| //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LazyCallGraph.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "lcg" |
| |
| static void findCallees( |
| SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited, |
| SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees, |
| DenseMap<Function *, size_t> &CalleeIndexMap) { |
| while (!Worklist.empty()) { |
| Constant *C = Worklist.pop_back_val(); |
| |
| if (Function *F = dyn_cast<Function>(C)) { |
| // Note that we consider *any* function with a definition to be a viable |
| // edge. Even if the function's definition is subject to replacement by |
| // some other module (say, a weak definition) there may still be |
| // optimizations which essentially speculate based on the definition and |
| // a way to check that the specific definition is in fact the one being |
| // used. For example, this could be done by moving the weak definition to |
| // a strong (internal) definition and making the weak definition be an |
| // alias. Then a test of the address of the weak function against the new |
| // strong definition's address would be an effective way to determine the |
| // safety of optimizing a direct call edge. |
| if (!F->isDeclaration() && |
| CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) { |
| DEBUG(dbgs() << " Added callable function: " << F->getName() |
| << "\n"); |
| Callees.push_back(F); |
| } |
| continue; |
| } |
| |
| for (Value *Op : C->operand_values()) |
| if (Visited.insert(cast<Constant>(Op))) |
| Worklist.push_back(cast<Constant>(Op)); |
| } |
| } |
| |
| LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) |
| : G(&G), F(F), DFSNumber(0), LowLink(0) { |
| DEBUG(dbgs() << " Adding functions called by '" << F.getName() |
| << "' to the graph.\n"); |
| |
| SmallVector<Constant *, 16> Worklist; |
| SmallPtrSet<Constant *, 16> Visited; |
| // Find all the potential callees in this function. First walk the |
| // instructions and add every operand which is a constant to the worklist. |
| for (BasicBlock &BB : F) |
| for (Instruction &I : BB) |
| for (Value *Op : I.operand_values()) |
| if (Constant *C = dyn_cast<Constant>(Op)) |
| if (Visited.insert(C)) |
| Worklist.push_back(C); |
| |
| // We've collected all the constant (and thus potentially function or |
| // function containing) operands to all of the instructions in the function. |
| // Process them (recursively) collecting every function found. |
| findCallees(Worklist, Visited, Callees, CalleeIndexMap); |
| } |
| |
| LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { |
| DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() |
| << "\n"); |
| for (Function &F : M) |
| if (!F.isDeclaration() && !F.hasLocalLinkage()) |
| if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) { |
| DEBUG(dbgs() << " Adding '" << F.getName() |
| << "' to entry set of the graph.\n"); |
| EntryNodes.push_back(&F); |
| } |
| |
| // Now add entry nodes for functions reachable via initializers to globals. |
| SmallVector<Constant *, 16> Worklist; |
| SmallPtrSet<Constant *, 16> Visited; |
| for (GlobalVariable &GV : M.globals()) |
| if (GV.hasInitializer()) |
| if (Visited.insert(GV.getInitializer())) |
| Worklist.push_back(GV.getInitializer()); |
| |
| DEBUG(dbgs() << " Adding functions referenced by global initializers to the " |
| "entry set.\n"); |
| findCallees(Worklist, Visited, EntryNodes, EntryIndexMap); |
| |
| for (auto &Entry : EntryNodes) |
| if (Function *F = Entry.dyn_cast<Function *>()) |
| SCCEntryNodes.insert(F); |
| else |
| SCCEntryNodes.insert(&Entry.get<Node *>()->getFunction()); |
| } |
| |
| LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) |
| : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), |
| EntryNodes(std::move(G.EntryNodes)), |
| EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)), |
| SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)), |
| DFSStack(std::move(G.DFSStack)), |
| SCCEntryNodes(std::move(G.SCCEntryNodes)), |
| NextDFSNumber(G.NextDFSNumber) { |
| updateGraphPtrs(); |
| } |
| |
| LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { |
| BPA = std::move(G.BPA); |
| NodeMap = std::move(G.NodeMap); |
| EntryNodes = std::move(G.EntryNodes); |
| EntryIndexMap = std::move(G.EntryIndexMap); |
| SCCBPA = std::move(G.SCCBPA); |
| SCCMap = std::move(G.SCCMap); |
| LeafSCCs = std::move(G.LeafSCCs); |
| DFSStack = std::move(G.DFSStack); |
| SCCEntryNodes = std::move(G.SCCEntryNodes); |
| NextDFSNumber = G.NextDFSNumber; |
| updateGraphPtrs(); |
| return *this; |
| } |
| |
| LazyCallGraph::Node *LazyCallGraph::insertInto(Function &F, Node *&MappedN) { |
| return new (MappedN = BPA.Allocate()) Node(*this, F); |
| } |
| |
| void LazyCallGraph::updateGraphPtrs() { |
| // Process all nodes updating the graph pointers. |
| SmallVector<Node *, 16> Worklist; |
| for (auto &Entry : EntryNodes) |
| if (Node *EntryN = Entry.dyn_cast<Node *>()) |
| Worklist.push_back(EntryN); |
| |
| while (!Worklist.empty()) { |
| Node *N = Worklist.pop_back_val(); |
| N->G = this; |
| for (auto &Callee : N->Callees) |
| if (Node *CalleeN = Callee.dyn_cast<Node *>()) |
| Worklist.push_back(CalleeN); |
| } |
| } |
| |
| LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() { |
| // When the stack is empty, there are no more SCCs to walk in this graph. |
| if (DFSStack.empty()) { |
| // If we've handled all candidate entry nodes to the SCC forest, we're done. |
| if (SCCEntryNodes.empty()) |
| return nullptr; |
| |
| Node *N = get(*SCCEntryNodes.pop_back_val()); |
| DFSStack.push_back(std::make_pair(N, N->begin())); |
| } |
| |
| Node *N = DFSStack.back().first; |
| if (N->DFSNumber == 0) { |
| // This node hasn't been visited before, assign it a DFS number and remove |
| // it from the entry set. |
| N->LowLink = N->DFSNumber = NextDFSNumber++; |
| SCCEntryNodes.remove(&N->getFunction()); |
| } |
| |
| for (auto I = DFSStack.back().second, E = N->end(); I != E; ++I) { |
| Node *ChildN = *I; |
| if (ChildN->DFSNumber == 0) { |
| // Mark that we should start at this child when next this node is the |
| // top of the stack. We don't start at the next child to ensure this |
| // child's lowlink is reflected. |
| // FIXME: I don't actually think this is required, and we could start |
| // at the next child. |
| DFSStack.back().second = I; |
| |
| // Recurse onto this node via a tail call. |
| DFSStack.push_back(std::make_pair(ChildN, ChildN->begin())); |
| return LazyCallGraph::getNextSCCInPostOrder(); |
| } |
| |
| // Track the lowest link of the childen, if any are still in the stack. |
| if (ChildN->LowLink < N->LowLink && !SCCMap.count(&ChildN->getFunction())) |
| N->LowLink = ChildN->LowLink; |
| } |
| |
| // The tail of the stack is the new SCC. Allocate the SCC and pop the stack |
| // into it. |
| SCC *NewSCC = new (SCCBPA.Allocate()) SCC(); |
| |
| // Because we don't follow the strict Tarjan recursive formulation, walk |
| // from the top of the stack down, propagating the lowest link and stopping |
| // when the DFS number is the lowest link. |
| int LowestLink = N->LowLink; |
| do { |
| Node *SCCN = DFSStack.pop_back_val().first; |
| SCCMap.insert(std::make_pair(&SCCN->getFunction(), NewSCC)); |
| NewSCC->Nodes.push_back(SCCN); |
| LowestLink = std::min(LowestLink, SCCN->LowLink); |
| bool Inserted = |
| NewSCC->NodeSet.insert(&SCCN->getFunction()); |
| (void)Inserted; |
| assert(Inserted && "Cannot have duplicates in the DFSStack!"); |
| } while (!DFSStack.empty() && LowestLink <= DFSStack.back().first->DFSNumber); |
| assert(LowestLink == NewSCC->Nodes.back()->DFSNumber && |
| "Cannot stop with a DFS number greater than the lowest link!"); |
| |
| // A final pass over all edges in the SCC (this remains linear as we only |
| // do this once when we build the SCC) to connect it to the parent sets of |
| // its children. |
| bool IsLeafSCC = true; |
| for (Node *SCCN : NewSCC->Nodes) |
| for (Node *SCCChildN : *SCCN) { |
| if (NewSCC->NodeSet.count(&SCCChildN->getFunction())) |
| continue; |
| SCC *ChildSCC = SCCMap.lookup(&SCCChildN->getFunction()); |
| assert(ChildSCC && |
| "Must have all child SCCs processed when building a new SCC!"); |
| ChildSCC->ParentSCCs.insert(NewSCC); |
| IsLeafSCC = false; |
| } |
| |
| // For the SCCs where we fine no child SCCs, add them to the leaf list. |
| if (IsLeafSCC) |
| LeafSCCs.push_back(NewSCC); |
| |
| return NewSCC; |
| } |
| |
| char LazyCallGraphAnalysis::PassID; |
| |
| LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} |
| |
| static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N, |
| SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) { |
| // Recurse depth first through the nodes. |
| for (LazyCallGraph::Node *ChildN : N) |
| if (Printed.insert(ChildN)) |
| printNodes(OS, *ChildN, Printed); |
| |
| OS << " Call edges in function: " << N.getFunction().getName() << "\n"; |
| for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I) |
| OS << " -> " << I->getFunction().getName() << "\n"; |
| |
| OS << "\n"; |
| } |
| |
| static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) { |
| ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end()); |
| OS << " SCC with " << SCCSize << " functions:\n"; |
| |
| for (LazyCallGraph::Node *N : SCC) |
| OS << " " << N->getFunction().getName() << "\n"; |
| |
| OS << "\n"; |
| } |
| |
| PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M, |
| ModuleAnalysisManager *AM) { |
| LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M); |
| |
| OS << "Printing the call graph for module: " << M->getModuleIdentifier() |
| << "\n\n"; |
| |
| SmallPtrSet<LazyCallGraph::Node *, 16> Printed; |
| for (LazyCallGraph::Node *N : G) |
| if (Printed.insert(N)) |
| printNodes(OS, *N, Printed); |
| |
| for (LazyCallGraph::SCC *SCC : G.postorder_sccs()) |
| printSCC(OS, *SCC); |
| |
| return PreservedAnalyses::all(); |
| |
| } |