|  | //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. | 
|  | // | 
|  | // This SMS implementation is a target-independent back-end pass. When enabled, | 
|  | // the pass runs just prior to the register allocation pass, while the machine | 
|  | // IR is in SSA form. If software pipelining is successful, then the original | 
|  | // loop is replaced by the optimized loop. The optimized loop contains one or | 
|  | // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If | 
|  | // the instructions cannot be scheduled in a given MII, we increase the MII by | 
|  | // one and try again. | 
|  | // | 
|  | // The SMS implementation is an extension of the ScheduleDAGInstrs class. We | 
|  | // represent loop carried dependences in the DAG as order edges to the Phi | 
|  | // nodes. We also perform several passes over the DAG to eliminate unnecessary | 
|  | // edges that inhibit the ability to pipeline. The implementation uses the | 
|  | // DFAPacketizer class to compute the minimum initiation interval and the check | 
|  | // where an instruction may be inserted in the pipelined schedule. | 
|  | // | 
|  | // In order for the SMS pass to work, several target specific hooks need to be | 
|  | // implemented to get information about the loop structure and to rewrite | 
|  | // instructions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/MapVector.h" | 
|  | #include "llvm/ADT/PriorityQueue.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/CodeGen/DFAPacketizer.h" | 
|  | #include "llvm/CodeGen/LiveIntervals.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachinePipeliner.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RegisterPressure.h" | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/CodeGen/ScheduleDAGMutation.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/MC/LaneBitmask.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCInstrItineraries.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <climits> | 
|  | #include <cstdint> | 
|  | #include <deque> | 
|  | #include <functional> | 
|  | #include <iterator> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "pipeliner" | 
|  |  | 
|  | STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); | 
|  | STATISTIC(NumPipelined, "Number of loops software pipelined"); | 
|  | STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); | 
|  | STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); | 
|  | STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); | 
|  | STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); | 
|  | STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); | 
|  | STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); | 
|  | STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); | 
|  | STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); | 
|  | STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); | 
|  |  | 
|  | /// A command line option to turn software pipelining on or off. | 
|  | static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), | 
|  | cl::ZeroOrMore, | 
|  | cl::desc("Enable Software Pipelining")); | 
|  |  | 
|  | /// A command line option to enable SWP at -Os. | 
|  | static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", | 
|  | cl::desc("Enable SWP at Os."), cl::Hidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | /// A command line argument to limit minimum initial interval for pipelining. | 
|  | static cl::opt<int> SwpMaxMii("pipeliner-max-mii", | 
|  | cl::desc("Size limit for the MII."), | 
|  | cl::Hidden, cl::init(27)); | 
|  |  | 
|  | /// A command line argument to limit the number of stages in the pipeline. | 
|  | static cl::opt<int> | 
|  | SwpMaxStages("pipeliner-max-stages", | 
|  | cl::desc("Maximum stages allowed in the generated scheduled."), | 
|  | cl::Hidden, cl::init(3)); | 
|  |  | 
|  | /// A command line option to disable the pruning of chain dependences due to | 
|  | /// an unrelated Phi. | 
|  | static cl::opt<bool> | 
|  | SwpPruneDeps("pipeliner-prune-deps", | 
|  | cl::desc("Prune dependences between unrelated Phi nodes."), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | /// A command line option to disable the pruning of loop carried order | 
|  | /// dependences. | 
|  | static cl::opt<bool> | 
|  | SwpPruneLoopCarried("pipeliner-prune-loop-carried", | 
|  | cl::desc("Prune loop carried order dependences."), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); | 
|  | #endif | 
|  |  | 
|  | static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", | 
|  | cl::ReallyHidden, cl::init(false), | 
|  | cl::ZeroOrMore, cl::desc("Ignore RecMII")); | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | // A command line option to enable the CopyToPhi DAG mutation. | 
|  | cl::opt<bool> | 
|  | SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, | 
|  | cl::init(true), cl::ZeroOrMore, | 
|  | cl::desc("Enable CopyToPhi DAG Mutation")); | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; | 
|  | char MachinePipeliner::ID = 0; | 
|  | #ifndef NDEBUG | 
|  | int MachinePipeliner::NumTries = 0; | 
|  | #endif | 
|  | char &llvm::MachinePipelinerID = MachinePipeliner::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, | 
|  | "Modulo Software Pipelining", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveIntervals) | 
|  | INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, | 
|  | "Modulo Software Pipelining", false, false) | 
|  |  | 
|  | /// The "main" function for implementing Swing Modulo Scheduling. | 
|  | bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { | 
|  | if (skipFunction(mf.getFunction())) | 
|  | return false; | 
|  |  | 
|  | if (!EnableSWP) | 
|  | return false; | 
|  |  | 
|  | if (mf.getFunction().getAttributes().hasAttribute( | 
|  | AttributeList::FunctionIndex, Attribute::OptimizeForSize) && | 
|  | !EnableSWPOptSize.getPosition()) | 
|  | return false; | 
|  |  | 
|  | if (!mf.getSubtarget().enableMachinePipeliner()) | 
|  | return false; | 
|  |  | 
|  | // Cannot pipeline loops without instruction itineraries if we are using | 
|  | // DFA for the pipeliner. | 
|  | if (mf.getSubtarget().useDFAforSMS() && | 
|  | (!mf.getSubtarget().getInstrItineraryData() || | 
|  | mf.getSubtarget().getInstrItineraryData()->isEmpty())) | 
|  | return false; | 
|  |  | 
|  | MF = &mf; | 
|  | MLI = &getAnalysis<MachineLoopInfo>(); | 
|  | MDT = &getAnalysis<MachineDominatorTree>(); | 
|  | TII = MF->getSubtarget().getInstrInfo(); | 
|  | RegClassInfo.runOnMachineFunction(*MF); | 
|  |  | 
|  | for (auto &L : *MLI) | 
|  | scheduleLoop(*L); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Attempt to perform the SMS algorithm on the specified loop. This function is | 
|  | /// the main entry point for the algorithm.  The function identifies candidate | 
|  | /// loops, calculates the minimum initiation interval, and attempts to schedule | 
|  | /// the loop. | 
|  | bool MachinePipeliner::scheduleLoop(MachineLoop &L) { | 
|  | bool Changed = false; | 
|  | for (auto &InnerLoop : L) | 
|  | Changed |= scheduleLoop(*InnerLoop); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Stop trying after reaching the limit (if any). | 
|  | int Limit = SwpLoopLimit; | 
|  | if (Limit >= 0) { | 
|  | if (NumTries >= SwpLoopLimit) | 
|  | return Changed; | 
|  | NumTries++; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | setPragmaPipelineOptions(L); | 
|  | if (!canPipelineLoop(L)) { | 
|  | LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | ++NumTrytoPipeline; | 
|  |  | 
|  | Changed = swingModuloScheduler(L); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { | 
|  | MachineBasicBlock *LBLK = L.getTopBlock(); | 
|  |  | 
|  | if (LBLK == nullptr) | 
|  | return; | 
|  |  | 
|  | const BasicBlock *BBLK = LBLK->getBasicBlock(); | 
|  | if (BBLK == nullptr) | 
|  | return; | 
|  |  | 
|  | const Instruction *TI = BBLK->getTerminator(); | 
|  | if (TI == nullptr) | 
|  | return; | 
|  |  | 
|  | MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); | 
|  | if (LoopID == nullptr) | 
|  | return; | 
|  |  | 
|  | assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); | 
|  | assert(LoopID->getOperand(0) == LoopID && "invalid loop"); | 
|  |  | 
|  | for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { | 
|  | MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); | 
|  |  | 
|  | if (MD == nullptr) | 
|  | continue; | 
|  |  | 
|  | MDString *S = dyn_cast<MDString>(MD->getOperand(0)); | 
|  |  | 
|  | if (S == nullptr) | 
|  | continue; | 
|  |  | 
|  | if (S->getString() == "llvm.loop.pipeline.initiationinterval") { | 
|  | assert(MD->getNumOperands() == 2 && | 
|  | "Pipeline initiation interval hint metadata should have two operands."); | 
|  | II_setByPragma = | 
|  | mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); | 
|  | assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); | 
|  | } else if (S->getString() == "llvm.loop.pipeline.disable") { | 
|  | disabledByPragma = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if the loop can be software pipelined.  The algorithm is | 
|  | /// restricted to loops with a single basic block.  Make sure that the | 
|  | /// branch in the loop can be analyzed. | 
|  | bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { | 
|  | if (L.getNumBlocks() != 1) | 
|  | return false; | 
|  |  | 
|  | if (disabledByPragma) | 
|  | return false; | 
|  |  | 
|  | // Check if the branch can't be understood because we can't do pipelining | 
|  | // if that's the case. | 
|  | LI.TBB = nullptr; | 
|  | LI.FBB = nullptr; | 
|  | LI.BrCond.clear(); | 
|  | if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n"); | 
|  | NumFailBranch++; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LI.LoopInductionVar = nullptr; | 
|  | LI.LoopCompare = nullptr; | 
|  | if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n"); | 
|  | NumFailLoop++; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!L.getLoopPreheader()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Preheader not found, can NOT pipeline current Loop\n"); | 
|  | NumFailPreheader++; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Remove any subregisters from inputs to phi nodes. | 
|  | preprocessPhiNodes(*L.getHeader()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); | 
|  |  | 
|  | for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { | 
|  | MachineOperand &DefOp = PI.getOperand(0); | 
|  | assert(DefOp.getSubReg() == 0); | 
|  | auto *RC = MRI.getRegClass(DefOp.getReg()); | 
|  |  | 
|  | for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { | 
|  | MachineOperand &RegOp = PI.getOperand(i); | 
|  | if (RegOp.getSubReg() == 0) | 
|  | continue; | 
|  |  | 
|  | // If the operand uses a subregister, replace it with a new register | 
|  | // without subregisters, and generate a copy to the new register. | 
|  | unsigned NewReg = MRI.createVirtualRegister(RC); | 
|  | MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); | 
|  | MachineBasicBlock::iterator At = PredB.getFirstTerminator(); | 
|  | const DebugLoc &DL = PredB.findDebugLoc(At); | 
|  | auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) | 
|  | .addReg(RegOp.getReg(), getRegState(RegOp), | 
|  | RegOp.getSubReg()); | 
|  | Slots.insertMachineInstrInMaps(*Copy); | 
|  | RegOp.setReg(NewReg); | 
|  | RegOp.setSubReg(0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// The SMS algorithm consists of the following main steps: | 
|  | /// 1. Computation and analysis of the dependence graph. | 
|  | /// 2. Ordering of the nodes (instructions). | 
|  | /// 3. Attempt to Schedule the loop. | 
|  | bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { | 
|  | assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); | 
|  |  | 
|  | SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, | 
|  | II_setByPragma); | 
|  |  | 
|  | MachineBasicBlock *MBB = L.getHeader(); | 
|  | // The kernel should not include any terminator instructions.  These | 
|  | // will be added back later. | 
|  | SMS.startBlock(MBB); | 
|  |  | 
|  | // Compute the number of 'real' instructions in the basic block by | 
|  | // ignoring terminators. | 
|  | unsigned size = MBB->size(); | 
|  | for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), | 
|  | E = MBB->instr_end(); | 
|  | I != E; ++I, --size) | 
|  | ; | 
|  |  | 
|  | SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); | 
|  | SMS.schedule(); | 
|  | SMS.exitRegion(); | 
|  |  | 
|  | SMS.finishBlock(); | 
|  | return SMS.hasNewSchedule(); | 
|  | } | 
|  |  | 
|  | void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { | 
|  | if (II_setByPragma > 0) | 
|  | MII = II_setByPragma; | 
|  | else | 
|  | MII = std::max(ResMII, RecMII); | 
|  | } | 
|  |  | 
|  | void SwingSchedulerDAG::setMAX_II() { | 
|  | if (II_setByPragma > 0) | 
|  | MAX_II = II_setByPragma; | 
|  | else | 
|  | MAX_II = MII + 10; | 
|  | } | 
|  |  | 
|  | /// We override the schedule function in ScheduleDAGInstrs to implement the | 
|  | /// scheduling part of the Swing Modulo Scheduling algorithm. | 
|  | void SwingSchedulerDAG::schedule() { | 
|  | AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | buildSchedGraph(AA); | 
|  | addLoopCarriedDependences(AA); | 
|  | updatePhiDependences(); | 
|  | Topo.InitDAGTopologicalSorting(); | 
|  | changeDependences(); | 
|  | postprocessDAG(); | 
|  | LLVM_DEBUG(dump()); | 
|  |  | 
|  | NodeSetType NodeSets; | 
|  | findCircuits(NodeSets); | 
|  | NodeSetType Circuits = NodeSets; | 
|  |  | 
|  | // Calculate the MII. | 
|  | unsigned ResMII = calculateResMII(); | 
|  | unsigned RecMII = calculateRecMII(NodeSets); | 
|  |  | 
|  | fuseRecs(NodeSets); | 
|  |  | 
|  | // This flag is used for testing and can cause correctness problems. | 
|  | if (SwpIgnoreRecMII) | 
|  | RecMII = 0; | 
|  |  | 
|  | setMII(ResMII, RecMII); | 
|  | setMAX_II(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II | 
|  | << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); | 
|  |  | 
|  | // Can't schedule a loop without a valid MII. | 
|  | if (MII == 0) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n"); | 
|  | NumFailZeroMII++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Don't pipeline large loops. | 
|  | if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { | 
|  | LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii | 
|  | << ", we don't pipleline large loops\n"); | 
|  | NumFailLargeMaxMII++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | computeNodeFunctions(NodeSets); | 
|  |  | 
|  | registerPressureFilter(NodeSets); | 
|  |  | 
|  | colocateNodeSets(NodeSets); | 
|  |  | 
|  | checkNodeSets(NodeSets); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | for (auto &I : NodeSets) { | 
|  | dbgs() << "  Rec NodeSet "; | 
|  | I.dump(); | 
|  | } | 
|  | }); | 
|  |  | 
|  | llvm::stable_sort(NodeSets, std::greater<NodeSet>()); | 
|  |  | 
|  | groupRemainingNodes(NodeSets); | 
|  |  | 
|  | removeDuplicateNodes(NodeSets); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | for (auto &I : NodeSets) { | 
|  | dbgs() << "  NodeSet "; | 
|  | I.dump(); | 
|  | } | 
|  | }); | 
|  |  | 
|  | computeNodeOrder(NodeSets); | 
|  |  | 
|  | // check for node order issues | 
|  | checkValidNodeOrder(Circuits); | 
|  |  | 
|  | SMSchedule Schedule(Pass.MF); | 
|  | Scheduled = schedulePipeline(Schedule); | 
|  |  | 
|  | if (!Scheduled){ | 
|  | LLVM_DEBUG(dbgs() << "No schedule found, return\n"); | 
|  | NumFailNoSchedule++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned numStages = Schedule.getMaxStageCount(); | 
|  | // No need to generate pipeline if there are no overlapped iterations. | 
|  | if (numStages == 0) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "No overlapped iterations, no need to generate pipeline\n"); | 
|  | NumFailZeroStage++; | 
|  | return; | 
|  | } | 
|  | // Check that the maximum stage count is less than user-defined limit. | 
|  | if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { | 
|  | LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages | 
|  | << " : too many stages, abort\n"); | 
|  | NumFailLargeMaxStage++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | generatePipelinedLoop(Schedule); | 
|  | ++NumPipelined; | 
|  | } | 
|  |  | 
|  | /// Clean up after the software pipeliner runs. | 
|  | void SwingSchedulerDAG::finishBlock() { | 
|  | for (MachineInstr *I : NewMIs) | 
|  | MF.DeleteMachineInstr(I); | 
|  | NewMIs.clear(); | 
|  |  | 
|  | // Call the superclass. | 
|  | ScheduleDAGInstrs::finishBlock(); | 
|  | } | 
|  |  | 
|  | /// Return the register values for  the operands of a Phi instruction. | 
|  | /// This function assume the instruction is a Phi. | 
|  | static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, | 
|  | unsigned &InitVal, unsigned &LoopVal) { | 
|  | assert(Phi.isPHI() && "Expecting a Phi."); | 
|  |  | 
|  | InitVal = 0; | 
|  | LoopVal = 0; | 
|  | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) | 
|  | if (Phi.getOperand(i + 1).getMBB() != Loop) | 
|  | InitVal = Phi.getOperand(i).getReg(); | 
|  | else | 
|  | LoopVal = Phi.getOperand(i).getReg(); | 
|  |  | 
|  | assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); | 
|  | } | 
|  |  | 
|  | /// Return the Phi register value that comes from the incoming block. | 
|  | static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { | 
|  | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) | 
|  | if (Phi.getOperand(i + 1).getMBB() != LoopBB) | 
|  | return Phi.getOperand(i).getReg(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Return the Phi register value that comes the loop block. | 
|  | static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { | 
|  | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) | 
|  | if (Phi.getOperand(i + 1).getMBB() == LoopBB) | 
|  | return Phi.getOperand(i).getReg(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Return true if SUb can be reached from SUa following the chain edges. | 
|  | static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { | 
|  | SmallPtrSet<SUnit *, 8> Visited; | 
|  | SmallVector<SUnit *, 8> Worklist; | 
|  | Worklist.push_back(SUa); | 
|  | while (!Worklist.empty()) { | 
|  | const SUnit *SU = Worklist.pop_back_val(); | 
|  | for (auto &SI : SU->Succs) { | 
|  | SUnit *SuccSU = SI.getSUnit(); | 
|  | if (SI.getKind() == SDep::Order) { | 
|  | if (Visited.count(SuccSU)) | 
|  | continue; | 
|  | if (SuccSU == SUb) | 
|  | return true; | 
|  | Worklist.push_back(SuccSU); | 
|  | Visited.insert(SuccSU); | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if the instruction causes a chain between memory | 
|  | /// references before and after it. | 
|  | static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { | 
|  | return MI.isCall() || MI.mayRaiseFPException() || | 
|  | MI.hasUnmodeledSideEffects() || | 
|  | (MI.hasOrderedMemoryRef() && | 
|  | (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); | 
|  | } | 
|  |  | 
|  | /// Return the underlying objects for the memory references of an instruction. | 
|  | /// This function calls the code in ValueTracking, but first checks that the | 
|  | /// instruction has a memory operand. | 
|  | static void getUnderlyingObjects(const MachineInstr *MI, | 
|  | SmallVectorImpl<const Value *> &Objs, | 
|  | const DataLayout &DL) { | 
|  | if (!MI->hasOneMemOperand()) | 
|  | return; | 
|  | MachineMemOperand *MM = *MI->memoperands_begin(); | 
|  | if (!MM->getValue()) | 
|  | return; | 
|  | GetUnderlyingObjects(MM->getValue(), Objs, DL); | 
|  | for (const Value *V : Objs) { | 
|  | if (!isIdentifiedObject(V)) { | 
|  | Objs.clear(); | 
|  | return; | 
|  | } | 
|  | Objs.push_back(V); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add a chain edge between a load and store if the store can be an | 
|  | /// alias of the load on a subsequent iteration, i.e., a loop carried | 
|  | /// dependence. This code is very similar to the code in ScheduleDAGInstrs | 
|  | /// but that code doesn't create loop carried dependences. | 
|  | void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { | 
|  | MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; | 
|  | Value *UnknownValue = | 
|  | UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); | 
|  | for (auto &SU : SUnits) { | 
|  | MachineInstr &MI = *SU.getInstr(); | 
|  | if (isDependenceBarrier(MI, AA)) | 
|  | PendingLoads.clear(); | 
|  | else if (MI.mayLoad()) { | 
|  | SmallVector<const Value *, 4> Objs; | 
|  | getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); | 
|  | if (Objs.empty()) | 
|  | Objs.push_back(UnknownValue); | 
|  | for (auto V : Objs) { | 
|  | SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; | 
|  | SUs.push_back(&SU); | 
|  | } | 
|  | } else if (MI.mayStore()) { | 
|  | SmallVector<const Value *, 4> Objs; | 
|  | getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); | 
|  | if (Objs.empty()) | 
|  | Objs.push_back(UnknownValue); | 
|  | for (auto V : Objs) { | 
|  | MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = | 
|  | PendingLoads.find(V); | 
|  | if (I == PendingLoads.end()) | 
|  | continue; | 
|  | for (auto Load : I->second) { | 
|  | if (isSuccOrder(Load, &SU)) | 
|  | continue; | 
|  | MachineInstr &LdMI = *Load->getInstr(); | 
|  | // First, perform the cheaper check that compares the base register. | 
|  | // If they are the same and the load offset is less than the store | 
|  | // offset, then mark the dependence as loop carried potentially. | 
|  | const MachineOperand *BaseOp1, *BaseOp2; | 
|  | int64_t Offset1, Offset2; | 
|  | if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) && | 
|  | TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) { | 
|  | if (BaseOp1->isIdenticalTo(*BaseOp2) && | 
|  | (int)Offset1 < (int)Offset2) { | 
|  | assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && | 
|  | "What happened to the chain edge?"); | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | // Second, the more expensive check that uses alias analysis on the | 
|  | // base registers. If they alias, and the load offset is less than | 
|  | // the store offset, the mark the dependence as loop carried. | 
|  | if (!AA) { | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | continue; | 
|  | } | 
|  | MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); | 
|  | MachineMemOperand *MMO2 = *MI.memoperands_begin(); | 
|  | if (!MMO1->getValue() || !MMO2->getValue()) { | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | continue; | 
|  | } | 
|  | if (MMO1->getValue() == MMO2->getValue() && | 
|  | MMO1->getOffset() <= MMO2->getOffset()) { | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | continue; | 
|  | } | 
|  | AliasResult AAResult = AA->alias( | 
|  | MemoryLocation(MMO1->getValue(), LocationSize::unknown(), | 
|  | MMO1->getAAInfo()), | 
|  | MemoryLocation(MMO2->getValue(), LocationSize::unknown(), | 
|  | MMO2->getAAInfo())); | 
|  |  | 
|  | if (AAResult != NoAlias) { | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer | 
|  | /// processes dependences for PHIs. This function adds true dependences | 
|  | /// from a PHI to a use, and a loop carried dependence from the use to the | 
|  | /// PHI. The loop carried dependence is represented as an anti dependence | 
|  | /// edge. This function also removes chain dependences between unrelated | 
|  | /// PHIs. | 
|  | void SwingSchedulerDAG::updatePhiDependences() { | 
|  | SmallVector<SDep, 4> RemoveDeps; | 
|  | const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); | 
|  |  | 
|  | // Iterate over each DAG node. | 
|  | for (SUnit &I : SUnits) { | 
|  | RemoveDeps.clear(); | 
|  | // Set to true if the instruction has an operand defined by a Phi. | 
|  | unsigned HasPhiUse = 0; | 
|  | unsigned HasPhiDef = 0; | 
|  | MachineInstr *MI = I.getInstr(); | 
|  | // Iterate over each operand, and we process the definitions. | 
|  | for (MachineInstr::mop_iterator MOI = MI->operands_begin(), | 
|  | MOE = MI->operands_end(); | 
|  | MOI != MOE; ++MOI) { | 
|  | if (!MOI->isReg()) | 
|  | continue; | 
|  | unsigned Reg = MOI->getReg(); | 
|  | if (MOI->isDef()) { | 
|  | // If the register is used by a Phi, then create an anti dependence. | 
|  | for (MachineRegisterInfo::use_instr_iterator | 
|  | UI = MRI.use_instr_begin(Reg), | 
|  | UE = MRI.use_instr_end(); | 
|  | UI != UE; ++UI) { | 
|  | MachineInstr *UseMI = &*UI; | 
|  | SUnit *SU = getSUnit(UseMI); | 
|  | if (SU != nullptr && UseMI->isPHI()) { | 
|  | if (!MI->isPHI()) { | 
|  | SDep Dep(SU, SDep::Anti, Reg); | 
|  | Dep.setLatency(1); | 
|  | I.addPred(Dep); | 
|  | } else { | 
|  | HasPhiDef = Reg; | 
|  | // Add a chain edge to a dependent Phi that isn't an existing | 
|  | // predecessor. | 
|  | if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) | 
|  | I.addPred(SDep(SU, SDep::Barrier)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (MOI->isUse()) { | 
|  | // If the register is defined by a Phi, then create a true dependence. | 
|  | MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); | 
|  | if (DefMI == nullptr) | 
|  | continue; | 
|  | SUnit *SU = getSUnit(DefMI); | 
|  | if (SU != nullptr && DefMI->isPHI()) { | 
|  | if (!MI->isPHI()) { | 
|  | SDep Dep(SU, SDep::Data, Reg); | 
|  | Dep.setLatency(0); | 
|  | ST.adjustSchedDependency(SU, &I, Dep); | 
|  | I.addPred(Dep); | 
|  | } else { | 
|  | HasPhiUse = Reg; | 
|  | // Add a chain edge to a dependent Phi that isn't an existing | 
|  | // predecessor. | 
|  | if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) | 
|  | I.addPred(SDep(SU, SDep::Barrier)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // Remove order dependences from an unrelated Phi. | 
|  | if (!SwpPruneDeps) | 
|  | continue; | 
|  | for (auto &PI : I.Preds) { | 
|  | MachineInstr *PMI = PI.getSUnit()->getInstr(); | 
|  | if (PMI->isPHI() && PI.getKind() == SDep::Order) { | 
|  | if (I.getInstr()->isPHI()) { | 
|  | if (PMI->getOperand(0).getReg() == HasPhiUse) | 
|  | continue; | 
|  | if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) | 
|  | continue; | 
|  | } | 
|  | RemoveDeps.push_back(PI); | 
|  | } | 
|  | } | 
|  | for (int i = 0, e = RemoveDeps.size(); i != e; ++i) | 
|  | I.removePred(RemoveDeps[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Iterate over each DAG node and see if we can change any dependences | 
|  | /// in order to reduce the recurrence MII. | 
|  | void SwingSchedulerDAG::changeDependences() { | 
|  | // See if an instruction can use a value from the previous iteration. | 
|  | // If so, we update the base and offset of the instruction and change | 
|  | // the dependences. | 
|  | for (SUnit &I : SUnits) { | 
|  | unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; | 
|  | int64_t NewOffset = 0; | 
|  | if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, | 
|  | NewOffset)) | 
|  | continue; | 
|  |  | 
|  | // Get the MI and SUnit for the instruction that defines the original base. | 
|  | unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); | 
|  | MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); | 
|  | if (!DefMI) | 
|  | continue; | 
|  | SUnit *DefSU = getSUnit(DefMI); | 
|  | if (!DefSU) | 
|  | continue; | 
|  | // Get the MI and SUnit for the instruction that defins the new base. | 
|  | MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); | 
|  | if (!LastMI) | 
|  | continue; | 
|  | SUnit *LastSU = getSUnit(LastMI); | 
|  | if (!LastSU) | 
|  | continue; | 
|  |  | 
|  | if (Topo.IsReachable(&I, LastSU)) | 
|  | continue; | 
|  |  | 
|  | // Remove the dependence. The value now depends on a prior iteration. | 
|  | SmallVector<SDep, 4> Deps; | 
|  | for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; | 
|  | ++P) | 
|  | if (P->getSUnit() == DefSU) | 
|  | Deps.push_back(*P); | 
|  | for (int i = 0, e = Deps.size(); i != e; i++) { | 
|  | Topo.RemovePred(&I, Deps[i].getSUnit()); | 
|  | I.removePred(Deps[i]); | 
|  | } | 
|  | // Remove the chain dependence between the instructions. | 
|  | Deps.clear(); | 
|  | for (auto &P : LastSU->Preds) | 
|  | if (P.getSUnit() == &I && P.getKind() == SDep::Order) | 
|  | Deps.push_back(P); | 
|  | for (int i = 0, e = Deps.size(); i != e; i++) { | 
|  | Topo.RemovePred(LastSU, Deps[i].getSUnit()); | 
|  | LastSU->removePred(Deps[i]); | 
|  | } | 
|  |  | 
|  | // Add a dependence between the new instruction and the instruction | 
|  | // that defines the new base. | 
|  | SDep Dep(&I, SDep::Anti, NewBase); | 
|  | Topo.AddPred(LastSU, &I); | 
|  | LastSU->addPred(Dep); | 
|  |  | 
|  | // Remember the base and offset information so that we can update the | 
|  | // instruction during code generation. | 
|  | InstrChanges[&I] = std::make_pair(NewBase, NewOffset); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // FuncUnitSorter - Comparison operator used to sort instructions by | 
|  | // the number of functional unit choices. | 
|  | struct FuncUnitSorter { | 
|  | const InstrItineraryData *InstrItins; | 
|  | const MCSubtargetInfo *STI; | 
|  | DenseMap<unsigned, unsigned> Resources; | 
|  |  | 
|  | FuncUnitSorter(const TargetSubtargetInfo &TSI) | 
|  | : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} | 
|  |  | 
|  | // Compute the number of functional unit alternatives needed | 
|  | // at each stage, and take the minimum value. We prioritize the | 
|  | // instructions by the least number of choices first. | 
|  | unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { | 
|  | unsigned SchedClass = Inst->getDesc().getSchedClass(); | 
|  | unsigned min = UINT_MAX; | 
|  | if (InstrItins && !InstrItins->isEmpty()) { | 
|  | for (const InstrStage &IS : | 
|  | make_range(InstrItins->beginStage(SchedClass), | 
|  | InstrItins->endStage(SchedClass))) { | 
|  | unsigned funcUnits = IS.getUnits(); | 
|  | unsigned numAlternatives = countPopulation(funcUnits); | 
|  | if (numAlternatives < min) { | 
|  | min = numAlternatives; | 
|  | F = funcUnits; | 
|  | } | 
|  | } | 
|  | return min; | 
|  | } | 
|  | if (STI && STI->getSchedModel().hasInstrSchedModel()) { | 
|  | const MCSchedClassDesc *SCDesc = | 
|  | STI->getSchedModel().getSchedClassDesc(SchedClass); | 
|  | if (!SCDesc->isValid()) | 
|  | // No valid Schedule Class Desc for schedClass, should be | 
|  | // Pseudo/PostRAPseudo | 
|  | return min; | 
|  |  | 
|  | for (const MCWriteProcResEntry &PRE : | 
|  | make_range(STI->getWriteProcResBegin(SCDesc), | 
|  | STI->getWriteProcResEnd(SCDesc))) { | 
|  | if (!PRE.Cycles) | 
|  | continue; | 
|  | const MCProcResourceDesc *ProcResource = | 
|  | STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); | 
|  | unsigned NumUnits = ProcResource->NumUnits; | 
|  | if (NumUnits < min) { | 
|  | min = NumUnits; | 
|  | F = PRE.ProcResourceIdx; | 
|  | } | 
|  | } | 
|  | return min; | 
|  | } | 
|  | llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); | 
|  | } | 
|  |  | 
|  | // Compute the critical resources needed by the instruction. This | 
|  | // function records the functional units needed by instructions that | 
|  | // must use only one functional unit. We use this as a tie breaker | 
|  | // for computing the resource MII. The instrutions that require | 
|  | // the same, highly used, functional unit have high priority. | 
|  | void calcCriticalResources(MachineInstr &MI) { | 
|  | unsigned SchedClass = MI.getDesc().getSchedClass(); | 
|  | if (InstrItins && !InstrItins->isEmpty()) { | 
|  | for (const InstrStage &IS : | 
|  | make_range(InstrItins->beginStage(SchedClass), | 
|  | InstrItins->endStage(SchedClass))) { | 
|  | unsigned FuncUnits = IS.getUnits(); | 
|  | if (countPopulation(FuncUnits) == 1) | 
|  | Resources[FuncUnits]++; | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (STI && STI->getSchedModel().hasInstrSchedModel()) { | 
|  | const MCSchedClassDesc *SCDesc = | 
|  | STI->getSchedModel().getSchedClassDesc(SchedClass); | 
|  | if (!SCDesc->isValid()) | 
|  | // No valid Schedule Class Desc for schedClass, should be | 
|  | // Pseudo/PostRAPseudo | 
|  | return; | 
|  |  | 
|  | for (const MCWriteProcResEntry &PRE : | 
|  | make_range(STI->getWriteProcResBegin(SCDesc), | 
|  | STI->getWriteProcResEnd(SCDesc))) { | 
|  | if (!PRE.Cycles) | 
|  | continue; | 
|  | Resources[PRE.ProcResourceIdx]++; | 
|  | } | 
|  | return; | 
|  | } | 
|  | llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); | 
|  | } | 
|  |  | 
|  | /// Return true if IS1 has less priority than IS2. | 
|  | bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { | 
|  | unsigned F1 = 0, F2 = 0; | 
|  | unsigned MFUs1 = minFuncUnits(IS1, F1); | 
|  | unsigned MFUs2 = minFuncUnits(IS2, F2); | 
|  | if (MFUs1 == 1 && MFUs2 == 1) | 
|  | return Resources.lookup(F1) < Resources.lookup(F2); | 
|  | return MFUs1 > MFUs2; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Calculate the resource constrained minimum initiation interval for the | 
|  | /// specified loop. We use the DFA to model the resources needed for | 
|  | /// each instruction, and we ignore dependences. A different DFA is created | 
|  | /// for each cycle that is required. When adding a new instruction, we attempt | 
|  | /// to add it to each existing DFA, until a legal space is found. If the | 
|  | /// instruction cannot be reserved in an existing DFA, we create a new one. | 
|  | unsigned SwingSchedulerDAG::calculateResMII() { | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "calculateResMII:\n"); | 
|  | SmallVector<ResourceManager*, 8> Resources; | 
|  | MachineBasicBlock *MBB = Loop.getHeader(); | 
|  | Resources.push_back(new ResourceManager(&MF.getSubtarget())); | 
|  |  | 
|  | // Sort the instructions by the number of available choices for scheduling, | 
|  | // least to most. Use the number of critical resources as the tie breaker. | 
|  | FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); | 
|  | for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), | 
|  | E = MBB->getFirstTerminator(); | 
|  | I != E; ++I) | 
|  | FUS.calcCriticalResources(*I); | 
|  | PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> | 
|  | FuncUnitOrder(FUS); | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), | 
|  | E = MBB->getFirstTerminator(); | 
|  | I != E; ++I) | 
|  | FuncUnitOrder.push(&*I); | 
|  |  | 
|  | while (!FuncUnitOrder.empty()) { | 
|  | MachineInstr *MI = FuncUnitOrder.top(); | 
|  | FuncUnitOrder.pop(); | 
|  | if (TII->isZeroCost(MI->getOpcode())) | 
|  | continue; | 
|  | // Attempt to reserve the instruction in an existing DFA. At least one | 
|  | // DFA is needed for each cycle. | 
|  | unsigned NumCycles = getSUnit(MI)->Latency; | 
|  | unsigned ReservedCycles = 0; | 
|  | SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); | 
|  | SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Trying to reserve resource for " << NumCycles | 
|  | << " cycles for \n"; | 
|  | MI->dump(); | 
|  | }); | 
|  | for (unsigned C = 0; C < NumCycles; ++C) | 
|  | while (RI != RE) { | 
|  | if ((*RI++)->canReserveResources(*MI)) { | 
|  | ++ReservedCycles; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Start reserving resources using existing DFAs. | 
|  | for (unsigned C = 0; C < ReservedCycles; ++C) { | 
|  | --RI; | 
|  | (*RI)->reserveResources(*MI); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles | 
|  | << ", NumCycles:" << NumCycles << "\n"); | 
|  | // Add new DFAs, if needed, to reserve resources. | 
|  | for (unsigned C = ReservedCycles; C < NumCycles; ++C) { | 
|  | LLVM_DEBUG(dbgs() << "NewResource created to reserve resources" | 
|  | << "\n"); | 
|  | ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); | 
|  | assert(NewResource->canReserveResources(*MI) && "Reserve error."); | 
|  | NewResource->reserveResources(*MI); | 
|  | Resources.push_back(NewResource); | 
|  | } | 
|  | } | 
|  | int Resmii = Resources.size(); | 
|  | LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n"); | 
|  | // Delete the memory for each of the DFAs that were created earlier. | 
|  | for (ResourceManager *RI : Resources) { | 
|  | ResourceManager *D = RI; | 
|  | delete D; | 
|  | } | 
|  | Resources.clear(); | 
|  | return Resmii; | 
|  | } | 
|  |  | 
|  | /// Calculate the recurrence-constrainted minimum initiation interval. | 
|  | /// Iterate over each circuit.  Compute the delay(c) and distance(c) | 
|  | /// for each circuit. The II needs to satisfy the inequality | 
|  | /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest | 
|  | /// II that satisfies the inequality, and the RecMII is the maximum | 
|  | /// of those values. | 
|  | unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { | 
|  | unsigned RecMII = 0; | 
|  |  | 
|  | for (NodeSet &Nodes : NodeSets) { | 
|  | if (Nodes.empty()) | 
|  | continue; | 
|  |  | 
|  | unsigned Delay = Nodes.getLatency(); | 
|  | unsigned Distance = 1; | 
|  |  | 
|  | // ii = ceil(delay / distance) | 
|  | unsigned CurMII = (Delay + Distance - 1) / Distance; | 
|  | Nodes.setRecMII(CurMII); | 
|  | if (CurMII > RecMII) | 
|  | RecMII = CurMII; | 
|  | } | 
|  |  | 
|  | return RecMII; | 
|  | } | 
|  |  | 
|  | /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, | 
|  | /// but we do this to find the circuits, and then change them back. | 
|  | static void swapAntiDependences(std::vector<SUnit> &SUnits) { | 
|  | SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; | 
|  | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | SUnit *SU = &SUnits[i]; | 
|  | for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); | 
|  | IP != EP; ++IP) { | 
|  | if (IP->getKind() != SDep::Anti) | 
|  | continue; | 
|  | DepsAdded.push_back(std::make_pair(SU, *IP)); | 
|  | } | 
|  | } | 
|  | for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), | 
|  | E = DepsAdded.end(); | 
|  | I != E; ++I) { | 
|  | // Remove this anti dependency and add one in the reverse direction. | 
|  | SUnit *SU = I->first; | 
|  | SDep &D = I->second; | 
|  | SUnit *TargetSU = D.getSUnit(); | 
|  | unsigned Reg = D.getReg(); | 
|  | unsigned Lat = D.getLatency(); | 
|  | SU->removePred(D); | 
|  | SDep Dep(SU, SDep::Anti, Reg); | 
|  | Dep.setLatency(Lat); | 
|  | TargetSU->addPred(Dep); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Create the adjacency structure of the nodes in the graph. | 
|  | void SwingSchedulerDAG::Circuits::createAdjacencyStructure( | 
|  | SwingSchedulerDAG *DAG) { | 
|  | BitVector Added(SUnits.size()); | 
|  | DenseMap<int, int> OutputDeps; | 
|  | for (int i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | Added.reset(); | 
|  | // Add any successor to the adjacency matrix and exclude duplicates. | 
|  | for (auto &SI : SUnits[i].Succs) { | 
|  | // Only create a back-edge on the first and last nodes of a dependence | 
|  | // chain. This records any chains and adds them later. | 
|  | if (SI.getKind() == SDep::Output) { | 
|  | int N = SI.getSUnit()->NodeNum; | 
|  | int BackEdge = i; | 
|  | auto Dep = OutputDeps.find(BackEdge); | 
|  | if (Dep != OutputDeps.end()) { | 
|  | BackEdge = Dep->second; | 
|  | OutputDeps.erase(Dep); | 
|  | } | 
|  | OutputDeps[N] = BackEdge; | 
|  | } | 
|  | // Do not process a boundary node, an artificial node. | 
|  | // A back-edge is processed only if it goes to a Phi. | 
|  | if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || | 
|  | (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) | 
|  | continue; | 
|  | int N = SI.getSUnit()->NodeNum; | 
|  | if (!Added.test(N)) { | 
|  | AdjK[i].push_back(N); | 
|  | Added.set(N); | 
|  | } | 
|  | } | 
|  | // A chain edge between a store and a load is treated as a back-edge in the | 
|  | // adjacency matrix. | 
|  | for (auto &PI : SUnits[i].Preds) { | 
|  | if (!SUnits[i].getInstr()->mayStore() || | 
|  | !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) | 
|  | continue; | 
|  | if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { | 
|  | int N = PI.getSUnit()->NodeNum; | 
|  | if (!Added.test(N)) { | 
|  | AdjK[i].push_back(N); | 
|  | Added.set(N); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // Add back-edges in the adjacency matrix for the output dependences. | 
|  | for (auto &OD : OutputDeps) | 
|  | if (!Added.test(OD.second)) { | 
|  | AdjK[OD.first].push_back(OD.second); | 
|  | Added.set(OD.second); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Identify an elementary circuit in the dependence graph starting at the | 
|  | /// specified node. | 
|  | bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, | 
|  | bool HasBackedge) { | 
|  | SUnit *SV = &SUnits[V]; | 
|  | bool F = false; | 
|  | Stack.insert(SV); | 
|  | Blocked.set(V); | 
|  |  | 
|  | for (auto W : AdjK[V]) { | 
|  | if (NumPaths > MaxPaths) | 
|  | break; | 
|  | if (W < S) | 
|  | continue; | 
|  | if (W == S) { | 
|  | if (!HasBackedge) | 
|  | NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); | 
|  | F = true; | 
|  | ++NumPaths; | 
|  | break; | 
|  | } else if (!Blocked.test(W)) { | 
|  | if (circuit(W, S, NodeSets, | 
|  | Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) | 
|  | F = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (F) | 
|  | unblock(V); | 
|  | else { | 
|  | for (auto W : AdjK[V]) { | 
|  | if (W < S) | 
|  | continue; | 
|  | if (B[W].count(SV) == 0) | 
|  | B[W].insert(SV); | 
|  | } | 
|  | } | 
|  | Stack.pop_back(); | 
|  | return F; | 
|  | } | 
|  |  | 
|  | /// Unblock a node in the circuit finding algorithm. | 
|  | void SwingSchedulerDAG::Circuits::unblock(int U) { | 
|  | Blocked.reset(U); | 
|  | SmallPtrSet<SUnit *, 4> &BU = B[U]; | 
|  | while (!BU.empty()) { | 
|  | SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); | 
|  | assert(SI != BU.end() && "Invalid B set."); | 
|  | SUnit *W = *SI; | 
|  | BU.erase(W); | 
|  | if (Blocked.test(W->NodeNum)) | 
|  | unblock(W->NodeNum); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Identify all the elementary circuits in the dependence graph using | 
|  | /// Johnson's circuit algorithm. | 
|  | void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { | 
|  | // Swap all the anti dependences in the DAG. That means it is no longer a DAG, | 
|  | // but we do this to find the circuits, and then change them back. | 
|  | swapAntiDependences(SUnits); | 
|  |  | 
|  | Circuits Cir(SUnits, Topo); | 
|  | // Create the adjacency structure. | 
|  | Cir.createAdjacencyStructure(this); | 
|  | for (int i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | Cir.reset(); | 
|  | Cir.circuit(i, i, NodeSets); | 
|  | } | 
|  |  | 
|  | // Change the dependences back so that we've created a DAG again. | 
|  | swapAntiDependences(SUnits); | 
|  | } | 
|  |  | 
|  | // Create artificial dependencies between the source of COPY/REG_SEQUENCE that | 
|  | // is loop-carried to the USE in next iteration. This will help pipeliner avoid | 
|  | // additional copies that are needed across iterations. An artificial dependence | 
|  | // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. | 
|  |  | 
|  | // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) | 
|  | // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE | 
|  | // PHI-------True-Dep------> USEOfPhi | 
|  |  | 
|  | // The mutation creates | 
|  | // USEOfPHI -------Artificial-Dep---> SRCOfCopy | 
|  |  | 
|  | // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy | 
|  | // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled | 
|  | // late  to avoid additional copies across iterations. The possible scheduling | 
|  | // order would be | 
|  | // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE. | 
|  |  | 
|  | void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { | 
|  | for (SUnit &SU : DAG->SUnits) { | 
|  | // Find the COPY/REG_SEQUENCE instruction. | 
|  | if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) | 
|  | continue; | 
|  |  | 
|  | // Record the loop carried PHIs. | 
|  | SmallVector<SUnit *, 4> PHISUs; | 
|  | // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. | 
|  | SmallVector<SUnit *, 4> SrcSUs; | 
|  |  | 
|  | for (auto &Dep : SU.Preds) { | 
|  | SUnit *TmpSU = Dep.getSUnit(); | 
|  | MachineInstr *TmpMI = TmpSU->getInstr(); | 
|  | SDep::Kind DepKind = Dep.getKind(); | 
|  | // Save the loop carried PHI. | 
|  | if (DepKind == SDep::Anti && TmpMI->isPHI()) | 
|  | PHISUs.push_back(TmpSU); | 
|  | // Save the source of COPY/REG_SEQUENCE. | 
|  | // If the source has no pre-decessors, we will end up creating cycles. | 
|  | else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) | 
|  | SrcSUs.push_back(TmpSU); | 
|  | } | 
|  |  | 
|  | if (PHISUs.size() == 0 || SrcSUs.size() == 0) | 
|  | continue; | 
|  |  | 
|  | // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this | 
|  | // SUnit to the container. | 
|  | SmallVector<SUnit *, 8> UseSUs; | 
|  | for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { | 
|  | for (auto &Dep : (*I)->Succs) { | 
|  | if (Dep.getKind() != SDep::Data) | 
|  | continue; | 
|  |  | 
|  | SUnit *TmpSU = Dep.getSUnit(); | 
|  | MachineInstr *TmpMI = TmpSU->getInstr(); | 
|  | if (TmpMI->isPHI() || TmpMI->isRegSequence()) { | 
|  | PHISUs.push_back(TmpSU); | 
|  | continue; | 
|  | } | 
|  | UseSUs.push_back(TmpSU); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (UseSUs.size() == 0) | 
|  | continue; | 
|  |  | 
|  | SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); | 
|  | // Add the artificial dependencies if it does not form a cycle. | 
|  | for (auto I : UseSUs) { | 
|  | for (auto Src : SrcSUs) { | 
|  | if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { | 
|  | Src->addPred(SDep(I, SDep::Artificial)); | 
|  | SDAG->Topo.AddPred(Src, I); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true for DAG nodes that we ignore when computing the cost functions. | 
|  | /// We ignore the back-edge recurrence in order to avoid unbounded recursion | 
|  | /// in the calculation of the ASAP, ALAP, etc functions. | 
|  | static bool ignoreDependence(const SDep &D, bool isPred) { | 
|  | if (D.isArtificial()) | 
|  | return true; | 
|  | return D.getKind() == SDep::Anti && isPred; | 
|  | } | 
|  |  | 
|  | /// Compute several functions need to order the nodes for scheduling. | 
|  | ///  ASAP - Earliest time to schedule a node. | 
|  | ///  ALAP - Latest time to schedule a node. | 
|  | ///  MOV - Mobility function, difference between ALAP and ASAP. | 
|  | ///  D - Depth of each node. | 
|  | ///  H - Height of each node. | 
|  | void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { | 
|  | ScheduleInfo.resize(SUnits.size()); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), | 
|  | E = Topo.end(); | 
|  | I != E; ++I) { | 
|  | const SUnit &SU = SUnits[*I]; | 
|  | dumpNode(SU); | 
|  | } | 
|  | }); | 
|  |  | 
|  | int maxASAP = 0; | 
|  | // Compute ASAP and ZeroLatencyDepth. | 
|  | for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), | 
|  | E = Topo.end(); | 
|  | I != E; ++I) { | 
|  | int asap = 0; | 
|  | int zeroLatencyDepth = 0; | 
|  | SUnit *SU = &SUnits[*I]; | 
|  | for (SUnit::const_pred_iterator IP = SU->Preds.begin(), | 
|  | EP = SU->Preds.end(); | 
|  | IP != EP; ++IP) { | 
|  | SUnit *pred = IP->getSUnit(); | 
|  | if (IP->getLatency() == 0) | 
|  | zeroLatencyDepth = | 
|  | std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); | 
|  | if (ignoreDependence(*IP, true)) | 
|  | continue; | 
|  | asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - | 
|  | getDistance(pred, SU, *IP) * MII)); | 
|  | } | 
|  | maxASAP = std::max(maxASAP, asap); | 
|  | ScheduleInfo[*I].ASAP = asap; | 
|  | ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; | 
|  | } | 
|  |  | 
|  | // Compute ALAP, ZeroLatencyHeight, and MOV. | 
|  | for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), | 
|  | E = Topo.rend(); | 
|  | I != E; ++I) { | 
|  | int alap = maxASAP; | 
|  | int zeroLatencyHeight = 0; | 
|  | SUnit *SU = &SUnits[*I]; | 
|  | for (SUnit::const_succ_iterator IS = SU->Succs.begin(), | 
|  | ES = SU->Succs.end(); | 
|  | IS != ES; ++IS) { | 
|  | SUnit *succ = IS->getSUnit(); | 
|  | if (IS->getLatency() == 0) | 
|  | zeroLatencyHeight = | 
|  | std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); | 
|  | if (ignoreDependence(*IS, true)) | 
|  | continue; | 
|  | alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + | 
|  | getDistance(SU, succ, *IS) * MII)); | 
|  | } | 
|  |  | 
|  | ScheduleInfo[*I].ALAP = alap; | 
|  | ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; | 
|  | } | 
|  |  | 
|  | // After computing the node functions, compute the summary for each node set. | 
|  | for (NodeSet &I : NodeSets) | 
|  | I.computeNodeSetInfo(this); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | for (unsigned i = 0; i < SUnits.size(); i++) { | 
|  | dbgs() << "\tNode " << i << ":\n"; | 
|  | dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Compute the Pred_L(O) set, as defined in the paper. The set is defined | 
|  | /// as the predecessors of the elements of NodeOrder that are not also in | 
|  | /// NodeOrder. | 
|  | static bool pred_L(SetVector<SUnit *> &NodeOrder, | 
|  | SmallSetVector<SUnit *, 8> &Preds, | 
|  | const NodeSet *S = nullptr) { | 
|  | Preds.clear(); | 
|  | for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); | 
|  | I != E; ++I) { | 
|  | for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); | 
|  | PI != PE; ++PI) { | 
|  | if (S && S->count(PI->getSUnit()) == 0) | 
|  | continue; | 
|  | if (ignoreDependence(*PI, true)) | 
|  | continue; | 
|  | if (NodeOrder.count(PI->getSUnit()) == 0) | 
|  | Preds.insert(PI->getSUnit()); | 
|  | } | 
|  | // Back-edges are predecessors with an anti-dependence. | 
|  | for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), | 
|  | ES = (*I)->Succs.end(); | 
|  | IS != ES; ++IS) { | 
|  | if (IS->getKind() != SDep::Anti) | 
|  | continue; | 
|  | if (S && S->count(IS->getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(IS->getSUnit()) == 0) | 
|  | Preds.insert(IS->getSUnit()); | 
|  | } | 
|  | } | 
|  | return !Preds.empty(); | 
|  | } | 
|  |  | 
|  | /// Compute the Succ_L(O) set, as defined in the paper. The set is defined | 
|  | /// as the successors of the elements of NodeOrder that are not also in | 
|  | /// NodeOrder. | 
|  | static bool succ_L(SetVector<SUnit *> &NodeOrder, | 
|  | SmallSetVector<SUnit *, 8> &Succs, | 
|  | const NodeSet *S = nullptr) { | 
|  | Succs.clear(); | 
|  | for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); | 
|  | I != E; ++I) { | 
|  | for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); | 
|  | SI != SE; ++SI) { | 
|  | if (S && S->count(SI->getSUnit()) == 0) | 
|  | continue; | 
|  | if (ignoreDependence(*SI, false)) | 
|  | continue; | 
|  | if (NodeOrder.count(SI->getSUnit()) == 0) | 
|  | Succs.insert(SI->getSUnit()); | 
|  | } | 
|  | for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), | 
|  | PE = (*I)->Preds.end(); | 
|  | PI != PE; ++PI) { | 
|  | if (PI->getKind() != SDep::Anti) | 
|  | continue; | 
|  | if (S && S->count(PI->getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(PI->getSUnit()) == 0) | 
|  | Succs.insert(PI->getSUnit()); | 
|  | } | 
|  | } | 
|  | return !Succs.empty(); | 
|  | } | 
|  |  | 
|  | /// Return true if there is a path from the specified node to any of the nodes | 
|  | /// in DestNodes. Keep track and return the nodes in any path. | 
|  | static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, | 
|  | SetVector<SUnit *> &DestNodes, | 
|  | SetVector<SUnit *> &Exclude, | 
|  | SmallPtrSet<SUnit *, 8> &Visited) { | 
|  | if (Cur->isBoundaryNode()) | 
|  | return false; | 
|  | if (Exclude.count(Cur) != 0) | 
|  | return false; | 
|  | if (DestNodes.count(Cur) != 0) | 
|  | return true; | 
|  | if (!Visited.insert(Cur).second) | 
|  | return Path.count(Cur) != 0; | 
|  | bool FoundPath = false; | 
|  | for (auto &SI : Cur->Succs) | 
|  | FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); | 
|  | for (auto &PI : Cur->Preds) | 
|  | if (PI.getKind() == SDep::Anti) | 
|  | FoundPath |= | 
|  | computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); | 
|  | if (FoundPath) | 
|  | Path.insert(Cur); | 
|  | return FoundPath; | 
|  | } | 
|  |  | 
|  | /// Return true if Set1 is a subset of Set2. | 
|  | template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { | 
|  | for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) | 
|  | if (Set2.count(*I) == 0) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Compute the live-out registers for the instructions in a node-set. | 
|  | /// The live-out registers are those that are defined in the node-set, | 
|  | /// but not used. Except for use operands of Phis. | 
|  | static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, | 
|  | NodeSet &NS) { | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | SmallVector<RegisterMaskPair, 8> LiveOutRegs; | 
|  | SmallSet<unsigned, 4> Uses; | 
|  | for (SUnit *SU : NS) { | 
|  | const MachineInstr *MI = SU->getInstr(); | 
|  | if (MI->isPHI()) | 
|  | continue; | 
|  | for (const MachineOperand &MO : MI->operands()) | 
|  | if (MO.isReg() && MO.isUse()) { | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | Uses.insert(Reg); | 
|  | else if (MRI.isAllocatable(Reg)) | 
|  | for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) | 
|  | Uses.insert(*Units); | 
|  | } | 
|  | } | 
|  | for (SUnit *SU : NS) | 
|  | for (const MachineOperand &MO : SU->getInstr()->operands()) | 
|  | if (MO.isReg() && MO.isDef() && !MO.isDead()) { | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | if (!Uses.count(Reg)) | 
|  | LiveOutRegs.push_back(RegisterMaskPair(Reg, | 
|  | LaneBitmask::getNone())); | 
|  | } else if (MRI.isAllocatable(Reg)) { | 
|  | for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) | 
|  | if (!Uses.count(*Units)) | 
|  | LiveOutRegs.push_back(RegisterMaskPair(*Units, | 
|  | LaneBitmask::getNone())); | 
|  | } | 
|  | } | 
|  | RPTracker.addLiveRegs(LiveOutRegs); | 
|  | } | 
|  |  | 
|  | /// A heuristic to filter nodes in recurrent node-sets if the register | 
|  | /// pressure of a set is too high. | 
|  | void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { | 
|  | for (auto &NS : NodeSets) { | 
|  | // Skip small node-sets since they won't cause register pressure problems. | 
|  | if (NS.size() <= 2) | 
|  | continue; | 
|  | IntervalPressure RecRegPressure; | 
|  | RegPressureTracker RecRPTracker(RecRegPressure); | 
|  | RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); | 
|  | computeLiveOuts(MF, RecRPTracker, NS); | 
|  | RecRPTracker.closeBottom(); | 
|  |  | 
|  | std::vector<SUnit *> SUnits(NS.begin(), NS.end()); | 
|  | llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { | 
|  | return A->NodeNum > B->NodeNum; | 
|  | }); | 
|  |  | 
|  | for (auto &SU : SUnits) { | 
|  | // Since we're computing the register pressure for a subset of the | 
|  | // instructions in a block, we need to set the tracker for each | 
|  | // instruction in the node-set. The tracker is set to the instruction | 
|  | // just after the one we're interested in. | 
|  | MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); | 
|  | RecRPTracker.setPos(std::next(CurInstI)); | 
|  |  | 
|  | RegPressureDelta RPDelta; | 
|  | ArrayRef<PressureChange> CriticalPSets; | 
|  | RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, | 
|  | CriticalPSets, | 
|  | RecRegPressure.MaxSetPressure); | 
|  | if (RPDelta.Excess.isValid()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " | 
|  | << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) | 
|  | << ":" << RPDelta.Excess.getUnitInc()); | 
|  | NS.setExceedPressure(SU); | 
|  | break; | 
|  | } | 
|  | RecRPTracker.recede(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// A heuristic to colocate node sets that have the same set of | 
|  | /// successors. | 
|  | void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { | 
|  | unsigned Colocate = 0; | 
|  | for (int i = 0, e = NodeSets.size(); i < e; ++i) { | 
|  | NodeSet &N1 = NodeSets[i]; | 
|  | SmallSetVector<SUnit *, 8> S1; | 
|  | if (N1.empty() || !succ_L(N1, S1)) | 
|  | continue; | 
|  | for (int j = i + 1; j < e; ++j) { | 
|  | NodeSet &N2 = NodeSets[j]; | 
|  | if (N1.compareRecMII(N2) != 0) | 
|  | continue; | 
|  | SmallSetVector<SUnit *, 8> S2; | 
|  | if (N2.empty() || !succ_L(N2, S2)) | 
|  | continue; | 
|  | if (isSubset(S1, S2) && S1.size() == S2.size()) { | 
|  | N1.setColocate(++Colocate); | 
|  | N2.setColocate(Colocate); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if the existing node-sets are profitable. If not, then ignore the | 
|  | /// recurrent node-sets, and attempt to schedule all nodes together. This is | 
|  | /// a heuristic. If the MII is large and all the recurrent node-sets are small, | 
|  | /// then it's best to try to schedule all instructions together instead of | 
|  | /// starting with the recurrent node-sets. | 
|  | void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { | 
|  | // Look for loops with a large MII. | 
|  | if (MII < 17) | 
|  | return; | 
|  | // Check if the node-set contains only a simple add recurrence. | 
|  | for (auto &NS : NodeSets) { | 
|  | if (NS.getRecMII() > 2) | 
|  | return; | 
|  | if (NS.getMaxDepth() > MII) | 
|  | return; | 
|  | } | 
|  | NodeSets.clear(); | 
|  | LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /// Add the nodes that do not belong to a recurrence set into groups | 
|  | /// based upon connected componenets. | 
|  | void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { | 
|  | SetVector<SUnit *> NodesAdded; | 
|  | SmallPtrSet<SUnit *, 8> Visited; | 
|  | // Add the nodes that are on a path between the previous node sets and | 
|  | // the current node set. | 
|  | for (NodeSet &I : NodeSets) { | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | // Add the nodes from the current node set to the previous node set. | 
|  | if (succ_L(I, N)) { | 
|  | SetVector<SUnit *> Path; | 
|  | for (SUnit *NI : N) { | 
|  | Visited.clear(); | 
|  | computePath(NI, Path, NodesAdded, I, Visited); | 
|  | } | 
|  | if (!Path.empty()) | 
|  | I.insert(Path.begin(), Path.end()); | 
|  | } | 
|  | // Add the nodes from the previous node set to the current node set. | 
|  | N.clear(); | 
|  | if (succ_L(NodesAdded, N)) { | 
|  | SetVector<SUnit *> Path; | 
|  | for (SUnit *NI : N) { | 
|  | Visited.clear(); | 
|  | computePath(NI, Path, I, NodesAdded, Visited); | 
|  | } | 
|  | if (!Path.empty()) | 
|  | I.insert(Path.begin(), Path.end()); | 
|  | } | 
|  | NodesAdded.insert(I.begin(), I.end()); | 
|  | } | 
|  |  | 
|  | // Create a new node set with the connected nodes of any successor of a node | 
|  | // in a recurrent set. | 
|  | NodeSet NewSet; | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | if (succ_L(NodesAdded, N)) | 
|  | for (SUnit *I : N) | 
|  | addConnectedNodes(I, NewSet, NodesAdded); | 
|  | if (!NewSet.empty()) | 
|  | NodeSets.push_back(NewSet); | 
|  |  | 
|  | // Create a new node set with the connected nodes of any predecessor of a node | 
|  | // in a recurrent set. | 
|  | NewSet.clear(); | 
|  | if (pred_L(NodesAdded, N)) | 
|  | for (SUnit *I : N) | 
|  | addConnectedNodes(I, NewSet, NodesAdded); | 
|  | if (!NewSet.empty()) | 
|  | NodeSets.push_back(NewSet); | 
|  |  | 
|  | // Create new nodes sets with the connected nodes any remaining node that | 
|  | // has no predecessor. | 
|  | for (unsigned i = 0; i < SUnits.size(); ++i) { | 
|  | SUnit *SU = &SUnits[i]; | 
|  | if (NodesAdded.count(SU) == 0) { | 
|  | NewSet.clear(); | 
|  | addConnectedNodes(SU, NewSet, NodesAdded); | 
|  | if (!NewSet.empty()) | 
|  | NodeSets.push_back(NewSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add the node to the set, and add all of its connected nodes to the set. | 
|  | void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, | 
|  | SetVector<SUnit *> &NodesAdded) { | 
|  | NewSet.insert(SU); | 
|  | NodesAdded.insert(SU); | 
|  | for (auto &SI : SU->Succs) { | 
|  | SUnit *Successor = SI.getSUnit(); | 
|  | if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) | 
|  | addConnectedNodes(Successor, NewSet, NodesAdded); | 
|  | } | 
|  | for (auto &PI : SU->Preds) { | 
|  | SUnit *Predecessor = PI.getSUnit(); | 
|  | if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) | 
|  | addConnectedNodes(Predecessor, NewSet, NodesAdded); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if Set1 contains elements in Set2. The elements in common | 
|  | /// are returned in a different container. | 
|  | static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, | 
|  | SmallSetVector<SUnit *, 8> &Result) { | 
|  | Result.clear(); | 
|  | for (unsigned i = 0, e = Set1.size(); i != e; ++i) { | 
|  | SUnit *SU = Set1[i]; | 
|  | if (Set2.count(SU) != 0) | 
|  | Result.insert(SU); | 
|  | } | 
|  | return !Result.empty(); | 
|  | } | 
|  |  | 
|  | /// Merge the recurrence node sets that have the same initial node. | 
|  | void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { | 
|  | for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; | 
|  | ++I) { | 
|  | NodeSet &NI = *I; | 
|  | for (NodeSetType::iterator J = I + 1; J != E;) { | 
|  | NodeSet &NJ = *J; | 
|  | if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { | 
|  | if (NJ.compareRecMII(NI) > 0) | 
|  | NI.setRecMII(NJ.getRecMII()); | 
|  | for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; | 
|  | ++NII) | 
|  | I->insert(*NII); | 
|  | NodeSets.erase(J); | 
|  | E = NodeSets.end(); | 
|  | } else { | 
|  | ++J; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Remove nodes that have been scheduled in previous NodeSets. | 
|  | void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { | 
|  | for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; | 
|  | ++I) | 
|  | for (NodeSetType::iterator J = I + 1; J != E;) { | 
|  | J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); | 
|  |  | 
|  | if (J->empty()) { | 
|  | NodeSets.erase(J); | 
|  | E = NodeSets.end(); | 
|  | } else { | 
|  | ++J; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Compute an ordered list of the dependence graph nodes, which | 
|  | /// indicates the order that the nodes will be scheduled.  This is a | 
|  | /// two-level algorithm. First, a partial order is created, which | 
|  | /// consists of a list of sets ordered from highest to lowest priority. | 
|  | void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { | 
|  | SmallSetVector<SUnit *, 8> R; | 
|  | NodeOrder.clear(); | 
|  |  | 
|  | for (auto &Nodes : NodeSets) { | 
|  | LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); | 
|  | OrderKind Order; | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { | 
|  | R.insert(N.begin(), N.end()); | 
|  | Order = BottomUp; | 
|  | LLVM_DEBUG(dbgs() << "  Bottom up (preds) "); | 
|  | } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { | 
|  | R.insert(N.begin(), N.end()); | 
|  | Order = TopDown; | 
|  | LLVM_DEBUG(dbgs() << "  Top down (succs) "); | 
|  | } else if (isIntersect(N, Nodes, R)) { | 
|  | // If some of the successors are in the existing node-set, then use the | 
|  | // top-down ordering. | 
|  | Order = TopDown; | 
|  | LLVM_DEBUG(dbgs() << "  Top down (intersect) "); | 
|  | } else if (NodeSets.size() == 1) { | 
|  | for (auto &N : Nodes) | 
|  | if (N->Succs.size() == 0) | 
|  | R.insert(N); | 
|  | Order = BottomUp; | 
|  | LLVM_DEBUG(dbgs() << "  Bottom up (all) "); | 
|  | } else { | 
|  | // Find the node with the highest ASAP. | 
|  | SUnit *maxASAP = nullptr; | 
|  | for (SUnit *SU : Nodes) { | 
|  | if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || | 
|  | (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) | 
|  | maxASAP = SU; | 
|  | } | 
|  | R.insert(maxASAP); | 
|  | Order = BottomUp; | 
|  | LLVM_DEBUG(dbgs() << "  Bottom up (default) "); | 
|  | } | 
|  |  | 
|  | while (!R.empty()) { | 
|  | if (Order == TopDown) { | 
|  | // Choose the node with the maximum height.  If more than one, choose | 
|  | // the node wiTH the maximum ZeroLatencyHeight. If still more than one, | 
|  | // choose the node with the lowest MOV. | 
|  | while (!R.empty()) { | 
|  | SUnit *maxHeight = nullptr; | 
|  | for (SUnit *I : R) { | 
|  | if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) | 
|  | maxHeight = I; | 
|  | else if (getHeight(I) == getHeight(maxHeight) && | 
|  | getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) | 
|  | maxHeight = I; | 
|  | else if (getHeight(I) == getHeight(maxHeight) && | 
|  | getZeroLatencyHeight(I) == | 
|  | getZeroLatencyHeight(maxHeight) && | 
|  | getMOV(I) < getMOV(maxHeight)) | 
|  | maxHeight = I; | 
|  | } | 
|  | NodeOrder.insert(maxHeight); | 
|  | LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); | 
|  | R.remove(maxHeight); | 
|  | for (const auto &I : maxHeight->Succs) { | 
|  | if (Nodes.count(I.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(I.getSUnit()) != 0) | 
|  | continue; | 
|  | if (ignoreDependence(I, false)) | 
|  | continue; | 
|  | R.insert(I.getSUnit()); | 
|  | } | 
|  | // Back-edges are predecessors with an anti-dependence. | 
|  | for (const auto &I : maxHeight->Preds) { | 
|  | if (I.getKind() != SDep::Anti) | 
|  | continue; | 
|  | if (Nodes.count(I.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(I.getSUnit()) != 0) | 
|  | continue; | 
|  | R.insert(I.getSUnit()); | 
|  | } | 
|  | } | 
|  | Order = BottomUp; | 
|  | LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up "); | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | if (pred_L(NodeOrder, N, &Nodes)) | 
|  | R.insert(N.begin(), N.end()); | 
|  | } else { | 
|  | // Choose the node with the maximum depth.  If more than one, choose | 
|  | // the node with the maximum ZeroLatencyDepth. If still more than one, | 
|  | // choose the node with the lowest MOV. | 
|  | while (!R.empty()) { | 
|  | SUnit *maxDepth = nullptr; | 
|  | for (SUnit *I : R) { | 
|  | if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) | 
|  | maxDepth = I; | 
|  | else if (getDepth(I) == getDepth(maxDepth) && | 
|  | getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) | 
|  | maxDepth = I; | 
|  | else if (getDepth(I) == getDepth(maxDepth) && | 
|  | getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && | 
|  | getMOV(I) < getMOV(maxDepth)) | 
|  | maxDepth = I; | 
|  | } | 
|  | NodeOrder.insert(maxDepth); | 
|  | LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); | 
|  | R.remove(maxDepth); | 
|  | if (Nodes.isExceedSU(maxDepth)) { | 
|  | Order = TopDown; | 
|  | R.clear(); | 
|  | R.insert(Nodes.getNode(0)); | 
|  | break; | 
|  | } | 
|  | for (const auto &I : maxDepth->Preds) { | 
|  | if (Nodes.count(I.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(I.getSUnit()) != 0) | 
|  | continue; | 
|  | R.insert(I.getSUnit()); | 
|  | } | 
|  | // Back-edges are predecessors with an anti-dependence. | 
|  | for (const auto &I : maxDepth->Succs) { | 
|  | if (I.getKind() != SDep::Anti) | 
|  | continue; | 
|  | if (Nodes.count(I.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(I.getSUnit()) != 0) | 
|  | continue; | 
|  | R.insert(I.getSUnit()); | 
|  | } | 
|  | } | 
|  | Order = TopDown; | 
|  | LLVM_DEBUG(dbgs() << "\n   Switching order to top down "); | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | if (succ_L(NodeOrder, N, &Nodes)) | 
|  | R.insert(N.begin(), N.end()); | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Node order: "; | 
|  | for (SUnit *I : NodeOrder) | 
|  | dbgs() << " " << I->NodeNum << " "; | 
|  | dbgs() << "\n"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Process the nodes in the computed order and create the pipelined schedule | 
|  | /// of the instructions, if possible. Return true if a schedule is found. | 
|  | bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { | 
|  |  | 
|  | if (NodeOrder.empty()){ | 
|  | LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool scheduleFound = false; | 
|  | unsigned II = 0; | 
|  | // Keep increasing II until a valid schedule is found. | 
|  | for (II = MII; II <= MAX_II && !scheduleFound; ++II) { | 
|  | Schedule.reset(); | 
|  | Schedule.setInitiationInterval(II); | 
|  | LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); | 
|  |  | 
|  | SetVector<SUnit *>::iterator NI = NodeOrder.begin(); | 
|  | SetVector<SUnit *>::iterator NE = NodeOrder.end(); | 
|  | do { | 
|  | SUnit *SU = *NI; | 
|  |  | 
|  | // Compute the schedule time for the instruction, which is based | 
|  | // upon the scheduled time for any predecessors/successors. | 
|  | int EarlyStart = INT_MIN; | 
|  | int LateStart = INT_MAX; | 
|  | // These values are set when the size of the schedule window is limited | 
|  | // due to chain dependences. | 
|  | int SchedEnd = INT_MAX; | 
|  | int SchedStart = INT_MIN; | 
|  | Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, | 
|  | II, this); | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "\n"; | 
|  | dbgs() << "Inst (" << SU->NodeNum << ") "; | 
|  | SU->getInstr()->dump(); | 
|  | dbgs() << "\n"; | 
|  | }); | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, | 
|  | LateStart, SchedEnd, SchedStart); | 
|  | }); | 
|  |  | 
|  | if (EarlyStart > LateStart || SchedEnd < EarlyStart || | 
|  | SchedStart > LateStart) | 
|  | scheduleFound = false; | 
|  | else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { | 
|  | SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); | 
|  | scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); | 
|  | } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { | 
|  | SchedStart = std::max(SchedStart, LateStart - (int)II + 1); | 
|  | scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); | 
|  | } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { | 
|  | SchedEnd = | 
|  | std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); | 
|  | // When scheduling a Phi it is better to start at the late cycle and go | 
|  | // backwards. The default order may insert the Phi too far away from | 
|  | // its first dependence. | 
|  | if (SU->getInstr()->isPHI()) | 
|  | scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); | 
|  | else | 
|  | scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); | 
|  | } else { | 
|  | int FirstCycle = Schedule.getFirstCycle(); | 
|  | scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), | 
|  | FirstCycle + getASAP(SU) + II - 1, II); | 
|  | } | 
|  | // Even if we find a schedule, make sure the schedule doesn't exceed the | 
|  | // allowable number of stages. We keep trying if this happens. | 
|  | if (scheduleFound) | 
|  | if (SwpMaxStages > -1 && | 
|  | Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) | 
|  | scheduleFound = false; | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | if (!scheduleFound) | 
|  | dbgs() << "\tCan't schedule\n"; | 
|  | }); | 
|  | } while (++NI != NE && scheduleFound); | 
|  |  | 
|  | // If a schedule is found, check if it is a valid schedule too. | 
|  | if (scheduleFound) | 
|  | scheduleFound = Schedule.isValidSchedule(this); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II | 
|  | << ")\n"); | 
|  |  | 
|  | if (scheduleFound) | 
|  | Schedule.finalizeSchedule(this); | 
|  | else | 
|  | Schedule.reset(); | 
|  |  | 
|  | return scheduleFound && Schedule.getMaxStageCount() > 0; | 
|  | } | 
|  |  | 
|  | /// Given a schedule for the loop, generate a new version of the loop, | 
|  | /// and replace the old version.  This function generates a prolog | 
|  | /// that contains the initial iterations in the pipeline, and kernel | 
|  | /// loop, and the epilogue that contains the code for the final | 
|  | /// iterations. | 
|  | void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { | 
|  | // Create a new basic block for the kernel and add it to the CFG. | 
|  | MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); | 
|  |  | 
|  | unsigned MaxStageCount = Schedule.getMaxStageCount(); | 
|  |  | 
|  | // Remember the registers that are used in different stages. The index is | 
|  | // the iteration, or stage, that the instruction is scheduled in.  This is | 
|  | // a map between register names in the original block and the names created | 
|  | // in each stage of the pipelined loop. | 
|  | ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; | 
|  | InstrMapTy InstrMap; | 
|  |  | 
|  | SmallVector<MachineBasicBlock *, 4> PrologBBs; | 
|  |  | 
|  | MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); | 
|  | assert(PreheaderBB != nullptr && | 
|  | "Need to add code to handle loops w/o preheader"); | 
|  | // Generate the prolog instructions that set up the pipeline. | 
|  | generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); | 
|  | MF.insert(BB->getIterator(), KernelBB); | 
|  |  | 
|  | // Rearrange the instructions to generate the new, pipelined loop, | 
|  | // and update register names as needed. | 
|  | for (int Cycle = Schedule.getFirstCycle(), | 
|  | LastCycle = Schedule.getFinalCycle(); | 
|  | Cycle <= LastCycle; ++Cycle) { | 
|  | std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); | 
|  | // This inner loop schedules each instruction in the cycle. | 
|  | for (SUnit *CI : CycleInstrs) { | 
|  | if (CI->getInstr()->isPHI()) | 
|  | continue; | 
|  | unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); | 
|  | MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); | 
|  | updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); | 
|  | KernelBB->push_back(NewMI); | 
|  | InstrMap[NewMI] = CI->getInstr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy any terminator instructions to the new kernel, and update | 
|  | // names as needed. | 
|  | for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), | 
|  | E = BB->instr_end(); | 
|  | I != E; ++I) { | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(&*I); | 
|  | updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); | 
|  | KernelBB->push_back(NewMI); | 
|  | InstrMap[NewMI] = &*I; | 
|  | } | 
|  |  | 
|  | KernelBB->transferSuccessors(BB); | 
|  | KernelBB->replaceSuccessor(BB, KernelBB); | 
|  |  | 
|  | generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, | 
|  | VRMap, InstrMap, MaxStageCount, MaxStageCount, false); | 
|  | generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, | 
|  | InstrMap, MaxStageCount, MaxStageCount, false); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); | 
|  |  | 
|  | SmallVector<MachineBasicBlock *, 4> EpilogBBs; | 
|  | // Generate the epilog instructions to complete the pipeline. | 
|  | generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, | 
|  | PrologBBs); | 
|  |  | 
|  | // We need this step because the register allocation doesn't handle some | 
|  | // situations well, so we insert copies to help out. | 
|  | splitLifetimes(KernelBB, EpilogBBs, Schedule); | 
|  |  | 
|  | // Remove dead instructions due to loop induction variables. | 
|  | removeDeadInstructions(KernelBB, EpilogBBs); | 
|  |  | 
|  | // Add branches between prolog and epilog blocks. | 
|  | addBranches(*PreheaderBB, PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); | 
|  |  | 
|  | // Remove the original loop since it's no longer referenced. | 
|  | for (auto &I : *BB) | 
|  | LIS.RemoveMachineInstrFromMaps(I); | 
|  | BB->clear(); | 
|  | BB->eraseFromParent(); | 
|  |  | 
|  | delete[] VRMap; | 
|  | } | 
|  |  | 
|  | /// Generate the pipeline prolog code. | 
|  | void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, | 
|  | MachineBasicBlock *KernelBB, | 
|  | ValueMapTy *VRMap, | 
|  | MBBVectorTy &PrologBBs) { | 
|  | MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); | 
|  | assert(PreheaderBB != nullptr && | 
|  | "Need to add code to handle loops w/o preheader"); | 
|  | MachineBasicBlock *PredBB = PreheaderBB; | 
|  | InstrMapTy InstrMap; | 
|  |  | 
|  | // Generate a basic block for each stage, not including the last stage, | 
|  | // which will be generated in the kernel. Each basic block may contain | 
|  | // instructions from multiple stages/iterations. | 
|  | for (unsigned i = 0; i < LastStage; ++i) { | 
|  | // Create and insert the prolog basic block prior to the original loop | 
|  | // basic block.  The original loop is removed later. | 
|  | MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); | 
|  | PrologBBs.push_back(NewBB); | 
|  | MF.insert(BB->getIterator(), NewBB); | 
|  | NewBB->transferSuccessors(PredBB); | 
|  | PredBB->addSuccessor(NewBB); | 
|  | PredBB = NewBB; | 
|  |  | 
|  | // Generate instructions for each appropriate stage. Process instructions | 
|  | // in original program order. | 
|  | for (int StageNum = i; StageNum >= 0; --StageNum) { | 
|  | for (MachineBasicBlock::iterator BBI = BB->instr_begin(), | 
|  | BBE = BB->getFirstTerminator(); | 
|  | BBI != BBE; ++BBI) { | 
|  | if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { | 
|  | if (BBI->isPHI()) | 
|  | continue; | 
|  | MachineInstr *NewMI = | 
|  | cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); | 
|  | updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, | 
|  | VRMap); | 
|  | NewBB->push_back(NewMI); | 
|  | InstrMap[NewMI] = &*BBI; | 
|  | } | 
|  | } | 
|  | } | 
|  | rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "prolog:\n"; | 
|  | NewBB->dump(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | PredBB->replaceSuccessor(BB, KernelBB); | 
|  |  | 
|  | // Check if we need to remove the branch from the preheader to the original | 
|  | // loop, and replace it with a branch to the new loop. | 
|  | unsigned numBranches = TII->removeBranch(*PreheaderBB); | 
|  | if (numBranches) { | 
|  | SmallVector<MachineOperand, 0> Cond; | 
|  | TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Generate the pipeline epilog code. The epilog code finishes the iterations | 
|  | /// that were started in either the prolog or the kernel.  We create a basic | 
|  | /// block for each stage that needs to complete. | 
|  | void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, | 
|  | MachineBasicBlock *KernelBB, | 
|  | ValueMapTy *VRMap, | 
|  | MBBVectorTy &EpilogBBs, | 
|  | MBBVectorTy &PrologBBs) { | 
|  | // We need to change the branch from the kernel to the first epilog block, so | 
|  | // this call to analyze branch uses the kernel rather than the original BB. | 
|  | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); | 
|  | assert(!checkBranch && "generateEpilog must be able to analyze the branch"); | 
|  | if (checkBranch) | 
|  | return; | 
|  |  | 
|  | MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); | 
|  | if (*LoopExitI == KernelBB) | 
|  | ++LoopExitI; | 
|  | assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); | 
|  | MachineBasicBlock *LoopExitBB = *LoopExitI; | 
|  |  | 
|  | MachineBasicBlock *PredBB = KernelBB; | 
|  | MachineBasicBlock *EpilogStart = LoopExitBB; | 
|  | InstrMapTy InstrMap; | 
|  |  | 
|  | // Generate a basic block for each stage, not including the last stage, | 
|  | // which was generated for the kernel.  Each basic block may contain | 
|  | // instructions from multiple stages/iterations. | 
|  | int EpilogStage = LastStage + 1; | 
|  | for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { | 
|  | MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); | 
|  | EpilogBBs.push_back(NewBB); | 
|  | MF.insert(BB->getIterator(), NewBB); | 
|  |  | 
|  | PredBB->replaceSuccessor(LoopExitBB, NewBB); | 
|  | NewBB->addSuccessor(LoopExitBB); | 
|  |  | 
|  | if (EpilogStart == LoopExitBB) | 
|  | EpilogStart = NewBB; | 
|  |  | 
|  | // Add instructions to the epilog depending on the current block. | 
|  | // Process instructions in original program order. | 
|  | for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { | 
|  | for (auto &BBI : *BB) { | 
|  | if (BBI.isPHI()) | 
|  | continue; | 
|  | MachineInstr *In = &BBI; | 
|  | if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { | 
|  | // Instructions with memoperands in the epilog are updated with | 
|  | // conservative values. | 
|  | MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); | 
|  | updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); | 
|  | NewBB->push_back(NewMI); | 
|  | InstrMap[NewMI] = In; | 
|  | } | 
|  | } | 
|  | } | 
|  | generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, | 
|  | VRMap, InstrMap, LastStage, EpilogStage, i == 1); | 
|  | generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, | 
|  | InstrMap, LastStage, EpilogStage, i == 1); | 
|  | PredBB = NewBB; | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "epilog:\n"; | 
|  | NewBB->dump(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Fix any Phi nodes in the loop exit block. | 
|  | for (MachineInstr &MI : *LoopExitBB) { | 
|  | if (!MI.isPHI()) | 
|  | break; | 
|  | for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.getMBB() == BB) | 
|  | MO.setMBB(PredBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a branch to the new epilog from the kernel. | 
|  | // Remove the original branch and add a new branch to the epilog. | 
|  | TII->removeBranch(*KernelBB); | 
|  | TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); | 
|  | // Add a branch to the loop exit. | 
|  | if (EpilogBBs.size() > 0) { | 
|  | MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); | 
|  | SmallVector<MachineOperand, 4> Cond1; | 
|  | TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Replace all uses of FromReg that appear outside the specified | 
|  | /// basic block with ToReg. | 
|  | static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineRegisterInfo &MRI, | 
|  | LiveIntervals &LIS) { | 
|  | for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), | 
|  | E = MRI.use_end(); | 
|  | I != E;) { | 
|  | MachineOperand &O = *I; | 
|  | ++I; | 
|  | if (O.getParent()->getParent() != MBB) | 
|  | O.setReg(ToReg); | 
|  | } | 
|  | if (!LIS.hasInterval(ToReg)) | 
|  | LIS.createEmptyInterval(ToReg); | 
|  | } | 
|  |  | 
|  | /// Return true if the register has a use that occurs outside the | 
|  | /// specified loop. | 
|  | static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, | 
|  | MachineRegisterInfo &MRI) { | 
|  | for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), | 
|  | E = MRI.use_end(); | 
|  | I != E; ++I) | 
|  | if (I->getParent()->getParent() != BB) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Generate Phis for the specific block in the generated pipelined code. | 
|  | /// This function looks at the Phis from the original code to guide the | 
|  | /// creation of new Phis. | 
|  | void SwingSchedulerDAG::generateExistingPhis( | 
|  | MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, | 
|  | MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, | 
|  | InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, | 
|  | bool IsLast) { | 
|  | // Compute the stage number for the initial value of the Phi, which | 
|  | // comes from the prolog. The prolog to use depends on to which kernel/ | 
|  | // epilog that we're adding the Phi. | 
|  | unsigned PrologStage = 0; | 
|  | unsigned PrevStage = 0; | 
|  | bool InKernel = (LastStageNum == CurStageNum); | 
|  | if (InKernel) { | 
|  | PrologStage = LastStageNum - 1; | 
|  | PrevStage = CurStageNum; | 
|  | } else { | 
|  | PrologStage = LastStageNum - (CurStageNum - LastStageNum); | 
|  | PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; | 
|  | } | 
|  |  | 
|  | for (MachineBasicBlock::iterator BBI = BB->instr_begin(), | 
|  | BBE = BB->getFirstNonPHI(); | 
|  | BBI != BBE; ++BBI) { | 
|  | unsigned Def = BBI->getOperand(0).getReg(); | 
|  |  | 
|  | unsigned InitVal = 0; | 
|  | unsigned LoopVal = 0; | 
|  | getPhiRegs(*BBI, BB, InitVal, LoopVal); | 
|  |  | 
|  | unsigned PhiOp1 = 0; | 
|  | // The Phi value from the loop body typically is defined in the loop, but | 
|  | // not always. So, we need to check if the value is defined in the loop. | 
|  | unsigned PhiOp2 = LoopVal; | 
|  | if (VRMap[LastStageNum].count(LoopVal)) | 
|  | PhiOp2 = VRMap[LastStageNum][LoopVal]; | 
|  |  | 
|  | int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); | 
|  | int LoopValStage = | 
|  | Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); | 
|  | unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); | 
|  | if (NumStages == 0) { | 
|  | // We don't need to generate a Phi anymore, but we need to rename any uses | 
|  | // of the Phi value. | 
|  | unsigned NewReg = VRMap[PrevStage][LoopVal]; | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, | 
|  | Def, InitVal, NewReg); | 
|  | if (VRMap[CurStageNum].count(LoopVal)) | 
|  | VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; | 
|  | } | 
|  | // Adjust the number of Phis needed depending on the number of prologs left, | 
|  | // and the distance from where the Phi is first scheduled. The number of | 
|  | // Phis cannot exceed the number of prolog stages. Each stage can | 
|  | // potentially define two values. | 
|  | unsigned MaxPhis = PrologStage + 2; | 
|  | if (!InKernel && (int)PrologStage <= LoopValStage) | 
|  | MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); | 
|  | unsigned NumPhis = std::min(NumStages, MaxPhis); | 
|  |  | 
|  | unsigned NewReg = 0; | 
|  | unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; | 
|  | // In the epilog, we may need to look back one stage to get the correct | 
|  | // Phi name because the epilog and prolog blocks execute the same stage. | 
|  | // The correct name is from the previous block only when the Phi has | 
|  | // been completely scheduled prior to the epilog, and Phi value is not | 
|  | // needed in multiple stages. | 
|  | int StageDiff = 0; | 
|  | if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && | 
|  | NumPhis == 1) | 
|  | StageDiff = 1; | 
|  | // Adjust the computations below when the phi and the loop definition | 
|  | // are scheduled in different stages. | 
|  | if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) | 
|  | StageDiff = StageScheduled - LoopValStage; | 
|  | for (unsigned np = 0; np < NumPhis; ++np) { | 
|  | // If the Phi hasn't been scheduled, then use the initial Phi operand | 
|  | // value. Otherwise, use the scheduled version of the instruction. This | 
|  | // is a little complicated when a Phi references another Phi. | 
|  | if (np > PrologStage || StageScheduled >= (int)LastStageNum) | 
|  | PhiOp1 = InitVal; | 
|  | // Check if the Phi has already been scheduled in a prolog stage. | 
|  | else if (PrologStage >= AccessStage + StageDiff + np && | 
|  | VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) | 
|  | PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; | 
|  | // Check if the Phi has already been scheduled, but the loop instruction | 
|  | // is either another Phi, or doesn't occur in the loop. | 
|  | else if (PrologStage >= AccessStage + StageDiff + np) { | 
|  | // If the Phi references another Phi, we need to examine the other | 
|  | // Phi to get the correct value. | 
|  | PhiOp1 = LoopVal; | 
|  | MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); | 
|  | int Indirects = 1; | 
|  | while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { | 
|  | int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); | 
|  | if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) | 
|  | PhiOp1 = getInitPhiReg(*InstOp1, BB); | 
|  | else | 
|  | PhiOp1 = getLoopPhiReg(*InstOp1, BB); | 
|  | InstOp1 = MRI.getVRegDef(PhiOp1); | 
|  | int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); | 
|  | int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); | 
|  | if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && | 
|  | VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { | 
|  | PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; | 
|  | break; | 
|  | } | 
|  | ++Indirects; | 
|  | } | 
|  | } else | 
|  | PhiOp1 = InitVal; | 
|  | // If this references a generated Phi in the kernel, get the Phi operand | 
|  | // from the incoming block. | 
|  | if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) | 
|  | if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) | 
|  | PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); | 
|  |  | 
|  | MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); | 
|  | bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); | 
|  | // In the epilog, a map lookup is needed to get the value from the kernel, | 
|  | // or previous epilog block. How is does this depends on if the | 
|  | // instruction is scheduled in the previous block. | 
|  | if (!InKernel) { | 
|  | int StageDiffAdj = 0; | 
|  | if (LoopValStage != -1 && StageScheduled > LoopValStage) | 
|  | StageDiffAdj = StageScheduled - LoopValStage; | 
|  | // Use the loop value defined in the kernel, unless the kernel | 
|  | // contains the last definition of the Phi. | 
|  | if (np == 0 && PrevStage == LastStageNum && | 
|  | (StageScheduled != 0 || LoopValStage != 0) && | 
|  | VRMap[PrevStage - StageDiffAdj].count(LoopVal)) | 
|  | PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; | 
|  | // Use the value defined by the Phi. We add one because we switch | 
|  | // from looking at the loop value to the Phi definition. | 
|  | else if (np > 0 && PrevStage == LastStageNum && | 
|  | VRMap[PrevStage - np + 1].count(Def)) | 
|  | PhiOp2 = VRMap[PrevStage - np + 1][Def]; | 
|  | // Use the loop value defined in the kernel. | 
|  | else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && | 
|  | VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) | 
|  | PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; | 
|  | // Use the value defined by the Phi, unless we're generating the first | 
|  | // epilog and the Phi refers to a Phi in a different stage. | 
|  | else if (VRMap[PrevStage - np].count(Def) && | 
|  | (!LoopDefIsPhi || PrevStage != LastStageNum)) | 
|  | PhiOp2 = VRMap[PrevStage - np][Def]; | 
|  | } | 
|  |  | 
|  | // Check if we can reuse an existing Phi. This occurs when a Phi | 
|  | // references another Phi, and the other Phi is scheduled in an | 
|  | // earlier stage. We can try to reuse an existing Phi up until the last | 
|  | // stage of the current Phi. | 
|  | if (LoopDefIsPhi) { | 
|  | if (static_cast<int>(PrologStage - np) >= StageScheduled) { | 
|  | int LVNumStages = Schedule.getStagesForPhi(LoopVal); | 
|  | int StageDiff = (StageScheduled - LoopValStage); | 
|  | LVNumStages -= StageDiff; | 
|  | // Make sure the loop value Phi has been processed already. | 
|  | if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { | 
|  | NewReg = PhiOp2; | 
|  | unsigned ReuseStage = CurStageNum; | 
|  | if (Schedule.isLoopCarried(this, *PhiInst)) | 
|  | ReuseStage -= LVNumStages; | 
|  | // Check if the Phi to reuse has been generated yet. If not, then | 
|  | // there is nothing to reuse. | 
|  | if (VRMap[ReuseStage - np].count(LoopVal)) { | 
|  | NewReg = VRMap[ReuseStage - np][LoopVal]; | 
|  |  | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, | 
|  | &*BBI, Def, NewReg); | 
|  | // Update the map with the new Phi name. | 
|  | VRMap[CurStageNum - np][Def] = NewReg; | 
|  | PhiOp2 = NewReg; | 
|  | if (VRMap[LastStageNum - np - 1].count(LoopVal)) | 
|  | PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; | 
|  |  | 
|  | if (IsLast && np == NumPhis - 1) | 
|  | replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (InKernel && StageDiff > 0 && | 
|  | VRMap[CurStageNum - StageDiff - np].count(LoopVal)) | 
|  | PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(Def); | 
|  | NewReg = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | MachineInstrBuilder NewPhi = | 
|  | BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), | 
|  | TII->get(TargetOpcode::PHI), NewReg); | 
|  | NewPhi.addReg(PhiOp1).addMBB(BB1); | 
|  | NewPhi.addReg(PhiOp2).addMBB(BB2); | 
|  | if (np == 0) | 
|  | InstrMap[NewPhi] = &*BBI; | 
|  |  | 
|  | // We define the Phis after creating the new pipelined code, so | 
|  | // we need to rename the Phi values in scheduled instructions. | 
|  |  | 
|  | unsigned PrevReg = 0; | 
|  | if (InKernel && VRMap[PrevStage - np].count(LoopVal)) | 
|  | PrevReg = VRMap[PrevStage - np][LoopVal]; | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, | 
|  | Def, NewReg, PrevReg); | 
|  | // If the Phi has been scheduled, use the new name for rewriting. | 
|  | if (VRMap[CurStageNum - np].count(Def)) { | 
|  | unsigned R = VRMap[CurStageNum - np][Def]; | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, | 
|  | R, NewReg); | 
|  | } | 
|  |  | 
|  | // Check if we need to rename any uses that occurs after the loop. The | 
|  | // register to replace depends on whether the Phi is scheduled in the | 
|  | // epilog. | 
|  | if (IsLast && np == NumPhis - 1) | 
|  | replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); | 
|  |  | 
|  | // In the kernel, a dependent Phi uses the value from this Phi. | 
|  | if (InKernel) | 
|  | PhiOp2 = NewReg; | 
|  |  | 
|  | // Update the map with the new Phi name. | 
|  | VRMap[CurStageNum - np][Def] = NewReg; | 
|  | } | 
|  |  | 
|  | while (NumPhis++ < NumStages) { | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, | 
|  | &*BBI, Def, NewReg, 0); | 
|  | } | 
|  |  | 
|  | // Check if we need to rename a Phi that has been eliminated due to | 
|  | // scheduling. | 
|  | if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) | 
|  | replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Generate Phis for the specified block in the generated pipelined code. | 
|  | /// These are new Phis needed because the definition is scheduled after the | 
|  | /// use in the pipelined sequence. | 
|  | void SwingSchedulerDAG::generatePhis( | 
|  | MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, | 
|  | MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, | 
|  | InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, | 
|  | bool IsLast) { | 
|  | // Compute the stage number that contains the initial Phi value, and | 
|  | // the Phi from the previous stage. | 
|  | unsigned PrologStage = 0; | 
|  | unsigned PrevStage = 0; | 
|  | unsigned StageDiff = CurStageNum - LastStageNum; | 
|  | bool InKernel = (StageDiff == 0); | 
|  | if (InKernel) { | 
|  | PrologStage = LastStageNum - 1; | 
|  | PrevStage = CurStageNum; | 
|  | } else { | 
|  | PrologStage = LastStageNum - StageDiff; | 
|  | PrevStage = LastStageNum + StageDiff - 1; | 
|  | } | 
|  |  | 
|  | for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), | 
|  | BBE = BB->instr_end(); | 
|  | BBI != BBE; ++BBI) { | 
|  | for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = BBI->getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef() || | 
|  | !TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | continue; | 
|  |  | 
|  | int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); | 
|  | assert(StageScheduled != -1 && "Expecting scheduled instruction."); | 
|  | unsigned Def = MO.getReg(); | 
|  | unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); | 
|  | // An instruction scheduled in stage 0 and is used after the loop | 
|  | // requires a phi in the epilog for the last definition from either | 
|  | // the kernel or prolog. | 
|  | if (!InKernel && NumPhis == 0 && StageScheduled == 0 && | 
|  | hasUseAfterLoop(Def, BB, MRI)) | 
|  | NumPhis = 1; | 
|  | if (!InKernel && (unsigned)StageScheduled > PrologStage) | 
|  | continue; | 
|  |  | 
|  | unsigned PhiOp2 = VRMap[PrevStage][Def]; | 
|  | if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) | 
|  | if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) | 
|  | PhiOp2 = getLoopPhiReg(*InstOp2, BB2); | 
|  | // The number of Phis can't exceed the number of prolog stages. The | 
|  | // prolog stage number is zero based. | 
|  | if (NumPhis > PrologStage + 1 - StageScheduled) | 
|  | NumPhis = PrologStage + 1 - StageScheduled; | 
|  | for (unsigned np = 0; np < NumPhis; ++np) { | 
|  | unsigned PhiOp1 = VRMap[PrologStage][Def]; | 
|  | if (np <= PrologStage) | 
|  | PhiOp1 = VRMap[PrologStage - np][Def]; | 
|  | if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { | 
|  | if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) | 
|  | PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); | 
|  | if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) | 
|  | PhiOp1 = getInitPhiReg(*InstOp1, NewBB); | 
|  | } | 
|  | if (!InKernel) | 
|  | PhiOp2 = VRMap[PrevStage - np][Def]; | 
|  |  | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(Def); | 
|  | unsigned NewReg = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | MachineInstrBuilder NewPhi = | 
|  | BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), | 
|  | TII->get(TargetOpcode::PHI), NewReg); | 
|  | NewPhi.addReg(PhiOp1).addMBB(BB1); | 
|  | NewPhi.addReg(PhiOp2).addMBB(BB2); | 
|  | if (np == 0) | 
|  | InstrMap[NewPhi] = &*BBI; | 
|  |  | 
|  | // Rewrite uses and update the map. The actions depend upon whether | 
|  | // we generating code for the kernel or epilog blocks. | 
|  | if (InKernel) { | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, | 
|  | &*BBI, PhiOp1, NewReg); | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, | 
|  | &*BBI, PhiOp2, NewReg); | 
|  |  | 
|  | PhiOp2 = NewReg; | 
|  | VRMap[PrevStage - np - 1][Def] = NewReg; | 
|  | } else { | 
|  | VRMap[CurStageNum - np][Def] = NewReg; | 
|  | if (np == NumPhis - 1) | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, | 
|  | &*BBI, Def, NewReg); | 
|  | } | 
|  | if (IsLast && np == NumPhis - 1) | 
|  | replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Remove instructions that generate values with no uses. | 
|  | /// Typically, these are induction variable operations that generate values | 
|  | /// used in the loop itself.  A dead instruction has a definition with | 
|  | /// no uses, or uses that occur in the original loop only. | 
|  | void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, | 
|  | MBBVectorTy &EpilogBBs) { | 
|  | // For each epilog block, check that the value defined by each instruction | 
|  | // is used.  If not, delete it. | 
|  | for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), | 
|  | MBE = EpilogBBs.rend(); | 
|  | MBB != MBE; ++MBB) | 
|  | for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), | 
|  | ME = (*MBB)->instr_rend(); | 
|  | MI != ME;) { | 
|  | // From DeadMachineInstructionElem. Don't delete inline assembly. | 
|  | if (MI->isInlineAsm()) { | 
|  | ++MI; | 
|  | continue; | 
|  | } | 
|  | bool SawStore = false; | 
|  | // Check if it's safe to remove the instruction due to side effects. | 
|  | // We can, and want to, remove Phis here. | 
|  | if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { | 
|  | ++MI; | 
|  | continue; | 
|  | } | 
|  | bool used = true; | 
|  | for (MachineInstr::mop_iterator MOI = MI->operands_begin(), | 
|  | MOE = MI->operands_end(); | 
|  | MOI != MOE; ++MOI) { | 
|  | if (!MOI->isReg() || !MOI->isDef()) | 
|  | continue; | 
|  | unsigned reg = MOI->getReg(); | 
|  | // Assume physical registers are used, unless they are marked dead. | 
|  | if (TargetRegisterInfo::isPhysicalRegister(reg)) { | 
|  | used = !MOI->isDead(); | 
|  | if (used) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  | unsigned realUses = 0; | 
|  | for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), | 
|  | EI = MRI.use_end(); | 
|  | UI != EI; ++UI) { | 
|  | // Check if there are any uses that occur only in the original | 
|  | // loop.  If so, that's not a real use. | 
|  | if (UI->getParent()->getParent() != BB) { | 
|  | realUses++; | 
|  | used = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (realUses > 0) | 
|  | break; | 
|  | used = false; | 
|  | } | 
|  | if (!used) { | 
|  | LIS.RemoveMachineInstrFromMaps(*MI); | 
|  | MI++->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  | ++MI; | 
|  | } | 
|  | // In the kernel block, check if we can remove a Phi that generates a value | 
|  | // used in an instruction removed in the epilog block. | 
|  | for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), | 
|  | BBE = KernelBB->getFirstNonPHI(); | 
|  | BBI != BBE;) { | 
|  | MachineInstr *MI = &*BBI; | 
|  | ++BBI; | 
|  | unsigned reg = MI->getOperand(0).getReg(); | 
|  | if (MRI.use_begin(reg) == MRI.use_end()) { | 
|  | LIS.RemoveMachineInstrFromMaps(*MI); | 
|  | MI->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// For loop carried definitions, we split the lifetime of a virtual register | 
|  | /// that has uses past the definition in the next iteration. A copy with a new | 
|  | /// virtual register is inserted before the definition, which helps with | 
|  | /// generating a better register assignment. | 
|  | /// | 
|  | ///   v1 = phi(a, v2)     v1 = phi(a, v2) | 
|  | ///   v2 = phi(b, v3)     v2 = phi(b, v3) | 
|  | ///   v3 = ..             v4 = copy v1 | 
|  | ///   .. = V1             v3 = .. | 
|  | ///                       .. = v4 | 
|  | void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, | 
|  | MBBVectorTy &EpilogBBs, | 
|  | SMSchedule &Schedule) { | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | for (auto &PHI : KernelBB->phis()) { | 
|  | unsigned Def = PHI.getOperand(0).getReg(); | 
|  | // Check for any Phi definition that used as an operand of another Phi | 
|  | // in the same block. | 
|  | for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), | 
|  | E = MRI.use_instr_end(); | 
|  | I != E; ++I) { | 
|  | if (I->isPHI() && I->getParent() == KernelBB) { | 
|  | // Get the loop carried definition. | 
|  | unsigned LCDef = getLoopPhiReg(PHI, KernelBB); | 
|  | if (!LCDef) | 
|  | continue; | 
|  | MachineInstr *MI = MRI.getVRegDef(LCDef); | 
|  | if (!MI || MI->getParent() != KernelBB || MI->isPHI()) | 
|  | continue; | 
|  | // Search through the rest of the block looking for uses of the Phi | 
|  | // definition. If one occurs, then split the lifetime. | 
|  | unsigned SplitReg = 0; | 
|  | for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), | 
|  | KernelBB->instr_end())) | 
|  | if (BBJ.readsRegister(Def)) { | 
|  | // We split the lifetime when we find the first use. | 
|  | if (SplitReg == 0) { | 
|  | SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); | 
|  | BuildMI(*KernelBB, MI, MI->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), SplitReg) | 
|  | .addReg(Def); | 
|  | } | 
|  | BBJ.substituteRegister(Def, SplitReg, 0, *TRI); | 
|  | } | 
|  | if (!SplitReg) | 
|  | continue; | 
|  | // Search through each of the epilog blocks for any uses to be renamed. | 
|  | for (auto &Epilog : EpilogBBs) | 
|  | for (auto &I : *Epilog) | 
|  | if (I.readsRegister(Def)) | 
|  | I.substituteRegister(Def, SplitReg, 0, *TRI); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Remove the incoming block from the Phis in a basic block. | 
|  | static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { | 
|  | for (MachineInstr &MI : *BB) { | 
|  | if (!MI.isPHI()) | 
|  | break; | 
|  | for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) | 
|  | if (MI.getOperand(i + 1).getMBB() == Incoming) { | 
|  | MI.RemoveOperand(i + 1); | 
|  | MI.RemoveOperand(i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Create branches from each prolog basic block to the appropriate epilog | 
|  | /// block.  These edges are needed if the loop ends before reaching the | 
|  | /// kernel. | 
|  | void SwingSchedulerDAG::addBranches(MachineBasicBlock &PreheaderBB, | 
|  | MBBVectorTy &PrologBBs, | 
|  | MachineBasicBlock *KernelBB, | 
|  | MBBVectorTy &EpilogBBs, | 
|  | SMSchedule &Schedule, ValueMapTy *VRMap) { | 
|  | assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); | 
|  | MachineInstr *IndVar = Pass.LI.LoopInductionVar; | 
|  | MachineInstr *Cmp = Pass.LI.LoopCompare; | 
|  | MachineBasicBlock *LastPro = KernelBB; | 
|  | MachineBasicBlock *LastEpi = KernelBB; | 
|  |  | 
|  | // Start from the blocks connected to the kernel and work "out" | 
|  | // to the first prolog and the last epilog blocks. | 
|  | SmallVector<MachineInstr *, 4> PrevInsts; | 
|  | unsigned MaxIter = PrologBBs.size() - 1; | 
|  | unsigned LC = UINT_MAX; | 
|  | unsigned LCMin = UINT_MAX; | 
|  | for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { | 
|  | // Add branches to the prolog that go to the corresponding | 
|  | // epilog, and the fall-thru prolog/kernel block. | 
|  | MachineBasicBlock *Prolog = PrologBBs[j]; | 
|  | MachineBasicBlock *Epilog = EpilogBBs[i]; | 
|  | // We've executed one iteration, so decrement the loop count and check for | 
|  | // the loop end. | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | // Check if the LOOP0 has already been removed. If so, then there is no need | 
|  | // to reduce the trip count. | 
|  | if (LC != 0) | 
|  | LC = TII->reduceLoopCount(*Prolog, PreheaderBB, IndVar, *Cmp, Cond, | 
|  | PrevInsts, j, MaxIter); | 
|  |  | 
|  | // Record the value of the first trip count, which is used to determine if | 
|  | // branches and blocks can be removed for constant trip counts. | 
|  | if (LCMin == UINT_MAX) | 
|  | LCMin = LC; | 
|  |  | 
|  | unsigned numAdded = 0; | 
|  | if (TargetRegisterInfo::isVirtualRegister(LC)) { | 
|  | Prolog->addSuccessor(Epilog); | 
|  | numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); | 
|  | } else if (j >= LCMin) { | 
|  | Prolog->addSuccessor(Epilog); | 
|  | Prolog->removeSuccessor(LastPro); | 
|  | LastEpi->removeSuccessor(Epilog); | 
|  | numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); | 
|  | removePhis(Epilog, LastEpi); | 
|  | // Remove the blocks that are no longer referenced. | 
|  | if (LastPro != LastEpi) { | 
|  | LastEpi->clear(); | 
|  | LastEpi->eraseFromParent(); | 
|  | } | 
|  | LastPro->clear(); | 
|  | LastPro->eraseFromParent(); | 
|  | } else { | 
|  | numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); | 
|  | removePhis(Epilog, Prolog); | 
|  | } | 
|  | LastPro = Prolog; | 
|  | LastEpi = Epilog; | 
|  | for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), | 
|  | E = Prolog->instr_rend(); | 
|  | I != E && numAdded > 0; ++I, --numAdded) | 
|  | updateInstruction(&*I, false, j, 0, Schedule, VRMap); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if we can compute the amount the instruction changes | 
|  | /// during each iteration. Set Delta to the amount of the change. | 
|  | bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | const MachineOperand *BaseOp; | 
|  | int64_t Offset; | 
|  | if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) | 
|  | return false; | 
|  |  | 
|  | if (!BaseOp->isReg()) | 
|  | return false; | 
|  |  | 
|  | unsigned BaseReg = BaseOp->getReg(); | 
|  |  | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | // Check if there is a Phi. If so, get the definition in the loop. | 
|  | MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); | 
|  | if (BaseDef && BaseDef->isPHI()) { | 
|  | BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); | 
|  | BaseDef = MRI.getVRegDef(BaseReg); | 
|  | } | 
|  | if (!BaseDef) | 
|  | return false; | 
|  |  | 
|  | int D = 0; | 
|  | if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) | 
|  | return false; | 
|  |  | 
|  | Delta = D; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Update the memory operand with a new offset when the pipeliner | 
|  | /// generates a new copy of the instruction that refers to a | 
|  | /// different memory location. | 
|  | void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, | 
|  | MachineInstr &OldMI, unsigned Num) { | 
|  | if (Num == 0) | 
|  | return; | 
|  | // If the instruction has memory operands, then adjust the offset | 
|  | // when the instruction appears in different stages. | 
|  | if (NewMI.memoperands_empty()) | 
|  | return; | 
|  | SmallVector<MachineMemOperand *, 2> NewMMOs; | 
|  | for (MachineMemOperand *MMO : NewMI.memoperands()) { | 
|  | // TODO: Figure out whether isAtomic is really necessary (see D57601). | 
|  | if (MMO->isVolatile() || MMO->isAtomic() || | 
|  | (MMO->isInvariant() && MMO->isDereferenceable()) || | 
|  | (!MMO->getValue())) { | 
|  | NewMMOs.push_back(MMO); | 
|  | continue; | 
|  | } | 
|  | unsigned Delta; | 
|  | if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { | 
|  | int64_t AdjOffset = Delta * Num; | 
|  | NewMMOs.push_back( | 
|  | MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); | 
|  | } else { | 
|  | NewMMOs.push_back( | 
|  | MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); | 
|  | } | 
|  | } | 
|  | NewMI.setMemRefs(MF, NewMMOs); | 
|  | } | 
|  |  | 
|  | /// Clone the instruction for the new pipelined loop and update the | 
|  | /// memory operands, if needed. | 
|  | MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, | 
|  | unsigned CurStageNum, | 
|  | unsigned InstStageNum) { | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); | 
|  | // Check for tied operands in inline asm instructions. This should be handled | 
|  | // elsewhere, but I'm not sure of the best solution. | 
|  | if (OldMI->isInlineAsm()) | 
|  | for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { | 
|  | const auto &MO = OldMI->getOperand(i); | 
|  | if (MO.isReg() && MO.isUse()) | 
|  | break; | 
|  | unsigned UseIdx; | 
|  | if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) | 
|  | NewMI->tieOperands(i, UseIdx); | 
|  | } | 
|  | updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | /// Clone the instruction for the new pipelined loop. If needed, this | 
|  | /// function updates the instruction using the values saved in the | 
|  | /// InstrChanges structure. | 
|  | MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, | 
|  | unsigned CurStageNum, | 
|  | unsigned InstStageNum, | 
|  | SMSchedule &Schedule) { | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); | 
|  | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | InstrChanges.find(getSUnit(OldMI)); | 
|  | if (It != InstrChanges.end()) { | 
|  | std::pair<unsigned, int64_t> RegAndOffset = It->second; | 
|  | unsigned BasePos, OffsetPos; | 
|  | if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) | 
|  | return nullptr; | 
|  | int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); | 
|  | MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); | 
|  | if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) | 
|  | NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); | 
|  | NewMI->getOperand(OffsetPos).setImm(NewOffset); | 
|  | } | 
|  | updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | /// Update the machine instruction with new virtual registers.  This | 
|  | /// function may change the defintions and/or uses. | 
|  | void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, | 
|  | unsigned CurStageNum, | 
|  | unsigned InstrStageNum, | 
|  | SMSchedule &Schedule, | 
|  | ValueMapTy *VRMap) { | 
|  | for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = NewMI->getOperand(i); | 
|  | if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | continue; | 
|  | unsigned reg = MO.getReg(); | 
|  | if (MO.isDef()) { | 
|  | // Create a new virtual register for the definition. | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(reg); | 
|  | unsigned NewReg = MRI.createVirtualRegister(RC); | 
|  | MO.setReg(NewReg); | 
|  | VRMap[CurStageNum][reg] = NewReg; | 
|  | if (LastDef) | 
|  | replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); | 
|  | } else if (MO.isUse()) { | 
|  | MachineInstr *Def = MRI.getVRegDef(reg); | 
|  | // Compute the stage that contains the last definition for instruction. | 
|  | int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); | 
|  | unsigned StageNum = CurStageNum; | 
|  | if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { | 
|  | // Compute the difference in stages between the defintion and the use. | 
|  | unsigned StageDiff = (InstrStageNum - DefStageNum); | 
|  | // Make an adjustment to get the last definition. | 
|  | StageNum -= StageDiff; | 
|  | } | 
|  | if (VRMap[StageNum].count(reg)) | 
|  | MO.setReg(VRMap[StageNum][reg]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return the instruction in the loop that defines the register. | 
|  | /// If the definition is a Phi, then follow the Phi operand to | 
|  | /// the instruction in the loop. | 
|  | MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { | 
|  | SmallPtrSet<MachineInstr *, 8> Visited; | 
|  | MachineInstr *Def = MRI.getVRegDef(Reg); | 
|  | while (Def->isPHI()) { | 
|  | if (!Visited.insert(Def).second) | 
|  | break; | 
|  | for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) | 
|  | if (Def->getOperand(i + 1).getMBB() == BB) { | 
|  | Def = MRI.getVRegDef(Def->getOperand(i).getReg()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return Def; | 
|  | } | 
|  |  | 
|  | /// Return the new name for the value from the previous stage. | 
|  | unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, | 
|  | unsigned LoopVal, unsigned LoopStage, | 
|  | ValueMapTy *VRMap, | 
|  | MachineBasicBlock *BB) { | 
|  | unsigned PrevVal = 0; | 
|  | if (StageNum > PhiStage) { | 
|  | MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); | 
|  | if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) | 
|  | // The name is defined in the previous stage. | 
|  | PrevVal = VRMap[StageNum - 1][LoopVal]; | 
|  | else if (VRMap[StageNum].count(LoopVal)) | 
|  | // The previous name is defined in the current stage when the instruction | 
|  | // order is swapped. | 
|  | PrevVal = VRMap[StageNum][LoopVal]; | 
|  | else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) | 
|  | // The loop value hasn't yet been scheduled. | 
|  | PrevVal = LoopVal; | 
|  | else if (StageNum == PhiStage + 1) | 
|  | // The loop value is another phi, which has not been scheduled. | 
|  | PrevVal = getInitPhiReg(*LoopInst, BB); | 
|  | else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) | 
|  | // The loop value is another phi, which has been scheduled. | 
|  | PrevVal = | 
|  | getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), | 
|  | LoopStage, VRMap, BB); | 
|  | } | 
|  | return PrevVal; | 
|  | } | 
|  |  | 
|  | /// Rewrite the Phi values in the specified block to use the mappings | 
|  | /// from the initial operand. Once the Phi is scheduled, we switch | 
|  | /// to using the loop value instead of the Phi value, so those names | 
|  | /// do not need to be rewritten. | 
|  | void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, | 
|  | unsigned StageNum, | 
|  | SMSchedule &Schedule, | 
|  | ValueMapTy *VRMap, | 
|  | InstrMapTy &InstrMap) { | 
|  | for (auto &PHI : BB->phis()) { | 
|  | unsigned InitVal = 0; | 
|  | unsigned LoopVal = 0; | 
|  | getPhiRegs(PHI, BB, InitVal, LoopVal); | 
|  | unsigned PhiDef = PHI.getOperand(0).getReg(); | 
|  |  | 
|  | unsigned PhiStage = | 
|  | (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); | 
|  | unsigned LoopStage = | 
|  | (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); | 
|  | unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); | 
|  | if (NumPhis > StageNum) | 
|  | NumPhis = StageNum; | 
|  | for (unsigned np = 0; np <= NumPhis; ++np) { | 
|  | unsigned NewVal = | 
|  | getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); | 
|  | if (!NewVal) | 
|  | NewVal = InitVal; | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, | 
|  | PhiDef, NewVal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Rewrite a previously scheduled instruction to use the register value | 
|  | /// from the new instruction. Make sure the instruction occurs in the | 
|  | /// basic block, and we don't change the uses in the new instruction. | 
|  | void SwingSchedulerDAG::rewriteScheduledInstr( | 
|  | MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, | 
|  | unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, | 
|  | unsigned NewReg, unsigned PrevReg) { | 
|  | bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); | 
|  | int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; | 
|  | // Rewrite uses that have been scheduled already to use the new | 
|  | // Phi register. | 
|  | for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), | 
|  | EI = MRI.use_end(); | 
|  | UI != EI;) { | 
|  | MachineOperand &UseOp = *UI; | 
|  | MachineInstr *UseMI = UseOp.getParent(); | 
|  | ++UI; | 
|  | if (UseMI->getParent() != BB) | 
|  | continue; | 
|  | if (UseMI->isPHI()) { | 
|  | if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) | 
|  | continue; | 
|  | if (getLoopPhiReg(*UseMI, BB) != OldReg) | 
|  | continue; | 
|  | } | 
|  | InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); | 
|  | assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); | 
|  | SUnit *OrigMISU = getSUnit(OrigInstr->second); | 
|  | int StageSched = Schedule.stageScheduled(OrigMISU); | 
|  | int CycleSched = Schedule.cycleScheduled(OrigMISU); | 
|  | unsigned ReplaceReg = 0; | 
|  | // This is the stage for the scheduled instruction. | 
|  | if (StagePhi == StageSched && Phi->isPHI()) { | 
|  | int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); | 
|  | if (PrevReg && InProlog) | 
|  | ReplaceReg = PrevReg; | 
|  | else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && | 
|  | (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) | 
|  | ReplaceReg = PrevReg; | 
|  | else | 
|  | ReplaceReg = NewReg; | 
|  | } | 
|  | // The scheduled instruction occurs before the scheduled Phi, and the | 
|  | // Phi is not loop carried. | 
|  | if (!InProlog && StagePhi + 1 == StageSched && | 
|  | !Schedule.isLoopCarried(this, *Phi)) | 
|  | ReplaceReg = NewReg; | 
|  | if (StagePhi > StageSched && Phi->isPHI()) | 
|  | ReplaceReg = NewReg; | 
|  | if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) | 
|  | ReplaceReg = NewReg; | 
|  | if (ReplaceReg) { | 
|  | MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); | 
|  | UseOp.setReg(ReplaceReg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if we can change the instruction to use an offset value from the | 
|  | /// previous iteration. If so, return true and set the base and offset values | 
|  | /// so that we can rewrite the load, if necessary. | 
|  | ///   v1 = Phi(v0, v3) | 
|  | ///   v2 = load v1, 0 | 
|  | ///   v3 = post_store v1, 4, x | 
|  | /// This function enables the load to be rewritten as v2 = load v3, 4. | 
|  | bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, | 
|  | unsigned &BasePos, | 
|  | unsigned &OffsetPos, | 
|  | unsigned &NewBase, | 
|  | int64_t &Offset) { | 
|  | // Get the load instruction. | 
|  | if (TII->isPostIncrement(*MI)) | 
|  | return false; | 
|  | unsigned BasePosLd, OffsetPosLd; | 
|  | if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) | 
|  | return false; | 
|  | unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); | 
|  |  | 
|  | // Look for the Phi instruction. | 
|  | MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); | 
|  | MachineInstr *Phi = MRI.getVRegDef(BaseReg); | 
|  | if (!Phi || !Phi->isPHI()) | 
|  | return false; | 
|  | // Get the register defined in the loop block. | 
|  | unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); | 
|  | if (!PrevReg) | 
|  | return false; | 
|  |  | 
|  | // Check for the post-increment load/store instruction. | 
|  | MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); | 
|  | if (!PrevDef || PrevDef == MI) | 
|  | return false; | 
|  |  | 
|  | if (!TII->isPostIncrement(*PrevDef)) | 
|  | return false; | 
|  |  | 
|  | unsigned BasePos1 = 0, OffsetPos1 = 0; | 
|  | if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) | 
|  | return false; | 
|  |  | 
|  | // Make sure that the instructions do not access the same memory location in | 
|  | // the next iteration. | 
|  | int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); | 
|  | int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(MI); | 
|  | NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); | 
|  | bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); | 
|  | MF.DeleteMachineInstr(NewMI); | 
|  | if (!Disjoint) | 
|  | return false; | 
|  |  | 
|  | // Set the return value once we determine that we return true. | 
|  | BasePos = BasePosLd; | 
|  | OffsetPos = OffsetPosLd; | 
|  | NewBase = PrevReg; | 
|  | Offset = StoreOffset; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Apply changes to the instruction if needed. The changes are need | 
|  | /// to improve the scheduling and depend up on the final schedule. | 
|  | void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, | 
|  | SMSchedule &Schedule) { | 
|  | SUnit *SU = getSUnit(MI); | 
|  | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | InstrChanges.find(SU); | 
|  | if (It != InstrChanges.end()) { | 
|  | std::pair<unsigned, int64_t> RegAndOffset = It->second; | 
|  | unsigned BasePos, OffsetPos; | 
|  | if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) | 
|  | return; | 
|  | unsigned BaseReg = MI->getOperand(BasePos).getReg(); | 
|  | MachineInstr *LoopDef = findDefInLoop(BaseReg); | 
|  | int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); | 
|  | int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); | 
|  | int BaseStageNum = Schedule.stageScheduled(SU); | 
|  | int BaseCycleNum = Schedule.cycleScheduled(SU); | 
|  | if (BaseStageNum < DefStageNum) { | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(MI); | 
|  | int OffsetDiff = DefStageNum - BaseStageNum; | 
|  | if (DefCycleNum < BaseCycleNum) { | 
|  | NewMI->getOperand(BasePos).setReg(RegAndOffset.first); | 
|  | if (OffsetDiff > 0) | 
|  | --OffsetDiff; | 
|  | } | 
|  | int64_t NewOffset = | 
|  | MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; | 
|  | NewMI->getOperand(OffsetPos).setImm(NewOffset); | 
|  | SU->setInstr(NewMI); | 
|  | MISUnitMap[NewMI] = SU; | 
|  | NewMIs.insert(NewMI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true for an order or output dependence that is loop carried | 
|  | /// potentially. A dependence is loop carried if the destination defines a valu | 
|  | /// that may be used or defined by the source in a subsequent iteration. | 
|  | bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, | 
|  | bool isSucc) { | 
|  | if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || | 
|  | Dep.isArtificial()) | 
|  | return false; | 
|  |  | 
|  | if (!SwpPruneLoopCarried) | 
|  | return true; | 
|  |  | 
|  | if (Dep.getKind() == SDep::Output) | 
|  | return true; | 
|  |  | 
|  | MachineInstr *SI = Source->getInstr(); | 
|  | MachineInstr *DI = Dep.getSUnit()->getInstr(); | 
|  | if (!isSucc) | 
|  | std::swap(SI, DI); | 
|  | assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); | 
|  |  | 
|  | // Assume ordered loads and stores may have a loop carried dependence. | 
|  | if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || | 
|  | SI->mayRaiseFPException() || DI->mayRaiseFPException() || | 
|  | SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) | 
|  | return true; | 
|  |  | 
|  | // Only chain dependences between a load and store can be loop carried. | 
|  | if (!DI->mayStore() || !SI->mayLoad()) | 
|  | return false; | 
|  |  | 
|  | unsigned DeltaS, DeltaD; | 
|  | if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) | 
|  | return true; | 
|  |  | 
|  | const MachineOperand *BaseOpS, *BaseOpD; | 
|  | int64_t OffsetS, OffsetD; | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) || | 
|  | !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI)) | 
|  | return true; | 
|  |  | 
|  | if (!BaseOpS->isIdenticalTo(*BaseOpD)) | 
|  | return true; | 
|  |  | 
|  | // Check that the base register is incremented by a constant value for each | 
|  | // iteration. | 
|  | MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); | 
|  | if (!Def || !Def->isPHI()) | 
|  | return true; | 
|  | unsigned InitVal = 0; | 
|  | unsigned LoopVal = 0; | 
|  | getPhiRegs(*Def, BB, InitVal, LoopVal); | 
|  | MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); | 
|  | int D = 0; | 
|  | if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) | 
|  | return true; | 
|  |  | 
|  | uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); | 
|  | uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); | 
|  |  | 
|  | // This is the main test, which checks the offset values and the loop | 
|  | // increment value to determine if the accesses may be loop carried. | 
|  | if (AccessSizeS == MemoryLocation::UnknownSize || | 
|  | AccessSizeD == MemoryLocation::UnknownSize) | 
|  | return true; | 
|  |  | 
|  | if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) | 
|  | return true; | 
|  |  | 
|  | return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); | 
|  | } | 
|  |  | 
|  | void SwingSchedulerDAG::postprocessDAG() { | 
|  | for (auto &M : Mutations) | 
|  | M->apply(this); | 
|  | } | 
|  |  | 
|  | /// Try to schedule the node at the specified StartCycle and continue | 
|  | /// until the node is schedule or the EndCycle is reached.  This function | 
|  | /// returns true if the node is scheduled.  This routine may search either | 
|  | /// forward or backward for a place to insert the instruction based upon | 
|  | /// the relative values of StartCycle and EndCycle. | 
|  | bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { | 
|  | bool forward = true; | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Trying to insert node between " << StartCycle << " and " | 
|  | << EndCycle << " II: " << II << "\n"; | 
|  | }); | 
|  | if (StartCycle > EndCycle) | 
|  | forward = false; | 
|  |  | 
|  | // The terminating condition depends on the direction. | 
|  | int termCycle = forward ? EndCycle + 1 : EndCycle - 1; | 
|  | for (int curCycle = StartCycle; curCycle != termCycle; | 
|  | forward ? ++curCycle : --curCycle) { | 
|  |  | 
|  | // Add the already scheduled instructions at the specified cycle to the | 
|  | // DFA. | 
|  | ProcItinResources.clearResources(); | 
|  | for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); | 
|  | checkCycle <= LastCycle; checkCycle += II) { | 
|  | std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; | 
|  |  | 
|  | for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), | 
|  | E = cycleInstrs.end(); | 
|  | I != E; ++I) { | 
|  | if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) | 
|  | continue; | 
|  | assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && | 
|  | "These instructions have already been scheduled."); | 
|  | ProcItinResources.reserveResources(*(*I)->getInstr()); | 
|  | } | 
|  | } | 
|  | if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || | 
|  | ProcItinResources.canReserveResources(*SU->getInstr())) { | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "\tinsert at cycle " << curCycle << " "; | 
|  | SU->getInstr()->dump(); | 
|  | }); | 
|  |  | 
|  | ScheduledInstrs[curCycle].push_back(SU); | 
|  | InstrToCycle.insert(std::make_pair(SU, curCycle)); | 
|  | if (curCycle > LastCycle) | 
|  | LastCycle = curCycle; | 
|  | if (curCycle < FirstCycle) | 
|  | FirstCycle = curCycle; | 
|  | return true; | 
|  | } | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "\tfailed to insert at cycle " << curCycle << " "; | 
|  | SU->getInstr()->dump(); | 
|  | }); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return the cycle of the earliest scheduled instruction in the chain. | 
|  | int SMSchedule::earliestCycleInChain(const SDep &Dep) { | 
|  | SmallPtrSet<SUnit *, 8> Visited; | 
|  | SmallVector<SDep, 8> Worklist; | 
|  | Worklist.push_back(Dep); | 
|  | int EarlyCycle = INT_MAX; | 
|  | while (!Worklist.empty()) { | 
|  | const SDep &Cur = Worklist.pop_back_val(); | 
|  | SUnit *PrevSU = Cur.getSUnit(); | 
|  | if (Visited.count(PrevSU)) | 
|  | continue; | 
|  | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); | 
|  | if (it == InstrToCycle.end()) | 
|  | continue; | 
|  | EarlyCycle = std::min(EarlyCycle, it->second); | 
|  | for (const auto &PI : PrevSU->Preds) | 
|  | if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) | 
|  | Worklist.push_back(PI); | 
|  | Visited.insert(PrevSU); | 
|  | } | 
|  | return EarlyCycle; | 
|  | } | 
|  |  | 
|  | // Return the cycle of the latest scheduled instruction in the chain. | 
|  | int SMSchedule::latestCycleInChain(const SDep &Dep) { | 
|  | SmallPtrSet<SUnit *, 8> Visited; | 
|  | SmallVector<SDep, 8> Worklist; | 
|  | Worklist.push_back(Dep); | 
|  | int LateCycle = INT_MIN; | 
|  | while (!Worklist.empty()) { | 
|  | const SDep &Cur = Worklist.pop_back_val(); | 
|  | SUnit *SuccSU = Cur.getSUnit(); | 
|  | if (Visited.count(SuccSU)) | 
|  | continue; | 
|  | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); | 
|  | if (it == InstrToCycle.end()) | 
|  | continue; | 
|  | LateCycle = std::max(LateCycle, it->second); | 
|  | for (const auto &SI : SuccSU->Succs) | 
|  | if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) | 
|  | Worklist.push_back(SI); | 
|  | Visited.insert(SuccSU); | 
|  | } | 
|  | return LateCycle; | 
|  | } | 
|  |  | 
|  | /// If an instruction has a use that spans multiple iterations, then | 
|  | /// return true. These instructions are characterized by having a back-ege | 
|  | /// to a Phi, which contains a reference to another Phi. | 
|  | static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { | 
|  | for (auto &P : SU->Preds) | 
|  | if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) | 
|  | for (auto &S : P.getSUnit()->Succs) | 
|  | if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) | 
|  | return P.getSUnit(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Compute the scheduling start slot for the instruction.  The start slot | 
|  | /// depends on any predecessor or successor nodes scheduled already. | 
|  | void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, | 
|  | int *MinEnd, int *MaxStart, int II, | 
|  | SwingSchedulerDAG *DAG) { | 
|  | // Iterate over each instruction that has been scheduled already.  The start | 
|  | // slot computation depends on whether the previously scheduled instruction | 
|  | // is a predecessor or successor of the specified instruction. | 
|  | for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { | 
|  |  | 
|  | // Iterate over each instruction in the current cycle. | 
|  | for (SUnit *I : getInstructions(cycle)) { | 
|  | // Because we're processing a DAG for the dependences, we recognize | 
|  | // the back-edge in recurrences by anti dependences. | 
|  | for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { | 
|  | const SDep &Dep = SU->Preds[i]; | 
|  | if (Dep.getSUnit() == I) { | 
|  | if (!DAG->isBackedge(SU, Dep)) { | 
|  | int EarlyStart = cycle + Dep.getLatency() - | 
|  | DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; | 
|  | *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); | 
|  | if (DAG->isLoopCarriedDep(SU, Dep, false)) { | 
|  | int End = earliestCycleInChain(Dep) + (II - 1); | 
|  | *MinEnd = std::min(*MinEnd, End); | 
|  | } | 
|  | } else { | 
|  | int LateStart = cycle - Dep.getLatency() + | 
|  | DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; | 
|  | *MinLateStart = std::min(*MinLateStart, LateStart); | 
|  | } | 
|  | } | 
|  | // For instruction that requires multiple iterations, make sure that | 
|  | // the dependent instruction is not scheduled past the definition. | 
|  | SUnit *BE = multipleIterations(I, DAG); | 
|  | if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && | 
|  | !SU->isPred(I)) | 
|  | *MinLateStart = std::min(*MinLateStart, cycle); | 
|  | } | 
|  | for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { | 
|  | if (SU->Succs[i].getSUnit() == I) { | 
|  | const SDep &Dep = SU->Succs[i]; | 
|  | if (!DAG->isBackedge(SU, Dep)) { | 
|  | int LateStart = cycle - Dep.getLatency() + | 
|  | DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; | 
|  | *MinLateStart = std::min(*MinLateStart, LateStart); | 
|  | if (DAG->isLoopCarriedDep(SU, Dep)) { | 
|  | int Start = latestCycleInChain(Dep) + 1 - II; | 
|  | *MaxStart = std::max(*MaxStart, Start); | 
|  | } | 
|  | } else { | 
|  | int EarlyStart = cycle + Dep.getLatency() - | 
|  | DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; | 
|  | *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Order the instructions within a cycle so that the definitions occur | 
|  | /// before the uses. Returns true if the instruction is added to the start | 
|  | /// of the list, or false if added to the end. | 
|  | void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, | 
|  | std::deque<SUnit *> &Insts) { | 
|  | MachineInstr *MI = SU->getInstr(); | 
|  | bool OrderBeforeUse = false; | 
|  | bool OrderAfterDef = false; | 
|  | bool OrderBeforeDef = false; | 
|  | unsigned MoveDef = 0; | 
|  | unsigned MoveUse = 0; | 
|  | int StageInst1 = stageScheduled(SU); | 
|  |  | 
|  | unsigned Pos = 0; | 
|  | for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; | 
|  | ++I, ++Pos) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg = MO.getReg(); | 
|  | unsigned BasePos, OffsetPos; | 
|  | if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) | 
|  | if (MI->getOperand(BasePos).getReg() == Reg) | 
|  | if (unsigned NewReg = SSD->getInstrBaseReg(SU)) | 
|  | Reg = NewReg; | 
|  | bool Reads, Writes; | 
|  | std::tie(Reads, Writes) = | 
|  | (*I)->getInstr()->readsWritesVirtualRegister(Reg); | 
|  | if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { | 
|  | OrderBeforeUse = true; | 
|  | if (MoveUse == 0) | 
|  | MoveUse = Pos; | 
|  | } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { | 
|  | // Add the instruction after the scheduled instruction. | 
|  | OrderAfterDef = true; | 
|  | MoveDef = Pos; | 
|  | } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { | 
|  | if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { | 
|  | OrderBeforeUse = true; | 
|  | if (MoveUse == 0) | 
|  | MoveUse = Pos; | 
|  | } else { | 
|  | OrderAfterDef = true; | 
|  | MoveDef = Pos; | 
|  | } | 
|  | } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { | 
|  | OrderBeforeUse = true; | 
|  | if (MoveUse == 0) | 
|  | MoveUse = Pos; | 
|  | if (MoveUse != 0) { | 
|  | OrderAfterDef = true; | 
|  | MoveDef = Pos - 1; | 
|  | } | 
|  | } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { | 
|  | // Add the instruction before the scheduled instruction. | 
|  | OrderBeforeUse = true; | 
|  | if (MoveUse == 0) | 
|  | MoveUse = Pos; | 
|  | } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && | 
|  | isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { | 
|  | if (MoveUse == 0) { | 
|  | OrderBeforeDef = true; | 
|  | MoveUse = Pos; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Check for order dependences between instructions. Make sure the source | 
|  | // is ordered before the destination. | 
|  | for (auto &S : SU->Succs) { | 
|  | if (S.getSUnit() != *I) | 
|  | continue; | 
|  | if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { | 
|  | OrderBeforeUse = true; | 
|  | if (Pos < MoveUse) | 
|  | MoveUse = Pos; | 
|  | } | 
|  | } | 
|  | for (auto &P : SU->Preds) { | 
|  | if (P.getSUnit() != *I) | 
|  | continue; | 
|  | if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { | 
|  | OrderAfterDef = true; | 
|  | MoveDef = Pos; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // A circular dependence. | 
|  | if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) | 
|  | OrderBeforeUse = false; | 
|  |  | 
|  | // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due | 
|  | // to a loop-carried dependence. | 
|  | if (OrderBeforeDef) | 
|  | OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); | 
|  |  | 
|  | // The uncommon case when the instruction order needs to be updated because | 
|  | // there is both a use and def. | 
|  | if (OrderBeforeUse && OrderAfterDef) { | 
|  | SUnit *UseSU = Insts.at(MoveUse); | 
|  | SUnit *DefSU = Insts.at(MoveDef); | 
|  | if (MoveUse > MoveDef) { | 
|  | Insts.erase(Insts.begin() + MoveUse); | 
|  | Insts.erase(Insts.begin() + MoveDef); | 
|  | } else { | 
|  | Insts.erase(Insts.begin() + MoveDef); | 
|  | Insts.erase(Insts.begin() + MoveUse); | 
|  | } | 
|  | orderDependence(SSD, UseSU, Insts); | 
|  | orderDependence(SSD, SU, Insts); | 
|  | orderDependence(SSD, DefSU, Insts); | 
|  | return; | 
|  | } | 
|  | // Put the new instruction first if there is a use in the list. Otherwise, | 
|  | // put it at the end of the list. | 
|  | if (OrderBeforeUse) | 
|  | Insts.push_front(SU); | 
|  | else | 
|  | Insts.push_back(SU); | 
|  | } | 
|  |  | 
|  | /// Return true if the scheduled Phi has a loop carried operand. | 
|  | bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { | 
|  | if (!Phi.isPHI()) | 
|  | return false; | 
|  | assert(Phi.isPHI() && "Expecting a Phi."); | 
|  | SUnit *DefSU = SSD->getSUnit(&Phi); | 
|  | unsigned DefCycle = cycleScheduled(DefSU); | 
|  | int DefStage = stageScheduled(DefSU); | 
|  |  | 
|  | unsigned InitVal = 0; | 
|  | unsigned LoopVal = 0; | 
|  | getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); | 
|  | SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); | 
|  | if (!UseSU) | 
|  | return true; | 
|  | if (UseSU->getInstr()->isPHI()) | 
|  | return true; | 
|  | unsigned LoopCycle = cycleScheduled(UseSU); | 
|  | int LoopStage = stageScheduled(UseSU); | 
|  | return (LoopCycle > DefCycle) || (LoopStage <= DefStage); | 
|  | } | 
|  |  | 
|  | /// Return true if the instruction is a definition that is loop carried | 
|  | /// and defines the use on the next iteration. | 
|  | ///        v1 = phi(v2, v3) | 
|  | ///  (Def) v3 = op v1 | 
|  | ///  (MO)   = v1 | 
|  | /// If MO appears before Def, then then v1 and v3 may get assigned to the same | 
|  | /// register. | 
|  | bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, | 
|  | MachineInstr *Def, MachineOperand &MO) { | 
|  | if (!MO.isReg()) | 
|  | return false; | 
|  | if (Def->isPHI()) | 
|  | return false; | 
|  | MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); | 
|  | if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) | 
|  | return false; | 
|  | if (!isLoopCarried(SSD, *Phi)) | 
|  | return false; | 
|  | unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); | 
|  | for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &DMO = Def->getOperand(i); | 
|  | if (!DMO.isReg() || !DMO.isDef()) | 
|  | continue; | 
|  | if (DMO.getReg() == LoopReg) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if the generated schedule is valid. This function checks if | 
|  | // an instruction that uses a physical register is scheduled in a | 
|  | // different stage than the definition. The pipeliner does not handle | 
|  | // physical register values that may cross a basic block boundary. | 
|  | bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { | 
|  | for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { | 
|  | SUnit &SU = SSD->SUnits[i]; | 
|  | if (!SU.hasPhysRegDefs) | 
|  | continue; | 
|  | int StageDef = stageScheduled(&SU); | 
|  | assert(StageDef != -1 && "Instruction should have been scheduled."); | 
|  | for (auto &SI : SU.Succs) | 
|  | if (SI.isAssignedRegDep()) | 
|  | if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) | 
|  | if (stageScheduled(SI.getSUnit()) != StageDef) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// A property of the node order in swing-modulo-scheduling is | 
|  | /// that for nodes outside circuits the following holds: | 
|  | /// none of them is scheduled after both a successor and a | 
|  | /// predecessor. | 
|  | /// The method below checks whether the property is met. | 
|  | /// If not, debug information is printed and statistics information updated. | 
|  | /// Note that we do not use an assert statement. | 
|  | /// The reason is that although an invalid node oder may prevent | 
|  | /// the pipeliner from finding a pipelined schedule for arbitrary II, | 
|  | /// it does not lead to the generation of incorrect code. | 
|  | void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { | 
|  |  | 
|  | // a sorted vector that maps each SUnit to its index in the NodeOrder | 
|  | typedef std::pair<SUnit *, unsigned> UnitIndex; | 
|  | std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); | 
|  |  | 
|  | for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) | 
|  | Indices.push_back(std::make_pair(NodeOrder[i], i)); | 
|  |  | 
|  | auto CompareKey = [](UnitIndex i1, UnitIndex i2) { | 
|  | return std::get<0>(i1) < std::get<0>(i2); | 
|  | }; | 
|  |  | 
|  | // sort, so that we can perform a binary search | 
|  | llvm::sort(Indices, CompareKey); | 
|  |  | 
|  | bool Valid = true; | 
|  | (void)Valid; | 
|  | // for each SUnit in the NodeOrder, check whether | 
|  | // it appears after both a successor and a predecessor | 
|  | // of the SUnit. If this is the case, and the SUnit | 
|  | // is not part of circuit, then the NodeOrder is not | 
|  | // valid. | 
|  | for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { | 
|  | SUnit *SU = NodeOrder[i]; | 
|  | unsigned Index = i; | 
|  |  | 
|  | bool PredBefore = false; | 
|  | bool SuccBefore = false; | 
|  |  | 
|  | SUnit *Succ; | 
|  | SUnit *Pred; | 
|  | (void)Succ; | 
|  | (void)Pred; | 
|  |  | 
|  | for (SDep &PredEdge : SU->Preds) { | 
|  | SUnit *PredSU = PredEdge.getSUnit(); | 
|  | unsigned PredIndex = | 
|  | std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), | 
|  | std::make_pair(PredSU, 0), CompareKey)); | 
|  | if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { | 
|  | PredBefore = true; | 
|  | Pred = PredSU; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (SDep &SuccEdge : SU->Succs) { | 
|  | SUnit *SuccSU = SuccEdge.getSUnit(); | 
|  | unsigned SuccIndex = | 
|  | std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), | 
|  | std::make_pair(SuccSU, 0), CompareKey)); | 
|  | if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { | 
|  | SuccBefore = true; | 
|  | Succ = SuccSU; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { | 
|  | // instructions in circuits are allowed to be scheduled | 
|  | // after both a successor and predecessor. | 
|  | bool InCircuit = std::any_of( | 
|  | Circuits.begin(), Circuits.end(), | 
|  | [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); | 
|  | if (InCircuit) | 
|  | LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); | 
|  | else { | 
|  | Valid = false; | 
|  | NumNodeOrderIssues++; | 
|  | LLVM_DEBUG(dbgs() << "Predecessor ";); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum | 
|  | << " are scheduled before node " << SU->NodeNum | 
|  | << "\n";); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | if (!Valid) | 
|  | dbgs() << "Invalid node order found!\n"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Attempt to fix the degenerate cases when the instruction serialization | 
|  | /// causes the register lifetimes to overlap. For example, | 
|  | ///   p' = store_pi(p, b) | 
|  | ///      = load p, offset | 
|  | /// In this case p and p' overlap, which means that two registers are needed. | 
|  | /// Instead, this function changes the load to use p' and updates the offset. | 
|  | void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { | 
|  | unsigned OverlapReg = 0; | 
|  | unsigned NewBaseReg = 0; | 
|  | for (SUnit *SU : Instrs) { | 
|  | MachineInstr *MI = SU->getInstr(); | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | // Look for an instruction that uses p. The instruction occurs in the | 
|  | // same cycle but occurs later in the serialized order. | 
|  | if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { | 
|  | // Check that the instruction appears in the InstrChanges structure, | 
|  | // which contains instructions that can have the offset updated. | 
|  | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | InstrChanges.find(SU); | 
|  | if (It != InstrChanges.end()) { | 
|  | unsigned BasePos, OffsetPos; | 
|  | // Update the base register and adjust the offset. | 
|  | if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(MI); | 
|  | NewMI->getOperand(BasePos).setReg(NewBaseReg); | 
|  | int64_t NewOffset = | 
|  | MI->getOperand(OffsetPos).getImm() - It->second.second; | 
|  | NewMI->getOperand(OffsetPos).setImm(NewOffset); | 
|  | SU->setInstr(NewMI); | 
|  | MISUnitMap[NewMI] = SU; | 
|  | NewMIs.insert(NewMI); | 
|  | } | 
|  | } | 
|  | OverlapReg = 0; | 
|  | NewBaseReg = 0; | 
|  | break; | 
|  | } | 
|  | // Look for an instruction of the form p' = op(p), which uses and defines | 
|  | // two virtual registers that get allocated to the same physical register. | 
|  | unsigned TiedUseIdx = 0; | 
|  | if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { | 
|  | // OverlapReg is p in the example above. | 
|  | OverlapReg = MI->getOperand(TiedUseIdx).getReg(); | 
|  | // NewBaseReg is p' in the example above. | 
|  | NewBaseReg = MI->getOperand(i).getReg(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// After the schedule has been formed, call this function to combine | 
|  | /// the instructions from the different stages/cycles.  That is, this | 
|  | /// function creates a schedule that represents a single iteration. | 
|  | void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { | 
|  | // Move all instructions to the first stage from later stages. | 
|  | for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { | 
|  | for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; | 
|  | ++stage) { | 
|  | std::deque<SUnit *> &cycleInstrs = | 
|  | ScheduledInstrs[cycle + (stage * InitiationInterval)]; | 
|  | for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), | 
|  | E = cycleInstrs.rend(); | 
|  | I != E; ++I) | 
|  | ScheduledInstrs[cycle].push_front(*I); | 
|  | } | 
|  | } | 
|  | // Iterate over the definitions in each instruction, and compute the | 
|  | // stage difference for each use.  Keep the maximum value. | 
|  | for (auto &I : InstrToCycle) { | 
|  | int DefStage = stageScheduled(I.first); | 
|  | MachineInstr *MI = I.first->getInstr(); | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { | 
|  | MachineOperand &Op = MI->getOperand(i); | 
|  | if (!Op.isReg() || !Op.isDef()) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg = Op.getReg(); | 
|  | unsigned MaxDiff = 0; | 
|  | bool PhiIsSwapped = false; | 
|  | for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), | 
|  | EI = MRI.use_end(); | 
|  | UI != EI; ++UI) { | 
|  | MachineOperand &UseOp = *UI; | 
|  | MachineInstr *UseMI = UseOp.getParent(); | 
|  | SUnit *SUnitUse = SSD->getSUnit(UseMI); | 
|  | int UseStage = stageScheduled(SUnitUse); | 
|  | unsigned Diff = 0; | 
|  | if (UseStage != -1 && UseStage >= DefStage) | 
|  | Diff = UseStage - DefStage; | 
|  | if (MI->isPHI()) { | 
|  | if (isLoopCarried(SSD, *MI)) | 
|  | ++Diff; | 
|  | else | 
|  | PhiIsSwapped = true; | 
|  | } | 
|  | MaxDiff = std::max(Diff, MaxDiff); | 
|  | } | 
|  | RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Erase all the elements in the later stages. Only one iteration should | 
|  | // remain in the scheduled list, and it contains all the instructions. | 
|  | for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) | 
|  | ScheduledInstrs.erase(cycle); | 
|  |  | 
|  | // Change the registers in instruction as specified in the InstrChanges | 
|  | // map. We need to use the new registers to create the correct order. | 
|  | for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { | 
|  | SUnit *SU = &SSD->SUnits[i]; | 
|  | SSD->applyInstrChange(SU->getInstr(), *this); | 
|  | } | 
|  |  | 
|  | // Reorder the instructions in each cycle to fix and improve the | 
|  | // generated code. | 
|  | for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { | 
|  | std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; | 
|  | std::deque<SUnit *> newOrderPhi; | 
|  | for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { | 
|  | SUnit *SU = cycleInstrs[i]; | 
|  | if (SU->getInstr()->isPHI()) | 
|  | newOrderPhi.push_back(SU); | 
|  | } | 
|  | std::deque<SUnit *> newOrderI; | 
|  | for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { | 
|  | SUnit *SU = cycleInstrs[i]; | 
|  | if (!SU->getInstr()->isPHI()) | 
|  | orderDependence(SSD, SU, newOrderI); | 
|  | } | 
|  | // Replace the old order with the new order. | 
|  | cycleInstrs.swap(newOrderPhi); | 
|  | cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); | 
|  | SSD->fixupRegisterOverlaps(cycleInstrs); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dump();); | 
|  | } | 
|  |  | 
|  | void NodeSet::print(raw_ostream &os) const { | 
|  | os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV | 
|  | << " depth " << MaxDepth << " col " << Colocate << "\n"; | 
|  | for (const auto &I : Nodes) | 
|  | os << "   SU(" << I->NodeNum << ") " << *(I->getInstr()); | 
|  | os << "\n"; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | /// Print the schedule information to the given output. | 
|  | void SMSchedule::print(raw_ostream &os) const { | 
|  | // Iterate over each cycle. | 
|  | for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { | 
|  | // Iterate over each instruction in the cycle. | 
|  | const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); | 
|  | for (SUnit *CI : cycleInstrs->second) { | 
|  | os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; | 
|  | os << "(" << CI->NodeNum << ") "; | 
|  | CI->getInstr()->print(os); | 
|  | os << "\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Utility function used for debugging to print the schedule. | 
|  | LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } | 
|  | LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void ResourceManager::initProcResourceVectors( | 
|  | const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { | 
|  | unsigned ProcResourceID = 0; | 
|  |  | 
|  | // We currently limit the resource kinds to 64 and below so that we can use | 
|  | // uint64_t for Masks | 
|  | assert(SM.getNumProcResourceKinds() < 64 && | 
|  | "Too many kinds of resources, unsupported"); | 
|  | // Create a unique bitmask for every processor resource unit. | 
|  | // Skip resource at index 0, since it always references 'InvalidUnit'. | 
|  | Masks.resize(SM.getNumProcResourceKinds()); | 
|  | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { | 
|  | const MCProcResourceDesc &Desc = *SM.getProcResource(I); | 
|  | if (Desc.SubUnitsIdxBegin) | 
|  | continue; | 
|  | Masks[I] = 1ULL << ProcResourceID; | 
|  | ProcResourceID++; | 
|  | } | 
|  | // Create a unique bitmask for every processor resource group. | 
|  | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { | 
|  | const MCProcResourceDesc &Desc = *SM.getProcResource(I); | 
|  | if (!Desc.SubUnitsIdxBegin) | 
|  | continue; | 
|  | Masks[I] = 1ULL << ProcResourceID; | 
|  | for (unsigned U = 0; U < Desc.NumUnits; ++U) | 
|  | Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; | 
|  | ProcResourceID++; | 
|  | } | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "ProcResourceDesc:\n"; | 
|  | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { | 
|  | const MCProcResourceDesc *ProcResource = SM.getProcResource(I); | 
|  | dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", | 
|  | ProcResource->Name, I, Masks[I], ProcResource->NumUnits); | 
|  | } | 
|  | dbgs() << " -----------------\n"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { | 
|  |  | 
|  | LLVM_DEBUG({ dbgs() << "canReserveResources:\n"; }); | 
|  | if (UseDFA) | 
|  | return DFAResources->canReserveResources(MID); | 
|  |  | 
|  | unsigned InsnClass = MID->getSchedClass(); | 
|  | const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); | 
|  | if (!SCDesc->isValid()) { | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "No valid Schedule Class Desc for schedClass!\n"; | 
|  | dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; | 
|  | }); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); | 
|  | const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); | 
|  | for (; I != E; ++I) { | 
|  | if (!I->Cycles) | 
|  | continue; | 
|  | const MCProcResourceDesc *ProcResource = | 
|  | SM.getProcResource(I->ProcResourceIdx); | 
|  | unsigned NumUnits = ProcResource->NumUnits; | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", | 
|  | ProcResource->Name, I->ProcResourceIdx, | 
|  | ProcResourceCount[I->ProcResourceIdx], NumUnits, | 
|  | I->Cycles); | 
|  | }); | 
|  | if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) | 
|  | return false; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "return true\n\n";); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void ResourceManager::reserveResources(const MCInstrDesc *MID) { | 
|  | LLVM_DEBUG({ dbgs() << "reserveResources:\n"; }); | 
|  | if (UseDFA) | 
|  | return DFAResources->reserveResources(MID); | 
|  |  | 
|  | unsigned InsnClass = MID->getSchedClass(); | 
|  | const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); | 
|  | if (!SCDesc->isValid()) { | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "No valid Schedule Class Desc for schedClass!\n"; | 
|  | dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; | 
|  | }); | 
|  | return; | 
|  | } | 
|  | for (const MCWriteProcResEntry &PRE : | 
|  | make_range(STI->getWriteProcResBegin(SCDesc), | 
|  | STI->getWriteProcResEnd(SCDesc))) { | 
|  | if (!PRE.Cycles) | 
|  | continue; | 
|  | ++ProcResourceCount[PRE.ProcResourceIdx]; | 
|  | LLVM_DEBUG({ | 
|  | const MCProcResourceDesc *ProcResource = | 
|  | SM.getProcResource(PRE.ProcResourceIdx); | 
|  | dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", | 
|  | ProcResource->Name, PRE.ProcResourceIdx, | 
|  | ProcResourceCount[PRE.ProcResourceIdx], | 
|  | ProcResource->NumUnits, PRE.Cycles); | 
|  | }); | 
|  | } | 
|  | LLVM_DEBUG({ dbgs() << "reserveResources: done!\n\n"; }); | 
|  | } | 
|  |  | 
|  | bool ResourceManager::canReserveResources(const MachineInstr &MI) const { | 
|  | return canReserveResources(&MI.getDesc()); | 
|  | } | 
|  |  | 
|  | void ResourceManager::reserveResources(const MachineInstr &MI) { | 
|  | return reserveResources(&MI.getDesc()); | 
|  | } | 
|  |  | 
|  | void ResourceManager::clearResources() { | 
|  | if (UseDFA) | 
|  | return DFAResources->clearResources(); | 
|  | std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); | 
|  | } | 
|  |  |