|  | ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py | 
|  | ; RUN: opt < %s -instsimplify -S | FileCheck %s | 
|  |  | 
|  | define i32 @zero_dividend(i32 %A) { | 
|  | ; CHECK-LABEL: @zero_dividend( | 
|  | ; CHECK-NEXT:    ret i32 0 | 
|  | ; | 
|  | %B = sdiv i32 0, %A | 
|  | ret i32 %B | 
|  | } | 
|  |  | 
|  | define <2 x i32> @zero_dividend_vector(<2 x i32> %A) { | 
|  | ; CHECK-LABEL: @zero_dividend_vector( | 
|  | ; CHECK-NEXT:    ret <2 x i32> zeroinitializer | 
|  | ; | 
|  | %B = udiv <2 x i32> zeroinitializer, %A | 
|  | ret <2 x i32> %B | 
|  | } | 
|  |  | 
|  | define <2 x i32> @zero_dividend_vector_undef_elt(<2 x i32> %A) { | 
|  | ; CHECK-LABEL: @zero_dividend_vector_undef_elt( | 
|  | ; CHECK-NEXT:    ret <2 x i32> zeroinitializer | 
|  | ; | 
|  | %B = sdiv <2 x i32> <i32 0, i32 undef>, %A | 
|  | ret <2 x i32> %B | 
|  | } | 
|  |  | 
|  | ; Division-by-zero is undef. UB in any vector lane means the whole op is undef. | 
|  |  | 
|  | define <2 x i8> @sdiv_zero_elt_vec_constfold(<2 x i8> %x) { | 
|  | ; CHECK-LABEL: @sdiv_zero_elt_vec_constfold( | 
|  | ; CHECK-NEXT:    ret <2 x i8> undef | 
|  | ; | 
|  | %div = sdiv <2 x i8> <i8 1, i8 2>, <i8 0, i8 -42> | 
|  | ret <2 x i8> %div | 
|  | } | 
|  |  | 
|  | define <2 x i8> @udiv_zero_elt_vec_constfold(<2 x i8> %x) { | 
|  | ; CHECK-LABEL: @udiv_zero_elt_vec_constfold( | 
|  | ; CHECK-NEXT:    ret <2 x i8> undef | 
|  | ; | 
|  | %div = udiv <2 x i8> <i8 1, i8 2>, <i8 42, i8 0> | 
|  | ret <2 x i8> %div | 
|  | } | 
|  |  | 
|  | define <2 x i8> @sdiv_zero_elt_vec(<2 x i8> %x) { | 
|  | ; CHECK-LABEL: @sdiv_zero_elt_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i8> undef | 
|  | ; | 
|  | %div = sdiv <2 x i8> %x, <i8 -42, i8 0> | 
|  | ret <2 x i8> %div | 
|  | } | 
|  |  | 
|  | define <2 x i8> @udiv_zero_elt_vec(<2 x i8> %x) { | 
|  | ; CHECK-LABEL: @udiv_zero_elt_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i8> undef | 
|  | ; | 
|  | %div = udiv <2 x i8> %x, <i8 0, i8 42> | 
|  | ret <2 x i8> %div | 
|  | } | 
|  |  | 
|  | define <2 x i8> @sdiv_undef_elt_vec(<2 x i8> %x) { | 
|  | ; CHECK-LABEL: @sdiv_undef_elt_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i8> undef | 
|  | ; | 
|  | %div = sdiv <2 x i8> %x, <i8 -42, i8 undef> | 
|  | ret <2 x i8> %div | 
|  | } | 
|  |  | 
|  | define <2 x i8> @udiv_undef_elt_vec(<2 x i8> %x) { | 
|  | ; CHECK-LABEL: @udiv_undef_elt_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i8> undef | 
|  | ; | 
|  | %div = udiv <2 x i8> %x, <i8 undef, i8 42> | 
|  | ret <2 x i8> %div | 
|  | } | 
|  |  | 
|  | ; Division-by-zero is undef. UB in any vector lane means the whole op is undef. | 
|  | ; Thus, we can simplify this: if any element of 'y' is 0, we can do anything. | 
|  | ; Therefore, assume that all elements of 'y' must be 1. | 
|  |  | 
|  | define <2 x i1> @sdiv_bool_vec(<2 x i1> %x, <2 x i1> %y) { | 
|  | ; CHECK-LABEL: @sdiv_bool_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i1> [[X:%.*]] | 
|  | ; | 
|  | %div = sdiv <2 x i1> %x, %y | 
|  | ret <2 x i1> %div | 
|  | } | 
|  |  | 
|  | define <2 x i1> @udiv_bool_vec(<2 x i1> %x, <2 x i1> %y) { | 
|  | ; CHECK-LABEL: @udiv_bool_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i1> [[X:%.*]] | 
|  | ; | 
|  | %div = udiv <2 x i1> %x, %y | 
|  | ret <2 x i1> %div | 
|  | } | 
|  |  | 
|  | define i32 @zext_bool_udiv_divisor(i1 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @zext_bool_udiv_divisor( | 
|  | ; CHECK-NEXT:    ret i32 [[Y:%.*]] | 
|  | ; | 
|  | %ext = zext i1 %x to i32 | 
|  | %r = udiv i32 %y, %ext | 
|  | ret i32 %r | 
|  | } | 
|  |  | 
|  | define <2 x i32> @zext_bool_sdiv_divisor_vec(<2 x i1> %x, <2 x i32> %y) { | 
|  | ; CHECK-LABEL: @zext_bool_sdiv_divisor_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i32> [[Y:%.*]] | 
|  | ; | 
|  | %ext = zext <2 x i1> %x to <2 x i32> | 
|  | %r = sdiv <2 x i32> %y, %ext | 
|  | ret <2 x i32> %r | 
|  | } | 
|  |  | 
|  | define i32 @udiv_dividend_known_smaller_than_constant_divisor(i32 %x) { | 
|  | ; CHECK-LABEL: @udiv_dividend_known_smaller_than_constant_divisor( | 
|  | ; CHECK-NEXT:    ret i32 0 | 
|  | ; | 
|  | %and = and i32 %x, 250 | 
|  | %div = udiv i32 %and, 251 | 
|  | ret i32 %div | 
|  | } | 
|  |  | 
|  | define i32 @not_udiv_dividend_known_smaller_than_constant_divisor(i32 %x) { | 
|  | ; CHECK-LABEL: @not_udiv_dividend_known_smaller_than_constant_divisor( | 
|  | ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 251 | 
|  | ; CHECK-NEXT:    [[DIV:%.*]] = udiv i32 [[AND]], 251 | 
|  | ; CHECK-NEXT:    ret i32 [[DIV]] | 
|  | ; | 
|  | %and = and i32 %x, 251 | 
|  | %div = udiv i32 %and, 251 | 
|  | ret i32 %div | 
|  | } | 
|  |  | 
|  | define i32 @udiv_constant_dividend_known_smaller_than_divisor(i32 %x) { | 
|  | ; CHECK-LABEL: @udiv_constant_dividend_known_smaller_than_divisor( | 
|  | ; CHECK-NEXT:    ret i32 0 | 
|  | ; | 
|  | %or = or i32 %x, 251 | 
|  | %div = udiv i32 250, %or | 
|  | ret i32 %div | 
|  | } | 
|  |  | 
|  | define i32 @not_udiv_constant_dividend_known_smaller_than_divisor(i32 %x) { | 
|  | ; CHECK-LABEL: @not_udiv_constant_dividend_known_smaller_than_divisor( | 
|  | ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[X:%.*]], 251 | 
|  | ; CHECK-NEXT:    [[DIV:%.*]] = udiv i32 251, [[OR]] | 
|  | ; CHECK-NEXT:    ret i32 [[DIV]] | 
|  | ; | 
|  | %or = or i32 %x, 251 | 
|  | %div = udiv i32 251, %or | 
|  | ret i32 %div | 
|  | } | 
|  |  | 
|  | ; This would require computing known bits on both x and y. Is it worth doing? | 
|  |  | 
|  | define i32 @udiv_dividend_known_smaller_than_divisor(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @udiv_dividend_known_smaller_than_divisor( | 
|  | ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 250 | 
|  | ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[Y:%.*]], 251 | 
|  | ; CHECK-NEXT:    [[DIV:%.*]] = udiv i32 [[AND]], [[OR]] | 
|  | ; CHECK-NEXT:    ret i32 [[DIV]] | 
|  | ; | 
|  | %and = and i32 %x, 250 | 
|  | %or = or i32 %y, 251 | 
|  | %div = udiv i32 %and, %or | 
|  | ret i32 %div | 
|  | } | 
|  |  | 
|  | define i32 @not_udiv_dividend_known_smaller_than_divisor(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @not_udiv_dividend_known_smaller_than_divisor( | 
|  | ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 251 | 
|  | ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[Y:%.*]], 251 | 
|  | ; CHECK-NEXT:    [[DIV:%.*]] = udiv i32 [[AND]], [[OR]] | 
|  | ; CHECK-NEXT:    ret i32 [[DIV]] | 
|  | ; | 
|  | %and = and i32 %x, 251 | 
|  | %or = or i32 %y, 251 | 
|  | %div = udiv i32 %and, %or | 
|  | ret i32 %div | 
|  | } | 
|  |  | 
|  | declare i32 @external() | 
|  |  | 
|  | define i32 @div1() { | 
|  | ; CHECK-LABEL: @div1( | 
|  | ; CHECK-NEXT:    [[CALL:%.*]] = call i32 @external(), !range !0 | 
|  | ; CHECK-NEXT:    ret i32 0 | 
|  | ; | 
|  | %call = call i32 @external(), !range !0 | 
|  | %urem = udiv i32 %call, 3 | 
|  | ret i32 %urem | 
|  | } | 
|  |  | 
|  | !0 = !{i32 0, i32 3} |