|  | //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===---------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs peephole optimizations to clean up ugly code | 
|  | // sequences at the MachineInstruction layer.  It runs at the end of | 
|  | // the SSA phases, following VSX swap removal.  A pass of dead code | 
|  | // elimination follows this one for quick clean-up of any dead | 
|  | // instructions introduced here.  Although we could do this as callbacks | 
|  | // from the generic peephole pass, this would have a couple of bad | 
|  | // effects:  it might remove optimization opportunities for VSX swap | 
|  | // removal, and it would miss cleanups made possible following VSX | 
|  | // swap removal. | 
|  | // | 
|  | //===---------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPC.h" | 
|  | #include "PPCInstrBuilder.h" | 
|  | #include "PPCInstrInfo.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "MCTargetDesc/PPCPredicates.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "ppc-mi-peepholes" | 
|  |  | 
|  | STATISTIC(RemoveTOCSave, "Number of TOC saves removed"); | 
|  | STATISTIC(MultiTOCSaves, | 
|  | "Number of functions with multiple TOC saves that must be kept"); | 
|  | STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions"); | 
|  | STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions"); | 
|  | STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI"); | 
|  | STATISTIC(NumConvertedToImmediateForm, | 
|  | "Number of instructions converted to their immediate form"); | 
|  | STATISTIC(NumFunctionsEnteredInMIPeephole, | 
|  | "Number of functions entered in PPC MI Peepholes"); | 
|  | STATISTIC(NumFixedPointIterations, | 
|  | "Number of fixed-point iterations converting reg-reg instructions " | 
|  | "to reg-imm ones"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true), | 
|  | cl::desc("Iterate to a fixed point when attempting to " | 
|  | "convert reg-reg instructions to reg-imm")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true), | 
|  | cl::desc("Convert eligible reg+reg instructions to reg+imm")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableSExtElimination("ppc-eliminate-signext", | 
|  | cl::desc("enable elimination of sign-extensions"), | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableZExtElimination("ppc-eliminate-zeroext", | 
|  | cl::desc("enable elimination of zero-extensions"), | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct PPCMIPeephole : public MachineFunctionPass { | 
|  |  | 
|  | static char ID; | 
|  | const PPCInstrInfo *TII; | 
|  | MachineFunction *MF; | 
|  | MachineRegisterInfo *MRI; | 
|  |  | 
|  | PPCMIPeephole() : MachineFunctionPass(ID) { | 
|  | initializePPCMIPeepholePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | MachineDominatorTree *MDT; | 
|  |  | 
|  | // Initialize class variables. | 
|  | void initialize(MachineFunction &MFParm); | 
|  |  | 
|  | // Perform peepholes. | 
|  | bool simplifyCode(void); | 
|  |  | 
|  | // Perform peepholes. | 
|  | bool eliminateRedundantCompare(void); | 
|  | bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves); | 
|  | void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves, | 
|  | MachineInstr *MI); | 
|  |  | 
|  | public: | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | // Main entry point for this pass. | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  | initialize(MF); | 
|  | return simplifyCode(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Initialize class variables. | 
|  | void PPCMIPeephole::initialize(MachineFunction &MFParm) { | 
|  | MF = &MFParm; | 
|  | MRI = &MF->getRegInfo(); | 
|  | MDT = &getAnalysis<MachineDominatorTree>(); | 
|  | TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); | 
|  | LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n"); | 
|  | LLVM_DEBUG(MF->dump()); | 
|  | } | 
|  |  | 
|  | static MachineInstr *getVRegDefOrNull(MachineOperand *Op, | 
|  | MachineRegisterInfo *MRI) { | 
|  | assert(Op && "Invalid Operand!"); | 
|  | if (!Op->isReg()) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned Reg = Op->getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | return nullptr; | 
|  |  | 
|  | return MRI->getVRegDef(Reg); | 
|  | } | 
|  |  | 
|  | // This function returns number of known zero bits in output of MI | 
|  | // starting from the most significant bit. | 
|  | static unsigned | 
|  | getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) { | 
|  | unsigned Opcode = MI->getOpcode(); | 
|  | if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || | 
|  | Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo) | 
|  | return MI->getOperand(3).getImm(); | 
|  |  | 
|  | if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && | 
|  | MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm()) | 
|  | return MI->getOperand(3).getImm(); | 
|  |  | 
|  | if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo || | 
|  | Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  || | 
|  | Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && | 
|  | MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) | 
|  | return 32 + MI->getOperand(3).getImm(); | 
|  |  | 
|  | if (Opcode == PPC::ANDIo) { | 
|  | uint16_t Imm = MI->getOperand(2).getImm(); | 
|  | return 48 + countLeadingZeros(Imm); | 
|  | } | 
|  |  | 
|  | if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo || | 
|  | Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo || | 
|  | Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8) | 
|  | // The result ranges from 0 to 32. | 
|  | return 58; | 
|  |  | 
|  | if (Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo || | 
|  | Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo) | 
|  | // The result ranges from 0 to 64. | 
|  | return 57; | 
|  |  | 
|  | if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  || | 
|  | Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 || | 
|  | Opcode == PPC::LHZU  || Opcode == PPC::LHZUX || | 
|  | Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8) | 
|  | return 48; | 
|  |  | 
|  | if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  || | 
|  | Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 || | 
|  | Opcode == PPC::LBZU  || Opcode == PPC::LBZUX || | 
|  | Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8) | 
|  | return 56; | 
|  |  | 
|  | if (TII->isZeroExtended(*MI)) | 
|  | return 32; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This function maintains a map for the pairs <TOC Save Instr, Keep> | 
|  | // Each time a new TOC save is encountered, it checks if any of the existing | 
|  | // ones are dominated by the new one. If so, it marks the existing one as | 
|  | // redundant by setting it's entry in the map as false. It then adds the new | 
|  | // instruction to the map with either true or false depending on if any | 
|  | // existing instructions dominated the new one. | 
|  | void PPCMIPeephole::UpdateTOCSaves( | 
|  | std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) { | 
|  | assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here"); | 
|  | bool Keep = true; | 
|  | for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) { | 
|  | MachineInstr *CurrInst = It->first; | 
|  | // If new instruction dominates an existing one, mark existing one as | 
|  | // redundant. | 
|  | if (It->second && MDT->dominates(MI, CurrInst)) | 
|  | It->second = false; | 
|  | // Check if the new instruction is redundant. | 
|  | if (MDT->dominates(CurrInst, MI)) { | 
|  | Keep = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Add new instruction to map. | 
|  | TOCSaves[MI] = Keep; | 
|  | } | 
|  |  | 
|  | // Perform peephole optimizations. | 
|  | bool PPCMIPeephole::simplifyCode(void) { | 
|  | bool Simplified = false; | 
|  | MachineInstr* ToErase = nullptr; | 
|  | std::map<MachineInstr *, bool> TOCSaves; | 
|  | const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); | 
|  | NumFunctionsEnteredInMIPeephole++; | 
|  | if (ConvertRegReg) { | 
|  | // Fixed-point conversion of reg/reg instructions fed by load-immediate | 
|  | // into reg/imm instructions. FIXME: This is expensive, control it with | 
|  | // an option. | 
|  | bool SomethingChanged = false; | 
|  | do { | 
|  | NumFixedPointIterations++; | 
|  | SomethingChanged = false; | 
|  | for (MachineBasicBlock &MBB : *MF) { | 
|  | for (MachineInstr &MI : MBB) { | 
|  | if (MI.isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | if (TII->convertToImmediateForm(MI)) { | 
|  | // We don't erase anything in case the def has other uses. Let DCE | 
|  | // remove it if it can be removed. | 
|  | LLVM_DEBUG(dbgs() << "Converted instruction to imm form: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | NumConvertedToImmediateForm++; | 
|  | SomethingChanged = true; | 
|  | Simplified = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | } while (SomethingChanged && FixedPointRegToImm); | 
|  | } | 
|  |  | 
|  | for (MachineBasicBlock &MBB : *MF) { | 
|  | for (MachineInstr &MI : MBB) { | 
|  |  | 
|  | // If the previous instruction was marked for elimination, | 
|  | // remove it now. | 
|  | if (ToErase) { | 
|  | ToErase->eraseFromParent(); | 
|  | ToErase = nullptr; | 
|  | } | 
|  |  | 
|  | // Ignore debug instructions. | 
|  | if (MI.isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | // Per-opcode peepholes. | 
|  | switch (MI.getOpcode()) { | 
|  |  | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case PPC::STD: { | 
|  | MachineFrameInfo &MFI = MF->getFrameInfo(); | 
|  | if (MFI.hasVarSizedObjects() || | 
|  | !MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) | 
|  | break; | 
|  | // When encountering a TOC save instruction, call UpdateTOCSaves | 
|  | // to add it to the TOCSaves map and mark any existing TOC saves | 
|  | // it dominates as redundant. | 
|  | if (TII->isTOCSaveMI(MI)) | 
|  | UpdateTOCSaves(TOCSaves, &MI); | 
|  | break; | 
|  | } | 
|  | case PPC::XXPERMDI: { | 
|  | // Perform simplifications of 2x64 vector swaps and splats. | 
|  | // A swap is identified by an immediate value of 2, and a splat | 
|  | // is identified by an immediate value of 0 or 3. | 
|  | int Immed = MI.getOperand(3).getImm(); | 
|  |  | 
|  | if (Immed != 1) { | 
|  |  | 
|  | // For each of these simplifications, we need the two source | 
|  | // regs to match.  Unfortunately, MachineCSE ignores COPY and | 
|  | // SUBREG_TO_REG, so for example we can see | 
|  | //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed. | 
|  | // We have to look through chains of COPY and SUBREG_TO_REG | 
|  | // to find the real source values for comparison. | 
|  | unsigned TrueReg1 = | 
|  | TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); | 
|  | unsigned TrueReg2 = | 
|  | TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI); | 
|  |  | 
|  | if (TrueReg1 == TrueReg2 | 
|  | && TargetRegisterInfo::isVirtualRegister(TrueReg1)) { | 
|  | MachineInstr *DefMI = MRI->getVRegDef(TrueReg1); | 
|  | unsigned DefOpc = DefMI ? DefMI->getOpcode() : 0; | 
|  |  | 
|  | // If this is a splat fed by a splatting load, the splat is | 
|  | // redundant. Replace with a copy. This doesn't happen directly due | 
|  | // to code in PPCDAGToDAGISel.cpp, but it can happen when converting | 
|  | // a load of a double to a vector of 64-bit integers. | 
|  | auto isConversionOfLoadAndSplat = [=]() -> bool { | 
|  | if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS) | 
|  | return false; | 
|  | unsigned DefReg = | 
|  | TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI); | 
|  | if (TargetRegisterInfo::isVirtualRegister(DefReg)) { | 
|  | MachineInstr *LoadMI = MRI->getVRegDef(DefReg); | 
|  | if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  | if (DefMI && (Immed == 0 || Immed == 3)) { | 
|  | if (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat()) { | 
|  | LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat " | 
|  | "to load-and-splat/copy: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(MI.getOperand(1)); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a splat or a swap fed by another splat, we | 
|  | // can replace it with a copy. | 
|  | if (DefOpc == PPC::XXPERMDI) { | 
|  | unsigned FeedImmed = DefMI->getOperand(3).getImm(); | 
|  | unsigned FeedReg1 = | 
|  | TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI); | 
|  | unsigned FeedReg2 = | 
|  | TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI); | 
|  |  | 
|  | if ((FeedImmed == 0 || FeedImmed == 3) && FeedReg1 == FeedReg2) { | 
|  | LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat " | 
|  | "to splat/copy: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(MI.getOperand(1)); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | } | 
|  |  | 
|  | // If this is a splat fed by a swap, we can simplify modify | 
|  | // the splat to splat the other value from the swap's input | 
|  | // parameter. | 
|  | else if ((Immed == 0 || Immed == 3) | 
|  | && FeedImmed == 2 && FeedReg1 == FeedReg2) { | 
|  | LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | MI.getOperand(1).setReg(DefMI->getOperand(1).getReg()); | 
|  | MI.getOperand(2).setReg(DefMI->getOperand(2).getReg()); | 
|  | MI.getOperand(3).setImm(3 - Immed); | 
|  | Simplified = true; | 
|  | } | 
|  |  | 
|  | // If this is a swap fed by a swap, we can replace it | 
|  | // with a copy from the first swap's input. | 
|  | else if (Immed == 2 && FeedImmed == 2 && FeedReg1 == FeedReg2) { | 
|  | LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(DefMI->getOperand(1)); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | } | 
|  | } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs && | 
|  | (DefMI->getOperand(2).getImm() == 0 || | 
|  | DefMI->getOperand(2).getImm() == 3)) { | 
|  | // Splat fed by another splat - switch the output of the first | 
|  | // and remove the second. | 
|  | DefMI->getOperand(0).setReg(MI.getOperand(0).getReg()); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | LLVM_DEBUG(dbgs() << "Removing redundant splat: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PPC::VSPLTB: | 
|  | case PPC::VSPLTH: | 
|  | case PPC::XXSPLTW: { | 
|  | unsigned MyOpcode = MI.getOpcode(); | 
|  | unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2; | 
|  | unsigned TrueReg = | 
|  | TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(TrueReg)) | 
|  | break; | 
|  | MachineInstr *DefMI = MRI->getVRegDef(TrueReg); | 
|  | if (!DefMI) | 
|  | break; | 
|  | unsigned DefOpcode = DefMI->getOpcode(); | 
|  | auto isConvertOfSplat = [=]() -> bool { | 
|  | if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS) | 
|  | return false; | 
|  | unsigned ConvReg = DefMI->getOperand(1).getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(ConvReg)) | 
|  | return false; | 
|  | MachineInstr *Splt = MRI->getVRegDef(ConvReg); | 
|  | return Splt && (Splt->getOpcode() == PPC::LXVWSX || | 
|  | Splt->getOpcode() == PPC::XXSPLTW); | 
|  | }; | 
|  | bool AlreadySplat = (MyOpcode == DefOpcode) || | 
|  | (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) || | 
|  | (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) || | 
|  | (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) || | 
|  | (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) || | 
|  | (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)|| | 
|  | (MyOpcode == PPC::XXSPLTW && isConvertOfSplat()); | 
|  | // If the instruction[s] that feed this splat have already splat | 
|  | // the value, this splat is redundant. | 
|  | if (AlreadySplat) { | 
|  | LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(MI.getOperand(OpNo)); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | } | 
|  | // Splat fed by a shift. Usually when we align value to splat into | 
|  | // vector element zero. | 
|  | if (DefOpcode == PPC::XXSLDWI) { | 
|  | unsigned ShiftRes = DefMI->getOperand(0).getReg(); | 
|  | unsigned ShiftOp1 = DefMI->getOperand(1).getReg(); | 
|  | unsigned ShiftOp2 = DefMI->getOperand(2).getReg(); | 
|  | unsigned ShiftImm = DefMI->getOperand(3).getImm(); | 
|  | unsigned SplatImm = MI.getOperand(2).getImm(); | 
|  | if (ShiftOp1 == ShiftOp2) { | 
|  | unsigned NewElem = (SplatImm + ShiftImm) & 0x3; | 
|  | if (MRI->hasOneNonDBGUse(ShiftRes)) { | 
|  | LLVM_DEBUG(dbgs() << "Removing redundant shift: "); | 
|  | LLVM_DEBUG(DefMI->dump()); | 
|  | ToErase = DefMI; | 
|  | } | 
|  | Simplified = true; | 
|  | LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm | 
|  | << " to " << NewElem << " in instruction: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | MI.getOperand(1).setReg(ShiftOp1); | 
|  | MI.getOperand(2).setImm(NewElem); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PPC::XVCVDPSP: { | 
|  | // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant. | 
|  | unsigned TrueReg = | 
|  | TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(TrueReg)) | 
|  | break; | 
|  | MachineInstr *DefMI = MRI->getVRegDef(TrueReg); | 
|  |  | 
|  | // This can occur when building a vector of single precision or integer | 
|  | // values. | 
|  | if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) { | 
|  | unsigned DefsReg1 = | 
|  | TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI); | 
|  | unsigned DefsReg2 = | 
|  | TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(DefsReg1) || | 
|  | !TargetRegisterInfo::isVirtualRegister(DefsReg2)) | 
|  | break; | 
|  | MachineInstr *P1 = MRI->getVRegDef(DefsReg1); | 
|  | MachineInstr *P2 = MRI->getVRegDef(DefsReg2); | 
|  |  | 
|  | if (!P1 || !P2) | 
|  | break; | 
|  |  | 
|  | // Remove the passed FRSP instruction if it only feeds this MI and | 
|  | // set any uses of that FRSP (in this MI) to the source of the FRSP. | 
|  | auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) { | 
|  | if (RoundInstr->getOpcode() == PPC::FRSP && | 
|  | MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) { | 
|  | Simplified = true; | 
|  | unsigned ConvReg1 = RoundInstr->getOperand(1).getReg(); | 
|  | unsigned FRSPDefines = RoundInstr->getOperand(0).getReg(); | 
|  | MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines)); | 
|  | for (int i = 0, e = Use.getNumOperands(); i < e; ++i) | 
|  | if (Use.getOperand(i).isReg() && | 
|  | Use.getOperand(i).getReg() == FRSPDefines) | 
|  | Use.getOperand(i).setReg(ConvReg1); | 
|  | LLVM_DEBUG(dbgs() << "Removing redundant FRSP:\n"); | 
|  | LLVM_DEBUG(RoundInstr->dump()); | 
|  | LLVM_DEBUG(dbgs() << "As it feeds instruction:\n"); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | LLVM_DEBUG(dbgs() << "Through instruction:\n"); | 
|  | LLVM_DEBUG(DefMI->dump()); | 
|  | RoundInstr->eraseFromParent(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // If the input to XVCVDPSP is a vector that was built (even | 
|  | // partially) out of FRSP's, the FRSP(s) can safely be removed | 
|  | // since this instruction performs the same operation. | 
|  | if (P1 != P2) { | 
|  | removeFRSPIfPossible(P1); | 
|  | removeFRSPIfPossible(P2); | 
|  | break; | 
|  | } | 
|  | removeFRSPIfPossible(P1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PPC::EXTSH: | 
|  | case PPC::EXTSH8: | 
|  | case PPC::EXTSH8_32_64: { | 
|  | if (!EnableSExtElimination) break; | 
|  | unsigned NarrowReg = MI.getOperand(1).getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(NarrowReg)) | 
|  | break; | 
|  |  | 
|  | MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg); | 
|  | // If we've used a zero-extending load that we will sign-extend, | 
|  | // just do a sign-extending load. | 
|  | if (SrcMI->getOpcode() == PPC::LHZ || | 
|  | SrcMI->getOpcode() == PPC::LHZX) { | 
|  | if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg())) | 
|  | break; | 
|  | auto is64Bit = [] (unsigned Opcode) { | 
|  | return Opcode == PPC::EXTSH8; | 
|  | }; | 
|  | auto isXForm = [] (unsigned Opcode) { | 
|  | return Opcode == PPC::LHZX; | 
|  | }; | 
|  | auto getSextLoadOp = [] (bool is64Bit, bool isXForm) { | 
|  | if (is64Bit) | 
|  | if (isXForm) return PPC::LHAX8; | 
|  | else         return PPC::LHA8; | 
|  | else | 
|  | if (isXForm) return PPC::LHAX; | 
|  | else         return PPC::LHA; | 
|  | }; | 
|  | unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()), | 
|  | isXForm(SrcMI->getOpcode())); | 
|  | LLVM_DEBUG(dbgs() << "Zero-extending load\n"); | 
|  | LLVM_DEBUG(SrcMI->dump()); | 
|  | LLVM_DEBUG(dbgs() << "and sign-extension\n"); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n"); | 
|  | SrcMI->setDesc(TII->get(Opc)); | 
|  | SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg()); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | NumEliminatedSExt++; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PPC::EXTSW: | 
|  | case PPC::EXTSW_32: | 
|  | case PPC::EXTSW_32_64: { | 
|  | if (!EnableSExtElimination) break; | 
|  | unsigned NarrowReg = MI.getOperand(1).getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(NarrowReg)) | 
|  | break; | 
|  |  | 
|  | MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg); | 
|  | // If we've used a zero-extending load that we will sign-extend, | 
|  | // just do a sign-extending load. | 
|  | if (SrcMI->getOpcode() == PPC::LWZ || | 
|  | SrcMI->getOpcode() == PPC::LWZX) { | 
|  | if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg())) | 
|  | break; | 
|  | auto is64Bit = [] (unsigned Opcode) { | 
|  | return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64; | 
|  | }; | 
|  | auto isXForm = [] (unsigned Opcode) { | 
|  | return Opcode == PPC::LWZX; | 
|  | }; | 
|  | auto getSextLoadOp = [] (bool is64Bit, bool isXForm) { | 
|  | if (is64Bit) | 
|  | if (isXForm) return PPC::LWAX; | 
|  | else         return PPC::LWA; | 
|  | else | 
|  | if (isXForm) return PPC::LWAX_32; | 
|  | else         return PPC::LWA_32; | 
|  | }; | 
|  | unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()), | 
|  | isXForm(SrcMI->getOpcode())); | 
|  | LLVM_DEBUG(dbgs() << "Zero-extending load\n"); | 
|  | LLVM_DEBUG(SrcMI->dump()); | 
|  | LLVM_DEBUG(dbgs() << "and sign-extension\n"); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n"); | 
|  | SrcMI->setDesc(TII->get(Opc)); | 
|  | SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg()); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | NumEliminatedSExt++; | 
|  | } else if (MI.getOpcode() == PPC::EXTSW_32_64 && | 
|  | TII->isSignExtended(*SrcMI)) { | 
|  | // We can eliminate EXTSW if the input is known to be already | 
|  | // sign-extended. | 
|  | LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n"); | 
|  | unsigned TmpReg = | 
|  | MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), | 
|  | TmpReg); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG), | 
|  | MI.getOperand(0).getReg()) | 
|  | .addReg(TmpReg) | 
|  | .addReg(NarrowReg) | 
|  | .addImm(PPC::sub_32); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | NumEliminatedSExt++; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PPC::RLDICL: { | 
|  | // We can eliminate RLDICL (e.g. for zero-extension) | 
|  | // if all bits to clear are already zero in the input. | 
|  | // This code assume following code sequence for zero-extension. | 
|  | //   %6 = COPY %5:sub_32; (optional) | 
|  | //   %8 = IMPLICIT_DEF; | 
|  | //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32; | 
|  | if (!EnableZExtElimination) break; | 
|  |  | 
|  | if (MI.getOperand(2).getImm() != 0) | 
|  | break; | 
|  |  | 
|  | unsigned SrcReg = MI.getOperand(1).getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) | 
|  | break; | 
|  |  | 
|  | MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); | 
|  | if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG && | 
|  | SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg())) | 
|  | break; | 
|  |  | 
|  | MachineInstr *ImpDefMI, *SubRegMI; | 
|  | ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg()); | 
|  | SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg()); | 
|  | if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break; | 
|  |  | 
|  | SrcMI = SubRegMI; | 
|  | if (SubRegMI->getOpcode() == PPC::COPY) { | 
|  | unsigned CopyReg = SubRegMI->getOperand(1).getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(CopyReg)) | 
|  | SrcMI = MRI->getVRegDef(CopyReg); | 
|  | } | 
|  |  | 
|  | unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII); | 
|  | if (MI.getOperand(3).getImm() <= KnownZeroCount) { | 
|  | LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n"); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .addReg(SrcReg); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | NumEliminatedZExt++; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // TODO: Any instruction that has an immediate form fed only by a PHI | 
|  | // whose operands are all load immediate can be folded away. We currently | 
|  | // do this for ADD instructions, but should expand it to arithmetic and | 
|  | // binary instructions with immediate forms in the future. | 
|  | case PPC::ADD4: | 
|  | case PPC::ADD8: { | 
|  | auto isSingleUsePHI = [&](MachineOperand *PhiOp) { | 
|  | assert(PhiOp && "Invalid Operand!"); | 
|  | MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI); | 
|  |  | 
|  | return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) && | 
|  | MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg()); | 
|  | }; | 
|  |  | 
|  | auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp, | 
|  | MachineOperand *PhiOp) { | 
|  | assert(PhiOp && "Invalid Operand!"); | 
|  | assert(DominatorOp && "Invalid Operand!"); | 
|  | MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI); | 
|  | MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI); | 
|  |  | 
|  | // Note: the vregs only show up at odd indices position of PHI Node, | 
|  | // the even indices position save the BB info. | 
|  | for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { | 
|  | MachineInstr *LiMI = | 
|  | getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI); | 
|  | if (!LiMI || | 
|  | (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8) | 
|  | || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) || | 
|  | !MDT->dominates(DefDomMI, LiMI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | MachineOperand Op1 = MI.getOperand(1); | 
|  | MachineOperand Op2 = MI.getOperand(2); | 
|  | if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2)) | 
|  | std::swap(Op1, Op2); | 
|  | else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1)) | 
|  | break; // We don't have an ADD fed by LI's that can be transformed | 
|  |  | 
|  | // Now we know that Op1 is the PHI node and Op2 is the dominator | 
|  | unsigned DominatorReg = Op2.getReg(); | 
|  |  | 
|  | const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8 | 
|  | ? &PPC::G8RC_and_G8RC_NOX0RegClass | 
|  | : &PPC::GPRC_and_GPRC_NOR0RegClass; | 
|  | MRI->setRegClass(DominatorReg, TRC); | 
|  |  | 
|  | // replace LIs with ADDIs | 
|  | MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI); | 
|  | for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { | 
|  | MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI); | 
|  | LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: "); | 
|  | LLVM_DEBUG(LiMI->dump()); | 
|  |  | 
|  | // There could be repeated registers in the PHI, e.g: %1 = | 
|  | // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've | 
|  | // already replaced the def instruction, skip. | 
|  | if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8) | 
|  | continue; | 
|  |  | 
|  | assert((LiMI->getOpcode() == PPC::LI || | 
|  | LiMI->getOpcode() == PPC::LI8) && | 
|  | "Invalid Opcode!"); | 
|  | auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI | 
|  | LiMI->RemoveOperand(1);                    // remove the imm of LI | 
|  | LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI | 
|  | : PPC::ADDI8)); | 
|  | MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI) | 
|  | .addReg(DominatorReg) | 
|  | .addImm(LiImm); // restore the imm of LI | 
|  | LLVM_DEBUG(LiMI->dump()); | 
|  | } | 
|  |  | 
|  | // Replace ADD with COPY | 
|  | LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(Op1); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | NumOptADDLIs++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the last instruction was marked for elimination, | 
|  | // remove it now. | 
|  | if (ToErase) { | 
|  | ToErase->eraseFromParent(); | 
|  | ToErase = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eliminate all the TOC save instructions which are redundant. | 
|  | Simplified |= eliminateRedundantTOCSaves(TOCSaves); | 
|  | // We try to eliminate redundant compare instruction. | 
|  | Simplified |= eliminateRedundantCompare(); | 
|  |  | 
|  | return Simplified; | 
|  | } | 
|  |  | 
|  | // helper functions for eliminateRedundantCompare | 
|  | static bool isEqOrNe(MachineInstr *BI) { | 
|  | PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); | 
|  | unsigned PredCond = PPC::getPredicateCondition(Pred); | 
|  | return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE); | 
|  | } | 
|  |  | 
|  | static bool isSupportedCmpOp(unsigned opCode) { | 
|  | return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  || | 
|  | opCode == PPC::CMPLW  || opCode == PPC::CMPW  || | 
|  | opCode == PPC::CMPLDI || opCode == PPC::CMPDI || | 
|  | opCode == PPC::CMPLWI || opCode == PPC::CMPWI); | 
|  | } | 
|  |  | 
|  | static bool is64bitCmpOp(unsigned opCode) { | 
|  | return (opCode == PPC::CMPLD  || opCode == PPC::CMPD || | 
|  | opCode == PPC::CMPLDI || opCode == PPC::CMPDI); | 
|  | } | 
|  |  | 
|  | static bool isSignedCmpOp(unsigned opCode) { | 
|  | return (opCode == PPC::CMPD  || opCode == PPC::CMPW || | 
|  | opCode == PPC::CMPDI || opCode == PPC::CMPWI); | 
|  | } | 
|  |  | 
|  | static unsigned getSignedCmpOpCode(unsigned opCode) { | 
|  | if (opCode == PPC::CMPLD)  return PPC::CMPD; | 
|  | if (opCode == PPC::CMPLW)  return PPC::CMPW; | 
|  | if (opCode == PPC::CMPLDI) return PPC::CMPDI; | 
|  | if (opCode == PPC::CMPLWI) return PPC::CMPWI; | 
|  | return opCode; | 
|  | } | 
|  |  | 
|  | // We can decrement immediate x in (GE x) by changing it to (GT x-1) or | 
|  | // (LT x) to (LE x-1) | 
|  | static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) { | 
|  | uint64_t Imm = CMPI->getOperand(2).getImm(); | 
|  | bool SignedCmp = isSignedCmpOp(CMPI->getOpcode()); | 
|  | if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000)) | 
|  | return 0; | 
|  |  | 
|  | PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); | 
|  | unsigned PredCond = PPC::getPredicateCondition(Pred); | 
|  | unsigned PredHint = PPC::getPredicateHint(Pred); | 
|  | if (PredCond == PPC::PRED_GE) | 
|  | return PPC::getPredicate(PPC::PRED_GT, PredHint); | 
|  | if (PredCond == PPC::PRED_LT) | 
|  | return PPC::getPredicate(PPC::PRED_LE, PredHint); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // We can increment immediate x in (GT x) by changing it to (GE x+1) or | 
|  | // (LE x) to (LT x+1) | 
|  | static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) { | 
|  | uint64_t Imm = CMPI->getOperand(2).getImm(); | 
|  | bool SignedCmp = isSignedCmpOp(CMPI->getOpcode()); | 
|  | if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF)) | 
|  | return 0; | 
|  |  | 
|  | PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); | 
|  | unsigned PredCond = PPC::getPredicateCondition(Pred); | 
|  | unsigned PredHint = PPC::getPredicateHint(Pred); | 
|  | if (PredCond == PPC::PRED_GT) | 
|  | return PPC::getPredicate(PPC::PRED_GE, PredHint); | 
|  | if (PredCond == PPC::PRED_LE) | 
|  | return PPC::getPredicate(PPC::PRED_LT, PredHint); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This takes a Phi node and returns a register value for the specified BB. | 
|  | static unsigned getIncomingRegForBlock(MachineInstr *Phi, | 
|  | MachineBasicBlock *MBB) { | 
|  | for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) { | 
|  | MachineOperand &MO = Phi->getOperand(I); | 
|  | if (MO.getMBB() == MBB) | 
|  | return Phi->getOperand(I-1).getReg(); | 
|  | } | 
|  | llvm_unreachable("invalid src basic block for this Phi node\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This function tracks the source of the register through register copy. | 
|  | // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2 | 
|  | // assuming that the control comes from BB1 into BB2. | 
|  | static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1, | 
|  | MachineBasicBlock *BB2, MachineRegisterInfo *MRI) { | 
|  | unsigned SrcReg = Reg; | 
|  | while (1) { | 
|  | unsigned NextReg = SrcReg; | 
|  | MachineInstr *Inst = MRI->getVRegDef(SrcReg); | 
|  | if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) { | 
|  | NextReg = getIncomingRegForBlock(Inst, BB1); | 
|  | // We track through PHI only once to avoid infinite loop. | 
|  | BB1 = nullptr; | 
|  | } | 
|  | else if (Inst->isFullCopy()) | 
|  | NextReg = Inst->getOperand(1).getReg(); | 
|  | if (NextReg == SrcReg || !TargetRegisterInfo::isVirtualRegister(NextReg)) | 
|  | break; | 
|  | SrcReg = NextReg; | 
|  | } | 
|  | return SrcReg; | 
|  | } | 
|  |  | 
|  | static bool eligibleForCompareElimination(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *&PredMBB, | 
|  | MachineBasicBlock *&MBBtoMoveCmp, | 
|  | MachineRegisterInfo *MRI) { | 
|  |  | 
|  | auto isEligibleBB = [&](MachineBasicBlock &BB) { | 
|  | auto BII = BB.getFirstInstrTerminator(); | 
|  | // We optimize BBs ending with a conditional branch. | 
|  | // We check only for BCC here, not BCCLR, because BCCLR | 
|  | // will be formed only later in the pipeline. | 
|  | if (BB.succ_size() == 2 && | 
|  | BII != BB.instr_end() && | 
|  | (*BII).getOpcode() == PPC::BCC && | 
|  | (*BII).getOperand(1).isReg()) { | 
|  | // We optimize only if the condition code is used only by one BCC. | 
|  | unsigned CndReg = (*BII).getOperand(1).getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(CndReg) || | 
|  | !MRI->hasOneNonDBGUse(CndReg)) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *CMPI = MRI->getVRegDef(CndReg); | 
|  | // We assume compare and branch are in the same BB for ease of analysis. | 
|  | if (CMPI->getParent() != &BB) | 
|  | return false; | 
|  |  | 
|  | // We skip this BB if a physical register is used in comparison. | 
|  | for (MachineOperand &MO : CMPI->operands()) | 
|  | if (MO.isReg() && !TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // If this BB has more than one successor, we can create a new BB and | 
|  | // move the compare instruction in the new BB. | 
|  | // So far, we do not move compare instruction to a BB having multiple | 
|  | // successors to avoid potentially increasing code size. | 
|  | auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) { | 
|  | return BB.succ_size() == 1; | 
|  | }; | 
|  |  | 
|  | if (!isEligibleBB(MBB)) | 
|  | return false; | 
|  |  | 
|  | unsigned NumPredBBs = MBB.pred_size(); | 
|  | if (NumPredBBs == 1) { | 
|  | MachineBasicBlock *TmpMBB = *MBB.pred_begin(); | 
|  | if (isEligibleBB(*TmpMBB)) { | 
|  | PredMBB = TmpMBB; | 
|  | MBBtoMoveCmp = nullptr; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | else if (NumPredBBs == 2) { | 
|  | // We check for partially redundant case. | 
|  | // So far, we support cases with only two predecessors | 
|  | // to avoid increasing the number of instructions. | 
|  | MachineBasicBlock::pred_iterator PI = MBB.pred_begin(); | 
|  | MachineBasicBlock *Pred1MBB = *PI; | 
|  | MachineBasicBlock *Pred2MBB = *(PI+1); | 
|  |  | 
|  | if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) { | 
|  | // We assume Pred1MBB is the BB containing the compare to be merged and | 
|  | // Pred2MBB is the BB to which we will append a compare instruction. | 
|  | // Hence we can proceed as is. | 
|  | } | 
|  | else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) { | 
|  | // We need to swap Pred1MBB and Pred2MBB to canonicalize. | 
|  | std::swap(Pred1MBB, Pred2MBB); | 
|  | } | 
|  | else return false; | 
|  |  | 
|  | // Here, Pred2MBB is the BB to which we need to append a compare inst. | 
|  | // We cannot move the compare instruction if operands are not available | 
|  | // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI). | 
|  | MachineInstr *BI = &*MBB.getFirstInstrTerminator(); | 
|  | MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg()); | 
|  | for (int I = 1; I <= 2; I++) | 
|  | if (CMPI->getOperand(I).isReg()) { | 
|  | MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg()); | 
|  | if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | PredMBB = Pred1MBB; | 
|  | MBBtoMoveCmp = Pred2MBB; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // This function will iterate over the input map containing a pair of TOC save | 
|  | // instruction and a flag. The flag will be set to false if the TOC save is | 
|  | // proven redundant. This function will erase from the basic block all the TOC | 
|  | // saves marked as redundant. | 
|  | bool PPCMIPeephole::eliminateRedundantTOCSaves( | 
|  | std::map<MachineInstr *, bool> &TOCSaves) { | 
|  | bool Simplified = false; | 
|  | int NumKept = 0; | 
|  | for (auto TOCSave : TOCSaves) { | 
|  | if (!TOCSave.second) { | 
|  | TOCSave.first->eraseFromParent(); | 
|  | RemoveTOCSave++; | 
|  | Simplified = true; | 
|  | } else { | 
|  | NumKept++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NumKept > 1) | 
|  | MultiTOCSaves++; | 
|  |  | 
|  | return Simplified; | 
|  | } | 
|  |  | 
|  | // If multiple conditional branches are executed based on the (essentially) | 
|  | // same comparison, we merge compare instructions into one and make multiple | 
|  | // conditional branches on this comparison. | 
|  | // For example, | 
|  | //   if (a == 0) { ... } | 
|  | //   else if (a < 0) { ... } | 
|  | // can be executed by one compare and two conditional branches instead of | 
|  | // two pairs of a compare and a conditional branch. | 
|  | // | 
|  | // This method merges two compare instructions in two MBBs and modifies the | 
|  | // compare and conditional branch instructions if needed. | 
|  | // For the above example, the input for this pass looks like: | 
|  | //   cmplwi r3, 0 | 
|  | //   beq    0, .LBB0_3 | 
|  | //   cmpwi  r3, -1 | 
|  | //   bgt    0, .LBB0_4 | 
|  | // So, before merging two compares, we need to modify these instructions as | 
|  | //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq | 
|  | //   beq    0, .LBB0_3 | 
|  | //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0 | 
|  | //   bge    0, .LBB0_4 | 
|  |  | 
|  | bool PPCMIPeephole::eliminateRedundantCompare(void) { | 
|  | bool Simplified = false; | 
|  |  | 
|  | for (MachineBasicBlock &MBB2 : *MF) { | 
|  | MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr; | 
|  |  | 
|  | // For fully redundant case, we select two basic blocks MBB1 and MBB2 | 
|  | // as an optimization target if | 
|  | // - both MBBs end with a conditional branch, | 
|  | // - MBB1 is the only predecessor of MBB2, and | 
|  | // - compare does not take a physical register as a operand in both MBBs. | 
|  | // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr. | 
|  | // | 
|  | // As partially redundant case, we additionally handle if MBB2 has one | 
|  | // additional predecessor, which has only one successor (MBB2). | 
|  | // In this case, we move the compare instruction originally in MBB2 into | 
|  | // MBBtoMoveCmp. This partially redundant case is typically appear by | 
|  | // compiling a while loop; here, MBBtoMoveCmp is the loop preheader. | 
|  | // | 
|  | // Overview of CFG of related basic blocks | 
|  | // Fully redundant case        Partially redundant case | 
|  | //   --------                   ----------------  -------- | 
|  | //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ) | 
|  | //   --------                   ----------------  -------- | 
|  | //      |    \                     (w/ 1 succ) \     |    \ | 
|  | //      |     \                                 \    |     \ | 
|  | //      |                                        \   | | 
|  | //   --------                                     -------- | 
|  | //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred | 
|  | //   -------- and 2 succ)                         -------- and 2 succ) | 
|  | //      |    \                                       |    \ | 
|  | //      |     \                                      |     \ | 
|  | // | 
|  | if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI)) | 
|  | continue; | 
|  |  | 
|  | MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator(); | 
|  | MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg()); | 
|  |  | 
|  | MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator(); | 
|  | MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg()); | 
|  | bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr); | 
|  |  | 
|  | // We cannot optimize an unsupported compare opcode or | 
|  | // a mix of 32-bit and 64-bit comaprisons | 
|  | if (!isSupportedCmpOp(CMPI1->getOpcode()) || | 
|  | !isSupportedCmpOp(CMPI2->getOpcode()) || | 
|  | is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode())) | 
|  | continue; | 
|  |  | 
|  | unsigned NewOpCode = 0; | 
|  | unsigned NewPredicate1 = 0, NewPredicate2 = 0; | 
|  | int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0; | 
|  | bool SwapOperands = false; | 
|  |  | 
|  | if (CMPI1->getOpcode() != CMPI2->getOpcode()) { | 
|  | // Typically, unsigned comparison is used for equality check, but | 
|  | // we replace it with a signed comparison if the comparison | 
|  | // to be merged is a signed comparison. | 
|  | // In other cases of opcode mismatch, we cannot optimize this. | 
|  |  | 
|  | // We cannot change opcode when comparing against an immediate | 
|  | // if the most significant bit of the immediate is one | 
|  | // due to the difference in sign extension. | 
|  | auto CmpAgainstImmWithSignBit = [](MachineInstr *I) { | 
|  | if (!I->getOperand(2).isImm()) | 
|  | return false; | 
|  | int16_t Imm = (int16_t)I->getOperand(2).getImm(); | 
|  | return Imm < 0; | 
|  | }; | 
|  |  | 
|  | if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) && | 
|  | CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode())) | 
|  | NewOpCode = CMPI1->getOpcode(); | 
|  | else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) && | 
|  | getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode()) | 
|  | NewOpCode = CMPI2->getOpcode(); | 
|  | else continue; | 
|  | } | 
|  |  | 
|  | if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) { | 
|  | // In case of comparisons between two registers, these two registers | 
|  | // must be same to merge two comparisons. | 
|  | unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(), | 
|  | nullptr, nullptr, MRI); | 
|  | unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(), | 
|  | nullptr, nullptr, MRI); | 
|  | unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(), | 
|  | MBB1, &MBB2, MRI); | 
|  | unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(), | 
|  | MBB1, &MBB2, MRI); | 
|  |  | 
|  | if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) { | 
|  | // Same pair of registers in the same order; ready to merge as is. | 
|  | } | 
|  | else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) { | 
|  | // Same pair of registers in different order. | 
|  | // We reverse the predicate to merge compare instructions. | 
|  | PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm(); | 
|  | NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred); | 
|  | // In case of partial redundancy, we need to swap operands | 
|  | // in another compare instruction. | 
|  | SwapOperands = true; | 
|  | } | 
|  | else continue; | 
|  | } | 
|  | else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) { | 
|  | // In case of comparisons between a register and an immediate, | 
|  | // the operand register must be same for two compare instructions. | 
|  | unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(), | 
|  | nullptr, nullptr, MRI); | 
|  | unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(), | 
|  | MBB1, &MBB2, MRI); | 
|  | if (Cmp1Operand1 != Cmp2Operand1) | 
|  | continue; | 
|  |  | 
|  | NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm(); | 
|  | NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm(); | 
|  |  | 
|  | // If immediate are not same, we try to adjust by changing predicate; | 
|  | // e.g. GT imm means GE (imm+1). | 
|  | if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) { | 
|  | int Diff = Imm1 - Imm2; | 
|  | if (Diff < -2 || Diff > 2) | 
|  | continue; | 
|  |  | 
|  | unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1); | 
|  | unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1); | 
|  | unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2); | 
|  | unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2); | 
|  | if (Diff == 2) { | 
|  | if (PredToInc2 && PredToDec1) { | 
|  | NewPredicate2 = PredToInc2; | 
|  | NewPredicate1 = PredToDec1; | 
|  | NewImm2++; | 
|  | NewImm1--; | 
|  | } | 
|  | } | 
|  | else if (Diff == 1) { | 
|  | if (PredToInc2) { | 
|  | NewImm2++; | 
|  | NewPredicate2 = PredToInc2; | 
|  | } | 
|  | else if (PredToDec1) { | 
|  | NewImm1--; | 
|  | NewPredicate1 = PredToDec1; | 
|  | } | 
|  | } | 
|  | else if (Diff == -1) { | 
|  | if (PredToDec2) { | 
|  | NewImm2--; | 
|  | NewPredicate2 = PredToDec2; | 
|  | } | 
|  | else if (PredToInc1) { | 
|  | NewImm1++; | 
|  | NewPredicate1 = PredToInc1; | 
|  | } | 
|  | } | 
|  | else if (Diff == -2) { | 
|  | if (PredToDec2 && PredToInc1) { | 
|  | NewPredicate2 = PredToDec2; | 
|  | NewPredicate1 = PredToInc1; | 
|  | NewImm2--; | 
|  | NewImm1++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We cannot merge two compares if the immediates are not same. | 
|  | if (NewImm2 != NewImm1) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n"); | 
|  | LLVM_DEBUG(CMPI1->dump()); | 
|  | LLVM_DEBUG(BI1->dump()); | 
|  | LLVM_DEBUG(CMPI2->dump()); | 
|  | LLVM_DEBUG(BI2->dump()); | 
|  |  | 
|  | // We adjust opcode, predicates and immediate as we determined above. | 
|  | if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) { | 
|  | CMPI1->setDesc(TII->get(NewOpCode)); | 
|  | } | 
|  | if (NewPredicate1) { | 
|  | BI1->getOperand(0).setImm(NewPredicate1); | 
|  | } | 
|  | if (NewPredicate2) { | 
|  | BI2->getOperand(0).setImm(NewPredicate2); | 
|  | } | 
|  | if (NewImm1 != Imm1) { | 
|  | CMPI1->getOperand(2).setImm(NewImm1); | 
|  | } | 
|  |  | 
|  | if (IsPartiallyRedundant) { | 
|  | // We touch up the compare instruction in MBB2 and move it to | 
|  | // a previous BB to handle partially redundant case. | 
|  | if (SwapOperands) { | 
|  | unsigned Op1 = CMPI2->getOperand(1).getReg(); | 
|  | unsigned Op2 = CMPI2->getOperand(2).getReg(); | 
|  | CMPI2->getOperand(1).setReg(Op2); | 
|  | CMPI2->getOperand(2).setReg(Op1); | 
|  | } | 
|  | if (NewImm2 != Imm2) | 
|  | CMPI2->getOperand(2).setImm(NewImm2); | 
|  |  | 
|  | for (int I = 1; I <= 2; I++) { | 
|  | if (CMPI2->getOperand(I).isReg()) { | 
|  | MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg()); | 
|  | if (Inst->getParent() != &MBB2) | 
|  | continue; | 
|  |  | 
|  | assert(Inst->getOpcode() == PPC::PHI && | 
|  | "We cannot support if an operand comes from this BB."); | 
|  | unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp); | 
|  | CMPI2->getOperand(I).setReg(SrcReg); | 
|  | } | 
|  | } | 
|  | auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator()); | 
|  | MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2)); | 
|  |  | 
|  | DebugLoc DL = CMPI2->getDebugLoc(); | 
|  | unsigned NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass); | 
|  | BuildMI(MBB2, MBB2.begin(), DL, | 
|  | TII->get(PPC::PHI), NewVReg) | 
|  | .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1) | 
|  | .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp); | 
|  | BI2->getOperand(1).setReg(NewVReg); | 
|  | } | 
|  | else { | 
|  | // We finally eliminate compare instruction in MBB2. | 
|  | BI2->getOperand(1).setReg(BI1->getOperand(1).getReg()); | 
|  | CMPI2->eraseFromParent(); | 
|  | } | 
|  | BI2->getOperand(1).setIsKill(true); | 
|  | BI1->getOperand(1).setIsKill(false); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "into a compare and two branches:\n"); | 
|  | LLVM_DEBUG(CMPI1->dump()); | 
|  | LLVM_DEBUG(BI1->dump()); | 
|  | LLVM_DEBUG(BI2->dump()); | 
|  | if (IsPartiallyRedundant) { | 
|  | LLVM_DEBUG(dbgs() << "The following compare is moved into " | 
|  | << printMBBReference(*MBBtoMoveCmp) | 
|  | << " to handle partial redundancy.\n"); | 
|  | LLVM_DEBUG(CMPI2->dump()); | 
|  | } | 
|  |  | 
|  | Simplified = true; | 
|  | } | 
|  |  | 
|  | return Simplified; | 
|  | } | 
|  |  | 
|  | } // end default namespace | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE, | 
|  | "PowerPC MI Peephole Optimization", false, false) | 
|  | INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE, | 
|  | "PowerPC MI Peephole Optimization", false, false) | 
|  |  | 
|  | char PPCMIPeephole::ID = 0; | 
|  | FunctionPass* | 
|  | llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); } | 
|  |  |