|  | //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the X86 implementation of the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef X86INSTRUCTIONINFO_H | 
|  | #define X86INSTRUCTIONINFO_H | 
|  |  | 
|  | #include "MCTargetDesc/X86BaseInfo.h" | 
|  | #include "X86RegisterInfo.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  |  | 
|  | #define GET_INSTRINFO_HEADER | 
|  | #include "X86GenInstrInfo.inc" | 
|  |  | 
|  | namespace llvm { | 
|  | class X86RegisterInfo; | 
|  | class X86TargetMachine; | 
|  |  | 
|  | namespace X86 { | 
|  | // X86 specific condition code. These correspond to X86_*_COND in | 
|  | // X86InstrInfo.td. They must be kept in synch. | 
|  | enum CondCode { | 
|  | COND_A  = 0, | 
|  | COND_AE = 1, | 
|  | COND_B  = 2, | 
|  | COND_BE = 3, | 
|  | COND_E  = 4, | 
|  | COND_G  = 5, | 
|  | COND_GE = 6, | 
|  | COND_L  = 7, | 
|  | COND_LE = 8, | 
|  | COND_NE = 9, | 
|  | COND_NO = 10, | 
|  | COND_NP = 11, | 
|  | COND_NS = 12, | 
|  | COND_O  = 13, | 
|  | COND_P  = 14, | 
|  | COND_S  = 15, | 
|  |  | 
|  | // Artificial condition codes. These are used by AnalyzeBranch | 
|  | // to indicate a block terminated with two conditional branches to | 
|  | // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE, | 
|  | // which can't be represented on x86 with a single condition. These | 
|  | // are never used in MachineInstrs. | 
|  | COND_NE_OR_P, | 
|  | COND_NP_OR_E, | 
|  |  | 
|  | COND_INVALID | 
|  | }; | 
|  |  | 
|  | // Turn condition code into conditional branch opcode. | 
|  | unsigned GetCondBranchFromCond(CondCode CC); | 
|  |  | 
|  | // Turn CMov opcode into condition code. | 
|  | CondCode getCondFromCMovOpc(unsigned Opc); | 
|  |  | 
|  | /// GetOppositeBranchCondition - Return the inverse of the specified cond, | 
|  | /// e.g. turning COND_E to COND_NE. | 
|  | CondCode GetOppositeBranchCondition(X86::CondCode CC); | 
|  | }  // end namespace X86; | 
|  |  | 
|  |  | 
|  | /// isGlobalStubReference - Return true if the specified TargetFlag operand is | 
|  | /// a reference to a stub for a global, not the global itself. | 
|  | inline static bool isGlobalStubReference(unsigned char TargetFlag) { | 
|  | switch (TargetFlag) { | 
|  | case X86II::MO_DLLIMPORT: // dllimport stub. | 
|  | case X86II::MO_GOTPCREL:  // rip-relative GOT reference. | 
|  | case X86II::MO_GOT:       // normal GOT reference. | 
|  | case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref. | 
|  | case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref. | 
|  | case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref. | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isGlobalRelativeToPICBase - Return true if the specified global value | 
|  | /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this | 
|  | /// is true, the addressing mode has the PIC base register added in (e.g. EBX). | 
|  | inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) { | 
|  | switch (TargetFlag) { | 
|  | case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global. | 
|  | case X86II::MO_GOT:                            // isPICStyleGOT: other global. | 
|  | case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global. | 
|  | case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global. | 
|  | case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global. | 
|  | case X86II::MO_TLVP:                           // ??? Pretty sure.. | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | inline static bool isScale(const MachineOperand &MO) { | 
|  | return MO.isImm() && | 
|  | (MO.getImm() == 1 || MO.getImm() == 2 || | 
|  | MO.getImm() == 4 || MO.getImm() == 8); | 
|  | } | 
|  |  | 
|  | inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) { | 
|  | if (MI->getOperand(Op).isFI()) return true; | 
|  | return Op+X86::AddrSegmentReg <= MI->getNumOperands() && | 
|  | MI->getOperand(Op+X86::AddrBaseReg).isReg() && | 
|  | isScale(MI->getOperand(Op+X86::AddrScaleAmt)) && | 
|  | MI->getOperand(Op+X86::AddrIndexReg).isReg() && | 
|  | (MI->getOperand(Op+X86::AddrDisp).isImm() || | 
|  | MI->getOperand(Op+X86::AddrDisp).isGlobal() || | 
|  | MI->getOperand(Op+X86::AddrDisp).isCPI() || | 
|  | MI->getOperand(Op+X86::AddrDisp).isJTI()); | 
|  | } | 
|  |  | 
|  | inline static bool isMem(const MachineInstr *MI, unsigned Op) { | 
|  | if (MI->getOperand(Op).isFI()) return true; | 
|  | return Op+X86::AddrNumOperands <= MI->getNumOperands() && | 
|  | MI->getOperand(Op+X86::AddrSegmentReg).isReg() && | 
|  | isLeaMem(MI, Op); | 
|  | } | 
|  |  | 
|  | class X86InstrInfo : public X86GenInstrInfo { | 
|  | X86TargetMachine &TM; | 
|  | const X86RegisterInfo RI; | 
|  |  | 
|  | /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1, | 
|  | /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps. | 
|  | /// | 
|  | typedef DenseMap<unsigned, | 
|  | std::pair<unsigned, unsigned> > RegOp2MemOpTableType; | 
|  | RegOp2MemOpTableType RegOp2MemOpTable2Addr; | 
|  | RegOp2MemOpTableType RegOp2MemOpTable0; | 
|  | RegOp2MemOpTableType RegOp2MemOpTable1; | 
|  | RegOp2MemOpTableType RegOp2MemOpTable2; | 
|  | RegOp2MemOpTableType RegOp2MemOpTable3; | 
|  |  | 
|  | /// MemOp2RegOpTable - Load / store unfolding opcode map. | 
|  | /// | 
|  | typedef DenseMap<unsigned, | 
|  | std::pair<unsigned, unsigned> > MemOp2RegOpTableType; | 
|  | MemOp2RegOpTableType MemOp2RegOpTable; | 
|  |  | 
|  | static void AddTableEntry(RegOp2MemOpTableType &R2MTable, | 
|  | MemOp2RegOpTableType &M2RTable, | 
|  | unsigned RegOp, unsigned MemOp, unsigned Flags); | 
|  |  | 
|  | virtual void anchor(); | 
|  |  | 
|  | public: | 
|  | explicit X86InstrInfo(X86TargetMachine &tm); | 
|  |  | 
|  | /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As | 
|  | /// such, whenever a client has an instance of instruction info, it should | 
|  | /// always be able to get register info as well (through this method). | 
|  | /// | 
|  | const X86RegisterInfo &getRegisterInfo() const { return RI; } | 
|  |  | 
|  | /// isCoalescableExtInstr - Return true if the instruction is a "coalescable" | 
|  | /// extension instruction. That is, it's like a copy where it's legal for the | 
|  | /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns | 
|  | /// true, then it's expected the pre-extension value is available as a subreg | 
|  | /// of the result register. This also returns the sub-register index in | 
|  | /// SubIdx. | 
|  | bool isCoalescableExtInstr(const MachineInstr &MI, | 
|  | unsigned &SrcReg, unsigned &DstReg, | 
|  | unsigned &SubIdx) const override; | 
|  |  | 
|  | unsigned isLoadFromStackSlot(const MachineInstr *MI, | 
|  | int &FrameIndex) const override; | 
|  | /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination | 
|  | /// stack locations as well.  This uses a heuristic so it isn't | 
|  | /// reliable for correctness. | 
|  | unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI, | 
|  | int &FrameIndex) const override; | 
|  |  | 
|  | unsigned isStoreToStackSlot(const MachineInstr *MI, | 
|  | int &FrameIndex) const override; | 
|  | /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination | 
|  | /// stack locations as well.  This uses a heuristic so it isn't | 
|  | /// reliable for correctness. | 
|  | unsigned isStoreToStackSlotPostFE(const MachineInstr *MI, | 
|  | int &FrameIndex) const override; | 
|  |  | 
|  | bool isReallyTriviallyReMaterializable(const MachineInstr *MI, | 
|  | AliasAnalysis *AA) const override; | 
|  | void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, | 
|  | unsigned DestReg, unsigned SubIdx, | 
|  | const MachineInstr *Orig, | 
|  | const TargetRegisterInfo &TRI) const override; | 
|  |  | 
|  | /// Given an operand within a MachineInstr, insert preceding code to put it | 
|  | /// into the right format for a particular kind of LEA instruction. This may | 
|  | /// involve using an appropriate super-register instead (with an implicit use | 
|  | /// of the original) or creating a new virtual register and inserting COPY | 
|  | /// instructions to get the data into the right class. | 
|  | /// | 
|  | /// Reference parameters are set to indicate how caller should add this | 
|  | /// operand to the LEA instruction. | 
|  | bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src, | 
|  | unsigned LEAOpcode, bool AllowSP, | 
|  | unsigned &NewSrc, bool &isKill, | 
|  | bool &isUndef, MachineOperand &ImplicitOp) const; | 
|  |  | 
|  | /// convertToThreeAddress - This method must be implemented by targets that | 
|  | /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target | 
|  | /// may be able to convert a two-address instruction into a true | 
|  | /// three-address instruction on demand.  This allows the X86 target (for | 
|  | /// example) to convert ADD and SHL instructions into LEA instructions if they | 
|  | /// would require register copies due to two-addressness. | 
|  | /// | 
|  | /// This method returns a null pointer if the transformation cannot be | 
|  | /// performed, otherwise it returns the new instruction. | 
|  | /// | 
|  | MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, | 
|  | MachineBasicBlock::iterator &MBBI, | 
|  | LiveVariables *LV) const override; | 
|  |  | 
|  | /// commuteInstruction - We have a few instructions that must be hacked on to | 
|  | /// commute them. | 
|  | /// | 
|  | MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const override; | 
|  |  | 
|  | // Branch analysis. | 
|  | bool isUnpredicatedTerminator(const MachineInstr* MI) const override; | 
|  | bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, | 
|  | MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | bool AllowModify) const override; | 
|  | unsigned RemoveBranch(MachineBasicBlock &MBB) const override; | 
|  | unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | const SmallVectorImpl<MachineOperand> &Cond, | 
|  | DebugLoc DL) const override; | 
|  | bool canInsertSelect(const MachineBasicBlock&, | 
|  | const SmallVectorImpl<MachineOperand> &Cond, | 
|  | unsigned, unsigned, int&, int&, int&) const override; | 
|  | void insertSelect(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, DebugLoc DL, | 
|  | unsigned DstReg, | 
|  | const SmallVectorImpl<MachineOperand> &Cond, | 
|  | unsigned TrueReg, unsigned FalseReg) const override; | 
|  | void copyPhysReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, DebugLoc DL, | 
|  | unsigned DestReg, unsigned SrcReg, | 
|  | bool KillSrc) const override; | 
|  | void storeRegToStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned SrcReg, bool isKill, int FrameIndex, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const override; | 
|  |  | 
|  | void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, | 
|  | SmallVectorImpl<MachineOperand> &Addr, | 
|  | const TargetRegisterClass *RC, | 
|  | MachineInstr::mmo_iterator MMOBegin, | 
|  | MachineInstr::mmo_iterator MMOEnd, | 
|  | SmallVectorImpl<MachineInstr*> &NewMIs) const; | 
|  |  | 
|  | void loadRegFromStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned DestReg, int FrameIndex, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const override; | 
|  |  | 
|  | void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, | 
|  | SmallVectorImpl<MachineOperand> &Addr, | 
|  | const TargetRegisterClass *RC, | 
|  | MachineInstr::mmo_iterator MMOBegin, | 
|  | MachineInstr::mmo_iterator MMOEnd, | 
|  | SmallVectorImpl<MachineInstr*> &NewMIs) const; | 
|  |  | 
|  | bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override; | 
|  |  | 
|  | /// foldMemoryOperand - If this target supports it, fold a load or store of | 
|  | /// the specified stack slot into the specified machine instruction for the | 
|  | /// specified operand(s).  If this is possible, the target should perform the | 
|  | /// folding and return true, otherwise it should return false.  If it folds | 
|  | /// the instruction, it is likely that the MachineInstruction the iterator | 
|  | /// references has been changed. | 
|  | MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, | 
|  | MachineInstr* MI, | 
|  | const SmallVectorImpl<unsigned> &Ops, | 
|  | int FrameIndex) const override; | 
|  |  | 
|  | /// foldMemoryOperand - Same as the previous version except it allows folding | 
|  | /// of any load and store from / to any address, not just from a specific | 
|  | /// stack slot. | 
|  | MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, | 
|  | MachineInstr* MI, | 
|  | const SmallVectorImpl<unsigned> &Ops, | 
|  | MachineInstr* LoadMI) const override; | 
|  |  | 
|  | /// canFoldMemoryOperand - Returns true if the specified load / store is | 
|  | /// folding is possible. | 
|  | bool canFoldMemoryOperand(const MachineInstr*, | 
|  | const SmallVectorImpl<unsigned> &) const override; | 
|  |  | 
|  | /// unfoldMemoryOperand - Separate a single instruction which folded a load or | 
|  | /// a store or a load and a store into two or more instruction. If this is | 
|  | /// possible, returns true as well as the new instructions by reference. | 
|  | bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, | 
|  | unsigned Reg, bool UnfoldLoad, bool UnfoldStore, | 
|  | SmallVectorImpl<MachineInstr*> &NewMIs) const override; | 
|  |  | 
|  | bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, | 
|  | SmallVectorImpl<SDNode*> &NewNodes) const override; | 
|  |  | 
|  | /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new | 
|  | /// instruction after load / store are unfolded from an instruction of the | 
|  | /// specified opcode. It returns zero if the specified unfolding is not | 
|  | /// possible. If LoadRegIndex is non-null, it is filled in with the operand | 
|  | /// index of the operand which will hold the register holding the loaded | 
|  | /// value. | 
|  | unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, | 
|  | bool UnfoldLoad, bool UnfoldStore, | 
|  | unsigned *LoadRegIndex = 0) const override; | 
|  |  | 
|  | /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler | 
|  | /// to determine if two loads are loading from the same base address. It | 
|  | /// should only return true if the base pointers are the same and the | 
|  | /// only differences between the two addresses are the offset. It also returns | 
|  | /// the offsets by reference. | 
|  | bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, | 
|  | int64_t &Offset2) const override; | 
|  |  | 
|  | /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to | 
|  | /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should | 
|  | /// be scheduled togther. On some targets if two loads are loading from | 
|  | /// addresses in the same cache line, it's better if they are scheduled | 
|  | /// together. This function takes two integers that represent the load offsets | 
|  | /// from the common base address. It returns true if it decides it's desirable | 
|  | /// to schedule the two loads together. "NumLoads" is the number of loads that | 
|  | /// have already been scheduled after Load1. | 
|  | bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, | 
|  | int64_t Offset1, int64_t Offset2, | 
|  | unsigned NumLoads) const override; | 
|  |  | 
|  | bool shouldScheduleAdjacent(MachineInstr* First, | 
|  | MachineInstr *Second) const override; | 
|  |  | 
|  | void getNoopForMachoTarget(MCInst &NopInst) const override; | 
|  |  | 
|  | bool | 
|  | ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override; | 
|  |  | 
|  | /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine | 
|  | /// instruction that defines the specified register class. | 
|  | bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override; | 
|  |  | 
|  | static bool isX86_64ExtendedReg(const MachineOperand &MO) { | 
|  | if (!MO.isReg()) return false; | 
|  | return X86II::isX86_64ExtendedReg(MO.getReg()); | 
|  | } | 
|  |  | 
|  | /// getGlobalBaseReg - Return a virtual register initialized with the | 
|  | /// the global base register value. Output instructions required to | 
|  | /// initialize the register in the function entry block, if necessary. | 
|  | /// | 
|  | unsigned getGlobalBaseReg(MachineFunction *MF) const; | 
|  |  | 
|  | std::pair<uint16_t, uint16_t> | 
|  | getExecutionDomain(const MachineInstr *MI) const override; | 
|  |  | 
|  | void setExecutionDomain(MachineInstr *MI, unsigned Domain) const override; | 
|  |  | 
|  | unsigned | 
|  | getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, | 
|  | const TargetRegisterInfo *TRI) const override; | 
|  | unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum, | 
|  | const TargetRegisterInfo *TRI) const override; | 
|  | void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, | 
|  | const TargetRegisterInfo *TRI) const override; | 
|  |  | 
|  | MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, | 
|  | MachineInstr* MI, | 
|  | unsigned OpNum, | 
|  | const SmallVectorImpl<MachineOperand> &MOs, | 
|  | unsigned Size, unsigned Alignment) const; | 
|  |  | 
|  | bool isHighLatencyDef(int opc) const override; | 
|  |  | 
|  | bool hasHighOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MachineRegisterInfo *MRI, | 
|  | const MachineInstr *DefMI, unsigned DefIdx, | 
|  | const MachineInstr *UseMI, | 
|  | unsigned UseIdx) const override; | 
|  |  | 
|  | /// analyzeCompare - For a comparison instruction, return the source registers | 
|  | /// in SrcReg and SrcReg2 if having two register operands, and the value it | 
|  | /// compares against in CmpValue. Return true if the comparison instruction | 
|  | /// can be analyzed. | 
|  | bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, | 
|  | unsigned &SrcReg2, int &CmpMask, | 
|  | int &CmpValue) const override; | 
|  |  | 
|  | /// optimizeCompareInstr - Check if there exists an earlier instruction that | 
|  | /// operates on the same source operands and sets flags in the same way as | 
|  | /// Compare; remove Compare if possible. | 
|  | bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, | 
|  | unsigned SrcReg2, int CmpMask, int CmpValue, | 
|  | const MachineRegisterInfo *MRI) const override; | 
|  |  | 
|  | /// optimizeLoadInstr - Try to remove the load by folding it to a register | 
|  | /// operand at the use. We fold the load instructions if and only if the | 
|  | /// def and use are in the same BB. We only look at one load and see | 
|  | /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register | 
|  | /// defined by the load we are trying to fold. DefMI returns the machine | 
|  | /// instruction that defines FoldAsLoadDefReg, and the function returns | 
|  | /// the machine instruction generated due to folding. | 
|  | MachineInstr* optimizeLoadInstr(MachineInstr *MI, | 
|  | const MachineRegisterInfo *MRI, | 
|  | unsigned &FoldAsLoadDefReg, | 
|  | MachineInstr *&DefMI) const override; | 
|  |  | 
|  | private: | 
|  | MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc, | 
|  | MachineFunction::iterator &MFI, | 
|  | MachineBasicBlock::iterator &MBBI, | 
|  | LiveVariables *LV) const; | 
|  |  | 
|  | /// isFrameOperand - Return true and the FrameIndex if the specified | 
|  | /// operand and follow operands form a reference to the stack frame. | 
|  | bool isFrameOperand(const MachineInstr *MI, unsigned int Op, | 
|  | int &FrameIndex) const; | 
|  | }; | 
|  |  | 
|  | } // End llvm namespace | 
|  |  | 
|  | #endif |