|  | //===- Writer.cpp ---------------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Writer.h" | 
|  | #include "Config.h" | 
|  | #include "OutputSections.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "Target.h" | 
|  |  | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/Support/FileOutputBuffer.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Support/StringSaver.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::elf2; | 
|  |  | 
|  | namespace { | 
|  | // The writer writes a SymbolTable result to a file. | 
|  | template <class ELFT> class Writer { | 
|  | public: | 
|  | typedef typename ELFFile<ELFT>::uintX_t uintX_t; | 
|  | typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr; | 
|  | typedef typename ELFFile<ELFT>::Elf_Ehdr Elf_Ehdr; | 
|  | typedef typename ELFFile<ELFT>::Elf_Phdr Elf_Phdr; | 
|  | typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; | 
|  | typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range; | 
|  | typedef typename ELFFile<ELFT>::Elf_Rela Elf_Rela; | 
|  | Writer(SymbolTable<ELFT> &S) : Symtab(S) {} | 
|  | void run(); | 
|  |  | 
|  | private: | 
|  | void copyLocalSymbols(); | 
|  | void addReservedSymbols(); | 
|  | void createSections(); | 
|  | void addPredefinedSections(); | 
|  |  | 
|  | template <bool isRela> | 
|  | void scanRelocs(InputSectionBase<ELFT> &C, | 
|  | iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels); | 
|  |  | 
|  | void scanRelocs(InputSection<ELFT> &C); | 
|  | void scanRelocs(InputSectionBase<ELFT> &S, const Elf_Shdr &RelSec); | 
|  | void updateRelro(Elf_Phdr *Cur, Elf_Phdr *GnuRelroPhdr, uintX_t VA); | 
|  | void assignAddresses(); | 
|  | void buildSectionMap(); | 
|  | void fixAbsoluteSymbols(); | 
|  | void openFile(StringRef OutputPath); | 
|  | void writeHeader(); | 
|  | void writeSections(); | 
|  | bool isDiscarded(InputSectionBase<ELFT> *IS) const; | 
|  | StringRef getOutputSectionName(StringRef S) const; | 
|  | bool needsInterpSection() const { | 
|  | return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty(); | 
|  | } | 
|  | bool isOutputDynamic() const { | 
|  | return !Symtab.getSharedFiles().empty() || Config->Shared; | 
|  | } | 
|  | int getPhdrsNum() const; | 
|  |  | 
|  | OutputSection<ELFT> *getBss(); | 
|  | void addCommonSymbols(std::vector<DefinedCommon *> &Syms); | 
|  | void addCopyRelSymbols(std::vector<SharedSymbol<ELFT> *> &Syms); | 
|  |  | 
|  | std::unique_ptr<llvm::FileOutputBuffer> Buffer; | 
|  |  | 
|  | BumpPtrAllocator Alloc; | 
|  | std::vector<OutputSectionBase<ELFT> *> OutputSections; | 
|  | std::vector<std::unique_ptr<OutputSectionBase<ELFT>>> OwningSections; | 
|  | unsigned getNumSections() const { return OutputSections.size() + 1; } | 
|  |  | 
|  | void addRelIpltSymbols(); | 
|  | void addStartEndSymbols(); | 
|  | void addStartStopSymbols(OutputSectionBase<ELFT> *Sec); | 
|  | void setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, uintX_t FileOff, | 
|  | uintX_t VA, uintX_t Size, uintX_t Align); | 
|  | void copyPhdr(Elf_Phdr *PH, OutputSectionBase<ELFT> *From); | 
|  |  | 
|  | bool HasRelro = false; | 
|  | SymbolTable<ELFT> &Symtab; | 
|  | std::vector<Elf_Phdr> Phdrs; | 
|  |  | 
|  | uintX_t FileSize; | 
|  | uintX_t SectionHeaderOff; | 
|  |  | 
|  | llvm::StringMap<llvm::StringRef> InputToOutputSection; | 
|  | }; | 
|  | } // anonymous namespace | 
|  |  | 
|  | template <class ELFT> static bool shouldUseRela() { return ELFT::Is64Bits; } | 
|  |  | 
|  | template <class ELFT> void elf2::writeResult(SymbolTable<ELFT> *Symtab) { | 
|  | // Initialize output sections that are handled by Writer specially. | 
|  | // Don't reorder because the order of initialization matters. | 
|  | InterpSection<ELFT> Interp; | 
|  | Out<ELFT>::Interp = &Interp; | 
|  | StringTableSection<ELFT> ShStrTab(".shstrtab", false); | 
|  | Out<ELFT>::ShStrTab = &ShStrTab; | 
|  | StringTableSection<ELFT> StrTab(".strtab", false); | 
|  | if (!Config->StripAll) | 
|  | Out<ELFT>::StrTab = &StrTab; | 
|  | StringTableSection<ELFT> DynStrTab(".dynstr", true); | 
|  | Out<ELFT>::DynStrTab = &DynStrTab; | 
|  | GotSection<ELFT> Got; | 
|  | Out<ELFT>::Got = &Got; | 
|  | GotPltSection<ELFT> GotPlt; | 
|  | if (Target->supportsLazyRelocations()) | 
|  | Out<ELFT>::GotPlt = &GotPlt; | 
|  | PltSection<ELFT> Plt; | 
|  | Out<ELFT>::Plt = &Plt; | 
|  | std::unique_ptr<SymbolTableSection<ELFT>> SymTab; | 
|  | if (!Config->StripAll) { | 
|  | SymTab.reset(new SymbolTableSection<ELFT>(*Symtab, *Out<ELFT>::StrTab)); | 
|  | Out<ELFT>::SymTab = SymTab.get(); | 
|  | } | 
|  | SymbolTableSection<ELFT> DynSymTab(*Symtab, *Out<ELFT>::DynStrTab); | 
|  | Out<ELFT>::DynSymTab = &DynSymTab; | 
|  | HashTableSection<ELFT> HashTab; | 
|  | if (Config->SysvHash) | 
|  | Out<ELFT>::HashTab = &HashTab; | 
|  | GnuHashTableSection<ELFT> GnuHashTab; | 
|  | if (Config->GnuHash) | 
|  | Out<ELFT>::GnuHashTab = &GnuHashTab; | 
|  | bool IsRela = shouldUseRela<ELFT>(); | 
|  | RelocationSection<ELFT> RelaDyn(IsRela ? ".rela.dyn" : ".rel.dyn", IsRela); | 
|  | Out<ELFT>::RelaDyn = &RelaDyn; | 
|  | RelocationSection<ELFT> RelaPlt(IsRela ? ".rela.plt" : ".rel.plt", IsRela); | 
|  | if (Target->supportsLazyRelocations()) | 
|  | Out<ELFT>::RelaPlt = &RelaPlt; | 
|  | DynamicSection<ELFT> Dynamic(*Symtab); | 
|  | Out<ELFT>::Dynamic = &Dynamic; | 
|  |  | 
|  | Writer<ELFT>(*Symtab).run(); | 
|  | } | 
|  |  | 
|  | // The main function of the writer. | 
|  | template <class ELFT> void Writer<ELFT>::run() { | 
|  | buildSectionMap(); | 
|  | if (!Config->DiscardAll) | 
|  | copyLocalSymbols(); | 
|  | addReservedSymbols(); | 
|  | createSections(); | 
|  | assignAddresses(); | 
|  | fixAbsoluteSymbols(); | 
|  | openFile(Config->OutputFile); | 
|  | writeHeader(); | 
|  | writeSections(); | 
|  | error(Buffer->commit()); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | template <bool Is64Bits> struct SectionKey { | 
|  | typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t; | 
|  | StringRef Name; | 
|  | uint32_t Type; | 
|  | uintX_t Flags; | 
|  | uintX_t EntSize; | 
|  | }; | 
|  | } | 
|  | namespace llvm { | 
|  | template <bool Is64Bits> struct DenseMapInfo<SectionKey<Is64Bits>> { | 
|  | static SectionKey<Is64Bits> getEmptyKey() { | 
|  | return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, | 
|  | 0}; | 
|  | } | 
|  | static SectionKey<Is64Bits> getTombstoneKey() { | 
|  | return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, | 
|  | 0, 0}; | 
|  | } | 
|  | static unsigned getHashValue(const SectionKey<Is64Bits> &Val) { | 
|  | return hash_combine(Val.Name, Val.Type, Val.Flags, Val.EntSize); | 
|  | } | 
|  | static bool isEqual(const SectionKey<Is64Bits> &LHS, | 
|  | const SectionKey<Is64Bits> &RHS) { | 
|  | return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) && | 
|  | LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && | 
|  | LHS.EntSize == RHS.EntSize; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | // The reason we have to do this early scan is as follows | 
|  | // * To mmap the output file, we need to know the size | 
|  | // * For that, we need to know how many dynamic relocs we will have. | 
|  | // It might be possible to avoid this by outputting the file with write: | 
|  | // * Write the allocated output sections, computing addresses. | 
|  | // * Apply relocations, recording which ones require a dynamic reloc. | 
|  | // * Write the dynamic relocations. | 
|  | // * Write the rest of the file. | 
|  | template <class ELFT> | 
|  | template <bool isRela> | 
|  | void Writer<ELFT>::scanRelocs( | 
|  | InputSectionBase<ELFT> &C, | 
|  | iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels) { | 
|  | typedef Elf_Rel_Impl<ELFT, isRela> RelType; | 
|  | const ObjectFile<ELFT> &File = *C.getFile(); | 
|  | for (const RelType &RI : Rels) { | 
|  | uint32_t SymIndex = RI.getSymbol(Config->Mips64EL); | 
|  | SymbolBody *Body = File.getSymbolBody(SymIndex); | 
|  | uint32_t Type = RI.getType(Config->Mips64EL); | 
|  |  | 
|  | if (Target->isGotRelative(Type)) | 
|  | HasGotOffRel = true; | 
|  |  | 
|  | if (Target->isTlsLocalDynamicReloc(Type)) { | 
|  | if (Target->isTlsOptimized(Type, nullptr)) | 
|  | continue; | 
|  | if (Out<ELFT>::Got->addCurrentModuleTlsIndex()) | 
|  | Out<ELFT>::RelaDyn->addReloc({&C, &RI}); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Set "used" bit for --as-needed. | 
|  | if (Body && Body->isUndefined() && !Body->isWeak()) | 
|  | if (auto *S = dyn_cast<SharedSymbol<ELFT>>(Body->repl())) | 
|  | S->File->IsUsed = true; | 
|  |  | 
|  | if (Body) | 
|  | Body = Body->repl(); | 
|  |  | 
|  | if (Body && Body->isTls() && Target->isTlsGlobalDynamicReloc(Type)) { | 
|  | bool Opt = Target->isTlsOptimized(Type, Body); | 
|  | if (!Opt && Out<ELFT>::Got->addDynTlsEntry(Body)) { | 
|  | Out<ELFT>::RelaDyn->addReloc({&C, &RI}); | 
|  | Out<ELFT>::RelaDyn->addReloc({nullptr, nullptr}); | 
|  | Body->setUsedInDynamicReloc(); | 
|  | continue; | 
|  | } | 
|  | if (!canBePreempted(Body, true)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Body && Body->isTls() && !Target->isTlsDynReloc(Type, *Body)) | 
|  | continue; | 
|  |  | 
|  | if (Target->relocNeedsDynRelative(Type)) { | 
|  | RelType *Rel = new (Alloc) RelType; | 
|  | Rel->setSymbolAndType(0, Target->getRelativeReloc(), Config->Mips64EL); | 
|  | Rel->r_offset = RI.r_offset; | 
|  | Out<ELFT>::RelaDyn->addReloc({&C, Rel}); | 
|  | } | 
|  |  | 
|  | bool NeedsGot = false; | 
|  | bool NeedsPlt = false; | 
|  | if (Body) { | 
|  | if (auto *E = dyn_cast<SharedSymbol<ELFT>>(Body)) { | 
|  | if (E->NeedsCopy) | 
|  | continue; | 
|  | if (Target->needsCopyRel(Type, *Body)) | 
|  | E->NeedsCopy = true; | 
|  | } | 
|  | NeedsPlt = Target->relocNeedsPlt(Type, *Body); | 
|  | if (NeedsPlt) { | 
|  | if (Body->isInPlt()) | 
|  | continue; | 
|  | Out<ELFT>::Plt->addEntry(Body); | 
|  | } | 
|  | NeedsGot = Target->relocNeedsGot(Type, *Body); | 
|  | if (NeedsGot) { | 
|  | if (NeedsPlt && Target->supportsLazyRelocations()) { | 
|  | Out<ELFT>::GotPlt->addEntry(Body); | 
|  | } else { | 
|  | if (Body->isInGot()) | 
|  | continue; | 
|  | Out<ELFT>::Got->addEntry(Body); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // An STT_GNU_IFUNC symbol always uses a PLT entry, and all references | 
|  | // to the symbol go through the PLT. This is true even for a local | 
|  | // symbol, although local symbols normally do not require PLT entries. | 
|  | if (Body && isGnuIFunc<ELFT>(*Body)) { | 
|  | Body->setUsedInDynamicReloc(); | 
|  | Out<ELFT>::RelaPlt->addReloc({&C, &RI}); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | if (NeedsGot) { | 
|  | // MIPS ABI has special rules to process GOT entries | 
|  | // and doesn't require relocation entries for them. | 
|  | // See "Global Offset Table" in Chapter 5 in the following document | 
|  | // for detailed description: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | Body->setUsedInDynamicReloc(); | 
|  | continue; | 
|  | } | 
|  | if (Body == Config->MipsGpDisp) | 
|  | // MIPS _gp_disp designates offset between start of function and gp | 
|  | // pointer into GOT therefore any relocations against it do not require | 
|  | // dynamic relocation. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Here we are creating a relocation for the dynamic linker based on | 
|  | // a relocation from an object file, but some relocations need no | 
|  | // load-time fixup. Skip such relocation. | 
|  | bool CBP = canBePreempted(Body, NeedsGot); | 
|  | bool NoDynrel = Target->isRelRelative(Type) || Target->isSizeReloc(Type); | 
|  | if (!CBP && (NoDynrel || !Config->Shared)) | 
|  | continue; | 
|  |  | 
|  | if (CBP) | 
|  | Body->setUsedInDynamicReloc(); | 
|  | if (NeedsPlt && Target->supportsLazyRelocations()) | 
|  | Out<ELFT>::RelaPlt->addReloc({&C, &RI}); | 
|  | else | 
|  | Out<ELFT>::RelaDyn->addReloc({&C, &RI}); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::scanRelocs(InputSection<ELFT> &C) { | 
|  | if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC)) | 
|  | return; | 
|  |  | 
|  | for (const Elf_Shdr *RelSec : C.RelocSections) | 
|  | scanRelocs(C, *RelSec); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::scanRelocs(InputSectionBase<ELFT> &S, | 
|  | const Elf_Shdr &RelSec) { | 
|  | ELFFile<ELFT> &EObj = S.getFile()->getObj(); | 
|  | if (RelSec.sh_type == SHT_RELA) | 
|  | scanRelocs(S, EObj.relas(&RelSec)); | 
|  | else | 
|  | scanRelocs(S, EObj.rels(&RelSec)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void reportUndefined(SymbolTable<ELFT> &Symtab, SymbolBody *Sym) { | 
|  | if (Config->Shared && !Config->NoUndefined) | 
|  | return; | 
|  |  | 
|  | std::string Msg = "undefined symbol: " + Sym->getName().str(); | 
|  | if (ELFFileBase<ELFT> *File = Symtab.findFile(Sym)) | 
|  | Msg += " in " + File->getName().str(); | 
|  | if (Config->NoInhibitExec) | 
|  | warning(Msg); | 
|  | else | 
|  | error(Msg); | 
|  | } | 
|  |  | 
|  | // Local symbols are not in the linker's symbol table. This function scans | 
|  | // each object file's symbol table to copy local symbols to the output. | 
|  | template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { | 
|  | for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) { | 
|  | for (const Elf_Sym &Sym : F->getLocalSymbols()) { | 
|  | ErrorOr<StringRef> SymNameOrErr = Sym.getName(F->getStringTable()); | 
|  | error(SymNameOrErr); | 
|  | StringRef SymName = *SymNameOrErr; | 
|  | if (!shouldKeepInSymtab<ELFT>(*F, SymName, Sym)) | 
|  | continue; | 
|  | if (Out<ELFT>::SymTab) | 
|  | Out<ELFT>::SymTab->addLocalSymbol(SymName); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that | 
|  | // we would like to make sure appear is a specific order to maximize their | 
|  | // coverage by a single signed 16-bit offset from the TOC base pointer. | 
|  | // Conversely, the special .tocbss section should be first among all SHT_NOBITS | 
|  | // sections. This will put it next to the loaded special PPC64 sections (and, | 
|  | // thus, within reach of the TOC base pointer). | 
|  | static int getPPC64SectionRank(StringRef SectionName) { | 
|  | return StringSwitch<int>(SectionName) | 
|  | .Case(".tocbss", 0) | 
|  | .Case(".branch_lt", 2) | 
|  | .Case(".toc", 3) | 
|  | .Case(".toc1", 4) | 
|  | .Case(".opd", 5) | 
|  | .Default(1); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool isRelroSection(OutputSectionBase<ELFT> *Sec) { | 
|  | typename OutputSectionBase<ELFT>::uintX_t Flags = Sec->getFlags(); | 
|  | if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) | 
|  | return false; | 
|  | if (Flags & SHF_TLS) | 
|  | return true; | 
|  | uint32_t Type = Sec->getType(); | 
|  | if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || | 
|  | Type == SHT_PREINIT_ARRAY) | 
|  | return true; | 
|  | if (Sec == Out<ELFT>::GotPlt) | 
|  | return Config->ZNow; | 
|  | if (Sec == Out<ELFT>::Dynamic || Sec == Out<ELFT>::Got) | 
|  | return true; | 
|  | StringRef S = Sec->getName(); | 
|  | return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || | 
|  | S == ".eh_frame"; | 
|  | } | 
|  |  | 
|  | // Output section ordering is determined by this function. | 
|  | template <class ELFT> | 
|  | static bool compareOutputSections(OutputSectionBase<ELFT> *A, | 
|  | OutputSectionBase<ELFT> *B) { | 
|  | typedef typename ELFFile<ELFT>::uintX_t uintX_t; | 
|  |  | 
|  | uintX_t AFlags = A->getFlags(); | 
|  | uintX_t BFlags = B->getFlags(); | 
|  |  | 
|  | // Allocatable sections go first to reduce the total PT_LOAD size and | 
|  | // so debug info doesn't change addresses in actual code. | 
|  | bool AIsAlloc = AFlags & SHF_ALLOC; | 
|  | bool BIsAlloc = BFlags & SHF_ALLOC; | 
|  | if (AIsAlloc != BIsAlloc) | 
|  | return AIsAlloc; | 
|  |  | 
|  | // We don't have any special requirements for the relative order of | 
|  | // two non allocatable sections. | 
|  | if (!AIsAlloc) | 
|  | return false; | 
|  |  | 
|  | // We want the read only sections first so that they go in the PT_LOAD | 
|  | // covering the program headers at the start of the file. | 
|  | bool AIsWritable = AFlags & SHF_WRITE; | 
|  | bool BIsWritable = BFlags & SHF_WRITE; | 
|  | if (AIsWritable != BIsWritable) | 
|  | return BIsWritable; | 
|  |  | 
|  | // For a corresponding reason, put non exec sections first (the program | 
|  | // header PT_LOAD is not executable). | 
|  | bool AIsExec = AFlags & SHF_EXECINSTR; | 
|  | bool BIsExec = BFlags & SHF_EXECINSTR; | 
|  | if (AIsExec != BIsExec) | 
|  | return BIsExec; | 
|  |  | 
|  | // If we got here we know that both A and B are in the same PT_LOAD. | 
|  |  | 
|  | // The TLS initialization block needs to be a single contiguous block in a R/W | 
|  | // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS | 
|  | // sections are placed here as they don't take up virtual address space in the | 
|  | // PT_LOAD. | 
|  | bool AIsTls = AFlags & SHF_TLS; | 
|  | bool BIsTls = BFlags & SHF_TLS; | 
|  | if (AIsTls != BIsTls) | 
|  | return AIsTls; | 
|  |  | 
|  | // The next requirement we have is to put nobits sections last. The | 
|  | // reason is that the only thing the dynamic linker will see about | 
|  | // them is a p_memsz that is larger than p_filesz. Seeing that it | 
|  | // zeros the end of the PT_LOAD, so that has to correspond to the | 
|  | // nobits sections. | 
|  | bool AIsNoBits = A->getType() == SHT_NOBITS; | 
|  | bool BIsNoBits = B->getType() == SHT_NOBITS; | 
|  | if (AIsNoBits != BIsNoBits) | 
|  | return BIsNoBits; | 
|  |  | 
|  | // We place RelRo section before plain r/w ones. | 
|  | bool AIsRelRo = isRelroSection(A); | 
|  | bool BIsRelRo = isRelroSection(B); | 
|  | if (AIsRelRo != BIsRelRo) | 
|  | return AIsRelRo; | 
|  |  | 
|  | // Some architectures have additional ordering restrictions for sections | 
|  | // within the same PT_LOAD. | 
|  | if (Config->EMachine == EM_PPC64) | 
|  | return getPPC64SectionRank(A->getName()) < | 
|  | getPPC64SectionRank(B->getName()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class ELFT> OutputSection<ELFT> *Writer<ELFT>::getBss() { | 
|  | if (!Out<ELFT>::Bss) { | 
|  | Out<ELFT>::Bss = | 
|  | new OutputSection<ELFT>(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); | 
|  | OwningSections.emplace_back(Out<ELFT>::Bss); | 
|  | OutputSections.push_back(Out<ELFT>::Bss); | 
|  | } | 
|  | return Out<ELFT>::Bss; | 
|  | } | 
|  |  | 
|  | // Until this function is called, common symbols do not belong to any section. | 
|  | // This function adds them to end of BSS section. | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addCommonSymbols(std::vector<DefinedCommon *> &Syms) { | 
|  | if (Syms.empty()) | 
|  | return; | 
|  |  | 
|  | // Sort the common symbols by alignment as an heuristic to pack them better. | 
|  | std::stable_sort(Syms.begin(), Syms.end(), | 
|  | [](const DefinedCommon *A, const DefinedCommon *B) { | 
|  | return A->MaxAlignment > B->MaxAlignment; | 
|  | }); | 
|  |  | 
|  | uintX_t Off = getBss()->getSize(); | 
|  | for (DefinedCommon *C : Syms) { | 
|  | Off = align(Off, C->MaxAlignment); | 
|  | C->OffsetInBss = Off; | 
|  | Off += C->Size; | 
|  | } | 
|  |  | 
|  | Out<ELFT>::Bss->setSize(Off); | 
|  | } | 
|  |  | 
|  | // Reserve space in .bss for copy relocations. | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addCopyRelSymbols(std::vector<SharedSymbol<ELFT> *> &Syms) { | 
|  | if (Syms.empty()) | 
|  | return; | 
|  | uintX_t Off = getBss()->getSize(); | 
|  | for (SharedSymbol<ELFT> *C : Syms) { | 
|  | const Elf_Sym &Sym = C->Sym; | 
|  | const Elf_Shdr *Sec = C->File->getSection(Sym); | 
|  | uintX_t SecAlign = Sec->sh_addralign; | 
|  | unsigned TrailingZeros = | 
|  | std::min(countTrailingZeros(SecAlign), | 
|  | countTrailingZeros((uintX_t)Sym.st_value)); | 
|  | uintX_t Align = 1 << TrailingZeros; | 
|  | Out<ELFT>::Bss->updateAlign(Align); | 
|  | Off = align(Off, Align); | 
|  | C->OffsetInBss = Off; | 
|  | Off += Sym.st_size; | 
|  | } | 
|  | Out<ELFT>::Bss->setSize(Off); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | StringRef Writer<ELFT>::getOutputSectionName(StringRef S) const { | 
|  | auto It = InputToOutputSection.find(S); | 
|  | if (It != std::end(InputToOutputSection)) | 
|  | return It->second; | 
|  |  | 
|  | if (S.startswith(".text.")) | 
|  | return ".text"; | 
|  | if (S.startswith(".rodata.")) | 
|  | return ".rodata"; | 
|  | if (S.startswith(".data.rel.ro")) | 
|  | return ".data.rel.ro"; | 
|  | if (S.startswith(".data.")) | 
|  | return ".data"; | 
|  | if (S.startswith(".bss.")) | 
|  | return ".bss"; | 
|  | return S; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void reportDiscarded(InputSectionBase<ELFT> *IS, | 
|  | const std::unique_ptr<ObjectFile<ELFT>> &File) { | 
|  | if (!Config->PrintGcSections || !IS || IS->isLive()) | 
|  | return; | 
|  | llvm::errs() << "removing unused section from '" << IS->getSectionName() | 
|  | << "' in file '" << File->getName() << "'\n"; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | bool Writer<ELFT>::isDiscarded(InputSectionBase<ELFT> *IS) const { | 
|  | if (!IS || !IS->isLive() || IS == &InputSection<ELFT>::Discarded) | 
|  | return true; | 
|  | return InputToOutputSection.lookup(IS->getSectionName()) == "/DISCARD/"; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static bool compareSections(OutputSectionBase<ELFT> *A, | 
|  | OutputSectionBase<ELFT> *B) { | 
|  | auto ItA = Config->OutputSections.find(A->getName()); | 
|  | auto ItEnd = std::end(Config->OutputSections); | 
|  | if (ItA == ItEnd) | 
|  | return compareOutputSections(A, B); | 
|  | auto ItB = Config->OutputSections.find(B->getName()); | 
|  | if (ItB == ItEnd) | 
|  | return compareOutputSections(A, B); | 
|  |  | 
|  | return std::distance(ItA, ItB) > 0; | 
|  | } | 
|  |  | 
|  | // The beginning and the ending of .rel[a].plt section are marked | 
|  | // with __rel[a]_iplt_{start,end} symbols if it is a statically linked | 
|  | // executable. The runtime needs these symbols in order to resolve | 
|  | // all IRELATIVE relocs on startup. For dynamic executables, we don't | 
|  | // need these symbols, since IRELATIVE relocs are resolved through GOT | 
|  | // and PLT. For details, see http://www.airs.com/blog/archives/403. | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addRelIpltSymbols() { | 
|  | if (isOutputDynamic() || !Out<ELFT>::RelaPlt) | 
|  | return; | 
|  | bool IsRela = shouldUseRela<ELFT>(); | 
|  |  | 
|  | StringRef S = IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; | 
|  | if (Symtab.find(S)) | 
|  | Symtab.addAbsolute(S, ElfSym<ELFT>::RelaIpltStart); | 
|  |  | 
|  | S = IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; | 
|  | if (Symtab.find(S)) | 
|  | Symtab.addAbsolute(S, ElfSym<ELFT>::RelaIpltEnd); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool includeInSymtab(const SymbolBody &B) { | 
|  | if (!B.isUsedInRegularObj()) | 
|  | return false; | 
|  |  | 
|  | // Don't include synthetic symbols like __init_array_start in every output. | 
|  | if (auto *U = dyn_cast<DefinedRegular<ELFT>>(&B)) | 
|  | if (&U->Sym == &ElfSym<ELFT>::IgnoredWeak || | 
|  | &U->Sym == &ElfSym<ELFT>::Ignored) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool includeInDynamicSymtab(const SymbolBody &B) { | 
|  | uint8_t V = B.getVisibility(); | 
|  | if (V != STV_DEFAULT && V != STV_PROTECTED) | 
|  | return false; | 
|  | if (Config->ExportDynamic || Config->Shared) | 
|  | return true; | 
|  | return B.isUsedInDynamicReloc(); | 
|  | } | 
|  |  | 
|  | // This class knows how to create an output section for a given | 
|  | // input section. Output section type is determined by various | 
|  | // factors, including input section's sh_flags, sh_type and | 
|  | // linker scripts. | 
|  | namespace { | 
|  | template <class ELFT> class OutputSectionFactory { | 
|  | typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr; | 
|  | typedef typename ELFFile<ELFT>::uintX_t uintX_t; | 
|  |  | 
|  | public: | 
|  | std::pair<OutputSectionBase<ELFT> *, bool> create(InputSectionBase<ELFT> *C, | 
|  | StringRef OutsecName); | 
|  |  | 
|  | OutputSectionBase<ELFT> *lookup(StringRef Name, uint32_t Type, uintX_t Flags); | 
|  |  | 
|  | private: | 
|  | SectionKey<ELFT::Is64Bits> createKey(InputSectionBase<ELFT> *C, | 
|  | StringRef OutsecName); | 
|  |  | 
|  | SmallDenseMap<SectionKey<ELFT::Is64Bits>, OutputSectionBase<ELFT> *> Map; | 
|  | }; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | std::pair<OutputSectionBase<ELFT> *, bool> | 
|  | OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C, | 
|  | StringRef OutsecName) { | 
|  | SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName); | 
|  | OutputSectionBase<ELFT> *&Sec = Map[Key]; | 
|  | if (Sec) | 
|  | return {Sec, false}; | 
|  |  | 
|  | switch (C->SectionKind) { | 
|  | case InputSectionBase<ELFT>::Regular: | 
|  | Sec = new OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); | 
|  | break; | 
|  | case InputSectionBase<ELFT>::EHFrame: | 
|  | Sec = new EHOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); | 
|  | break; | 
|  | case InputSectionBase<ELFT>::Merge: | 
|  | Sec = new MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); | 
|  | break; | 
|  | case InputSectionBase<ELFT>::MipsReginfo: | 
|  | Sec = new MipsReginfoOutputSection<ELFT>(); | 
|  | break; | 
|  | } | 
|  | return {Sec, true}; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | OutputSectionBase<ELFT> *OutputSectionFactory<ELFT>::lookup(StringRef Name, | 
|  | uint32_t Type, | 
|  | uintX_t Flags) { | 
|  | return Map.lookup({Name, Type, Flags, 0}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | SectionKey<ELFT::Is64Bits> | 
|  | OutputSectionFactory<ELFT>::createKey(InputSectionBase<ELFT> *C, | 
|  | StringRef OutsecName) { | 
|  | const Elf_Shdr *H = C->getSectionHdr(); | 
|  | uintX_t Flags = H->sh_flags & ~SHF_GROUP; | 
|  |  | 
|  | // For SHF_MERGE we create different output sections for each sh_entsize. | 
|  | // This makes each output section simple and keeps a single level | 
|  | // mapping from input to output. | 
|  | uintX_t EntSize = isa<MergeInputSection<ELFT>>(C) ? H->sh_entsize : 0; | 
|  |  | 
|  | // GNU as can give .eh_frame secion type SHT_PROGBITS or SHT_X86_64_UNWIND | 
|  | // depending on the construct. We want to canonicalize it so that | 
|  | // there is only one .eh_frame in the end. | 
|  | uint32_t Type = H->sh_type; | 
|  | if (Type == SHT_PROGBITS && Config->EMachine == EM_X86_64 && | 
|  | isa<EHInputSection<ELFT>>(C)) | 
|  | Type = SHT_X86_64_UNWIND; | 
|  |  | 
|  | return SectionKey<ELFT::Is64Bits>{OutsecName, Type, Flags, EntSize}; | 
|  | } | 
|  |  | 
|  | // The linker is expected to define some symbols depending on | 
|  | // the linking result. This function defines such symbols. | 
|  | template <class ELFT> void Writer<ELFT>::addReservedSymbols() { | 
|  | // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For | 
|  | // static linking the linker is required to optimize away any references to | 
|  | // __tls_get_addr, so it's not defined anywhere. Create a hidden definition | 
|  | // to avoid the undefined symbol error. | 
|  | if (!isOutputDynamic()) | 
|  | Symtab.addIgnored("__tls_get_addr"); | 
|  |  | 
|  | // If the "_end" symbol is referenced, it is expected to point to the address | 
|  | // right after the data segment. Usually, this symbol points to the end | 
|  | // of .bss section or to the end of .data section if .bss section is absent. | 
|  | // The order of the sections can be affected by linker script, | 
|  | // so it is hard to predict which section will be the last one. | 
|  | // So, if this symbol is referenced, we just add the placeholder here | 
|  | // and update its value later. | 
|  | if (Symtab.find("_end")) | 
|  | Symtab.addAbsolute("_end", ElfSym<ELFT>::End); | 
|  |  | 
|  | // If there is an undefined symbol "end", we should initialize it | 
|  | // with the same value as "_end". In any other case it should stay intact, | 
|  | // because it is an allowable name for a user symbol. | 
|  | if (SymbolBody *B = Symtab.find("end")) | 
|  | if (B->isUndefined()) | 
|  | Symtab.addAbsolute("end", ElfSym<ELFT>::End); | 
|  | } | 
|  |  | 
|  | // Create output section objects and add them to OutputSections. | 
|  | template <class ELFT> void Writer<ELFT>::createSections() { | 
|  | // Add .interp first because some loaders want to see that section | 
|  | // on the first page of the executable file when loaded into memory. | 
|  | if (needsInterpSection()) | 
|  | OutputSections.push_back(Out<ELFT>::Interp); | 
|  |  | 
|  | // Create output sections for input object file sections. | 
|  | std::vector<OutputSectionBase<ELFT> *> RegularSections; | 
|  | OutputSectionFactory<ELFT> Factory; | 
|  | for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) { | 
|  | for (InputSectionBase<ELFT> *C : F->getSections()) { | 
|  | if (isDiscarded(C)) { | 
|  | reportDiscarded(C, F); | 
|  | continue; | 
|  | } | 
|  | OutputSectionBase<ELFT> *Sec; | 
|  | bool IsNew; | 
|  | std::tie(Sec, IsNew) = | 
|  | Factory.create(C, getOutputSectionName(C->getSectionName())); | 
|  | if (IsNew) { | 
|  | OwningSections.emplace_back(Sec); | 
|  | OutputSections.push_back(Sec); | 
|  | RegularSections.push_back(Sec); | 
|  | } | 
|  | Sec->addSection(C); | 
|  | } | 
|  | } | 
|  |  | 
|  | Out<ELFT>::Bss = static_cast<OutputSection<ELFT> *>( | 
|  | Factory.lookup(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE)); | 
|  |  | 
|  | // If we have a .opd section (used under PPC64 for function descriptors), | 
|  | // store a pointer to it here so that we can use it later when processing | 
|  | // relocations. | 
|  | Out<ELFT>::Opd = Factory.lookup(".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC); | 
|  |  | 
|  | Out<ELFT>::Dynamic->PreInitArraySec = Factory.lookup( | 
|  | ".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC); | 
|  | Out<ELFT>::Dynamic->InitArraySec = | 
|  | Factory.lookup(".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC); | 
|  | Out<ELFT>::Dynamic->FiniArraySec = | 
|  | Factory.lookup(".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC); | 
|  |  | 
|  | // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop | 
|  | // symbols for sections, so that the runtime can get the start and end | 
|  | // addresses of each section by section name. Add such symbols. | 
|  | addStartEndSymbols(); | 
|  | for (OutputSectionBase<ELFT> *Sec : RegularSections) | 
|  | addStartStopSymbols(Sec); | 
|  |  | 
|  | // Scan relocations. This must be done after every symbol is declared so that | 
|  | // we can correctly decide if a dynamic relocation is needed. | 
|  | for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) { | 
|  | for (InputSectionBase<ELFT> *C : F->getSections()) { | 
|  | if (isDiscarded(C)) | 
|  | continue; | 
|  | if (auto *S = dyn_cast<InputSection<ELFT>>(C)) | 
|  | scanRelocs(*S); | 
|  | else if (auto *S = dyn_cast<EHInputSection<ELFT>>(C)) | 
|  | if (S->RelocSection) | 
|  | scanRelocs(*S, *S->RelocSection); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Define __rel[a]_iplt_{start,end} symbols if needed. | 
|  | addRelIpltSymbols(); | 
|  |  | 
|  | // Now that we have defined all possible symbols including linker- | 
|  | // synthesized ones. Visit all symbols to give the finishing touches. | 
|  | std::vector<DefinedCommon *> CommonSymbols; | 
|  | std::vector<SharedSymbol<ELFT> *> CopyRelSymbols; | 
|  | for (auto &P : Symtab.getSymbols()) { | 
|  | SymbolBody *Body = P.second->Body; | 
|  | if (auto *U = dyn_cast<Undefined>(Body)) | 
|  | if (!U->isWeak() && !U->canKeepUndefined()) | 
|  | reportUndefined<ELFT>(Symtab, Body); | 
|  |  | 
|  | if (auto *C = dyn_cast<DefinedCommon>(Body)) | 
|  | CommonSymbols.push_back(C); | 
|  | if (auto *SC = dyn_cast<SharedSymbol<ELFT>>(Body)) | 
|  | if (SC->NeedsCopy) | 
|  | CopyRelSymbols.push_back(SC); | 
|  |  | 
|  | if (!includeInSymtab<ELFT>(*Body)) | 
|  | continue; | 
|  | if (Out<ELFT>::SymTab) | 
|  | Out<ELFT>::SymTab->addSymbol(Body); | 
|  |  | 
|  | if (isOutputDynamic() && includeInDynamicSymtab(*Body)) | 
|  | Out<ELFT>::DynSymTab->addSymbol(Body); | 
|  | } | 
|  | addCommonSymbols(CommonSymbols); | 
|  | addCopyRelSymbols(CopyRelSymbols); | 
|  |  | 
|  | // So far we have added sections from input object files. | 
|  | // This function adds linker-created Out<ELFT>::* sections. | 
|  | addPredefinedSections(); | 
|  |  | 
|  | std::stable_sort(OutputSections.begin(), OutputSections.end(), | 
|  | compareSections<ELFT>); | 
|  |  | 
|  | for (unsigned I = 0, N = OutputSections.size(); I < N; ++I) { | 
|  | OutputSections[I]->SectionIndex = I + 1; | 
|  | HasRelro |= (Config->ZRelro && isRelroSection(OutputSections[I])); | 
|  | } | 
|  |  | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | Out<ELFT>::ShStrTab->reserve(Sec->getName()); | 
|  |  | 
|  | // Finalizers fix each section's size. | 
|  | // .dynamic section's finalizer may add strings to .dynstr, | 
|  | // so finalize that early. | 
|  | // Likewise, .dynsym is finalized early since that may fill up .gnu.hash. | 
|  | Out<ELFT>::Dynamic->finalize(); | 
|  | if (isOutputDynamic()) | 
|  | Out<ELFT>::DynSymTab->finalize(); | 
|  |  | 
|  | // Fill other section headers. | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | Sec->finalize(); | 
|  | } | 
|  |  | 
|  | // This function add Out<ELFT>::* sections to OutputSections. | 
|  | template <class ELFT> void Writer<ELFT>::addPredefinedSections() { | 
|  | auto Add = [&](OutputSectionBase<ELFT> *C) { | 
|  | if (C) | 
|  | OutputSections.push_back(C); | 
|  | }; | 
|  |  | 
|  | // This order is not the same as the final output order | 
|  | // because we sort the sections using their attributes below. | 
|  | Add(Out<ELFT>::SymTab); | 
|  | Add(Out<ELFT>::ShStrTab); | 
|  | Add(Out<ELFT>::StrTab); | 
|  | if (isOutputDynamic()) { | 
|  | Add(Out<ELFT>::DynSymTab); | 
|  | Add(Out<ELFT>::GnuHashTab); | 
|  | Add(Out<ELFT>::HashTab); | 
|  | Add(Out<ELFT>::Dynamic); | 
|  | Add(Out<ELFT>::DynStrTab); | 
|  | if (Out<ELFT>::RelaDyn->hasRelocs()) | 
|  | Add(Out<ELFT>::RelaDyn); | 
|  |  | 
|  | // This is a MIPS specific section to hold a space within the data segment | 
|  | // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry. | 
|  | // See "Dynamic section" in Chapter 5 in the following document: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | if (Config->EMachine == EM_MIPS && !Config->Shared) { | 
|  | Out<ELFT>::MipsRldMap = new OutputSection<ELFT>(".rld_map", SHT_PROGBITS, | 
|  | SHF_ALLOC | SHF_WRITE); | 
|  | Out<ELFT>::MipsRldMap->setSize(ELFT::Is64Bits ? 8 : 4); | 
|  | Out<ELFT>::MipsRldMap->updateAlign(ELFT::Is64Bits ? 8 : 4); | 
|  | OwningSections.emplace_back(Out<ELFT>::MipsRldMap); | 
|  | Add(Out<ELFT>::MipsRldMap); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We always need to add rel[a].plt to output if it has entries. | 
|  | // Even during static linking it can contain R_[*]_IRELATIVE relocations. | 
|  | if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) { | 
|  | Add(Out<ELFT>::RelaPlt); | 
|  | Out<ELFT>::RelaPlt->Static = !isOutputDynamic(); | 
|  | } | 
|  |  | 
|  | bool needsGot = !Out<ELFT>::Got->empty(); | 
|  | // We add the .got section to the result for dynamic MIPS target because | 
|  | // its address and properties are mentioned in the .dynamic section. | 
|  | if (Config->EMachine == EM_MIPS) | 
|  | needsGot |= isOutputDynamic(); | 
|  | // If we have a relocation that is relative to GOT (such as GOTOFFREL), | 
|  | // we need to emit a GOT even if it's empty. | 
|  | if (HasGotOffRel) | 
|  | needsGot = true; | 
|  |  | 
|  | if (needsGot) | 
|  | Add(Out<ELFT>::Got); | 
|  | if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty()) | 
|  | Add(Out<ELFT>::GotPlt); | 
|  | if (!Out<ELFT>::Plt->empty()) | 
|  | Add(Out<ELFT>::Plt); | 
|  | } | 
|  |  | 
|  | // The linker is expected to define SECNAME_start and SECNAME_end | 
|  | // symbols for a few sections. This function defines them. | 
|  | template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { | 
|  | auto Define = [&](StringRef Start, StringRef End, | 
|  | OutputSectionBase<ELFT> *OS) { | 
|  | if (OS) { | 
|  | Symtab.addSynthetic(Start, *OS, 0); | 
|  | Symtab.addSynthetic(End, *OS, OS->getSize()); | 
|  | } else { | 
|  | Symtab.addIgnored(Start); | 
|  | Symtab.addIgnored(End); | 
|  | } | 
|  | }; | 
|  |  | 
|  | Define("__preinit_array_start", "__preinit_array_end", | 
|  | Out<ELFT>::Dynamic->PreInitArraySec); | 
|  | Define("__init_array_start", "__init_array_end", | 
|  | Out<ELFT>::Dynamic->InitArraySec); | 
|  | Define("__fini_array_start", "__fini_array_end", | 
|  | Out<ELFT>::Dynamic->FiniArraySec); | 
|  | } | 
|  |  | 
|  | static bool isAlpha(char C) { | 
|  | return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_'; | 
|  | } | 
|  |  | 
|  | static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); } | 
|  |  | 
|  | // Returns true if S is valid as a C language identifier. | 
|  | static bool isValidCIdentifier(StringRef S) { | 
|  | if (S.empty() || !isAlpha(S[0])) | 
|  | return false; | 
|  | return std::all_of(S.begin() + 1, S.end(), isAlnum); | 
|  | } | 
|  |  | 
|  | // If a section name is valid as a C identifier (which is rare because of | 
|  | // the leading '.'), linkers are expected to define __start_<secname> and | 
|  | // __stop_<secname> symbols. They are at beginning and end of the section, | 
|  | // respectively. This is not requested by the ELF standard, but GNU ld and | 
|  | // gold provide the feature, and used by many programs. | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) { | 
|  | StringRef S = Sec->getName(); | 
|  | if (!isValidCIdentifier(S)) | 
|  | return; | 
|  | StringSaver Saver(Alloc); | 
|  | StringRef Start = Saver.save("__start_" + S); | 
|  | StringRef Stop = Saver.save("__stop_" + S); | 
|  | if (SymbolBody *B = Symtab.find(Start)) | 
|  | if (B->isUndefined()) | 
|  | Symtab.addSynthetic(Start, *Sec, 0); | 
|  | if (SymbolBody *B = Symtab.find(Stop)) | 
|  | if (B->isUndefined()) | 
|  | Symtab.addSynthetic(Stop, *Sec, Sec->getSize()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool needsPhdr(OutputSectionBase<ELFT> *Sec) { | 
|  | return Sec->getFlags() & SHF_ALLOC; | 
|  | } | 
|  |  | 
|  | static uint32_t toPhdrFlags(uint64_t Flags) { | 
|  | uint32_t Ret = PF_R; | 
|  | if (Flags & SHF_WRITE) | 
|  | Ret |= PF_W; | 
|  | if (Flags & SHF_EXECINSTR) | 
|  | Ret |= PF_X; | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | /// For AMDGPU we need to use custom segment kinds in order to specify which | 
|  | /// address space data should be loaded into. | 
|  | template <class ELFT> | 
|  | static uint32_t getAmdgpuPhdr(OutputSectionBase<ELFT> *Sec) { | 
|  | uint32_t Flags = Sec->getFlags(); | 
|  | if (Flags & SHF_AMDGPU_HSA_CODE) | 
|  | return PT_AMDGPU_HSA_LOAD_CODE_AGENT; | 
|  | if ((Flags & SHF_AMDGPU_HSA_GLOBAL) && !(Flags & SHF_AMDGPU_HSA_AGENT)) | 
|  | return PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM; | 
|  | return PT_LOAD; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::updateRelro(Elf_Phdr *Cur, Elf_Phdr *GnuRelroPhdr, | 
|  | uintX_t VA) { | 
|  | if (!GnuRelroPhdr->p_type) | 
|  | setPhdr(GnuRelroPhdr, PT_GNU_RELRO, PF_R, Cur->p_offset, Cur->p_vaddr, | 
|  | VA - Cur->p_vaddr, 1 /*p_align*/); | 
|  | GnuRelroPhdr->p_filesz = VA - Cur->p_vaddr; | 
|  | GnuRelroPhdr->p_memsz = VA - Cur->p_vaddr; | 
|  | } | 
|  |  | 
|  | // Visits all sections to create PHDRs and to assign incremental, | 
|  | // non-overlapping addresses to output sections. | 
|  | template <class ELFT> void Writer<ELFT>::assignAddresses() { | 
|  | uintX_t VA = Target->getVAStart() + sizeof(Elf_Ehdr); | 
|  | uintX_t FileOff = sizeof(Elf_Ehdr); | 
|  |  | 
|  | // Calculate and reserve the space for the program header first so that | 
|  | // the first section can start right after the program header. | 
|  | Phdrs.resize(getPhdrsNum()); | 
|  | size_t PhdrSize = sizeof(Elf_Phdr) * Phdrs.size(); | 
|  |  | 
|  | // The first phdr entry is PT_PHDR which describes the program header itself. | 
|  | setPhdr(&Phdrs[0], PT_PHDR, PF_R, FileOff, VA, PhdrSize, /*Align=*/8); | 
|  | FileOff += PhdrSize; | 
|  | VA += PhdrSize; | 
|  |  | 
|  | // PT_INTERP must be the second entry if exists. | 
|  | int PhdrIdx = 0; | 
|  | Elf_Phdr *Interp = nullptr; | 
|  | if (needsInterpSection()) | 
|  | Interp = &Phdrs[++PhdrIdx]; | 
|  |  | 
|  | // Add the first PT_LOAD segment for regular output sections. | 
|  | setPhdr(&Phdrs[++PhdrIdx], PT_LOAD, PF_R, 0, Target->getVAStart(), FileOff, | 
|  | Target->getPageSize()); | 
|  |  | 
|  | Elf_Phdr GnuRelroPhdr = {}; | 
|  | Elf_Phdr TlsPhdr{}; | 
|  | bool RelroAligned = false; | 
|  | uintX_t ThreadBssOffset = 0; | 
|  | // Create phdrs as we assign VAs and file offsets to all output sections. | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) { | 
|  | Elf_Phdr *PH = &Phdrs[PhdrIdx]; | 
|  | if (needsPhdr<ELFT>(Sec)) { | 
|  | uintX_t Flags = toPhdrFlags(Sec->getFlags()); | 
|  | bool InRelRo = Config->ZRelro && (Flags & PF_W) && isRelroSection(Sec); | 
|  | bool FirstNonRelRo = GnuRelroPhdr.p_type && !InRelRo && !RelroAligned; | 
|  | if (FirstNonRelRo || PH->p_flags != Flags) { | 
|  | VA = align(VA, Target->getPageSize()); | 
|  | FileOff = align(FileOff, Target->getPageSize()); | 
|  | if (FirstNonRelRo) | 
|  | RelroAligned = true; | 
|  | } | 
|  |  | 
|  | if (PH->p_flags != Flags) { | 
|  | // Flags changed. Create a new PT_LOAD. | 
|  | PH = &Phdrs[++PhdrIdx]; | 
|  | uint32_t PTType = (Config->EMachine != EM_AMDGPU) ? (uint32_t)PT_LOAD | 
|  | : getAmdgpuPhdr(Sec); | 
|  | setPhdr(PH, PTType, Flags, FileOff, VA, 0, Target->getPageSize()); | 
|  | } | 
|  |  | 
|  | if (Sec->getFlags() & SHF_TLS) { | 
|  | if (!TlsPhdr.p_vaddr) | 
|  | setPhdr(&TlsPhdr, PT_TLS, PF_R, FileOff, VA, 0, Sec->getAlign()); | 
|  | if (Sec->getType() != SHT_NOBITS) | 
|  | VA = align(VA, Sec->getAlign()); | 
|  | uintX_t TVA = align(VA + ThreadBssOffset, Sec->getAlign()); | 
|  | Sec->setVA(TVA); | 
|  | TlsPhdr.p_memsz += Sec->getSize(); | 
|  | if (Sec->getType() == SHT_NOBITS) { | 
|  | ThreadBssOffset = TVA - VA + Sec->getSize(); | 
|  | } else { | 
|  | TlsPhdr.p_filesz += Sec->getSize(); | 
|  | VA += Sec->getSize(); | 
|  | } | 
|  | TlsPhdr.p_align = std::max<uintX_t>(TlsPhdr.p_align, Sec->getAlign()); | 
|  | } else { | 
|  | VA = align(VA, Sec->getAlign()); | 
|  | Sec->setVA(VA); | 
|  | VA += Sec->getSize(); | 
|  | if (InRelRo) | 
|  | updateRelro(PH, &GnuRelroPhdr, VA); | 
|  | } | 
|  | } | 
|  |  | 
|  | FileOff = align(FileOff, Sec->getAlign()); | 
|  | Sec->setFileOffset(FileOff); | 
|  | if (Sec->getType() != SHT_NOBITS) | 
|  | FileOff += Sec->getSize(); | 
|  | if (needsPhdr<ELFT>(Sec)) { | 
|  | PH->p_filesz = FileOff - PH->p_offset; | 
|  | PH->p_memsz = VA - PH->p_vaddr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TlsPhdr.p_vaddr) { | 
|  | // The TLS pointer goes after PT_TLS. At least glibc will align it, | 
|  | // so round up the size to make sure the offsets are correct. | 
|  | TlsPhdr.p_memsz = align(TlsPhdr.p_memsz, TlsPhdr.p_align); | 
|  | Phdrs[++PhdrIdx] = TlsPhdr; | 
|  | Out<ELFT>::TlsPhdr = &Phdrs[PhdrIdx]; | 
|  | } | 
|  |  | 
|  | // Add an entry for .dynamic. | 
|  | if (isOutputDynamic()) { | 
|  | Elf_Phdr *PH = &Phdrs[++PhdrIdx]; | 
|  | PH->p_type = PT_DYNAMIC; | 
|  | copyPhdr(PH, Out<ELFT>::Dynamic); | 
|  | } | 
|  |  | 
|  | if (HasRelro) { | 
|  | Elf_Phdr *PH = &Phdrs[++PhdrIdx]; | 
|  | *PH = GnuRelroPhdr; | 
|  | } | 
|  |  | 
|  | // PT_GNU_STACK is a special section to tell the loader to make the | 
|  | // pages for the stack non-executable. | 
|  | if (!Config->ZExecStack) { | 
|  | Elf_Phdr *PH = &Phdrs[++PhdrIdx]; | 
|  | PH->p_type = PT_GNU_STACK; | 
|  | PH->p_flags = PF_R | PF_W; | 
|  | } | 
|  |  | 
|  | // Fix up PT_INTERP as we now know the address of .interp section. | 
|  | if (Interp) { | 
|  | Interp->p_type = PT_INTERP; | 
|  | copyPhdr(Interp, Out<ELFT>::Interp); | 
|  | } | 
|  |  | 
|  | // Add space for section headers. | 
|  | SectionHeaderOff = align(FileOff, ELFT::Is64Bits ? 8 : 4); | 
|  | FileSize = SectionHeaderOff + getNumSections() * sizeof(Elf_Shdr); | 
|  |  | 
|  | // Update "_end" and "end" symbols so that they | 
|  | // point to the end of the data segment. | 
|  | ElfSym<ELFT>::End.st_value = VA; | 
|  | } | 
|  |  | 
|  | // Returns the number of PHDR entries. | 
|  | template <class ELFT> int Writer<ELFT>::getPhdrsNum() const { | 
|  | bool Tls = false; | 
|  | int I = 2; // 2 for PT_PHDR and first PT_LOAD | 
|  | if (needsInterpSection()) | 
|  | ++I; | 
|  | if (isOutputDynamic()) | 
|  | ++I; | 
|  | if (!Config->ZExecStack) | 
|  | ++I; | 
|  | uintX_t Last = PF_R; | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) { | 
|  | if (!needsPhdr<ELFT>(Sec)) | 
|  | continue; | 
|  | if (Sec->getFlags() & SHF_TLS) | 
|  | Tls = true; | 
|  | uintX_t Flags = toPhdrFlags(Sec->getFlags()); | 
|  | if (Last != Flags) { | 
|  | Last = Flags; | 
|  | ++I; | 
|  | } | 
|  | } | 
|  | if (Tls) | 
|  | ++I; | 
|  | if (HasRelro) | 
|  | ++I; | 
|  | return I; | 
|  | } | 
|  |  | 
|  | static uint32_t getELFFlags() { | 
|  | if (Config->EMachine != EM_MIPS) | 
|  | return 0; | 
|  | // FIXME: In fact ELF flags depends on ELF flags of input object files | 
|  | // and selected emulation. For now just use hard coded values. | 
|  | uint32_t V = EF_MIPS_ABI_O32 | EF_MIPS_CPIC | EF_MIPS_ARCH_32R2; | 
|  | if (Config->Shared) | 
|  | V |= EF_MIPS_PIC; | 
|  | return V; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static typename ELFFile<ELFT>::uintX_t getEntryAddr() { | 
|  | if (Config->EntrySym) { | 
|  | if (SymbolBody *E = Config->EntrySym->repl()) | 
|  | return getSymVA<ELFT>(*E); | 
|  | return 0; | 
|  | } | 
|  | if (Config->EntryAddr != uint64_t(-1)) | 
|  | return Config->EntryAddr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This function is called after we have assigned address and size | 
|  | // to each section. This function fixes some predefined absolute | 
|  | // symbol values that depend on section address and size. | 
|  | template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() { | 
|  | // Update __rel[a]_iplt_{start,end} symbols so that they point | 
|  | // to beginning or ending of .rela.plt section, respectively. | 
|  | if (Out<ELFT>::RelaPlt) { | 
|  | uintX_t Start = Out<ELFT>::RelaPlt->getVA(); | 
|  | ElfSym<ELFT>::RelaIpltStart.st_value = Start; | 
|  | ElfSym<ELFT>::RelaIpltEnd.st_value = Start + Out<ELFT>::RelaPlt->getSize(); | 
|  | } | 
|  |  | 
|  | // Update MIPS _gp absolute symbol so that it points to the static data. | 
|  | if (Config->EMachine == EM_MIPS) | 
|  | ElfSym<ELFT>::MipsGp.st_value = getMipsGpAddr<ELFT>(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeHeader() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  | memcpy(Buf, "\177ELF", 4); | 
|  |  | 
|  | // Write the ELF header. | 
|  | auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); | 
|  | EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; | 
|  | EHdr->e_ident[EI_DATA] = ELFT::TargetEndianness == llvm::support::little | 
|  | ? ELFDATA2LSB | 
|  | : ELFDATA2MSB; | 
|  | EHdr->e_ident[EI_VERSION] = EV_CURRENT; | 
|  |  | 
|  | auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); | 
|  | EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); | 
|  |  | 
|  | EHdr->e_type = Config->Shared ? ET_DYN : ET_EXEC; | 
|  | EHdr->e_machine = FirstObj.getEMachine(); | 
|  | EHdr->e_version = EV_CURRENT; | 
|  | EHdr->e_entry = getEntryAddr<ELFT>(); | 
|  | EHdr->e_phoff = sizeof(Elf_Ehdr); | 
|  | EHdr->e_shoff = SectionHeaderOff; | 
|  | EHdr->e_flags = getELFFlags(); | 
|  | EHdr->e_ehsize = sizeof(Elf_Ehdr); | 
|  | EHdr->e_phentsize = sizeof(Elf_Phdr); | 
|  | EHdr->e_phnum = Phdrs.size(); | 
|  | EHdr->e_shentsize = sizeof(Elf_Shdr); | 
|  | EHdr->e_shnum = getNumSections(); | 
|  | EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex; | 
|  |  | 
|  | // Write the program header table. | 
|  | memcpy(Buf + EHdr->e_phoff, &Phdrs[0], Phdrs.size() * sizeof(Phdrs[0])); | 
|  |  | 
|  | // Write the section header table. Note that the first table entry is null. | 
|  | auto SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | Sec->writeHeaderTo(++SHdrs); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::openFile(StringRef Path) { | 
|  | ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = | 
|  | FileOutputBuffer::create(Path, FileSize, FileOutputBuffer::F_executable); | 
|  | error(BufferOrErr, "failed to open " + Path); | 
|  | Buffer = std::move(*BufferOrErr); | 
|  | } | 
|  |  | 
|  | // Write section contents to a mmap'ed file. | 
|  | template <class ELFT> void Writer<ELFT>::writeSections() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  |  | 
|  | // PPC64 needs to process relocations in the .opd section before processing | 
|  | // relocations in code-containing sections. | 
|  | if (OutputSectionBase<ELFT> *Sec = Out<ELFT>::Opd) { | 
|  | Out<ELFT>::OpdBuf = Buf + Sec->getFileOff(); | 
|  | Sec->writeTo(Buf + Sec->getFileOff()); | 
|  | } | 
|  |  | 
|  | // Write all sections but string table sections. We know the sizes of the | 
|  | // string tables already, but they may not have actual strings yet (only | 
|  | // room may be reserved), because writeTo() is allowed to add actual | 
|  | // strings to the string tables. | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | if (Sec != Out<ELFT>::Opd && Sec->getType() != SHT_STRTAB) | 
|  | Sec->writeTo(Buf + Sec->getFileOff()); | 
|  |  | 
|  | // Write string table sections. | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | if (Sec != Out<ELFT>::Opd && Sec->getType() == SHT_STRTAB) | 
|  | Sec->writeTo(Buf + Sec->getFileOff()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, | 
|  | uintX_t FileOff, uintX_t VA, uintX_t Size, | 
|  | uintX_t Align) { | 
|  | PH->p_type = Type; | 
|  | PH->p_flags = Flags; | 
|  | PH->p_offset = FileOff; | 
|  | PH->p_vaddr = VA; | 
|  | PH->p_paddr = VA; | 
|  | PH->p_filesz = Size; | 
|  | PH->p_memsz = Size; | 
|  | PH->p_align = Align; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::copyPhdr(Elf_Phdr *PH, OutputSectionBase<ELFT> *From) { | 
|  | PH->p_flags = toPhdrFlags(From->getFlags()); | 
|  | PH->p_offset = From->getFileOff(); | 
|  | PH->p_vaddr = From->getVA(); | 
|  | PH->p_paddr = From->getVA(); | 
|  | PH->p_filesz = From->getSize(); | 
|  | PH->p_memsz = From->getSize(); | 
|  | PH->p_align = From->getAlign(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::buildSectionMap() { | 
|  | for (const std::pair<StringRef, std::vector<StringRef>> &OutSec : | 
|  | Config->OutputSections) | 
|  | for (StringRef Name : OutSec.second) | 
|  | InputToOutputSection[Name] = OutSec.first; | 
|  | } | 
|  |  | 
|  | template void elf2::writeResult<ELF32LE>(SymbolTable<ELF32LE> *Symtab); | 
|  | template void elf2::writeResult<ELF32BE>(SymbolTable<ELF32BE> *Symtab); | 
|  | template void elf2::writeResult<ELF64LE>(SymbolTable<ELF64LE> *Symtab); | 
|  | template void elf2::writeResult<ELF64BE>(SymbolTable<ELF64BE> *Symtab); |