|  | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
|  | "http://www.w3.org/TR/html4/strict.dtd"> | 
|  |  | 
|  | <html> | 
|  | <head> | 
|  | <title>Kaleidoscope: Extending the Language: User-defined Operators</title> | 
|  | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
|  | <meta name="author" content="Chris Lattner"> | 
|  | <link rel="stylesheet" href="../llvm.css" type="text/css"> | 
|  | </head> | 
|  |  | 
|  | <body> | 
|  |  | 
|  | <div class="doc_title">Kaleidoscope: Extending the Language: User-defined Operators</div> | 
|  |  | 
|  | <ul> | 
|  | <li><a href="index.html">Up to Tutorial Index</a></li> | 
|  | <li>Chapter 6 | 
|  | <ol> | 
|  | <li><a href="#intro">Chapter 6 Introduction</a></li> | 
|  | <li><a href="#idea">User-defined Operators: the Idea</a></li> | 
|  | <li><a href="#binary">User-defined Binary Operators</a></li> | 
|  | <li><a href="#unary">User-defined Unary Operators</a></li> | 
|  | <li><a href="#example">Kicking the Tires</a></li> | 
|  | <li><a href="#code">Full Code Listing</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="LangImpl7.html">Chapter 7</a>: Extending the Language: Mutable | 
|  | Variables / SSA Construction</li> | 
|  | </ul> | 
|  |  | 
|  | <div class="doc_author"> | 
|  | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="intro">Chapter 6 Introduction</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Welcome to Chapter 6 of the "<a href="index.html">Implementing a language | 
|  | with LLVM</a>" tutorial.  At this point in our tutorial, we now have a fully | 
|  | functional language that is fairly minimal, but also useful.  There | 
|  | is still one big problem with it, however. Our language doesn't have many | 
|  | useful operators (like division, logical negation, or even any comparisons | 
|  | besides less-than).</p> | 
|  |  | 
|  | <p>This chapter of the tutorial takes a wild digression into adding user-defined | 
|  | operators to the simple and beautiful Kaleidoscope language. This digression now gives | 
|  | us a simple and ugly language in some ways, but also a powerful one at the same time. | 
|  | One of the great things about creating your own language is that you get to | 
|  | decide what is good or bad.  In this tutorial we'll assume that it is okay to | 
|  | use this as a way to show some interesting parsing techniques.</p> | 
|  |  | 
|  | <p>At the end of this tutorial, we'll run through an example Kaleidoscope | 
|  | application that <a href="#example">renders the Mandelbrot set</a>.  This gives | 
|  | an example of what you can build with Kaleidoscope and its feature set.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="idea">User-defined Operators: the Idea</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | The "operator overloading" that we will add to Kaleidoscope is more general than | 
|  | languages like C++.  In C++, you are only allowed to redefine existing | 
|  | operators: you can't programatically change the grammar, introduce new | 
|  | operators, change precedence levels, etc.  In this chapter, we will add this | 
|  | capability to Kaleidoscope, which will let the user round out the set of | 
|  | operators that are supported.</p> | 
|  |  | 
|  | <p>The point of going into user-defined operators in a tutorial like this is to | 
|  | show the power and flexibility of using a hand-written parser.  Thus far, the parser | 
|  | we have been implementing uses recursive descent for most parts of the grammar and | 
|  | operator precedence parsing for the expressions.  See <a | 
|  | href="LangImpl2.html">Chapter 2</a> for details.  Without using operator | 
|  | precedence parsing, it would be very difficult to allow the programmer to | 
|  | introduce new operators into the grammar: the grammar is dynamically extensible | 
|  | as the JIT runs.</p> | 
|  |  | 
|  | <p>The two specific features we'll add are programmable unary operators (right | 
|  | now, Kaleidoscope has no unary operators at all) as well as binary operators. | 
|  | An example of this is:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | # Logical unary not. | 
|  | def unary!(v) | 
|  | if v then | 
|  | 0 | 
|  | else | 
|  | 1; | 
|  |  | 
|  | # Define > with the same precedence as <. | 
|  | def binary> 10 (LHS RHS) | 
|  | RHS < LHS; | 
|  |  | 
|  | # Binary "logical or", (note that it does not "short circuit") | 
|  | def binary| 5 (LHS RHS) | 
|  | if LHS then | 
|  | 1 | 
|  | else if RHS then | 
|  | 1 | 
|  | else | 
|  | 0; | 
|  |  | 
|  | # Define = with slightly lower precedence than relationals. | 
|  | def binary= 9 (LHS RHS) | 
|  | !(LHS < RHS | LHS > RHS); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Many languages aspire to being able to implement their standard runtime | 
|  | library in the language itself.  In Kaleidoscope, we can implement significant | 
|  | parts of the language in the library!</p> | 
|  |  | 
|  | <p>We will break down implementation of these features into two parts: | 
|  | implementing support for user-defined binary operators and adding unary | 
|  | operators.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="binary">User-defined Binary Operators</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Adding support for user-defined binary operators is pretty simple with our | 
|  | current framework.  We'll first add support for the unary/binary keywords:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | enum Token { | 
|  | ... | 
|  | <b>// operators | 
|  | tok_binary = -11, tok_unary = -12</b> | 
|  | }; | 
|  | ... | 
|  | static int gettok() { | 
|  | ... | 
|  | if (IdentifierStr == "for") return tok_for; | 
|  | if (IdentifierStr == "in") return tok_in; | 
|  | <b>if (IdentifierStr == "binary") return tok_binary; | 
|  | if (IdentifierStr == "unary") return tok_unary;</b> | 
|  | return tok_identifier; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This just adds lexer support for the unary and binary keywords, like we | 
|  | did in <a href="LangImpl5.html#iflexer">previous chapters</a>.  One nice thing | 
|  | about our current AST, is that we represent binary operators with full generalisation | 
|  | by using their ASCII code as the opcode.  For our extended operators, we'll use this | 
|  | same representation, so we don't need any new AST or parser support.</p> | 
|  |  | 
|  | <p>On the other hand, we have to be able to represent the definitions of these | 
|  | new operators, in the "def binary| 5" part of the function definition.  In our | 
|  | grammar so far, the "name" for the function definition is parsed as the | 
|  | "prototype" production and into the <tt>PrototypeAST</tt> AST node.  To | 
|  | represent our new user-defined operators as prototypes, we have to extend | 
|  | the  <tt>PrototypeAST</tt> AST node like this:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// PrototypeAST - This class represents the "prototype" for a function, | 
|  | /// which captures its argument names as well as if it is an operator. | 
|  | class PrototypeAST { | 
|  | std::string Name; | 
|  | std::vector<std::string> Args; | 
|  | <b>bool isOperator; | 
|  | unsigned Precedence;  // Precedence if a binary op.</b> | 
|  | public: | 
|  | PrototypeAST(const std::string &name, const std::vector<std::string> &args, | 
|  | <b>bool isoperator = false, unsigned prec = 0</b>) | 
|  | : Name(name), Args(args), <b>isOperator(isoperator), Precedence(prec)</b> {} | 
|  |  | 
|  | <b>bool isUnaryOp() const { return isOperator && Args.size() == 1; } | 
|  | bool isBinaryOp() const { return isOperator && Args.size() == 2; } | 
|  |  | 
|  | char getOperatorName() const { | 
|  | assert(isUnaryOp() || isBinaryOp()); | 
|  | return Name[Name.size()-1]; | 
|  | } | 
|  |  | 
|  | unsigned getBinaryPrecedence() const { return Precedence; }</b> | 
|  |  | 
|  | Function *Codegen(); | 
|  | }; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Basically, in addition to knowing a name for the prototype, we now keep track | 
|  | of whether it was an operator, and if it was, what precedence level the operator | 
|  | is at.  The precedence is only used for binary operators (as you'll see below, | 
|  | it just doesn't apply for unary operators).  Now that we have a way to represent | 
|  | the prototype for a user-defined operator, we need to parse it:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// prototype | 
|  | ///   ::= id '(' id* ')' | 
|  | <b>///   ::= binary LETTER number? (id, id)</b> | 
|  | static PrototypeAST *ParsePrototype() { | 
|  | std::string FnName; | 
|  |  | 
|  | <b>unsigned Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary. | 
|  | unsigned BinaryPrecedence = 30;</b> | 
|  |  | 
|  | switch (CurTok) { | 
|  | default: | 
|  | return ErrorP("Expected function name in prototype"); | 
|  | case tok_identifier: | 
|  | FnName = IdentifierStr; | 
|  | Kind = 0; | 
|  | getNextToken(); | 
|  | break; | 
|  | <b>case tok_binary: | 
|  | getNextToken(); | 
|  | if (!isascii(CurTok)) | 
|  | return ErrorP("Expected binary operator"); | 
|  | FnName = "binary"; | 
|  | FnName += (char)CurTok; | 
|  | Kind = 2; | 
|  | getNextToken(); | 
|  |  | 
|  | // Read the precedence if present. | 
|  | if (CurTok == tok_number) { | 
|  | if (NumVal < 1 || NumVal > 100) | 
|  | return ErrorP("Invalid precedecnce: must be 1..100"); | 
|  | BinaryPrecedence = (unsigned)NumVal; | 
|  | getNextToken(); | 
|  | } | 
|  | break;</b> | 
|  | } | 
|  |  | 
|  | if (CurTok != '(') | 
|  | return ErrorP("Expected '(' in prototype"); | 
|  |  | 
|  | std::vector<std::string> ArgNames; | 
|  | while (getNextToken() == tok_identifier) | 
|  | ArgNames.push_back(IdentifierStr); | 
|  | if (CurTok != ')') | 
|  | return ErrorP("Expected ')' in prototype"); | 
|  |  | 
|  | // success. | 
|  | getNextToken();  // eat ')'. | 
|  |  | 
|  | <b>// Verify right number of names for operator. | 
|  | if (Kind && ArgNames.size() != Kind) | 
|  | return ErrorP("Invalid number of operands for operator"); | 
|  |  | 
|  | return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);</b> | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This is all fairly straightforward parsing code, and we have already seen | 
|  | a lot of similar code in the past.  One interesting part about the code above is | 
|  | the couple lines that set up <tt>FnName</tt> for binary operators.  This builds names | 
|  | like "binary@" for a newly defined "@" operator.  This then takes advantage of the | 
|  | fact that symbol names in the LLVM symbol table are allowed to have any character in | 
|  | them, including embedded nul characters.</p> | 
|  |  | 
|  | <p>The next interesting thing to add, is codegen support for these binary operators. | 
|  | Given our current structure, this is a simple addition of a default case for our | 
|  | existing binary operator node:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | Value *BinaryExprAST::Codegen() { | 
|  | Value *L = LHS->Codegen(); | 
|  | Value *R = RHS->Codegen(); | 
|  | if (L == 0 || R == 0) return 0; | 
|  |  | 
|  | switch (Op) { | 
|  | case '+': return Builder.CreateAdd(L, R, "addtmp"); | 
|  | case '-': return Builder.CreateSub(L, R, "subtmp"); | 
|  | case '*': return Builder.CreateMul(L, R, "multmp"); | 
|  | case '<': | 
|  | L = Builder.CreateFCmpULT(L, R, "cmptmp"); | 
|  | // Convert bool 0/1 to double 0.0 or 1.0 | 
|  | return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), | 
|  | "booltmp"); | 
|  | <b>default: break;</b> | 
|  | } | 
|  |  | 
|  | <b>// If it wasn't a builtin binary operator, it must be a user defined one. Emit | 
|  | // a call to it. | 
|  | Function *F = TheModule->getFunction(std::string("binary")+Op); | 
|  | assert(F && "binary operator not found!"); | 
|  |  | 
|  | Value *Ops[] = { L, R }; | 
|  | return Builder.CreateCall(F, Ops, Ops+2, "binop");</b> | 
|  | } | 
|  |  | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>As you can see above, the new code is actually really simple.  It just does | 
|  | a lookup for the appropriate operator in the symbol table and generates a | 
|  | function call to it.  Since user-defined operators are just built as normal | 
|  | functions (because the "prototype" boils down to a function with the right | 
|  | name) everything falls into place.</p> | 
|  |  | 
|  | <p>The final piece of code we are missing, is a bit of top-level magic:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | Function *FunctionAST::Codegen() { | 
|  | NamedValues.clear(); | 
|  |  | 
|  | Function *TheFunction = Proto->Codegen(); | 
|  | if (TheFunction == 0) | 
|  | return 0; | 
|  |  | 
|  | <b>// If this is an operator, install it. | 
|  | if (Proto->isBinaryOp()) | 
|  | BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();</b> | 
|  |  | 
|  | // Create a new basic block to start insertion into. | 
|  | BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); | 
|  | Builder.SetInsertPoint(BB); | 
|  |  | 
|  | if (Value *RetVal = Body->Codegen()) { | 
|  | ... | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Basically, before codegening a function, if it is a user-defined operator, we | 
|  | register it in the precedence table.  This allows the binary operator parsing | 
|  | logic we already have in place to handle it.  Since we are working on a fully-general operator precedence parser, this is all we need to do to "extend the grammar".</p> | 
|  |  | 
|  | <p>Now we have useful user-defined binary operators.  This builds a lot | 
|  | on the previous framework we built for other operators.  Adding unary operators | 
|  | is a bit more challenging, because we don't have any framework for it yet - lets | 
|  | see what it takes.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="unary">User-defined Unary Operators</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Since we don't currently support unary operators in the Kaleidoscope | 
|  | language, we'll need to add everything to support them.  Above, we added simple | 
|  | support for the 'unary' keyword to the lexer.  In addition to that, we need an | 
|  | AST node:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// UnaryExprAST - Expression class for a unary operator. | 
|  | class UnaryExprAST : public ExprAST { | 
|  | char Opcode; | 
|  | ExprAST *Operand; | 
|  | public: | 
|  | UnaryExprAST(char opcode, ExprAST *operand) | 
|  | : Opcode(opcode), Operand(operand) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This AST node is very simple and obvious by now.  It directly mirrors the | 
|  | binary operator AST node, except that it only has one child.  With this, we | 
|  | need to add the parsing logic.  Parsing a unary operator is pretty simple: we'll | 
|  | add a new function to do it:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// unary | 
|  | ///   ::= primary | 
|  | ///   ::= '!' unary | 
|  | static ExprAST *ParseUnary() { | 
|  | // If the current token is not an operator, it must be a primary expr. | 
|  | if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') | 
|  | return ParsePrimary(); | 
|  |  | 
|  | // If this is a unary operator, read it. | 
|  | int Opc = CurTok; | 
|  | getNextToken(); | 
|  | if (ExprAST *Operand = ParseUnary()) | 
|  | return new UnaryExprAST(Opc, Operand); | 
|  | return 0; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The grammar we add is pretty straightforward here.  If we see a unary | 
|  | operator when parsing a primary operator, we eat the operator as a prefix and | 
|  | parse the remaining piece as another unary operator.  This allows us to handle | 
|  | multiple unary operators (e.g. "!!x").  Note that unary operators can't have | 
|  | ambiguous parses like binary operators can, so there is no need for precedence | 
|  | information.</p> | 
|  |  | 
|  | <p>The problem with this function, is that we need to call ParseUnary from somewhere. | 
|  | To do this, we change previous callers of ParsePrimary to call ParseUnary | 
|  | instead:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// binoprhs | 
|  | ///   ::= ('+' unary)* | 
|  | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { | 
|  | ... | 
|  | <b>// Parse the unary expression after the binary operator. | 
|  | ExprAST *RHS = ParseUnary(); | 
|  | if (!RHS) return 0;</b> | 
|  | ... | 
|  | } | 
|  | /// expression | 
|  | ///   ::= unary binoprhs | 
|  | /// | 
|  | static ExprAST *ParseExpression() { | 
|  | <b>ExprAST *LHS = ParseUnary();</b> | 
|  | if (!LHS) return 0; | 
|  |  | 
|  | return ParseBinOpRHS(0, LHS); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>With these two simple changes, we are now able to parse unary operators and build the | 
|  | AST for them.  Next up, we need to add parser support for prototypes, to parse | 
|  | the unary operator prototype.  We extend the binary operator code above | 
|  | with:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// prototype | 
|  | ///   ::= id '(' id* ')' | 
|  | ///   ::= binary LETTER number? (id, id) | 
|  | <b>///   ::= unary LETTER (id)</b> | 
|  | static PrototypeAST *ParsePrototype() { | 
|  | std::string FnName; | 
|  |  | 
|  | unsigned Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary. | 
|  | unsigned BinaryPrecedence = 30; | 
|  |  | 
|  | switch (CurTok) { | 
|  | default: | 
|  | return ErrorP("Expected function name in prototype"); | 
|  | case tok_identifier: | 
|  | FnName = IdentifierStr; | 
|  | Kind = 0; | 
|  | getNextToken(); | 
|  | break; | 
|  | <b>case tok_unary: | 
|  | getNextToken(); | 
|  | if (!isascii(CurTok)) | 
|  | return ErrorP("Expected unary operator"); | 
|  | FnName = "unary"; | 
|  | FnName += (char)CurTok; | 
|  | Kind = 1; | 
|  | getNextToken(); | 
|  | break;</b> | 
|  | case tok_binary: | 
|  | ... | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>As with binary operators, we name unary operators with a name that includes | 
|  | the operator character.  This assists us at code generation time.  Speaking of, | 
|  | the final piece we need to add is codegen support for unary operators.  It looks | 
|  | like this:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | Value *UnaryExprAST::Codegen() { | 
|  | Value *OperandV = Operand->Codegen(); | 
|  | if (OperandV == 0) return 0; | 
|  |  | 
|  | Function *F = TheModule->getFunction(std::string("unary")+Opcode); | 
|  | if (F == 0) | 
|  | return ErrorV("Unknown unary operator"); | 
|  |  | 
|  | return Builder.CreateCall(F, OperandV, "unop"); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This code is similar to, but simpler than, the code for binary operators.  It | 
|  | is simpler primarily because it doesn't need to handle any predefined operators. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="example">Kicking the Tires</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>It is somewhat hard to believe, but with a few simple extensions we've | 
|  | covered in the last chapters, we have grown a real-ish language.  With this, we | 
|  | can do a lot of interesting things, including I/O, math, and a bunch of other | 
|  | things.  For example, we can now add a nice sequencing operator (printd is | 
|  | defined to print out the specified value and a newline):</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | ready> <b>extern printd(x);</b> | 
|  | Read extern: declare double @printd(double) | 
|  | ready> <b>def binary : 1 (x y) 0;  # Low-precedence operator that ignores operands.</b> | 
|  | .. | 
|  | ready> <b>printd(123) : printd(456) : printd(789);</b> | 
|  | 123.000000 | 
|  | 456.000000 | 
|  | 789.000000 | 
|  | Evaluated to 0.000000 | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>We can also define a bunch of other "primitive" operations, such as:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | # Logical unary not. | 
|  | def unary!(v) | 
|  | if v then | 
|  | 0 | 
|  | else | 
|  | 1; | 
|  |  | 
|  | # Unary negate. | 
|  | def unary-(v) | 
|  | 0-v; | 
|  |  | 
|  | # Define > with the same precedence as >. | 
|  | def binary> 10 (LHS RHS) | 
|  | RHS < LHS; | 
|  |  | 
|  | # Binary logical or, which does not short circuit. | 
|  | def binary| 5 (LHS RHS) | 
|  | if LHS then | 
|  | 1 | 
|  | else if RHS then | 
|  | 1 | 
|  | else | 
|  | 0; | 
|  |  | 
|  | # Binary logical and, which does not short circuit. | 
|  | def binary& 6 (LHS RHS) | 
|  | if !LHS then | 
|  | 0 | 
|  | else | 
|  | !!RHS; | 
|  |  | 
|  | # Define = with slightly lower precedence than relationals. | 
|  | def binary = 9 (LHS RHS) | 
|  | !(LHS < RHS | LHS > RHS); | 
|  |  | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <p>Given the previous if/then/else support, we can also define interesting | 
|  | functions for I/O.  For example, the following prints out a character whose | 
|  | "density" reflects the value passed in: the lower the value, the denser the | 
|  | character:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | ready> | 
|  | <b> | 
|  | extern putchard(char) | 
|  | def printdensity(d) | 
|  | if d > 8 then | 
|  | putchard(32)  # ' ' | 
|  | else if d > 4 then | 
|  | putchard(46)  # '.' | 
|  | else if d > 2 then | 
|  | putchard(43)  # '+' | 
|  | else | 
|  | putchard(42); # '*'</b> | 
|  | ... | 
|  | ready> <b>printdensity(1): printdensity(2): printdensity(3) : | 
|  | printdensity(4): printdensity(5): printdensity(9): putchard(10);</b> | 
|  | *++.. | 
|  | Evaluated to 0.000000 | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Based on these simple primitive operations, we can start to define more | 
|  | interesting things.  For example, here's a little function that solves for the | 
|  | number of iterations it takes a function in the complex plane to | 
|  | converge:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | # determine whether the specific location diverges. | 
|  | # Solve for z = z^2 + c in the complex plane. | 
|  | def mandleconverger(real imag iters creal cimag) | 
|  | if iters > 255 | (real*real + imag*imag > 4) then | 
|  | iters | 
|  | else | 
|  | mandleconverger(real*real - imag*imag + creal, | 
|  | 2*real*imag + cimag, | 
|  | iters+1, creal, cimag); | 
|  |  | 
|  | # return the number of iterations required for the iteration to escape | 
|  | def mandleconverge(real imag) | 
|  | mandleconverger(real, imag, 0, real, imag); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This "z = z<sup>2</sup> + c" function is a beautiful little creature that is the basis | 
|  | for computation of the <a | 
|  | href="http://en.wikipedia.org/wiki/Mandelbrot_set">Mandelbrot Set</a>.  Our | 
|  | <tt>mandelconverge</tt> function returns the number of iterations that it takes | 
|  | for a complex orbit to escape, saturating to 255.  This is not a very useful | 
|  | function by itself, but if you plot its value over a two-dimensional plane, | 
|  | you can see the Mandelbrot set.  Given that we are limited to using putchard | 
|  | here, our amazing graphical output is limited, but we can whip together | 
|  | something using the density plotter above:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | # compute and plot the mandlebrot set with the specified 2 dimensional range | 
|  | # info. | 
|  | def mandelhelp(xmin xmax xstep   ymin ymax ystep) | 
|  | for y = ymin, y < ymax, ystep in ( | 
|  | (for x = xmin, x < xmax, xstep in | 
|  | printdensity(mandleconverge(x,y))) | 
|  | : putchard(10) | 
|  | ) | 
|  |  | 
|  | # mandel - This is a convenient helper function for ploting the mandelbrot set | 
|  | # from the specified position with the specified Magnification. | 
|  | def mandel(realstart imagstart realmag imagmag) | 
|  | mandelhelp(realstart, realstart+realmag*78, realmag, | 
|  | imagstart, imagstart+imagmag*40, imagmag); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Given this, we can try plotting out the mandlebrot set!  Lets try it out:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | ready> <b>mandel(-2.3, -1.3, 0.05, 0.07);</b> | 
|  | *******************************+++++++++++************************************* | 
|  | *************************+++++++++++++++++++++++******************************* | 
|  | **********************+++++++++++++++++++++++++++++**************************** | 
|  | *******************+++++++++++++++++++++.. ...++++++++************************* | 
|  | *****************++++++++++++++++++++++.... ...+++++++++*********************** | 
|  | ***************+++++++++++++++++++++++.....   ...+++++++++********************* | 
|  | **************+++++++++++++++++++++++....     ....+++++++++******************** | 
|  | *************++++++++++++++++++++++......      .....++++++++******************* | 
|  | ************+++++++++++++++++++++.......       .......+++++++****************** | 
|  | ***********+++++++++++++++++++....                ... .+++++++***************** | 
|  | **********+++++++++++++++++.......                     .+++++++**************** | 
|  | *********++++++++++++++...........                    ...+++++++*************** | 
|  | ********++++++++++++............                      ...++++++++************** | 
|  | ********++++++++++... ..........                        .++++++++************** | 
|  | *******+++++++++.....                                   .+++++++++************* | 
|  | *******++++++++......                                  ..+++++++++************* | 
|  | *******++++++.......                                   ..+++++++++************* | 
|  | *******+++++......                                     ..+++++++++************* | 
|  | *******.... ....                                      ...+++++++++************* | 
|  | *******.... .                                         ...+++++++++************* | 
|  | *******+++++......                                    ...+++++++++************* | 
|  | *******++++++.......                                   ..+++++++++************* | 
|  | *******++++++++......                                   .+++++++++************* | 
|  | *******+++++++++.....                                  ..+++++++++************* | 
|  | ********++++++++++... ..........                        .++++++++************** | 
|  | ********++++++++++++............                      ...++++++++************** | 
|  | *********++++++++++++++..........                     ...+++++++*************** | 
|  | **********++++++++++++++++........                     .+++++++**************** | 
|  | **********++++++++++++++++++++....                ... ..+++++++**************** | 
|  | ***********++++++++++++++++++++++.......       .......++++++++***************** | 
|  | ************+++++++++++++++++++++++......      ......++++++++****************** | 
|  | **************+++++++++++++++++++++++....      ....++++++++******************** | 
|  | ***************+++++++++++++++++++++++.....   ...+++++++++********************* | 
|  | *****************++++++++++++++++++++++....  ...++++++++*********************** | 
|  | *******************+++++++++++++++++++++......++++++++************************* | 
|  | *********************++++++++++++++++++++++.++++++++*************************** | 
|  | *************************+++++++++++++++++++++++******************************* | 
|  | ******************************+++++++++++++************************************ | 
|  | ******************************************************************************* | 
|  | ******************************************************************************* | 
|  | ******************************************************************************* | 
|  | Evaluated to 0.000000 | 
|  | ready> <b>mandel(-2, -1, 0.02, 0.04);</b> | 
|  | **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++ | 
|  | ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | 
|  | *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++. | 
|  | *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++... | 
|  | *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++..... | 
|  | ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........ | 
|  | **************++++++++++++++++++++++++++++++++++++++++++++++++++++++........... | 
|  | ************+++++++++++++++++++++++++++++++++++++++++++++++++++++.............. | 
|  | ***********++++++++++++++++++++++++++++++++++++++++++++++++++........        . | 
|  | **********++++++++++++++++++++++++++++++++++++++++++++++............. | 
|  | ********+++++++++++++++++++++++++++++++++++++++++++.................. | 
|  | *******+++++++++++++++++++++++++++++++++++++++....................... | 
|  | ******+++++++++++++++++++++++++++++++++++........................... | 
|  | *****++++++++++++++++++++++++++++++++............................ | 
|  | *****++++++++++++++++++++++++++++............................... | 
|  | ****++++++++++++++++++++++++++......   ......................... | 
|  | ***++++++++++++++++++++++++.........     ......    ........... | 
|  | ***++++++++++++++++++++++............ | 
|  | **+++++++++++++++++++++.............. | 
|  | **+++++++++++++++++++................ | 
|  | *++++++++++++++++++................. | 
|  | *++++++++++++++++............ ... | 
|  | *++++++++++++++.............. | 
|  | *+++....++++................ | 
|  | *..........  ........... | 
|  | * | 
|  | *..........  ........... | 
|  | *+++....++++................ | 
|  | *++++++++++++++.............. | 
|  | *++++++++++++++++............ ... | 
|  | *++++++++++++++++++................. | 
|  | **+++++++++++++++++++................ | 
|  | **+++++++++++++++++++++.............. | 
|  | ***++++++++++++++++++++++............ | 
|  | ***++++++++++++++++++++++++.........     ......    ........... | 
|  | ****++++++++++++++++++++++++++......   ......................... | 
|  | *****++++++++++++++++++++++++++++............................... | 
|  | *****++++++++++++++++++++++++++++++++............................ | 
|  | ******+++++++++++++++++++++++++++++++++++........................... | 
|  | *******+++++++++++++++++++++++++++++++++++++++....................... | 
|  | ********+++++++++++++++++++++++++++++++++++++++++++.................. | 
|  | Evaluated to 0.000000 | 
|  | ready> <b>mandel(-0.9, -1.4, 0.02, 0.03);</b> | 
|  | ******************************************************************************* | 
|  | ******************************************************************************* | 
|  | ******************************************************************************* | 
|  | **********+++++++++++++++++++++************************************************ | 
|  | *+++++++++++++++++++++++++++++++++++++++*************************************** | 
|  | +++++++++++++++++++++++++++++++++++++++++++++********************************** | 
|  | ++++++++++++++++++++++++++++++++++++++++++++++++++***************************** | 
|  | ++++++++++++++++++++++++++++++++++++++++++++++++++++++************************* | 
|  | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++********************** | 
|  | +++++++++++++++++++++++++++++++++.........++++++++++++++++++******************* | 
|  | +++++++++++++++++++++++++++++++....   ......+++++++++++++++++++**************** | 
|  | +++++++++++++++++++++++++++++.......  ........+++++++++++++++++++************** | 
|  | ++++++++++++++++++++++++++++........   ........++++++++++++++++++++************ | 
|  | +++++++++++++++++++++++++++.........     ..  ...+++++++++++++++++++++********** | 
|  | ++++++++++++++++++++++++++...........        ....++++++++++++++++++++++******** | 
|  | ++++++++++++++++++++++++.............       .......++++++++++++++++++++++****** | 
|  | +++++++++++++++++++++++.............        ........+++++++++++++++++++++++**** | 
|  | ++++++++++++++++++++++...........           ..........++++++++++++++++++++++*** | 
|  | ++++++++++++++++++++...........                .........++++++++++++++++++++++* | 
|  | ++++++++++++++++++............                  ...........++++++++++++++++++++ | 
|  | ++++++++++++++++...............                 .............++++++++++++++++++ | 
|  | ++++++++++++++.................                 ...............++++++++++++++++ | 
|  | ++++++++++++..................                  .................++++++++++++++ | 
|  | +++++++++..................                      .................+++++++++++++ | 
|  | ++++++........        .                               .........  ..++++++++++++ | 
|  | ++............                                         ......    ....++++++++++ | 
|  | ..............                                                    ...++++++++++ | 
|  | ..............                                                    ....+++++++++ | 
|  | ..............                                                    .....++++++++ | 
|  | .............                                                    ......++++++++ | 
|  | ...........                                                     .......++++++++ | 
|  | .........                                                       ........+++++++ | 
|  | .........                                                       ........+++++++ | 
|  | .........                                                           ....+++++++ | 
|  | ........                                                             ...+++++++ | 
|  | .......                                                              ...+++++++ | 
|  | ....+++++++ | 
|  | .....+++++++ | 
|  | ....+++++++ | 
|  | ....+++++++ | 
|  | ....+++++++ | 
|  | Evaluated to 0.000000 | 
|  | ready> <b>^D</b> | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>At this point, you may be starting to realize that Kaleidoscope is a real | 
|  | and powerful language.  It may not be self-similar :), but it can be used to | 
|  | plot things that are!</p> | 
|  |  | 
|  | <p>With this, we conclude the "adding user-defined operators" chapter of the | 
|  | tutorial.  We have successfully augmented our language, adding the ability to extend the | 
|  | language in the library, and we have shown how this can be used to build a simple but | 
|  | interesting end-user application in Kaleidoscope.  At this point, Kaleidoscope | 
|  | can build a variety of applications that are functional and can call functions | 
|  | with side-effects, but it can't actually define and mutate a variable itself. | 
|  | </p> | 
|  |  | 
|  | <p>Strikingly, variable mutation is an important feature of some | 
|  | languages, and it is not at all obvious how to <a href="LangImpl7.html">add | 
|  | support for mutable variables</a> without having to add an "SSA construction" | 
|  | phase to your front-end.  In the next chapter, we will describe how you can | 
|  | add variable mutation without building SSA in your front-end.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="code">Full Code Listing</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | Here is the complete code listing for our running example, enhanced with the | 
|  | if/then/else and for expressions..  To build this example, use: | 
|  | </p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | # Compile | 
|  | g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy | 
|  | # Run | 
|  | ./toy | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Here is the code:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/ExecutionEngine/ExecutionEngine.h" | 
|  | #include "llvm/ExecutionEngine/JIT.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/PassManager.h" | 
|  | #include "llvm/Analysis/Verifier.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetSelect.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Support/IRBuilder.h" | 
|  | #include <cstdio> | 
|  | #include <string> | 
|  | #include <map> | 
|  | #include <vector> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Lexer | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one | 
|  | // of these for known things. | 
|  | enum Token { | 
|  | tok_eof = -1, | 
|  |  | 
|  | // commands | 
|  | tok_def = -2, tok_extern = -3, | 
|  |  | 
|  | // primary | 
|  | tok_identifier = -4, tok_number = -5, | 
|  |  | 
|  | // control | 
|  | tok_if = -6, tok_then = -7, tok_else = -8, | 
|  | tok_for = -9, tok_in = -10, | 
|  |  | 
|  | // operators | 
|  | tok_binary = -11, tok_unary = -12 | 
|  | }; | 
|  |  | 
|  | static std::string IdentifierStr;  // Filled in if tok_identifier | 
|  | static double NumVal;              // Filled in if tok_number | 
|  |  | 
|  | /// gettok - Return the next token from standard input. | 
|  | static int gettok() { | 
|  | static int LastChar = ' '; | 
|  |  | 
|  | // Skip any whitespace. | 
|  | while (isspace(LastChar)) | 
|  | LastChar = getchar(); | 
|  |  | 
|  | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* | 
|  | IdentifierStr = LastChar; | 
|  | while (isalnum((LastChar = getchar()))) | 
|  | IdentifierStr += LastChar; | 
|  |  | 
|  | if (IdentifierStr == "def") return tok_def; | 
|  | if (IdentifierStr == "extern") return tok_extern; | 
|  | if (IdentifierStr == "if") return tok_if; | 
|  | if (IdentifierStr == "then") return tok_then; | 
|  | if (IdentifierStr == "else") return tok_else; | 
|  | if (IdentifierStr == "for") return tok_for; | 
|  | if (IdentifierStr == "in") return tok_in; | 
|  | if (IdentifierStr == "binary") return tok_binary; | 
|  | if (IdentifierStr == "unary") return tok_unary; | 
|  | return tok_identifier; | 
|  | } | 
|  |  | 
|  | if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+ | 
|  | std::string NumStr; | 
|  | do { | 
|  | NumStr += LastChar; | 
|  | LastChar = getchar(); | 
|  | } while (isdigit(LastChar) || LastChar == '.'); | 
|  |  | 
|  | NumVal = strtod(NumStr.c_str(), 0); | 
|  | return tok_number; | 
|  | } | 
|  |  | 
|  | if (LastChar == '#') { | 
|  | // Comment until end of line. | 
|  | do LastChar = getchar(); | 
|  | while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); | 
|  |  | 
|  | if (LastChar != EOF) | 
|  | return gettok(); | 
|  | } | 
|  |  | 
|  | // Check for end of file.  Don't eat the EOF. | 
|  | if (LastChar == EOF) | 
|  | return tok_eof; | 
|  |  | 
|  | // Otherwise, just return the character as its ascii value. | 
|  | int ThisChar = LastChar; | 
|  | LastChar = getchar(); | 
|  | return ThisChar; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Abstract Syntax Tree (aka Parse Tree) | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ExprAST - Base class for all expression nodes. | 
|  | class ExprAST { | 
|  | public: | 
|  | virtual ~ExprAST() {} | 
|  | virtual Value *Codegen() = 0; | 
|  | }; | 
|  |  | 
|  | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
|  | class NumberExprAST : public ExprAST { | 
|  | double Val; | 
|  | public: | 
|  | NumberExprAST(double val) : Val(val) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// VariableExprAST - Expression class for referencing a variable, like "a". | 
|  | class VariableExprAST : public ExprAST { | 
|  | std::string Name; | 
|  | public: | 
|  | VariableExprAST(const std::string &name) : Name(name) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// UnaryExprAST - Expression class for a unary operator. | 
|  | class UnaryExprAST : public ExprAST { | 
|  | char Opcode; | 
|  | ExprAST *Operand; | 
|  | public: | 
|  | UnaryExprAST(char opcode, ExprAST *operand) | 
|  | : Opcode(opcode), Operand(operand) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// BinaryExprAST - Expression class for a binary operator. | 
|  | class BinaryExprAST : public ExprAST { | 
|  | char Op; | 
|  | ExprAST *LHS, *RHS; | 
|  | public: | 
|  | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) | 
|  | : Op(op), LHS(lhs), RHS(rhs) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// CallExprAST - Expression class for function calls. | 
|  | class CallExprAST : public ExprAST { | 
|  | std::string Callee; | 
|  | std::vector<ExprAST*> Args; | 
|  | public: | 
|  | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) | 
|  | : Callee(callee), Args(args) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// IfExprAST - Expression class for if/then/else. | 
|  | class IfExprAST : public ExprAST { | 
|  | ExprAST *Cond, *Then, *Else; | 
|  | public: | 
|  | IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) | 
|  | : Cond(cond), Then(then), Else(_else) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// ForExprAST - Expression class for for/in. | 
|  | class ForExprAST : public ExprAST { | 
|  | std::string VarName; | 
|  | ExprAST *Start, *End, *Step, *Body; | 
|  | public: | 
|  | ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, | 
|  | ExprAST *step, ExprAST *body) | 
|  | : VarName(varname), Start(start), End(end), Step(step), Body(body) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// PrototypeAST - This class represents the "prototype" for a function, | 
|  | /// which captures its name, and its argument names (thus implicitly the number | 
|  | /// of arguments the function takes), as well as if it is an operator. | 
|  | class PrototypeAST { | 
|  | std::string Name; | 
|  | std::vector<std::string> Args; | 
|  | bool isOperator; | 
|  | unsigned Precedence;  // Precedence if a binary op. | 
|  | public: | 
|  | PrototypeAST(const std::string &name, const std::vector<std::string> &args, | 
|  | bool isoperator = false, unsigned prec = 0) | 
|  | : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} | 
|  |  | 
|  | bool isUnaryOp() const { return isOperator && Args.size() == 1; } | 
|  | bool isBinaryOp() const { return isOperator && Args.size() == 2; } | 
|  |  | 
|  | char getOperatorName() const { | 
|  | assert(isUnaryOp() || isBinaryOp()); | 
|  | return Name[Name.size()-1]; | 
|  | } | 
|  |  | 
|  | unsigned getBinaryPrecedence() const { return Precedence; } | 
|  |  | 
|  | Function *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// FunctionAST - This class represents a function definition itself. | 
|  | class FunctionAST { | 
|  | PrototypeAST *Proto; | 
|  | ExprAST *Body; | 
|  | public: | 
|  | FunctionAST(PrototypeAST *proto, ExprAST *body) | 
|  | : Proto(proto), Body(body) {} | 
|  |  | 
|  | Function *Codegen(); | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Parser | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current | 
|  | /// token the parser is looking at.  getNextToken reads another token from the | 
|  | /// lexer and updates CurTok with its results. | 
|  | static int CurTok; | 
|  | static int getNextToken() { | 
|  | return CurTok = gettok(); | 
|  | } | 
|  |  | 
|  | /// BinopPrecedence - This holds the precedence for each binary operator that is | 
|  | /// defined. | 
|  | static std::map<char, int> BinopPrecedence; | 
|  |  | 
|  | /// GetTokPrecedence - Get the precedence of the pending binary operator token. | 
|  | static int GetTokPrecedence() { | 
|  | if (!isascii(CurTok)) | 
|  | return -1; | 
|  |  | 
|  | // Make sure it's a declared binop. | 
|  | int TokPrec = BinopPrecedence[CurTok]; | 
|  | if (TokPrec <= 0) return -1; | 
|  | return TokPrec; | 
|  | } | 
|  |  | 
|  | /// Error* - These are little helper functions for error handling. | 
|  | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} | 
|  | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } | 
|  | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } | 
|  |  | 
|  | static ExprAST *ParseExpression(); | 
|  |  | 
|  | /// identifierexpr | 
|  | ///   ::= identifier | 
|  | ///   ::= identifier '(' expression* ')' | 
|  | static ExprAST *ParseIdentifierExpr() { | 
|  | std::string IdName = IdentifierStr; | 
|  |  | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '(') // Simple variable ref. | 
|  | return new VariableExprAST(IdName); | 
|  |  | 
|  | // Call. | 
|  | getNextToken();  // eat ( | 
|  | std::vector<ExprAST*> Args; | 
|  | if (CurTok != ')') { | 
|  | while (1) { | 
|  | ExprAST *Arg = ParseExpression(); | 
|  | if (!Arg) return 0; | 
|  | Args.push_back(Arg); | 
|  |  | 
|  | if (CurTok == ')') break; | 
|  |  | 
|  | if (CurTok != ',') | 
|  | return Error("Expected ')' or ',' in argument list"); | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eat the ')'. | 
|  | getNextToken(); | 
|  |  | 
|  | return new CallExprAST(IdName, Args); | 
|  | } | 
|  |  | 
|  | /// numberexpr ::= number | 
|  | static ExprAST *ParseNumberExpr() { | 
|  | ExprAST *Result = new NumberExprAST(NumVal); | 
|  | getNextToken(); // consume the number | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// parenexpr ::= '(' expression ')' | 
|  | static ExprAST *ParseParenExpr() { | 
|  | getNextToken();  // eat (. | 
|  | ExprAST *V = ParseExpression(); | 
|  | if (!V) return 0; | 
|  |  | 
|  | if (CurTok != ')') | 
|  | return Error("expected ')'"); | 
|  | getNextToken();  // eat ). | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// ifexpr ::= 'if' expression 'then' expression 'else' expression | 
|  | static ExprAST *ParseIfExpr() { | 
|  | getNextToken();  // eat the if. | 
|  |  | 
|  | // condition. | 
|  | ExprAST *Cond = ParseExpression(); | 
|  | if (!Cond) return 0; | 
|  |  | 
|  | if (CurTok != tok_then) | 
|  | return Error("expected then"); | 
|  | getNextToken();  // eat the then | 
|  |  | 
|  | ExprAST *Then = ParseExpression(); | 
|  | if (Then == 0) return 0; | 
|  |  | 
|  | if (CurTok != tok_else) | 
|  | return Error("expected else"); | 
|  |  | 
|  | getNextToken(); | 
|  |  | 
|  | ExprAST *Else = ParseExpression(); | 
|  | if (!Else) return 0; | 
|  |  | 
|  | return new IfExprAST(Cond, Then, Else); | 
|  | } | 
|  |  | 
|  | /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression | 
|  | static ExprAST *ParseForExpr() { | 
|  | getNextToken();  // eat the for. | 
|  |  | 
|  | if (CurTok != tok_identifier) | 
|  | return Error("expected identifier after for"); | 
|  |  | 
|  | std::string IdName = IdentifierStr; | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '=') | 
|  | return Error("expected '=' after for"); | 
|  | getNextToken();  // eat '='. | 
|  |  | 
|  |  | 
|  | ExprAST *Start = ParseExpression(); | 
|  | if (Start == 0) return 0; | 
|  | if (CurTok != ',') | 
|  | return Error("expected ',' after for start value"); | 
|  | getNextToken(); | 
|  |  | 
|  | ExprAST *End = ParseExpression(); | 
|  | if (End == 0) return 0; | 
|  |  | 
|  | // The step value is optional. | 
|  | ExprAST *Step = 0; | 
|  | if (CurTok == ',') { | 
|  | getNextToken(); | 
|  | Step = ParseExpression(); | 
|  | if (Step == 0) return 0; | 
|  | } | 
|  |  | 
|  | if (CurTok != tok_in) | 
|  | return Error("expected 'in' after for"); | 
|  | getNextToken();  // eat 'in'. | 
|  |  | 
|  | ExprAST *Body = ParseExpression(); | 
|  | if (Body == 0) return 0; | 
|  |  | 
|  | return new ForExprAST(IdName, Start, End, Step, Body); | 
|  | } | 
|  |  | 
|  | /// primary | 
|  | ///   ::= identifierexpr | 
|  | ///   ::= numberexpr | 
|  | ///   ::= parenexpr | 
|  | ///   ::= ifexpr | 
|  | ///   ::= forexpr | 
|  | static ExprAST *ParsePrimary() { | 
|  | switch (CurTok) { | 
|  | default: return Error("unknown token when expecting an expression"); | 
|  | case tok_identifier: return ParseIdentifierExpr(); | 
|  | case tok_number:     return ParseNumberExpr(); | 
|  | case '(':            return ParseParenExpr(); | 
|  | case tok_if:         return ParseIfExpr(); | 
|  | case tok_for:        return ParseForExpr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// unary | 
|  | ///   ::= primary | 
|  | ///   ::= '!' unary | 
|  | static ExprAST *ParseUnary() { | 
|  | // If the current token is not an operator, it must be a primary expr. | 
|  | if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') | 
|  | return ParsePrimary(); | 
|  |  | 
|  | // If this is a unary operator, read it. | 
|  | int Opc = CurTok; | 
|  | getNextToken(); | 
|  | if (ExprAST *Operand = ParseUnary()) | 
|  | return new UnaryExprAST(Opc, Operand); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// binoprhs | 
|  | ///   ::= ('+' unary)* | 
|  | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { | 
|  | // If this is a binop, find its precedence. | 
|  | while (1) { | 
|  | int TokPrec = GetTokPrecedence(); | 
|  |  | 
|  | // If this is a binop that binds at least as tightly as the current binop, | 
|  | // consume it, otherwise we are done. | 
|  | if (TokPrec < ExprPrec) | 
|  | return LHS; | 
|  |  | 
|  | // Okay, we know this is a binop. | 
|  | int BinOp = CurTok; | 
|  | getNextToken();  // eat binop | 
|  |  | 
|  | // Parse the unary expression after the binary operator. | 
|  | ExprAST *RHS = ParseUnary(); | 
|  | if (!RHS) return 0; | 
|  |  | 
|  | // If BinOp binds less tightly with RHS than the operator after RHS, let | 
|  | // the pending operator take RHS as its LHS. | 
|  | int NextPrec = GetTokPrecedence(); | 
|  | if (TokPrec < NextPrec) { | 
|  | RHS = ParseBinOpRHS(TokPrec+1, RHS); | 
|  | if (RHS == 0) return 0; | 
|  | } | 
|  |  | 
|  | // Merge LHS/RHS. | 
|  | LHS = new BinaryExprAST(BinOp, LHS, RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// expression | 
|  | ///   ::= unary binoprhs | 
|  | /// | 
|  | static ExprAST *ParseExpression() { | 
|  | ExprAST *LHS = ParseUnary(); | 
|  | if (!LHS) return 0; | 
|  |  | 
|  | return ParseBinOpRHS(0, LHS); | 
|  | } | 
|  |  | 
|  | /// prototype | 
|  | ///   ::= id '(' id* ')' | 
|  | ///   ::= binary LETTER number? (id, id) | 
|  | ///   ::= unary LETTER (id) | 
|  | static PrototypeAST *ParsePrototype() { | 
|  | std::string FnName; | 
|  |  | 
|  | unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. | 
|  | unsigned BinaryPrecedence = 30; | 
|  |  | 
|  | switch (CurTok) { | 
|  | default: | 
|  | return ErrorP("Expected function name in prototype"); | 
|  | case tok_identifier: | 
|  | FnName = IdentifierStr; | 
|  | Kind = 0; | 
|  | getNextToken(); | 
|  | break; | 
|  | case tok_unary: | 
|  | getNextToken(); | 
|  | if (!isascii(CurTok)) | 
|  | return ErrorP("Expected unary operator"); | 
|  | FnName = "unary"; | 
|  | FnName += (char)CurTok; | 
|  | Kind = 1; | 
|  | getNextToken(); | 
|  | break; | 
|  | case tok_binary: | 
|  | getNextToken(); | 
|  | if (!isascii(CurTok)) | 
|  | return ErrorP("Expected binary operator"); | 
|  | FnName = "binary"; | 
|  | FnName += (char)CurTok; | 
|  | Kind = 2; | 
|  | getNextToken(); | 
|  |  | 
|  | // Read the precedence if present. | 
|  | if (CurTok == tok_number) { | 
|  | if (NumVal < 1 || NumVal > 100) | 
|  | return ErrorP("Invalid precedecnce: must be 1..100"); | 
|  | BinaryPrecedence = (unsigned)NumVal; | 
|  | getNextToken(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (CurTok != '(') | 
|  | return ErrorP("Expected '(' in prototype"); | 
|  |  | 
|  | std::vector<std::string> ArgNames; | 
|  | while (getNextToken() == tok_identifier) | 
|  | ArgNames.push_back(IdentifierStr); | 
|  | if (CurTok != ')') | 
|  | return ErrorP("Expected ')' in prototype"); | 
|  |  | 
|  | // success. | 
|  | getNextToken();  // eat ')'. | 
|  |  | 
|  | // Verify right number of names for operator. | 
|  | if (Kind && ArgNames.size() != Kind) | 
|  | return ErrorP("Invalid number of operands for operator"); | 
|  |  | 
|  | return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); | 
|  | } | 
|  |  | 
|  | /// definition ::= 'def' prototype expression | 
|  | static FunctionAST *ParseDefinition() { | 
|  | getNextToken();  // eat def. | 
|  | PrototypeAST *Proto = ParsePrototype(); | 
|  | if (Proto == 0) return 0; | 
|  |  | 
|  | if (ExprAST *E = ParseExpression()) | 
|  | return new FunctionAST(Proto, E); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// toplevelexpr ::= expression | 
|  | static FunctionAST *ParseTopLevelExpr() { | 
|  | if (ExprAST *E = ParseExpression()) { | 
|  | // Make an anonymous proto. | 
|  | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); | 
|  | return new FunctionAST(Proto, E); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// external ::= 'extern' prototype | 
|  | static PrototypeAST *ParseExtern() { | 
|  | getNextToken();  // eat extern. | 
|  | return ParsePrototype(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Code Generation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static Module *TheModule; | 
|  | static IRBuilder<> Builder(getGlobalContext()); | 
|  | static std::map<std::string, Value*> NamedValues; | 
|  | static FunctionPassManager *TheFPM; | 
|  |  | 
|  | Value *ErrorV(const char *Str) { Error(Str); return 0; } | 
|  |  | 
|  | Value *NumberExprAST::Codegen() { | 
|  | return ConstantFP::get(getGlobalContext(), APFloat(Val)); | 
|  | } | 
|  |  | 
|  | Value *VariableExprAST::Codegen() { | 
|  | // Look this variable up in the function. | 
|  | Value *V = NamedValues[Name]; | 
|  | return V ? V : ErrorV("Unknown variable name"); | 
|  | } | 
|  |  | 
|  | Value *UnaryExprAST::Codegen() { | 
|  | Value *OperandV = Operand->Codegen(); | 
|  | if (OperandV == 0) return 0; | 
|  |  | 
|  | Function *F = TheModule->getFunction(std::string("unary")+Opcode); | 
|  | if (F == 0) | 
|  | return ErrorV("Unknown unary operator"); | 
|  |  | 
|  | return Builder.CreateCall(F, OperandV, "unop"); | 
|  | } | 
|  |  | 
|  | Value *BinaryExprAST::Codegen() { | 
|  | Value *L = LHS->Codegen(); | 
|  | Value *R = RHS->Codegen(); | 
|  | if (L == 0 || R == 0) return 0; | 
|  |  | 
|  | switch (Op) { | 
|  | case '+': return Builder.CreateAdd(L, R, "addtmp"); | 
|  | case '-': return Builder.CreateSub(L, R, "subtmp"); | 
|  | case '*': return Builder.CreateMul(L, R, "multmp"); | 
|  | case '<': | 
|  | L = Builder.CreateFCmpULT(L, R, "cmptmp"); | 
|  | // Convert bool 0/1 to double 0.0 or 1.0 | 
|  | return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), | 
|  | "booltmp"); | 
|  | default: break; | 
|  | } | 
|  |  | 
|  | // If it wasn't a builtin binary operator, it must be a user defined one. Emit | 
|  | // a call to it. | 
|  | Function *F = TheModule->getFunction(std::string("binary")+Op); | 
|  | assert(F && "binary operator not found!"); | 
|  |  | 
|  | Value *Ops[] = { L, R }; | 
|  | return Builder.CreateCall(F, Ops, Ops+2, "binop"); | 
|  | } | 
|  |  | 
|  | Value *CallExprAST::Codegen() { | 
|  | // Look up the name in the global module table. | 
|  | Function *CalleeF = TheModule->getFunction(Callee); | 
|  | if (CalleeF == 0) | 
|  | return ErrorV("Unknown function referenced"); | 
|  |  | 
|  | // If argument mismatch error. | 
|  | if (CalleeF->arg_size() != Args.size()) | 
|  | return ErrorV("Incorrect # arguments passed"); | 
|  |  | 
|  | std::vector<Value*> ArgsV; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | ArgsV.push_back(Args[i]->Codegen()); | 
|  | if (ArgsV.back() == 0) return 0; | 
|  | } | 
|  |  | 
|  | return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); | 
|  | } | 
|  |  | 
|  | Value *IfExprAST::Codegen() { | 
|  | Value *CondV = Cond->Codegen(); | 
|  | if (CondV == 0) return 0; | 
|  |  | 
|  | // Convert condition to a bool by comparing equal to 0.0. | 
|  | CondV = Builder.CreateFCmpONE(CondV, | 
|  | ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
|  | "ifcond"); | 
|  |  | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Create blocks for the then and else cases.  Insert the 'then' block at the | 
|  | // end of the function. | 
|  | BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); | 
|  | BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); | 
|  | BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); | 
|  |  | 
|  | Builder.CreateCondBr(CondV, ThenBB, ElseBB); | 
|  |  | 
|  | // Emit then value. | 
|  | Builder.SetInsertPoint(ThenBB); | 
|  |  | 
|  | Value *ThenV = Then->Codegen(); | 
|  | if (ThenV == 0) return 0; | 
|  |  | 
|  | Builder.CreateBr(MergeBB); | 
|  | // Codegen of 'Then' can change the current block, update ThenBB for the PHI. | 
|  | ThenBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Emit else block. | 
|  | TheFunction->getBasicBlockList().push_back(ElseBB); | 
|  | Builder.SetInsertPoint(ElseBB); | 
|  |  | 
|  | Value *ElseV = Else->Codegen(); | 
|  | if (ElseV == 0) return 0; | 
|  |  | 
|  | Builder.CreateBr(MergeBB); | 
|  | // Codegen of 'Else' can change the current block, update ElseBB for the PHI. | 
|  | ElseBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Emit merge block. | 
|  | TheFunction->getBasicBlockList().push_back(MergeBB); | 
|  | Builder.SetInsertPoint(MergeBB); | 
|  | PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), | 
|  | "iftmp"); | 
|  |  | 
|  | PN->addIncoming(ThenV, ThenBB); | 
|  | PN->addIncoming(ElseV, ElseBB); | 
|  | return PN; | 
|  | } | 
|  |  | 
|  | Value *ForExprAST::Codegen() { | 
|  | // Output this as: | 
|  | //   ... | 
|  | //   start = startexpr | 
|  | //   goto loop | 
|  | // loop: | 
|  | //   variable = phi [start, loopheader], [nextvariable, loopend] | 
|  | //   ... | 
|  | //   bodyexpr | 
|  | //   ... | 
|  | // loopend: | 
|  | //   step = stepexpr | 
|  | //   nextvariable = variable + step | 
|  | //   endcond = endexpr | 
|  | //   br endcond, loop, endloop | 
|  | // outloop: | 
|  |  | 
|  | // Emit the start code first, without 'variable' in scope. | 
|  | Value *StartVal = Start->Codegen(); | 
|  | if (StartVal == 0) return 0; | 
|  |  | 
|  | // Make the new basic block for the loop header, inserting after current | 
|  | // block. | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  | BasicBlock *PreheaderBB = Builder.GetInsertBlock(); | 
|  | BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); | 
|  |  | 
|  | // Insert an explicit fall through from the current block to the LoopBB. | 
|  | Builder.CreateBr(LoopBB); | 
|  |  | 
|  | // Start insertion in LoopBB. | 
|  | Builder.SetInsertPoint(LoopBB); | 
|  |  | 
|  | // Start the PHI node with an entry for Start. | 
|  | PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str()); | 
|  | Variable->addIncoming(StartVal, PreheaderBB); | 
|  |  | 
|  | // Within the loop, the variable is defined equal to the PHI node.  If it | 
|  | // shadows an existing variable, we have to restore it, so save it now. | 
|  | Value *OldVal = NamedValues[VarName]; | 
|  | NamedValues[VarName] = Variable; | 
|  |  | 
|  | // Emit the body of the loop.  This, like any other expr, can change the | 
|  | // current BB.  Note that we ignore the value computed by the body, but don't | 
|  | // allow an error. | 
|  | if (Body->Codegen() == 0) | 
|  | return 0; | 
|  |  | 
|  | // Emit the step value. | 
|  | Value *StepVal; | 
|  | if (Step) { | 
|  | StepVal = Step->Codegen(); | 
|  | if (StepVal == 0) return 0; | 
|  | } else { | 
|  | // If not specified, use 1.0. | 
|  | StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); | 
|  | } | 
|  |  | 
|  | Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar"); | 
|  |  | 
|  | // Compute the end condition. | 
|  | Value *EndCond = End->Codegen(); | 
|  | if (EndCond == 0) return EndCond; | 
|  |  | 
|  | // Convert condition to a bool by comparing equal to 0.0. | 
|  | EndCond = Builder.CreateFCmpONE(EndCond, | 
|  | ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
|  | "loopcond"); | 
|  |  | 
|  | // Create the "after loop" block and insert it. | 
|  | BasicBlock *LoopEndBB = Builder.GetInsertBlock(); | 
|  | BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); | 
|  |  | 
|  | // Insert the conditional branch into the end of LoopEndBB. | 
|  | Builder.CreateCondBr(EndCond, LoopBB, AfterBB); | 
|  |  | 
|  | // Any new code will be inserted in AfterBB. | 
|  | Builder.SetInsertPoint(AfterBB); | 
|  |  | 
|  | // Add a new entry to the PHI node for the backedge. | 
|  | Variable->addIncoming(NextVar, LoopEndBB); | 
|  |  | 
|  | // Restore the unshadowed variable. | 
|  | if (OldVal) | 
|  | NamedValues[VarName] = OldVal; | 
|  | else | 
|  | NamedValues.erase(VarName); | 
|  |  | 
|  |  | 
|  | // for expr always returns 0.0. | 
|  | return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); | 
|  | } | 
|  |  | 
|  | Function *PrototypeAST::Codegen() { | 
|  | // Make the function type:  double(double,double) etc. | 
|  | std::vector<const Type*> Doubles(Args.size(), | 
|  | Type::getDoubleTy(getGlobalContext())); | 
|  | FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), | 
|  | Doubles, false); | 
|  |  | 
|  | Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); | 
|  |  | 
|  | // If F conflicted, there was already something named 'Name'.  If it has a | 
|  | // body, don't allow redefinition or reextern. | 
|  | if (F->getName() != Name) { | 
|  | // Delete the one we just made and get the existing one. | 
|  | F->eraseFromParent(); | 
|  | F = TheModule->getFunction(Name); | 
|  |  | 
|  | // If F already has a body, reject this. | 
|  | if (!F->empty()) { | 
|  | ErrorF("redefinition of function"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If F took a different number of args, reject. | 
|  | if (F->arg_size() != Args.size()) { | 
|  | ErrorF("redefinition of function with different # args"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set names for all arguments. | 
|  | unsigned Idx = 0; | 
|  | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); | 
|  | ++AI, ++Idx) { | 
|  | AI->setName(Args[Idx]); | 
|  |  | 
|  | // Add arguments to variable symbol table. | 
|  | NamedValues[Args[Idx]] = AI; | 
|  | } | 
|  |  | 
|  | return F; | 
|  | } | 
|  |  | 
|  | Function *FunctionAST::Codegen() { | 
|  | NamedValues.clear(); | 
|  |  | 
|  | Function *TheFunction = Proto->Codegen(); | 
|  | if (TheFunction == 0) | 
|  | return 0; | 
|  |  | 
|  | // If this is an operator, install it. | 
|  | if (Proto->isBinaryOp()) | 
|  | BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); | 
|  |  | 
|  | // Create a new basic block to start insertion into. | 
|  | BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); | 
|  | Builder.SetInsertPoint(BB); | 
|  |  | 
|  | if (Value *RetVal = Body->Codegen()) { | 
|  | // Finish off the function. | 
|  | Builder.CreateRet(RetVal); | 
|  |  | 
|  | // Validate the generated code, checking for consistency. | 
|  | verifyFunction(*TheFunction); | 
|  |  | 
|  | // Optimize the function. | 
|  | TheFPM->run(*TheFunction); | 
|  |  | 
|  | return TheFunction; | 
|  | } | 
|  |  | 
|  | // Error reading body, remove function. | 
|  | TheFunction->eraseFromParent(); | 
|  |  | 
|  | if (Proto->isBinaryOp()) | 
|  | BinopPrecedence.erase(Proto->getOperatorName()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Top-Level parsing and JIT Driver | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static ExecutionEngine *TheExecutionEngine; | 
|  |  | 
|  | static void HandleDefinition() { | 
|  | if (FunctionAST *F = ParseDefinition()) { | 
|  | if (Function *LF = F->Codegen()) { | 
|  | fprintf(stderr, "Read function definition:"); | 
|  | LF->dump(); | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HandleExtern() { | 
|  | if (PrototypeAST *P = ParseExtern()) { | 
|  | if (Function *F = P->Codegen()) { | 
|  | fprintf(stderr, "Read extern: "); | 
|  | F->dump(); | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HandleTopLevelExpression() { | 
|  | // Evaluate a top-level expression into an anonymous function. | 
|  | if (FunctionAST *F = ParseTopLevelExpr()) { | 
|  | if (Function *LF = F->Codegen()) { | 
|  | // JIT the function, returning a function pointer. | 
|  | void *FPtr = TheExecutionEngine->getPointerToFunction(LF); | 
|  |  | 
|  | // Cast it to the right type (takes no arguments, returns a double) so we | 
|  | // can call it as a native function. | 
|  | double (*FP)() = (double (*)())(intptr_t)FPtr; | 
|  | fprintf(stderr, "Evaluated to %f\n", FP()); | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// top ::= definition | external | expression | ';' | 
|  | static void MainLoop() { | 
|  | while (1) { | 
|  | fprintf(stderr, "ready> "); | 
|  | switch (CurTok) { | 
|  | case tok_eof:    return; | 
|  | case ';':        getNextToken(); break;  // ignore top-level semicolons. | 
|  | case tok_def:    HandleDefinition(); break; | 
|  | case tok_extern: HandleExtern(); break; | 
|  | default:         HandleTopLevelExpression(); break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // "Library" functions that can be "extern'd" from user code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// putchard - putchar that takes a double and returns 0. | 
|  | extern "C" | 
|  | double putchard(double X) { | 
|  | putchar((char)X); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// printd - printf that takes a double prints it as "%f\n", returning 0. | 
|  | extern "C" | 
|  | double printd(double X) { | 
|  | printf("%f\n", X); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Main driver code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | int main() { | 
|  | InitializeNativeTarget(); | 
|  | LLVMContext &Context = getGlobalContext(); | 
|  |  | 
|  | // Install standard binary operators. | 
|  | // 1 is lowest precedence. | 
|  | BinopPrecedence['<'] = 10; | 
|  | BinopPrecedence['+'] = 20; | 
|  | BinopPrecedence['-'] = 20; | 
|  | BinopPrecedence['*'] = 40;  // highest. | 
|  |  | 
|  | // Prime the first token. | 
|  | fprintf(stderr, "ready> "); | 
|  | getNextToken(); | 
|  |  | 
|  | // Make the module, which holds all the code. | 
|  | TheModule = new Module("my cool jit", Context); | 
|  |  | 
|  | // Create the JIT.  This takes ownership of the module. | 
|  | std::string ErrStr; | 
|  | TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); | 
|  | if (!TheExecutionEngine) { | 
|  | fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | FunctionPassManager OurFPM(TheModule); | 
|  |  | 
|  | // Set up the optimizer pipeline.  Start with registering info about how the | 
|  | // target lays out data structures. | 
|  | OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); | 
|  | // Do simple "peephole" optimizations and bit-twiddling optzns. | 
|  | OurFPM.add(createInstructionCombiningPass()); | 
|  | // Reassociate expressions. | 
|  | OurFPM.add(createReassociatePass()); | 
|  | // Eliminate Common SubExpressions. | 
|  | OurFPM.add(createGVNPass()); | 
|  | // Simplify the control flow graph (deleting unreachable blocks, etc). | 
|  | OurFPM.add(createCFGSimplificationPass()); | 
|  |  | 
|  | OurFPM.doInitialization(); | 
|  |  | 
|  | // Set the global so the code gen can use this. | 
|  | TheFPM = &OurFPM; | 
|  |  | 
|  | // Run the main "interpreter loop" now. | 
|  | MainLoop(); | 
|  |  | 
|  | TheFPM = 0; | 
|  |  | 
|  | // Print out all of the generated code. | 
|  | TheModule->dump(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <a href="LangImpl7.html">Next: Extending the language: mutable variables / SSA construction</a> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <hr> | 
|  | <address> | 
|  | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
|  | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
|  | <a href="http://validator.w3.org/check/referer"><img | 
|  | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
|  |  | 
|  | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
|  | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> | 
|  | Last modified: $Date$ | 
|  | </address> | 
|  | </body> | 
|  | </html> |