|  | //===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains instruction definitions and patterns needed for 64-bit | 
|  | // code generation on SPARC v9. | 
|  | // | 
|  | // Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can | 
|  | // also be used in 32-bit code running on a SPARC v9 CPU. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let Predicates = [Is64Bit] in { | 
|  | // The same integer registers are used for i32 and i64 values. | 
|  | // When registers hold i32 values, the high bits are don't care. | 
|  | // This give us free trunc and anyext. | 
|  | def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>; | 
|  | def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>; | 
|  |  | 
|  | } // Predicates = [Is64Bit] | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // 64-bit Shift Instructions. | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The 32-bit shift instructions are still available. The left shift srl | 
|  | // instructions shift all 64 bits, but it only accepts a 5-bit shift amount. | 
|  | // | 
|  | // The srl instructions only shift the low 32 bits and clear the high 32 bits. | 
|  | // Finally, sra shifts the low 32 bits and sign-extends to 64 bits. | 
|  |  | 
|  | let Predicates = [Is64Bit] in { | 
|  |  | 
|  | def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>; | 
|  | def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>; | 
|  |  | 
|  | def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>; | 
|  | def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>; | 
|  |  | 
|  | defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>; | 
|  | defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>; | 
|  | defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>; | 
|  |  | 
|  | } // Predicates = [Is64Bit] | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // 64-bit Immediates. | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // All 32-bit immediates can be materialized with sethi+or, but 64-bit | 
|  | // immediates may require more code. There may be a point where it is | 
|  | // preferable to use a constant pool load instead, depending on the | 
|  | // microarchitecture. | 
|  |  | 
|  | // Single-instruction patterns. | 
|  |  | 
|  | // The ALU instructions want their simm13 operands as i32 immediates. | 
|  | def as_i32imm : SDNodeXForm<imm, [{ | 
|  | return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32); | 
|  | }]>; | 
|  | def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>; | 
|  | def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>; | 
|  |  | 
|  | // Double-instruction patterns. | 
|  |  | 
|  | // All unsigned i32 immediates can be handled by sethi+or. | 
|  | def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>; | 
|  | def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>, | 
|  | Requires<[Is64Bit]>; | 
|  |  | 
|  | // All negative i33 immediates can be handled by sethi+xor. | 
|  | def nimm33 : PatLeaf<(imm), [{ | 
|  | int64_t Imm = N->getSExtValue(); | 
|  | return Imm < 0 && isInt<33>(Imm); | 
|  | }]>; | 
|  | // Bits 10-31 inverted. Same as assembler's %hix. | 
|  | def HIX22 : SDNodeXForm<imm, [{ | 
|  | uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1); | 
|  | return CurDAG->getTargetConstant(Val, MVT::i32); | 
|  | }]>; | 
|  | // Bits 0-9 with ones in bits 10-31. Same as assembler's %lox. | 
|  | def LOX10 : SDNodeXForm<imm, [{ | 
|  | return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32); | 
|  | }]>; | 
|  | def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>, | 
|  | Requires<[Is64Bit]>; | 
|  |  | 
|  | // More possible patterns: | 
|  | // | 
|  | //   (sllx sethi, n) | 
|  | //   (sllx simm13, n) | 
|  | // | 
|  | // 3 instrs: | 
|  | // | 
|  | //   (xor (sllx sethi), simm13) | 
|  | //   (sllx (xor sethi, simm13)) | 
|  | // | 
|  | // 4 instrs: | 
|  | // | 
|  | //   (or sethi, (sllx sethi)) | 
|  | //   (xnor sethi, (sllx sethi)) | 
|  | // | 
|  | // 5 instrs: | 
|  | // | 
|  | //   (or (sllx sethi), (or sethi, simm13)) | 
|  | //   (xnor (sllx sethi), (or sethi, simm13)) | 
|  | //   (or (sllx sethi), (sllx sethi)) | 
|  | //   (xnor (sllx sethi), (sllx sethi)) | 
|  | // | 
|  | // Worst case is 6 instrs: | 
|  | // | 
|  | //   (or (sllx (or sethi, simmm13)), (or sethi, simm13)) | 
|  |  | 
|  | // Bits 42-63, same as assembler's %hh. | 
|  | def HH22 : SDNodeXForm<imm, [{ | 
|  | uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1); | 
|  | return CurDAG->getTargetConstant(Val, MVT::i32); | 
|  | }]>; | 
|  | // Bits 32-41, same as assembler's %hm. | 
|  | def HM10 : SDNodeXForm<imm, [{ | 
|  | uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1); | 
|  | return CurDAG->getTargetConstant(Val, MVT::i32); | 
|  | }]>; | 
|  | def : Pat<(i64 imm:$val), | 
|  | (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)), | 
|  | (ORri (SETHIi (HI22 $val)), (LO10 $val)))>, | 
|  | Requires<[Is64Bit]>; | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // 64-bit Integer Arithmetic and Logic. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let Predicates = [Is64Bit] in { | 
|  |  | 
|  | // Register-register instructions. | 
|  | let isCodeGenOnly = 1 in { | 
|  | defm ANDX    : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>; | 
|  | defm ORX     : F3_12<"or",  0b000010, or,  I64Regs, i64, i64imm>; | 
|  | defm XORX    : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>; | 
|  |  | 
|  | def ANDXNrr  : F3_1<2, 0b000101, | 
|  | (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c), | 
|  | "andn $b, $c, $dst", | 
|  | [(set i64:$dst, (and i64:$b, (not i64:$c)))]>; | 
|  | def ORXNrr   : F3_1<2, 0b000110, | 
|  | (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c), | 
|  | "orn $b, $c, $dst", | 
|  | [(set i64:$dst, (or i64:$b, (not i64:$c)))]>; | 
|  | def XNORXrr  : F3_1<2, 0b000111, | 
|  | (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c), | 
|  | "xnor $b, $c, $dst", | 
|  | [(set i64:$dst, (not (xor i64:$b, i64:$c)))]>; | 
|  |  | 
|  | defm ADDX    : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>; | 
|  | defm SUBX    : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>; | 
|  |  | 
|  | def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd), | 
|  | (ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym), | 
|  | "add $rs1, $rs2, $rd, $sym", | 
|  | [(set i64:$rd, | 
|  | (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>; | 
|  |  | 
|  | // "LEA" form of add | 
|  | def LEAX_ADDri : F3_2<2, 0b000000, | 
|  | (outs I64Regs:$dst), (ins MEMri:$addr), | 
|  | "add ${addr:arith}, $dst", | 
|  | [(set iPTR:$dst, ADDRri:$addr)]>; | 
|  | } | 
|  |  | 
|  | def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>; | 
|  | def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>; | 
|  | def : Pat<(ctpop i64:$src), (POPCrr $src)>; | 
|  |  | 
|  | } // Predicates = [Is64Bit] | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // 64-bit Integer Multiply and Divide. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let Predicates = [Is64Bit] in { | 
|  |  | 
|  | def MULXrr : F3_1<2, 0b001001, | 
|  | (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), | 
|  | "mulx $rs1, $rs2, $rd", | 
|  | [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>; | 
|  | def MULXri : F3_2<2, 0b001001, | 
|  | (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13), | 
|  | "mulx $rs1, $simm13, $rd", | 
|  | [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>; | 
|  |  | 
|  | // Division can trap. | 
|  | let hasSideEffects = 1 in { | 
|  | def SDIVXrr : F3_1<2, 0b101101, | 
|  | (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), | 
|  | "sdivx $rs1, $rs2, $rd", | 
|  | [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>; | 
|  | def SDIVXri : F3_2<2, 0b101101, | 
|  | (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13), | 
|  | "sdivx $rs1, $simm13, $rd", | 
|  | [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>; | 
|  |  | 
|  | def UDIVXrr : F3_1<2, 0b001101, | 
|  | (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), | 
|  | "udivx $rs1, $rs2, $rd", | 
|  | [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>; | 
|  | def UDIVXri : F3_2<2, 0b001101, | 
|  | (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13), | 
|  | "udivx $rs1, $simm13, $rd", | 
|  | [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>; | 
|  | } // hasSideEffects = 1 | 
|  |  | 
|  | } // Predicates = [Is64Bit] | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // 64-bit Loads and Stores. | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // All the 32-bit loads and stores are available. The extending loads are sign | 
|  | // or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits | 
|  | // zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned | 
|  | // Word). | 
|  | // | 
|  | // SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads. | 
|  |  | 
|  | let Predicates = [Is64Bit] in { | 
|  |  | 
|  | // 64-bit loads. | 
|  | let DecoderMethod = "DecodeLoadInt" in | 
|  | defm LDX   : Load<"ldx", 0b001011, load, I64Regs, i64>; | 
|  |  | 
|  | let mayLoad = 1, isCodeGenOnly = 1, isAsmParserOnly = 1 in | 
|  | def TLS_LDXrr : F3_1<3, 0b001011, | 
|  | (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym), | 
|  | "ldx [$addr], $dst, $sym", | 
|  | [(set i64:$dst, | 
|  | (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>; | 
|  |  | 
|  | // Extending loads to i64. | 
|  | def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; | 
|  | def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; | 
|  | def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; | 
|  | def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; | 
|  |  | 
|  | def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; | 
|  | def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; | 
|  | def : Pat<(i64 (extloadi8 ADDRrr:$addr)),  (LDUBrr ADDRrr:$addr)>; | 
|  | def : Pat<(i64 (extloadi8 ADDRri:$addr)),  (LDUBri ADDRri:$addr)>; | 
|  | def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>; | 
|  | def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>; | 
|  |  | 
|  | def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>; | 
|  | def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>; | 
|  | def : Pat<(i64 (extloadi16 ADDRrr:$addr)),  (LDUHrr ADDRrr:$addr)>; | 
|  | def : Pat<(i64 (extloadi16 ADDRri:$addr)),  (LDUHri ADDRri:$addr)>; | 
|  | def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>; | 
|  | def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>; | 
|  |  | 
|  | def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>; | 
|  | def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>; | 
|  | def : Pat<(i64 (extloadi32 ADDRrr:$addr)),  (LDrr ADDRrr:$addr)>; | 
|  | def : Pat<(i64 (extloadi32 ADDRri:$addr)),  (LDri ADDRri:$addr)>; | 
|  |  | 
|  | // Sign-extending load of i32 into i64 is a new SPARC v9 instruction. | 
|  | let DecoderMethod = "DecodeLoadInt" in | 
|  | defm LDSW   : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>; | 
|  |  | 
|  | // 64-bit stores. | 
|  | let DecoderMethod = "DecodeStoreInt" in | 
|  | defm STX    : Store<"stx", 0b001110, store,  I64Regs, i64>; | 
|  |  | 
|  | // Truncating stores from i64 are identical to the i32 stores. | 
|  | def : Pat<(truncstorei8  i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>; | 
|  | def : Pat<(truncstorei8  i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>; | 
|  | def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>; | 
|  | def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>; | 
|  | def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr  ADDRrr:$addr, $src)>; | 
|  | def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri  ADDRri:$addr, $src)>; | 
|  |  | 
|  | // store 0, addr -> store %g0, addr | 
|  | def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>; | 
|  | def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>; | 
|  |  | 
|  | } // Predicates = [Is64Bit] | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // 64-bit Conditionals. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // | 
|  | // Flag-setting instructions like subcc and addcc set both icc and xcc flags. | 
|  | // The icc flags correspond to the 32-bit result, and the xcc are for the | 
|  | // full 64-bit result. | 
|  | // | 
|  | // We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for | 
|  | // 64-bit compares. See LowerBR_CC. | 
|  |  | 
|  | let Predicates = [Is64Bit] in { | 
|  |  | 
|  | let Uses = [ICC], cc = 0b10 in | 
|  | defm BPX : IPredBranch<"%xcc", [(SPbrxcc bb:$imm19, imm:$cond)]>; | 
|  |  | 
|  | // Conditional moves on %xcc. | 
|  | let Uses = [ICC], Constraints = "$f = $rd" in { | 
|  | let intcc = 1, cc = 0b10 in { | 
|  | def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd), | 
|  | (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), | 
|  | "mov$cond %xcc, $rs2, $rd", | 
|  | [(set i32:$rd, | 
|  | (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>; | 
|  | def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd), | 
|  | (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), | 
|  | "mov$cond %xcc, $simm11, $rd", | 
|  | [(set i32:$rd, | 
|  | (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>; | 
|  | } // cc | 
|  |  | 
|  | let intcc = 1, opf_cc = 0b10 in { | 
|  | def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), | 
|  | (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), | 
|  | "fmovs$cond %xcc, $rs2, $rd", | 
|  | [(set f32:$rd, | 
|  | (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>; | 
|  | def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), | 
|  | (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), | 
|  | "fmovd$cond %xcc, $rs2, $rd", | 
|  | [(set f64:$rd, | 
|  | (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>; | 
|  | def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), | 
|  | (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), | 
|  | "fmovq$cond %xcc, $rs2, $rd", | 
|  | [(set f128:$rd, | 
|  | (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>; | 
|  | } // opf_cc | 
|  | } // Uses, Constraints | 
|  |  | 
|  | // Branch On integer register with Prediction (BPr). | 
|  | let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in | 
|  | multiclass BranchOnReg<bits<3> cond, string OpcStr> { | 
|  | def napt : F2_4<cond, 0, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16), | 
|  | !strconcat(OpcStr, " $rs1, $imm16"), []>; | 
|  | def apt  : F2_4<cond, 1, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16), | 
|  | !strconcat(OpcStr, ",a $rs1, $imm16"), []>; | 
|  | def napn  : F2_4<cond, 0, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16), | 
|  | !strconcat(OpcStr, ",pn $rs1, $imm16"), []>; | 
|  | def apn : F2_4<cond, 1, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16), | 
|  | !strconcat(OpcStr, ",a,pn $rs1, $imm16"), []>; | 
|  | } | 
|  |  | 
|  | multiclass bpr_alias<string OpcStr, Instruction NAPT, Instruction APT> { | 
|  | def : InstAlias<!strconcat(OpcStr, ",pt $rs1, $imm16"), | 
|  | (NAPT I64Regs:$rs1, bprtarget16:$imm16)>; | 
|  | def : InstAlias<!strconcat(OpcStr, ",a,pt $rs1, $imm16"), | 
|  | (APT I64Regs:$rs1, bprtarget16:$imm16)>; | 
|  | } | 
|  |  | 
|  | defm BPZ   : BranchOnReg<0b001, "brz">; | 
|  | defm BPLEZ : BranchOnReg<0b010, "brlez">; | 
|  | defm BPLZ  : BranchOnReg<0b011, "brlz">; | 
|  | defm BPNZ  : BranchOnReg<0b101, "brnz">; | 
|  | defm BPGZ  : BranchOnReg<0b110, "brgz">; | 
|  | defm BPGEZ : BranchOnReg<0b111, "brgez">; | 
|  |  | 
|  | defm : bpr_alias<"brz",   BPZnapt,   BPZapt  >; | 
|  | defm : bpr_alias<"brlez", BPLEZnapt, BPLEZapt>; | 
|  | defm : bpr_alias<"brlz",  BPLZnapt,  BPLZapt >; | 
|  | defm : bpr_alias<"brnz",  BPNZnapt,  BPNZapt >; | 
|  | defm : bpr_alias<"brgz",  BPGZnapt,  BPGZapt >; | 
|  | defm : bpr_alias<"brgez", BPGEZnapt, BPGEZapt>; | 
|  |  | 
|  | // Move integer register on register condition (MOVr). | 
|  | multiclass MOVR< bits<3> rcond,  string OpcStr> { | 
|  | def rr : F4_4r<0b101111, 0b00000, rcond, (outs I64Regs:$rd), | 
|  | (ins I64Regs:$rs1, IntRegs:$rs2), | 
|  | !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>; | 
|  |  | 
|  | def ri : F4_4i<0b101111, rcond, (outs I64Regs:$rd), | 
|  | (ins I64Regs:$rs1, i64imm:$simm10), | 
|  | !strconcat(OpcStr, " $rs1, $simm10, $rd"), []>; | 
|  | } | 
|  |  | 
|  | defm MOVRRZ  : MOVR<0b001, "movrz">; | 
|  | defm MOVRLEZ : MOVR<0b010, "movrlez">; | 
|  | defm MOVRLZ  : MOVR<0b011, "movrlz">; | 
|  | defm MOVRNZ  : MOVR<0b101, "movrnz">; | 
|  | defm MOVRGZ  : MOVR<0b110, "movrgz">; | 
|  | defm MOVRGEZ : MOVR<0b111, "movrgez">; | 
|  |  | 
|  | // Move FP register on integer register condition (FMOVr). | 
|  | multiclass FMOVR<bits<3> rcond, string OpcStr> { | 
|  |  | 
|  | def S : F4_4r<0b110101, 0b00101, rcond, | 
|  | (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2), | 
|  | !strconcat(!strconcat("fmovrs", OpcStr)," $rs1, $rs2, $rd"), | 
|  | []>; | 
|  | def D : F4_4r<0b110101, 0b00110, rcond, | 
|  | (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2), | 
|  | !strconcat(!strconcat("fmovrd", OpcStr)," $rs1, $rs2, $rd"), | 
|  | []>; | 
|  | def Q : F4_4r<0b110101, 0b00111, rcond, | 
|  | (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2), | 
|  | !strconcat(!strconcat("fmovrq", OpcStr)," $rs1, $rs2, $rd"), | 
|  | []>, Requires<[HasHardQuad]>; | 
|  | } | 
|  |  | 
|  | let Predicates = [HasV9] in { | 
|  | defm FMOVRZ   : FMOVR<0b001, "z">; | 
|  | defm FMOVRLEZ : FMOVR<0b010, "lez">; | 
|  | defm FMOVRLZ  : FMOVR<0b011, "lz">; | 
|  | defm FMOVRNZ  : FMOVR<0b101, "nz">; | 
|  | defm FMOVRGZ  : FMOVR<0b110, "gz">; | 
|  | defm FMOVRGEZ : FMOVR<0b111, "gez">; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // 64-bit Floating Point Conversions. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let Predicates = [Is64Bit] in { | 
|  |  | 
|  | def FXTOS : F3_3u<2, 0b110100, 0b010000100, | 
|  | (outs FPRegs:$rd), (ins DFPRegs:$rs2), | 
|  | "fxtos $rs2, $rd", | 
|  | [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>; | 
|  | def FXTOD : F3_3u<2, 0b110100, 0b010001000, | 
|  | (outs DFPRegs:$rd), (ins DFPRegs:$rs2), | 
|  | "fxtod $rs2, $rd", | 
|  | [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>; | 
|  | def FXTOQ : F3_3u<2, 0b110100, 0b010001100, | 
|  | (outs QFPRegs:$rd), (ins DFPRegs:$rs2), | 
|  | "fxtoq $rs2, $rd", | 
|  | [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  |  | 
|  | def FSTOX : F3_3u<2, 0b110100, 0b010000001, | 
|  | (outs DFPRegs:$rd), (ins FPRegs:$rs2), | 
|  | "fstox $rs2, $rd", | 
|  | [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>; | 
|  | def FDTOX : F3_3u<2, 0b110100, 0b010000010, | 
|  | (outs DFPRegs:$rd), (ins DFPRegs:$rs2), | 
|  | "fdtox $rs2, $rd", | 
|  | [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>; | 
|  | def FQTOX : F3_3u<2, 0b110100, 0b010000011, | 
|  | (outs DFPRegs:$rd), (ins QFPRegs:$rs2), | 
|  | "fqtox $rs2, $rd", | 
|  | [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  |  | 
|  | } // Predicates = [Is64Bit] | 
|  |  | 
|  | def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond), | 
|  | (MOVXCCrr $t, $f, imm:$cond)>; | 
|  | def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond), | 
|  | (MOVXCCri (as_i32imm $t), $f, imm:$cond)>; | 
|  |  | 
|  | def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond), | 
|  | (MOVICCrr $t, $f, imm:$cond)>; | 
|  | def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond), | 
|  | (MOVICCri (as_i32imm $t), $f, imm:$cond)>; | 
|  |  | 
|  | def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond), | 
|  | (MOVFCCrr $t, $f, imm:$cond)>; | 
|  | def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond), | 
|  | (MOVFCCri (as_i32imm $t), $f, imm:$cond)>; | 
|  |  | 
|  | } // Predicates = [Is64Bit] | 
|  |  | 
|  |  | 
|  | // 64 bit SETHI | 
|  | let Predicates = [Is64Bit], isCodeGenOnly = 1 in { | 
|  | def SETHIXi : F2_1<0b100, | 
|  | (outs IntRegs:$rd), (ins i64imm:$imm22), | 
|  | "sethi $imm22, $rd", | 
|  | [(set i64:$rd, SETHIimm:$imm22)]>; | 
|  | } | 
|  |  | 
|  | // ATOMICS. | 
|  | let Predicates = [Is64Bit], Constraints = "$swap = $rd" in { | 
|  | def CASXrr: F3_1_asi<3, 0b111110, 0b10000000, | 
|  | (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2, | 
|  | I64Regs:$swap), | 
|  | "casx [$rs1], $rs2, $rd", | 
|  | [(set i64:$rd, | 
|  | (atomic_cmp_swap i64:$rs1, i64:$rs2, i64:$swap))]>; | 
|  |  | 
|  | } // Predicates = [Is64Bit], Constraints = ... | 
|  |  | 
|  | let Predicates = [Is64Bit] in { | 
|  |  | 
|  | def : Pat<(atomic_fence imm, imm), (MEMBARi 0xf)>; | 
|  |  | 
|  | // atomic_load_64 addr -> load addr | 
|  | def : Pat<(i64 (atomic_load ADDRrr:$src)), (LDXrr ADDRrr:$src)>; | 
|  | def : Pat<(i64 (atomic_load ADDRri:$src)), (LDXri ADDRri:$src)>; | 
|  |  | 
|  | // atomic_store_64 val, addr -> store val, addr | 
|  | def : Pat<(atomic_store ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>; | 
|  | def : Pat<(atomic_store ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>; | 
|  |  | 
|  | } // Predicates = [Is64Bit] | 
|  |  | 
|  | let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1, | 
|  | Defs = [ICC] in | 
|  | multiclass AtomicRMW<SDPatternOperator op32, SDPatternOperator op64> { | 
|  |  | 
|  | def _32 : Pseudo<(outs IntRegs:$rd), | 
|  | (ins ptr_rc:$addr, IntRegs:$rs2), "", | 
|  | [(set i32:$rd, (op32 iPTR:$addr, i32:$rs2))]>; | 
|  |  | 
|  | let Predicates = [Is64Bit] in | 
|  | def _64 : Pseudo<(outs I64Regs:$rd), | 
|  | (ins ptr_rc:$addr, I64Regs:$rs2), "", | 
|  | [(set i64:$rd, (op64 iPTR:$addr, i64:$rs2))]>; | 
|  | } | 
|  |  | 
|  | defm ATOMIC_LOAD_ADD  : AtomicRMW<atomic_load_add_32,  atomic_load_add_64>; | 
|  | defm ATOMIC_LOAD_SUB  : AtomicRMW<atomic_load_sub_32,  atomic_load_sub_64>; | 
|  | defm ATOMIC_LOAD_AND  : AtomicRMW<atomic_load_and_32,  atomic_load_and_64>; | 
|  | defm ATOMIC_LOAD_OR   : AtomicRMW<atomic_load_or_32,   atomic_load_or_64>; | 
|  | defm ATOMIC_LOAD_XOR  : AtomicRMW<atomic_load_xor_32,  atomic_load_xor_64>; | 
|  | defm ATOMIC_LOAD_NAND : AtomicRMW<atomic_load_nand_32, atomic_load_nand_64>; | 
|  | defm ATOMIC_LOAD_MIN  : AtomicRMW<atomic_load_min_32,  atomic_load_min_64>; | 
|  | defm ATOMIC_LOAD_MAX  : AtomicRMW<atomic_load_max_32,  atomic_load_max_64>; | 
|  | defm ATOMIC_LOAD_UMIN : AtomicRMW<atomic_load_umin_32, atomic_load_umin_64>; | 
|  | defm ATOMIC_LOAD_UMAX : AtomicRMW<atomic_load_umax_32, atomic_load_umax_64>; | 
|  |  | 
|  | // There is no 64-bit variant of SWAP, so use a pseudo. | 
|  | let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1, | 
|  | Defs = [ICC], Predicates = [Is64Bit] in | 
|  | def ATOMIC_SWAP_64 : Pseudo<(outs I64Regs:$rd), | 
|  | (ins ptr_rc:$addr, I64Regs:$rs2), "", | 
|  | [(set i64:$rd, | 
|  | (atomic_swap_64 iPTR:$addr, i64:$rs2))]>; | 
|  |  | 
|  | let Predicates = [Is64Bit], hasSideEffects = 1, Uses = [ICC], cc = 0b10 in | 
|  | defm TXCC : TRAP<"%xcc">; | 
|  |  | 
|  | // Global addresses, constant pool entries | 
|  | let Predicates = [Is64Bit] in { | 
|  |  | 
|  | def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; | 
|  | def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>; | 
|  | def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; | 
|  | def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>; | 
|  |  | 
|  | // GlobalTLS addresses | 
|  | def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>; | 
|  | def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>; | 
|  | def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), | 
|  | (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; | 
|  | def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), | 
|  | (XORXri  (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; | 
|  |  | 
|  | // Blockaddress | 
|  | def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; | 
|  | def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>; | 
|  |  | 
|  | // Add reg, lo.  This is used when taking the addr of a global/constpool entry. | 
|  | def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>; | 
|  | def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDXri $r, tconstpool:$in)>; | 
|  | def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), | 
|  | (ADDXri $r, tblockaddress:$in)>; | 
|  | } |