|  | //===- InferAddressSpace.cpp - --------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // CUDA C/C++ includes memory space designation as variable type qualifers (such | 
|  | // as __global__ and __shared__). Knowing the space of a memory access allows | 
|  | // CUDA compilers to emit faster PTX loads and stores. For example, a load from | 
|  | // shared memory can be translated to `ld.shared` which is roughly 10% faster | 
|  | // than a generic `ld` on an NVIDIA Tesla K40c. | 
|  | // | 
|  | // Unfortunately, type qualifiers only apply to variable declarations, so CUDA | 
|  | // compilers must infer the memory space of an address expression from | 
|  | // type-qualified variables. | 
|  | // | 
|  | // LLVM IR uses non-zero (so-called) specific address spaces to represent memory | 
|  | // spaces (e.g. addrspace(3) means shared memory). The Clang frontend | 
|  | // places only type-qualified variables in specific address spaces, and then | 
|  | // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) | 
|  | // (so-called the generic address space) for other instructions to use. | 
|  | // | 
|  | // For example, the Clang translates the following CUDA code | 
|  | //   __shared__ float a[10]; | 
|  | //   float v = a[i]; | 
|  | // to | 
|  | //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* | 
|  | //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i | 
|  | //   %v = load float, float* %1 ; emits ld.f32 | 
|  | // @a is in addrspace(3) since it's type-qualified, but its use from %1 is | 
|  | // redirected to %0 (the generic version of @a). | 
|  | // | 
|  | // The optimization implemented in this file propagates specific address spaces | 
|  | // from type-qualified variable declarations to its users. For example, it | 
|  | // optimizes the above IR to | 
|  | //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i | 
|  | //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32 | 
|  | // propagating the addrspace(3) from @a to %1. As the result, the NVPTX | 
|  | // codegen is able to emit ld.shared.f32 for %v. | 
|  | // | 
|  | // Address space inference works in two steps. First, it uses a data-flow | 
|  | // analysis to infer as many generic pointers as possible to point to only one | 
|  | // specific address space. In the above example, it can prove that %1 only | 
|  | // points to addrspace(3). This algorithm was published in | 
|  | //   CUDA: Compiling and optimizing for a GPU platform | 
|  | //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang | 
|  | //   ICCS 2012 | 
|  | // | 
|  | // Then, address space inference replaces all refinable generic pointers with | 
|  | // equivalent specific pointers. | 
|  | // | 
|  | // The major challenge of implementing this optimization is handling PHINodes, | 
|  | // which may create loops in the data flow graph. This brings two complications. | 
|  | // | 
|  | // First, the data flow analysis in Step 1 needs to be circular. For example, | 
|  | //     %generic.input = addrspacecast float addrspace(3)* %input to float* | 
|  | //   loop: | 
|  | //     %y = phi [ %generic.input, %y2 ] | 
|  | //     %y2 = getelementptr %y, 1 | 
|  | //     %v = load %y2 | 
|  | //     br ..., label %loop, ... | 
|  | // proving %y specific requires proving both %generic.input and %y2 specific, | 
|  | // but proving %y2 specific circles back to %y. To address this complication, | 
|  | // the data flow analysis operates on a lattice: | 
|  | //   uninitialized > specific address spaces > generic. | 
|  | // All address expressions (our implementation only considers phi, bitcast, | 
|  | // addrspacecast, and getelementptr) start with the uninitialized address space. | 
|  | // The monotone transfer function moves the address space of a pointer down a | 
|  | // lattice path from uninitialized to specific and then to generic. A join | 
|  | // operation of two different specific address spaces pushes the expression down | 
|  | // to the generic address space. The analysis completes once it reaches a fixed | 
|  | // point. | 
|  | // | 
|  | // Second, IR rewriting in Step 2 also needs to be circular. For example, | 
|  | // converting %y to addrspace(3) requires the compiler to know the converted | 
|  | // %y2, but converting %y2 needs the converted %y. To address this complication, | 
|  | // we break these cycles using "undef" placeholders. When converting an | 
|  | // instruction `I` to a new address space, if its operand `Op` is not converted | 
|  | // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. | 
|  | // For instance, our algorithm first converts %y to | 
|  | //   %y' = phi float addrspace(3)* [ %input, undef ] | 
|  | // Then, it converts %y2 to | 
|  | //   %y2' = getelementptr %y', 1 | 
|  | // Finally, it fixes the undef in %y' so that | 
|  | //   %y' = phi float addrspace(3)* [ %input, %y2' ] | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Analysis/Utils/Local.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #define DEBUG_TYPE "infer-address-spaces" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static const unsigned UninitializedAddressSpace = | 
|  | std::numeric_limits<unsigned>::max(); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; | 
|  |  | 
|  | /// InferAddressSpaces | 
|  | class InferAddressSpaces : public FunctionPass { | 
|  | /// Target specific address space which uses of should be replaced if | 
|  | /// possible. | 
|  | unsigned FlatAddrSpace; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | InferAddressSpaces() : FunctionPass(ID) {} | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | private: | 
|  | // Returns the new address space of V if updated; otherwise, returns None. | 
|  | Optional<unsigned> | 
|  | updateAddressSpace(const Value &V, | 
|  | const ValueToAddrSpaceMapTy &InferredAddrSpace) const; | 
|  |  | 
|  | // Tries to infer the specific address space of each address expression in | 
|  | // Postorder. | 
|  | void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, | 
|  | ValueToAddrSpaceMapTy *InferredAddrSpace) const; | 
|  |  | 
|  | bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; | 
|  |  | 
|  | // Changes the flat address expressions in function F to point to specific | 
|  | // address spaces if InferredAddrSpace says so. Postorder is the postorder of | 
|  | // all flat expressions in the use-def graph of function F. | 
|  | bool rewriteWithNewAddressSpaces( | 
|  | const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, | 
|  | const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const; | 
|  |  | 
|  | void appendsFlatAddressExpressionToPostorderStack( | 
|  | Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, | 
|  | DenseSet<Value *> &Visited) const; | 
|  |  | 
|  | bool rewriteIntrinsicOperands(IntrinsicInst *II, | 
|  | Value *OldV, Value *NewV) const; | 
|  | void collectRewritableIntrinsicOperands( | 
|  | IntrinsicInst *II, | 
|  | std::vector<std::pair<Value *, bool>> &PostorderStack, | 
|  | DenseSet<Value *> &Visited) const; | 
|  |  | 
|  | std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; | 
|  |  | 
|  | Value *cloneValueWithNewAddressSpace( | 
|  | Value *V, unsigned NewAddrSpace, | 
|  | const ValueToValueMapTy &ValueWithNewAddrSpace, | 
|  | SmallVectorImpl<const Use *> *UndefUsesToFix) const; | 
|  | unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char InferAddressSpaces::ID = 0; | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | void initializeInferAddressSpacesPass(PassRegistry &); | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", | 
|  | false, false) | 
|  |  | 
|  | // Returns true if V is an address expression. | 
|  | // TODO: Currently, we consider only phi, bitcast, addrspacecast, and | 
|  | // getelementptr operators. | 
|  | static bool isAddressExpression(const Value &V) { | 
|  | if (!isa<Operator>(V)) | 
|  | return false; | 
|  |  | 
|  | switch (cast<Operator>(V).getOpcode()) { | 
|  | case Instruction::PHI: | 
|  | case Instruction::BitCast: | 
|  | case Instruction::AddrSpaceCast: | 
|  | case Instruction::GetElementPtr: | 
|  | case Instruction::Select: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns the pointer operands of V. | 
|  | // | 
|  | // Precondition: V is an address expression. | 
|  | static SmallVector<Value *, 2> getPointerOperands(const Value &V) { | 
|  | const Operator &Op = cast<Operator>(V); | 
|  | switch (Op.getOpcode()) { | 
|  | case Instruction::PHI: { | 
|  | auto IncomingValues = cast<PHINode>(Op).incoming_values(); | 
|  | return SmallVector<Value *, 2>(IncomingValues.begin(), | 
|  | IncomingValues.end()); | 
|  | } | 
|  | case Instruction::BitCast: | 
|  | case Instruction::AddrSpaceCast: | 
|  | case Instruction::GetElementPtr: | 
|  | return {Op.getOperand(0)}; | 
|  | case Instruction::Select: | 
|  | return {Op.getOperand(1), Op.getOperand(2)}; | 
|  | default: | 
|  | llvm_unreachable("Unexpected instruction type."); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: Move logic to TTI? | 
|  | bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, | 
|  | Value *OldV, | 
|  | Value *NewV) const { | 
|  | Module *M = II->getParent()->getParent()->getParent(); | 
|  |  | 
|  | switch (II->getIntrinsicID()) { | 
|  | case Intrinsic::amdgcn_atomic_inc: | 
|  | case Intrinsic::amdgcn_atomic_dec: | 
|  | case Intrinsic::amdgcn_ds_fadd: | 
|  | case Intrinsic::amdgcn_ds_fmin: | 
|  | case Intrinsic::amdgcn_ds_fmax: { | 
|  | const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4)); | 
|  | if (!IsVolatile || !IsVolatile->isZero()) | 
|  | return false; | 
|  |  | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case Intrinsic::objectsize: { | 
|  | Type *DestTy = II->getType(); | 
|  | Type *SrcTy = NewV->getType(); | 
|  | Function *NewDecl = | 
|  | Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); | 
|  | II->setArgOperand(0, NewV); | 
|  | II->setCalledFunction(NewDecl); | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: Move logic to TTI? | 
|  | void InferAddressSpaces::collectRewritableIntrinsicOperands( | 
|  | IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack, | 
|  | DenseSet<Value *> &Visited) const { | 
|  | switch (II->getIntrinsicID()) { | 
|  | case Intrinsic::objectsize: | 
|  | case Intrinsic::amdgcn_atomic_inc: | 
|  | case Intrinsic::amdgcn_atomic_dec: | 
|  | case Intrinsic::amdgcn_ds_fadd: | 
|  | case Intrinsic::amdgcn_ds_fmin: | 
|  | case Intrinsic::amdgcn_ds_fmax: | 
|  | appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), | 
|  | PostorderStack, Visited); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns all flat address expressions in function F. The elements are | 
|  | // If V is an unvisited flat address expression, appends V to PostorderStack | 
|  | // and marks it as visited. | 
|  | void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( | 
|  | Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, | 
|  | DenseSet<Value *> &Visited) const { | 
|  | assert(V->getType()->isPointerTy()); | 
|  |  | 
|  | // Generic addressing expressions may be hidden in nested constant | 
|  | // expressions. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | // TODO: Look in non-address parts, like icmp operands. | 
|  | if (isAddressExpression(*CE) && Visited.insert(CE).second) | 
|  | PostorderStack.push_back(std::make_pair(CE, false)); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isAddressExpression(*V) && | 
|  | V->getType()->getPointerAddressSpace() == FlatAddrSpace) { | 
|  | if (Visited.insert(V).second) { | 
|  | PostorderStack.push_back(std::make_pair(V, false)); | 
|  |  | 
|  | Operator *Op = cast<Operator>(V); | 
|  | for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { | 
|  | if (isAddressExpression(*CE) && Visited.insert(CE).second) | 
|  | PostorderStack.emplace_back(CE, false); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns all flat address expressions in function F. The elements are ordered | 
|  | // ordered in postorder. | 
|  | std::vector<WeakTrackingVH> | 
|  | InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { | 
|  | // This function implements a non-recursive postorder traversal of a partial | 
|  | // use-def graph of function F. | 
|  | std::vector<std::pair<Value *, bool>> PostorderStack; | 
|  | // The set of visited expressions. | 
|  | DenseSet<Value *> Visited; | 
|  |  | 
|  | auto PushPtrOperand = [&](Value *Ptr) { | 
|  | appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, | 
|  | Visited); | 
|  | }; | 
|  |  | 
|  | // Look at operations that may be interesting accelerate by moving to a known | 
|  | // address space. We aim at generating after loads and stores, but pure | 
|  | // addressing calculations may also be faster. | 
|  | for (Instruction &I : instructions(F)) { | 
|  | if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { | 
|  | if (!GEP->getType()->isVectorTy()) | 
|  | PushPtrOperand(GEP->getPointerOperand()); | 
|  | } else if (auto *LI = dyn_cast<LoadInst>(&I)) | 
|  | PushPtrOperand(LI->getPointerOperand()); | 
|  | else if (auto *SI = dyn_cast<StoreInst>(&I)) | 
|  | PushPtrOperand(SI->getPointerOperand()); | 
|  | else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) | 
|  | PushPtrOperand(RMW->getPointerOperand()); | 
|  | else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) | 
|  | PushPtrOperand(CmpX->getPointerOperand()); | 
|  | else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { | 
|  | // For memset/memcpy/memmove, any pointer operand can be replaced. | 
|  | PushPtrOperand(MI->getRawDest()); | 
|  |  | 
|  | // Handle 2nd operand for memcpy/memmove. | 
|  | if (auto *MTI = dyn_cast<MemTransferInst>(MI)) | 
|  | PushPtrOperand(MTI->getRawSource()); | 
|  | } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) | 
|  | collectRewritableIntrinsicOperands(II, PostorderStack, Visited); | 
|  | else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { | 
|  | // FIXME: Handle vectors of pointers | 
|  | if (Cmp->getOperand(0)->getType()->isPointerTy()) { | 
|  | PushPtrOperand(Cmp->getOperand(0)); | 
|  | PushPtrOperand(Cmp->getOperand(1)); | 
|  | } | 
|  | } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { | 
|  | if (!ASC->getType()->isVectorTy()) | 
|  | PushPtrOperand(ASC->getPointerOperand()); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<WeakTrackingVH> Postorder; // The resultant postorder. | 
|  | while (!PostorderStack.empty()) { | 
|  | Value *TopVal = PostorderStack.back().first; | 
|  | // If the operands of the expression on the top are already explored, | 
|  | // adds that expression to the resultant postorder. | 
|  | if (PostorderStack.back().second) { | 
|  | if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) | 
|  | Postorder.push_back(TopVal); | 
|  | PostorderStack.pop_back(); | 
|  | continue; | 
|  | } | 
|  | // Otherwise, adds its operands to the stack and explores them. | 
|  | PostorderStack.back().second = true; | 
|  | for (Value *PtrOperand : getPointerOperands(*TopVal)) { | 
|  | appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, | 
|  | Visited); | 
|  | } | 
|  | } | 
|  | return Postorder; | 
|  | } | 
|  |  | 
|  | // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone | 
|  | // of OperandUse.get() in the new address space. If the clone is not ready yet, | 
|  | // returns an undef in the new address space as a placeholder. | 
|  | static Value *operandWithNewAddressSpaceOrCreateUndef( | 
|  | const Use &OperandUse, unsigned NewAddrSpace, | 
|  | const ValueToValueMapTy &ValueWithNewAddrSpace, | 
|  | SmallVectorImpl<const Use *> *UndefUsesToFix) { | 
|  | Value *Operand = OperandUse.get(); | 
|  |  | 
|  | Type *NewPtrTy = | 
|  | Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(Operand)) | 
|  | return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); | 
|  |  | 
|  | if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) | 
|  | return NewOperand; | 
|  |  | 
|  | UndefUsesToFix->push_back(&OperandUse); | 
|  | return UndefValue::get(NewPtrTy); | 
|  | } | 
|  |  | 
|  | // Returns a clone of `I` with its operands converted to those specified in | 
|  | // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an | 
|  | // operand whose address space needs to be modified might not exist in | 
|  | // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and | 
|  | // adds that operand use to UndefUsesToFix so that caller can fix them later. | 
|  | // | 
|  | // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast | 
|  | // from a pointer whose type already matches. Therefore, this function returns a | 
|  | // Value* instead of an Instruction*. | 
|  | static Value *cloneInstructionWithNewAddressSpace( | 
|  | Instruction *I, unsigned NewAddrSpace, | 
|  | const ValueToValueMapTy &ValueWithNewAddrSpace, | 
|  | SmallVectorImpl<const Use *> *UndefUsesToFix) { | 
|  | Type *NewPtrType = | 
|  | I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); | 
|  |  | 
|  | if (I->getOpcode() == Instruction::AddrSpaceCast) { | 
|  | Value *Src = I->getOperand(0); | 
|  | // Because `I` is flat, the source address space must be specific. | 
|  | // Therefore, the inferred address space must be the source space, according | 
|  | // to our algorithm. | 
|  | assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); | 
|  | if (Src->getType() != NewPtrType) | 
|  | return new BitCastInst(Src, NewPtrType); | 
|  | return Src; | 
|  | } | 
|  |  | 
|  | // Computes the converted pointer operands. | 
|  | SmallVector<Value *, 4> NewPointerOperands; | 
|  | for (const Use &OperandUse : I->operands()) { | 
|  | if (!OperandUse.get()->getType()->isPointerTy()) | 
|  | NewPointerOperands.push_back(nullptr); | 
|  | else | 
|  | NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( | 
|  | OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); | 
|  | } | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::BitCast: | 
|  | return new BitCastInst(NewPointerOperands[0], NewPtrType); | 
|  | case Instruction::PHI: { | 
|  | assert(I->getType()->isPointerTy()); | 
|  | PHINode *PHI = cast<PHINode>(I); | 
|  | PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); | 
|  | for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { | 
|  | unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); | 
|  | NewPHI->addIncoming(NewPointerOperands[OperandNo], | 
|  | PHI->getIncomingBlock(Index)); | 
|  | } | 
|  | return NewPHI; | 
|  | } | 
|  | case Instruction::GetElementPtr: { | 
|  | GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); | 
|  | GetElementPtrInst *NewGEP = GetElementPtrInst::Create( | 
|  | GEP->getSourceElementType(), NewPointerOperands[0], | 
|  | SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); | 
|  | NewGEP->setIsInBounds(GEP->isInBounds()); | 
|  | return NewGEP; | 
|  | } | 
|  | case Instruction::Select: | 
|  | assert(I->getType()->isPointerTy()); | 
|  | return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], | 
|  | NewPointerOperands[2], "", nullptr, I); | 
|  | default: | 
|  | llvm_unreachable("Unexpected opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the | 
|  | // constant expression `CE` with its operands replaced as specified in | 
|  | // ValueWithNewAddrSpace. | 
|  | static Value *cloneConstantExprWithNewAddressSpace( | 
|  | ConstantExpr *CE, unsigned NewAddrSpace, | 
|  | const ValueToValueMapTy &ValueWithNewAddrSpace) { | 
|  | Type *TargetType = | 
|  | CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); | 
|  |  | 
|  | if (CE->getOpcode() == Instruction::AddrSpaceCast) { | 
|  | // Because CE is flat, the source address space must be specific. | 
|  | // Therefore, the inferred address space must be the source space according | 
|  | // to our algorithm. | 
|  | assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == | 
|  | NewAddrSpace); | 
|  | return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); | 
|  | } | 
|  |  | 
|  | if (CE->getOpcode() == Instruction::BitCast) { | 
|  | if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) | 
|  | return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); | 
|  | return ConstantExpr::getAddrSpaceCast(CE, TargetType); | 
|  | } | 
|  |  | 
|  | if (CE->getOpcode() == Instruction::Select) { | 
|  | Constant *Src0 = CE->getOperand(1); | 
|  | Constant *Src1 = CE->getOperand(2); | 
|  | if (Src0->getType()->getPointerAddressSpace() == | 
|  | Src1->getType()->getPointerAddressSpace()) { | 
|  |  | 
|  | return ConstantExpr::getSelect( | 
|  | CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), | 
|  | ConstantExpr::getAddrSpaceCast(Src1, TargetType)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Computes the operands of the new constant expression. | 
|  | bool IsNew = false; | 
|  | SmallVector<Constant *, 4> NewOperands; | 
|  | for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { | 
|  | Constant *Operand = CE->getOperand(Index); | 
|  | // If the address space of `Operand` needs to be modified, the new operand | 
|  | // with the new address space should already be in ValueWithNewAddrSpace | 
|  | // because (1) the constant expressions we consider (i.e. addrspacecast, | 
|  | // bitcast, and getelementptr) do not incur cycles in the data flow graph | 
|  | // and (2) this function is called on constant expressions in postorder. | 
|  | if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { | 
|  | IsNew = true; | 
|  | NewOperands.push_back(cast<Constant>(NewOperand)); | 
|  | } else { | 
|  | // Otherwise, reuses the old operand. | 
|  | NewOperands.push_back(Operand); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If !IsNew, we will replace the Value with itself. However, replaced values | 
|  | // are assumed to wrapped in a addrspace cast later so drop it now. | 
|  | if (!IsNew) | 
|  | return nullptr; | 
|  |  | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) { | 
|  | // Needs to specify the source type while constructing a getelementptr | 
|  | // constant expression. | 
|  | return CE->getWithOperands( | 
|  | NewOperands, TargetType, /*OnlyIfReduced=*/false, | 
|  | NewOperands[0]->getType()->getPointerElementType()); | 
|  | } | 
|  |  | 
|  | return CE->getWithOperands(NewOperands, TargetType); | 
|  | } | 
|  |  | 
|  | // Returns a clone of the value `V`, with its operands replaced as specified in | 
|  | // ValueWithNewAddrSpace. This function is called on every flat address | 
|  | // expression whose address space needs to be modified, in postorder. | 
|  | // | 
|  | // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. | 
|  | Value *InferAddressSpaces::cloneValueWithNewAddressSpace( | 
|  | Value *V, unsigned NewAddrSpace, | 
|  | const ValueToValueMapTy &ValueWithNewAddrSpace, | 
|  | SmallVectorImpl<const Use *> *UndefUsesToFix) const { | 
|  | // All values in Postorder are flat address expressions. | 
|  | assert(isAddressExpression(*V) && | 
|  | V->getType()->getPointerAddressSpace() == FlatAddrSpace); | 
|  |  | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | Value *NewV = cloneInstructionWithNewAddressSpace( | 
|  | I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); | 
|  | if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { | 
|  | if (NewI->getParent() == nullptr) { | 
|  | NewI->insertBefore(I); | 
|  | NewI->takeName(I); | 
|  | } | 
|  | } | 
|  | return NewV; | 
|  | } | 
|  |  | 
|  | return cloneConstantExprWithNewAddressSpace( | 
|  | cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); | 
|  | } | 
|  |  | 
|  | // Defines the join operation on the address space lattice (see the file header | 
|  | // comments). | 
|  | unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, | 
|  | unsigned AS2) const { | 
|  | if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) | 
|  | return FlatAddrSpace; | 
|  |  | 
|  | if (AS1 == UninitializedAddressSpace) | 
|  | return AS2; | 
|  | if (AS2 == UninitializedAddressSpace) | 
|  | return AS1; | 
|  |  | 
|  | // The join of two different specific address spaces is flat. | 
|  | return (AS1 == AS2) ? AS1 : FlatAddrSpace; | 
|  | } | 
|  |  | 
|  | bool InferAddressSpaces::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | const TargetTransformInfo &TTI = | 
|  | getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | 
|  | FlatAddrSpace = TTI.getFlatAddressSpace(); | 
|  | if (FlatAddrSpace == UninitializedAddressSpace) | 
|  | return false; | 
|  |  | 
|  | // Collects all flat address expressions in postorder. | 
|  | std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); | 
|  |  | 
|  | // Runs a data-flow analysis to refine the address spaces of every expression | 
|  | // in Postorder. | 
|  | ValueToAddrSpaceMapTy InferredAddrSpace; | 
|  | inferAddressSpaces(Postorder, &InferredAddrSpace); | 
|  |  | 
|  | // Changes the address spaces of the flat address expressions who are inferred | 
|  | // to point to a specific address space. | 
|  | return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F); | 
|  | } | 
|  |  | 
|  | // Constants need to be tracked through RAUW to handle cases with nested | 
|  | // constant expressions, so wrap values in WeakTrackingVH. | 
|  | void InferAddressSpaces::inferAddressSpaces( | 
|  | ArrayRef<WeakTrackingVH> Postorder, | 
|  | ValueToAddrSpaceMapTy *InferredAddrSpace) const { | 
|  | SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); | 
|  | // Initially, all expressions are in the uninitialized address space. | 
|  | for (Value *V : Postorder) | 
|  | (*InferredAddrSpace)[V] = UninitializedAddressSpace; | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | Value *V = Worklist.pop_back_val(); | 
|  |  | 
|  | // Tries to update the address space of the stack top according to the | 
|  | // address spaces of its operands. | 
|  | LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n'); | 
|  | Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); | 
|  | if (!NewAS.hasValue()) | 
|  | continue; | 
|  | // If any updates are made, grabs its users to the worklist because | 
|  | // their address spaces can also be possibly updated. | 
|  | LLVM_DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n'); | 
|  | (*InferredAddrSpace)[V] = NewAS.getValue(); | 
|  |  | 
|  | for (Value *User : V->users()) { | 
|  | // Skip if User is already in the worklist. | 
|  | if (Worklist.count(User)) | 
|  | continue; | 
|  |  | 
|  | auto Pos = InferredAddrSpace->find(User); | 
|  | // Our algorithm only updates the address spaces of flat address | 
|  | // expressions, which are those in InferredAddrSpace. | 
|  | if (Pos == InferredAddrSpace->end()) | 
|  | continue; | 
|  |  | 
|  | // Function updateAddressSpace moves the address space down a lattice | 
|  | // path. Therefore, nothing to do if User is already inferred as flat (the | 
|  | // bottom element in the lattice). | 
|  | if (Pos->second == FlatAddrSpace) | 
|  | continue; | 
|  |  | 
|  | Worklist.insert(User); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Optional<unsigned> InferAddressSpaces::updateAddressSpace( | 
|  | const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { | 
|  | assert(InferredAddrSpace.count(&V)); | 
|  |  | 
|  | // The new inferred address space equals the join of the address spaces | 
|  | // of all its pointer operands. | 
|  | unsigned NewAS = UninitializedAddressSpace; | 
|  |  | 
|  | const Operator &Op = cast<Operator>(V); | 
|  | if (Op.getOpcode() == Instruction::Select) { | 
|  | Value *Src0 = Op.getOperand(1); | 
|  | Value *Src1 = Op.getOperand(2); | 
|  |  | 
|  | auto I = InferredAddrSpace.find(Src0); | 
|  | unsigned Src0AS = (I != InferredAddrSpace.end()) ? | 
|  | I->second : Src0->getType()->getPointerAddressSpace(); | 
|  |  | 
|  | auto J = InferredAddrSpace.find(Src1); | 
|  | unsigned Src1AS = (J != InferredAddrSpace.end()) ? | 
|  | J->second : Src1->getType()->getPointerAddressSpace(); | 
|  |  | 
|  | auto *C0 = dyn_cast<Constant>(Src0); | 
|  | auto *C1 = dyn_cast<Constant>(Src1); | 
|  |  | 
|  | // If one of the inputs is a constant, we may be able to do a constant | 
|  | // addrspacecast of it. Defer inferring the address space until the input | 
|  | // address space is known. | 
|  | if ((C1 && Src0AS == UninitializedAddressSpace) || | 
|  | (C0 && Src1AS == UninitializedAddressSpace)) | 
|  | return None; | 
|  |  | 
|  | if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) | 
|  | NewAS = Src1AS; | 
|  | else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) | 
|  | NewAS = Src0AS; | 
|  | else | 
|  | NewAS = joinAddressSpaces(Src0AS, Src1AS); | 
|  | } else { | 
|  | for (Value *PtrOperand : getPointerOperands(V)) { | 
|  | auto I = InferredAddrSpace.find(PtrOperand); | 
|  | unsigned OperandAS = I != InferredAddrSpace.end() ? | 
|  | I->second : PtrOperand->getType()->getPointerAddressSpace(); | 
|  |  | 
|  | // join(flat, *) = flat. So we can break if NewAS is already flat. | 
|  | NewAS = joinAddressSpaces(NewAS, OperandAS); | 
|  | if (NewAS == FlatAddrSpace) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned OldAS = InferredAddrSpace.lookup(&V); | 
|  | assert(OldAS != FlatAddrSpace); | 
|  | if (OldAS == NewAS) | 
|  | return None; | 
|  | return NewAS; | 
|  | } | 
|  |  | 
|  | /// \p returns true if \p U is the pointer operand of a memory instruction with | 
|  | /// a single pointer operand that can have its address space changed by simply | 
|  | /// mutating the use to a new value. If the memory instruction is volatile, | 
|  | /// return true only if the target allows the memory instruction to be volatile | 
|  | /// in the new address space. | 
|  | static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, | 
|  | Use &U, unsigned AddrSpace) { | 
|  | User *Inst = U.getUser(); | 
|  | unsigned OpNo = U.getOperandNo(); | 
|  | bool VolatileIsAllowed = false; | 
|  | if (auto *I = dyn_cast<Instruction>(Inst)) | 
|  | VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace); | 
|  |  | 
|  | if (auto *LI = dyn_cast<LoadInst>(Inst)) | 
|  | return OpNo == LoadInst::getPointerOperandIndex() && | 
|  | (VolatileIsAllowed || !LI->isVolatile()); | 
|  |  | 
|  | if (auto *SI = dyn_cast<StoreInst>(Inst)) | 
|  | return OpNo == StoreInst::getPointerOperandIndex() && | 
|  | (VolatileIsAllowed || !SI->isVolatile()); | 
|  |  | 
|  | if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) | 
|  | return OpNo == AtomicRMWInst::getPointerOperandIndex() && | 
|  | (VolatileIsAllowed || !RMW->isVolatile()); | 
|  |  | 
|  | if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) | 
|  | return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && | 
|  | (VolatileIsAllowed || !CmpX->isVolatile()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Update memory intrinsic uses that require more complex processing than | 
|  | /// simple memory instructions. Thse require re-mangling and may have multiple | 
|  | /// pointer operands. | 
|  | static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, | 
|  | Value *NewV) { | 
|  | IRBuilder<> B(MI); | 
|  | MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); | 
|  | MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); | 
|  | MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); | 
|  |  | 
|  | if (auto *MSI = dyn_cast<MemSetInst>(MI)) { | 
|  | B.CreateMemSet(NewV, MSI->getValue(), | 
|  | MSI->getLength(), MSI->getDestAlignment(), | 
|  | false, // isVolatile | 
|  | TBAA, ScopeMD, NoAliasMD); | 
|  | } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { | 
|  | Value *Src = MTI->getRawSource(); | 
|  | Value *Dest = MTI->getRawDest(); | 
|  |  | 
|  | // Be careful in case this is a self-to-self copy. | 
|  | if (Src == OldV) | 
|  | Src = NewV; | 
|  |  | 
|  | if (Dest == OldV) | 
|  | Dest = NewV; | 
|  |  | 
|  | if (isa<MemCpyInst>(MTI)) { | 
|  | MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); | 
|  | B.CreateMemCpy(Dest, MTI->getDestAlignment(), | 
|  | Src, MTI->getSourceAlignment(), | 
|  | MTI->getLength(), | 
|  | false, // isVolatile | 
|  | TBAA, TBAAStruct, ScopeMD, NoAliasMD); | 
|  | } else { | 
|  | assert(isa<MemMoveInst>(MTI)); | 
|  | B.CreateMemMove(Dest, MTI->getDestAlignment(), | 
|  | Src, MTI->getSourceAlignment(), | 
|  | MTI->getLength(), | 
|  | false, // isVolatile | 
|  | TBAA, ScopeMD, NoAliasMD); | 
|  | } | 
|  | } else | 
|  | llvm_unreachable("unhandled MemIntrinsic"); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // \p returns true if it is OK to change the address space of constant \p C with | 
|  | // a ConstantExpr addrspacecast. | 
|  | bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { | 
|  | assert(NewAS != UninitializedAddressSpace); | 
|  |  | 
|  | unsigned SrcAS = C->getType()->getPointerAddressSpace(); | 
|  | if (SrcAS == NewAS || isa<UndefValue>(C)) | 
|  | return true; | 
|  |  | 
|  | // Prevent illegal casts between different non-flat address spaces. | 
|  | if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) | 
|  | return false; | 
|  |  | 
|  | if (isa<ConstantPointerNull>(C)) | 
|  | return true; | 
|  |  | 
|  | if (auto *Op = dyn_cast<Operator>(C)) { | 
|  | // If we already have a constant addrspacecast, it should be safe to cast it | 
|  | // off. | 
|  | if (Op->getOpcode() == Instruction::AddrSpaceCast) | 
|  | return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); | 
|  |  | 
|  | if (Op->getOpcode() == Instruction::IntToPtr && | 
|  | Op->getType()->getPointerAddressSpace() == FlatAddrSpace) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static Value::use_iterator skipToNextUser(Value::use_iterator I, | 
|  | Value::use_iterator End) { | 
|  | User *CurUser = I->getUser(); | 
|  | ++I; | 
|  |  | 
|  | while (I != End && I->getUser() == CurUser) | 
|  | ++I; | 
|  |  | 
|  | return I; | 
|  | } | 
|  |  | 
|  | bool InferAddressSpaces::rewriteWithNewAddressSpaces( | 
|  | const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, | 
|  | const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { | 
|  | // For each address expression to be modified, creates a clone of it with its | 
|  | // pointer operands converted to the new address space. Since the pointer | 
|  | // operands are converted, the clone is naturally in the new address space by | 
|  | // construction. | 
|  | ValueToValueMapTy ValueWithNewAddrSpace; | 
|  | SmallVector<const Use *, 32> UndefUsesToFix; | 
|  | for (Value* V : Postorder) { | 
|  | unsigned NewAddrSpace = InferredAddrSpace.lookup(V); | 
|  | if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { | 
|  | ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( | 
|  | V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ValueWithNewAddrSpace.empty()) | 
|  | return false; | 
|  |  | 
|  | // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. | 
|  | for (const Use *UndefUse : UndefUsesToFix) { | 
|  | User *V = UndefUse->getUser(); | 
|  | User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); | 
|  | unsigned OperandNo = UndefUse->getOperandNo(); | 
|  | assert(isa<UndefValue>(NewV->getOperand(OperandNo))); | 
|  | NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); | 
|  | } | 
|  |  | 
|  | SmallVector<Instruction *, 16> DeadInstructions; | 
|  |  | 
|  | // Replaces the uses of the old address expressions with the new ones. | 
|  | for (const WeakTrackingVH &WVH : Postorder) { | 
|  | assert(WVH && "value was unexpectedly deleted"); | 
|  | Value *V = WVH; | 
|  | Value *NewV = ValueWithNewAddrSpace.lookup(V); | 
|  | if (NewV == nullptr) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  " | 
|  | << *NewV << '\n'); | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), | 
|  | C->getType()); | 
|  | if (C != Replace) { | 
|  | LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace | 
|  | << ": " << *Replace << '\n'); | 
|  | C->replaceAllUsesWith(Replace); | 
|  | V = Replace; | 
|  | } | 
|  | } | 
|  |  | 
|  | Value::use_iterator I, E, Next; | 
|  | for (I = V->use_begin(), E = V->use_end(); I != E; ) { | 
|  | Use &U = *I; | 
|  |  | 
|  | // Some users may see the same pointer operand in multiple operands. Skip | 
|  | // to the next instruction. | 
|  | I = skipToNextUser(I, E); | 
|  |  | 
|  | if (isSimplePointerUseValidToReplace( | 
|  | TTI, U, V->getType()->getPointerAddressSpace())) { | 
|  | // If V is used as the pointer operand of a compatible memory operation, | 
|  | // sets the pointer operand to NewV. This replacement does not change | 
|  | // the element type, so the resultant load/store is still valid. | 
|  | U.set(NewV); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | User *CurUser = U.getUser(); | 
|  | // Handle more complex cases like intrinsic that need to be remangled. | 
|  | if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { | 
|  | if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { | 
|  | if (rewriteIntrinsicOperands(II, V, NewV)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isa<Instruction>(CurUser)) { | 
|  | if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { | 
|  | // If we can infer that both pointers are in the same addrspace, | 
|  | // transform e.g. | 
|  | //   %cmp = icmp eq float* %p, %q | 
|  | // into | 
|  | //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q | 
|  |  | 
|  | unsigned NewAS = NewV->getType()->getPointerAddressSpace(); | 
|  | int SrcIdx = U.getOperandNo(); | 
|  | int OtherIdx = (SrcIdx == 0) ? 1 : 0; | 
|  | Value *OtherSrc = Cmp->getOperand(OtherIdx); | 
|  |  | 
|  | if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { | 
|  | if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { | 
|  | Cmp->setOperand(OtherIdx, OtherNewV); | 
|  | Cmp->setOperand(SrcIdx, NewV); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Even if the type mismatches, we can cast the constant. | 
|  | if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { | 
|  | if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { | 
|  | Cmp->setOperand(SrcIdx, NewV); | 
|  | Cmp->setOperand(OtherIdx, | 
|  | ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { | 
|  | unsigned NewAS = NewV->getType()->getPointerAddressSpace(); | 
|  | if (ASC->getDestAddressSpace() == NewAS) { | 
|  | if (ASC->getType()->getPointerElementType() != | 
|  | NewV->getType()->getPointerElementType()) { | 
|  | NewV = CastInst::Create(Instruction::BitCast, NewV, | 
|  | ASC->getType(), "", ASC); | 
|  | } | 
|  | ASC->replaceAllUsesWith(NewV); | 
|  | DeadInstructions.push_back(ASC); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, replaces the use with flat(NewV). | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | BasicBlock::iterator InsertPos = std::next(I->getIterator()); | 
|  | while (isa<PHINode>(InsertPos)) | 
|  | ++InsertPos; | 
|  | U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); | 
|  | } else { | 
|  | U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), | 
|  | V->getType())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (V->use_empty()) { | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | DeadInstructions.push_back(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (Instruction *I : DeadInstructions) | 
|  | RecursivelyDeleteTriviallyDeadInstructions(I); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createInferAddressSpacesPass() { | 
|  | return new InferAddressSpaces(); | 
|  | } |