|  | //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Implementation of some scaled number algorithms. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Support/ScaledNumber.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ScaledNumbers; | 
|  |  | 
|  | std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS, | 
|  | uint64_t RHS) { | 
|  | // Separate into two 32-bit digits (U.L). | 
|  | auto getU = [](uint64_t N) { return N >> 32; }; | 
|  | auto getL = [](uint64_t N) { return N & UINT32_MAX; }; | 
|  | uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS); | 
|  |  | 
|  | // Compute cross products. | 
|  | uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR; | 
|  |  | 
|  | // Sum into two 64-bit digits. | 
|  | uint64_t Upper = P1, Lower = P4; | 
|  | auto addWithCarry = [&](uint64_t N) { | 
|  | uint64_t NewLower = Lower + (getL(N) << 32); | 
|  | Upper += getU(N) + (NewLower < Lower); | 
|  | Lower = NewLower; | 
|  | }; | 
|  | addWithCarry(P2); | 
|  | addWithCarry(P3); | 
|  |  | 
|  | // Check whether the upper digit is empty. | 
|  | if (!Upper) | 
|  | return std::make_pair(Lower, 0); | 
|  |  | 
|  | // Shift as little as possible to maximize precision. | 
|  | unsigned LeadingZeros = countLeadingZeros(Upper); | 
|  | int Shift = 64 - LeadingZeros; | 
|  | if (LeadingZeros) | 
|  | Upper = Upper << LeadingZeros | Lower >> Shift; | 
|  | return getRounded(Upper, Shift, | 
|  | Shift && (Lower & UINT64_C(1) << (Shift - 1))); | 
|  | } | 
|  |  | 
|  | static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } | 
|  |  | 
|  | std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend, | 
|  | uint32_t Divisor) { | 
|  | assert(Dividend && "expected non-zero dividend"); | 
|  | assert(Divisor && "expected non-zero divisor"); | 
|  |  | 
|  | // Use 64-bit math and canonicalize the dividend to gain precision. | 
|  | uint64_t Dividend64 = Dividend; | 
|  | int Shift = 0; | 
|  | if (int Zeros = countLeadingZeros(Dividend64)) { | 
|  | Shift -= Zeros; | 
|  | Dividend64 <<= Zeros; | 
|  | } | 
|  | uint64_t Quotient = Dividend64 / Divisor; | 
|  | uint64_t Remainder = Dividend64 % Divisor; | 
|  |  | 
|  | // If Quotient needs to be shifted, leave the rounding to getAdjusted(). | 
|  | if (Quotient > UINT32_MAX) | 
|  | return getAdjusted<uint32_t>(Quotient, Shift); | 
|  |  | 
|  | // Round based on the value of the next bit. | 
|  | return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor)); | 
|  | } | 
|  |  | 
|  | std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend, | 
|  | uint64_t Divisor) { | 
|  | assert(Dividend && "expected non-zero dividend"); | 
|  | assert(Divisor && "expected non-zero divisor"); | 
|  |  | 
|  | // Minimize size of divisor. | 
|  | int Shift = 0; | 
|  | if (int Zeros = countTrailingZeros(Divisor)) { | 
|  | Shift -= Zeros; | 
|  | Divisor >>= Zeros; | 
|  | } | 
|  |  | 
|  | // Check for powers of two. | 
|  | if (Divisor == 1) | 
|  | return std::make_pair(Dividend, Shift); | 
|  |  | 
|  | // Maximize size of dividend. | 
|  | if (int Zeros = countLeadingZeros(Dividend)) { | 
|  | Shift -= Zeros; | 
|  | Dividend <<= Zeros; | 
|  | } | 
|  |  | 
|  | // Start with the result of a divide. | 
|  | uint64_t Quotient = Dividend / Divisor; | 
|  | Dividend %= Divisor; | 
|  |  | 
|  | // Continue building the quotient with long division. | 
|  | while (!(Quotient >> 63) && Dividend) { | 
|  | // Shift Dividend and check for overflow. | 
|  | bool IsOverflow = Dividend >> 63; | 
|  | Dividend <<= 1; | 
|  | --Shift; | 
|  |  | 
|  | // Get the next bit of Quotient. | 
|  | Quotient <<= 1; | 
|  | if (IsOverflow || Divisor <= Dividend) { | 
|  | Quotient |= 1; | 
|  | Dividend -= Divisor; | 
|  | } | 
|  | } | 
|  |  | 
|  | return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor)); | 
|  | } | 
|  |  | 
|  | int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) { | 
|  | assert(ScaleDiff >= 0 && "wrong argument order"); | 
|  | assert(ScaleDiff < 64 && "numbers too far apart"); | 
|  |  | 
|  | uint64_t L_adjusted = L >> ScaleDiff; | 
|  | if (L_adjusted < R) | 
|  | return -1; | 
|  | if (L_adjusted > R) | 
|  | return 1; | 
|  |  | 
|  | return L > L_adjusted << ScaleDiff ? 1 : 0; | 
|  | } | 
|  |  | 
|  | static void appendDigit(std::string &Str, unsigned D) { | 
|  | assert(D < 10); | 
|  | Str += '0' + D % 10; | 
|  | } | 
|  |  | 
|  | static void appendNumber(std::string &Str, uint64_t N) { | 
|  | while (N) { | 
|  | appendDigit(Str, N % 10); | 
|  | N /= 10; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool doesRoundUp(char Digit) { | 
|  | switch (Digit) { | 
|  | case '5': | 
|  | case '6': | 
|  | case '7': | 
|  | case '8': | 
|  | case '9': | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) { | 
|  | assert(E >= ScaledNumbers::MinScale); | 
|  | assert(E <= ScaledNumbers::MaxScale); | 
|  |  | 
|  | // Find a new E, but don't let it increase past MaxScale. | 
|  | int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D); | 
|  | int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros); | 
|  | int Shift = 63 - (NewE - E); | 
|  | assert(Shift <= LeadingZeros); | 
|  | assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale); | 
|  | assert(Shift >= 0 && Shift < 64 && "undefined behavior"); | 
|  | D <<= Shift; | 
|  | E = NewE; | 
|  |  | 
|  | // Check for a denormal. | 
|  | unsigned AdjustedE = E + 16383; | 
|  | if (!(D >> 63)) { | 
|  | assert(E == ScaledNumbers::MaxScale); | 
|  | AdjustedE = 0; | 
|  | } | 
|  |  | 
|  | // Build the float and print it. | 
|  | uint64_t RawBits[2] = {D, AdjustedE}; | 
|  | APFloat Float(APFloat::x87DoubleExtended(), APInt(80, RawBits)); | 
|  | SmallVector<char, 24> Chars; | 
|  | Float.toString(Chars, Precision, 0); | 
|  | return std::string(Chars.begin(), Chars.end()); | 
|  | } | 
|  |  | 
|  | static std::string stripTrailingZeros(const std::string &Float) { | 
|  | size_t NonZero = Float.find_last_not_of('0'); | 
|  | assert(NonZero != std::string::npos && "no . in floating point string"); | 
|  |  | 
|  | if (Float[NonZero] == '.') | 
|  | ++NonZero; | 
|  |  | 
|  | return Float.substr(0, NonZero + 1); | 
|  | } | 
|  |  | 
|  | std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width, | 
|  | unsigned Precision) { | 
|  | if (!D) | 
|  | return "0.0"; | 
|  |  | 
|  | // Canonicalize exponent and digits. | 
|  | uint64_t Above0 = 0; | 
|  | uint64_t Below0 = 0; | 
|  | uint64_t Extra = 0; | 
|  | int ExtraShift = 0; | 
|  | if (E == 0) { | 
|  | Above0 = D; | 
|  | } else if (E > 0) { | 
|  | if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) { | 
|  | D <<= Shift; | 
|  | E -= Shift; | 
|  |  | 
|  | if (!E) | 
|  | Above0 = D; | 
|  | } | 
|  | } else if (E > -64) { | 
|  | Above0 = D >> -E; | 
|  | Below0 = D << (64 + E); | 
|  | } else if (E == -64) { | 
|  | // Special case: shift by 64 bits is undefined behavior. | 
|  | Below0 = D; | 
|  | } else if (E > -120) { | 
|  | Below0 = D >> (-E - 64); | 
|  | Extra = D << (128 + E); | 
|  | ExtraShift = -64 - E; | 
|  | } | 
|  |  | 
|  | // Fall back on APFloat for very small and very large numbers. | 
|  | if (!Above0 && !Below0) | 
|  | return toStringAPFloat(D, E, Precision); | 
|  |  | 
|  | // Append the digits before the decimal. | 
|  | std::string Str; | 
|  | size_t DigitsOut = 0; | 
|  | if (Above0) { | 
|  | appendNumber(Str, Above0); | 
|  | DigitsOut = Str.size(); | 
|  | } else | 
|  | appendDigit(Str, 0); | 
|  | std::reverse(Str.begin(), Str.end()); | 
|  |  | 
|  | // Return early if there's nothing after the decimal. | 
|  | if (!Below0) | 
|  | return Str + ".0"; | 
|  |  | 
|  | // Append the decimal and beyond. | 
|  | Str += '.'; | 
|  | uint64_t Error = UINT64_C(1) << (64 - Width); | 
|  |  | 
|  | // We need to shift Below0 to the right to make space for calculating | 
|  | // digits.  Save the precision we're losing in Extra. | 
|  | Extra = (Below0 & 0xf) << 56 | (Extra >> 8); | 
|  | Below0 >>= 4; | 
|  | size_t SinceDot = 0; | 
|  | size_t AfterDot = Str.size(); | 
|  | do { | 
|  | if (ExtraShift) { | 
|  | --ExtraShift; | 
|  | Error *= 5; | 
|  | } else | 
|  | Error *= 10; | 
|  |  | 
|  | Below0 *= 10; | 
|  | Extra *= 10; | 
|  | Below0 += (Extra >> 60); | 
|  | Extra = Extra & (UINT64_MAX >> 4); | 
|  | appendDigit(Str, Below0 >> 60); | 
|  | Below0 = Below0 & (UINT64_MAX >> 4); | 
|  | if (DigitsOut || Str.back() != '0') | 
|  | ++DigitsOut; | 
|  | ++SinceDot; | 
|  | } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 && | 
|  | (!Precision || DigitsOut <= Precision || SinceDot < 2)); | 
|  |  | 
|  | // Return early for maximum precision. | 
|  | if (!Precision || DigitsOut <= Precision) | 
|  | return stripTrailingZeros(Str); | 
|  |  | 
|  | // Find where to truncate. | 
|  | size_t Truncate = | 
|  | std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1); | 
|  |  | 
|  | // Check if there's anything to truncate. | 
|  | if (Truncate >= Str.size()) | 
|  | return stripTrailingZeros(Str); | 
|  |  | 
|  | bool Carry = doesRoundUp(Str[Truncate]); | 
|  | if (!Carry) | 
|  | return stripTrailingZeros(Str.substr(0, Truncate)); | 
|  |  | 
|  | // Round with the first truncated digit. | 
|  | for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend(); | 
|  | I != E; ++I) { | 
|  | if (*I == '.') | 
|  | continue; | 
|  | if (*I == '9') { | 
|  | *I = '0'; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ++*I; | 
|  | Carry = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Add "1" in front if we still need to carry. | 
|  | return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate)); | 
|  | } | 
|  |  | 
|  | raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E, | 
|  | int Width, unsigned Precision) { | 
|  | return OS << toString(D, E, Width, Precision); | 
|  | } | 
|  |  | 
|  | void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) { | 
|  | print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E | 
|  | << "]"; | 
|  | } |