FD) && | 
|  | !FD->hasAttr<DLLExportStaticLocalAttr>() && | 
|  | !FD->hasAttr<DLLImportStaticLocalAttr>()) { | 
|  | FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod()); | 
|  | } | 
|  |  | 
|  | if (!FD) | 
|  | return; | 
|  |  | 
|  | // Static locals inherit dll attributes from their function. | 
|  | if (Attr *A = getDLLAttr(FD)) { | 
|  | auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); | 
|  | NewAttr->setInherited(true); | 
|  | VD->addAttr(NewAttr); | 
|  | } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) { | 
|  | auto *NewAttr = ::new (getASTContext()) DLLExportAttr(A->getRange(), | 
|  | getASTContext(), | 
|  | A->getSpellingListIndex()); | 
|  | NewAttr->setInherited(true); | 
|  | VD->addAttr(NewAttr); | 
|  |  | 
|  | // Export this function to enforce exporting this static variable even | 
|  | // if it is not used in this compilation unit. | 
|  | if (!FD->hasAttr<DLLExportAttr>()) | 
|  | FD->addAttr(NewAttr); | 
|  |  | 
|  | } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) { | 
|  | auto *NewAttr = ::new (getASTContext()) DLLImportAttr(A->getRange(), | 
|  | getASTContext(), | 
|  | A->getSpellingListIndex()); | 
|  | NewAttr->setInherited(true); | 
|  | VD->addAttr(NewAttr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform | 
|  | /// any semantic actions necessary after any initializer has been attached. | 
|  | void Sema::FinalizeDeclaration(Decl *ThisDecl) { | 
|  | // Note that we are no longer parsing the initializer for this declaration. | 
|  | ParsingInitForAutoVars.erase(ThisDecl); | 
|  |  | 
|  | VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); | 
|  | if (!VD) | 
|  | return; | 
|  |  | 
|  | // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active | 
|  | if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() && | 
|  | !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) { | 
|  | if (PragmaClangBSSSection.Valid) | 
|  | VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context, | 
|  | PragmaClangBSSSection.SectionName, | 
|  | PragmaClangBSSSection.PragmaLocation)); | 
|  | if (PragmaClangDataSection.Valid) | 
|  | VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context, | 
|  | PragmaClangDataSection.SectionName, | 
|  | PragmaClangDataSection.PragmaLocation)); | 
|  | if (PragmaClangRodataSection.Valid) | 
|  | VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context, | 
|  | PragmaClangRodataSection.SectionName, | 
|  | PragmaClangRodataSection.PragmaLocation)); | 
|  | } | 
|  |  | 
|  | if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) { | 
|  | for (auto *BD : DD->bindings()) { | 
|  | FinalizeDeclaration(BD); | 
|  | } | 
|  | } | 
|  |  | 
|  | checkAttributesAfterMerging(*this, *VD); | 
|  |  | 
|  | // Perform TLS alignment check here after attributes attached to the variable | 
|  | // which may affect the alignment have been processed. Only perform the check | 
|  | // if the target has a maximum TLS alignment (zero means no constraints). | 
|  | if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) { | 
|  | // Protect the check so that it's not performed on dependent types and | 
|  | // dependent alignments (we can't determine the alignment in that case). | 
|  | if (VD->getTLSKind() && !hasDependentAlignment(VD) && | 
|  | !VD->isInvalidDecl()) { | 
|  | CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign); | 
|  | if (Context.getDeclAlign(VD) > MaxAlignChars) { | 
|  | Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) | 
|  | << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD | 
|  | << (unsigned)MaxAlignChars.getQuantity(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VD->isStaticLocal()) { | 
|  | CheckStaticLocalForDllExport(VD); | 
|  |  | 
|  | if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) { | 
|  | // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__ | 
|  | // function, only __shared__ variables or variables without any device | 
|  | // memory qualifiers may be declared with static storage class. | 
|  | // Note: It is unclear how a function-scope non-const static variable | 
|  | // without device memory qualifier is implemented, therefore only static | 
|  | // const variable without device memory qualifier is allowed. | 
|  | [&]() { | 
|  | if (!getLangOpts().CUDA) | 
|  | return; | 
|  | if (VD->hasAttr<CUDASharedAttr>()) | 
|  | return; | 
|  | if (VD->getType().isConstQualified() && | 
|  | !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>())) | 
|  | return; | 
|  | if (CUDADiagIfDeviceCode(VD->getLocation(), | 
|  | diag::err_device_static_local_var) | 
|  | << CurrentCUDATarget()) | 
|  | VD->setInvalidDecl(); | 
|  | }(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Perform check for initializers of device-side global variables. | 
|  | // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA | 
|  | // 7.5). We must also apply the same checks to all __shared__ | 
|  | // variables whether they are local or not. CUDA also allows | 
|  | // constant initializers for __constant__ and __device__ variables. | 
|  | if (getLangOpts().CUDA) | 
|  | checkAllowedCUDAInitializer(VD); | 
|  |  | 
|  | // Grab the dllimport or dllexport attribute off of the VarDecl. | 
|  | const InheritableAttr *DLLAttr = getDLLAttr(VD); | 
|  |  | 
|  | // Imported static data members cannot be defined out-of-line. | 
|  | if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { | 
|  | if (VD->isStaticDataMember() && VD->isOutOfLine() && | 
|  | VD->isThisDeclarationADefinition()) { | 
|  | // We allow definitions of dllimport class template static data members | 
|  | // with a warning. | 
|  | CXXRecordDecl *Context = | 
|  | cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); | 
|  | bool IsClassTemplateMember = | 
|  | isa<ClassTemplatePartialSpecializationDecl>(Context) || | 
|  | Context->getDescribedClassTemplate(); | 
|  |  | 
|  | Diag(VD->getLocation(), | 
|  | IsClassTemplateMember | 
|  | ? diag::warn_attribute_dllimport_static_field_definition | 
|  | : diag::err_attribute_dllimport_static_field_definition); | 
|  | Diag(IA->getLocation(), diag::note_attribute); | 
|  | if (!IsClassTemplateMember) | 
|  | VD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // dllimport/dllexport variables cannot be thread local, their TLS index | 
|  | // isn't exported with the variable. | 
|  | if (DLLAttr && VD->getTLSKind()) { | 
|  | auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); | 
|  | if (F && getDLLAttr(F)) { | 
|  | assert(VD->isStaticLocal()); | 
|  | // But if this is a static local in a dlimport/dllexport function, the | 
|  | // function will never be inlined, which means the var would never be | 
|  | // imported, so having it marked import/export is safe. | 
|  | } else { | 
|  | Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD | 
|  | << DLLAttr; | 
|  | VD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { | 
|  | if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { | 
|  | Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr; | 
|  | VD->dropAttr<UsedAttr>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | const DeclContext *DC = VD->getDeclContext(); | 
|  | // If there's a #pragma GCC visibility in scope, and this isn't a class | 
|  | // member, set the visibility of this variable. | 
|  | if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) | 
|  | AddPushedVisibilityAttribute(VD); | 
|  |  | 
|  | // FIXME: Warn on unused var template partial specializations. | 
|  | if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD)) | 
|  | MarkUnusedFileScopedDecl(VD); | 
|  |  | 
|  | // Now we have parsed the initializer and can update the table of magic | 
|  | // tag values. | 
|  | if (!VD->hasAttr<TypeTagForDatatypeAttr>() || | 
|  | !VD->getType()->isIntegralOrEnumerationType()) | 
|  | return; | 
|  |  | 
|  | for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { | 
|  | const Expr *MagicValueExpr = VD->getInit(); | 
|  | if (!MagicValueExpr) { | 
|  | continue; | 
|  | } | 
|  | llvm::APSInt MagicValueInt; | 
|  | if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) { | 
|  | Diag(I->getRange().getBegin(), | 
|  | diag::err_type_tag_for_datatype_not_ice) | 
|  | << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); | 
|  | continue; | 
|  | } | 
|  | if (MagicValueInt.getActiveBits() > 64) { | 
|  | Diag(I->getRange().getBegin(), | 
|  | diag::err_type_tag_for_datatype_too_large) | 
|  | << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); | 
|  | continue; | 
|  | } | 
|  | uint64_t MagicValue = MagicValueInt.getZExtValue(); | 
|  | RegisterTypeTagForDatatype(I->getArgumentKind(), | 
|  | MagicValue, | 
|  | I->getMatchingCType(), | 
|  | I->getLayoutCompatible(), | 
|  | I->getMustBeNull()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool hasDeducedAuto(DeclaratorDecl *DD) { | 
|  | auto *VD = dyn_cast<VarDecl>(DD); | 
|  | return VD && !VD->getType()->hasAutoForTrailingReturnType(); | 
|  | } | 
|  |  | 
|  | Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, | 
|  | ArrayRef<Decl *> Group) { | 
|  | SmallVector<Decl*, 8> Decls; | 
|  |  | 
|  | if (DS.isTypeSpecOwned()) | 
|  | Decls.push_back(DS.getRepAsDecl()); | 
|  |  | 
|  | DeclaratorDecl *FirstDeclaratorInGroup = nullptr; | 
|  | DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr; | 
|  | bool DiagnosedMultipleDecomps = false; | 
|  | DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr; | 
|  | bool DiagnosedNonDeducedAuto = false; | 
|  |  | 
|  | for (unsigned i = 0, e = Group.size(); i != e; ++i) { | 
|  | if (Decl *D = Group[i]) { | 
|  | // For declarators, there are some additional syntactic-ish checks we need | 
|  | // to perform. | 
|  | if (auto *DD = dyn_cast<DeclaratorDecl>(D)) { | 
|  | if (!FirstDeclaratorInGroup) | 
|  | FirstDeclaratorInGroup = DD; | 
|  | if (!FirstDecompDeclaratorInGroup) | 
|  | FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D); | 
|  | if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() && | 
|  | !hasDeducedAuto(DD)) | 
|  | FirstNonDeducedAutoInGroup = DD; | 
|  |  | 
|  | if (FirstDeclaratorInGroup != DD) { | 
|  | // A decomposition declaration cannot be combined with any other | 
|  | // declaration in the same group. | 
|  | if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) { | 
|  | Diag(FirstDecompDeclaratorInGroup->getLocation(), | 
|  | diag::err_decomp_decl_not_alone) | 
|  | << FirstDeclaratorInGroup->getSourceRange() | 
|  | << DD->getSourceRange(); | 
|  | DiagnosedMultipleDecomps = true; | 
|  | } | 
|  |  | 
|  | // A declarator that uses 'auto' in any way other than to declare a | 
|  | // variable with a deduced type cannot be combined with any other | 
|  | // declarator in the same group. | 
|  | if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) { | 
|  | Diag(FirstNonDeducedAutoInGroup->getLocation(), | 
|  | diag::err_auto_non_deduced_not_alone) | 
|  | << FirstNonDeducedAutoInGroup->getType() | 
|  | ->hasAutoForTrailingReturnType() | 
|  | << FirstDeclaratorInGroup->getSourceRange() | 
|  | << DD->getSourceRange(); | 
|  | DiagnosedNonDeducedAuto = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Decls.push_back(D); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { | 
|  | if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { | 
|  | handleTagNumbering(Tag, S); | 
|  | if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() && | 
|  | getLangOpts().CPlusPlus) | 
|  | Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup); | 
|  | } | 
|  | } | 
|  |  | 
|  | return BuildDeclaratorGroup(Decls); | 
|  | } | 
|  |  | 
|  | /// BuildDeclaratorGroup - convert a list of declarations into a declaration | 
|  | /// group, performing any necessary semantic checking. | 
|  | Sema::DeclGroupPtrTy | 
|  | Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) { | 
|  | // C++14 [dcl.spec.auto]p7: (DR1347) | 
|  | //   If the type that replaces the placeholder type is not the same in each | 
|  | //   deduction, the program is ill-formed. | 
|  | if (Group.size() > 1) { | 
|  | QualType Deduced; | 
|  | VarDecl *DeducedDecl = nullptr; | 
|  | for (unsigned i = 0, e = Group.size(); i != e; ++i) { | 
|  | VarDecl *D = dyn_cast<VarDecl>(Group[i]); | 
|  | if (!D || D->isInvalidDecl()) | 
|  | break; | 
|  | DeducedType *DT = D->getType()->getContainedDeducedType(); | 
|  | if (!DT || DT->getDeducedType().isNull()) | 
|  | continue; | 
|  | if (Deduced.isNull()) { | 
|  | Deduced = DT->getDeducedType(); | 
|  | DeducedDecl = D; | 
|  | } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) { | 
|  | auto *AT = dyn_cast<AutoType>(DT); | 
|  | Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), | 
|  | diag::err_auto_different_deductions) | 
|  | << (AT ? (unsigned)AT->getKeyword() : 3) | 
|  | << Deduced << DeducedDecl->getDeclName() | 
|  | << DT->getDeducedType() << D->getDeclName() | 
|  | << DeducedDecl->getInit()->getSourceRange() | 
|  | << D->getInit()->getSourceRange(); | 
|  | D->setInvalidDecl(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ActOnDocumentableDecls(Group); | 
|  |  | 
|  | return DeclGroupPtrTy::make( | 
|  | DeclGroupRef::Create(Context, Group.data(), Group.size())); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnDocumentableDecl(Decl *D) { | 
|  | ActOnDocumentableDecls(D); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { | 
|  | // Don't parse the comment if Doxygen diagnostics are ignored. | 
|  | if (Group.empty() || !Group[0]) | 
|  | return; | 
|  |  | 
|  | if (Diags.isIgnored(diag::warn_doc_param_not_found, | 
|  | Group[0]->getLocation()) && | 
|  | Diags.isIgnored(diag::warn_unknown_comment_command_name, | 
|  | Group[0]->getLocation())) | 
|  | return; | 
|  |  | 
|  | if (Group.size() >= 2) { | 
|  | // This is a decl group.  Normally it will contain only declarations | 
|  | // produced from declarator list.  But in case we have any definitions or | 
|  | // additional declaration references: | 
|  | //   'typedef struct S {} S;' | 
|  | //   'typedef struct S *S;' | 
|  | //   'struct S *pS;' | 
|  | // FinalizeDeclaratorGroup adds these as separate declarations. | 
|  | Decl *MaybeTagDecl = Group[0]; | 
|  | if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { | 
|  | Group = Group.slice(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if there are any new comments that are not attached to a decl. | 
|  | ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments(); | 
|  | if (!Comments.empty() && | 
|  | !Comments.back()->isAttached()) { | 
|  | // There is at least one comment that not attached to a decl. | 
|  | // Maybe it should be attached to one of these decls? | 
|  | // | 
|  | // Note that this way we pick up not only comments that precede the | 
|  | // declaration, but also comments that *follow* the declaration -- thanks to | 
|  | // the lookahead in the lexer: we've consumed the semicolon and looked | 
|  | // ahead through comments. | 
|  | for (unsigned i = 0, e = Group.size(); i != e; ++i) | 
|  | Context.getCommentForDecl(Group[i], &PP); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Common checks for a parameter-declaration that should apply to both function | 
|  | /// parameters and non-type template parameters. | 
|  | void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) { | 
|  | // Check that there are no default arguments inside the type of this | 
|  | // parameter. | 
|  | if (getLangOpts().CPlusPlus) | 
|  | CheckExtraCXXDefaultArguments(D); | 
|  |  | 
|  | // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). | 
|  | if (D.getCXXScopeSpec().isSet()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | } | 
|  |  | 
|  | // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a | 
|  | // simple identifier except [...irrelevant cases...]. | 
|  | switch (D.getName().getKind()) { | 
|  | case UnqualifiedIdKind::IK_Identifier: | 
|  | break; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_OperatorFunctionId: | 
|  | case UnqualifiedIdKind::IK_ConversionFunctionId: | 
|  | case UnqualifiedIdKind::IK_LiteralOperatorId: | 
|  | case UnqualifiedIdKind::IK_ConstructorName: | 
|  | case UnqualifiedIdKind::IK_DestructorName: | 
|  | case UnqualifiedIdKind::IK_ImplicitSelfParam: | 
|  | case UnqualifiedIdKind::IK_DeductionGuideName: | 
|  | Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) | 
|  | << GetNameForDeclarator(D).getName(); | 
|  | break; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_TemplateId: | 
|  | case UnqualifiedIdKind::IK_ConstructorTemplateId: | 
|  | // GetNameForDeclarator would not produce a useful name in this case. | 
|  | Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() | 
|  | /// to introduce parameters into function prototype scope. | 
|  | Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { | 
|  | const DeclSpec &DS = D.getDeclSpec(); | 
|  |  | 
|  | // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. | 
|  |  | 
|  | // C++03 [dcl.stc]p2 also permits 'auto'. | 
|  | StorageClass SC = SC_None; | 
|  | if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { | 
|  | SC = SC_Register; | 
|  | // In C++11, the 'register' storage class specifier is deprecated. | 
|  | // In C++17, it is not allowed, but we tolerate it as an extension. | 
|  | if (getLangOpts().CPlusPlus11) { | 
|  | Diag(DS.getStorageClassSpecLoc(), | 
|  | getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class | 
|  | : diag::warn_deprecated_register) | 
|  | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); | 
|  | } | 
|  | } else if (getLangOpts().CPlusPlus && | 
|  | DS.getStorageClassSpec() == DeclSpec::SCS_auto) { | 
|  | SC = SC_Auto; | 
|  | } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { | 
|  | Diag(DS.getStorageClassSpecLoc(), | 
|  | diag::err_invalid_storage_class_in_func_decl); | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | } | 
|  |  | 
|  | if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) | 
|  | Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) | 
|  | << DeclSpec::getSpecifierName(TSCS); | 
|  | if (DS.isInlineSpecified()) | 
|  | Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) | 
|  | << getLangOpts().CPlusPlus17; | 
|  | if (DS.hasConstexprSpecifier()) | 
|  | Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) | 
|  | << 0 << (D.getDeclSpec().getConstexprSpecifier() == CSK_consteval); | 
|  |  | 
|  | DiagnoseFunctionSpecifiers(DS); | 
|  |  | 
|  | CheckFunctionOrTemplateParamDeclarator(S, D); | 
|  |  | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | QualType parmDeclType = TInfo->getType(); | 
|  |  | 
|  | // Check for redeclaration of parameters, e.g. int foo(int x, int x); | 
|  | IdentifierInfo *II = D.getIdentifier(); | 
|  | if (II) { | 
|  | LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, | 
|  | ForVisibleRedeclaration); | 
|  | LookupName(R, S); | 
|  | if (R.isSingleResult()) { | 
|  | NamedDecl *PrevDecl = R.getFoundDecl(); | 
|  | if (PrevDecl->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
|  | // Just pretend that we didn't see the previous declaration. | 
|  | PrevDecl = nullptr; | 
|  | } else if (S->isDeclScope(PrevDecl)) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | 
|  |  | 
|  | // Recover by removing the name | 
|  | II = nullptr; | 
|  | D.SetIdentifier(nullptr, D.getIdentifierLoc()); | 
|  | D.setInvalidType(true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Temporarily put parameter variables in the translation unit, not | 
|  | // the enclosing context.  This prevents them from accidentally | 
|  | // looking like class members in C++. | 
|  | ParmVarDecl *New = | 
|  | CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(), | 
|  | D.getIdentifierLoc(), II, parmDeclType, TInfo, SC); | 
|  |  | 
|  | if (D.isInvalidType()) | 
|  | New->setInvalidDecl(); | 
|  |  | 
|  | assert(S->isFunctionPrototypeScope()); | 
|  | assert(S->getFunctionPrototypeDepth() >= 1); | 
|  | New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, | 
|  | S->getNextFunctionPrototypeIndex()); | 
|  |  | 
|  | // Add the parameter declaration into this scope. | 
|  | S->AddDecl(New); | 
|  | if (II) | 
|  | IdResolver.AddDecl(New); | 
|  |  | 
|  | ProcessDeclAttributes(S, New, D); | 
|  |  | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) | 
|  | Diag(New->getLocation(), diag::err_module_private_local) | 
|  | << 1 << New->getDeclName() | 
|  | << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); | 
|  |  | 
|  | if (New->hasAttr<BlocksAttr>()) { | 
|  | Diag(New->getLocation(), diag::err_block_on_nonlocal); | 
|  | } | 
|  | return New; | 
|  | } | 
|  |  | 
|  | /// Synthesizes a variable for a parameter arising from a | 
|  | /// typedef. | 
|  | ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, | 
|  | SourceLocation Loc, | 
|  | QualType T) { | 
|  | /* FIXME: setting StartLoc == Loc. | 
|  | Would it be worth to modify callers so as to provide proper source | 
|  | location for the unnamed parameters, embedding the parameter's type? */ | 
|  | ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, | 
|  | T, Context.getTrivialTypeSourceInfo(T, Loc), | 
|  | SC_None, nullptr); | 
|  | Param->setImplicit(); | 
|  | return Param; | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) { | 
|  | // Don't diagnose unused-parameter errors in template instantiations; we | 
|  | // will already have done so in the template itself. | 
|  | if (inTemplateInstantiation()) | 
|  | return; | 
|  |  | 
|  | for (const ParmVarDecl *Parameter : Parameters) { | 
|  | if (!Parameter->isReferenced() && Parameter->getDeclName() && | 
|  | !Parameter->hasAttr<UnusedAttr>()) { | 
|  | Diag(Parameter->getLocation(), diag::warn_unused_parameter) | 
|  | << Parameter->getDeclName(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseSizeOfParametersAndReturnValue( | 
|  | ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) { | 
|  | if (LangOpts.NumLargeByValueCopy == 0) // No check. | 
|  | return; | 
|  |  | 
|  | // Warn if the return value is pass-by-value and larger than the specified | 
|  | // threshold. | 
|  | if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { | 
|  | unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); | 
|  | if (Size > LangOpts.NumLargeByValueCopy) | 
|  | Diag(D->getLocation(), diag::warn_return_value_size) | 
|  | << D->getDeclName() << Size; | 
|  | } | 
|  |  | 
|  | // Warn if any parameter is pass-by-value and larger than the specified | 
|  | // threshold. | 
|  | for (const ParmVarDecl *Parameter : Parameters) { | 
|  | QualType T = Parameter->getType(); | 
|  | if (T->isDependentType() || !T.isPODType(Context)) | 
|  | continue; | 
|  | unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); | 
|  | if (Size > LangOpts.NumLargeByValueCopy) | 
|  | Diag(Parameter->getLocation(), diag::warn_parameter_size) | 
|  | << Parameter->getDeclName() << Size; | 
|  | } | 
|  | } | 
|  |  | 
|  | ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, | 
|  | SourceLocation NameLoc, IdentifierInfo *Name, | 
|  | QualType T, TypeSourceInfo *TSInfo, | 
|  | StorageClass SC) { | 
|  | // In ARC, infer a lifetime qualifier for appropriate parameter types. | 
|  | if (getLangOpts().ObjCAutoRefCount && | 
|  | T.getObjCLifetime() == Qualifiers::OCL_None && | 
|  | T->isObjCLifetimeType()) { | 
|  |  | 
|  | Qualifiers::ObjCLifetime lifetime; | 
|  |  | 
|  | // Special cases for arrays: | 
|  | //   - if it's const, use __unsafe_unretained | 
|  | //   - otherwise, it's an error | 
|  | if (T->isArrayType()) { | 
|  | if (!T.isConstQualified()) { | 
|  | if (DelayedDiagnostics.shouldDelayDiagnostics()) | 
|  | DelayedDiagnostics.add( | 
|  | sema::DelayedDiagnostic::makeForbiddenType( | 
|  | NameLoc, diag::err_arc_array_param_no_ownership, T, false)); | 
|  | else | 
|  | Diag(NameLoc, diag::err_arc_array_param_no_ownership) | 
|  | << TSInfo->getTypeLoc().getSourceRange(); | 
|  | } | 
|  | lifetime = Qualifiers::OCL_ExplicitNone; | 
|  | } else { | 
|  | lifetime = T->getObjCARCImplicitLifetime(); | 
|  | } | 
|  | T = Context.getLifetimeQualifiedType(T, lifetime); | 
|  | } | 
|  |  | 
|  | ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, | 
|  | Context.getAdjustedParameterType(T), | 
|  | TSInfo, SC, nullptr); | 
|  |  | 
|  | if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() || | 
|  | New->getType().hasNonTrivialToPrimitiveCopyCUnion()) | 
|  | checkNonTrivialCUnion(New->getType(), New->getLocation(), | 
|  | NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy); | 
|  |  | 
|  | // Parameters can not be abstract class types. | 
|  | // For record types, this is done by the AbstractClassUsageDiagnoser once | 
|  | // the class has been completely parsed. | 
|  | if (!CurContext->isRecord() && | 
|  | RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, | 
|  | AbstractParamType)) | 
|  | New->setInvalidDecl(); | 
|  |  | 
|  | // Parameter declarators cannot be interface types. All ObjC objects are | 
|  | // passed by reference. | 
|  | if (T->isObjCObjectType()) { | 
|  | SourceLocation TypeEndLoc = | 
|  | getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc()); | 
|  | Diag(NameLoc, | 
|  | diag::err_object_cannot_be_passed_returned_by_value) << 1 << T | 
|  | << FixItHint::CreateInsertion(TypeEndLoc, "*"); | 
|  | T = Context.getObjCObjectPointerType(T); | 
|  | New->setType(T); | 
|  | } | 
|  |  | 
|  | // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage | 
|  | // duration shall not be qualified by an address-space qualifier." | 
|  | // Since all parameters have automatic store duration, they can not have | 
|  | // an address space. | 
|  | if (T.getAddressSpace() != LangAS::Default && | 
|  | // OpenCL allows function arguments declared to be an array of a type | 
|  | // to be qualified with an address space. | 
|  | !(getLangOpts().OpenCL && | 
|  | (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) { | 
|  | Diag(NameLoc, diag::err_arg_with_address_space); | 
|  | New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | return New; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, | 
|  | SourceLocation LocAfterDecls) { | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | 
|  |  | 
|  | // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' | 
|  | // for a K&R function. | 
|  | if (!FTI.hasPrototype) { | 
|  | for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { | 
|  | --i; | 
|  | if (FTI.Params[i].Param == nullptr) { | 
|  | SmallString<256> Code; | 
|  | llvm::raw_svector_ostream(Code) | 
|  | << "  int " << FTI.Params[i].Ident->getName() << ";\n"; | 
|  | Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) | 
|  | << FTI.Params[i].Ident | 
|  | << FixItHint::CreateInsertion(LocAfterDecls, Code); | 
|  |  | 
|  | // Implicitly declare the argument as type 'int' for lack of a better | 
|  | // type. | 
|  | AttributeFactory attrs; | 
|  | DeclSpec DS(attrs); | 
|  | const char* PrevSpec; // unused | 
|  | unsigned DiagID; // unused | 
|  | DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, | 
|  | DiagID, Context.getPrintingPolicy()); | 
|  | // Use the identifier location for the type source range. | 
|  | DS.SetRangeStart(FTI.Params[i].IdentLoc); | 
|  | DS.SetRangeEnd(FTI.Params[i].IdentLoc); | 
|  | Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext); | 
|  | ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); | 
|  | FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D, | 
|  | MultiTemplateParamsArg TemplateParameterLists, | 
|  | SkipBodyInfo *SkipBody) { | 
|  | assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); | 
|  | assert(D.isFunctionDeclarator() && "Not a function declarator!"); | 
|  | Scope *ParentScope = FnBodyScope->getParent(); | 
|  |  | 
|  | D.setFunctionDefinitionKind(FDK_Definition); | 
|  | Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists); | 
|  | return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) { | 
|  | Consumer.HandleInlineFunctionDefinition(D); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, | 
|  | const FunctionDecl *&PossiblePrototype) { | 
|  | // Don't warn about invalid declarations. | 
|  | if (FD->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | // Or declarations that aren't global. | 
|  | if (!FD->isGlobal()) | 
|  | return false; | 
|  |  | 
|  | // Don't warn about C++ member functions. | 
|  | if (isa<CXXMethodDecl>(FD)) | 
|  | return false; | 
|  |  | 
|  | // Don't warn about 'main'. | 
|  | if (FD->isMain()) | 
|  | return false; | 
|  |  | 
|  | // Don't warn about inline functions. | 
|  | if (FD->isInlined()) | 
|  | return false; | 
|  |  | 
|  | // Don't warn about function templates. | 
|  | if (FD->getDescribedFunctionTemplate()) | 
|  | return false; | 
|  |  | 
|  | // Don't warn about function template specializations. | 
|  | if (FD->isFunctionTemplateSpecialization()) | 
|  | return false; | 
|  |  | 
|  | // Don't warn for OpenCL kernels. | 
|  | if (FD->hasAttr<OpenCLKernelAttr>()) | 
|  | return false; | 
|  |  | 
|  | // Don't warn on explicitly deleted functions. | 
|  | if (FD->isDeleted()) | 
|  | return false; | 
|  |  | 
|  | for (const FunctionDecl *Prev = FD->getPreviousDecl(); | 
|  | Prev; Prev = Prev->getPreviousDecl()) { | 
|  | // Ignore any declarations that occur in function or method | 
|  | // scope, because they aren't visible from the header. | 
|  | if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) | 
|  | continue; | 
|  |  | 
|  | PossiblePrototype = Prev; | 
|  | return Prev->getType()->isFunctionNoProtoType(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void | 
|  | Sema::CheckForFunctionRedefinition(FunctionDecl *FD, | 
|  | const FunctionDecl *EffectiveDefinition, | 
|  | SkipBodyInfo *SkipBody) { | 
|  | const FunctionDecl *Definition = EffectiveDefinition; | 
|  | if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) { | 
|  | // If this is a friend function defined in a class template, it does not | 
|  | // have a body until it is used, nevertheless it is a definition, see | 
|  | // [temp.inst]p2: | 
|  | // | 
|  | // ... for the purpose of determining whether an instantiated redeclaration | 
|  | // is valid according to [basic.def.odr] and [class.mem], a declaration that | 
|  | // corresponds to a definition in the template is considered to be a | 
|  | // definition. | 
|  | // | 
|  | // The following code must produce redefinition error: | 
|  | // | 
|  | //     template<typename T> struct C20 { friend void func_20() {} }; | 
|  | //     C20<int> c20i; | 
|  | //     void func_20() {} | 
|  | // | 
|  | for (auto I : FD->redecls()) { | 
|  | if (I != FD && !I->isInvalidDecl() && | 
|  | I->getFriendObjectKind() != Decl::FOK_None) { | 
|  | if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) { | 
|  | if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) { | 
|  | // A merged copy of the same function, instantiated as a member of | 
|  | // the same class, is OK. | 
|  | if (declaresSameEntity(OrigFD, Original) && | 
|  | declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()), | 
|  | cast<Decl>(FD->getLexicalDeclContext()))) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Original->isThisDeclarationADefinition()) { | 
|  | Definition = I; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Definition) | 
|  | // Similar to friend functions a friend function template may be a | 
|  | // definition and do not have a body if it is instantiated in a class | 
|  | // template. | 
|  | if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) { | 
|  | for (auto I : FTD->redecls()) { | 
|  | auto D = cast<FunctionTemplateDecl>(I); | 
|  | if (D != FTD) { | 
|  | assert(!D->isThisDeclarationADefinition() && | 
|  | "More than one definition in redeclaration chain"); | 
|  | if (D->getFriendObjectKind() != Decl::FOK_None) | 
|  | if (FunctionTemplateDecl *FT = | 
|  | D->getInstantiatedFromMemberTemplate()) { | 
|  | if (FT->isThisDeclarationADefinition()) { | 
|  | Definition = D->getTemplatedDecl(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Definition) | 
|  | return; | 
|  |  | 
|  | if (canRedefineFunction(Definition, getLangOpts())) | 
|  | return; | 
|  |  | 
|  | // Don't emit an error when this is redefinition of a typo-corrected | 
|  | // definition. | 
|  | if (TypoCorrectedFunctionDefinitions.count(Definition)) | 
|  | return; | 
|  |  | 
|  | // If we don't have a visible definition of the function, and it's inline or | 
|  | // a template, skip the new definition. | 
|  | if (SkipBody && !hasVisibleDefinition(Definition) && | 
|  | (Definition->getFormalLinkage() == InternalLinkage || | 
|  | Definition->isInlined() || | 
|  | Definition->getDescribedFunctionTemplate() || | 
|  | Definition->getNumTemplateParameterLists())) { | 
|  | SkipBody->ShouldSkip = true; | 
|  | SkipBody->Previous = const_cast<FunctionDecl*>(Definition); | 
|  | if (auto *TD = Definition->getDescribedFunctionTemplate()) | 
|  | makeMergedDefinitionVisible(TD); | 
|  | makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (getLangOpts().GNUMode && Definition->isInlineSpecified() && | 
|  | Definition->getStorageClass() == SC_Extern) | 
|  | Diag(FD->getLocation(), diag::err_redefinition_extern_inline) | 
|  | << FD->getDeclName() << getLangOpts().CPlusPlus; | 
|  | else | 
|  | Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); | 
|  |  | 
|  | Diag(Definition->getLocation(), diag::note_previous_definition); | 
|  | FD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, | 
|  | Sema &S) { | 
|  | CXXRecordDecl *const LambdaClass = CallOperator->getParent(); | 
|  |  | 
|  | LambdaScopeInfo *LSI = S.PushLambdaScope(); | 
|  | LSI->CallOperator = CallOperator; | 
|  | LSI->Lambda = LambdaClass; | 
|  | LSI->ReturnType = CallOperator->getReturnType(); | 
|  | const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); | 
|  |  | 
|  | if (LCD == LCD_None) | 
|  | LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; | 
|  | else if (LCD == LCD_ByCopy) | 
|  | LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; | 
|  | else if (LCD == LCD_ByRef) | 
|  | LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; | 
|  | DeclarationNameInfo DNI = CallOperator->getNameInfo(); | 
|  |  | 
|  | LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); | 
|  | LSI->Mutable = !CallOperator->isConst(); | 
|  |  | 
|  | // Add the captures to the LSI so they can be noted as already | 
|  | // captured within tryCaptureVar. | 
|  | auto I = LambdaClass->field_begin(); | 
|  | for (const auto &C : LambdaClass->captures()) { | 
|  | if (C.capturesVariable()) { | 
|  | VarDecl *VD = C.getCapturedVar(); | 
|  | if (VD->isInitCapture()) | 
|  | S.CurrentInstantiationScope->InstantiatedLocal(VD, VD); | 
|  | QualType CaptureType = VD->getType(); | 
|  | const bool ByRef = C.getCaptureKind() == LCK_ByRef; | 
|  | LSI->addCapture(VD, /*IsBlock*/false, ByRef, | 
|  | /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(), | 
|  | /*EllipsisLoc*/C.isPackExpansion() | 
|  | ? C.getEllipsisLoc() : SourceLocation(), | 
|  | CaptureType, /*Invalid*/false); | 
|  |  | 
|  | } else if (C.capturesThis()) { | 
|  | LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(), | 
|  | C.getCaptureKind() == LCK_StarThis); | 
|  | } else { | 
|  | LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(), | 
|  | I->getType()); | 
|  | } | 
|  | ++I; | 
|  | } | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D, | 
|  | SkipBodyInfo *SkipBody) { | 
|  | if (!D) { | 
|  | // Parsing the function declaration failed in some way. Push on a fake scope | 
|  | // anyway so we can try to parse the function body. | 
|  | PushFunctionScope(); | 
|  | PushExpressionEvaluationContext(ExprEvalContexts.back().Context); | 
|  | return D; | 
|  | } | 
|  |  | 
|  | FunctionDecl *FD = nullptr; | 
|  |  | 
|  | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) | 
|  | FD = FunTmpl->getTemplatedDecl(); | 
|  | else | 
|  | FD = cast<FunctionDecl>(D); | 
|  |  | 
|  | // Do not push if it is a lambda because one is already pushed when building | 
|  | // the lambda in ActOnStartOfLambdaDefinition(). | 
|  | if (!isLambdaCallOperator(FD)) | 
|  | PushExpressionEvaluationContext(ExprEvalContexts.back().Context); | 
|  |  | 
|  | // Check for defining attributes before the check for redefinition. | 
|  | if (const auto *Attr = FD->getAttr<AliasAttr>()) { | 
|  | Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0; | 
|  | FD->dropAttr<AliasAttr>(); | 
|  | FD->setInvalidDecl(); | 
|  | } | 
|  | if (const auto *Attr = FD->getAttr<IFuncAttr>()) { | 
|  | Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1; | 
|  | FD->dropAttr<IFuncAttr>(); | 
|  | FD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // See if this is a redefinition. If 'will have body' is already set, then | 
|  | // these checks were already performed when it was set. | 
|  | if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) { | 
|  | CheckForFunctionRedefinition(FD, nullptr, SkipBody); | 
|  |  | 
|  | // If we're skipping the body, we're done. Don't enter the scope. | 
|  | if (SkipBody && SkipBody->ShouldSkip) | 
|  | return D; | 
|  | } | 
|  |  | 
|  | // Mark this function as "will have a body eventually".  This lets users to | 
|  | // call e.g. isInlineDefinitionExternallyVisible while we're still parsing | 
|  | // this function. | 
|  | FD->setWillHaveBody(); | 
|  |  | 
|  | // If we are instantiating a generic lambda call operator, push | 
|  | // a LambdaScopeInfo onto the function stack.  But use the information | 
|  | // that's already been calculated (ActOnLambdaExpr) to prime the current | 
|  | // LambdaScopeInfo. | 
|  | // When the template operator is being specialized, the LambdaScopeInfo, | 
|  | // has to be properly restored so that tryCaptureVariable doesn't try | 
|  | // and capture any new variables. In addition when calculating potential | 
|  | // captures during transformation of nested lambdas, it is necessary to | 
|  | // have the LSI properly restored. | 
|  | if (isGenericLambdaCallOperatorSpecialization(FD)) { | 
|  | assert(inTemplateInstantiation() && | 
|  | "There should be an active template instantiation on the stack " | 
|  | "when instantiating a generic lambda!"); | 
|  | RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this); | 
|  | } else { | 
|  | // Enter a new function scope | 
|  | PushFunctionScope(); | 
|  | } | 
|  |  | 
|  | // Builtin functions cannot be defined. | 
|  | if (unsigned BuiltinID = FD->getBuiltinID()) { | 
|  | if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && | 
|  | !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { | 
|  | Diag(FD->getLocation(), diag::err_builtin_definition) << FD; | 
|  | FD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The return type of a function definition must be complete | 
|  | // (C99 6.9.1p3, C++ [dcl.fct]p6). | 
|  | QualType ResultType = FD->getReturnType(); | 
|  | if (!ResultType->isDependentType() && !ResultType->isVoidType() && | 
|  | !FD->isInvalidDecl() && | 
|  | RequireCompleteType(FD->getLocation(), ResultType, | 
|  | diag::err_func_def_incomplete_result)) | 
|  | FD->setInvalidDecl(); | 
|  |  | 
|  | if (FnBodyScope) | 
|  | PushDeclContext(FnBodyScope, FD); | 
|  |  | 
|  | // Check the validity of our function parameters | 
|  | CheckParmsForFunctionDef(FD->parameters(), | 
|  | /*CheckParameterNames=*/true); | 
|  |  | 
|  | // Add non-parameter declarations already in the function to the current | 
|  | // scope. | 
|  | if (FnBodyScope) { | 
|  | for (Decl *NPD : FD->decls()) { | 
|  | auto *NonParmDecl = dyn_cast<NamedDecl>(NPD); | 
|  | if (!NonParmDecl) | 
|  | continue; | 
|  | assert(!isa<ParmVarDecl>(NonParmDecl) && | 
|  | "parameters should not be in newly created FD yet"); | 
|  |  | 
|  | // If the decl has a name, make it accessible in the current scope. | 
|  | if (NonParmDecl->getDeclName()) | 
|  | PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false); | 
|  |  | 
|  | // Similarly, dive into enums and fish their constants out, making them | 
|  | // accessible in this scope. | 
|  | if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) { | 
|  | for (auto *EI : ED->enumerators()) | 
|  | PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Introduce our parameters into the function scope | 
|  | for (auto Param : FD->parameters()) { | 
|  | Param->setOwningFunction(FD); | 
|  |  | 
|  | // If this has an identifier, add it to the scope stack. | 
|  | if (Param->getIdentifier() && FnBodyScope) { | 
|  | CheckShadow(FnBodyScope, Param); | 
|  |  | 
|  | PushOnScopeChains(Param, FnBodyScope); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ensure that the function's exception specification is instantiated. | 
|  | if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) | 
|  | ResolveExceptionSpec(D->getLocation(), FPT); | 
|  |  | 
|  | // dllimport cannot be applied to non-inline function definitions. | 
|  | if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && | 
|  | !FD->isTemplateInstantiation()) { | 
|  | assert(!FD->hasAttr<DLLExportAttr>()); | 
|  | Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); | 
|  | FD->setInvalidDecl(); | 
|  | return D; | 
|  | } | 
|  | // We want to attach documentation to original Decl (which might be | 
|  | // a function template). | 
|  | ActOnDocumentableDecl(D); | 
|  | if (getCurLexicalContext()->isObjCContainer() && | 
|  | getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && | 
|  | getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) | 
|  | Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); | 
|  |  | 
|  | return D; | 
|  | } | 
|  |  | 
|  | /// Given the set of return statements within a function body, | 
|  | /// compute the variables that are subject to the named return value | 
|  | /// optimization. | 
|  | /// | 
|  | /// Each of the variables that is subject to the named return value | 
|  | /// optimization will be marked as NRVO variables in the AST, and any | 
|  | /// return statement that has a marked NRVO variable as its NRVO candidate can | 
|  | /// use the named return value optimization. | 
|  | /// | 
|  | /// This function applies a very simplistic algorithm for NRVO: if every return | 
|  | /// statement in the scope of a variable has the same NRVO candidate, that | 
|  | /// candidate is an NRVO variable. | 
|  | void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { | 
|  | ReturnStmt **Returns = Scope->Returns.data(); | 
|  |  | 
|  | for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { | 
|  | if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { | 
|  | if (!NRVOCandidate->isNRVOVariable()) | 
|  | Returns[I]->setNRVOCandidate(nullptr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::canDelayFunctionBody(const Declarator &D) { | 
|  | // We can't delay parsing the body of a constexpr function template (yet). | 
|  | if (D.getDeclSpec().hasConstexprSpecifier()) | 
|  | return false; | 
|  |  | 
|  | // We can't delay parsing the body of a function template with a deduced | 
|  | // return type (yet). | 
|  | if (D.getDeclSpec().hasAutoTypeSpec()) { | 
|  | // If the placeholder introduces a non-deduced trailing return type, | 
|  | // we can still delay parsing it. | 
|  | if (D.getNumTypeObjects()) { | 
|  | const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); | 
|  | if (Outer.Kind == DeclaratorChunk::Function && | 
|  | Outer.Fun.hasTrailingReturnType()) { | 
|  | QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); | 
|  | return Ty.isNull() || !Ty->isUndeducedType(); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Sema::canSkipFunctionBody(Decl *D) { | 
|  | // We cannot skip the body of a function (or function template) which is | 
|  | // constexpr, since we may need to evaluate its body in order to parse the | 
|  | // rest of the file. | 
|  | // We cannot skip the body of a function with an undeduced return type, | 
|  | // because any callers of that function need to know the type. | 
|  | if (const FunctionDecl *FD = D->getAsFunction()) { | 
|  | if (FD->isConstexpr()) | 
|  | return false; | 
|  | // We can't simply call Type::isUndeducedType here, because inside template | 
|  | // auto can be deduced to a dependent type, which is not considered | 
|  | // "undeduced". | 
|  | if (FD->getReturnType()->getContainedDeducedType()) | 
|  | return false; | 
|  | } | 
|  | return Consumer.shouldSkipFunctionBody(D); | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { | 
|  | if (!Decl) | 
|  | return nullptr; | 
|  | if (FunctionDecl *FD = Decl->getAsFunction()) | 
|  | FD->setHasSkippedBody(); | 
|  | else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl)) | 
|  | MD->setHasSkippedBody(); | 
|  | return Decl; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { | 
|  | return ActOnFinishFunctionBody(D, BodyArg, false); | 
|  | } | 
|  |  | 
|  | /// RAII object that pops an ExpressionEvaluationContext when exiting a function | 
|  | /// body. | 
|  | class ExitFunctionBodyRAII { | 
|  | public: | 
|  | ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {} | 
|  | ~ExitFunctionBodyRAII() { | 
|  | if (!IsLambda) | 
|  | S.PopExpressionEvaluationContext(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | Sema &S; | 
|  | bool IsLambda = false; | 
|  | }; | 
|  |  | 
|  | static void diagnoseImplicitlyRetainedSelf(Sema &S) { | 
|  | llvm::DenseMap<const BlockDecl *, bool> EscapeInfo; | 
|  |  | 
|  | auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) { | 
|  | if (EscapeInfo.count(BD)) | 
|  | return EscapeInfo[BD]; | 
|  |  | 
|  | bool R = false; | 
|  | const BlockDecl *CurBD = BD; | 
|  |  | 
|  | do { | 
|  | R = !CurBD->doesNotEscape(); | 
|  | if (R) | 
|  | break; | 
|  | CurBD = CurBD->getParent()->getInnermostBlockDecl(); | 
|  | } while (CurBD); | 
|  |  | 
|  | return EscapeInfo[BD] = R; | 
|  | }; | 
|  |  | 
|  | // If the location where 'self' is implicitly retained is inside a escaping | 
|  | // block, emit a diagnostic. | 
|  | for (const std::pair<SourceLocation, const BlockDecl *> &P : | 
|  | S.ImplicitlyRetainedSelfLocs) | 
|  | if (IsOrNestedInEscapingBlock(P.second)) | 
|  | S.Diag(P.first, diag::warn_implicitly_retains_self) | 
|  | << FixItHint::CreateInsertion(P.first, "self->"); | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, | 
|  | bool IsInstantiation) { | 
|  | FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; | 
|  |  | 
|  | sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); | 
|  | sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; | 
|  |  | 
|  | if (getLangOpts().Coroutines && getCurFunction()->isCoroutine()) | 
|  | CheckCompletedCoroutineBody(FD, Body); | 
|  |  | 
|  | // Do not call PopExpressionEvaluationContext() if it is a lambda because one | 
|  | // is already popped when finishing the lambda in BuildLambdaExpr(). This is | 
|  | // meant to pop the context added in ActOnStartOfFunctionDef(). | 
|  | ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD)); | 
|  |  | 
|  | if (FD) { | 
|  | FD->setBody(Body); | 
|  | FD->setWillHaveBody(false); | 
|  |  | 
|  | if (getLangOpts().CPlusPlus14) { | 
|  | if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() && | 
|  | FD->getReturnType()->isUndeducedType()) { | 
|  | // If the function has a deduced result type but contains no 'return' | 
|  | // statements, the result type as written must be exactly 'auto', and | 
|  | // the deduced result type is 'void'. | 
|  | if (!FD->getReturnType()->getAs<AutoType>()) { | 
|  | Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) | 
|  | << FD->getReturnType(); | 
|  | FD->setInvalidDecl(); | 
|  | } else { | 
|  | // Substitute 'void' for the 'auto' in the type. | 
|  | TypeLoc ResultType = getReturnTypeLoc(FD); | 
|  | Context.adjustDeducedFunctionResultType( | 
|  | FD, SubstAutoType(ResultType.getType(), Context.VoidTy)); | 
|  | } | 
|  | } | 
|  | } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) { | 
|  | // In C++11, we don't use 'auto' deduction rules for lambda call | 
|  | // operators because we don't support return type deduction. | 
|  | auto *LSI = getCurLambda(); | 
|  | if (LSI->HasImplicitReturnType) { | 
|  | deduceClosureReturnType(*LSI); | 
|  |  | 
|  | // C++11 [expr.prim.lambda]p4: | 
|  | //   [...] if there are no return statements in the compound-statement | 
|  | //   [the deduced type is] the type void | 
|  | QualType RetType = | 
|  | LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType; | 
|  |  | 
|  | // Update the return type to the deduced type. | 
|  | const FunctionProtoType *Proto = | 
|  | FD->getType()->getAs<FunctionProtoType>(); | 
|  | FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(), | 
|  | Proto->getExtProtoInfo())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the function implicitly returns zero (like 'main') or is naked, | 
|  | // don't complain about missing return statements. | 
|  | if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) | 
|  | WP.disableCheckFallThrough(); | 
|  |  | 
|  | // MSVC permits the use of pure specifier (=0) on function definition, | 
|  | // defined at class scope, warn about this non-standard construct. | 
|  | if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine()) | 
|  | Diag(FD->getLocation(), diag::ext_pure_function_definition); | 
|  |  | 
|  | if (!FD->isInvalidDecl()) { | 
|  | // Don't diagnose unused parameters of defaulted or deleted functions. | 
|  | if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody()) | 
|  | DiagnoseUnusedParameters(FD->parameters()); | 
|  | DiagnoseSizeOfParametersAndReturnValue(FD->parameters(), | 
|  | FD->getReturnType(), FD); | 
|  |  | 
|  | // If this is a structor, we need a vtable. | 
|  | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) | 
|  | MarkVTableUsed(FD->getLocation(), Constructor->getParent()); | 
|  | else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD)) | 
|  | MarkVTableUsed(FD->getLocation(), Destructor->getParent()); | 
|  |  | 
|  | // Try to apply the named return value optimization. We have to check | 
|  | // if we can do this here because lambdas keep return statements around | 
|  | // to deduce an implicit return type. | 
|  | if (FD->getReturnType()->isRecordType() && | 
|  | (!getLangOpts().CPlusPlus || !FD->isDependentContext())) | 
|  | computeNRVO(Body, getCurFunction()); | 
|  | } | 
|  |  | 
|  | // GNU warning -Wmissing-prototypes: | 
|  | //   Warn if a global function is defined without a previous | 
|  | //   prototype declaration. This warning is issued even if the | 
|  | //   definition itself provides a prototype. The aim is to detect | 
|  | //   global functions that fail to be declared in header files. | 
|  | const FunctionDecl *PossiblePrototype = nullptr; | 
|  | if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) { | 
|  | Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; | 
|  |  | 
|  | if (PossiblePrototype) { | 
|  | // We found a declaration that is not a prototype, | 
|  | // but that could be a zero-parameter prototype | 
|  | if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) { | 
|  | TypeLoc TL = TI->getTypeLoc(); | 
|  | if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) | 
|  | Diag(PossiblePrototype->getLocation(), | 
|  | diag::note_declaration_not_a_prototype) | 
|  | << (FD->getNumParams() != 0) | 
|  | << (FD->getNumParams() == 0 | 
|  | ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void") | 
|  | : FixItHint{}); | 
|  | } | 
|  | } else { | 
|  | Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) | 
|  | << /* function */ 1 | 
|  | << (FD->getStorageClass() == SC_None | 
|  | ? FixItHint::CreateInsertion(FD->getTypeSpecStartLoc(), | 
|  | "static ") | 
|  | : FixItHint{}); | 
|  | } | 
|  |  | 
|  | // GNU warning -Wstrict-prototypes | 
|  | //   Warn if K&R function is defined without a previous declaration. | 
|  | //   This warning is issued only if the definition itself does not provide | 
|  | //   a prototype. Only K&R definitions do not provide a prototype. | 
|  | //   An empty list in a function declarator that is part of a definition | 
|  | //   of that function specifies that the function has no parameters | 
|  | //   (C99 6.7.5.3p14) | 
|  | if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 && | 
|  | !LangOpts.CPlusPlus) { | 
|  | TypeSourceInfo *TI = FD->getTypeSourceInfo(); | 
|  | TypeLoc TL = TI->getTypeLoc(); | 
|  | FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>(); | 
|  | Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Warn on CPUDispatch with an actual body. | 
|  | if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body) | 
|  | if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body)) | 
|  | if (!CmpndBody->body_empty()) | 
|  | Diag(CmpndBody->body_front()->getBeginLoc(), | 
|  | diag::warn_dispatch_body_ignored); | 
|  |  | 
|  | if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | const CXXMethodDecl *KeyFunction; | 
|  | if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) && | 
|  | MD->isVirtual() && | 
|  | (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) && | 
|  | MD == KeyFunction->getCanonicalDecl()) { | 
|  | // Update the key-function state if necessary for this ABI. | 
|  | if (FD->isInlined() && | 
|  | !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { | 
|  | Context.setNonKeyFunction(MD); | 
|  |  | 
|  | // If the newly-chosen key function is already defined, then we | 
|  | // need to mark the vtable as used retroactively. | 
|  | KeyFunction = Context.getCurrentKeyFunction(MD->getParent()); | 
|  | const FunctionDecl *Definition; | 
|  | if (KeyFunction && KeyFunction->isDefined(Definition)) | 
|  | MarkVTableUsed(Definition->getLocation(), MD->getParent(), true); | 
|  | } else { | 
|  | // We just defined they key function; mark the vtable as used. | 
|  | MarkVTableUsed(FD->getLocation(), MD->getParent(), true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && | 
|  | "Function parsing confused"); | 
|  | } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { | 
|  | assert(MD == getCurMethodDecl() && "Method parsing confused"); | 
|  | MD->setBody(Body); | 
|  | if (!MD->isInvalidDecl()) { | 
|  | DiagnoseSizeOfParametersAndReturnValue(MD->parameters(), | 
|  | MD->getReturnType(), MD); | 
|  |  | 
|  | if (Body) | 
|  | computeNRVO(Body, getCurFunction()); | 
|  | } | 
|  | if (getCurFunction()->ObjCShouldCallSuper) { | 
|  | Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call) | 
|  | << MD->getSelector().getAsString(); | 
|  | getCurFunction()->ObjCShouldCallSuper = false; | 
|  | } | 
|  | if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) { | 
|  | const ObjCMethodDecl *InitMethod = nullptr; | 
|  | bool isDesignated = | 
|  | MD->isDesignatedInitializerForTheInterface(&InitMethod); | 
|  | assert(isDesignated && InitMethod); | 
|  | (void)isDesignated; | 
|  |  | 
|  | auto superIsNSObject = [&](const ObjCMethodDecl *MD) { | 
|  | auto IFace = MD->getClassInterface(); | 
|  | if (!IFace) | 
|  | return false; | 
|  | auto SuperD = IFace->getSuperClass(); | 
|  | if (!SuperD) | 
|  | return false; | 
|  | return SuperD->getIdentifier() == | 
|  | NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); | 
|  | }; | 
|  | // Don't issue this warning for unavailable inits or direct subclasses | 
|  | // of NSObject. | 
|  | if (!MD->isUnavailable() && !superIsNSObject(MD)) { | 
|  | Diag(MD->getLocation(), | 
|  | diag::warn_objc_designated_init_missing_super_call); | 
|  | Diag(InitMethod->getLocation(), | 
|  | diag::note_objc_designated_init_marked_here); | 
|  | } | 
|  | getCurFunction()->ObjCWarnForNoDesignatedInitChain = false; | 
|  | } | 
|  | if (getCurFunction()->ObjCWarnForNoInitDelegation) { | 
|  | // Don't issue this warning for unavaialable inits. | 
|  | if (!MD->isUnavailable()) | 
|  | Diag(MD->getLocation(), | 
|  | diag::warn_objc_secondary_init_missing_init_call); | 
|  | getCurFunction()->ObjCWarnForNoInitDelegation = false; | 
|  | } | 
|  |  | 
|  | diagnoseImplicitlyRetainedSelf(*this); | 
|  | } else { | 
|  | // Parsing the function declaration failed in some way. Pop the fake scope | 
|  | // we pushed on. | 
|  | PopFunctionScopeInfo(ActivePolicy, dcl); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (Body && getCurFunction()->HasPotentialAvailabilityViolations) | 
|  | DiagnoseUnguardedAvailabilityViolations(dcl); | 
|  |  | 
|  | assert(!getCurFunction()->ObjCShouldCallSuper && | 
|  | "This should only be set for ObjC methods, which should have been " | 
|  | "handled in the block above."); | 
|  |  | 
|  | // Verify and clean out per-function state. | 
|  | if (Body && (!FD || !FD->isDefaulted())) { | 
|  | // C++ constructors that have function-try-blocks can't have return | 
|  | // statements in the handlers of that block. (C++ [except.handle]p14) | 
|  | // Verify this. | 
|  | if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) | 
|  | DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); | 
|  |  | 
|  | // Verify that gotos and switch cases don't jump into scopes illegally. | 
|  | if (getCurFunction()->NeedsScopeChecking() && | 
|  | !PP.isCodeCompletionEnabled()) | 
|  | DiagnoseInvalidJumps(Body); | 
|  |  | 
|  | if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { | 
|  | if (!Destructor->getParent()->isDependentType()) | 
|  | CheckDestructor(Destructor); | 
|  |  | 
|  | MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), | 
|  | Destructor->getParent()); | 
|  | } | 
|  |  | 
|  | // If any errors have occurred, clear out any temporaries that may have | 
|  | // been leftover. This ensures that these temporaries won't be picked up for | 
|  | // deletion in some later function. | 
|  | if (getDiagnostics().hasErrorOccurred() || | 
|  | getDiagnostics().getSuppressAllDiagnostics()) { | 
|  | DiscardCleanupsInEvaluationContext(); | 
|  | } | 
|  | if (!getDiagnostics().hasUncompilableErrorOccurred() && | 
|  | !isa<FunctionTemplateDecl>(dcl)) { | 
|  | // Since the body is valid, issue any analysis-based warnings that are | 
|  | // enabled. | 
|  | ActivePolicy = &WP; | 
|  | } | 
|  |  | 
|  | if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() && | 
|  | (!CheckConstexprFunctionDecl(FD) || | 
|  | !CheckConstexprFunctionBody(FD, Body))) | 
|  | FD->setInvalidDecl(); | 
|  |  | 
|  | if (FD && FD->hasAttr<NakedAttr>()) { | 
|  | for (const Stmt *S : Body->children()) { | 
|  | // Allow local register variables without initializer as they don't | 
|  | // require prologue. | 
|  | bool RegisterVariables = false; | 
|  | if (auto *DS = dyn_cast<DeclStmt>(S)) { | 
|  | for (const auto *Decl : DS->decls()) { | 
|  | if (const auto *Var = dyn_cast<VarDecl>(Decl)) { | 
|  | RegisterVariables = | 
|  | Var->hasAttr<AsmLabelAttr>() && !Var->hasInit(); | 
|  | if (!RegisterVariables) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (RegisterVariables) | 
|  | continue; | 
|  | if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) { | 
|  | Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function); | 
|  | Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); | 
|  | FD->setInvalidDecl(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(ExprCleanupObjects.size() == | 
|  | ExprEvalContexts.back().NumCleanupObjects && | 
|  | "Leftover temporaries in function"); | 
|  | assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function"); | 
|  | assert(MaybeODRUseExprs.empty() && | 
|  | "Leftover expressions for odr-use checking"); | 
|  | } | 
|  |  | 
|  | if (!IsInstantiation) | 
|  | PopDeclContext(); | 
|  |  | 
|  | PopFunctionScopeInfo(ActivePolicy, dcl); | 
|  | // If any errors have occurred, clear out any temporaries that may have | 
|  | // been leftover. This ensures that these temporaries won't be picked up for | 
|  | // deletion in some later function. | 
|  | if (getDiagnostics().hasErrorOccurred()) { | 
|  | DiscardCleanupsInEvaluationContext(); | 
|  | } | 
|  |  | 
|  | return dcl; | 
|  | } | 
|  |  | 
|  | /// When we finish delayed parsing of an attribute, we must attach it to the | 
|  | /// relevant Decl. | 
|  | void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, | 
|  | ParsedAttributes &Attrs) { | 
|  | // Always attach attributes to the underlying decl. | 
|  | if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) | 
|  | D = TD->getTemplatedDecl(); | 
|  | ProcessDeclAttributeList(S, D, Attrs); | 
|  |  | 
|  | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) | 
|  | if (Method->isStatic()) | 
|  | checkThisInStaticMemberFunctionAttributes(Method); | 
|  | } | 
|  |  | 
|  | /// ImplicitlyDefineFunction - An undeclared identifier was used in a function | 
|  | /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). | 
|  | NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, | 
|  | IdentifierInfo &II, Scope *S) { | 
|  | // Find the scope in which the identifier is injected and the corresponding | 
|  | // DeclContext. | 
|  | // FIXME: C89 does not say what happens if there is no enclosing block scope. | 
|  | // In that case, we inject the declaration into the translation unit scope | 
|  | // instead. | 
|  | Scope *BlockScope = S; | 
|  | while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent()) | 
|  | BlockScope = BlockScope->getParent(); | 
|  |  | 
|  | Scope *ContextScope = BlockScope; | 
|  | while (!ContextScope->getEntity()) | 
|  | ContextScope = ContextScope->getParent(); | 
|  | ContextRAII SavedContext(*this, ContextScope->getEntity()); | 
|  |  | 
|  | // Before we produce a declaration for an implicitly defined | 
|  | // function, see whether there was a locally-scoped declaration of | 
|  | // this name as a function or variable. If so, use that | 
|  | // (non-visible) declaration, and complain about it. | 
|  | NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II); | 
|  | if (ExternCPrev) { | 
|  | // We still need to inject the function into the enclosing block scope so | 
|  | // that later (non-call) uses can see it. | 
|  | PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false); | 
|  |  | 
|  | // C89 footnote 38: | 
|  | //   If in fact it is not defined as having type "function returning int", | 
|  | //   the behavior is undefined. | 
|  | if (!isa<FunctionDecl>(ExternCPrev) || | 
|  | !Context.typesAreCompatible( | 
|  | cast<FunctionDecl>(ExternCPrev)->getType(), | 
|  | Context.getFunctionNoProtoType(Context.IntTy))) { | 
|  | Diag(Loc, diag::ext_use_out_of_scope_declaration) | 
|  | << ExternCPrev << !getLangOpts().C99; | 
|  | Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); | 
|  | return ExternCPrev; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Extension in C99.  Legal in C90, but warn about it. | 
|  | unsigned diag_id; | 
|  | if (II.getName().startswith("__builtin_")) | 
|  | diag_id = diag::warn_builtin_unknown; | 
|  | // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported. | 
|  | else if (getLangOpts().OpenCL) | 
|  | diag_id = diag::err_opencl_implicit_function_decl; | 
|  | else if (getLangOpts().C99) | 
|  | diag_id = diag::ext_implicit_function_decl; | 
|  | else | 
|  | diag_id = diag::warn_implicit_function_decl; | 
|  | Diag(Loc, diag_id) << &II; | 
|  |  | 
|  | // If we found a prior declaration of this function, don't bother building | 
|  | // another one. We've already pushed that one into scope, so there's nothing | 
|  | // more to do. | 
|  | if (ExternCPrev) | 
|  | return ExternCPrev; | 
|  |  | 
|  | // Because typo correction is expensive, only do it if the implicit | 
|  | // function declaration is going to be treated as an error. | 
|  | if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) { | 
|  | TypoCorrection Corrected; | 
|  | DeclFilterCCC<FunctionDecl> CCC{}; | 
|  | if (S && (Corrected = | 
|  | CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName, | 
|  | S, nullptr, CCC, CTK_NonError))) | 
|  | diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), | 
|  | /*ErrorRecovery*/false); | 
|  | } | 
|  |  | 
|  | // Set a Declarator for the implicit definition: int foo(); | 
|  | const char *Dummy; | 
|  | AttributeFactory attrFactory; | 
|  | DeclSpec DS(attrFactory); | 
|  | unsigned DiagID; | 
|  | bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, | 
|  | Context.getPrintingPolicy()); | 
|  | (void)Error; // Silence warning. | 
|  | assert(!Error && "Error setting up implicit decl!"); | 
|  | SourceLocation NoLoc; | 
|  | Declarator D(DS, DeclaratorContext::BlockContext); | 
|  | D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, | 
|  | /*IsAmbiguous=*/false, | 
|  | /*LParenLoc=*/NoLoc, | 
|  | /*Params=*/nullptr, | 
|  | /*NumParams=*/0, | 
|  | /*EllipsisLoc=*/NoLoc, | 
|  | /*RParenLoc=*/NoLoc, | 
|  | /*RefQualifierIsLvalueRef=*/true, | 
|  | /*RefQualifierLoc=*/NoLoc, | 
|  | /*MutableLoc=*/NoLoc, EST_None, | 
|  | /*ESpecRange=*/SourceRange(), | 
|  | /*Exceptions=*/nullptr, | 
|  | /*ExceptionRanges=*/nullptr, | 
|  | /*NumExceptions=*/0, | 
|  | /*NoexceptExpr=*/nullptr, | 
|  | /*ExceptionSpecTokens=*/nullptr, | 
|  | /*DeclsInPrototype=*/None, Loc, | 
|  | Loc, D), | 
|  | std::move(DS.getAttributes()), SourceLocation()); | 
|  | D.SetIdentifier(&II, Loc); | 
|  |  | 
|  | // Insert this function into the enclosing block scope. | 
|  | FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D)); | 
|  | FD->setImplicit(); | 
|  |  | 
|  | AddKnownFunctionAttributes(FD); | 
|  |  | 
|  | return FD; | 
|  | } | 
|  |  | 
|  | /// Adds any function attributes that we know a priori based on | 
|  | /// the declaration of this function. | 
|  | /// | 
|  | /// These attributes can apply both to implicitly-declared builtins | 
|  | /// (like __builtin___printf_chk) or to library-declared functions | 
|  | /// like NSLog or printf. | 
|  | /// | 
|  | /// We need to check for duplicate attributes both here and where user-written | 
|  | /// attributes are applied to declarations. | 
|  | void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { | 
|  | if (FD->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // If this is a built-in function, map its builtin attributes to | 
|  | // actual attributes. | 
|  | if (unsigned BuiltinID = FD->getBuiltinID()) { | 
|  | // Handle printf-formatting attributes. | 
|  | unsigned FormatIdx; | 
|  | bool HasVAListArg; | 
|  | if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { | 
|  | if (!FD->hasAttr<FormatAttr>()) { | 
|  | const char *fmt = "printf"; | 
|  | unsigned int NumParams = FD->getNumParams(); | 
|  | if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) | 
|  | FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) | 
|  | fmt = "NSString"; | 
|  | FD->addAttr(FormatAttr::CreateImplicit(Context, | 
|  | &Context.Idents.get(fmt), | 
|  | FormatIdx+1, | 
|  | HasVAListArg ? 0 : FormatIdx+2, | 
|  | FD->getLocation())); | 
|  | } | 
|  | } | 
|  | if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, | 
|  | HasVAListArg)) { | 
|  | if (!FD->hasAttr<FormatAttr>()) | 
|  | FD->addAttr(FormatAttr::CreateImplicit(Context, | 
|  | &Context.Idents.get("scanf"), | 
|  | FormatIdx+1, | 
|  | HasVAListArg ? 0 : FormatIdx+2, | 
|  | FD->getLocation())); | 
|  | } | 
|  |  | 
|  | // Handle automatically recognized callbacks. | 
|  | SmallVector<int, 4> Encoding; | 
|  | if (!FD->hasAttr<CallbackAttr>() && | 
|  | Context.BuiltinInfo.performsCallback(BuiltinID, Encoding)) | 
|  | FD->addAttr(CallbackAttr::CreateImplicit( | 
|  | Context, Encoding.data(), Encoding.size(), FD->getLocation())); | 
|  |  | 
|  | // Mark const if we don't care about errno and that is the only thing | 
|  | // preventing the function from being const. This allows IRgen to use LLVM | 
|  | // intrinsics for such functions. | 
|  | if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() && | 
|  | Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) | 
|  | FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); | 
|  |  | 
|  | // We make "fma" on some platforms const because we know it does not set | 
|  | // errno in those environments even though it could set errno based on the | 
|  | // C standard. | 
|  | const llvm::Triple &Trip = Context.getTargetInfo().getTriple(); | 
|  | if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) && | 
|  | !FD->hasAttr<ConstAttr>()) { | 
|  | switch (BuiltinID) { | 
|  | case Builtin::BI__builtin_fma: | 
|  | case Builtin::BI__builtin_fmaf: | 
|  | case Builtin::BI__builtin_fmal: | 
|  | case Builtin::BIfma: | 
|  | case Builtin::BIfmaf: | 
|  | case Builtin::BIfmal: | 
|  | FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && | 
|  | !FD->hasAttr<ReturnsTwiceAttr>()) | 
|  | FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, | 
|  | FD->getLocation())); | 
|  | if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) | 
|  | FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); | 
|  | if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>()) | 
|  | FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation())); | 
|  | if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) | 
|  | FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); | 
|  | if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) && | 
|  | !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) { | 
|  | // Add the appropriate attribute, depending on the CUDA compilation mode | 
|  | // and which target the builtin belongs to. For example, during host | 
|  | // compilation, aux builtins are __device__, while the rest are __host__. | 
|  | if (getLangOpts().CUDAIsDevice != | 
|  | Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) | 
|  | FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation())); | 
|  | else | 
|  | FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If C++ exceptions are enabled but we are told extern "C" functions cannot | 
|  | // throw, add an implicit nothrow attribute to any extern "C" function we come | 
|  | // across. | 
|  | if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind && | 
|  | FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) { | 
|  | const auto *FPT = FD->getType()->getAs<FunctionProtoType>(); | 
|  | if (!FPT || FPT->getExceptionSpecType() == EST_None) | 
|  | FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); | 
|  | } | 
|  |  | 
|  | IdentifierInfo *Name = FD->getIdentifier(); | 
|  | if (!Name) | 
|  | return; | 
|  | if ((!getLangOpts().CPlusPlus && | 
|  | FD->getDeclContext()->isTranslationUnit()) || | 
|  | (isa<LinkageSpecDecl>(FD->getDeclContext()) && | 
|  | cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == | 
|  | LinkageSpecDecl::lang_c)) { | 
|  | // Okay: this could be a libc/libm/Objective-C function we know | 
|  | // about. | 
|  | } else | 
|  | return; | 
|  |  | 
|  | if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { | 
|  | // FIXME: asprintf and vasprintf aren't C99 functions. Should they be | 
|  | // target-specific builtins, perhaps? | 
|  | if (!FD->hasAttr<FormatAttr>()) | 
|  | FD->addAttr(FormatAttr::CreateImplicit(Context, | 
|  | &Context.Idents.get("printf"), 2, | 
|  | Name->isStr("vasprintf") ? 0 : 3, | 
|  | FD->getLocation())); | 
|  | } | 
|  |  | 
|  | if (Name->isStr("__CFStringMakeConstantString")) { | 
|  | // We already have a __builtin___CFStringMakeConstantString, | 
|  | // but builds that use -fno-constant-cfstrings don't go through that. | 
|  | if (!FD->hasAttr<FormatArgAttr>()) | 
|  | FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD), | 
|  | FD->getLocation())); | 
|  | } | 
|  | } | 
|  |  | 
|  | TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, | 
|  | TypeSourceInfo *TInfo) { | 
|  | assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); | 
|  | assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); | 
|  |  | 
|  | if (!TInfo) { | 
|  | assert(D.isInvalidType() && "no declarator info for valid type"); | 
|  | TInfo = Context.getTrivialTypeSourceInfo(T); | 
|  | } | 
|  |  | 
|  | // Scope manipulation handled by caller. | 
|  | TypedefDecl *NewTD = | 
|  | TypedefDecl::Create(Context, CurContext, D.getBeginLoc(), | 
|  | D.getIdentifierLoc(), D.getIdentifier(), TInfo); | 
|  |  | 
|  | // Bail out immediately if we have an invalid declaration. | 
|  | if (D.isInvalidType()) { | 
|  | NewTD->setInvalidDecl(); | 
|  | return NewTD; | 
|  | } | 
|  |  | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) { | 
|  | if (CurContext->isFunctionOrMethod()) | 
|  | Diag(NewTD->getLocation(), diag::err_module_private_local) | 
|  | << 2 << NewTD->getDeclName() | 
|  | << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); | 
|  | else | 
|  | NewTD->setModulePrivate(); | 
|  | } | 
|  |  | 
|  | // C++ [dcl.typedef]p8: | 
|  | //   If the typedef declaration defines an unnamed class (or | 
|  | //   enum), the first typedef-name declared by the declaration | 
|  | //   to be that class type (or enum type) is used to denote the | 
|  | //   class type (or enum type) for linkage purposes only. | 
|  | // We need to check whether the type was declared in the declaration. | 
|  | switch (D.getDeclSpec().getTypeSpecType()) { | 
|  | case TST_enum: | 
|  | case TST_struct: | 
|  | case TST_interface: | 
|  | case TST_union: | 
|  | case TST_class: { | 
|  | TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); | 
|  | setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NewTD; | 
|  | } | 
|  |  | 
|  | /// Check that this is a valid underlying type for an enum declaration. | 
|  | bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { | 
|  | SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); | 
|  | QualType T = TI->getType(); | 
|  |  | 
|  | if (T->isDependentType()) | 
|  | return false; | 
|  |  | 
|  | if (const BuiltinType *BT = T->getAs<BuiltinType>()) | 
|  | if (BT->isInteger()) | 
|  | return false; | 
|  |  | 
|  | Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check whether this is a valid redeclaration of a previous enumeration. | 
|  | /// \return true if the redeclaration was invalid. | 
|  | bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, | 
|  | QualType EnumUnderlyingTy, bool IsFixed, | 
|  | const EnumDecl *Prev) { | 
|  | if (IsScoped != Prev->isScoped()) { | 
|  | Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) | 
|  | << Prev->isScoped(); | 
|  | Diag(Prev->getLocation(), diag::note_previous_declaration); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (IsFixed && Prev->isFixed()) { | 
|  | if (!EnumUnderlyingTy->isDependentType() && | 
|  | !Prev->getIntegerType()->isDependentType() && | 
|  | !Context.hasSameUnqualifiedType(EnumUnderlyingTy, | 
|  | Prev->getIntegerType())) { | 
|  | // TODO: Highlight the underlying type of the redeclaration. | 
|  | Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) | 
|  | << EnumUnderlyingTy << Prev->getIntegerType(); | 
|  | Diag(Prev->getLocation(), diag::note_previous_declaration) | 
|  | << Prev->getIntegerTypeRange(); | 
|  | return true; | 
|  | } | 
|  | } else if (IsFixed != Prev->isFixed()) { | 
|  | Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) | 
|  | << Prev->isFixed(); | 
|  | Diag(Prev->getLocation(), diag::note_previous_declaration); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Get diagnostic %select index for tag kind for | 
|  | /// redeclaration diagnostic message. | 
|  | /// WARNING: Indexes apply to particular diagnostics only! | 
|  | /// | 
|  | /// \returns diagnostic %select index. | 
|  | static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { | 
|  | switch (Tag) { | 
|  | case TTK_Struct: return 0; | 
|  | case TTK_Interface: return 1; | 
|  | case TTK_Class:  return 2; | 
|  | default: llvm_unreachable("Invalid tag kind for redecl diagnostic!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine if tag kind is a class-key compatible with | 
|  | /// class for redeclaration (class, struct, or __interface). | 
|  | /// | 
|  | /// \returns true iff the tag kind is compatible. | 
|  | static bool isClassCompatTagKind(TagTypeKind Tag) | 
|  | { | 
|  | return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface; | 
|  | } | 
|  |  | 
|  | Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl, | 
|  | TagTypeKind TTK) { | 
|  | if (isa<TypedefDecl>(PrevDecl)) | 
|  | return NTK_Typedef; | 
|  | else if (isa<TypeAliasDecl>(PrevDecl)) | 
|  | return NTK_TypeAlias; | 
|  | else if (isa<ClassTemplateDecl>(PrevDecl)) | 
|  | return NTK_Template; | 
|  | else if (isa<TypeAliasTemplateDecl>(PrevDecl)) | 
|  | return NTK_TypeAliasTemplate; | 
|  | else if (isa<TemplateTemplateParmDecl>(PrevDecl)) | 
|  | return NTK_TemplateTemplateArgument; | 
|  | switch (TTK) { | 
|  | case TTK_Struct: | 
|  | case TTK_Interface: | 
|  | case TTK_Class: | 
|  | return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct; | 
|  | case TTK_Union: | 
|  | return NTK_NonUnion; | 
|  | case TTK_Enum: | 
|  | return NTK_NonEnum; | 
|  | } | 
|  | llvm_unreachable("invalid TTK"); | 
|  | } | 
|  |  | 
|  | /// Determine whether a tag with a given kind is acceptable | 
|  | /// as a redeclaration of the given tag declaration. | 
|  | /// | 
|  | /// \returns true if the new tag kind is acceptable, false otherwise. | 
|  | bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, | 
|  | TagTypeKind NewTag, bool isDefinition, | 
|  | SourceLocation NewTagLoc, | 
|  | const IdentifierInfo *Name) { | 
|  | // C++ [dcl.type.elab]p3: | 
|  | //   The class-key or enum keyword present in the | 
|  | //   elaborated-type-specifier shall agree in kind with the | 
|  | //   declaration to which the name in the elaborated-type-specifier | 
|  | //   refers. This rule also applies to the form of | 
|  | //   elaborated-type-specifier that declares a class-name or | 
|  | //   friend class since it can be construed as referring to the | 
|  | //   definition of the class. Thus, in any | 
|  | //   elaborated-type-specifier, the enum keyword shall be used to | 
|  | //   refer to an enumeration (7.2), the union class-key shall be | 
|  | //   used to refer to a union (clause 9), and either the class or | 
|  | //   struct class-key shall be used to refer to a class (clause 9) | 
|  | //   declared using the class or struct class-key. | 
|  | TagTypeKind OldTag = Previous->getTagKind(); | 
|  | if (OldTag != NewTag && | 
|  | !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag))) | 
|  | return false; | 
|  |  | 
|  | // Tags are compatible, but we might still want to warn on mismatched tags. | 
|  | // Non-class tags can't be mismatched at this point. | 
|  | if (!isClassCompatTagKind(NewTag)) | 
|  | return true; | 
|  |  | 
|  | // Declarations for which -Wmismatched-tags is disabled are entirely ignored | 
|  | // by our warning analysis. We don't want to warn about mismatches with (eg) | 
|  | // declarations in system headers that are designed to be specialized, but if | 
|  | // a user asks us to warn, we should warn if their code contains mismatched | 
|  | // declarations. | 
|  | auto IsIgnoredLoc = [&](SourceLocation Loc) { | 
|  | return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch, | 
|  | Loc); | 
|  | }; | 
|  | if (IsIgnoredLoc(NewTagLoc)) | 
|  | return true; | 
|  |  | 
|  | auto IsIgnored = [&](const TagDecl *Tag) { | 
|  | return IsIgnoredLoc(Tag->getLocation()); | 
|  | }; | 
|  | while (IsIgnored(Previous)) { | 
|  | Previous = Previous->getPreviousDecl(); | 
|  | if (!Previous) | 
|  | return true; | 
|  | OldTag = Previous->getTagKind(); | 
|  | } | 
|  |  | 
|  | bool isTemplate = false; | 
|  | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) | 
|  | isTemplate = Record->getDescribedClassTemplate(); | 
|  |  | 
|  | if (inTemplateInstantiation()) { | 
|  | if (OldTag != NewTag) { | 
|  | // In a template instantiation, do not offer fix-its for tag mismatches | 
|  | // since they usually mess up the template instead of fixing the problem. | 
|  | Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) | 
|  | << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name | 
|  | << getRedeclDiagFromTagKind(OldTag); | 
|  | // FIXME: Note previous location? | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (isDefinition) { | 
|  | // On definitions, check all previous tags and issue a fix-it for each | 
|  | // one that doesn't match the current tag. | 
|  | if (Previous->getDefinition()) { | 
|  | // Don't suggest fix-its for redefinitions. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool previousMismatch = false; | 
|  | for (const TagDecl *I : Previous->redecls()) { | 
|  | if (I->getTagKind() != NewTag) { | 
|  | // Ignore previous declarations for which the warning was disabled. | 
|  | if (IsIgnored(I)) | 
|  | continue; | 
|  |  | 
|  | if (!previousMismatch) { | 
|  | previousMismatch = true; | 
|  | Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) | 
|  | << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name | 
|  | << getRedeclDiagFromTagKind(I->getTagKind()); | 
|  | } | 
|  | Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) | 
|  | << getRedeclDiagFromTagKind(NewTag) | 
|  | << FixItHint::CreateReplacement(I->getInnerLocStart(), | 
|  | TypeWithKeyword::getTagTypeKindName(NewTag)); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Identify the prevailing tag kind: this is the kind of the definition (if | 
|  | // there is a non-ignored definition), or otherwise the kind of the prior | 
|  | // (non-ignored) declaration. | 
|  | const TagDecl *PrevDef = Previous->getDefinition(); | 
|  | if (PrevDef && IsIgnored(PrevDef)) | 
|  | PrevDef = nullptr; | 
|  | const TagDecl *Redecl = PrevDef ? PrevDef : Previous; | 
|  | if (Redecl->getTagKind() != NewTag) { | 
|  | Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) | 
|  | << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name | 
|  | << getRedeclDiagFromTagKind(OldTag); | 
|  | Diag(Redecl->getLocation(), diag::note_previous_use); | 
|  |  | 
|  | // If there is a previous definition, suggest a fix-it. | 
|  | if (PrevDef) { | 
|  | Diag(NewTagLoc, diag::note_struct_class_suggestion) | 
|  | << getRedeclDiagFromTagKind(Redecl->getTagKind()) | 
|  | << FixItHint::CreateReplacement(SourceRange(NewTagLoc), | 
|  | TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name | 
|  | /// from an outer enclosing namespace or file scope inside a friend declaration. | 
|  | /// This should provide the commented out code in the following snippet: | 
|  | ///   namespace N { | 
|  | ///     struct X; | 
|  | ///     namespace M { | 
|  | ///       struct Y { friend struct /*N::*/ X; }; | 
|  | ///     } | 
|  | ///   } | 
|  | static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, | 
|  | SourceLocation NameLoc) { | 
|  | // While the decl is in a namespace, do repeated lookup of that name and see | 
|  | // if we get the same namespace back.  If we do not, continue until | 
|  | // translation unit scope, at which point we have a fully qualified NNS. | 
|  | SmallVector<IdentifierInfo *, 4> Namespaces; | 
|  | DeclContext *DC = ND->getDeclContext()->getRedeclContext(); | 
|  | for (; !DC->isTranslationUnit(); DC = DC->getParent()) { | 
|  | // This tag should be declared in a namespace, which can only be enclosed by | 
|  | // other namespaces.  Bail if there's an anonymous namespace in the chain. | 
|  | NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC); | 
|  | if (!Namespace || Namespace->isAnonymousNamespace()) | 
|  | return FixItHint(); | 
|  | IdentifierInfo *II = Namespace->getIdentifier(); | 
|  | Namespaces.push_back(II); | 
|  | NamedDecl *Lookup = SemaRef.LookupSingleName( | 
|  | S, II, NameLoc, Sema::LookupNestedNameSpecifierName); | 
|  | if (Lookup == Namespace) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Once we have all the namespaces, reverse them to go outermost first, and | 
|  | // build an NNS. | 
|  | SmallString<64> Insertion; | 
|  | llvm::raw_svector_ostream OS(Insertion); | 
|  | if (DC->isTranslationUnit()) | 
|  | OS << "::"; | 
|  | std::reverse(Namespaces.begin(), Namespaces.end()); | 
|  | for (auto *II : Namespaces) | 
|  | OS << II->getName() << "::"; | 
|  | return FixItHint::CreateInsertion(NameLoc, Insertion); | 
|  | } | 
|  |  | 
|  | /// Determine whether a tag originally declared in context \p OldDC can | 
|  | /// be redeclared with an unqualified name in \p NewDC (assuming name lookup | 
|  | /// found a declaration in \p OldDC as a previous decl, perhaps through a | 
|  | /// using-declaration). | 
|  | static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC, | 
|  | DeclContext *NewDC) { | 
|  | OldDC = OldDC->getRedeclContext(); | 
|  | NewDC = NewDC->getRedeclContext(); | 
|  |  | 
|  | if (OldDC->Equals(NewDC)) | 
|  | return true; | 
|  |  | 
|  | // In MSVC mode, we allow a redeclaration if the contexts are related (either | 
|  | // encloses the other). | 
|  | if (S.getLangOpts().MSVCCompat && | 
|  | (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// This is invoked when we see 'struct foo' or 'struct {'.  In the | 
|  | /// former case, Name will be non-null.  In the later case, Name will be null. | 
|  | /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a | 
|  | /// reference/declaration/definition of a tag. | 
|  | /// | 
|  | /// \param IsTypeSpecifier \c true if this is a type-specifier (or | 
|  | /// trailing-type-specifier) other than one in an alias-declaration. | 
|  | /// | 
|  | /// \param SkipBody If non-null, will be set to indicate if the caller should | 
|  | /// skip the definition of this tag and treat it as if it were a declaration. | 
|  | Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, | 
|  | SourceLocation KWLoc, CXXScopeSpec &SS, | 
|  | IdentifierInfo *Name, SourceLocation NameLoc, | 
|  | const ParsedAttributesView &Attrs, AccessSpecifier AS, | 
|  | SourceLocation ModulePrivateLoc, | 
|  | MultiTemplateParamsArg TemplateParameterLists, | 
|  | bool &OwnedDecl, bool &IsDependent, | 
|  | SourceLocation ScopedEnumKWLoc, | 
|  | bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, | 
|  | bool IsTypeSpecifier, bool IsTemplateParamOrArg, | 
|  | SkipBodyInfo *SkipBody) { | 
|  | // If this is not a definition, it must have a name. | 
|  | IdentifierInfo *OrigName = Name; | 
|  | assert((Name != nullptr || TUK == TUK_Definition) && | 
|  | "Nameless record must be a definition!"); | 
|  | assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); | 
|  |  | 
|  | OwnedDecl = false; | 
|  | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | 
|  | bool ScopedEnum = ScopedEnumKWLoc.isValid(); | 
|  |  | 
|  | // FIXME: Check member specializations more carefully. | 
|  | bool isMemberSpecialization = false; | 
|  | bool Invalid = false; | 
|  |  | 
|  | // We only need to do this matching if we have template parameters | 
|  | // or a scope specifier, which also conveniently avoids this work | 
|  | // for non-C++ cases. | 
|  | if (TemplateParameterLists.size() > 0 || | 
|  | (SS.isNotEmpty() && TUK != TUK_Reference)) { | 
|  | if (TemplateParameterList *TemplateParams = | 
|  | MatchTemplateParametersToScopeSpecifier( | 
|  | KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, | 
|  | TUK == TUK_Friend, isMemberSpecialization, Invalid)) { | 
|  | if (Kind == TTK_Enum) { | 
|  | Diag(KWLoc, diag::err_enum_template); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (TemplateParams->size() > 0) { | 
|  | // This is a declaration or definition of a class template (which may | 
|  | // be a member of another template). | 
|  |  | 
|  | if (Invalid) | 
|  | return nullptr; | 
|  |  | 
|  | OwnedDecl = false; | 
|  | DeclResult Result = CheckClassTemplate( | 
|  | S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams, | 
|  | AS, ModulePrivateLoc, | 
|  | /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1, | 
|  | TemplateParameterLists.data(), SkipBody); | 
|  | return Result.get(); | 
|  | } else { | 
|  | // The "template<>" header is extraneous. | 
|  | Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) | 
|  | << TypeWithKeyword::getTagTypeKindName(Kind) << Name; | 
|  | isMemberSpecialization = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Figure out the underlying type if this a enum declaration. We need to do | 
|  | // this early, because it's needed to detect if this is an incompatible | 
|  | // redeclaration. | 
|  | llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; | 
|  | bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum; | 
|  |  | 
|  | if (Kind == TTK_Enum) { | 
|  | if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) { | 
|  | // No underlying type explicitly specified, or we failed to parse the | 
|  | // type, default to int. | 
|  | EnumUnderlying = Context.IntTy.getTypePtr(); | 
|  | } else if (UnderlyingType.get()) { | 
|  | // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an | 
|  | // integral type; any cv-qualification is ignored. | 
|  | TypeSourceInfo *TI = nullptr; | 
|  | GetTypeFromParser(UnderlyingType.get(), &TI); | 
|  | EnumUnderlying = TI; | 
|  |  | 
|  | if (CheckEnumUnderlyingType(TI)) | 
|  | // Recover by falling back to int. | 
|  | EnumUnderlying = Context.IntTy.getTypePtr(); | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, | 
|  | UPPC_FixedUnderlyingType)) | 
|  | EnumUnderlying = Context.IntTy.getTypePtr(); | 
|  |  | 
|  | } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | 
|  | // For MSVC ABI compatibility, unfixed enums must use an underlying type | 
|  | // of 'int'. However, if this is an unfixed forward declaration, don't set | 
|  | // the underlying type unless the user enables -fms-compatibility. This | 
|  | // makes unfixed forward declared enums incomplete and is more conforming. | 
|  | if (TUK == TUK_Definition || getLangOpts().MSVCCompat) | 
|  | EnumUnderlying = Context.IntTy.getTypePtr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | DeclContext *SearchDC = CurContext; | 
|  | DeclContext *DC = CurContext; | 
|  | bool isStdBadAlloc = false; | 
|  | bool isStdAlignValT = false; | 
|  |  | 
|  | RedeclarationKind Redecl = forRedeclarationInCurContext(); | 
|  | if (TUK == TUK_Friend || TUK == TUK_Reference) | 
|  | Redecl = NotForRedeclaration; | 
|  |  | 
|  | /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C | 
|  | /// implemented asks for structural equivalence checking, the returned decl | 
|  | /// here is passed back to the parser, allowing the tag body to be parsed. | 
|  | auto createTagFromNewDecl = [&]() -> TagDecl * { | 
|  | assert(!getLangOpts().CPlusPlus && "not meant for C++ usage"); | 
|  | // If there is an identifier, use the location of the identifier as the | 
|  | // location of the decl, otherwise use the location of the struct/union | 
|  | // keyword. | 
|  | SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; | 
|  | TagDecl *New = nullptr; | 
|  |  | 
|  | if (Kind == TTK_Enum) { | 
|  | New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr, | 
|  | ScopedEnum, ScopedEnumUsesClassTag, IsFixed); | 
|  | // If this is an undefined enum, bail. | 
|  | if (TUK != TUK_Definition && !Invalid) | 
|  | return nullptr; | 
|  | if (EnumUnderlying) { | 
|  | EnumDecl *ED = cast<EnumDecl>(New); | 
|  | if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>()) | 
|  | ED->setIntegerTypeSourceInfo(TI); | 
|  | else | 
|  | ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0)); | 
|  | ED->setPromotionType(ED->getIntegerType()); | 
|  | } | 
|  | } else { // struct/union | 
|  | New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, | 
|  | nullptr); | 
|  | } | 
|  |  | 
|  | if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { | 
|  | // Add alignment attributes if necessary; these attributes are checked | 
|  | // when the ASTContext lays out the structure. | 
|  | // | 
|  | // It is important for implementing the correct semantics that this | 
|  | // happen here (in ActOnTag). The #pragma pack stack is | 
|  | // maintained as a result of parser callbacks which can occur at | 
|  | // many points during the parsing of a struct declaration (because | 
|  | // the #pragma tokens are effectively skipped over during the | 
|  | // parsing of the struct). | 
|  | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { | 
|  | AddAlignmentAttributesForRecord(RD); | 
|  | AddMsStructLayoutForRecord(RD); | 
|  | } | 
|  | } | 
|  | New->setLexicalDeclContext(CurContext); | 
|  | return New; | 
|  | }; | 
|  |  | 
|  | LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); | 
|  | if (Name && SS.isNotEmpty()) { | 
|  | // We have a nested-name tag ('struct foo::bar'). | 
|  |  | 
|  | // Check for invalid 'foo::'. | 
|  | if (SS.isInvalid()) { | 
|  | Name = nullptr; | 
|  | goto CreateNewDecl; | 
|  | } | 
|  |  | 
|  | // If this is a friend or a reference to a class in a dependent | 
|  | // context, don't try to make a decl for it. | 
|  | if (TUK == TUK_Friend || TUK == TUK_Reference) { | 
|  | DC = computeDeclContext(SS, false); | 
|  | if (!DC) { | 
|  | IsDependent = true; | 
|  | return nullptr; | 
|  | } | 
|  | } else { | 
|  | DC = computeDeclContext(SS, true); | 
|  | if (!DC) { | 
|  | Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) | 
|  | << SS.getRange(); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RequireCompleteDeclContext(SS, DC)) | 
|  | return nullptr; | 
|  |  | 
|  | SearchDC = DC; | 
|  | // Look-up name inside 'foo::'. | 
|  | LookupQualifiedName(Previous, DC); | 
|  |  | 
|  | if (Previous.isAmbiguous()) | 
|  | return nullptr; | 
|  |  | 
|  | if (Previous.empty()) { | 
|  | // Name lookup did not find anything. However, if the | 
|  | // nested-name-specifier refers to the current instantiation, | 
|  | // and that current instantiation has any dependent base | 
|  | // classes, we might find something at instantiation time: treat | 
|  | // this as a dependent elaborated-type-specifier. | 
|  | // But this only makes any sense for reference-like lookups. | 
|  | if (Previous.wasNotFoundInCurrentInstantiation() && | 
|  | (TUK == TUK_Reference || TUK == TUK_Friend)) { | 
|  | IsDependent = true; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // A tag 'foo::bar' must already exist. | 
|  | Diag(NameLoc, diag::err_not_tag_in_scope) | 
|  | << Kind << Name << DC << SS.getRange(); | 
|  | Name = nullptr; | 
|  | Invalid = true; | 
|  | goto CreateNewDecl; | 
|  | } | 
|  | } else if (Name) { | 
|  | // C++14 [class.mem]p14: | 
|  | //   If T is the name of a class, then each of the following shall have a | 
|  | //   name different from T: | 
|  | //    -- every member of class T that is itself a type | 
|  | if (TUK != TUK_Reference && TUK != TUK_Friend && | 
|  | DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc))) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is a named struct, check to see if there was a previous forward | 
|  | // declaration or definition. | 
|  | // FIXME: We're looking into outer scopes here, even when we | 
|  | // shouldn't be. Doing so can result in ambiguities that we | 
|  | // shouldn't be diagnosing. | 
|  | LookupName(Previous, S); | 
|  |  | 
|  | // When declaring or defining a tag, ignore ambiguities introduced | 
|  | // by types using'ed into this scope. | 
|  | if (Previous.isAmbiguous() && | 
|  | (TUK == TUK_Definition || TUK == TUK_Declaration)) { | 
|  | LookupResult::Filter F = Previous.makeFilter(); | 
|  | while (F.hasNext()) { | 
|  | NamedDecl *ND = F.next(); | 
|  | if (!ND->getDeclContext()->getRedeclContext()->Equals( | 
|  | SearchDC->getRedeclContext())) | 
|  | F.erase(); | 
|  | } | 
|  | F.done(); | 
|  | } | 
|  |  | 
|  | // C++11 [namespace.memdef]p3: | 
|  | //   If the name in a friend declaration is neither qualified nor | 
|  | //   a template-id and the declaration is a function or an | 
|  | //   elaborated-type-specifier, the lookup to determine whether | 
|  | //   the entity has been previously declared shall not consider | 
|  | //   any scopes outside the innermost enclosing namespace. | 
|  | // | 
|  | // MSVC doesn't implement the above rule for types, so a friend tag | 
|  | // declaration may be a redeclaration of a type declared in an enclosing | 
|  | // scope.  They do implement this rule for friend functions. | 
|  | // | 
|  | // Does it matter that this should be by scope instead of by | 
|  | // semantic context? | 
|  | if (!Previous.empty() && TUK == TUK_Friend) { | 
|  | DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); | 
|  | LookupResult::Filter F = Previous.makeFilter(); | 
|  | bool FriendSawTagOutsideEnclosingNamespace = false; | 
|  | while (F.hasNext()) { | 
|  | NamedDecl *ND = F.next(); | 
|  | DeclContext *DC = ND->getDeclContext()->getRedeclContext(); | 
|  | if (DC->isFileContext() && | 
|  | !EnclosingNS->Encloses(ND->getDeclContext())) { | 
|  | if (getLangOpts().MSVCCompat) | 
|  | FriendSawTagOutsideEnclosingNamespace = true; | 
|  | else | 
|  | F.erase(); | 
|  | } | 
|  | } | 
|  | F.done(); | 
|  |  | 
|  | // Diagnose this MSVC extension in the easy case where lookup would have | 
|  | // unambiguously found something outside the enclosing namespace. | 
|  | if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { | 
|  | NamedDecl *ND = Previous.getFoundDecl(); | 
|  | Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) | 
|  | << createFriendTagNNSFixIt(*this, ND, S, NameLoc); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note:  there used to be some attempt at recovery here. | 
|  | if (Previous.isAmbiguous()) | 
|  | return nullptr; | 
|  |  | 
|  | if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { | 
|  | // FIXME: This makes sure that we ignore the contexts associated | 
|  | // with C structs, unions, and enums when looking for a matching | 
|  | // tag declaration or definition. See the similar lookup tweak | 
|  | // in Sema::LookupName; is there a better way to deal with this? | 
|  | while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) | 
|  | SearchDC = SearchDC->getParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Previous.isSingleResult() && | 
|  | Previous.getFoundDecl()->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); | 
|  | // Just pretend that we didn't see the previous declaration. | 
|  | Previous.clear(); | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && | 
|  | DC->Equals(getStdNamespace())) { | 
|  | if (Name->isStr("bad_alloc")) { | 
|  | // This is a declaration of or a reference to "std::bad_alloc". | 
|  | isStdBadAlloc = true; | 
|  |  | 
|  | // If std::bad_alloc has been implicitly declared (but made invisible to | 
|  | // name lookup), fill in this implicit declaration as the previous | 
|  | // declaration, so that the declarations get chained appropriately. | 
|  | if (Previous.empty() && StdBadAlloc) | 
|  | Previous.addDecl(getStdBadAlloc()); | 
|  | } else if (Name->isStr("align_val_t")) { | 
|  | isStdAlignValT = true; | 
|  | if (Previous.empty() && StdAlignValT) | 
|  | Previous.addDecl(getStdAlignValT()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we didn't find a previous declaration, and this is a reference | 
|  | // (or friend reference), move to the correct scope.  In C++, we | 
|  | // also need to do a redeclaration lookup there, just in case | 
|  | // there's a shadow friend decl. | 
|  | if (Name && Previous.empty() && | 
|  | (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) { | 
|  | if (Invalid) goto CreateNewDecl; | 
|  | assert(SS.isEmpty()); | 
|  |  | 
|  | if (TUK == TUK_Reference || IsTemplateParamOrArg) { | 
|  | // C++ [basic.scope.pdecl]p5: | 
|  | //   -- for an elaborated-type-specifier of the form | 
|  | // | 
|  | //          class-key identifier | 
|  | // | 
|  | //      if the elaborated-type-specifier is used in the | 
|  | //      decl-specifier-seq or parameter-declaration-clause of a | 
|  | //      function defined in namespace scope, the identifier is | 
|  | //      declared as a class-name in the namespace that contains | 
|  | //      the declaration; otherwise, except as a friend | 
|  | //      declaration, the identifier is declared in the smallest | 
|  | //      non-class, non-function-prototype scope that contains the | 
|  | //      declaration. | 
|  | // | 
|  | // C99 6.7.2.3p8 has a similar (but not identical!) provision for | 
|  | // C structs and unions. | 
|  | // | 
|  | // It is an error in C++ to declare (rather than define) an enum | 
|  | // type, including via an elaborated type specifier.  We'll | 
|  | // diagnose that later; for now, declare the enum in the same | 
|  | // scope as we would have picked for any other tag type. | 
|  | // | 
|  | // GNU C also supports this behavior as part of its incomplete | 
|  | // enum types extension, while GNU C++ does not. | 
|  | // | 
|  | // Find the context where we'll be declaring the tag. | 
|  | // FIXME: We would like to maintain the current DeclContext as the | 
|  | // lexical context, | 
|  | SearchDC = getTagInjectionContext(SearchDC); | 
|  |  | 
|  | // Find the scope where we'll be declaring the tag. | 
|  | S = getTagInjectionScope(S, getLangOpts()); | 
|  | } else { | 
|  | assert(TUK == TUK_Friend); | 
|  | // C++ [namespace.memdef]p3: | 
|  | //   If a friend declaration in a non-local class first declares a | 
|  | //   class or function, the friend class or function is a member of | 
|  | //   the innermost enclosing namespace. | 
|  | SearchDC = SearchDC->getEnclosingNamespaceContext(); | 
|  | } | 
|  |  | 
|  | // In C++, we need to do a redeclaration lookup to properly | 
|  | // diagnose some problems. | 
|  | // FIXME: redeclaration lookup is also used (with and without C++) to find a | 
|  | // hidden declaration so that we don't get ambiguity errors when using a | 
|  | // type declared by an elaborated-type-specifier.  In C that is not correct | 
|  | // and we should instead merge compatible types found by lookup. | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | Previous.setRedeclarationKind(forRedeclarationInCurContext()); | 
|  | LookupQualifiedName(Previous, SearchDC); | 
|  | } else { | 
|  | Previous.setRedeclarationKind(forRedeclarationInCurContext()); | 
|  | LookupName(Previous, S); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have a known previous declaration to use, then use it. | 
|  | if (Previous.empty() && SkipBody && SkipBody->Previous) | 
|  | Previous.addDecl(SkipBody->Previous); | 
|  |  | 
|  | if (!Previous.empty()) { | 
|  | NamedDecl *PrevDecl = Previous.getFoundDecl(); | 
|  | NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl(); | 
|  |  | 
|  | // It's okay to have a tag decl in the same scope as a typedef | 
|  | // which hides a tag decl in the same scope.  Finding this | 
|  | // insanity with a redeclaration lookup can only actually happen | 
|  | // in C++. | 
|  | // | 
|  | // This is also okay for elaborated-type-specifiers, which is | 
|  | // technically forbidden by the current standard but which is | 
|  | // okay according to the likely resolution of an open issue; | 
|  | // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { | 
|  | if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { | 
|  | TagDecl *Tag = TT->getDecl(); | 
|  | if (Tag->getDeclName() == Name && | 
|  | Tag->getDeclContext()->getRedeclContext() | 
|  | ->Equals(TD->getDeclContext()->getRedeclContext())) { | 
|  | PrevDecl = Tag; | 
|  | Previous.clear(); | 
|  | Previous.addDecl(Tag); | 
|  | Previous.resolveKind(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a redeclaration of a using shadow declaration, it must | 
|  | // declare a tag in the same context. In MSVC mode, we allow a | 
|  | // redefinition if either context is within the other. | 
|  | if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) { | 
|  | auto *OldTag = dyn_cast<TagDecl>(PrevDecl); | 
|  | if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend && | 
|  | isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) && | 
|  | !(OldTag && isAcceptableTagRedeclContext( | 
|  | *this, OldTag->getDeclContext(), SearchDC))) { | 
|  | Diag(KWLoc, diag::err_using_decl_conflict_reverse); | 
|  | Diag(Shadow->getTargetDecl()->getLocation(), | 
|  | diag::note_using_decl_target); | 
|  | Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) | 
|  | << 0; | 
|  | // Recover by ignoring the old declaration. | 
|  | Previous.clear(); | 
|  | goto CreateNewDecl; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { | 
|  | // If this is a use of a previous tag, or if the tag is already declared | 
|  | // in the same scope (so that the definition/declaration completes or | 
|  | // rementions the tag), reuse the decl. | 
|  | if (TUK == TUK_Reference || TUK == TUK_Friend || | 
|  | isDeclInScope(DirectPrevDecl, SearchDC, S, | 
|  | SS.isNotEmpty() || isMemberSpecialization)) { | 
|  | // Make sure that this wasn't declared as an enum and now used as a | 
|  | // struct or something similar. | 
|  | if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, | 
|  | TUK == TUK_Definition, KWLoc, | 
|  | Name)) { | 
|  | bool SafeToContinue | 
|  | = (PrevTagDecl->getTagKind() != TTK_Enum && | 
|  | Kind != TTK_Enum); | 
|  | if (SafeToContinue) | 
|  | Diag(KWLoc, diag::err_use_with_wrong_tag) | 
|  | << Name | 
|  | << FixItHint::CreateReplacement(SourceRange(KWLoc), | 
|  | PrevTagDecl->getKindName()); | 
|  | else | 
|  | Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; | 
|  | Diag(PrevTagDecl->getLocation(), diag::note_previous_use); | 
|  |  | 
|  | if (SafeToContinue) | 
|  | Kind = PrevTagDecl->getTagKind(); | 
|  | else { | 
|  | // Recover by making this an anonymous redefinition. | 
|  | Name = nullptr; | 
|  | Previous.clear(); | 
|  | Invalid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { | 
|  | const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); | 
|  |  | 
|  | // If this is an elaborated-type-specifier for a scoped enumeration, | 
|  | // the 'class' keyword is not necessary and not permitted. | 
|  | if (TUK == TUK_Reference || TUK == TUK_Friend) { | 
|  | if (ScopedEnum) | 
|  | Diag(ScopedEnumKWLoc, diag::err_enum_class_reference) | 
|  | << PrevEnum->isScoped() | 
|  | << FixItHint::CreateRemoval(ScopedEnumKWLoc); | 
|  | return PrevTagDecl; | 
|  | } | 
|  |  | 
|  | QualType EnumUnderlyingTy; | 
|  | if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) | 
|  | EnumUnderlyingTy = TI->getType().getUnqualifiedType(); | 
|  | else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) | 
|  | EnumUnderlyingTy = QualType(T, 0); | 
|  |  | 
|  | // All conflicts with previous declarations are recovered by | 
|  | // returning the previous declaration, unless this is a definition, | 
|  | // in which case we want the caller to bail out. | 
|  | if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, | 
|  | ScopedEnum, EnumUnderlyingTy, | 
|  | IsFixed, PrevEnum)) | 
|  | return TUK == TUK_Declaration ? PrevTagDecl : nullptr; | 
|  | } | 
|  |  | 
|  | // C++11 [class.mem]p1: | 
|  | //   A member shall not be declared twice in the member-specification, | 
|  | //   except that a nested class or member class template can be declared | 
|  | //   and then later defined. | 
|  | if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && | 
|  | S->isDeclScope(PrevDecl)) { | 
|  | Diag(NameLoc, diag::ext_member_redeclared); | 
|  | Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  |  | 
|  | if (!Invalid) { | 
|  | // If this is a use, just return the declaration we found, unless | 
|  | // we have attributes. | 
|  | if (TUK == TUK_Reference || TUK == TUK_Friend) { | 
|  | if (!Attrs.empty()) { | 
|  | // FIXME: Diagnose these attributes. For now, we create a new | 
|  | // declaration to hold them. | 
|  | } else if (TUK == TUK_Reference && | 
|  | (PrevTagDecl->getFriendObjectKind() == | 
|  | Decl::FOK_Undeclared || | 
|  | PrevDecl->getOwningModule() != getCurrentModule()) && | 
|  | SS.isEmpty()) { | 
|  | // This declaration is a reference to an existing entity, but | 
|  | // has different visibility from that entity: it either makes | 
|  | // a friend visible or it makes a type visible in a new module. | 
|  | // In either case, create a new declaration. We only do this if | 
|  | // the declaration would have meant the same thing if no prior | 
|  | // declaration were found, that is, if it was found in the same | 
|  | // scope where we would have injected a declaration. | 
|  | if (!getTagInjectionContext(CurContext)->getRedeclContext() | 
|  | ->Equals(PrevDecl->getDeclContext()->getRedeclContext())) | 
|  | return PrevTagDecl; | 
|  | // This is in the injected scope, create a new declaration in | 
|  | // that scope. | 
|  | S = getTagInjectionScope(S, getLangOpts()); | 
|  | } else { | 
|  | return PrevTagDecl; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Diagnose attempts to redefine a tag. | 
|  | if (TUK == TUK_Definition) { | 
|  | if (NamedDecl *Def = PrevTagDecl->getDefinition()) { | 
|  | // If we're defining a specialization and the previous definition | 
|  | // is from an implicit instantiation, don't emit an error | 
|  | // here; we'll catch this in the general case below. | 
|  | bool IsExplicitSpecializationAfterInstantiation = false; | 
|  | if (isMemberSpecialization) { | 
|  | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) | 
|  | IsExplicitSpecializationAfterInstantiation = | 
|  | RD->getTemplateSpecializationKind() != | 
|  | TSK_ExplicitSpecialization; | 
|  | else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) | 
|  | IsExplicitSpecializationAfterInstantiation = | 
|  | ED->getTemplateSpecializationKind() != | 
|  | TSK_ExplicitSpecialization; | 
|  | } | 
|  |  | 
|  | // Note that clang allows ODR-like semantics for ObjC/C, i.e., do | 
|  | // not keep more that one definition around (merge them). However, | 
|  | // ensure the decl passes the structural compatibility check in | 
|  | // C11 6.2.7/1 (or 6.1.2.6/1 in C89). | 
|  | NamedDecl *Hidden = nullptr; | 
|  | if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { | 
|  | // There is a definition of this tag, but it is not visible. We | 
|  | // explicitly make use of C++'s one definition rule here, and | 
|  | // assume that this definition is identical to the hidden one | 
|  | // we already have. Make the existing definition visible and | 
|  | // use it in place of this one. | 
|  | if (!getLangOpts().CPlusPlus) { | 
|  | // Postpone making the old definition visible until after we | 
|  | // complete parsing the new one and do the structural | 
|  | // comparison. | 
|  | SkipBody->CheckSameAsPrevious = true; | 
|  | SkipBody->New = createTagFromNewDecl(); | 
|  | SkipBody->Previous = Def; | 
|  | return Def; | 
|  | } else { | 
|  | SkipBody->ShouldSkip = true; | 
|  | SkipBody->Previous = Def; | 
|  | makeMergedDefinitionVisible(Hidden); | 
|  | // Carry on and handle it like a normal definition. We'll | 
|  | // skip starting the definitiion later. | 
|  | } | 
|  | } else if (!IsExplicitSpecializationAfterInstantiation) { | 
|  | // A redeclaration in function prototype scope in C isn't | 
|  | // visible elsewhere, so merely issue a warning. | 
|  | if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) | 
|  | Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; | 
|  | else | 
|  | Diag(NameLoc, diag::err_redefinition) << Name; | 
|  | notePreviousDefinition(Def, | 
|  | NameLoc.isValid() ? NameLoc : KWLoc); | 
|  | // If this is a redefinition, recover by making this | 
|  | // struct be anonymous, which will make any later | 
|  | // references get the previous definition. | 
|  | Name = nullptr; | 
|  | Previous.clear(); | 
|  | Invalid = true; | 
|  | } | 
|  | } else { | 
|  | // If the type is currently being defined, complain | 
|  | // about a nested redefinition. | 
|  | auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl(); | 
|  | if (TD->isBeingDefined()) { | 
|  | Diag(NameLoc, diag::err_nested_redefinition) << Name; | 
|  | Diag(PrevTagDecl->getLocation(), | 
|  | diag::note_previous_definition); | 
|  | Name = nullptr; | 
|  | Previous.clear(); | 
|  | Invalid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, this is definition of a previously declared or referenced | 
|  | // tag. We're going to create a new Decl for it. | 
|  | } | 
|  |  | 
|  | // Okay, we're going to make a redeclaration.  If this is some kind | 
|  | // of reference, make sure we build the redeclaration in the same DC | 
|  | // as the original, and ignore the current access specifier. | 
|  | if (TUK == TUK_Friend || TUK == TUK_Reference) { | 
|  | SearchDC = PrevTagDecl->getDeclContext(); | 
|  | AS = AS_none; | 
|  | } | 
|  | } | 
|  | // If we get here we have (another) forward declaration or we | 
|  | // have a definition.  Just create a new decl. | 
|  |  | 
|  | } else { | 
|  | // If we get here, this is a definition of a new tag type in a nested | 
|  | // scope, e.g. "struct foo; void bar() { struct foo; }", just create a | 
|  | // new decl/type.  We set PrevDecl to NULL so that the entities | 
|  | // have distinct types. | 
|  | Previous.clear(); | 
|  | } | 
|  | // If we get here, we're going to create a new Decl. If PrevDecl | 
|  | // is non-NULL, it's a definition of the tag declared by | 
|  | // PrevDecl. If it's NULL, we have a new definition. | 
|  |  | 
|  | // Otherwise, PrevDecl is not a tag, but was found with tag | 
|  | // lookup.  This is only actually possible in C++, where a few | 
|  | // things like templates still live in the tag namespace. | 
|  | } else { | 
|  | // Use a better diagnostic if an elaborated-type-specifier | 
|  | // found the wrong kind of type on the first | 
|  | // (non-redeclaration) lookup. | 
|  | if ((TUK == TUK_Reference || TUK == TUK_Friend) && | 
|  | !Previous.isForRedeclaration()) { | 
|  | NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); | 
|  | Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK | 
|  | << Kind; | 
|  | Diag(PrevDecl->getLocation(), diag::note_declared_at); | 
|  | Invalid = true; | 
|  |  | 
|  | // Otherwise, only diagnose if the declaration is in scope. | 
|  | } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S, | 
|  | SS.isNotEmpty() || isMemberSpecialization)) { | 
|  | // do nothing | 
|  |  | 
|  | // Diagnose implicit declarations introduced by elaborated types. | 
|  | } else if (TUK == TUK_Reference || TUK == TUK_Friend) { | 
|  | NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); | 
|  | Diag(NameLoc, diag::err_tag_reference_conflict) << NTK; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; | 
|  | Invalid = true; | 
|  |  | 
|  | // Otherwise it's a declaration.  Call out a particularly common | 
|  | // case here. | 
|  | } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { | 
|  | unsigned Kind = 0; | 
|  | if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; | 
|  | Diag(NameLoc, diag::err_tag_definition_of_typedef) | 
|  | << Name << Kind << TND->getUnderlyingType(); | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; | 
|  | Invalid = true; | 
|  |  | 
|  | // Otherwise, diagnose. | 
|  | } else { | 
|  | // The tag name clashes with something else in the target scope, | 
|  | // issue an error and recover by making this tag be anonymous. | 
|  | Diag(NameLoc, diag::err_redefinition_different_kind) << Name; | 
|  | notePreviousDefinition(PrevDecl, NameLoc); | 
|  | Name = nullptr; | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | // The existing declaration isn't relevant to us; we're in a | 
|  | // new scope, so clear out the previous declaration. | 
|  | Previous.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | CreateNewDecl: | 
|  |  | 
|  | TagDecl *PrevDecl = nullptr; | 
|  | if (Previous.isSingleResult()) | 
|  | PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); | 
|  |  | 
|  | // If there is an identifier, use the location of the identifier as the | 
|  | // location of the decl, otherwise use the location of the struct/union | 
|  | // keyword. | 
|  | SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; | 
|  |  | 
|  | // Otherwise, create a new declaration. If there is a previous | 
|  | // declaration of the same entity, the two will be linked via | 
|  | // PrevDecl. | 
|  | TagDecl *New; | 
|  |  | 
|  | if (Kind == TTK_Enum) { | 
|  | // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: | 
|  | // enum X { A, B, C } D;    D should chain to X. | 
|  | New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, | 
|  | cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, | 
|  | ScopedEnumUsesClassTag, IsFixed); | 
|  |  | 
|  | if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit())) | 
|  | StdAlignValT = cast<EnumDecl>(New); | 
|  |  | 
|  | // If this is an undefined enum, warn. | 
|  | if (TUK != TUK_Definition && !Invalid) { | 
|  | TagDecl *Def; | 
|  | if (IsFixed && cast<EnumDecl>(New)->isFixed()) { | 
|  | // C++0x: 7.2p2: opaque-enum-declaration. | 
|  | // Conflicts are diagnosed above. Do nothing. | 
|  | } | 
|  | else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { | 
|  | Diag(Loc, diag::ext_forward_ref_enum_def) | 
|  | << New; | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | } else { | 
|  | unsigned DiagID = diag::ext_forward_ref_enum; | 
|  | if (getLangOpts().MSVCCompat) | 
|  | DiagID = diag::ext_ms_forward_ref_enum; | 
|  | else if (getLangOpts().CPlusPlus) | 
|  | DiagID = diag::err_forward_ref_enum; | 
|  | Diag(Loc, DiagID); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EnumUnderlying) { | 
|  | EnumDecl *ED = cast<EnumDecl>(New); | 
|  | if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) | 
|  | ED->setIntegerTypeSourceInfo(TI); | 
|  | else | 
|  | ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); | 
|  | ED->setPromotionType(ED->getIntegerType()); | 
|  | assert(ED->isComplete() && "enum with type should be complete"); | 
|  | } | 
|  | } else { | 
|  | // struct/union/class | 
|  |  | 
|  | // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: | 
|  | // struct X { int A; } D;    D should chain to X. | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | // FIXME: Look for a way to use RecordDecl for simple structs. | 
|  | New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, | 
|  | cast_or_null<CXXRecordDecl>(PrevDecl)); | 
|  |  | 
|  | if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) | 
|  | StdBadAlloc = cast<CXXRecordDecl>(New); | 
|  | } else | 
|  | New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, | 
|  | cast_or_null<RecordDecl>(PrevDecl)); | 
|  | } | 
|  |  | 
|  | // C++11 [dcl.type]p3: | 
|  | //   A type-specifier-seq shall not define a class or enumeration [...]. | 
|  | if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) && | 
|  | TUK == TUK_Definition) { | 
|  | Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) | 
|  | << Context.getTagDeclType(New); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition && | 
|  | DC->getDeclKind() == Decl::Enum) { | 
|  | Diag(New->getLocation(), diag::err_type_defined_in_enum) | 
|  | << Context.getTagDeclType(New); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | // Maybe add qualifier info. | 
|  | if (SS.isNotEmpty()) { | 
|  | if (SS.isSet()) { | 
|  | // If this is either a declaration or a definition, check the | 
|  | // nested-name-specifier against the current context. | 
|  | if ((TUK == TUK_Definition || TUK == TUK_Declaration) && | 
|  | diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc, | 
|  | isMemberSpecialization)) | 
|  | Invalid = true; | 
|  |  | 
|  | New->setQualifierInfo(SS.getWithLocInContext(Context)); | 
|  | if (TemplateParameterLists.size() > 0) { | 
|  | New->setTemplateParameterListsInfo(Context, TemplateParameterLists); | 
|  | } | 
|  | } | 
|  | else | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { | 
|  | // Add alignment attributes if necessary; these attributes are checked when | 
|  | // the ASTContext lays out the structure. | 
|  | // | 
|  | // It is important for implementing the correct semantics that this | 
|  | // happen here (in ActOnTag). The #pragma pack stack is | 
|  | // maintained as a result of parser callbacks which can occur at | 
|  | // many points during the parsing of a struct declaration (because | 
|  | // the #pragma tokens are effectively skipped over during the | 
|  | // parsing of the struct). | 
|  | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { | 
|  | AddAlignmentAttributesForRecord(RD); | 
|  | AddMsStructLayoutForRecord(RD); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ModulePrivateLoc.isValid()) { | 
|  | if (isMemberSpecialization) | 
|  | Diag(New->getLocation(), diag::err_module_private_specialization) | 
|  | << 2 | 
|  | << FixItHint::CreateRemoval(ModulePrivateLoc); | 
|  | // __module_private__ does not apply to local classes. However, we only | 
|  | // diagnose this as an error when the declaration specifiers are | 
|  | // freestanding. Here, we just ignore the __module_private__. | 
|  | else if (!SearchDC->isFunctionOrMethod()) | 
|  | New->setModulePrivate(); | 
|  | } | 
|  |  | 
|  | // If this is a specialization of a member class (of a class template), | 
|  | // check the specialization. | 
|  | if (isMemberSpecialization && CheckMemberSpecialization(New, Previous)) | 
|  | Invalid = true; | 
|  |  | 
|  | // If we're declaring or defining a tag in function prototype scope in C, | 
|  | // note that this type can only be used within the function and add it to | 
|  | // the list of decls to inject into the function definition scope. | 
|  | if ((Name || Kind == TTK_Enum) && | 
|  | getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | // C++ [dcl.fct]p6: | 
|  | //   Types shall not be defined in return or parameter types. | 
|  | if (TUK == TUK_Definition && !IsTypeSpecifier) { | 
|  | Diag(Loc, diag::err_type_defined_in_param_type) | 
|  | << Name; | 
|  | Invalid = true; | 
|  | } | 
|  | } else if (!PrevDecl) { | 
|  | Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Invalid) | 
|  | New->setInvalidDecl(); | 
|  |  | 
|  | // Set the lexical context. If the tag has a C++ scope specifier, the | 
|  | // lexical context will be different from the semantic context. | 
|  | New->setLexicalDeclContext(CurContext); | 
|  |  | 
|  | // Mark this as a friend decl if applicable. | 
|  | // In Microsoft mode, a friend declaration also acts as a forward | 
|  | // declaration so we always pass true to setObjectOfFriendDecl to make | 
|  | // the tag name visible. | 
|  | if (TUK == TUK_Friend) | 
|  | New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); | 
|  |  | 
|  | // Set the access specifier. | 
|  | if (!Invalid && SearchDC->isRecord()) | 
|  | SetMemberAccessSpecifier(New, PrevDecl, AS); | 
|  |  | 
|  | if (PrevDecl) | 
|  | CheckRedeclarationModuleOwnership(New, PrevDecl); | 
|  |  | 
|  | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) | 
|  | New->startDefinition(); | 
|  |  | 
|  | ProcessDeclAttributeList(S, New, Attrs); | 
|  | AddPragmaAttributes(S, New); | 
|  |  | 
|  | // If this has an identifier, add it to the scope stack. | 
|  | if (TUK == TUK_Friend) { | 
|  | // We might be replacing an existing declaration in the lookup tables; | 
|  | // if so, borrow its access specifier. | 
|  | if (PrevDecl) | 
|  | New->setAccess(PrevDecl->getAccess()); | 
|  |  | 
|  | DeclContext *DC = New->getDeclContext()->getRedeclContext(); | 
|  | DC->makeDeclVisibleInContext(New); | 
|  | if (Name) // can be null along some error paths | 
|  | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) | 
|  | PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); | 
|  | } else if (Name) { | 
|  | S = getNonFieldDeclScope(S); | 
|  | PushOnScopeChains(New, S, true); | 
|  | } else { | 
|  | CurContext->addDecl(New); | 
|  | } | 
|  |  | 
|  | // If this is the C FILE type, notify the AST context. | 
|  | if (IdentifierInfo *II = New->getIdentifier()) | 
|  | if (!New->isInvalidDecl() && | 
|  | New->getDeclContext()->getRedeclContext()->isTranslationUnit() && | 
|  | II->isStr("FILE")) | 
|  | Context.setFILEDecl(New); | 
|  |  | 
|  | if (PrevDecl) | 
|  | mergeDeclAttributes(New, PrevDecl); | 
|  |  | 
|  | // If there's a #pragma GCC visibility in scope, set the visibility of this | 
|  | // record. | 
|  | AddPushedVisibilityAttribute(New); | 
|  |  | 
|  | if (isMemberSpecialization && !New->isInvalidDecl()) | 
|  | CompleteMemberSpecialization(New, Previous); | 
|  |  | 
|  | OwnedDecl = true; | 
|  | // In C++, don't return an invalid declaration. We can't recover well from | 
|  | // the cases where we make the type anonymous. | 
|  | if (Invalid && getLangOpts().CPlusPlus) { | 
|  | if (New->isBeingDefined()) | 
|  | if (auto RD = dyn_cast<RecordDecl>(New)) | 
|  | RD->completeDefinition(); | 
|  | return nullptr; | 
|  | } else if (SkipBody && SkipBody->ShouldSkip) { | 
|  | return SkipBody->Previous; | 
|  | } else { | 
|  | return New; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { | 
|  | AdjustDeclIfTemplate(TagD); | 
|  | TagDecl *Tag = cast<TagDecl>(TagD); | 
|  |  | 
|  | // Enter the tag context. | 
|  | PushDeclContext(S, Tag); | 
|  |  | 
|  | ActOnDocumentableDecl(TagD); | 
|  |  | 
|  | // If there's a #pragma GCC visibility in scope, set the visibility of this | 
|  | // record. | 
|  | AddPushedVisibilityAttribute(Tag); | 
|  | } | 
|  |  | 
|  | bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev, | 
|  | SkipBodyInfo &SkipBody) { | 
|  | if (!hasStructuralCompatLayout(Prev, SkipBody.New)) | 
|  | return false; | 
|  |  | 
|  | // Make the previous decl visible. | 
|  | makeMergedDefinitionVisible(SkipBody.Previous); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) { | 
|  | assert(isa<ObjCContainerDecl>(IDecl) && | 
|  | "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"); | 
|  | DeclContext *OCD = cast<DeclContext>(IDecl); | 
|  | assert(getContainingDC(OCD) == CurContext && | 
|  | "The next DeclContext should be lexically contained in the current one."); | 
|  | CurContext = OCD; | 
|  | return IDecl; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, | 
|  | SourceLocation FinalLoc, | 
|  | bool IsFinalSpelledSealed, | 
|  | SourceLocation LBraceLoc) { | 
|  | AdjustDeclIfTemplate(TagD); | 
|  | CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); | 
|  |  | 
|  | FieldCollector->StartClass(); | 
|  |  | 
|  | if (!Record->getIdentifier()) | 
|  | return; | 
|  |  | 
|  | if (FinalLoc.isValid()) | 
|  | Record->addAttr(new (Context) | 
|  | FinalAttr(FinalLoc, Context, IsFinalSpelledSealed)); | 
|  |  | 
|  | // C++ [class]p2: | 
|  | //   [...] The class-name is also inserted into the scope of the | 
|  | //   class itself; this is known as the injected-class-name. For | 
|  | //   purposes of access checking, the injected-class-name is treated | 
|  | //   as if it were a public member name. | 
|  | CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create( | 
|  | Context, Record->getTagKind(), CurContext, Record->getBeginLoc(), | 
|  | Record->getLocation(), Record->getIdentifier(), | 
|  | /*PrevDecl=*/nullptr, | 
|  | /*DelayTypeCreation=*/true); | 
|  | Context.getTypeDeclType(InjectedClassName, Record); | 
|  | InjectedClassName->setImplicit(); | 
|  | InjectedClassName->setAccess(AS_public); | 
|  | if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) | 
|  | InjectedClassName->setDescribedClassTemplate(Template); | 
|  | PushOnScopeChains(InjectedClassName, S); | 
|  | assert(InjectedClassName->isInjectedClassName() && | 
|  | "Broken injected-class-name"); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, | 
|  | SourceRange BraceRange) { | 
|  | AdjustDeclIfTemplate(TagD); | 
|  | TagDecl *Tag = cast<TagDecl>(TagD); | 
|  | Tag->setBraceRange(BraceRange); | 
|  |  | 
|  | // Make sure we "complete" the definition even it is invalid. | 
|  | if (Tag->isBeingDefined()) { | 
|  | assert(Tag->isInvalidDecl() && "We should already have completed it"); | 
|  | if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) | 
|  | RD->completeDefinition(); | 
|  | } | 
|  |  | 
|  | if (isa<CXXRecordDecl>(Tag)) { | 
|  | FieldCollector->FinishClass(); | 
|  | } | 
|  |  | 
|  | // Exit this scope of this tag's definition. | 
|  | PopDeclContext(); | 
|  |  | 
|  | if (getCurLexicalContext()->isObjCContainer() && | 
|  | Tag->getDeclContext()->isFileContext()) | 
|  | Tag->setTopLevelDeclInObjCContainer(); | 
|  |  | 
|  | // Notify the consumer that we've defined a tag. | 
|  | if (!Tag->isInvalidDecl()) | 
|  | Consumer.HandleTagDeclDefinition(Tag); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnObjCContainerFinishDefinition() { | 
|  | // Exit this scope of this interface definition. | 
|  | PopDeclContext(); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) { | 
|  | assert(DC == CurContext && "Mismatch of container contexts"); | 
|  | OriginalLexicalContext = DC; | 
|  | ActOnObjCContainerFinishDefinition(); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) { | 
|  | ActOnObjCContainerStartDefinition(cast<Decl>(DC)); | 
|  | OriginalLexicalContext = nullptr; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { | 
|  | AdjustDeclIfTemplate(TagD); | 
|  | TagDecl *Tag = cast<TagDecl>(TagD); | 
|  | Tag->setInvalidDecl(); | 
|  |  | 
|  | // Make sure we "complete" the definition even it is invalid. | 
|  | if (Tag->isBeingDefined()) { | 
|  | if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) | 
|  | RD->completeDefinition(); | 
|  | } | 
|  |  | 
|  | // We're undoing ActOnTagStartDefinition here, not | 
|  | // ActOnStartCXXMemberDeclarations, so we don't have to mess with | 
|  | // the FieldCollector. | 
|  |  | 
|  | PopDeclContext(); | 
|  | } | 
|  |  | 
|  | // Note that FieldName may be null for anonymous bitfields. | 
|  | ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, | 
|  | IdentifierInfo *FieldName, | 
|  | QualType FieldTy, bool IsMsStruct, | 
|  | Expr *BitWidth, bool *ZeroWidth) { | 
|  | // Default to true; that shouldn't confuse checks for emptiness | 
|  | if (ZeroWidth) | 
|  | *ZeroWidth = true; | 
|  |  | 
|  | // C99 6.7.2.1p4 - verify the field type. | 
|  | // C++ 9.6p3: A bit-field shall have integral or enumeration type. | 
|  | if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { | 
|  | // Handle incomplete types with specific error. | 
|  | if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete)) | 
|  | return ExprError(); | 
|  | if (FieldName) | 
|  | return Diag(FieldLoc, diag::err_not_integral_type_bitfield) | 
|  | << FieldName << FieldTy << BitWidth->getSourceRange(); | 
|  | return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) | 
|  | << FieldTy << BitWidth->getSourceRange(); | 
|  | } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), | 
|  | UPPC_BitFieldWidth)) | 
|  | return ExprError(); | 
|  |  | 
|  | // If the bit-width is type- or value-dependent, don't try to check | 
|  | // it now. | 
|  | if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) | 
|  | return BitWidth; | 
|  |  | 
|  | llvm::APSInt Value; | 
|  | ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value); | 
|  | if (ICE.isInvalid()) | 
|  | return ICE; | 
|  | BitWidth = ICE.get(); | 
|  |  | 
|  | if (Value != 0 && ZeroWidth) | 
|  | *ZeroWidth = false; | 
|  |  | 
|  | // Zero-width bitfield is ok for anonymous field. | 
|  | if (Value == 0 && FieldName) | 
|  | return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; | 
|  |  | 
|  | if (Value.isSigned() && Value.isNegative()) { | 
|  | if (FieldName) | 
|  | return Diag(FieldLoc, diag::err_bitfield_has_negative_width) | 
|  | << FieldName << Value.toString(10); | 
|  | return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) | 
|  | << Value.toString(10); | 
|  | } | 
|  |  | 
|  | if (!FieldTy->isDependentType()) { | 
|  | uint64_t TypeStorageSize = Context.getTypeSize(FieldTy); | 
|  | uint64_t TypeWidth = Context.getIntWidth(FieldTy); | 
|  | bool BitfieldIsOverwide = Value.ugt(TypeWidth); | 
|  |  | 
|  | // Over-wide bitfields are an error in C or when using the MSVC bitfield | 
|  | // ABI. | 
|  | bool CStdConstraintViolation = | 
|  | BitfieldIsOverwide && !getLangOpts().CPlusPlus; | 
|  | bool MSBitfieldViolation = | 
|  | Value.ugt(TypeStorageSize) && | 
|  | (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft()); | 
|  | if (CStdConstraintViolation || MSBitfieldViolation) { | 
|  | unsigned DiagWidth = | 
|  | CStdConstraintViolation ? TypeWidth : TypeStorageSize; | 
|  | if (FieldName) | 
|  | return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width) | 
|  | << FieldName << (unsigned)Value.getZExtValue() | 
|  | << !CStdConstraintViolation << DiagWidth; | 
|  |  | 
|  | return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width) | 
|  | << (unsigned)Value.getZExtValue() << !CStdConstraintViolation | 
|  | << DiagWidth; | 
|  | } | 
|  |  | 
|  | // Warn on types where the user might conceivably expect to get all | 
|  | // specified bits as value bits: that's all integral types other than | 
|  | // 'bool'. | 
|  | if (BitfieldIsOverwide && !FieldTy->isBooleanType()) { | 
|  | if (FieldName) | 
|  | Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width) | 
|  | << FieldName << (unsigned)Value.getZExtValue() | 
|  | << (unsigned)TypeWidth; | 
|  | else | 
|  | Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width) | 
|  | << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth; | 
|  | } | 
|  | } | 
|  |  | 
|  | return BitWidth; | 
|  | } | 
|  |  | 
|  | /// ActOnField - Each field of a C struct/union is passed into this in order | 
|  | /// to create a FieldDecl object for it. | 
|  | Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, | 
|  | Declarator &D, Expr *BitfieldWidth) { | 
|  | FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), | 
|  | DeclStart, D, static_cast<Expr*>(BitfieldWidth), | 
|  | /*InitStyle=*/ICIS_NoInit, AS_public); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | /// HandleField - Analyze a field of a C struct or a C++ data member. | 
|  | /// | 
|  | FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, | 
|  | SourceLocation DeclStart, | 
|  | Declarator &D, Expr *BitWidth, | 
|  | InClassInitStyle InitStyle, | 
|  | AccessSpecifier AS) { | 
|  | if (D.isDecompositionDeclarator()) { | 
|  | const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); | 
|  | Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) | 
|  | << Decomp.getSourceRange(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | IdentifierInfo *II = D.getIdentifier(); | 
|  | SourceLocation Loc = DeclStart; | 
|  | if (II) Loc = D.getIdentifierLoc(); | 
|  |  | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | QualType T = TInfo->getType(); | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | CheckExtraCXXDefaultArguments(D); | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | 
|  | UPPC_DataMemberType)) { | 
|  | D.setInvalidType(); | 
|  | T = Context.IntTy; | 
|  | TInfo = Context.getTrivialTypeSourceInfo(T, Loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | DiagnoseFunctionSpecifiers(D.getDeclSpec()); | 
|  |  | 
|  | if (D.getDeclSpec().isInlineSpecified()) | 
|  | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) | 
|  | << getLangOpts().CPlusPlus17; | 
|  | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) | 
|  | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | 
|  | diag::err_invalid_thread) | 
|  | << DeclSpec::getSpecifierName(TSCS); | 
|  |  | 
|  | // Check to see if this name was declared as a member previously | 
|  | NamedDecl *PrevDecl = nullptr; | 
|  | LookupResult Previous(*this, II, Loc, LookupMemberName, | 
|  | ForVisibleRedeclaration); | 
|  | LookupName(Previous, S); | 
|  | switch (Previous.getResultKind()) { | 
|  | case LookupResult::Found: | 
|  | case LookupResult::FoundUnresolvedValue: | 
|  | PrevDecl = Previous.getAsSingle<NamedDecl>(); | 
|  | break; | 
|  |  | 
|  | case LookupResult::FoundOverloaded: | 
|  | PrevDecl = Previous.getRepresentativeDecl(); | 
|  | break; | 
|  |  | 
|  | case LookupResult::NotFound: | 
|  | case LookupResult::NotFoundInCurrentInstantiation: | 
|  | case LookupResult::Ambiguous: | 
|  | break; | 
|  | } | 
|  | Previous.suppressDiagnostics(); | 
|  |  | 
|  | if (PrevDecl && PrevDecl->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
|  | // Just pretend that we didn't see the previous declaration. | 
|  | PrevDecl = nullptr; | 
|  | } | 
|  |  | 
|  | if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) | 
|  | PrevDecl = nullptr; | 
|  |  | 
|  | bool Mutable | 
|  | = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); | 
|  | SourceLocation TSSL = D.getBeginLoc(); | 
|  | FieldDecl *NewFD | 
|  | = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, | 
|  | TSSL, AS, PrevDecl, &D); | 
|  |  | 
|  | if (NewFD->isInvalidDecl()) | 
|  | Record->setInvalidDecl(); | 
|  |  | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) | 
|  | NewFD->setModulePrivate(); | 
|  |  | 
|  | if (NewFD->isInvalidDecl() && PrevDecl) { | 
|  | // Don't introduce NewFD into scope; there's already something | 
|  | // with the same name in the same scope. | 
|  | } else if (II) { | 
|  | PushOnScopeChains(NewFD, S); | 
|  | } else | 
|  | Record->addDecl(NewFD); | 
|  |  | 
|  | return NewFD; | 
|  | } | 
|  |  | 
|  | /// Build a new FieldDecl and check its well-formedness. | 
|  | /// | 
|  | /// This routine builds a new FieldDecl given the fields name, type, | 
|  | /// record, etc. \p PrevDecl should refer to any previous declaration | 
|  | /// with the same name and in the same scope as the field to be | 
|  | /// created. | 
|  | /// | 
|  | /// \returns a new FieldDecl. | 
|  | /// | 
|  | /// \todo The Declarator argument is a hack. It will be removed once | 
|  | FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, | 
|  | TypeSourceInfo *TInfo, | 
|  | RecordDecl *Record, SourceLocation Loc, | 
|  | bool Mutable, Expr *BitWidth, | 
|  | InClassInitStyle InitStyle, | 
|  | SourceLocation TSSL, | 
|  | AccessSpecifier AS, NamedDecl *PrevDecl, | 
|  | Declarator *D) { | 
|  | IdentifierInfo *II = Name.getAsIdentifierInfo(); | 
|  | bool InvalidDecl = false; | 
|  | if (D) InvalidDecl = D->isInvalidType(); | 
|  |  | 
|  | // If we receive a broken type, recover by assuming 'int' and | 
|  | // marking this declaration as invalid. | 
|  | if (T.isNull()) { | 
|  | InvalidDecl = true; | 
|  | T = Context.IntTy; | 
|  | } | 
|  |  | 
|  | QualType EltTy = Context.getBaseElementType(T); | 
|  | if (!EltTy->isDependentType()) { | 
|  | if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) { | 
|  | // Fields of incomplete type force their record to be invalid. | 
|  | Record->setInvalidDecl(); | 
|  | InvalidDecl = true; | 
|  | } else { | 
|  | NamedDecl *Def; | 
|  | EltTy->isIncompleteType(&Def); | 
|  | if (Def && Def->isInvalidDecl()) { | 
|  | Record->setInvalidDecl(); | 
|  | InvalidDecl = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // TR 18037 does not allow fields to be declared with address space | 
|  | if (T.getQualifiers().hasAddressSpace() || T->isDependentAddressSpaceType() || | 
|  | T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) { | 
|  | Diag(Loc, diag::err_field_with_address_space); | 
|  | Record->setInvalidDecl(); | 
|  | InvalidDecl = true; | 
|  | } | 
|  |  | 
|  | if (LangOpts.OpenCL) { | 
|  | // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be | 
|  | // used as structure or union field: image, sampler, event or block types. | 
|  | if (T->isEventT() || T->isImageType() || T->isSamplerT() || | 
|  | T->isBlockPointerType()) { | 
|  | Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T; | 
|  | Record->setInvalidDecl(); | 
|  | InvalidDecl = true; | 
|  | } | 
|  | // OpenCL v1.2 s6.9.c: bitfields are not supported. | 
|  | if (BitWidth) { | 
|  | Diag(Loc, diag::err_opencl_bitfields); | 
|  | InvalidDecl = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Anonymous bit-fields cannot be cv-qualified (CWG 2229). | 
|  | if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth && | 
|  | T.hasQualifiers()) { | 
|  | InvalidDecl = true; | 
|  | Diag(Loc, diag::err_anon_bitfield_qualifiers); | 
|  | } | 
|  |  | 
|  | // C99 6.7.2.1p8: A member of a structure or union may have any type other | 
|  | // than a variably modified type. | 
|  | if (!InvalidDecl && T->isVariablyModifiedType()) { | 
|  | bool SizeIsNegative; | 
|  | llvm::APSInt Oversized; | 
|  |  | 
|  | TypeSourceInfo *FixedTInfo = | 
|  | TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, | 
|  | SizeIsNegative, | 
|  | Oversized); | 
|  | if (FixedTInfo) { | 
|  | Diag(Loc, diag::warn_illegal_constant_array_size); | 
|  | TInfo = FixedTInfo; | 
|  | T = FixedTInfo->getType(); | 
|  | } else { | 
|  | if (SizeIsNegative) | 
|  | Diag(Loc, diag::err_typecheck_negative_array_size); | 
|  | else if (Oversized.getBoolValue()) | 
|  | Diag(Loc, diag::err_array_too_large) | 
|  | << Oversized.toString(10); | 
|  | else | 
|  | Diag(Loc, diag::err_typecheck_field_variable_size); | 
|  | InvalidDecl = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fields can not have abstract class types | 
|  | if (!InvalidDecl && RequireNonAbstractType(Loc, T, | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractFieldType)) | 
|  | InvalidDecl = true; | 
|  |  | 
|  | bool ZeroWidth = false; | 
|  | if (InvalidDecl) | 
|  | BitWidth = nullptr; | 
|  | // If this is declared as a bit-field, check the bit-field. | 
|  | if (BitWidth) { | 
|  | BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth, | 
|  | &ZeroWidth).get(); | 
|  | if (!BitWidth) { | 
|  | InvalidDecl = true; | 
|  | BitWidth = nullptr; | 
|  | ZeroWidth = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that 'mutable' is consistent with the type of the declaration. | 
|  | if (!InvalidDecl && Mutable) { | 
|  | unsigned DiagID = 0; | 
|  | if (T->isReferenceType()) | 
|  | DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference | 
|  | : diag::err_mutable_reference; | 
|  | else if (T.isConstQualified()) | 
|  | DiagID = diag::err_mutable_const; | 
|  |  | 
|  | if (DiagID) { | 
|  | SourceLocation ErrLoc = Loc; | 
|  | if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) | 
|  | ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); | 
|  | Diag(ErrLoc, DiagID); | 
|  | if (DiagID != diag::ext_mutable_reference) { | 
|  | Mutable = false; | 
|  | InvalidDecl = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++11 [class.union]p8 (DR1460): | 
|  | //   At most one variant member of a union may have a | 
|  | //   brace-or-equal-initializer. | 
|  | if (InitStyle != ICIS_NoInit) | 
|  | checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); | 
|  |  | 
|  | FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, | 
|  | BitWidth, Mutable, InitStyle); | 
|  | if (InvalidDecl) | 
|  | NewFD->setInvalidDecl(); | 
|  |  | 
|  | if (PrevDecl && !isa<TagDecl>(PrevDecl)) { | 
|  | Diag(Loc, diag::err_duplicate_member) << II; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (!InvalidDecl && getLangOpts().CPlusPlus) { | 
|  | if (Record->isUnion()) { | 
|  | if (const RecordType *RT = EltTy->getAs<RecordType>()) { | 
|  | CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (RDecl->getDefinition()) { | 
|  | // C++ [class.union]p1: An object of a class with a non-trivial | 
|  | // constructor, a non-trivial copy constructor, a non-trivial | 
|  | // destructor, or a non-trivial copy assignment operator | 
|  | // cannot be a member of a union, nor can an array of such | 
|  | // objects. | 
|  | if (CheckNontrivialField(NewFD)) | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [class.union]p1: If a union contains a member of reference type, | 
|  | // the program is ill-formed, except when compiling with MSVC extensions | 
|  | // enabled. | 
|  | if (EltTy->isReferenceType()) { | 
|  | Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? | 
|  | diag::ext_union_member_of_reference_type : | 
|  | diag::err_union_member_of_reference_type) | 
|  | << NewFD->getDeclName() << EltTy; | 
|  | if (!getLangOpts().MicrosoftExt) | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: We need to pass in the attributes given an AST | 
|  | // representation, not a parser representation. | 
|  | if (D) { | 
|  | // FIXME: The current scope is almost... but not entirely... correct here. | 
|  | ProcessDeclAttributes(getCurScope(), NewFD, *D); | 
|  |  | 
|  | if (NewFD->hasAttrs()) | 
|  | CheckAlignasUnderalignment(NewFD); | 
|  | } | 
|  |  | 
|  | // In auto-retain/release, infer strong retension for fields of | 
|  | // retainable type. | 
|  | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) | 
|  | NewFD->setInvalidDecl(); | 
|  |  | 
|  | if (T.isObjCGCWeak()) | 
|  | Diag(Loc, diag::warn_attribute_weak_on_field); | 
|  |  | 
|  | NewFD->setAccess(AS); | 
|  | return NewFD; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckNontrivialField(FieldDecl *FD) { | 
|  | assert(FD); | 
|  | assert(getLangOpts().CPlusPlus && "valid check only for C++"); | 
|  |  | 
|  | if (FD->isInvalidDecl() || FD->getType()->isDependentType()) | 
|  | return false; | 
|  |  | 
|  | QualType EltTy = Context.getBaseElementType(FD->getType()); | 
|  | if (const RecordType *RT = EltTy->getAs<RecordType>()) { | 
|  | CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (RDecl->getDefinition()) { | 
|  | // We check for copy constructors before constructors | 
|  | // because otherwise we'll never get complaints about | 
|  | // copy constructors. | 
|  |  | 
|  | CXXSpecialMember member = CXXInvalid; | 
|  | // We're required to check for any non-trivial constructors. Since the | 
|  | // implicit default constructor is suppressed if there are any | 
|  | // user-declared constructors, we just need to check that there is a | 
|  | // trivial default constructor and a trivial copy constructor. (We don't | 
|  | // worry about move constructors here, since this is a C++98 check.) | 
|  | if (RDecl->hasNonTrivialCopyConstructor()) | 
|  | member = CXXCopyConstructor; | 
|  | else if (!RDecl->hasTrivialDefaultConstructor()) | 
|  | member = CXXDefaultConstructor; | 
|  | else if (RDecl->hasNonTrivialCopyAssignment()) | 
|  | member = CXXCopyAssignment; | 
|  | else if (RDecl->hasNonTrivialDestructor()) | 
|  | member = CXXDestructor; | 
|  |  | 
|  | if (member != CXXInvalid) { | 
|  | if (!getLangOpts().CPlusPlus11 && | 
|  | getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { | 
|  | // Objective-C++ ARC: it is an error to have a non-trivial field of | 
|  | // a union. However, system headers in Objective-C programs | 
|  | // occasionally have Objective-C lifetime objects within unions, | 
|  | // and rather than cause the program to fail, we make those | 
|  | // members unavailable. | 
|  | SourceLocation Loc = FD->getLocation(); | 
|  | if (getSourceManager().isInSystemHeader(Loc)) { | 
|  | if (!FD->hasAttr<UnavailableAttr>()) | 
|  | FD->addAttr(UnavailableAttr::CreateImplicit(Context, "", | 
|  | UnavailableAttr::IR_ARCFieldWithOwnership, Loc)); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : | 
|  | diag::err_illegal_union_or_anon_struct_member) | 
|  | << FD->getParent()->isUnion() << FD->getDeclName() << member; | 
|  | DiagnoseNontrivial(RDecl, member); | 
|  | return !getLangOpts().CPlusPlus11; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// TranslateIvarVisibility - Translate visibility from a token ID to an | 
|  | ///  AST enum value. | 
|  | static ObjCIvarDecl::AccessControl | 
|  | TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { | 
|  | switch (ivarVisibility) { | 
|  | default: llvm_unreachable("Unknown visitibility kind"); | 
|  | case tok::objc_private: return ObjCIvarDecl::Private; | 
|  | case tok::objc_public: return ObjCIvarDecl::Public; | 
|  | case tok::objc_protected: return ObjCIvarDecl::Protected; | 
|  | case tok::objc_package: return ObjCIvarDecl::Package; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ActOnIvar - Each ivar field of an objective-c class is passed into this | 
|  | /// in order to create an IvarDecl object for it. | 
|  | Decl *Sema::ActOnIvar(Scope *S, | 
|  | SourceLocation DeclStart, | 
|  | Declarator &D, Expr *BitfieldWidth, | 
|  | tok::ObjCKeywordKind Visibility) { | 
|  |  | 
|  | IdentifierInfo *II = D.getIdentifier(); | 
|  | Expr *BitWidth = (Expr*)BitfieldWidth; | 
|  | SourceLocation Loc = DeclStart; | 
|  | if (II) Loc = D.getIdentifierLoc(); | 
|  |  | 
|  | // FIXME: Unnamed fields can be handled in various different ways, for | 
|  | // example, unnamed unions inject all members into the struct namespace! | 
|  |  | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | QualType T = TInfo->getType(); | 
|  |  | 
|  | if (BitWidth) { | 
|  | // 6.7.2.1p3, 6.7.2.1p4 | 
|  | BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); | 
|  | if (!BitWidth) | 
|  | D.setInvalidType(); | 
|  | } else { | 
|  | // Not a bitfield. | 
|  |  | 
|  | // validate II. | 
|  |  | 
|  | } | 
|  | if (T->isReferenceType()) { | 
|  | Diag(Loc, diag::err_ivar_reference_type); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | // C99 6.7.2.1p8: A member of a structure or union may have any type other | 
|  | // than a variably modified type. | 
|  | else if (T->isVariablyModifiedType()) { | 
|  | Diag(Loc, diag::err_typecheck_ivar_variable_size); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Get the visibility (access control) for this ivar. | 
|  | ObjCIvarDecl::AccessControl ac = | 
|  | Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) | 
|  | : ObjCIvarDecl::None; | 
|  | // Must set ivar's DeclContext to its enclosing interface. | 
|  | ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); | 
|  | if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) | 
|  | return nullptr; | 
|  | ObjCContainerDecl *EnclosingContext; | 
|  | if (ObjCImplementationDecl *IMPDecl = | 
|  | dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { | 
|  | if (LangOpts.ObjCRuntime.isFragile()) { | 
|  | // Case of ivar declared in an implementation. Context is that of its class. | 
|  | EnclosingContext = IMPDecl->getClassInterface(); | 
|  | assert(EnclosingContext && "Implementation has no class interface!"); | 
|  | } | 
|  | else | 
|  | EnclosingContext = EnclosingDecl; | 
|  | } else { | 
|  | if (ObjCCategoryDecl *CDecl = | 
|  | dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { | 
|  | if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { | 
|  | Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | EnclosingContext = EnclosingDecl; | 
|  | } | 
|  |  | 
|  | // Construct the decl. | 
|  | ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, | 
|  | DeclStart, Loc, II, T, | 
|  | TInfo, ac, (Expr *)BitfieldWidth); | 
|  |  | 
|  | if (II) { | 
|  | NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, | 
|  | ForVisibleRedeclaration); | 
|  | if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) | 
|  | && !isa<TagDecl>(PrevDecl)) { | 
|  | Diag(Loc, diag::err_duplicate_member) << II; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | 
|  | NewID->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process attributes attached to the ivar. | 
|  | ProcessDeclAttributes(S, NewID, D); | 
|  |  | 
|  | if (D.isInvalidType()) | 
|  | NewID->setInvalidDecl(); | 
|  |  | 
|  | // In ARC, infer 'retaining' for ivars of retainable type. | 
|  | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) | 
|  | NewID->setInvalidDecl(); | 
|  |  | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) | 
|  | NewID->setModulePrivate(); | 
|  |  | 
|  | if (II) { | 
|  | // FIXME: When interfaces are DeclContexts, we'll need to add | 
|  | // these to the interface. | 
|  | S->AddDecl(NewID); | 
|  | IdResolver.AddDecl(NewID); | 
|  | } | 
|  |  | 
|  | if (LangOpts.ObjCRuntime.isNonFragile() && | 
|  | !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) | 
|  | Diag(Loc, diag::warn_ivars_in_interface); | 
|  |  | 
|  | return NewID; | 
|  | } | 
|  |  | 
|  | /// ActOnLastBitfield - This routine handles synthesized bitfields rules for | 
|  | /// class and class extensions. For every class \@interface and class | 
|  | /// extension \@interface, if the last ivar is a bitfield of any type, | 
|  | /// then add an implicit `char :0` ivar to the end of that interface. | 
|  | void Sema::ActOnLastBitfield(SourceLocation DeclLoc, | 
|  | SmallVectorImpl<Decl *> &AllIvarDecls) { | 
|  | if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) | 
|  | return; | 
|  |  | 
|  | Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; | 
|  | ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); | 
|  |  | 
|  | if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context)) | 
|  | return; | 
|  | ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); | 
|  | if (!ID) { | 
|  | if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { | 
|  | if (!CD->IsClassExtension()) | 
|  | return; | 
|  | } | 
|  | // No need to add this to end of @implementation. | 
|  | else | 
|  | return; | 
|  | } | 
|  | // All conditions are met. Add a new bitfield to the tail end of ivars. | 
|  | llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); | 
|  | Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); | 
|  |  | 
|  | Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), | 
|  | DeclLoc, DeclLoc, nullptr, | 
|  | Context.CharTy, | 
|  | Context.getTrivialTypeSourceInfo(Context.CharTy, | 
|  | DeclLoc), | 
|  | ObjCIvarDecl::Private, BW, | 
|  | true); | 
|  | AllIvarDecls.push_back(Ivar); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, | 
|  | ArrayRef<Decl *> Fields, SourceLocation LBrac, | 
|  | SourceLocation RBrac, | 
|  | const ParsedAttributesView &Attrs) { | 
|  | assert(EnclosingDecl && "missing record or interface decl"); | 
|  |  | 
|  | // If this is an Objective-C @implementation or category and we have | 
|  | // new fields here we should reset the layout of the interface since | 
|  | // it will now change. | 
|  | if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { | 
|  | ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); | 
|  | switch (DC->getKind()) { | 
|  | default: break; | 
|  | case Decl::ObjCCategory: | 
|  | Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); | 
|  | break; | 
|  | case Decl::ObjCImplementation: | 
|  | Context. | 
|  | ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); | 
|  | CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl); | 
|  |  | 
|  | // Start counting up the number of named members; make sure to include | 
|  | // members of anonymous structs and unions in the total. | 
|  | unsigned NumNamedMembers = 0; | 
|  | if (Record) { | 
|  | for (const auto *I : Record->decls()) { | 
|  | if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) | 
|  | if (IFD->getDeclName()) | 
|  | ++NumNamedMembers; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Verify that all the fields are okay. | 
|  | SmallVector<FieldDecl*, 32> RecFields; | 
|  |  | 
|  | for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); | 
|  | i != end; ++i) { | 
|  | FieldDecl *FD = cast<FieldDecl>(*i); | 
|  |  | 
|  | // Get the type for the field. | 
|  | const Type *FDTy = FD->getType().getTypePtr(); | 
|  |  | 
|  | if (!FD->isAnonymousStructOrUnion()) { | 
|  | // Remember all fields written by the user. | 
|  | RecFields.push_back(FD); | 
|  | } | 
|  |  | 
|  | // If the field is already invalid for some reason, don't emit more | 
|  | // diagnostics about it. | 
|  | if (FD->isInvalidDecl()) { | 
|  | EnclosingDecl->setInvalidDecl(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // C99 6.7.2.1p2: | 
|  | //   A structure or union shall not contain a member with | 
|  | //   incomplete or function type (hence, a structure shall not | 
|  | //   contain an instance of itself, but may contain a pointer to | 
|  | //   an instance of itself), except that the last member of a | 
|  | //   structure with more than one named member may have incomplete | 
|  | //   array type; such a structure (and any union containing, | 
|  | //   possibly recursively, a member that is such a structure) | 
|  | //   shall not be a member of a structure or an element of an | 
|  | //   array. | 
|  | bool IsLastField = (i + 1 == Fields.end()); | 
|  | if (FDTy->isFunctionType()) { | 
|  | // Field declared as a function. | 
|  | Diag(FD->getLocation(), diag::err_field_declared_as_function) | 
|  | << FD->getDeclName(); | 
|  | FD->setInvalidDecl(); | 
|  | EnclosingDecl->setInvalidDecl(); | 
|  | continue; | 
|  | } else if (FDTy->isIncompleteArrayType() && | 
|  | (Record || isa<ObjCContainerDecl>(EnclosingDecl))) { | 
|  | if (Record) { | 
|  | // Flexible array member. | 
|  | // Microsoft and g++ is more permissive regarding flexible array. | 
|  | // It will accept flexible array in union and also | 
|  | // as the sole element of a struct/class. | 
|  | unsigned DiagID = 0; | 
|  | if (!Record->isUnion() && !IsLastField) { | 
|  | Diag(FD->getLocation(), diag::err_flexible_array_not_at_end) | 
|  | << FD->getDeclName() << FD->getType() << Record->getTagKind(); | 
|  | Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration); | 
|  | FD->setInvalidDecl(); | 
|  | EnclosingDecl->setInvalidDecl(); | 
|  | continue; | 
|  | } else if (Record->isUnion()) | 
|  | DiagID = getLangOpts().MicrosoftExt | 
|  | ? diag::ext_flexible_array_union_ms | 
|  | : getLangOpts().CPlusPlus | 
|  | ? diag::ext_flexible_array_union_gnu | 
|  | : diag::err_flexible_array_union; | 
|  | else if (NumNamedMembers < 1) | 
|  | DiagID = getLangOpts().MicrosoftExt | 
|  | ? diag::ext_flexible_array_empty_aggregate_ms | 
|  | : getLangOpts().CPlusPlus | 
|  | ? diag::ext_flexible_array_empty_aggregate_gnu | 
|  | : diag::err_flexible_array_empty_aggregate; | 
|  |  | 
|  | if (DiagID) | 
|  | Diag(FD->getLocation(), DiagID) << FD->getDeclName() | 
|  | << Record->getTagKind(); | 
|  | // While the layout of types that contain virtual bases is not specified | 
|  | // by the C++ standard, both the Itanium and Microsoft C++ ABIs place | 
|  | // virtual bases after the derived members.  This would make a flexible | 
|  | // array member declared at the end of an object not adjacent to the end | 
|  | // of the type. | 
|  | if (CXXRecord && CXXRecord->getNumVBases() != 0) | 
|  | Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) | 
|  | << FD->getDeclName() << Record->getTagKind(); | 
|  | if (!getLangOpts().C99) | 
|  | Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) | 
|  | << FD->getDeclName() << Record->getTagKind(); | 
|  |  | 
|  | // If the element type has a non-trivial destructor, we would not | 
|  | // implicitly destroy the elements, so disallow it for now. | 
|  | // | 
|  | // FIXME: GCC allows this. We should probably either implicitly delete | 
|  | // the destructor of the containing class, or just allow this. | 
|  | QualType BaseElem = Context.getBaseElementType(FD->getType()); | 
|  | if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { | 
|  | Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) | 
|  | << FD->getDeclName() << FD->getType(); | 
|  | FD->setInvalidDecl(); | 
|  | EnclosingDecl->setInvalidDecl(); | 
|  | continue; | 
|  | } | 
|  | // Okay, we have a legal flexible array member at the end of the struct. | 
|  | Record->setHasFlexibleArrayMember(true); | 
|  | } else { | 
|  | // In ObjCContainerDecl ivars with incomplete array type are accepted, | 
|  | // unless they are followed by another ivar. That check is done | 
|  | // elsewhere, after synthesized ivars are known. | 
|  | } | 
|  | } else if (!FDTy->isDependentType() && | 
|  | RequireCompleteType(FD->getLocation(), FD->getType(), | 
|  | diag::err_field_incomplete)) { | 
|  | // Incomplete type | 
|  | FD->setInvalidDecl(); | 
|  | EnclosingDecl->setInvalidDecl(); | 
|  | continue; | 
|  | } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { | 
|  | if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { | 
|  | // A type which contains a flexible array member is considered to be a | 
|  | // flexible array member. | 
|  | Record->setHasFlexibleArrayMember(true); | 
|  | if (!Record->isUnion()) { | 
|  | // If this is a struct/class and this is not the last element, reject | 
|  | // it.  Note that GCC supports variable sized arrays in the middle of | 
|  | // structures. | 
|  | if (!IsLastField) | 
|  | Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) | 
|  | << FD->getDeclName() << FD->getType(); | 
|  | else { | 
|  | // We support flexible arrays at the end of structs in | 
|  | // other structs as an extension. | 
|  | Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) | 
|  | << FD->getDeclName(); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (isa<ObjCContainerDecl>(EnclosingDecl) && | 
|  | RequireNonAbstractType(FD->getLocation(), FD->getType(), | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractIvarType)) { | 
|  | // Ivars can not have abstract class types | 
|  | FD->setInvalidDecl(); | 
|  | } | 
|  | if (Record && FDTTy->getDecl()->hasObjectMember()) | 
|  | Record->setHasObjectMember(true); | 
|  | if (Record && FDTTy->getDecl()->hasVolatileMember()) | 
|  | Record->setHasVolatileMember(true); | 
|  | } else if (FDTy->isObjCObjectType()) { | 
|  | /// A field cannot be an Objective-c object | 
|  | Diag(FD->getLocation(), diag::err_statically_allocated_object) | 
|  | << FixItHint::CreateInsertion(FD->getLocation(), "*"); | 
|  | QualType T = Context.getObjCObjectPointerType(FD->getType()); | 
|  | FD->setType(T); | 
|  | } else if (getLangOpts().ObjC && | 
|  | getLangOpts().getGC() != LangOptions::NonGC && | 
|  | Record && !Record->hasObjectMember()) { | 
|  | if (FD->getType()->isObjCObjectPointerType() || | 
|  | FD->getType().isObjCGCStrong()) | 
|  | Record->setHasObjectMember(true); | 
|  | else if (Context.getAsArrayType(FD->getType())) { | 
|  | QualType BaseType = Context.getBaseElementType(FD->getType()); | 
|  | if (BaseType->isRecordType() && | 
|  | BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()) | 
|  | Record->setHasObjectMember(true); | 
|  | else if (BaseType->isObjCObjectPointerType() || | 
|  | BaseType.isObjCGCStrong()) | 
|  | Record->setHasObjectMember(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) { | 
|  | QualType FT = FD->getType(); | 
|  | if (FT.isNonTrivialToPrimitiveDefaultInitialize()) { | 
|  | Record->setNonTrivialToPrimitiveDefaultInitialize(true); | 
|  | if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | 
|  | Record->isUnion()) | 
|  | Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true); | 
|  | } | 
|  | QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy(); | 
|  | if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) { | 
|  | Record->setNonTrivialToPrimitiveCopy(true); | 
|  | if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion()) | 
|  | Record->setHasNonTrivialToPrimitiveCopyCUnion(true); | 
|  | } | 
|  | if (FT.isDestructedType()) { | 
|  | Record->setNonTrivialToPrimitiveDestroy(true); | 
|  | Record->setParamDestroyedInCallee(true); | 
|  | if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion()) | 
|  | Record->setHasNonTrivialToPrimitiveDestructCUnion(true); | 
|  | } | 
|  |  | 
|  | if (const auto *RT = FT->getAs<RecordType>()) { | 
|  | if (RT->getDecl()->getArgPassingRestrictions() == | 
|  | RecordDecl::APK_CanNeverPassInRegs) | 
|  | Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); | 
|  | } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak) | 
|  | Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); | 
|  | } | 
|  |  | 
|  | if (Record && FD->getType().isVolatileQualified()) | 
|  | Record->setHasVolatileMember(true); | 
|  | // Keep track of the number of named members. | 
|  | if (FD->getIdentifier()) | 
|  | ++NumNamedMembers; | 
|  | } | 
|  |  | 
|  | // Okay, we successfully defined 'Record'. | 
|  | if (Record) { | 
|  | bool Completed = false; | 
|  | if (CXXRecord) { | 
|  | if (!CXXRecord->isInvalidDecl()) { | 
|  | // Set access bits correctly on the directly-declared conversions. | 
|  | for (CXXRecordDecl::conversion_iterator | 
|  | I = CXXRecord->conversion_begin(), | 
|  | E = CXXRecord->conversion_end(); I != E; ++I) | 
|  | I.setAccess((*I)->getAccess()); | 
|  | } | 
|  |  | 
|  | if (!CXXRecord->isDependentType()) { | 
|  | // Add any implicitly-declared members to this class. | 
|  | AddImplicitlyDeclaredMembersToClass(CXXRecord); | 
|  |  | 
|  | if (!CXXRecord->isInvalidDecl()) { | 
|  | // If we have virtual base classes, we may end up finding multiple | 
|  | // final overriders for a given virtual function. Check for this | 
|  | // problem now. | 
|  | if (CXXRecord->getNumVBases()) { | 
|  | CXXFinalOverriderMap FinalOverriders; | 
|  | CXXRecord->getFinalOverriders(FinalOverriders); | 
|  |  | 
|  | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), | 
|  | MEnd = FinalOverriders.end(); | 
|  | M != MEnd; ++M) { | 
|  | for (OverridingMethods::iterator SO = M->second.begin(), | 
|  | SOEnd = M->second.end(); | 
|  | SO != SOEnd; ++SO) { | 
|  | assert(SO->second.size() > 0 && | 
|  | "Virtual function without overriding functions?"); | 
|  | if (SO->second.size() == 1) | 
|  | continue; | 
|  |  | 
|  | // C++ [class.virtual]p2: | 
|  | //   In a derived class, if a virtual member function of a base | 
|  | //   class subobject has more than one final overrider the | 
|  | //   program is ill-formed. | 
|  | Diag(Record->getLocation(), diag::err_multiple_final_overriders) | 
|  | << (const NamedDecl *)M->first << Record; | 
|  | Diag(M->first->getLocation(), | 
|  | diag::note_overridden_virtual_function); | 
|  | for (OverridingMethods::overriding_iterator | 
|  | OM = SO->second.begin(), | 
|  | OMEnd = SO->second.end(); | 
|  | OM != OMEnd; ++OM) | 
|  | Diag(OM->Method->getLocation(), diag::note_final_overrider) | 
|  | << (const NamedDecl *)M->first << OM->Method->getParent(); | 
|  |  | 
|  | Record->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | CXXRecord->completeDefinition(&FinalOverriders); | 
|  | Completed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Completed) | 
|  | Record->completeDefinition(); | 
|  |  | 
|  | // Handle attributes before checking the layout. | 
|  | ProcessDeclAttributeList(S, Record, Attrs); | 
|  |  | 
|  | // We may have deferred checking for a deleted destructor. Check now. | 
|  | if (CXXRecord) { | 
|  | auto *Dtor = CXXRecord->getDestructor(); | 
|  | if (Dtor && Dtor->isImplicit() && | 
|  | ShouldDeleteSpecialMember(Dtor, CXXDestructor)) { | 
|  | CXXRecord->setImplicitDestructorIsDeleted(); | 
|  | SetDeclDeleted(Dtor, CXXRecord->getLocation()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Record->hasAttrs()) { | 
|  | CheckAlignasUnderalignment(Record); | 
|  |  | 
|  | if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) | 
|  | checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), | 
|  | IA->getRange(), IA->getBestCase(), | 
|  | IA->getSemanticSpelling()); | 
|  | } | 
|  |  | 
|  | // Check if the structure/union declaration is a type that can have zero | 
|  | // size in C. For C this is a language extension, for C++ it may cause | 
|  | // compatibility problems. | 
|  | bool CheckForZeroSize; | 
|  | if (!getLangOpts().CPlusPlus) { | 
|  | CheckForZeroSize = true; | 
|  | } else { | 
|  | // For C++ filter out types that cannot be referenced in C code. | 
|  | CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); | 
|  | CheckForZeroSize = | 
|  | CXXRecord->getLexicalDeclContext()->isExternCContext() && | 
|  | !CXXRecord->isDependentType() && | 
|  | CXXRecord->isCLike(); | 
|  | } | 
|  | if (CheckForZeroSize) { | 
|  | bool ZeroSize = true; | 
|  | bool IsEmpty = true; | 
|  | unsigned NonBitFields = 0; | 
|  | for (RecordDecl::field_iterator I = Record->field_begin(), | 
|  | E = Record->field_end(); | 
|  | (NonBitFields == 0 || ZeroSize) && I != E; ++I) { | 
|  | IsEmpty = false; | 
|  | if (I->isUnnamedBitfield()) { | 
|  | if (!I->isZeroLengthBitField(Context)) | 
|  | ZeroSize = false; | 
|  | } else { | 
|  | ++NonBitFields; | 
|  | QualType FieldType = I->getType(); | 
|  | if (FieldType->isIncompleteType() || | 
|  | !Context.getTypeSizeInChars(FieldType).isZero()) | 
|  | ZeroSize = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Empty structs are an extension in C (C99 6.7.2.1p7). They are | 
|  | // allowed in C++, but warn if its declaration is inside | 
|  | // extern "C" block. | 
|  | if (ZeroSize) { | 
|  | Diag(RecLoc, getLangOpts().CPlusPlus ? | 
|  | diag::warn_zero_size_struct_union_in_extern_c : | 
|  | diag::warn_zero_size_struct_union_compat) | 
|  | << IsEmpty << Record->isUnion() << (NonBitFields > 1); | 
|  | } | 
|  |  | 
|  | // Structs without named members are extension in C (C99 6.7.2.1p7), | 
|  | // but are accepted by GCC. | 
|  | if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { | 
|  | Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : | 
|  | diag::ext_no_named_members_in_struct_union) | 
|  | << Record->isUnion(); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | ObjCIvarDecl **ClsFields = | 
|  | reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); | 
|  | if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { | 
|  | ID->setEndOfDefinitionLoc(RBrac); | 
|  | // Add ivar's to class's DeclContext. | 
|  | for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { | 
|  | ClsFields[i]->setLexicalDeclContext(ID); | 
|  | ID->addDecl(ClsFields[i]); | 
|  | } | 
|  | // Must enforce the rule that ivars in the base classes may not be | 
|  | // duplicates. | 
|  | if (ID->getSuperClass()) | 
|  | DiagnoseDuplicateIvars(ID, ID->getSuperClass()); | 
|  | } else if (ObjCImplementationDecl *IMPDecl = | 
|  | dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { | 
|  | assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); | 
|  | for (unsigned I = 0, N = RecFields.size(); I != N; ++I) | 
|  | // Ivar declared in @implementation never belongs to the implementation. | 
|  | // Only it is in implementation's lexical context. | 
|  | ClsFields[I]->setLexicalDeclContext(IMPDecl); | 
|  | CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); | 
|  | IMPDecl->setIvarLBraceLoc(LBrac); | 
|  | IMPDecl->setIvarRBraceLoc(RBrac); | 
|  | } else if (ObjCCategoryDecl *CDecl = | 
|  | dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { | 
|  | // case of ivars in class extension; all other cases have been | 
|  | // reported as errors elsewhere. | 
|  | // FIXME. Class extension does not have a LocEnd field. | 
|  | // CDecl->setLocEnd(RBrac); | 
|  | // Add ivar's to class extension's DeclContext. | 
|  | // Diagnose redeclaration of private ivars. | 
|  | ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); | 
|  | for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { | 
|  | if (IDecl) { | 
|  | if (const ObjCIvarDecl *ClsIvar = | 
|  | IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { | 
|  | Diag(ClsFields[i]->getLocation(), | 
|  | diag::err_duplicate_ivar_declaration); | 
|  | Diag(ClsIvar->getLocation(), diag::note_previous_definition); | 
|  | continue; | 
|  | } | 
|  | for (const auto *Ext : IDecl->known_extensions()) { | 
|  | if (const ObjCIvarDecl *ClsExtIvar | 
|  | = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { | 
|  | Diag(ClsFields[i]->getLocation(), | 
|  | diag::err_duplicate_ivar_declaration); | 
|  | Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | ClsFields[i]->setLexicalDeclContext(CDecl); | 
|  | CDecl->addDecl(ClsFields[i]); | 
|  | } | 
|  | CDecl->setIvarLBraceLoc(LBrac); | 
|  | CDecl->setIvarRBraceLoc(RBrac); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine whether the given integral value is representable within | 
|  | /// the given type T. | 
|  | static bool isRepresentableIntegerValue(ASTContext &Context, | 
|  | llvm::APSInt &Value, | 
|  | QualType T) { | 
|  | assert((T->isIntegralType(Context) || T->isEnumeralType()) && | 
|  | "Integral type required!"); | 
|  | unsigned BitWidth = Context.getIntWidth(T); | 
|  |  | 
|  | if (Value.isUnsigned() || Value.isNonNegative()) { | 
|  | if (T->isSignedIntegerOrEnumerationType()) | 
|  | --BitWidth; | 
|  | return Value.getActiveBits() <= BitWidth; | 
|  | } | 
|  | return Value.getMinSignedBits() <= BitWidth; | 
|  | } | 
|  |  | 
|  | // Given an integral type, return the next larger integral type | 
|  | // (or a NULL type of no such type exists). | 
|  | static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { | 
|  | // FIXME: Int128/UInt128 support, which also needs to be introduced into | 
|  | // enum checking below. | 
|  | assert((T->isIntegralType(Context) || | 
|  | T->isEnumeralType()) && "Integral type required!"); | 
|  | const unsigned NumTypes = 4; | 
|  | QualType SignedIntegralTypes[NumTypes] = { | 
|  | Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy | 
|  | }; | 
|  | QualType UnsignedIntegralTypes[NumTypes] = { | 
|  | Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, | 
|  | Context.UnsignedLongLongTy | 
|  | }; | 
|  |  | 
|  | unsigned BitWidth = Context.getTypeSize(T); | 
|  | QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes | 
|  | : UnsignedIntegralTypes; | 
|  | for (unsigned I = 0; I != NumTypes; ++I) | 
|  | if (Context.getTypeSize(Types[I]) > BitWidth) | 
|  | return Types[I]; | 
|  |  | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, | 
|  | EnumConstantDecl *LastEnumConst, | 
|  | SourceLocation IdLoc, | 
|  | IdentifierInfo *Id, | 
|  | Expr *Val) { | 
|  | unsigned IntWidth = Context.getTargetInfo().getIntWidth(); | 
|  | llvm::APSInt EnumVal(IntWidth); | 
|  | QualType EltTy; | 
|  |  | 
|  | if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) | 
|  | Val = nullptr; | 
|  |  | 
|  | if (Val) | 
|  | Val = DefaultLvalueConversion(Val).get(); | 
|  |  | 
|  | if (Val) { | 
|  | if (Enum->isDependentType() || Val->isTypeDependent()) | 
|  | EltTy = Context.DependentTy; | 
|  | else { | 
|  | if (getLangOpts().CPlusPlus11 && Enum->isFixed() && | 
|  | !getLangOpts().MSVCCompat) { | 
|  | // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the | 
|  | // constant-expression in the enumerator-definition shall be a converted | 
|  | // constant expression of the underlying type. | 
|  | EltTy = Enum->getIntegerType(); | 
|  | ExprResult Converted = | 
|  | CheckConvertedConstantExpression(Val, EltTy, EnumVal, | 
|  | CCEK_Enumerator); | 
|  | if (Converted.isInvalid()) | 
|  | Val = nullptr; | 
|  | else | 
|  | Val = Converted.get(); | 
|  | } else if (!Val->isValueDependent() && | 
|  | !(Val = VerifyIntegerConstantExpression(Val, | 
|  | &EnumVal).get())) { | 
|  | // C99 6.7.2.2p2: Make sure we have an integer constant expression. | 
|  | } else { | 
|  | if (Enum->isComplete()) { | 
|  | EltTy = Enum->getIntegerType(); | 
|  |  | 
|  | // In Obj-C and Microsoft mode, require the enumeration value to be | 
|  | // representable in the underlying type of the enumeration. In C++11, | 
|  | // we perform a non-narrowing conversion as part of converted constant | 
|  | // expression checking. | 
|  | if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { | 
|  | if (getLangOpts().MSVCCompat) { | 
|  | Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; | 
|  | Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get(); | 
|  | } else | 
|  | Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; | 
|  | } else | 
|  | Val = ImpCastExprToType(Val, EltTy, | 
|  | EltTy->isBooleanType() ? | 
|  | CK_IntegralToBoolean : CK_IntegralCast) | 
|  | .get(); | 
|  | } else if (getLangOpts().CPlusPlus) { | 
|  | // C++11 [dcl.enum]p5: | 
|  | //   If the underlying type is not fixed, the type of each enumerator | 
|  | //   is the type of its initializing value: | 
|  | //     - If an initializer is specified for an enumerator, the | 
|  | //       initializing value has the same type as the expression. | 
|  | EltTy = Val->getType(); | 
|  | } else { | 
|  | // C99 6.7.2.2p2: | 
|  | //   The expression that defines the value of an enumeration constant | 
|  | //   shall be an integer constant expression that has a value | 
|  | //   representable as an int. | 
|  |  | 
|  | // Complain if the value is not representable in an int. | 
|  | if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) | 
|  | Diag(IdLoc, diag::ext_enum_value_not_int) | 
|  | << EnumVal.toString(10) << Val->getSourceRange() | 
|  | << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); | 
|  | else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { | 
|  | // Force the type of the expression to 'int'. | 
|  | Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); | 
|  | } | 
|  | EltTy = Val->getType(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Val) { | 
|  | if (Enum->isDependentType()) | 
|  | EltTy = Context.DependentTy; | 
|  | else if (!LastEnumConst) { | 
|  | // C++0x [dcl.enum]p5: | 
|  | //   If the underlying type is not fixed, the type of each enumerator | 
|  | //   is the type of its initializing value: | 
|  | //     - If no initializer is specified for the first enumerator, the | 
|  | //       initializing value has an unspecified integral type. | 
|  | // | 
|  | // GCC uses 'int' for its unspecified integral type, as does | 
|  | // C99 6.7.2.2p3. | 
|  | if (Enum->isFixed()) { | 
|  | EltTy = Enum->getIntegerType(); | 
|  | } | 
|  | else { | 
|  | EltTy = Context.IntTy; | 
|  | } | 
|  | } else { | 
|  | // Assign the last value + 1. | 
|  | EnumVal = LastEnumConst->getInitVal(); | 
|  | ++EnumVal; | 
|  | EltTy = LastEnumConst->getType(); | 
|  |  | 
|  | // Check for overflow on increment. | 
|  | if (EnumVal < LastEnumConst->getInitVal()) { | 
|  | // C++0x [dcl.enum]p5: | 
|  | //   If the underlying type is not fixed, the type of each enumerator | 
|  | //   is the type of its initializing value: | 
|  | // | 
|  | //     - Otherwise the type of the initializing value is the same as | 
|  | //       the type of the initializing value of the preceding enumerator | 
|  | //       unless the incremented value is not representable in that type, | 
|  | //       in which case the type is an unspecified integral type | 
|  | //       sufficient to contain the incremented value. If no such type | 
|  | //       exists, the program is ill-formed. | 
|  | QualType T = getNextLargerIntegralType(Context, EltTy); | 
|  | if (T.isNull() || Enum->isFixed()) { | 
|  | // There is no integral type larger enough to represent this | 
|  | // value. Complain, then allow the value to wrap around. | 
|  | EnumVal = LastEnumConst->getInitVal(); | 
|  | EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); | 
|  | ++EnumVal; | 
|  | if (Enum->isFixed()) | 
|  | // When the underlying type is fixed, this is ill-formed. | 
|  | Diag(IdLoc, diag::err_enumerator_wrapped) | 
|  | << EnumVal.toString(10) | 
|  | << EltTy; | 
|  | else | 
|  | Diag(IdLoc, diag::ext_enumerator_increment_too_large) | 
|  | << EnumVal.toString(10); | 
|  | } else { | 
|  | EltTy = T; | 
|  | } | 
|  |  | 
|  | // Retrieve the last enumerator's value, extent that type to the | 
|  | // type that is supposed to be large enough to represent the incremented | 
|  | // value, then increment. | 
|  | EnumVal = LastEnumConst->getInitVal(); | 
|  | EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); | 
|  | EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); | 
|  | ++EnumVal; | 
|  |  | 
|  | // If we're not in C++, diagnose the overflow of enumerator values, | 
|  | // which in C99 means that the enumerator value is not representable in | 
|  | // an int (C99 6.7.2.2p2). However, we support GCC's extension that | 
|  | // permits enumerator values that are representable in some larger | 
|  | // integral type. | 
|  | if (!getLangOpts().CPlusPlus && !T.isNull()) | 
|  | Diag(IdLoc, diag::warn_enum_value_overflow); | 
|  | } else if (!getLangOpts().CPlusPlus && | 
|  | !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { | 
|  | // Enforce C99 6.7.2.2p2 even when we compute the next value. | 
|  | Diag(IdLoc, diag::ext_enum_value_not_int) | 
|  | << EnumVal.toString(10) << 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!EltTy->isDependentType()) { | 
|  | // Make the enumerator value match the signedness and size of the | 
|  | // enumerator's type. | 
|  | EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); | 
|  | EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); | 
|  | } | 
|  |  | 
|  | return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, | 
|  | Val, EnumVal); | 
|  | } | 
|  |  | 
|  | Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, | 
|  | SourceLocation IILoc) { | 
|  | if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) || | 
|  | !getLangOpts().CPlusPlus) | 
|  | return SkipBodyInfo(); | 
|  |  | 
|  | // We have an anonymous enum definition. Look up the first enumerator to | 
|  | // determine if we should merge the definition with an existing one and | 
|  | // skip the body. | 
|  | NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName, | 
|  | forRedeclarationInCurContext()); | 
|  | auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl); | 
|  | if (!PrevECD) | 
|  | return SkipBodyInfo(); | 
|  |  | 
|  | EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext()); | 
|  | NamedDecl *Hidden; | 
|  | if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) { | 
|  | SkipBodyInfo Skip; | 
|  | Skip.Previous = Hidden; | 
|  | return Skip; | 
|  | } | 
|  |  | 
|  | return SkipBodyInfo(); | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, | 
|  | SourceLocation IdLoc, IdentifierInfo *Id, | 
|  | const ParsedAttributesView &Attrs, | 
|  | SourceLocation EqualLoc, Expr *Val) { | 
|  | EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); | 
|  | EnumConstantDecl *LastEnumConst = | 
|  | cast_or_null<EnumConstantDecl>(lastEnumConst); | 
|  |  | 
|  | // The scope passed in may not be a decl scope.  Zip up the scope tree until | 
|  | // we find one that is. | 
|  | S = getNonFieldDeclScope(S); | 
|  |  | 
|  | // Verify that there isn't already something declared with this name in this | 
|  | // scope. | 
|  | LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration); | 
|  | LookupName(R, S); | 
|  | NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>(); | 
|  |  | 
|  | if (PrevDecl && PrevDecl->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); | 
|  | // Just pretend that we didn't see the previous declaration. | 
|  | PrevDecl = nullptr; | 
|  | } | 
|  |  | 
|  | // C++ [class.mem]p15: | 
|  | // If T is the name of a class, then each of the following shall have a name | 
|  | // different from T: | 
|  | // - every enumerator of every member of class T that is an unscoped | 
|  | // enumerated type | 
|  | if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped()) | 
|  | DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(), | 
|  | DeclarationNameInfo(Id, IdLoc)); | 
|  |  | 
|  | EnumConstantDecl *New = | 
|  | CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); | 
|  | if (!New) | 
|  | return nullptr; | 
|  |  | 
|  | if (PrevDecl) { | 
|  | if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) { | 
|  | // Check for other kinds of shadowing not already handled. | 
|  | CheckShadow(New, PrevDecl, R); | 
|  | } | 
|  |  | 
|  | // When in C++, we may get a TagDecl with the same name; in this case the | 
|  | // enum constant will 'hide' the tag. | 
|  | assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && | 
|  | "Received TagDecl when not in C++!"); | 
|  | if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { | 
|  | if (isa<EnumConstantDecl>(PrevDecl)) | 
|  | Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; | 
|  | else | 
|  | Diag(IdLoc, diag::err_redefinition) << Id; | 
|  | notePreviousDefinition(PrevDecl, IdLoc); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process attributes. | 
|  | ProcessDeclAttributeList(S, New, Attrs); | 
|  | AddPragmaAttributes(S, New); | 
|  |  | 
|  | // Register this decl in the current scope stack. | 
|  | New->setAccess(TheEnumDecl->getAccess()); | 
|  | PushOnScopeChains(New, S); | 
|  |  | 
|  | ActOnDocumentableDecl(New); | 
|  |  | 
|  | return New; | 
|  | } | 
|  |  | 
|  | // Returns true when the enum initial expression does not trigger the | 
|  | // duplicate enum warning.  A few common cases are exempted as follows: | 
|  | // Element2 = Element1 | 
|  | // Element2 = Element1 + 1 | 
|  | // Element2 = Element1 - 1 | 
|  | // Where Element2 and Element1 are from the same enum. | 
|  | static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { | 
|  | Expr *InitExpr = ECD->getInitExpr(); | 
|  | if (!InitExpr) | 
|  | return true; | 
|  | InitExpr = InitExpr->IgnoreImpCasts(); | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { | 
|  | if (!BO->isAdditiveOp()) | 
|  | return true; | 
|  | IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); | 
|  | if (!IL) | 
|  | return true; | 
|  | if (IL->getValue() != 1) | 
|  | return true; | 
|  |  | 
|  | InitExpr = BO->getLHS(); | 
|  | } | 
|  |  | 
|  | // This checks if the elements are from the same enum. | 
|  | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); | 
|  | if (!DRE) | 
|  | return true; | 
|  |  | 
|  | EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); | 
|  | if (!EnumConstant) | 
|  | return true; | 
|  |  | 
|  | if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != | 
|  | Enum) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Emits a warning when an element is implicitly set a value that | 
|  | // a previous element has already been set to. | 
|  | static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, | 
|  | EnumDecl *Enum, QualType EnumType) { | 
|  | // Avoid anonymous enums | 
|  | if (!Enum->getIdentifier()) | 
|  | return; | 
|  |  | 
|  | // Only check for small enums. | 
|  | if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) | 
|  | return; | 
|  |  | 
|  | if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) | 
|  | return; | 
|  |  | 
|  | typedef SmallVector<EnumConstantDecl *, 3> ECDVector; | 
|  | typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector; | 
|  |  | 
|  | typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; | 
|  | typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap; | 
|  |  | 
|  | // Use int64_t as a key to avoid needing special handling for DenseMap keys. | 
|  | auto EnumConstantToKey = [](const EnumConstantDecl *D) { | 
|  | llvm::APSInt Val = D->getInitVal(); | 
|  | return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(); | 
|  | }; | 
|  |  | 
|  | DuplicatesVector DupVector; | 
|  | ValueToVectorMap EnumMap; | 
|  |  | 
|  | // Populate the EnumMap with all values represented by enum constants without | 
|  | // an initializer. | 
|  | for (auto *Element : Elements) { | 
|  | EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element); | 
|  |  | 
|  | // Null EnumConstantDecl means a previous diagnostic has been emitted for | 
|  | // this constant.  Skip this enum since it may be ill-formed. | 
|  | if (!ECD) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Constants with initalizers are handled in the next loop. | 
|  | if (ECD->getInitExpr()) | 
|  | continue; | 
|  |  | 
|  | // Duplicate values are handled in the next loop. | 
|  | EnumMap.insert({EnumConstantToKey(ECD), ECD}); | 
|  | } | 
|  |  | 
|  | if (EnumMap.size() == 0) | 
|  | return; | 
|  |  | 
|  | // Create vectors for any values that has duplicates. | 
|  | for (auto *Element : Elements) { | 
|  | // The last loop returned if any constant was null. | 
|  | EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element); | 
|  | if (!ValidDuplicateEnum(ECD, Enum)) | 
|  | continue; | 
|  |  | 
|  | auto Iter = EnumMap.find(EnumConstantToKey(ECD)); | 
|  | if (Iter == EnumMap.end()) | 
|  | continue; | 
|  |  | 
|  | DeclOrVector& Entry = Iter->second; | 
|  | if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { | 
|  | // Ensure constants are different. | 
|  | if (D == ECD) | 
|  | continue; | 
|  |  | 
|  | // Create new vector and push values onto it. | 
|  | auto Vec = llvm::make_unique<ECDVector>(); | 
|  | Vec->push_back(D); | 
|  | Vec->push_back(ECD); | 
|  |  | 
|  | // Update entry to point to the duplicates vector. | 
|  | Entry = Vec.get(); | 
|  |  | 
|  | // Store the vector somewhere we can consult later for quick emission of | 
|  | // diagnostics. | 
|  | DupVector.emplace_back(std::move(Vec)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ECDVector *Vec = Entry.get<ECDVector*>(); | 
|  | // Make sure constants are not added more than once. | 
|  | if (*Vec->begin() == ECD) | 
|  | continue; | 
|  |  | 
|  | Vec->push_back(ECD); | 
|  | } | 
|  |  | 
|  | // Emit diagnostics. | 
|  | for (const auto &Vec : DupVector) { | 
|  | assert(Vec->size() > 1 && "ECDVector should have at least 2 elements."); | 
|  |  | 
|  | // Emit warning for one enum constant. | 
|  | auto *FirstECD = Vec->front(); | 
|  | S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values) | 
|  | << FirstECD << FirstECD->getInitVal().toString(10) | 
|  | << FirstECD->getSourceRange(); | 
|  |  | 
|  | // Emit one note for each of the remaining enum constants with | 
|  | // the same value. | 
|  | for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end())) | 
|  | S.Diag(ECD->getLocation(), diag::note_duplicate_element) | 
|  | << ECD << ECD->getInitVal().toString(10) | 
|  | << ECD->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, | 
|  | bool AllowMask) const { | 
|  | assert(ED->isClosedFlag() && "looking for value in non-flag or open enum"); | 
|  | assert(ED->isCompleteDefinition() && "expected enum definition"); | 
|  |  | 
|  | auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt())); | 
|  | llvm::APInt &FlagBits = R.first->second; | 
|  |  | 
|  | if (R.second) { | 
|  | for (auto *E : ED->enumerators()) { | 
|  | const auto &EVal = E->getInitVal(); | 
|  | // Only single-bit enumerators introduce new flag values. | 
|  | if (EVal.isPowerOf2()) | 
|  | FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal; | 
|  | } | 
|  | } | 
|  |  | 
|  | // A value is in a flag enum if either its bits are a subset of the enum's | 
|  | // flag bits (the first condition) or we are allowing masks and the same is | 
|  | // true of its complement (the second condition). When masks are allowed, we | 
|  | // allow the common idiom of ~(enum1 | enum2) to be a valid enum value. | 
|  | // | 
|  | // While it's true that any value could be used as a mask, the assumption is | 
|  | // that a mask will have all of the insignificant bits set. Anything else is | 
|  | // likely a logic error. | 
|  | llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth()); | 
|  | return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val)); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, | 
|  | Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S, | 
|  | const ParsedAttributesView &Attrs) { | 
|  | EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); | 
|  | QualType EnumType = Context.getTypeDeclType(Enum); | 
|  |  | 
|  | ProcessDeclAttributeList(S, Enum, Attrs); | 
|  |  | 
|  | if (Enum->isDependentType()) { | 
|  | for (unsigned i = 0, e = Elements.size(); i != e; ++i) { | 
|  | EnumConstantDecl *ECD = | 
|  | cast_or_null<EnumConstantDecl>(Elements[i]); | 
|  | if (!ECD) continue; | 
|  |  | 
|  | ECD->setType(EnumType); | 
|  | } | 
|  |  | 
|  | Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // TODO: If the result value doesn't fit in an int, it must be a long or long | 
|  | // long value.  ISO C does not support this, but GCC does as an extension, | 
|  | // emit a warning. | 
|  | unsigned IntWidth = Context.getTargetInfo().getIntWidth(); | 
|  | unsigned CharWidth = Context.getTargetInfo().getCharWidth(); | 
|  | unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); | 
|  |  | 
|  | // Verify that all the values are okay, compute the size of the values, and | 
|  | // reverse the list. | 
|  | unsigned NumNegativeBits = 0; | 
|  | unsigned NumPositiveBits = 0; | 
|  |  | 
|  | // Keep track of whether all elements have type int. | 
|  | bool AllElementsInt = true; | 
|  |  | 
|  | for (unsigned i = 0, e = Elements.size(); i != e; ++i) { | 
|  | EnumConstantDecl *ECD = | 
|  | cast_or_null<EnumConstantDecl>(Elements[i]); | 
|  | if (!ECD) continue;  // Already issued a diagnostic. | 
|  |  | 
|  | const llvm::APSInt &InitVal = ECD->getInitVal(); | 
|  |  | 
|  | // Keep track of the size of positive and negative values. | 
|  | if (InitVal.isUnsigned() || InitVal.isNonNegative()) | 
|  | NumPositiveBits = std::max(NumPositiveBits, | 
|  | (unsigned)InitVal.getActiveBits()); | 
|  | else | 
|  | NumNegativeBits = std::max(NumNegativeBits, | 
|  | (unsigned)InitVal.getMinSignedBits()); | 
|  |  | 
|  | // Keep track of whether every enum element has type int (very common). | 
|  | if (AllElementsInt) | 
|  | AllElementsInt = ECD->getType() == Context.IntTy; | 
|  | } | 
|  |  | 
|  | // Figure out the type that should be used for this enum. | 
|  | QualType BestType; | 
|  | unsigned BestWidth; | 
|  |  | 
|  | // C++0x N3000 [conv.prom]p3: | 
|  | //   An rvalue of an unscoped enumeration type whose underlying | 
|  | //   type is not fixed can be converted to an rvalue of the first | 
|  | //   of the following types that can represent all the values of | 
|  | //   the enumeration: int, unsigned int, long int, unsigned long | 
|  | //   int, long long int, or unsigned long long int. | 
|  | // C99 6.4.4.3p2: | 
|  | //   An identifier declared as an enumeration constant has type int. | 
|  | // The C99 rule is modified by a gcc extension | 
|  | QualType BestPromotionType; | 
|  |  | 
|  | bool Packed = Enum->hasAttr<PackedAttr>(); | 
|  | // -fshort-enums is the equivalent to specifying the packed attribute on all | 
|  | // enum definitions. | 
|  | if (LangOpts.ShortEnums) | 
|  | Packed = true; | 
|  |  | 
|  | // If the enum already has a type because it is fixed or dictated by the | 
|  | // target, promote that type instead of analyzing the enumerators. | 
|  | if (Enum->isComplete()) { | 
|  | BestType = Enum->getIntegerType(); | 
|  | if (BestType->isPromotableIntegerType()) | 
|  | BestPromotionType = Context.getPromotedIntegerType(BestType); | 
|  | else | 
|  | BestPromotionType = BestType; | 
|  |  | 
|  | BestWidth = Context.getIntWidth(BestType); | 
|  | } | 
|  | else if (NumNegativeBits) { | 
|  | // If there is a negative value, figure out the smallest integer type (of | 
|  | // int/long/longlong) that fits. | 
|  | // If it's packed, check also if it fits a char or a short. | 
|  | if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { | 
|  | BestType = Context.SignedCharTy; | 
|  | BestWidth = CharWidth; | 
|  | } else if (Packed && NumNegativeBits <= ShortWidth && | 
|  | NumPositiveBits < ShortWidth) { | 
|  | BestType = Context.ShortTy; | 
|  | BestWidth = ShortWidth; | 
|  | } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { | 
|  | BestType = Context.IntTy; | 
|  | BestWidth = IntWidth; | 
|  | } else { | 
|  | BestWidth = Context.getTargetInfo().getLongWidth(); | 
|  |  | 
|  | if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { | 
|  | BestType = Context.LongTy; | 
|  | } else { | 
|  | BestWidth = Context.getTargetInfo().getLongLongWidth(); | 
|  |  | 
|  | if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) | 
|  | Diag(Enum->getLocation(), diag::ext_enum_too_large); | 
|  | BestType = Context.LongLongTy; | 
|  | } | 
|  | } | 
|  | BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); | 
|  | } else { | 
|  | // If there is no negative value, figure out the smallest type that fits | 
|  | // all of the enumerator values. | 
|  | // If it's packed, check also if it fits a char or a short. | 
|  | if (Packed && NumPositiveBits <= CharWidth) { | 
|  | BestType = Context.UnsignedCharTy; | 
|  | BestPromotionType = Context.IntTy; | 
|  | BestWidth = CharWidth; | 
|  | } else if (Packed && NumPositiveBits <= ShortWidth) { | 
|  | BestType = Context.UnsignedShortTy; | 
|  | BestPromotionType = Context.IntTy; | 
|  | BestWidth = ShortWidth; | 
|  | } else if (NumPositiveBits <= IntWidth) { | 
|  | BestType = Context.UnsignedIntTy; | 
|  | BestWidth = IntWidth; | 
|  | BestPromotionType | 
|  | = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) | 
|  | ? Context.UnsignedIntTy : Context.IntTy; | 
|  | } else if (NumPositiveBits <= | 
|  | (BestWidth = Context.getTargetInfo().getLongWidth())) { | 
|  | BestType = Context.UnsignedLongTy; | 
|  | BestPromotionType | 
|  | = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) | 
|  | ? Context.UnsignedLongTy : Context.LongTy; | 
|  | } else { | 
|  | BestWidth = Context.getTargetInfo().getLongLongWidth(); | 
|  | assert(NumPositiveBits <= BestWidth && | 
|  | "How could an initializer get larger than ULL?"); | 
|  | BestType = Context.UnsignedLongLongTy; | 
|  | BestPromotionType | 
|  | = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) | 
|  | ? Context.UnsignedLongLongTy : Context.LongLongTy; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop over all of the enumerator constants, changing their types to match | 
|  | // the type of the enum if needed. | 
|  | for (auto *D : Elements) { | 
|  | auto *ECD = cast_or_null<EnumConstantDecl>(D); | 
|  | if (!ECD) continue;  // Already issued a diagnostic. | 
|  |  | 
|  | // Standard C says the enumerators have int type, but we allow, as an | 
|  | // extension, the enumerators to be larger than int size.  If each | 
|  | // enumerator value fits in an int, type it as an int, otherwise type it the | 
|  | // same as the enumerator decl itself.  This means that in "enum { X = 1U }" | 
|  | // that X has type 'int', not 'unsigned'. | 
|  |  | 
|  | // Determine whether the value fits into an int. | 
|  | llvm::APSInt InitVal = ECD->getInitVal(); | 
|  |  | 
|  | // If it fits into an integer type, force it.  Otherwise force it to match | 
|  | // the enum decl type. | 
|  | QualType NewTy; | 
|  | unsigned NewWidth; | 
|  | bool NewSign; | 
|  | if (!getLangOpts().CPlusPlus && | 
|  | !Enum->isFixed() && | 
|  | isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { | 
|  | NewTy = Context.IntTy; | 
|  | NewWidth = IntWidth; | 
|  | NewSign = true; | 
|  | } else if (ECD->getType() == BestType) { | 
|  | // Already the right type! | 
|  | if (getLangOpts().CPlusPlus) | 
|  | // C++ [dcl.enum]p4: Following the closing brace of an | 
|  | // enum-specifier, each enumerator has the type of its | 
|  | // enumeration. | 
|  | ECD->setType(EnumType); | 
|  | continue; | 
|  | } else { | 
|  | NewTy = BestType; | 
|  | NewWidth = BestWidth; | 
|  | NewSign = BestType->isSignedIntegerOrEnumerationType(); | 
|  | } | 
|  |  | 
|  | // Adjust the APSInt value. | 
|  | InitVal = InitVal.extOrTrunc(NewWidth); | 
|  | InitVal.setIsSigned(NewSign); | 
|  | ECD->setInitVal(InitVal); | 
|  |  | 
|  | // Adjust the Expr initializer and type. | 
|  | if (ECD->getInitExpr() && | 
|  | !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) | 
|  | ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy, | 
|  | CK_IntegralCast, | 
|  | ECD->getInitExpr(), | 
|  | /*base paths*/ nullptr, | 
|  | VK_RValue)); | 
|  | if (getLangOpts().CPlusPlus) | 
|  | // C++ [dcl.enum]p4: Following the closing brace of an | 
|  | // enum-specifier, each enumerator has the type of its | 
|  | // enumeration. | 
|  | ECD->setType(EnumType); | 
|  | else | 
|  | ECD->setType(NewTy); | 
|  | } | 
|  |  | 
|  | Enum->completeDefinition(BestType, BestPromotionType, | 
|  | NumPositiveBits, NumNegativeBits); | 
|  |  | 
|  | CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); | 
|  |  | 
|  | if (Enum->isClosedFlag()) { | 
|  | for (Decl *D : Elements) { | 
|  | EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D); | 
|  | if (!ECD) continue;  // Already issued a diagnostic. | 
|  |  | 
|  | llvm::APSInt InitVal = ECD->getInitVal(); | 
|  | if (InitVal != 0 && !InitVal.isPowerOf2() && | 
|  | !IsValueInFlagEnum(Enum, InitVal, true)) | 
|  | Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range) | 
|  | << ECD << Enum; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that the enum type is defined, ensure it's not been underaligned. | 
|  | if (Enum->hasAttrs()) | 
|  | CheckAlignasUnderalignment(Enum); | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, | 
|  | SourceLocation StartLoc, | 
|  | SourceLocation EndLoc) { | 
|  | StringLiteral *AsmString = cast<StringLiteral>(expr); | 
|  |  | 
|  | FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, | 
|  | AsmString, StartLoc, | 
|  | EndLoc); | 
|  | CurContext->addDecl(New); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, | 
|  | IdentifierInfo* AliasName, | 
|  | SourceLocation PragmaLoc, | 
|  | SourceLocation NameLoc, | 
|  | SourceLocation AliasNameLoc) { | 
|  | NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, | 
|  | LookupOrdinaryName); | 
|  | AsmLabelAttr *Attr = | 
|  | AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc); | 
|  |  | 
|  | // If a declaration that: | 
|  | // 1) declares a function or a variable | 
|  | // 2) has external linkage | 
|  | // already exists, add a label attribute to it. | 
|  | if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { | 
|  | if (isDeclExternC(PrevDecl)) | 
|  | PrevDecl->addAttr(Attr); | 
|  | else | 
|  | Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied) | 
|  | << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl; | 
|  | // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers. | 
|  | } else | 
|  | (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr)); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, | 
|  | SourceLocation PragmaLoc, | 
|  | SourceLocation NameLoc) { | 
|  | Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); | 
|  |  | 
|  | if (PrevDecl) { | 
|  | PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc)); | 
|  | } else { | 
|  | (void)WeakUndeclaredIdentifiers.insert( | 
|  | std::pair<IdentifierInfo*,WeakInfo> | 
|  | (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc))); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, | 
|  | IdentifierInfo* AliasName, | 
|  | SourceLocation PragmaLoc, | 
|  | SourceLocation NameLoc, | 
|  | SourceLocation AliasNameLoc) { | 
|  | Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, | 
|  | LookupOrdinaryName); | 
|  | WeakInfo W = WeakInfo(Name, NameLoc); | 
|  |  | 
|  | if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { | 
|  | if (!PrevDecl->hasAttr<AliasAttr>()) | 
|  | if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) | 
|  | DeclApplyPragmaWeak(TUScope, ND, W); | 
|  | } else { | 
|  | (void)WeakUndeclaredIdentifiers.insert( | 
|  | std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Decl *Sema::getObjCDeclContext() const { | 
|  | return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); | 
|  | } |