|  | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
|  | "http://www.w3.org/TR/html4/strict.dtd"> | 
|  |  | 
|  | <html> | 
|  | <head> | 
|  | <title>Kaleidoscope: Implementing a Parser and AST</title> | 
|  | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
|  | <meta name="author" content="Chris Lattner"> | 
|  | <link rel="stylesheet" href="../llvm.css" type="text/css"> | 
|  | </head> | 
|  |  | 
|  | <body> | 
|  |  | 
|  | <div class="doc_title">Kaleidoscope: Implementing a Parser and AST</div> | 
|  |  | 
|  | <ul> | 
|  | <li><a href="index.html">Up to Tutorial Index</a></li> | 
|  | <li>Chapter 2 | 
|  | <ol> | 
|  | <li><a href="#intro">Chapter 2 Introduction</a></li> | 
|  | <li><a href="#ast">The Abstract Syntax Tree (AST)</a></li> | 
|  | <li><a href="#parserbasics">Parser Basics</a></li> | 
|  | <li><a href="#parserprimexprs">Basic Expression Parsing</a></li> | 
|  | <li><a href="#parserbinops">Binary Expression Parsing</a></li> | 
|  | <li><a href="#parsertop">Parsing the Rest</a></li> | 
|  | <li><a href="#driver">The Driver</a></li> | 
|  | <li><a href="#conclusions">Conclusions</a></li> | 
|  | <li><a href="#code">Full Code Listing</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="LangImpl3.html">Chapter 3</a>: Code generation to LLVM IR</li> | 
|  | </ul> | 
|  |  | 
|  | <div class="doc_author"> | 
|  | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="intro">Chapter 2 Introduction</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Welcome to Chapter 2 of the "<a href="index.html">Implementing a language | 
|  | with LLVM</a>" tutorial.  This chapter shows you how to use the lexer, built in | 
|  | <a href="LangImpl1.html">Chapter 1</a>, to build a full <a | 
|  | href="http://en.wikipedia.org/wiki/Parsing">parser</a> for | 
|  | our Kaleidoscope language.  Once we have a parser, we'll define and build an <a | 
|  | href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax | 
|  | Tree</a> (AST).</p> | 
|  |  | 
|  | <p>The parser we will build uses a combination of <a | 
|  | href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent | 
|  | Parsing</a> and <a href= | 
|  | "http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence | 
|  | Parsing</a> to parse the Kaleidoscope language (the latter for | 
|  | binary expressions and the former for everything else).  Before we get to | 
|  | parsing though, lets talk about the output of the parser: the Abstract Syntax | 
|  | Tree.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="ast">The Abstract Syntax Tree (AST)</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>The AST for a program captures its behavior in such a way that it is easy for | 
|  | later stages of the compiler (e.g. code generation) to interpret.  We basically | 
|  | want one object for each construct in the language, and the AST should closely | 
|  | model the language.  In Kaleidoscope, we have expressions, a prototype, and a | 
|  | function object.  We'll start with expressions first:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// ExprAST - Base class for all expression nodes. | 
|  | class ExprAST { | 
|  | public: | 
|  | virtual ~ExprAST() {} | 
|  | }; | 
|  |  | 
|  | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
|  | class NumberExprAST : public ExprAST { | 
|  | double Val; | 
|  | public: | 
|  | explicit NumberExprAST(double val) : Val(val) {} | 
|  | }; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The code above shows the definition of the base ExprAST class and one | 
|  | subclass which we use for numeric literals.  The important thing to note about | 
|  | this code is that the NumberExprAST class captures the numeric value of the | 
|  | literal as an instance variable. This allows later phases of the compiler to | 
|  | know what the stored numeric value is.</p> | 
|  |  | 
|  | <p>Right now we only create the AST,  so there are no useful accessor methods on | 
|  | them.  It would be very easy to add a virtual method to pretty print the code, | 
|  | for example.  Here are the other expression AST node definitions that we'll use | 
|  | in the basic form of the Kaleidoscope language: | 
|  | </p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// VariableExprAST - Expression class for referencing a variable, like "a". | 
|  | class VariableExprAST : public ExprAST { | 
|  | std::string Name; | 
|  | public: | 
|  | explicit VariableExprAST(const std::string &name) : Name(name) {} | 
|  | }; | 
|  |  | 
|  | /// BinaryExprAST - Expression class for a binary operator. | 
|  | class BinaryExprAST : public ExprAST { | 
|  | char Op; | 
|  | ExprAST *LHS, *RHS; | 
|  | public: | 
|  | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) | 
|  | : Op(op), LHS(lhs), RHS(rhs) {} | 
|  | }; | 
|  |  | 
|  | /// CallExprAST - Expression class for function calls. | 
|  | class CallExprAST : public ExprAST { | 
|  | std::string Callee; | 
|  | std::vector<ExprAST*> Args; | 
|  | public: | 
|  | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) | 
|  | : Callee(callee), Args(args) {} | 
|  | }; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This is all (intentionally) rather straight-forward: variables capture the | 
|  | variable name, binary operators capture their opcode (e.g. '+'), and calls | 
|  | capture a function name as well as a list of any argument expressions.  One thing | 
|  | that is nice about our AST is that it captures the language features without | 
|  | talking about the syntax of the language.  Note that there is no discussion about | 
|  | precedence of binary operators, lexical structure, etc.</p> | 
|  |  | 
|  | <p>For our basic language, these are all of the expression nodes we'll define. | 
|  | Because it doesn't have conditional control flow, it isn't Turing-complete; | 
|  | we'll fix that in a later installment.  The two things we need next are a way | 
|  | to talk about the interface to a function, and a way to talk about functions | 
|  | themselves:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// PrototypeAST - This class represents the "prototype" for a function, | 
|  | /// which captures its name, and its argument names (thus implicitly the number | 
|  | /// of arguments the function takes). | 
|  | class PrototypeAST { | 
|  | std::string Name; | 
|  | std::vector<std::string> Args; | 
|  | public: | 
|  | PrototypeAST(const std::string &name, const std::vector<std::string> &args) | 
|  | : Name(name), Args(args) {} | 
|  | }; | 
|  |  | 
|  | /// FunctionAST - This class represents a function definition itself. | 
|  | class FunctionAST { | 
|  | PrototypeAST *Proto; | 
|  | ExprAST *Body; | 
|  | public: | 
|  | FunctionAST(PrototypeAST *proto, ExprAST *body) | 
|  | : Proto(proto), Body(body) {} | 
|  | }; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>In Kaleidoscope, functions are typed with just a count of their arguments. | 
|  | Since all values are double precision floating point, the type of each argument | 
|  | doesn't need to be stored anywhere.  In a more aggressive and realistic | 
|  | language, the "ExprAST" class would probably have a type field.</p> | 
|  |  | 
|  | <p>With this scaffolding, we can now talk about parsing expressions and function | 
|  | bodies in Kaleidoscope.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="parserbasics">Parser Basics</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Now that we have an AST to build, we need to define the parser code to build | 
|  | it.  The idea here is that we want to parse something like "x+y" (which is | 
|  | returned as three tokens by the lexer) into an AST that could be generated with | 
|  | calls like this:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | ExprAST *X = new VariableExprAST("x"); | 
|  | ExprAST *Y = new VariableExprAST("y"); | 
|  | ExprAST *Result = new BinaryExprAST('+', X, Y); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>In order to do this, we'll start by defining some basic helper routines:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current | 
|  | /// token the parser is looking at.  getNextToken reads another token from the | 
|  | /// lexer and updates CurTok with its results. | 
|  | static int CurTok; | 
|  | static int getNextToken() { | 
|  | return CurTok = gettok(); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p> | 
|  | This implements a simple token buffer around the lexer.  This allows | 
|  | us to look one token ahead at what the lexer is returning.  Every function in | 
|  | our parser will assume that CurTok is the current token that needs to be | 
|  | parsed.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  |  | 
|  | /// Error* - These are little helper functions for error handling. | 
|  | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} | 
|  | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } | 
|  | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p> | 
|  | The <tt>Error</tt> routines are simple helper routines that our parser will use | 
|  | to handle errors.  The error recovery in our parser will not be the best and | 
|  | is not particular user-friendly, but it will be enough for our tutorial.  These | 
|  | routines make it easier to handle errors in routines that have various return | 
|  | types: they always return null.</p> | 
|  |  | 
|  | <p>With these basic helper functions, we can implement the first | 
|  | piece of our grammar: numeric literals.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="parserprimexprs">Basic Expression | 
|  | Parsing</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>We start with numeric literals, because they are the simplest to process. | 
|  | For each production in our grammar, we'll define a function which parses that | 
|  | production.  For numeric literals, we have: | 
|  | </p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// numberexpr ::= number | 
|  | static ExprAST *ParseNumberExpr() { | 
|  | ExprAST *Result = new NumberExprAST(NumVal); | 
|  | getNextToken(); // consume the number | 
|  | return Result; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This routine is very simple: it expects to be called when the current token | 
|  | is a <tt>tok_number</tt> token.  It takes the current number value, creates | 
|  | a <tt>NumberExprAST</tt> node, advances the lexer to the next token, and finally | 
|  | returns.</p> | 
|  |  | 
|  | <p>There are some interesting aspects to this.  The most important one is that | 
|  | this routine eats all of the tokens that correspond to the production and | 
|  | returns the lexer buffer with the next token (which is not part of the grammar | 
|  | production) ready to go.  This is a fairly standard way to go for recursive | 
|  | descent parsers.  For a better example, the parenthesis operator is defined like | 
|  | this:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// parenexpr ::= '(' expression ')' | 
|  | static ExprAST *ParseParenExpr() { | 
|  | getNextToken();  // eat (. | 
|  | ExprAST *V = ParseExpression(); | 
|  | if (!V) return 0; | 
|  |  | 
|  | if (CurTok != ')') | 
|  | return Error("expected ')'"); | 
|  | getNextToken();  // eat ). | 
|  | return V; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This function illustrates a number of interesting things about the | 
|  | parser:</p> | 
|  |  | 
|  | <p> | 
|  | 1) It shows how we use the Error routines.  When called, this function expects | 
|  | that the current token is a '(' token, but after parsing the subexpression, it | 
|  | is possible that there is no ')' waiting.  For example, if the user types in | 
|  | "(4 x" instead of "(4)", the parser should emit an error.  Because errors can | 
|  | occur, the parser needs a way to indicate that they happened: in our parser, we | 
|  | return null on an error.</p> | 
|  |  | 
|  | <p>2) Another interesting aspect of this function is that it uses recursion by | 
|  | calling <tt>ParseExpression</tt> (we will soon see that <tt>ParseExpression</tt> can call | 
|  | <tt>ParseParenExpr</tt>).  This is powerful because it allows us to handle | 
|  | recursive grammars, and keeps each production very simple.  Note that | 
|  | parentheses do not cause construction of AST nodes themselves.  While we could | 
|  | do it this way, the most important role of parentheses are to guide the parser | 
|  | and provide grouping.  Once the parser constructs the AST, parentheses are not | 
|  | needed.</p> | 
|  |  | 
|  | <p>The next simple production is for handling variable references and function | 
|  | calls:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// identifierexpr | 
|  | ///   ::= identifier | 
|  | ///   ::= identifier '(' expression* ')' | 
|  | static ExprAST *ParseIdentifierExpr() { | 
|  | std::string IdName = IdentifierStr; | 
|  |  | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '(') // Simple variable ref. | 
|  | return new VariableExprAST(IdName); | 
|  |  | 
|  | // Call. | 
|  | getNextToken();  // eat ( | 
|  | std::vector<ExprAST*> Args; | 
|  | if (CurTok != ')') { | 
|  | while (1) { | 
|  | ExprAST *Arg = ParseExpression(); | 
|  | if (!Arg) return 0; | 
|  | Args.push_back(Arg); | 
|  |  | 
|  | if (CurTok == ')') break; | 
|  |  | 
|  | if (CurTok != ',') | 
|  | return Error("Expected ')' or ',' in argument list"); | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eat the ')'. | 
|  | getNextToken(); | 
|  |  | 
|  | return new CallExprAST(IdName, Args); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This routine follows the same style as the other routines.  (It expects to be | 
|  | called if the current token is a <tt>tok_identifier</tt> token).  It also has | 
|  | recursion and error handling.  One interesting aspect of this is that it uses | 
|  | <em>look-ahead</em> to determine if the current identifier is a stand alone | 
|  | variable reference or if it is a function call expression.  It handles this by | 
|  | checking to see if the token after the identifier is a '(' token, constructing | 
|  | either a <tt>VariableExprAST</tt> or <tt>CallExprAST</tt> node as appropriate. | 
|  | </p> | 
|  |  | 
|  | <p>Now that we have all of our simple expression-parsing logic in place, we can | 
|  | define a helper function to wrap it together into one entry point.  We call this | 
|  | class of expressions "primary" expressions, for reasons that will become more | 
|  | clear <a href="LangImpl6.html#unary">later in the tutorial</a>.  In order to | 
|  | parse an arbitrary primary expression, we need to determine what sort of | 
|  | expression it is:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// primary | 
|  | ///   ::= identifierexpr | 
|  | ///   ::= numberexpr | 
|  | ///   ::= parenexpr | 
|  | static ExprAST *ParsePrimary() { | 
|  | switch (CurTok) { | 
|  | default: return Error("unknown token when expecting an expression"); | 
|  | case tok_identifier: return ParseIdentifierExpr(); | 
|  | case tok_number:     return ParseNumberExpr(); | 
|  | case '(':            return ParseParenExpr(); | 
|  | } | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Now that you see the definition of this function, it is more obvious why we | 
|  | can assume the state of CurTok in the various functions.  This uses look-ahead | 
|  | to determine which sort of expression is being inspected, and then parses it | 
|  | with a function call.</p> | 
|  |  | 
|  | <p>Now that basic expressions are handled, we need to handle binary expressions. | 
|  | They are a bit more complex.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="parserbinops">Binary Expression | 
|  | Parsing</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Binary expressions are significantly harder to parse because they are often | 
|  | ambiguous.  For example, when given the string "x+y*z", the parser can choose | 
|  | to parse it as either "(x+y)*z" or "x+(y*z)".  With common definitions from | 
|  | mathematics, we expect the later parse, because "*" (multiplication) has | 
|  | higher <em>precedence</em> than "+" (addition).</p> | 
|  |  | 
|  | <p>There are many ways to handle this, but an elegant and efficient way is to | 
|  | use <a href= | 
|  | "http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence | 
|  | Parsing</a>.  This parsing technique uses the precedence of binary operators to | 
|  | guide recursion.  To start with, we need a table of precedences:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// BinopPrecedence - This holds the precedence for each binary operator that is | 
|  | /// defined. | 
|  | static std::map<char, int> BinopPrecedence; | 
|  |  | 
|  | /// GetTokPrecedence - Get the precedence of the pending binary operator token. | 
|  | static int GetTokPrecedence() { | 
|  | if (!isascii(CurTok)) | 
|  | return -1; | 
|  |  | 
|  | // Make sure it's a declared binop. | 
|  | int TokPrec = BinopPrecedence[CurTok]; | 
|  | if (TokPrec <= 0) return -1; | 
|  | return TokPrec; | 
|  | } | 
|  |  | 
|  | int main() { | 
|  | // Install standard binary operators. | 
|  | // 1 is lowest precedence. | 
|  | BinopPrecedence['<'] = 10; | 
|  | BinopPrecedence['+'] = 20; | 
|  | BinopPrecedence['-'] = 20; | 
|  | BinopPrecedence['*'] = 40;  // highest. | 
|  | ... | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>For the basic form of Kaleidoscope, we will only support 4 binary operators | 
|  | (this can obviously be extended by you, our brave and intrepid reader).  The | 
|  | <tt>GetTokPrecedence</tt> function returns the precedence for the current token, | 
|  | or -1 if the token is not a binary operator.  Having a map makes it easy to add | 
|  | new operators and makes it clear that the algorithm doesn't depend on the | 
|  | specific operators involved, but it would be easy enough to eliminate the map | 
|  | and do the comparisons in the <tt>GetTokPrecedence</tt> function.  (Or just use | 
|  | a fixed-size array).</p> | 
|  |  | 
|  | <p>With the helper above defined, we can now start parsing binary expressions. | 
|  | The basic idea of operator precedence parsing is to break down an expression | 
|  | with potentially ambiguous binary operators into pieces.  Consider ,for example, | 
|  | the expression "a+b+(c+d)*e*f+g".  Operator precedence parsing considers this | 
|  | as a stream of primary expressions separated by binary operators.  As such, | 
|  | it will first parse the leading primary expression "a", then it will see the | 
|  | pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g].  Note that because parentheses | 
|  | are primary expressions, the binary expression parser doesn't need to worry | 
|  | about nested subexpressions like (c+d) at all. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | To start, an expression is a primary expression potentially followed by a | 
|  | sequence of [binop,primaryexpr] pairs:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// expression | 
|  | ///   ::= primary binoprhs | 
|  | /// | 
|  | static ExprAST *ParseExpression() { | 
|  | ExprAST *LHS = ParsePrimary(); | 
|  | if (!LHS) return 0; | 
|  |  | 
|  | return ParseBinOpRHS(0, LHS); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p><tt>ParseBinOpRHS</tt> is the function that parses the sequence of pairs for | 
|  | us.  It takes a precedence and a pointer to an expression for the part that has been | 
|  | parsed so far.   Note that "x" is a perfectly valid expression: As such, "binoprhs" is | 
|  | allowed to be empty, in which case it returns the expression that is passed into | 
|  | it. In our example above, the code passes the expression for "a" into | 
|  | <tt>ParseBinOpRHS</tt> and the current token is "+".</p> | 
|  |  | 
|  | <p>The precedence value passed into <tt>ParseBinOpRHS</tt> indicates the <em> | 
|  | minimal operator precedence</em> that the function is allowed to eat.  For | 
|  | example, if the current pair stream is [+, x] and <tt>ParseBinOpRHS</tt> is | 
|  | passed in a precedence of 40, it will not consume any tokens (because the | 
|  | precedence of '+' is only 20).  With this in mind, <tt>ParseBinOpRHS</tt> starts | 
|  | with:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// binoprhs | 
|  | ///   ::= ('+' primary)* | 
|  | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { | 
|  | // If this is a binop, find its precedence. | 
|  | while (1) { | 
|  | int TokPrec = GetTokPrecedence(); | 
|  |  | 
|  | // If this is a binop that binds at least as tightly as the current binop, | 
|  | // consume it, otherwise we are done. | 
|  | if (TokPrec < ExprPrec) | 
|  | return LHS; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This code gets the precedence of the current token and checks to see if if is | 
|  | too low.  Because we defined invalid tokens to have a precedence of -1, this | 
|  | check implicitly knows that the pair-stream ends when the token stream runs out | 
|  | of binary operators.  If this check succeeds, we know that the token is a binary | 
|  | operator and that it will be included in this expression:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Okay, we know this is a binop. | 
|  | int BinOp = CurTok; | 
|  | getNextToken();  // eat binop | 
|  |  | 
|  | // Parse the primary expression after the binary operator. | 
|  | ExprAST *RHS = ParsePrimary(); | 
|  | if (!RHS) return 0; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>As such, this code eats (and remembers) the binary operator and then parses | 
|  | the primary expression that follows.  This builds up the whole pair, the first of | 
|  | which is [+, b] for the running example.</p> | 
|  |  | 
|  | <p>Now that we parsed the left-hand side of an expression and one pair of the | 
|  | RHS sequence, we have to decide which way the expression associates.  In | 
|  | particular, we could have "(a+b) binop unparsed"  or "a + (b binop unparsed)". | 
|  | To determine this, we look ahead at "binop" to determine its precedence and | 
|  | compare it to BinOp's precedence (which is '+' in this case):</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // If BinOp binds less tightly with RHS than the operator after RHS, let | 
|  | // the pending operator take RHS as its LHS. | 
|  | int NextPrec = GetTokPrecedence(); | 
|  | if (TokPrec < NextPrec) { | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>If the precedence of the binop to the right of "RHS" is lower or equal to the | 
|  | precedence of our current operator, then we know that the parentheses associate | 
|  | as "(a+b) binop ...".  In our example, the current operator is "+" and the next | 
|  | operator is "+", we know that they have the same precedence.  In this case we'll | 
|  | create the AST node for "a+b", and then continue parsing:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | ... if body omitted ... | 
|  | } | 
|  |  | 
|  | // Merge LHS/RHS. | 
|  | LHS = new BinaryExprAST(BinOp, LHS, RHS); | 
|  | }  // loop around to the top of the while loop. | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next | 
|  | iteration of the loop, with "+" as the current token.  The code above will eat, | 
|  | remember, and parse "(c+d)" as the primary expression, which makes the | 
|  | current pair equal to [+, (c+d)].  It will then evaluate the 'if' conditional above with | 
|  | "*" as the binop to the right of the primary.  In this case, the precedence of "*" is | 
|  | higher than the precedence of "+" so the if condition will be entered.</p> | 
|  |  | 
|  | <p>The critical question left here is "how can the if condition parse the right | 
|  | hand side in full"?  In particular, to build the AST correctly for our example, | 
|  | it needs to get all of "(c+d)*e*f" as the RHS expression variable.  The code to | 
|  | do this is surprisingly simple (code from the above two blocks duplicated for | 
|  | context):</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // If BinOp binds less tightly with RHS than the operator after RHS, let | 
|  | // the pending operator take RHS as its LHS. | 
|  | int NextPrec = GetTokPrecedence(); | 
|  | if (TokPrec < NextPrec) { | 
|  | <b>RHS = ParseBinOpRHS(TokPrec+1, RHS); | 
|  | if (RHS == 0) return 0;</b> | 
|  | } | 
|  | // Merge LHS/RHS. | 
|  | LHS = new BinaryExprAST(BinOp, LHS, RHS); | 
|  | }  // loop around to the top of the while loop. | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>At this point, we know that the binary operator to the RHS of our primary | 
|  | has higher precedence than the binop we are currently parsing.  As such, we know | 
|  | that any sequence of pairs whose operators are all higher precedence than "+" | 
|  | should be parsed together and returned as "RHS".  To do this, we recursively | 
|  | invoke the <tt>ParseBinOpRHS</tt> function specifying "TokPrec+1" as the minimum | 
|  | precedence required for it to continue.  In our example above, this will cause | 
|  | it to return the AST node for "(c+d)*e*f" as RHS, which is then set as the RHS | 
|  | of the '+' expression.</p> | 
|  |  | 
|  | <p>Finally, on the next iteration of the while loop, the "+g" piece is parsed | 
|  | and added to the AST.  With this little bit of code (14 non-trivial lines), we | 
|  | correctly handle fully general binary expression parsing in a very elegant way. | 
|  | This was a whirlwind tour of this code, and it is somewhat subtle.  I recommend | 
|  | running through it with a few tough examples to see how it works. | 
|  | </p> | 
|  |  | 
|  | <p>This wraps up handling of expressions.  At this point, we can point the | 
|  | parser at an arbitrary token stream and build an expression from it, stopping | 
|  | at the first token that is not part of the expression.  Next up we need to | 
|  | handle function definitions, etc.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="parsertop">Parsing the Rest</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | The next thing missing is handling of function prototypes.  In Kaleidoscope, | 
|  | these are used both for 'extern' function declarations as well as function body | 
|  | definitions.  The code to do this is straight-forward and not very interesting | 
|  | (once you've survived expressions): | 
|  | </p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// prototype | 
|  | ///   ::= id '(' id* ')' | 
|  | static PrototypeAST *ParsePrototype() { | 
|  | if (CurTok != tok_identifier) | 
|  | return ErrorP("Expected function name in prototype"); | 
|  |  | 
|  | std::string FnName = IdentifierStr; | 
|  | getNextToken(); | 
|  |  | 
|  | if (CurTok != '(') | 
|  | return ErrorP("Expected '(' in prototype"); | 
|  |  | 
|  | // Read the list of argument names. | 
|  | std::vector<std::string> ArgNames; | 
|  | while (getNextToken() == tok_identifier) | 
|  | ArgNames.push_back(IdentifierStr); | 
|  | if (CurTok != ')') | 
|  | return ErrorP("Expected ')' in prototype"); | 
|  |  | 
|  | // success. | 
|  | getNextToken();  // eat ')'. | 
|  |  | 
|  | return new PrototypeAST(FnName, ArgNames); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Given this, a function definition is very simple, just a prototype plus | 
|  | an expression to implement the body:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// definition ::= 'def' prototype expression | 
|  | static FunctionAST *ParseDefinition() { | 
|  | getNextToken();  // eat def. | 
|  | PrototypeAST *Proto = ParsePrototype(); | 
|  | if (Proto == 0) return 0; | 
|  |  | 
|  | if (ExprAST *E = ParseExpression()) | 
|  | return new FunctionAST(Proto, E); | 
|  | return 0; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as | 
|  | well as to support forward declaration of user functions.  These 'extern's are just | 
|  | prototypes with no body:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// external ::= 'extern' prototype | 
|  | static PrototypeAST *ParseExtern() { | 
|  | getNextToken();  // eat extern. | 
|  | return ParsePrototype(); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Finally, we'll also let the user type in arbitrary top-level expressions and | 
|  | evaluate them on the fly.  We will handle this by defining anonymous nullary | 
|  | (zero argument) functions for them:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// toplevelexpr ::= expression | 
|  | static FunctionAST *ParseTopLevelExpr() { | 
|  | if (ExprAST *E = ParseExpression()) { | 
|  | // Make an anonymous proto. | 
|  | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); | 
|  | return new FunctionAST(Proto, E); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Now that we have all the pieces, let's build a little driver that will let us | 
|  | actually <em>execute</em> this code we've built!</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="driver">The Driver</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>The driver for this simply invokes all of the parsing pieces with a top-level | 
|  | dispatch loop.  There isn't much interesting here, so I'll just include the | 
|  | top-level loop.  See <a href="#code">below</a> for full code in the "Top-Level | 
|  | Parsing" section.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// top ::= definition | external | expression | ';' | 
|  | static void MainLoop() { | 
|  | while (1) { | 
|  | fprintf(stderr, "ready> "); | 
|  | switch (CurTok) { | 
|  | case tok_eof:    return; | 
|  | case ';':        getNextToken(); break;  // ignore top-level semicolons. | 
|  | case tok_def:    HandleDefinition(); break; | 
|  | case tok_extern: HandleExtern(); break; | 
|  | default:         HandleTopLevelExpression(); break; | 
|  | } | 
|  | } | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The most interesting part of this is that we ignore top-level semicolons. | 
|  | Why is this, you ask?  The basic reason is that if you type "4 + 5" at the | 
|  | command line, the parser doesn't know whether that is the end of what you will type | 
|  | or not.  For example, on the next line you could type "def foo..." in which case | 
|  | 4+5 is the end of a top-level expression.  Alternatively you could type "* 6", | 
|  | which would continue the expression.  Having top-level semicolons allows you to | 
|  | type "4+5;", and the parser will know you are done.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="conclusions">Conclusions</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>With just under 400 lines of commented code (240 lines of non-comment, | 
|  | non-blank code), we fully defined our minimal language, including a lexer, | 
|  | parser, and AST builder.  With this done, the executable will validate | 
|  | Kaleidoscope code and tell us if it is grammatically invalid.  For | 
|  | example, here is a sample interaction:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | $ <b>./a.out</b> | 
|  | ready> <b>def foo(x y) x+foo(y, 4.0);</b> | 
|  | Parsed a function definition. | 
|  | ready> <b>def foo(x y) x+y y;</b> | 
|  | Parsed a function definition. | 
|  | Parsed a top-level expr | 
|  | ready> <b>def foo(x y) x+y );</b> | 
|  | Parsed a function definition. | 
|  | Error: unknown token when expecting an expression | 
|  | ready> <b>extern sin(a);</b> | 
|  | ready> Parsed an extern | 
|  | ready> <b>^D</b> | 
|  | $ | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>There is a lot of room for extension here.  You can define new AST nodes, | 
|  | extend the language in many ways, etc.  In the <a href="LangImpl3.html">next | 
|  | installment</a>, we will describe how to generate LLVM Intermediate | 
|  | Representation (IR) from the AST.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="code">Full Code Listing</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | Here is the complete code listing for this and the previous chapter. | 
|  | Note that it is fully self-contained: you don't need LLVM or any external | 
|  | libraries at all for this.  (Besides the C and C++ standard libraries, of | 
|  | course.)  To build this, just compile with:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | # Compile | 
|  | g++ -g -O3 toy.cpp | 
|  | # Run | 
|  | ./a.out | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Here is the code:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | #include <cstdio> | 
|  | #include <cstdlib> | 
|  | #include <string> | 
|  | #include <map> | 
|  | #include <vector> | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Lexer | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one | 
|  | // of these for known things. | 
|  | enum Token { | 
|  | tok_eof = -1, | 
|  |  | 
|  | // commands | 
|  | tok_def = -2, tok_extern = -3, | 
|  |  | 
|  | // primary | 
|  | tok_identifier = -4, tok_number = -5, | 
|  | }; | 
|  |  | 
|  | static std::string IdentifierStr;  // Filled in if tok_identifier | 
|  | static double NumVal;              // Filled in if tok_number | 
|  |  | 
|  | /// gettok - Return the next token from standard input. | 
|  | static int gettok() { | 
|  | static int LastChar = ' '; | 
|  |  | 
|  | // Skip any whitespace. | 
|  | while (isspace(LastChar)) | 
|  | LastChar = getchar(); | 
|  |  | 
|  | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* | 
|  | IdentifierStr = LastChar; | 
|  | while (isalnum((LastChar = getchar()))) | 
|  | IdentifierStr += LastChar; | 
|  |  | 
|  | if (IdentifierStr == "def") return tok_def; | 
|  | if (IdentifierStr == "extern") return tok_extern; | 
|  | return tok_identifier; | 
|  | } | 
|  |  | 
|  | if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+ | 
|  | std::string NumStr; | 
|  | do { | 
|  | NumStr += LastChar; | 
|  | LastChar = getchar(); | 
|  | } while (isdigit(LastChar) || LastChar == '.'); | 
|  |  | 
|  | NumVal = strtod(NumStr.c_str(), 0); | 
|  | return tok_number; | 
|  | } | 
|  |  | 
|  | if (LastChar == '#') { | 
|  | // Comment until end of line. | 
|  | do LastChar = getchar(); | 
|  | while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); | 
|  |  | 
|  | if (LastChar != EOF) | 
|  | return gettok(); | 
|  | } | 
|  |  | 
|  | // Check for end of file.  Don't eat the EOF. | 
|  | if (LastChar == EOF) | 
|  | return tok_eof; | 
|  |  | 
|  | // Otherwise, just return the character as its ascii value. | 
|  | int ThisChar = LastChar; | 
|  | LastChar = getchar(); | 
|  | return ThisChar; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Abstract Syntax Tree (aka Parse Tree) | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ExprAST - Base class for all expression nodes. | 
|  | class ExprAST { | 
|  | public: | 
|  | virtual ~ExprAST() {} | 
|  | }; | 
|  |  | 
|  | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
|  | class NumberExprAST : public ExprAST { | 
|  | double Val; | 
|  | public: | 
|  | explicit NumberExprAST(double val) : Val(val) {} | 
|  | }; | 
|  |  | 
|  | /// VariableExprAST - Expression class for referencing a variable, like "a". | 
|  | class VariableExprAST : public ExprAST { | 
|  | std::string Name; | 
|  | public: | 
|  | explicit VariableExprAST(const std::string &name) : Name(name) {} | 
|  | }; | 
|  |  | 
|  | /// BinaryExprAST - Expression class for a binary operator. | 
|  | class BinaryExprAST : public ExprAST { | 
|  | char Op; | 
|  | ExprAST *LHS, *RHS; | 
|  | public: | 
|  | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) | 
|  | : Op(op), LHS(lhs), RHS(rhs) {} | 
|  | }; | 
|  |  | 
|  | /// CallExprAST - Expression class for function calls. | 
|  | class CallExprAST : public ExprAST { | 
|  | std::string Callee; | 
|  | std::vector<ExprAST*> Args; | 
|  | public: | 
|  | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) | 
|  | : Callee(callee), Args(args) {} | 
|  | }; | 
|  |  | 
|  | /// PrototypeAST - This class represents the "prototype" for a function, | 
|  | /// which captures its name, and its argument names (thus implicitly the number | 
|  | /// of arguments the function takes). | 
|  | class PrototypeAST { | 
|  | std::string Name; | 
|  | std::vector<std::string> Args; | 
|  | public: | 
|  | PrototypeAST(const std::string &name, const std::vector<std::string> &args) | 
|  | : Name(name), Args(args) {} | 
|  |  | 
|  | }; | 
|  |  | 
|  | /// FunctionAST - This class represents a function definition itself. | 
|  | class FunctionAST { | 
|  | PrototypeAST *Proto; | 
|  | ExprAST *Body; | 
|  | public: | 
|  | FunctionAST(PrototypeAST *proto, ExprAST *body) | 
|  | : Proto(proto), Body(body) {} | 
|  |  | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Parser | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current | 
|  | /// token the parser is looking at.  getNextToken reads another token from the | 
|  | /// lexer and updates CurTok with its results. | 
|  | static int CurTok; | 
|  | static int getNextToken() { | 
|  | return CurTok = gettok(); | 
|  | } | 
|  |  | 
|  | /// BinopPrecedence - This holds the precedence for each binary operator that is | 
|  | /// defined. | 
|  | static std::map<char, int> BinopPrecedence; | 
|  |  | 
|  | /// GetTokPrecedence - Get the precedence of the pending binary operator token. | 
|  | static int GetTokPrecedence() { | 
|  | if (!isascii(CurTok)) | 
|  | return -1; | 
|  |  | 
|  | // Make sure it's a declared binop. | 
|  | int TokPrec = BinopPrecedence[CurTok]; | 
|  | if (TokPrec <= 0) return -1; | 
|  | return TokPrec; | 
|  | } | 
|  |  | 
|  | /// Error* - These are little helper functions for error handling. | 
|  | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} | 
|  | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } | 
|  | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } | 
|  |  | 
|  | static ExprAST *ParseExpression(); | 
|  |  | 
|  | /// identifierexpr | 
|  | ///   ::= identifier | 
|  | ///   ::= identifier '(' expression* ')' | 
|  | static ExprAST *ParseIdentifierExpr() { | 
|  | std::string IdName = IdentifierStr; | 
|  |  | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '(') // Simple variable ref. | 
|  | return new VariableExprAST(IdName); | 
|  |  | 
|  | // Call. | 
|  | getNextToken();  // eat ( | 
|  | std::vector<ExprAST*> Args; | 
|  | if (CurTok != ')') { | 
|  | while (1) { | 
|  | ExprAST *Arg = ParseExpression(); | 
|  | if (!Arg) return 0; | 
|  | Args.push_back(Arg); | 
|  |  | 
|  | if (CurTok == ')') break; | 
|  |  | 
|  | if (CurTok != ',') | 
|  | return Error("Expected ')' or ',' in argument list"); | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eat the ')'. | 
|  | getNextToken(); | 
|  |  | 
|  | return new CallExprAST(IdName, Args); | 
|  | } | 
|  |  | 
|  | /// numberexpr ::= number | 
|  | static ExprAST *ParseNumberExpr() { | 
|  | ExprAST *Result = new NumberExprAST(NumVal); | 
|  | getNextToken(); // consume the number | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// parenexpr ::= '(' expression ')' | 
|  | static ExprAST *ParseParenExpr() { | 
|  | getNextToken();  // eat (. | 
|  | ExprAST *V = ParseExpression(); | 
|  | if (!V) return 0; | 
|  |  | 
|  | if (CurTok != ')') | 
|  | return Error("expected ')'"); | 
|  | getNextToken();  // eat ). | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// primary | 
|  | ///   ::= identifierexpr | 
|  | ///   ::= numberexpr | 
|  | ///   ::= parenexpr | 
|  | static ExprAST *ParsePrimary() { | 
|  | switch (CurTok) { | 
|  | default: return Error("unknown token when expecting an expression"); | 
|  | case tok_identifier: return ParseIdentifierExpr(); | 
|  | case tok_number:     return ParseNumberExpr(); | 
|  | case '(':            return ParseParenExpr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// binoprhs | 
|  | ///   ::= ('+' primary)* | 
|  | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { | 
|  | // If this is a binop, find its precedence. | 
|  | while (1) { | 
|  | int TokPrec = GetTokPrecedence(); | 
|  |  | 
|  | // If this is a binop that binds at least as tightly as the current binop, | 
|  | // consume it, otherwise we are done. | 
|  | if (TokPrec < ExprPrec) | 
|  | return LHS; | 
|  |  | 
|  | // Okay, we know this is a binop. | 
|  | int BinOp = CurTok; | 
|  | getNextToken();  // eat binop | 
|  |  | 
|  | // Parse the primary expression after the binary operator. | 
|  | ExprAST *RHS = ParsePrimary(); | 
|  | if (!RHS) return 0; | 
|  |  | 
|  | // If BinOp binds less tightly with RHS than the operator after RHS, let | 
|  | // the pending operator take RHS as its LHS. | 
|  | int NextPrec = GetTokPrecedence(); | 
|  | if (TokPrec < NextPrec) { | 
|  | RHS = ParseBinOpRHS(TokPrec+1, RHS); | 
|  | if (RHS == 0) return 0; | 
|  | } | 
|  |  | 
|  | // Merge LHS/RHS. | 
|  | LHS = new BinaryExprAST(BinOp, LHS, RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// expression | 
|  | ///   ::= primary binoprhs | 
|  | /// | 
|  | static ExprAST *ParseExpression() { | 
|  | ExprAST *LHS = ParsePrimary(); | 
|  | if (!LHS) return 0; | 
|  |  | 
|  | return ParseBinOpRHS(0, LHS); | 
|  | } | 
|  |  | 
|  | /// prototype | 
|  | ///   ::= id '(' id* ')' | 
|  | static PrototypeAST *ParsePrototype() { | 
|  | if (CurTok != tok_identifier) | 
|  | return ErrorP("Expected function name in prototype"); | 
|  |  | 
|  | std::string FnName = IdentifierStr; | 
|  | getNextToken(); | 
|  |  | 
|  | if (CurTok != '(') | 
|  | return ErrorP("Expected '(' in prototype"); | 
|  |  | 
|  | std::vector<std::string> ArgNames; | 
|  | while (getNextToken() == tok_identifier) | 
|  | ArgNames.push_back(IdentifierStr); | 
|  | if (CurTok != ')') | 
|  | return ErrorP("Expected ')' in prototype"); | 
|  |  | 
|  | // success. | 
|  | getNextToken();  // eat ')'. | 
|  |  | 
|  | return new PrototypeAST(FnName, ArgNames); | 
|  | } | 
|  |  | 
|  | /// definition ::= 'def' prototype expression | 
|  | static FunctionAST *ParseDefinition() { | 
|  | getNextToken();  // eat def. | 
|  | PrototypeAST *Proto = ParsePrototype(); | 
|  | if (Proto == 0) return 0; | 
|  |  | 
|  | if (ExprAST *E = ParseExpression()) | 
|  | return new FunctionAST(Proto, E); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// toplevelexpr ::= expression | 
|  | static FunctionAST *ParseTopLevelExpr() { | 
|  | if (ExprAST *E = ParseExpression()) { | 
|  | // Make an anonymous proto. | 
|  | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); | 
|  | return new FunctionAST(Proto, E); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// external ::= 'extern' prototype | 
|  | static PrototypeAST *ParseExtern() { | 
|  | getNextToken();  // eat extern. | 
|  | return ParsePrototype(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Top-Level parsing | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static void HandleDefinition() { | 
|  | if (FunctionAST *F = ParseDefinition()) { | 
|  | fprintf(stderr, "Parsed a function definition.\n"); | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HandleExtern() { | 
|  | if (PrototypeAST *P = ParseExtern()) { | 
|  | fprintf(stderr, "Parsed an extern\n"); | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HandleTopLevelExpression() { | 
|  | // Evaluate a top-level expression into an anonymous function. | 
|  | if (FunctionAST *F = ParseTopLevelExpr()) { | 
|  | fprintf(stderr, "Parsed a top-level expr\n"); | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// top ::= definition | external | expression | ';' | 
|  | static void MainLoop() { | 
|  | while (1) { | 
|  | fprintf(stderr, "ready> "); | 
|  | switch (CurTok) { | 
|  | case tok_eof:    return; | 
|  | case ';':        getNextToken(); break;  // ignore top-level semicolons. | 
|  | case tok_def:    HandleDefinition(); break; | 
|  | case tok_extern: HandleExtern(); break; | 
|  | default:         HandleTopLevelExpression(); break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Main driver code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | int main() { | 
|  | // Install standard binary operators. | 
|  | // 1 is lowest precedence. | 
|  | BinopPrecedence['<'] = 10; | 
|  | BinopPrecedence['+'] = 20; | 
|  | BinopPrecedence['-'] = 20; | 
|  | BinopPrecedence['*'] = 40;  // highest. | 
|  |  | 
|  | // Prime the first token. | 
|  | fprintf(stderr, "ready> "); | 
|  | getNextToken(); | 
|  |  | 
|  | MainLoop(); | 
|  | return 0; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  | <a href="LangImpl3.html">Next: Implementing Code Generation to LLVM IR</a> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <hr> | 
|  | <address> | 
|  | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
|  | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
|  | <a href="http://validator.w3.org/check/referer"><img | 
|  | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
|  |  | 
|  | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
|  | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> | 
|  | Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ | 
|  | </address> | 
|  | </body> | 
|  | </html> |