|  | //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements bookkeeping for "interesting" users of expressions | 
|  | // computed from induction variables. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/IVUsers.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/CodeMetrics.h" | 
|  | #include "llvm/Analysis/LoopAnalysisManager.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "iv-users" | 
|  |  | 
|  | AnalysisKey IVUsersAnalysis::Key; | 
|  |  | 
|  | IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM, | 
|  | LoopStandardAnalysisResults &AR) { | 
|  | return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE); | 
|  | } | 
|  |  | 
|  | char IVUsersWrapperPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users", | 
|  | "Induction Variable Users", false, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) | 
|  | INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users", | 
|  | false, true) | 
|  |  | 
|  | Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); } | 
|  |  | 
|  | /// isInteresting - Test whether the given expression is "interesting" when | 
|  | /// used by the given expression, within the context of analyzing the | 
|  | /// given loop. | 
|  | static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, | 
|  | ScalarEvolution *SE, LoopInfo *LI) { | 
|  | // An addrec is interesting if it's affine or if it has an interesting start. | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | // Keep things simple. Don't touch loop-variant strides unless they're | 
|  | // only used outside the loop and we can simplify them. | 
|  | if (AR->getLoop() == L) | 
|  | return AR->isAffine() || | 
|  | (!L->contains(I) && | 
|  | SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR); | 
|  | // Otherwise recurse to see if the start value is interesting, and that | 
|  | // the step value is not interesting, since we don't yet know how to | 
|  | // do effective SCEV expansions for addrecs with interesting steps. | 
|  | return isInteresting(AR->getStart(), I, L, SE, LI) && | 
|  | !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI); | 
|  | } | 
|  |  | 
|  | // An add is interesting if exactly one of its operands is interesting. | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | bool AnyInterestingYet = false; | 
|  | for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end(); | 
|  | OI != OE; ++OI) | 
|  | if (isInteresting(*OI, I, L, SE, LI)) { | 
|  | if (AnyInterestingYet) | 
|  | return false; | 
|  | AnyInterestingYet = true; | 
|  | } | 
|  | return AnyInterestingYet; | 
|  | } | 
|  |  | 
|  | // Nothing else is interesting here. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if all loop headers that dominate this block are in simplified | 
|  | /// form. | 
|  | static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT, | 
|  | const LoopInfo *LI, | 
|  | SmallPtrSetImpl<Loop*> &SimpleLoopNests) { | 
|  | Loop *NearestLoop = nullptr; | 
|  | for (DomTreeNode *Rung = DT->getNode(BB); | 
|  | Rung; Rung = Rung->getIDom()) { | 
|  | BasicBlock *DomBB = Rung->getBlock(); | 
|  | Loop *DomLoop = LI->getLoopFor(DomBB); | 
|  | if (DomLoop && DomLoop->getHeader() == DomBB) { | 
|  | // If the domtree walk reaches a loop with no preheader, return false. | 
|  | if (!DomLoop->isLoopSimplifyForm()) | 
|  | return false; | 
|  | // If we have already checked this loop nest, stop checking. | 
|  | if (SimpleLoopNests.count(DomLoop)) | 
|  | break; | 
|  | // If we have not already checked this loop nest, remember the loop | 
|  | // header nearest to BB. The nearest loop may not contain BB. | 
|  | if (!NearestLoop) | 
|  | NearestLoop = DomLoop; | 
|  | } | 
|  | } | 
|  | if (NearestLoop) | 
|  | SimpleLoopNests.insert(NearestLoop); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// AddUsersImpl - Inspect the specified instruction.  If it is a | 
|  | /// reducible SCEV, recursively add its users to the IVUsesByStride set and | 
|  | /// return true.  Otherwise, return false. | 
|  | bool IVUsers::AddUsersImpl(Instruction *I, | 
|  | SmallPtrSetImpl<Loop*> &SimpleLoopNests) { | 
|  | const DataLayout &DL = I->getModule()->getDataLayout(); | 
|  |  | 
|  | // Add this IV user to the Processed set before returning false to ensure that | 
|  | // all IV users are members of the set. See IVUsers::isIVUserOrOperand. | 
|  | if (!Processed.insert(I).second) | 
|  | return true;    // Instruction already handled. | 
|  |  | 
|  | if (!SE->isSCEVable(I->getType())) | 
|  | return false;   // Void and FP expressions cannot be reduced. | 
|  |  | 
|  | // IVUsers is used by LSR which assumes that all SCEV expressions are safe to | 
|  | // pass to SCEVExpander. Expressions are not safe to expand if they represent | 
|  | // operations that are not safe to speculate, namely integer division. | 
|  | if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I)) | 
|  | return false; | 
|  |  | 
|  | // LSR is not APInt clean, do not touch integers bigger than 64-bits. | 
|  | // Also avoid creating IVs of non-native types. For example, we don't want a | 
|  | // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. | 
|  | uint64_t Width = SE->getTypeSizeInBits(I->getType()); | 
|  | if (Width > 64 || !DL.isLegalInteger(Width)) | 
|  | return false; | 
|  |  | 
|  | // Don't attempt to promote ephemeral values to indvars. They will be removed | 
|  | // later anyway. | 
|  | if (EphValues.count(I)) | 
|  | return false; | 
|  |  | 
|  | // Get the symbolic expression for this instruction. | 
|  | const SCEV *ISE = SE->getSCEV(I); | 
|  |  | 
|  | // If we've come to an uninteresting expression, stop the traversal and | 
|  | // call this a user. | 
|  | if (!isInteresting(ISE, I, L, SE, LI)) | 
|  | return false; | 
|  |  | 
|  | SmallPtrSet<Instruction *, 4> UniqueUsers; | 
|  | for (Use &U : I->uses()) { | 
|  | Instruction *User = cast<Instruction>(U.getUser()); | 
|  | if (!UniqueUsers.insert(User).second) | 
|  | continue; | 
|  |  | 
|  | // Do not infinitely recurse on PHI nodes. | 
|  | if (isa<PHINode>(User) && Processed.count(User)) | 
|  | continue; | 
|  |  | 
|  | // Only consider IVUsers that are dominated by simplified loop | 
|  | // headers. Otherwise, SCEVExpander will crash. | 
|  | BasicBlock *UseBB = User->getParent(); | 
|  | // A phi's use is live out of its predecessor block. | 
|  | if (PHINode *PHI = dyn_cast<PHINode>(User)) { | 
|  | unsigned OperandNo = U.getOperandNo(); | 
|  | unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo); | 
|  | UseBB = PHI->getIncomingBlock(ValNo); | 
|  | } | 
|  | if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests)) | 
|  | return false; | 
|  |  | 
|  | // Descend recursively, but not into PHI nodes outside the current loop. | 
|  | // It's important to see the entire expression outside the loop to get | 
|  | // choices that depend on addressing mode use right, although we won't | 
|  | // consider references outside the loop in all cases. | 
|  | // If User is already in Processed, we don't want to recurse into it again, | 
|  | // but do want to record a second reference in the same instruction. | 
|  | bool AddUserToIVUsers = false; | 
|  | if (LI->getLoopFor(User->getParent()) != L) { | 
|  | if (isa<PHINode>(User) || Processed.count(User) || | 
|  | !AddUsersImpl(User, SimpleLoopNests)) { | 
|  | DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' | 
|  | << "   OF SCEV: " << *ISE << '\n'); | 
|  | AddUserToIVUsers = true; | 
|  | } | 
|  | } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) { | 
|  | DEBUG(dbgs() << "FOUND USER: " << *User << '\n' | 
|  | << "   OF SCEV: " << *ISE << '\n'); | 
|  | AddUserToIVUsers = true; | 
|  | } | 
|  |  | 
|  | if (AddUserToIVUsers) { | 
|  | // Okay, we found a user that we cannot reduce. | 
|  | IVStrideUse &NewUse = AddUser(User, I); | 
|  | // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. | 
|  | // The regular return value here is discarded; instead of recording | 
|  | // it, we just recompute it when we need it. | 
|  | const SCEV *OriginalISE = ISE; | 
|  | ISE = TransformForPostIncUse(NormalizeAutodetect, | 
|  | ISE, User, I, | 
|  | NewUse.PostIncLoops, | 
|  | *SE, *DT); | 
|  |  | 
|  | // PostIncNormalization effectively simplifies the expression under | 
|  | // pre-increment assumptions. Those assumptions (no wrapping) might not | 
|  | // hold for the post-inc value. Catch such cases by making sure the | 
|  | // transformation is invertible. | 
|  | if (OriginalISE != ISE) { | 
|  | const SCEV *DenormalizedISE = | 
|  | TransformForPostIncUse(Denormalize, ISE, User, I, | 
|  | NewUse.PostIncLoops, *SE, *DT); | 
|  |  | 
|  | // If we normalized the expression, but denormalization doesn't give the | 
|  | // original one, discard this user. | 
|  | if (OriginalISE != DenormalizedISE) { | 
|  | DEBUG(dbgs() << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): " | 
|  | << *ISE << '\n'); | 
|  | IVUses.pop_back(); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | DEBUG(if (SE->getSCEV(I) != ISE) | 
|  | dbgs() << "   NORMALIZED TO: " << *ISE << '\n'); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool IVUsers::AddUsersIfInteresting(Instruction *I) { | 
|  | // SCEVExpander can only handle users that are dominated by simplified loop | 
|  | // entries. Keep track of all loops that are only dominated by other simple | 
|  | // loops so we don't traverse the domtree for each user. | 
|  | SmallPtrSet<Loop*,16> SimpleLoopNests; | 
|  |  | 
|  | return AddUsersImpl(I, SimpleLoopNests); | 
|  | } | 
|  |  | 
|  | IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { | 
|  | IVUses.push_back(new IVStrideUse(this, User, Operand)); | 
|  | return IVUses.back(); | 
|  | } | 
|  |  | 
|  | IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT, | 
|  | ScalarEvolution *SE) | 
|  | : L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() { | 
|  | // Collect ephemeral values so that AddUsersIfInteresting skips them. | 
|  | EphValues.clear(); | 
|  | CodeMetrics::collectEphemeralValues(L, AC, EphValues); | 
|  |  | 
|  | // Find all uses of induction variables in this loop, and categorize | 
|  | // them by stride.  Start by finding all of the PHI nodes in the header for | 
|  | // this loop.  If they are induction variables, inspect their uses. | 
|  | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) | 
|  | (void)AddUsersIfInteresting(&*I); | 
|  | } | 
|  |  | 
|  | void IVUsers::print(raw_ostream &OS, const Module *M) const { | 
|  | OS << "IV Users for loop "; | 
|  | L->getHeader()->printAsOperand(OS, false); | 
|  | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { | 
|  | OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); | 
|  | } | 
|  | OS << ":\n"; | 
|  |  | 
|  | for (const IVStrideUse &IVUse : IVUses) { | 
|  | OS << "  "; | 
|  | IVUse.getOperandValToReplace()->printAsOperand(OS, false); | 
|  | OS << " = " << *getReplacementExpr(IVUse); | 
|  | for (auto PostIncLoop : IVUse.PostIncLoops) { | 
|  | OS << " (post-inc with loop "; | 
|  | PostIncLoop->getHeader()->printAsOperand(OS, false); | 
|  | OS << ")"; | 
|  | } | 
|  | OS << " in  "; | 
|  | if (IVUse.getUser()) | 
|  | IVUse.getUser()->print(OS); | 
|  | else | 
|  | OS << "Printing <null> User"; | 
|  | OS << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); } | 
|  | #endif | 
|  |  | 
|  | void IVUsers::releaseMemory() { | 
|  | Processed.clear(); | 
|  | IVUses.clear(); | 
|  | } | 
|  |  | 
|  | IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) { | 
|  | initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<ScalarEvolutionWrapperPass>(); | 
|  | AU.setPreservesAll(); | 
|  | } | 
|  |  | 
|  | bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) { | 
|  | auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( | 
|  | *L->getHeader()->getParent()); | 
|  | auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | 
|  |  | 
|  | IU.reset(new IVUsers(L, AC, LI, DT, SE)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const { | 
|  | IU->print(OS, M); | 
|  | } | 
|  |  | 
|  | void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); } | 
|  |  | 
|  | /// getReplacementExpr - Return a SCEV expression which computes the | 
|  | /// value of the OperandValToReplace. | 
|  | const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { | 
|  | return SE->getSCEV(IU.getOperandValToReplace()); | 
|  | } | 
|  |  | 
|  | /// getExpr - Return the expression for the use. | 
|  | const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { | 
|  | return | 
|  | TransformForPostIncUse(Normalize, getReplacementExpr(IU), | 
|  | IU.getUser(), IU.getOperandValToReplace(), | 
|  | const_cast<PostIncLoopSet &>(IU.getPostIncLoops()), | 
|  | *SE, *DT); | 
|  | } | 
|  |  | 
|  | static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | if (AR->getLoop() == L) | 
|  | return AR; | 
|  | return findAddRecForLoop(AR->getStart(), L); | 
|  | } | 
|  |  | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); | 
|  | I != E; ++I) | 
|  | if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L)) | 
|  | return AR; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { | 
|  | if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L)) | 
|  | return AR->getStepRecurrence(*SE); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void IVStrideUse::transformToPostInc(const Loop *L) { | 
|  | PostIncLoops.insert(L); | 
|  | } | 
|  |  | 
|  | void IVStrideUse::deleted() { | 
|  | // Remove this user from the list. | 
|  | Parent->Processed.erase(this->getUser()); | 
|  | Parent->IVUses.erase(this); | 
|  | // this now dangles! | 
|  | } |