|  | //===- SyntheticSections.cpp ----------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains linker-synthesized sections. Currently, | 
|  | // synthetic sections are created either output sections or input sections, | 
|  | // but we are rewriting code so that all synthetic sections are created as | 
|  | // input sections. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SyntheticSections.h" | 
|  | #include "Config.h" | 
|  | #include "Error.h" | 
|  | #include "InputFiles.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "Memory.h" | 
|  | #include "OutputSections.h" | 
|  | #include "Strings.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "Target.h" | 
|  | #include "Threads.h" | 
|  | #include "Writer.h" | 
|  | #include "lld/Common/Version.h" | 
|  | #include "llvm/BinaryFormat/Dwarf.h" | 
|  | #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" | 
|  | #include "llvm/Object/Decompressor.h" | 
|  | #include "llvm/Object/ELFObjectFile.h" | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include "llvm/Support/MD5.h" | 
|  | #include "llvm/Support/RandomNumberGenerator.h" | 
|  | #include "llvm/Support/SHA1.h" | 
|  | #include "llvm/Support/xxhash.h" | 
|  | #include <cstdlib> | 
|  | #include <thread> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::dwarf; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support; | 
|  | using namespace llvm::support::endian; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | constexpr size_t MergeNoTailSection::NumShards; | 
|  |  | 
|  | uint64_t SyntheticSection::getVA() const { | 
|  | if (OutputSection *Sec = getParent()) | 
|  | return Sec->Addr + OutSecOff; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Create a .bss section for each common symbol and replace the common symbol | 
|  | // with a DefinedRegular symbol. | 
|  | template <class ELFT> void elf::createCommonSections() { | 
|  | for (Symbol *S : Symtab->getSymbols()) { | 
|  | auto *Sym = dyn_cast<DefinedCommon>(S->body()); | 
|  |  | 
|  | if (!Sym) | 
|  | continue; | 
|  |  | 
|  | // Create a synthetic section for the common data. | 
|  | auto *Section = make<BssSection>("COMMON", Sym->Size, Sym->Alignment); | 
|  | Section->File = Sym->getFile(); | 
|  | Section->Live = !Config->GcSections; | 
|  | InputSections.push_back(Section); | 
|  |  | 
|  | // Replace all DefinedCommon symbols with DefinedRegular symbols so that we | 
|  | // don't have to care about DefinedCommon symbols beyond this point. | 
|  | replaceBody<DefinedRegular>(S, Sym->getFile(), Sym->getName(), | 
|  | static_cast<bool>(Sym->IsLocal), Sym->StOther, | 
|  | Sym->Type, 0, Sym->getSize<ELFT>(), Section); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns an LLD version string. | 
|  | static ArrayRef<uint8_t> getVersion() { | 
|  | // Check LLD_VERSION first for ease of testing. | 
|  | // You can get consitent output by using the environment variable. | 
|  | // This is only for testing. | 
|  | StringRef S = getenv("LLD_VERSION"); | 
|  | if (S.empty()) | 
|  | S = Saver.save(Twine("Linker: ") + getLLDVersion()); | 
|  |  | 
|  | // +1 to include the terminating '\0'. | 
|  | return {(const uint8_t *)S.data(), S.size() + 1}; | 
|  | } | 
|  |  | 
|  | // Creates a .comment section containing LLD version info. | 
|  | // With this feature, you can identify LLD-generated binaries easily | 
|  | // by "readelf --string-dump .comment <file>". | 
|  | // The returned object is a mergeable string section. | 
|  | template <class ELFT> MergeInputSection *elf::createCommentSection() { | 
|  | typename ELFT::Shdr Hdr = {}; | 
|  | Hdr.sh_flags = SHF_MERGE | SHF_STRINGS; | 
|  | Hdr.sh_type = SHT_PROGBITS; | 
|  | Hdr.sh_entsize = 1; | 
|  | Hdr.sh_addralign = 1; | 
|  |  | 
|  | auto *Ret = | 
|  | make<MergeInputSection>((ObjFile<ELFT> *)nullptr, &Hdr, ".comment"); | 
|  | Ret->Data = getVersion(); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | // .MIPS.abiflags section. | 
|  | template <class ELFT> | 
|  | MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags Flags) | 
|  | : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), | 
|  | Flags(Flags) { | 
|  | this->Entsize = sizeof(Elf_Mips_ABIFlags); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | memcpy(Buf, &Flags, sizeof(Flags)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() { | 
|  | Elf_Mips_ABIFlags Flags = {}; | 
|  | bool Create = false; | 
|  |  | 
|  | for (InputSectionBase *Sec : InputSections) { | 
|  | if (Sec->Type != SHT_MIPS_ABIFLAGS) | 
|  | continue; | 
|  | Sec->Live = false; | 
|  | Create = true; | 
|  |  | 
|  | std::string Filename = toString(Sec->getFile<ELFT>()); | 
|  | const size_t Size = Sec->Data.size(); | 
|  | // Older version of BFD (such as the default FreeBSD linker) concatenate | 
|  | // .MIPS.abiflags instead of merging. To allow for this case (or potential | 
|  | // zero padding) we ignore everything after the first Elf_Mips_ABIFlags | 
|  | if (Size < sizeof(Elf_Mips_ABIFlags)) { | 
|  | error(Filename + ": invalid size of .MIPS.abiflags section: got " + | 
|  | Twine(Size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); | 
|  | return nullptr; | 
|  | } | 
|  | auto *S = reinterpret_cast<const Elf_Mips_ABIFlags *>(Sec->Data.data()); | 
|  | if (S->version != 0) { | 
|  | error(Filename + ": unexpected .MIPS.abiflags version " + | 
|  | Twine(S->version)); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // LLD checks ISA compatibility in calcMipsEFlags(). Here we just | 
|  | // select the highest number of ISA/Rev/Ext. | 
|  | Flags.isa_level = std::max(Flags.isa_level, S->isa_level); | 
|  | Flags.isa_rev = std::max(Flags.isa_rev, S->isa_rev); | 
|  | Flags.isa_ext = std::max(Flags.isa_ext, S->isa_ext); | 
|  | Flags.gpr_size = std::max(Flags.gpr_size, S->gpr_size); | 
|  | Flags.cpr1_size = std::max(Flags.cpr1_size, S->cpr1_size); | 
|  | Flags.cpr2_size = std::max(Flags.cpr2_size, S->cpr2_size); | 
|  | Flags.ases |= S->ases; | 
|  | Flags.flags1 |= S->flags1; | 
|  | Flags.flags2 |= S->flags2; | 
|  | Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->fp_abi, Filename); | 
|  | }; | 
|  |  | 
|  | if (Create) | 
|  | return make<MipsAbiFlagsSection<ELFT>>(Flags); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // .MIPS.options section. | 
|  | template <class ELFT> | 
|  | MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo Reginfo) | 
|  | : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), | 
|  | Reginfo(Reginfo) { | 
|  | this->Entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | auto *Options = reinterpret_cast<Elf_Mips_Options *>(Buf); | 
|  | Options->kind = ODK_REGINFO; | 
|  | Options->size = getSize(); | 
|  |  | 
|  | if (!Config->Relocatable) | 
|  | Reginfo.ri_gp_value = InX::MipsGot->getGp(); | 
|  | memcpy(Buf + sizeof(Elf_Mips_Options), &Reginfo, sizeof(Reginfo)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() { | 
|  | // N64 ABI only. | 
|  | if (!ELFT::Is64Bits) | 
|  | return nullptr; | 
|  |  | 
|  | Elf_Mips_RegInfo Reginfo = {}; | 
|  | bool Create = false; | 
|  |  | 
|  | for (InputSectionBase *Sec : InputSections) { | 
|  | if (Sec->Type != SHT_MIPS_OPTIONS) | 
|  | continue; | 
|  | Sec->Live = false; | 
|  | Create = true; | 
|  |  | 
|  | std::string Filename = toString(Sec->getFile<ELFT>()); | 
|  | ArrayRef<uint8_t> D = Sec->Data; | 
|  |  | 
|  | while (!D.empty()) { | 
|  | if (D.size() < sizeof(Elf_Mips_Options)) { | 
|  | error(Filename + ": invalid size of .MIPS.options section"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | auto *Opt = reinterpret_cast<const Elf_Mips_Options *>(D.data()); | 
|  | if (Opt->kind == ODK_REGINFO) { | 
|  | if (Config->Relocatable && Opt->getRegInfo().ri_gp_value) | 
|  | error(Filename + ": unsupported non-zero ri_gp_value"); | 
|  | Reginfo.ri_gprmask |= Opt->getRegInfo().ri_gprmask; | 
|  | Sec->getFile<ELFT>()->MipsGp0 = Opt->getRegInfo().ri_gp_value; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!Opt->size) | 
|  | fatal(Filename + ": zero option descriptor size"); | 
|  | D = D.slice(Opt->size); | 
|  | } | 
|  | }; | 
|  |  | 
|  | if (Create) | 
|  | return make<MipsOptionsSection<ELFT>>(Reginfo); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // MIPS .reginfo section. | 
|  | template <class ELFT> | 
|  | MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo Reginfo) | 
|  | : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), | 
|  | Reginfo(Reginfo) { | 
|  | this->Entsize = sizeof(Elf_Mips_RegInfo); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | if (!Config->Relocatable) | 
|  | Reginfo.ri_gp_value = InX::MipsGot->getGp(); | 
|  | memcpy(Buf, &Reginfo, sizeof(Reginfo)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() { | 
|  | // Section should be alive for O32 and N32 ABIs only. | 
|  | if (ELFT::Is64Bits) | 
|  | return nullptr; | 
|  |  | 
|  | Elf_Mips_RegInfo Reginfo = {}; | 
|  | bool Create = false; | 
|  |  | 
|  | for (InputSectionBase *Sec : InputSections) { | 
|  | if (Sec->Type != SHT_MIPS_REGINFO) | 
|  | continue; | 
|  | Sec->Live = false; | 
|  | Create = true; | 
|  |  | 
|  | if (Sec->Data.size() != sizeof(Elf_Mips_RegInfo)) { | 
|  | error(toString(Sec->getFile<ELFT>()) + | 
|  | ": invalid size of .reginfo section"); | 
|  | return nullptr; | 
|  | } | 
|  | auto *R = reinterpret_cast<const Elf_Mips_RegInfo *>(Sec->Data.data()); | 
|  | if (Config->Relocatable && R->ri_gp_value) | 
|  | error(toString(Sec->getFile<ELFT>()) + | 
|  | ": unsupported non-zero ri_gp_value"); | 
|  |  | 
|  | Reginfo.ri_gprmask |= R->ri_gprmask; | 
|  | Sec->getFile<ELFT>()->MipsGp0 = R->ri_gp_value; | 
|  | }; | 
|  |  | 
|  | if (Create) | 
|  | return make<MipsReginfoSection<ELFT>>(Reginfo); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | InputSection *elf::createInterpSection() { | 
|  | // StringSaver guarantees that the returned string ends with '\0'. | 
|  | StringRef S = Saver.save(Config->DynamicLinker); | 
|  | ArrayRef<uint8_t> Contents = {(const uint8_t *)S.data(), S.size() + 1}; | 
|  |  | 
|  | auto *Sec = | 
|  | make<InputSection>(SHF_ALLOC, SHT_PROGBITS, 1, Contents, ".interp"); | 
|  | Sec->Live = true; | 
|  | return Sec; | 
|  | } | 
|  |  | 
|  | SymbolBody *elf::addSyntheticLocal(StringRef Name, uint8_t Type, uint64_t Value, | 
|  | uint64_t Size, InputSectionBase *Section) { | 
|  | auto *S = make<DefinedRegular>(Name, /*IsLocal*/ true, STV_DEFAULT, Type, | 
|  | Value, Size, Section); | 
|  | if (InX::SymTab) | 
|  | InX::SymTab->addSymbol(S); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | static size_t getHashSize() { | 
|  | switch (Config->BuildId) { | 
|  | case BuildIdKind::Fast: | 
|  | return 8; | 
|  | case BuildIdKind::Md5: | 
|  | case BuildIdKind::Uuid: | 
|  | return 16; | 
|  | case BuildIdKind::Sha1: | 
|  | return 20; | 
|  | case BuildIdKind::Hexstring: | 
|  | return Config->BuildIdVector.size(); | 
|  | default: | 
|  | llvm_unreachable("unknown BuildIdKind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | BuildIdSection::BuildIdSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_NOTE, 1, ".note.gnu.build-id"), | 
|  | HashSize(getHashSize()) {} | 
|  |  | 
|  | void BuildIdSection::writeTo(uint8_t *Buf) { | 
|  | endianness E = Config->Endianness; | 
|  | write32(Buf, 4, E);                   // Name size | 
|  | write32(Buf + 4, HashSize, E);        // Content size | 
|  | write32(Buf + 8, NT_GNU_BUILD_ID, E); // Type | 
|  | memcpy(Buf + 12, "GNU", 4);           // Name string | 
|  | HashBuf = Buf + 16; | 
|  | } | 
|  |  | 
|  | // Split one uint8 array into small pieces of uint8 arrays. | 
|  | static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> Arr, | 
|  | size_t ChunkSize) { | 
|  | std::vector<ArrayRef<uint8_t>> Ret; | 
|  | while (Arr.size() > ChunkSize) { | 
|  | Ret.push_back(Arr.take_front(ChunkSize)); | 
|  | Arr = Arr.drop_front(ChunkSize); | 
|  | } | 
|  | if (!Arr.empty()) | 
|  | Ret.push_back(Arr); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | // Computes a hash value of Data using a given hash function. | 
|  | // In order to utilize multiple cores, we first split data into 1MB | 
|  | // chunks, compute a hash for each chunk, and then compute a hash value | 
|  | // of the hash values. | 
|  | void BuildIdSection::computeHash( | 
|  | llvm::ArrayRef<uint8_t> Data, | 
|  | std::function<void(uint8_t *Dest, ArrayRef<uint8_t> Arr)> HashFn) { | 
|  | std::vector<ArrayRef<uint8_t>> Chunks = split(Data, 1024 * 1024); | 
|  | std::vector<uint8_t> Hashes(Chunks.size() * HashSize); | 
|  |  | 
|  | // Compute hash values. | 
|  | parallelForEachN(0, Chunks.size(), [&](size_t I) { | 
|  | HashFn(Hashes.data() + I * HashSize, Chunks[I]); | 
|  | }); | 
|  |  | 
|  | // Write to the final output buffer. | 
|  | HashFn(HashBuf, Hashes); | 
|  | } | 
|  |  | 
|  | BssSection::BssSection(StringRef Name, uint64_t Size, uint32_t Alignment) | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, Alignment, Name) { | 
|  | if (OutputSection *Sec = getParent()) | 
|  | Sec->updateAlignment(Alignment); | 
|  | this->Size = Size; | 
|  | } | 
|  |  | 
|  | void BuildIdSection::writeBuildId(ArrayRef<uint8_t> Buf) { | 
|  | switch (Config->BuildId) { | 
|  | case BuildIdKind::Fast: | 
|  | computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) { | 
|  | write64le(Dest, xxHash64(toStringRef(Arr))); | 
|  | }); | 
|  | break; | 
|  | case BuildIdKind::Md5: | 
|  | computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) { | 
|  | memcpy(Dest, MD5::hash(Arr).data(), 16); | 
|  | }); | 
|  | break; | 
|  | case BuildIdKind::Sha1: | 
|  | computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) { | 
|  | memcpy(Dest, SHA1::hash(Arr).data(), 20); | 
|  | }); | 
|  | break; | 
|  | case BuildIdKind::Uuid: | 
|  | if (getRandomBytes(HashBuf, HashSize)) | 
|  | error("entropy source failure"); | 
|  | break; | 
|  | case BuildIdKind::Hexstring: | 
|  | memcpy(HashBuf, Config->BuildIdVector.data(), Config->BuildIdVector.size()); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unknown BuildIdKind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | EhFrameSection<ELFT>::EhFrameSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} | 
|  |  | 
|  | // Search for an existing CIE record or create a new one. | 
|  | // CIE records from input object files are uniquified by their contents | 
|  | // and where their relocations point to. | 
|  | template <class ELFT> | 
|  | template <class RelTy> | 
|  | CieRecord *EhFrameSection<ELFT>::addCie(EhSectionPiece &Cie, | 
|  | ArrayRef<RelTy> Rels) { | 
|  | auto *Sec = cast<EhInputSection>(Cie.Sec); | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | if (read32<E>(Cie.data().data() + 4) != 0) | 
|  | fatal(toString(Sec) + ": CIE expected at beginning of .eh_frame"); | 
|  |  | 
|  | SymbolBody *Personality = nullptr; | 
|  | unsigned FirstRelI = Cie.FirstRelocation; | 
|  | if (FirstRelI != (unsigned)-1) | 
|  | Personality = | 
|  | &Sec->template getFile<ELFT>()->getRelocTargetSym(Rels[FirstRelI]); | 
|  |  | 
|  | // Search for an existing CIE by CIE contents/relocation target pair. | 
|  | CieRecord *&Rec = CieMap[{Cie.data(), Personality}]; | 
|  |  | 
|  | // If not found, create a new one. | 
|  | if (!Rec) { | 
|  | Rec = make<CieRecord>(); | 
|  | Rec->Cie = &Cie; | 
|  | CieRecords.push_back(Rec); | 
|  | } | 
|  | return Rec; | 
|  | } | 
|  |  | 
|  | // There is one FDE per function. Returns true if a given FDE | 
|  | // points to a live function. | 
|  | template <class ELFT> | 
|  | template <class RelTy> | 
|  | bool EhFrameSection<ELFT>::isFdeLive(EhSectionPiece &Fde, | 
|  | ArrayRef<RelTy> Rels) { | 
|  | auto *Sec = cast<EhInputSection>(Fde.Sec); | 
|  | unsigned FirstRelI = Fde.FirstRelocation; | 
|  |  | 
|  | // An FDE should point to some function because FDEs are to describe | 
|  | // functions. That's however not always the case due to an issue of | 
|  | // ld.gold with -r. ld.gold may discard only functions and leave their | 
|  | // corresponding FDEs, which results in creating bad .eh_frame sections. | 
|  | // To deal with that, we ignore such FDEs. | 
|  | if (FirstRelI == (unsigned)-1) | 
|  | return false; | 
|  |  | 
|  | const RelTy &Rel = Rels[FirstRelI]; | 
|  | SymbolBody &B = Sec->template getFile<ELFT>()->getRelocTargetSym(Rel); | 
|  | if (auto *D = dyn_cast<DefinedRegular>(&B)) | 
|  | if (D->Section) | 
|  | return cast<InputSectionBase>(D->Section)->Repl->Live; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // .eh_frame is a sequence of CIE or FDE records. In general, there | 
|  | // is one CIE record per input object file which is followed by | 
|  | // a list of FDEs. This function searches an existing CIE or create a new | 
|  | // one and associates FDEs to the CIE. | 
|  | template <class ELFT> | 
|  | template <class RelTy> | 
|  | void EhFrameSection<ELFT>::addSectionAux(EhInputSection *Sec, | 
|  | ArrayRef<RelTy> Rels) { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  |  | 
|  | DenseMap<size_t, CieRecord *> OffsetToCie; | 
|  | for (EhSectionPiece &Piece : Sec->Pieces) { | 
|  | // The empty record is the end marker. | 
|  | if (Piece.Size == 4) | 
|  | return; | 
|  |  | 
|  | size_t Offset = Piece.InputOff; | 
|  | uint32_t ID = read32<E>(Piece.data().data() + 4); | 
|  | if (ID == 0) { | 
|  | OffsetToCie[Offset] = addCie(Piece, Rels); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | uint32_t CieOffset = Offset + 4 - ID; | 
|  | CieRecord *Rec = OffsetToCie[CieOffset]; | 
|  | if (!Rec) | 
|  | fatal(toString(Sec) + ": invalid CIE reference"); | 
|  |  | 
|  | if (!isFdeLive(Piece, Rels)) | 
|  | continue; | 
|  | Rec->Fdes.push_back(&Piece); | 
|  | NumFdes++; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void EhFrameSection<ELFT>::addSection(InputSectionBase *C) { | 
|  | auto *Sec = cast<EhInputSection>(C); | 
|  | Sec->Parent = this; | 
|  | updateAlignment(Sec->Alignment); | 
|  | Sections.push_back(Sec); | 
|  | for (auto *DS : Sec->DependentSections) | 
|  | DependentSections.push_back(DS); | 
|  |  | 
|  | // .eh_frame is a sequence of CIE or FDE records. This function | 
|  | // splits it into pieces so that we can call | 
|  | // SplitInputSection::getSectionPiece on the section. | 
|  | Sec->split<ELFT>(); | 
|  | if (Sec->Pieces.empty()) | 
|  | return; | 
|  |  | 
|  | if (Sec->NumRelocations == 0) | 
|  | addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr)); | 
|  | else if (Sec->AreRelocsRela) | 
|  | addSectionAux(Sec, Sec->template relas<ELFT>()); | 
|  | else | 
|  | addSectionAux(Sec, Sec->template rels<ELFT>()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) { | 
|  | memcpy(Buf, D.data(), D.size()); | 
|  |  | 
|  | size_t Aligned = alignTo(D.size(), sizeof(typename ELFT::uint)); | 
|  |  | 
|  | // Zero-clear trailing padding if it exists. | 
|  | memset(Buf + D.size(), 0, Aligned - D.size()); | 
|  |  | 
|  | // Fix the size field. -4 since size does not include the size field itself. | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | write32<E>(Buf, Aligned - 4); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void EhFrameSection<ELFT>::finalizeContents() { | 
|  | if (this->Size) | 
|  | return; // Already finalized. | 
|  |  | 
|  | size_t Off = 0; | 
|  | for (CieRecord *Rec : CieRecords) { | 
|  | Rec->Cie->OutputOff = Off; | 
|  | Off += alignTo(Rec->Cie->Size, Config->Wordsize); | 
|  |  | 
|  | for (EhSectionPiece *Fde : Rec->Fdes) { | 
|  | Fde->OutputOff = Off; | 
|  | Off += alignTo(Fde->Size, Config->Wordsize); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The LSB standard does not allow a .eh_frame section with zero | 
|  | // Call Frame Information records. Therefore add a CIE record length | 
|  | // 0 as a terminator if this .eh_frame section is empty. | 
|  | if (Off == 0) | 
|  | Off = 4; | 
|  |  | 
|  | this->Size = Off; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | switch (Size) { | 
|  | case DW_EH_PE_udata2: | 
|  | return read16<E>(Buf); | 
|  | case DW_EH_PE_udata4: | 
|  | return read32<E>(Buf); | 
|  | case DW_EH_PE_udata8: | 
|  | return read64<E>(Buf); | 
|  | case DW_EH_PE_absptr: | 
|  | if (ELFT::Is64Bits) | 
|  | return read64<E>(Buf); | 
|  | return read32<E>(Buf); | 
|  | } | 
|  | fatal("unknown FDE size encoding"); | 
|  | } | 
|  |  | 
|  | // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. | 
|  | // We need it to create .eh_frame_hdr section. | 
|  | template <class ELFT> | 
|  | uint64_t EhFrameSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff, | 
|  | uint8_t Enc) { | 
|  | // The starting address to which this FDE applies is | 
|  | // stored at FDE + 8 byte. | 
|  | size_t Off = FdeOff + 8; | 
|  | uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7); | 
|  | if ((Enc & 0x70) == DW_EH_PE_absptr) | 
|  | return Addr; | 
|  | if ((Enc & 0x70) == DW_EH_PE_pcrel) | 
|  | return Addr + getParent()->Addr + Off; | 
|  | fatal("unknown FDE size relative encoding"); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void EhFrameSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | for (CieRecord *Rec : CieRecords) { | 
|  | size_t CieOffset = Rec->Cie->OutputOff; | 
|  | writeCieFde<ELFT>(Buf + CieOffset, Rec->Cie->data()); | 
|  |  | 
|  | for (EhSectionPiece *Fde : Rec->Fdes) { | 
|  | size_t Off = Fde->OutputOff; | 
|  | writeCieFde<ELFT>(Buf + Off, Fde->data()); | 
|  |  | 
|  | // FDE's second word should have the offset to an associated CIE. | 
|  | // Write it. | 
|  | write32<E>(Buf + Off + 4, Off + 4 - CieOffset); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (EhInputSection *S : Sections) | 
|  | S->relocateAlloc(Buf, nullptr); | 
|  |  | 
|  | // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table | 
|  | // to get a FDE from an address to which FDE is applied. So here | 
|  | // we obtain two addresses and pass them to EhFrameHdr object. | 
|  | if (In<ELFT>::EhFrameHdr) { | 
|  | for (CieRecord *Rec : CieRecords) { | 
|  | uint8_t Enc = getFdeEncoding<ELFT>(Rec->Cie); | 
|  | for (EhSectionPiece *Fde : Rec->Fdes) { | 
|  | uint64_t Pc = getFdePc(Buf, Fde->OutputOff, Enc); | 
|  | uint64_t FdeVA = getParent()->Addr + Fde->OutputOff; | 
|  | In<ELFT>::EhFrameHdr->addFde(Pc, FdeVA); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | GotSection::GotSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, | 
|  | Target->GotEntrySize, ".got") {} | 
|  |  | 
|  | void GotSection::addEntry(SymbolBody &Sym) { | 
|  | Sym.GotIndex = NumEntries; | 
|  | ++NumEntries; | 
|  | } | 
|  |  | 
|  | bool GotSection::addDynTlsEntry(SymbolBody &Sym) { | 
|  | if (Sym.GlobalDynIndex != -1U) | 
|  | return false; | 
|  | Sym.GlobalDynIndex = NumEntries; | 
|  | // Global Dynamic TLS entries take two GOT slots. | 
|  | NumEntries += 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Reserves TLS entries for a TLS module ID and a TLS block offset. | 
|  | // In total it takes two GOT slots. | 
|  | bool GotSection::addTlsIndex() { | 
|  | if (TlsIndexOff != uint32_t(-1)) | 
|  | return false; | 
|  | TlsIndexOff = NumEntries * Config->Wordsize; | 
|  | NumEntries += 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint64_t GotSection::getGlobalDynAddr(const SymbolBody &B) const { | 
|  | return this->getVA() + B.GlobalDynIndex * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t GotSection::getGlobalDynOffset(const SymbolBody &B) const { | 
|  | return B.GlobalDynIndex * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | void GotSection::finalizeContents() { Size = NumEntries * Config->Wordsize; } | 
|  |  | 
|  | bool GotSection::empty() const { | 
|  | // We need to emit a GOT even if it's empty if there's a relocation that is | 
|  | // relative to GOT(such as GOTOFFREL) or there's a symbol that points to a GOT | 
|  | // (i.e. _GLOBAL_OFFSET_TABLE_). | 
|  | return NumEntries == 0 && !HasGotOffRel && !ElfSym::GlobalOffsetTable; | 
|  | } | 
|  |  | 
|  | void GotSection::writeTo(uint8_t *Buf) { | 
|  | // Buf points to the start of this section's buffer, | 
|  | // whereas InputSectionBase::relocateAlloc() expects its argument | 
|  | // to point to the start of the output section. | 
|  | relocateAlloc(Buf - OutSecOff, Buf - OutSecOff + Size); | 
|  | } | 
|  |  | 
|  | MipsGotSection::MipsGotSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, | 
|  | ".got") {} | 
|  |  | 
|  | void MipsGotSection::addEntry(SymbolBody &Sym, int64_t Addend, RelExpr Expr) { | 
|  | // For "true" local symbols which can be referenced from the same module | 
|  | // only compiler creates two instructions for address loading: | 
|  | // | 
|  | // lw   $8, 0($gp) # R_MIPS_GOT16 | 
|  | // addi $8, $8, 0  # R_MIPS_LO16 | 
|  | // | 
|  | // The first instruction loads high 16 bits of the symbol address while | 
|  | // the second adds an offset. That allows to reduce number of required | 
|  | // GOT entries because only one global offset table entry is necessary | 
|  | // for every 64 KBytes of local data. So for local symbols we need to | 
|  | // allocate number of GOT entries to hold all required "page" addresses. | 
|  | // | 
|  | // All global symbols (hidden and regular) considered by compiler uniformly. | 
|  | // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation | 
|  | // to load address of the symbol. So for each such symbol we need to | 
|  | // allocate dedicated GOT entry to store its address. | 
|  | // | 
|  | // If a symbol is preemptible we need help of dynamic linker to get its | 
|  | // final address. The corresponding GOT entries are allocated in the | 
|  | // "global" part of GOT. Entries for non preemptible global symbol allocated | 
|  | // in the "local" part of GOT. | 
|  | // | 
|  | // See "Global Offset Table" in Chapter 5: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | if (Expr == R_MIPS_GOT_LOCAL_PAGE) { | 
|  | // At this point we do not know final symbol value so to reduce number | 
|  | // of allocated GOT entries do the following trick. Save all output | 
|  | // sections referenced by GOT relocations. Then later in the `finalize` | 
|  | // method calculate number of "pages" required to cover all saved output | 
|  | // section and allocate appropriate number of GOT entries. | 
|  | PageIndexMap.insert({Sym.getOutputSection(), 0}); | 
|  | return; | 
|  | } | 
|  | if (Sym.isTls()) { | 
|  | // GOT entries created for MIPS TLS relocations behave like | 
|  | // almost GOT entries from other ABIs. They go to the end | 
|  | // of the global offset table. | 
|  | Sym.GotIndex = TlsEntries.size(); | 
|  | TlsEntries.push_back(&Sym); | 
|  | return; | 
|  | } | 
|  | auto AddEntry = [&](SymbolBody &S, uint64_t A, GotEntries &Items) { | 
|  | if (S.isInGot() && !A) | 
|  | return; | 
|  | size_t NewIndex = Items.size(); | 
|  | if (!EntryIndexMap.insert({{&S, A}, NewIndex}).second) | 
|  | return; | 
|  | Items.emplace_back(&S, A); | 
|  | if (!A) | 
|  | S.GotIndex = NewIndex; | 
|  | }; | 
|  | if (Sym.isPreemptible()) { | 
|  | // Ignore addends for preemptible symbols. They got single GOT entry anyway. | 
|  | AddEntry(Sym, 0, GlobalEntries); | 
|  | Sym.IsInGlobalMipsGot = true; | 
|  | } else if (Expr == R_MIPS_GOT_OFF32) { | 
|  | AddEntry(Sym, Addend, LocalEntries32); | 
|  | Sym.Is32BitMipsGot = true; | 
|  | } else { | 
|  | // Hold local GOT entries accessed via a 16-bit index separately. | 
|  | // That allows to write them in the beginning of the GOT and keep | 
|  | // their indexes as less as possible to escape relocation's overflow. | 
|  | AddEntry(Sym, Addend, LocalEntries); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MipsGotSection::addDynTlsEntry(SymbolBody &Sym) { | 
|  | if (Sym.GlobalDynIndex != -1U) | 
|  | return false; | 
|  | Sym.GlobalDynIndex = TlsEntries.size(); | 
|  | // Global Dynamic TLS entries take two GOT slots. | 
|  | TlsEntries.push_back(nullptr); | 
|  | TlsEntries.push_back(&Sym); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Reserves TLS entries for a TLS module ID and a TLS block offset. | 
|  | // In total it takes two GOT slots. | 
|  | bool MipsGotSection::addTlsIndex() { | 
|  | if (TlsIndexOff != uint32_t(-1)) | 
|  | return false; | 
|  | TlsIndexOff = TlsEntries.size() * Config->Wordsize; | 
|  | TlsEntries.push_back(nullptr); | 
|  | TlsEntries.push_back(nullptr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static uint64_t getMipsPageAddr(uint64_t Addr) { | 
|  | return (Addr + 0x8000) & ~0xffff; | 
|  | } | 
|  |  | 
|  | static uint64_t getMipsPageCount(uint64_t Size) { | 
|  | return (Size + 0xfffe) / 0xffff + 1; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getPageEntryOffset(const SymbolBody &B, | 
|  | int64_t Addend) const { | 
|  | const OutputSection *OutSec = B.getOutputSection(); | 
|  | uint64_t SecAddr = getMipsPageAddr(OutSec->Addr); | 
|  | uint64_t SymAddr = getMipsPageAddr(B.getVA(Addend)); | 
|  | uint64_t Index = PageIndexMap.lookup(OutSec) + (SymAddr - SecAddr) / 0xffff; | 
|  | assert(Index < PageEntriesNum); | 
|  | return (HeaderEntriesNum + Index) * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getBodyEntryOffset(const SymbolBody &B, | 
|  | int64_t Addend) const { | 
|  | // Calculate offset of the GOT entries block: TLS, global, local. | 
|  | uint64_t Index = HeaderEntriesNum + PageEntriesNum; | 
|  | if (B.isTls()) | 
|  | Index += LocalEntries.size() + LocalEntries32.size() + GlobalEntries.size(); | 
|  | else if (B.IsInGlobalMipsGot) | 
|  | Index += LocalEntries.size() + LocalEntries32.size(); | 
|  | else if (B.Is32BitMipsGot) | 
|  | Index += LocalEntries.size(); | 
|  | // Calculate offset of the GOT entry in the block. | 
|  | if (B.isInGot()) | 
|  | Index += B.GotIndex; | 
|  | else { | 
|  | auto It = EntryIndexMap.find({&B, Addend}); | 
|  | assert(It != EntryIndexMap.end()); | 
|  | Index += It->second; | 
|  | } | 
|  | return Index * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getTlsOffset() const { | 
|  | return (getLocalEntriesNum() + GlobalEntries.size()) * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getGlobalDynOffset(const SymbolBody &B) const { | 
|  | return B.GlobalDynIndex * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | const SymbolBody *MipsGotSection::getFirstGlobalEntry() const { | 
|  | return GlobalEntries.empty() ? nullptr : GlobalEntries.front().first; | 
|  | } | 
|  |  | 
|  | unsigned MipsGotSection::getLocalEntriesNum() const { | 
|  | return HeaderEntriesNum + PageEntriesNum + LocalEntries.size() + | 
|  | LocalEntries32.size(); | 
|  | } | 
|  |  | 
|  | void MipsGotSection::finalizeContents() { updateAllocSize(); } | 
|  |  | 
|  | void MipsGotSection::updateAllocSize() { | 
|  | PageEntriesNum = 0; | 
|  | for (std::pair<const OutputSection *, size_t> &P : PageIndexMap) { | 
|  | // For each output section referenced by GOT page relocations calculate | 
|  | // and save into PageIndexMap an upper bound of MIPS GOT entries required | 
|  | // to store page addresses of local symbols. We assume the worst case - | 
|  | // each 64kb page of the output section has at least one GOT relocation | 
|  | // against it. And take in account the case when the section intersects | 
|  | // page boundaries. | 
|  | P.second = PageEntriesNum; | 
|  | PageEntriesNum += getMipsPageCount(P.first->Size); | 
|  | } | 
|  | Size = (getLocalEntriesNum() + GlobalEntries.size() + TlsEntries.size()) * | 
|  | Config->Wordsize; | 
|  | } | 
|  |  | 
|  | bool MipsGotSection::empty() const { | 
|  | // We add the .got section to the result for dynamic MIPS target because | 
|  | // its address and properties are mentioned in the .dynamic section. | 
|  | return Config->Relocatable; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getGp() const { return ElfSym::MipsGp->getVA(0); } | 
|  |  | 
|  | static uint64_t readUint(uint8_t *Buf) { | 
|  | if (Config->Is64) | 
|  | return read64(Buf, Config->Endianness); | 
|  | return read32(Buf, Config->Endianness); | 
|  | } | 
|  |  | 
|  | static void writeUint(uint8_t *Buf, uint64_t Val) { | 
|  | if (Config->Is64) | 
|  | write64(Buf, Val, Config->Endianness); | 
|  | else | 
|  | write32(Buf, Val, Config->Endianness); | 
|  | } | 
|  |  | 
|  | void MipsGotSection::writeTo(uint8_t *Buf) { | 
|  | // Set the MSB of the second GOT slot. This is not required by any | 
|  | // MIPS ABI documentation, though. | 
|  | // | 
|  | // There is a comment in glibc saying that "The MSB of got[1] of a | 
|  | // gnu object is set to identify gnu objects," and in GNU gold it | 
|  | // says "the second entry will be used by some runtime loaders". | 
|  | // But how this field is being used is unclear. | 
|  | // | 
|  | // We are not really willing to mimic other linkers behaviors | 
|  | // without understanding why they do that, but because all files | 
|  | // generated by GNU tools have this special GOT value, and because | 
|  | // we've been doing this for years, it is probably a safe bet to | 
|  | // keep doing this for now. We really need to revisit this to see | 
|  | // if we had to do this. | 
|  | writeUint(Buf + Config->Wordsize, (uint64_t)1 << (Config->Wordsize * 8 - 1)); | 
|  | Buf += HeaderEntriesNum * Config->Wordsize; | 
|  | // Write 'page address' entries to the local part of the GOT. | 
|  | for (std::pair<const OutputSection *, size_t> &L : PageIndexMap) { | 
|  | size_t PageCount = getMipsPageCount(L.first->Size); | 
|  | uint64_t FirstPageAddr = getMipsPageAddr(L.first->Addr); | 
|  | for (size_t PI = 0; PI < PageCount; ++PI) { | 
|  | uint8_t *Entry = Buf + (L.second + PI) * Config->Wordsize; | 
|  | writeUint(Entry, FirstPageAddr + PI * 0x10000); | 
|  | } | 
|  | } | 
|  | Buf += PageEntriesNum * Config->Wordsize; | 
|  | auto AddEntry = [&](const GotEntry &SA) { | 
|  | uint8_t *Entry = Buf; | 
|  | Buf += Config->Wordsize; | 
|  | const SymbolBody *Body = SA.first; | 
|  | uint64_t VA = Body->getVA(SA.second); | 
|  | writeUint(Entry, VA); | 
|  | }; | 
|  | std::for_each(std::begin(LocalEntries), std::end(LocalEntries), AddEntry); | 
|  | std::for_each(std::begin(LocalEntries32), std::end(LocalEntries32), AddEntry); | 
|  | std::for_each(std::begin(GlobalEntries), std::end(GlobalEntries), AddEntry); | 
|  | // Initialize TLS-related GOT entries. If the entry has a corresponding | 
|  | // dynamic relocations, leave it initialized by zero. Write down adjusted | 
|  | // TLS symbol's values otherwise. To calculate the adjustments use offsets | 
|  | // for thread-local storage. | 
|  | // https://www.linux-mips.org/wiki/NPTL | 
|  | if (TlsIndexOff != -1U && !Config->Pic) | 
|  | writeUint(Buf + TlsIndexOff, 1); | 
|  | for (const SymbolBody *B : TlsEntries) { | 
|  | if (!B || B->isPreemptible()) | 
|  | continue; | 
|  | uint64_t VA = B->getVA(); | 
|  | if (B->GotIndex != -1U) { | 
|  | uint8_t *Entry = Buf + B->GotIndex * Config->Wordsize; | 
|  | writeUint(Entry, VA - 0x7000); | 
|  | } | 
|  | if (B->GlobalDynIndex != -1U) { | 
|  | uint8_t *Entry = Buf + B->GlobalDynIndex * Config->Wordsize; | 
|  | writeUint(Entry, 1); | 
|  | Entry += Config->Wordsize; | 
|  | writeUint(Entry, VA - 0x8000); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | GotPltSection::GotPltSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, | 
|  | Target->GotPltEntrySize, ".got.plt") {} | 
|  |  | 
|  | void GotPltSection::addEntry(SymbolBody &Sym) { | 
|  | Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size(); | 
|  | Entries.push_back(&Sym); | 
|  | } | 
|  |  | 
|  | size_t GotPltSection::getSize() const { | 
|  | return (Target->GotPltHeaderEntriesNum + Entries.size()) * | 
|  | Target->GotPltEntrySize; | 
|  | } | 
|  |  | 
|  | void GotPltSection::writeTo(uint8_t *Buf) { | 
|  | Target->writeGotPltHeader(Buf); | 
|  | Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize; | 
|  | for (const SymbolBody *B : Entries) { | 
|  | Target->writeGotPlt(Buf, *B); | 
|  | Buf += Config->Wordsize; | 
|  | } | 
|  | } | 
|  |  | 
|  | // On ARM the IgotPltSection is part of the GotSection, on other Targets it is | 
|  | // part of the .got.plt | 
|  | IgotPltSection::IgotPltSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, | 
|  | Target->GotPltEntrySize, | 
|  | Config->EMachine == EM_ARM ? ".got" : ".got.plt") {} | 
|  |  | 
|  | void IgotPltSection::addEntry(SymbolBody &Sym) { | 
|  | Sym.IsInIgot = true; | 
|  | Sym.GotPltIndex = Entries.size(); | 
|  | Entries.push_back(&Sym); | 
|  | } | 
|  |  | 
|  | size_t IgotPltSection::getSize() const { | 
|  | return Entries.size() * Target->GotPltEntrySize; | 
|  | } | 
|  |  | 
|  | void IgotPltSection::writeTo(uint8_t *Buf) { | 
|  | for (const SymbolBody *B : Entries) { | 
|  | Target->writeIgotPlt(Buf, *B); | 
|  | Buf += Config->Wordsize; | 
|  | } | 
|  | } | 
|  |  | 
|  | StringTableSection::StringTableSection(StringRef Name, bool Dynamic) | 
|  | : SyntheticSection(Dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, Name), | 
|  | Dynamic(Dynamic) { | 
|  | // ELF string tables start with a NUL byte. | 
|  | addString(""); | 
|  | } | 
|  |  | 
|  | // Adds a string to the string table. If HashIt is true we hash and check for | 
|  | // duplicates. It is optional because the name of global symbols are already | 
|  | // uniqued and hashing them again has a big cost for a small value: uniquing | 
|  | // them with some other string that happens to be the same. | 
|  | unsigned StringTableSection::addString(StringRef S, bool HashIt) { | 
|  | if (HashIt) { | 
|  | auto R = StringMap.insert(std::make_pair(S, this->Size)); | 
|  | if (!R.second) | 
|  | return R.first->second; | 
|  | } | 
|  | unsigned Ret = this->Size; | 
|  | this->Size = this->Size + S.size() + 1; | 
|  | Strings.push_back(S); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | void StringTableSection::writeTo(uint8_t *Buf) { | 
|  | for (StringRef S : Strings) { | 
|  | memcpy(Buf, S.data(), S.size()); | 
|  | Buf[S.size()] = '\0'; | 
|  | Buf += S.size() + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns the number of version definition entries. Because the first entry | 
|  | // is for the version definition itself, it is the number of versioned symbols | 
|  | // plus one. Note that we don't support multiple versions yet. | 
|  | static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; } | 
|  |  | 
|  | template <class ELFT> | 
|  | DynamicSection<ELFT>::DynamicSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, Config->Wordsize, | 
|  | ".dynamic") { | 
|  | this->Entsize = ELFT::Is64Bits ? 16 : 8; | 
|  |  | 
|  | // .dynamic section is not writable on MIPS and on Fuchsia OS | 
|  | // which passes -z rodynamic. | 
|  | // See "Special Section" in Chapter 4 in the following document: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | if (Config->EMachine == EM_MIPS || Config->ZRodynamic) | 
|  | this->Flags = SHF_ALLOC; | 
|  |  | 
|  | addEntries(); | 
|  | } | 
|  |  | 
|  | // There are some dynamic entries that don't depend on other sections. | 
|  | // Such entries can be set early. | 
|  | template <class ELFT> void DynamicSection<ELFT>::addEntries() { | 
|  | // Add strings to .dynstr early so that .dynstr's size will be | 
|  | // fixed early. | 
|  | for (StringRef S : Config->FilterList) | 
|  | add({DT_FILTER, InX::DynStrTab->addString(S)}); | 
|  | for (StringRef S : Config->AuxiliaryList) | 
|  | add({DT_AUXILIARY, InX::DynStrTab->addString(S)}); | 
|  | if (!Config->Rpath.empty()) | 
|  | add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, | 
|  | InX::DynStrTab->addString(Config->Rpath)}); | 
|  | for (InputFile *File : SharedFiles) { | 
|  | SharedFile<ELFT> *F = cast<SharedFile<ELFT>>(File); | 
|  | if (F->isNeeded()) | 
|  | add({DT_NEEDED, InX::DynStrTab->addString(F->SoName)}); | 
|  | } | 
|  | if (!Config->SoName.empty()) | 
|  | add({DT_SONAME, InX::DynStrTab->addString(Config->SoName)}); | 
|  |  | 
|  | // Set DT_FLAGS and DT_FLAGS_1. | 
|  | uint32_t DtFlags = 0; | 
|  | uint32_t DtFlags1 = 0; | 
|  | if (Config->Bsymbolic) | 
|  | DtFlags |= DF_SYMBOLIC; | 
|  | if (Config->ZNodelete) | 
|  | DtFlags1 |= DF_1_NODELETE; | 
|  | if (Config->ZNodlopen) | 
|  | DtFlags1 |= DF_1_NOOPEN; | 
|  | if (Config->ZNow) { | 
|  | DtFlags |= DF_BIND_NOW; | 
|  | DtFlags1 |= DF_1_NOW; | 
|  | } | 
|  | if (Config->ZOrigin) { | 
|  | DtFlags |= DF_ORIGIN; | 
|  | DtFlags1 |= DF_1_ORIGIN; | 
|  | } | 
|  |  | 
|  | if (DtFlags) | 
|  | add({DT_FLAGS, DtFlags}); | 
|  | if (DtFlags1) | 
|  | add({DT_FLAGS_1, DtFlags1}); | 
|  |  | 
|  | // DT_DEBUG is a pointer to debug informaion used by debuggers at runtime. We | 
|  | // need it for each process, so we don't write it for DSOs. The loader writes | 
|  | // the pointer into this entry. | 
|  | // | 
|  | // DT_DEBUG is the only .dynamic entry that needs to be written to. Some | 
|  | // systems (currently only Fuchsia OS) provide other means to give the | 
|  | // debugger this information. Such systems may choose make .dynamic read-only. | 
|  | // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. | 
|  | if (!Config->Shared && !Config->Relocatable && !Config->ZRodynamic) | 
|  | add({DT_DEBUG, (uint64_t)0}); | 
|  | } | 
|  |  | 
|  | // Add remaining entries to complete .dynamic contents. | 
|  | template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { | 
|  | if (this->Size) | 
|  | return; // Already finalized. | 
|  |  | 
|  | this->Link = InX::DynStrTab->getParent()->SectionIndex; | 
|  | if (In<ELFT>::RelaDyn->getParent() && !In<ELFT>::RelaDyn->empty()) { | 
|  | bool IsRela = Config->IsRela; | 
|  | add({IsRela ? DT_RELA : DT_REL, In<ELFT>::RelaDyn}); | 
|  | add({IsRela ? DT_RELASZ : DT_RELSZ, In<ELFT>::RelaDyn->getParent(), | 
|  | Entry::SecSize}); | 
|  | add({IsRela ? DT_RELAENT : DT_RELENT, | 
|  | uint64_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); | 
|  |  | 
|  | // MIPS dynamic loader does not support RELCOUNT tag. | 
|  | // The problem is in the tight relation between dynamic | 
|  | // relocations and GOT. So do not emit this tag on MIPS. | 
|  | if (Config->EMachine != EM_MIPS) { | 
|  | size_t NumRelativeRels = In<ELFT>::RelaDyn->getRelativeRelocCount(); | 
|  | if (Config->ZCombreloc && NumRelativeRels) | 
|  | add({IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels}); | 
|  | } | 
|  | } | 
|  | if (In<ELFT>::RelaPlt->getParent() && !In<ELFT>::RelaPlt->empty()) { | 
|  | add({DT_JMPREL, In<ELFT>::RelaPlt}); | 
|  | add({DT_PLTRELSZ, In<ELFT>::RelaPlt->getParent(), Entry::SecSize}); | 
|  | switch (Config->EMachine) { | 
|  | case EM_MIPS: | 
|  | add({DT_MIPS_PLTGOT, In<ELFT>::GotPlt}); | 
|  | break; | 
|  | case EM_SPARCV9: | 
|  | add({DT_PLTGOT, In<ELFT>::Plt}); | 
|  | break; | 
|  | default: | 
|  | add({DT_PLTGOT, In<ELFT>::GotPlt}); | 
|  | break; | 
|  | } | 
|  | add({DT_PLTREL, uint64_t(Config->IsRela ? DT_RELA : DT_REL)}); | 
|  | } | 
|  |  | 
|  | add({DT_SYMTAB, InX::DynSymTab}); | 
|  | add({DT_SYMENT, sizeof(Elf_Sym)}); | 
|  | add({DT_STRTAB, InX::DynStrTab}); | 
|  | add({DT_STRSZ, InX::DynStrTab->getSize()}); | 
|  | if (!Config->ZText) | 
|  | add({DT_TEXTREL, (uint64_t)0}); | 
|  | if (InX::GnuHashTab) | 
|  | add({DT_GNU_HASH, InX::GnuHashTab}); | 
|  | if (InX::HashTab) | 
|  | add({DT_HASH, InX::HashTab}); | 
|  |  | 
|  | if (Out::PreinitArray) { | 
|  | add({DT_PREINIT_ARRAY, Out::PreinitArray}); | 
|  | add({DT_PREINIT_ARRAYSZ, Out::PreinitArray, Entry::SecSize}); | 
|  | } | 
|  | if (Out::InitArray) { | 
|  | add({DT_INIT_ARRAY, Out::InitArray}); | 
|  | add({DT_INIT_ARRAYSZ, Out::InitArray, Entry::SecSize}); | 
|  | } | 
|  | if (Out::FiniArray) { | 
|  | add({DT_FINI_ARRAY, Out::FiniArray}); | 
|  | add({DT_FINI_ARRAYSZ, Out::FiniArray, Entry::SecSize}); | 
|  | } | 
|  |  | 
|  | if (SymbolBody *B = Symtab->find(Config->Init)) | 
|  | if (B->isInCurrentDSO()) | 
|  | add({DT_INIT, B}); | 
|  | if (SymbolBody *B = Symtab->find(Config->Fini)) | 
|  | if (B->isInCurrentDSO()) | 
|  | add({DT_FINI, B}); | 
|  |  | 
|  | bool HasVerNeed = In<ELFT>::VerNeed->getNeedNum() != 0; | 
|  | if (HasVerNeed || In<ELFT>::VerDef) | 
|  | add({DT_VERSYM, In<ELFT>::VerSym}); | 
|  | if (In<ELFT>::VerDef) { | 
|  | add({DT_VERDEF, In<ELFT>::VerDef}); | 
|  | add({DT_VERDEFNUM, getVerDefNum()}); | 
|  | } | 
|  | if (HasVerNeed) { | 
|  | add({DT_VERNEED, In<ELFT>::VerNeed}); | 
|  | add({DT_VERNEEDNUM, In<ELFT>::VerNeed->getNeedNum()}); | 
|  | } | 
|  |  | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | add({DT_MIPS_RLD_VERSION, 1}); | 
|  | add({DT_MIPS_FLAGS, RHF_NOTPOT}); | 
|  | add({DT_MIPS_BASE_ADDRESS, Config->ImageBase}); | 
|  | add({DT_MIPS_SYMTABNO, InX::DynSymTab->getNumSymbols()}); | 
|  | add({DT_MIPS_LOCAL_GOTNO, InX::MipsGot->getLocalEntriesNum()}); | 
|  | if (const SymbolBody *B = InX::MipsGot->getFirstGlobalEntry()) | 
|  | add({DT_MIPS_GOTSYM, B->DynsymIndex}); | 
|  | else | 
|  | add({DT_MIPS_GOTSYM, InX::DynSymTab->getNumSymbols()}); | 
|  | add({DT_PLTGOT, InX::MipsGot}); | 
|  | if (InX::MipsRldMap) | 
|  | add({DT_MIPS_RLD_MAP, InX::MipsRldMap}); | 
|  | } | 
|  |  | 
|  | getParent()->Link = this->Link; | 
|  |  | 
|  | // +1 for DT_NULL | 
|  | this->Size = (Entries.size() + 1) * this->Entsize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | auto *P = reinterpret_cast<Elf_Dyn *>(Buf); | 
|  |  | 
|  | for (const Entry &E : Entries) { | 
|  | P->d_tag = E.Tag; | 
|  | switch (E.Kind) { | 
|  | case Entry::SecAddr: | 
|  | P->d_un.d_ptr = E.OutSec->Addr; | 
|  | break; | 
|  | case Entry::InSecAddr: | 
|  | P->d_un.d_ptr = E.InSec->getParent()->Addr + E.InSec->OutSecOff; | 
|  | break; | 
|  | case Entry::SecSize: | 
|  | P->d_un.d_val = E.OutSec->Size; | 
|  | break; | 
|  | case Entry::SymAddr: | 
|  | P->d_un.d_ptr = E.Sym->getVA(); | 
|  | break; | 
|  | case Entry::PlainInt: | 
|  | P->d_un.d_val = E.Val; | 
|  | break; | 
|  | } | 
|  | ++P; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t DynamicReloc::getOffset() const { | 
|  | return InputSec->getOutputSection()->Addr + InputSec->getOffset(OffsetInSec); | 
|  | } | 
|  |  | 
|  | int64_t DynamicReloc::getAddend() const { | 
|  | if (UseSymVA) | 
|  | return Sym->getVA(Addend); | 
|  | return Addend; | 
|  | } | 
|  |  | 
|  | uint32_t DynamicReloc::getSymIndex() const { | 
|  | if (Sym && !UseSymVA) | 
|  | return Sym->DynsymIndex; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort) | 
|  | : SyntheticSection(SHF_ALLOC, Config->IsRela ? SHT_RELA : SHT_REL, | 
|  | Config->Wordsize, Name), | 
|  | Sort(Sort) { | 
|  | this->Entsize = Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void RelocationSection<ELFT>::addReloc(const DynamicReloc &Reloc) { | 
|  | if (Reloc.Type == Target->RelativeRel) | 
|  | ++NumRelativeRelocs; | 
|  | Relocs.push_back(Reloc); | 
|  | } | 
|  |  | 
|  | template <class ELFT, class RelTy> | 
|  | static bool compRelocations(const RelTy &A, const RelTy &B) { | 
|  | bool AIsRel = A.getType(Config->IsMips64EL) == Target->RelativeRel; | 
|  | bool BIsRel = B.getType(Config->IsMips64EL) == Target->RelativeRel; | 
|  | if (AIsRel != BIsRel) | 
|  | return AIsRel; | 
|  |  | 
|  | return A.getSymbol(Config->IsMips64EL) < B.getSymbol(Config->IsMips64EL); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | uint8_t *BufBegin = Buf; | 
|  | for (const DynamicReloc &Rel : Relocs) { | 
|  | auto *P = reinterpret_cast<Elf_Rela *>(Buf); | 
|  | Buf += Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); | 
|  |  | 
|  | if (Config->IsRela) | 
|  | P->r_addend = Rel.getAddend(); | 
|  | P->r_offset = Rel.getOffset(); | 
|  | if (Config->EMachine == EM_MIPS && Rel.getInputSec() == InX::MipsGot) | 
|  | // Dynamic relocation against MIPS GOT section make deal TLS entries | 
|  | // allocated in the end of the GOT. We need to adjust the offset to take | 
|  | // in account 'local' and 'global' GOT entries. | 
|  | P->r_offset += InX::MipsGot->getTlsOffset(); | 
|  | P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->IsMips64EL); | 
|  | } | 
|  |  | 
|  | if (Sort) { | 
|  | if (Config->IsRela) | 
|  | std::stable_sort((Elf_Rela *)BufBegin, | 
|  | (Elf_Rela *)BufBegin + Relocs.size(), | 
|  | compRelocations<ELFT, Elf_Rela>); | 
|  | else | 
|  | std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(), | 
|  | compRelocations<ELFT, Elf_Rel>); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() { | 
|  | return this->Entsize * Relocs.size(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void RelocationSection<ELFT>::finalizeContents() { | 
|  | this->Link = InX::DynSymTab ? InX::DynSymTab->getParent()->SectionIndex | 
|  | : InX::SymTab->getParent()->SectionIndex; | 
|  |  | 
|  | // Set required output section properties. | 
|  | getParent()->Link = this->Link; | 
|  | } | 
|  |  | 
|  | SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &StrTabSec) | 
|  | : SyntheticSection(StrTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, | 
|  | StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, | 
|  | Config->Wordsize, | 
|  | StrTabSec.isDynamic() ? ".dynsym" : ".symtab"), | 
|  | StrTabSec(StrTabSec) {} | 
|  |  | 
|  | // Orders symbols according to their positions in the GOT, | 
|  | // in compliance with MIPS ABI rules. | 
|  | // See "Global Offset Table" in Chapter 5 in the following document | 
|  | // for detailed description: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | static bool sortMipsSymbols(const SymbolTableEntry &L, | 
|  | const SymbolTableEntry &R) { | 
|  | // Sort entries related to non-local preemptible symbols by GOT indexes. | 
|  | // All other entries go to the first part of GOT in arbitrary order. | 
|  | bool LIsInLocalGot = !L.Symbol->IsInGlobalMipsGot; | 
|  | bool RIsInLocalGot = !R.Symbol->IsInGlobalMipsGot; | 
|  | if (LIsInLocalGot || RIsInLocalGot) | 
|  | return !RIsInLocalGot; | 
|  | return L.Symbol->GotIndex < R.Symbol->GotIndex; | 
|  | } | 
|  |  | 
|  | // Finalize a symbol table. The ELF spec requires that all local | 
|  | // symbols precede global symbols, so we sort symbol entries in this | 
|  | // function. (For .dynsym, we don't do that because symbols for | 
|  | // dynamic linking are inherently all globals.) | 
|  | void SymbolTableBaseSection::finalizeContents() { | 
|  | getParent()->Link = StrTabSec.getParent()->SectionIndex; | 
|  |  | 
|  | // If it is a .dynsym, there should be no local symbols, but we need | 
|  | // to do a few things for the dynamic linker. | 
|  | if (this->Type == SHT_DYNSYM) { | 
|  | // Section's Info field has the index of the first non-local symbol. | 
|  | // Because the first symbol entry is a null entry, 1 is the first. | 
|  | getParent()->Info = 1; | 
|  |  | 
|  | if (InX::GnuHashTab) { | 
|  | // NB: It also sorts Symbols to meet the GNU hash table requirements. | 
|  | InX::GnuHashTab->addSymbols(Symbols); | 
|  | } else if (Config->EMachine == EM_MIPS) { | 
|  | std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols); | 
|  | } | 
|  |  | 
|  | size_t I = 0; | 
|  | for (const SymbolTableEntry &S : Symbols) | 
|  | S.Symbol->DynsymIndex = ++I; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SymbolTableBaseSection::postThunkContents() { | 
|  | if (this->Type == SHT_DYNSYM) | 
|  | return; | 
|  | // move all local symbols before global symbols. | 
|  | auto It = std::stable_partition( | 
|  | Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &S) { | 
|  | return S.Symbol->isLocal() || | 
|  | S.Symbol->symbol()->computeBinding() == STB_LOCAL; | 
|  | }); | 
|  | size_t NumLocals = It - Symbols.begin(); | 
|  | getParent()->Info = NumLocals + 1; | 
|  | } | 
|  |  | 
|  | void SymbolTableBaseSection::addSymbol(SymbolBody *B) { | 
|  | // Adding a local symbol to a .dynsym is a bug. | 
|  | assert(this->Type != SHT_DYNSYM || !B->isLocal()); | 
|  |  | 
|  | bool HashIt = B->isLocal(); | 
|  | Symbols.push_back({B, StrTabSec.addString(B->getName(), HashIt)}); | 
|  | } | 
|  |  | 
|  | size_t SymbolTableBaseSection::getSymbolIndex(SymbolBody *Body) { | 
|  | // Initializes symbol lookup tables lazily. This is used only | 
|  | // for -r or -emit-relocs. | 
|  | llvm::call_once(OnceFlag, [&] { | 
|  | SymbolIndexMap.reserve(Symbols.size()); | 
|  | size_t I = 0; | 
|  | for (const SymbolTableEntry &E : Symbols) { | 
|  | if (E.Symbol->Type == STT_SECTION) | 
|  | SectionIndexMap[E.Symbol->getOutputSection()] = ++I; | 
|  | else | 
|  | SymbolIndexMap[E.Symbol] = ++I; | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Section symbols are mapped based on their output sections | 
|  | // to maintain their semantics. | 
|  | if (Body->Type == STT_SECTION) | 
|  | return SectionIndexMap.lookup(Body->getOutputSection()); | 
|  | return SymbolIndexMap.lookup(Body); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &StrTabSec) | 
|  | : SymbolTableBaseSection(StrTabSec) { | 
|  | this->Entsize = sizeof(Elf_Sym); | 
|  | } | 
|  |  | 
|  | // Write the internal symbol table contents to the output symbol table. | 
|  | template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | // The first entry is a null entry as per the ELF spec. | 
|  | Buf += sizeof(Elf_Sym); | 
|  |  | 
|  | auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); | 
|  |  | 
|  | for (SymbolTableEntry &Ent : Symbols) { | 
|  | SymbolBody *Body = Ent.Symbol; | 
|  |  | 
|  | // Set st_info and st_other. | 
|  | if (Body->isLocal()) { | 
|  | ESym->setBindingAndType(STB_LOCAL, Body->Type); | 
|  | } else { | 
|  | ESym->setBindingAndType(Body->symbol()->computeBinding(), Body->Type); | 
|  | ESym->setVisibility(Body->symbol()->Visibility); | 
|  | } | 
|  |  | 
|  | ESym->st_name = Ent.StrTabOffset; | 
|  |  | 
|  | // Set a section index. | 
|  | if (const OutputSection *OutSec = Body->getOutputSection()) | 
|  | ESym->st_shndx = OutSec->SectionIndex; | 
|  | else if (isa<DefinedRegular>(Body)) | 
|  | ESym->st_shndx = SHN_ABS; | 
|  | else if (isa<DefinedCommon>(Body)) | 
|  | ESym->st_shndx = SHN_COMMON; | 
|  |  | 
|  | // Copy symbol size if it is a defined symbol. st_size is not significant | 
|  | // for undefined symbols, so whether copying it or not is up to us if that's | 
|  | // the case. We'll leave it as zero because by not setting a value, we can | 
|  | // get the exact same outputs for two sets of input files that differ only | 
|  | // in undefined symbol size in DSOs. | 
|  | if (ESym->st_shndx != SHN_UNDEF) | 
|  | ESym->st_size = Body->getSize<ELFT>(); | 
|  |  | 
|  | // st_value is usually an address of a symbol, but that has a | 
|  | // special meaining for uninstantiated common symbols (this can | 
|  | // occur if -r is given). | 
|  | if (!Config->DefineCommon && isa<DefinedCommon>(Body)) | 
|  | ESym->st_value = cast<DefinedCommon>(Body)->Alignment; | 
|  | else | 
|  | ESym->st_value = Body->getVA(); | 
|  |  | 
|  | ++ESym; | 
|  | } | 
|  |  | 
|  | // On MIPS we need to mark symbol which has a PLT entry and requires | 
|  | // pointer equality by STO_MIPS_PLT flag. That is necessary to help | 
|  | // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. | 
|  | // https://sourceware.org/ml/binutils/2008-07/txt00000.txt | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); | 
|  |  | 
|  | for (SymbolTableEntry &Ent : Symbols) { | 
|  | SymbolBody *Body = Ent.Symbol; | 
|  | if (Body->isInPlt() && Body->NeedsPltAddr) | 
|  | ESym->st_other |= STO_MIPS_PLT; | 
|  |  | 
|  | if (Config->Relocatable) | 
|  | if (auto *D = dyn_cast<DefinedRegular>(Body)) | 
|  | if (D->isMipsPIC<ELFT>()) | 
|  | ESym->st_other |= STO_MIPS_PIC; | 
|  | ++ESym; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // .hash and .gnu.hash sections contain on-disk hash tables that map | 
|  | // symbol names to their dynamic symbol table indices. Their purpose | 
|  | // is to help the dynamic linker resolve symbols quickly. If ELF files | 
|  | // don't have them, the dynamic linker has to do linear search on all | 
|  | // dynamic symbols, which makes programs slower. Therefore, a .hash | 
|  | // section is added to a DSO by default. A .gnu.hash is added if you | 
|  | // give the -hash-style=gnu or -hash-style=both option. | 
|  | // | 
|  | // The Unix semantics of resolving dynamic symbols is somewhat expensive. | 
|  | // Each ELF file has a list of DSOs that the ELF file depends on and a | 
|  | // list of dynamic symbols that need to be resolved from any of the | 
|  | // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) | 
|  | // where m is the number of DSOs and n is the number of dynamic | 
|  | // symbols. For modern large programs, both m and n are large.  So | 
|  | // making each step faster by using hash tables substiantially | 
|  | // improves time to load programs. | 
|  | // | 
|  | // (Note that this is not the only way to design the shared library. | 
|  | // For instance, the Windows DLL takes a different approach. On | 
|  | // Windows, each dynamic symbol has a name of DLL from which the symbol | 
|  | // has to be resolved. That makes the cost of symbol resolution O(n). | 
|  | // This disables some hacky techniques you can use on Unix such as | 
|  | // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) | 
|  | // | 
|  | // Due to historical reasons, we have two different hash tables, .hash | 
|  | // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new | 
|  | // and better version of .hash. .hash is just an on-disk hash table, but | 
|  | // .gnu.hash has a bloom filter in addition to a hash table to skip | 
|  | // DSOs very quickly. If you are sure that your dynamic linker knows | 
|  | // about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a | 
|  | // safe bet is to specify -hash-style=both for backward compatibilty. | 
|  | GnuHashTableSection::GnuHashTableSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, Config->Wordsize, ".gnu.hash") { | 
|  | } | 
|  |  | 
|  | void GnuHashTableSection::finalizeContents() { | 
|  | getParent()->Link = InX::DynSymTab->getParent()->SectionIndex; | 
|  |  | 
|  | // Computes bloom filter size in word size. We want to allocate 8 | 
|  | // bits for each symbol. It must be a power of two. | 
|  | if (Symbols.empty()) | 
|  | MaskWords = 1; | 
|  | else | 
|  | MaskWords = NextPowerOf2((Symbols.size() - 1) / Config->Wordsize); | 
|  |  | 
|  | Size = 16;                            // Header | 
|  | Size += Config->Wordsize * MaskWords; // Bloom filter | 
|  | Size += NBuckets * 4;                 // Hash buckets | 
|  | Size += Symbols.size() * 4;           // Hash values | 
|  | } | 
|  |  | 
|  | void GnuHashTableSection::writeTo(uint8_t *Buf) { | 
|  | // Write a header. | 
|  | write32(Buf, NBuckets, Config->Endianness); | 
|  | write32(Buf + 4, InX::DynSymTab->getNumSymbols() - Symbols.size(), | 
|  | Config->Endianness); | 
|  | write32(Buf + 8, MaskWords, Config->Endianness); | 
|  | write32(Buf + 12, getShift2(), Config->Endianness); | 
|  | Buf += 16; | 
|  |  | 
|  | // Write a bloom filter and a hash table. | 
|  | writeBloomFilter(Buf); | 
|  | Buf += Config->Wordsize * MaskWords; | 
|  | writeHashTable(Buf); | 
|  | } | 
|  |  | 
|  | // This function writes a 2-bit bloom filter. This bloom filter alone | 
|  | // usually filters out 80% or more of all symbol lookups [1]. | 
|  | // The dynamic linker uses the hash table only when a symbol is not | 
|  | // filtered out by a bloom filter. | 
|  | // | 
|  | // [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2), | 
|  | //     p.9, https://www.akkadia.org/drepper/dsohowto.pdf | 
|  | void GnuHashTableSection::writeBloomFilter(uint8_t *Buf) { | 
|  | const unsigned C = Config->Wordsize * 8; | 
|  | for (const Entry &Sym : Symbols) { | 
|  | size_t I = (Sym.Hash / C) & (MaskWords - 1); | 
|  | uint64_t Val = readUint(Buf + I * Config->Wordsize); | 
|  | Val |= uint64_t(1) << (Sym.Hash % C); | 
|  | Val |= uint64_t(1) << ((Sym.Hash >> getShift2()) % C); | 
|  | writeUint(Buf + I * Config->Wordsize, Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GnuHashTableSection::writeHashTable(uint8_t *Buf) { | 
|  | // Group symbols by hash value. | 
|  | std::vector<std::vector<Entry>> Syms(NBuckets); | 
|  | for (const Entry &Ent : Symbols) | 
|  | Syms[Ent.Hash % NBuckets].push_back(Ent); | 
|  |  | 
|  | // Write hash buckets. Hash buckets contain indices in the following | 
|  | // hash value table. | 
|  | uint32_t *Buckets = reinterpret_cast<uint32_t *>(Buf); | 
|  | for (size_t I = 0; I < NBuckets; ++I) | 
|  | if (!Syms[I].empty()) | 
|  | write32(Buckets + I, Syms[I][0].Body->DynsymIndex, Config->Endianness); | 
|  |  | 
|  | // Write a hash value table. It represents a sequence of chains that | 
|  | // share the same hash modulo value. The last element of each chain | 
|  | // is terminated by LSB 1. | 
|  | uint32_t *Values = Buckets + NBuckets; | 
|  | size_t I = 0; | 
|  | for (std::vector<Entry> &Vec : Syms) { | 
|  | if (Vec.empty()) | 
|  | continue; | 
|  | for (const Entry &Ent : makeArrayRef(Vec).drop_back()) | 
|  | write32(Values + I++, Ent.Hash & ~1, Config->Endianness); | 
|  | write32(Values + I++, Vec.back().Hash | 1, Config->Endianness); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t hashGnu(StringRef Name) { | 
|  | uint32_t H = 5381; | 
|  | for (uint8_t C : Name) | 
|  | H = (H << 5) + H + C; | 
|  | return H; | 
|  | } | 
|  |  | 
|  | // Returns a number of hash buckets to accomodate given number of elements. | 
|  | // We want to choose a moderate number that is not too small (which | 
|  | // causes too many hash collisions) and not too large (which wastes | 
|  | // disk space.) | 
|  | // | 
|  | // We return a prime number because it (is believed to) achieve good | 
|  | // hash distribution. | 
|  | static size_t getBucketSize(size_t NumSymbols) { | 
|  | // List of largest prime numbers that are not greater than 2^n + 1. | 
|  | for (size_t N : {131071, 65521, 32749, 16381, 8191, 4093, 2039, 1021, 509, | 
|  | 251, 127, 61, 31, 13, 7, 3, 1}) | 
|  | if (N <= NumSymbols) | 
|  | return N; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Add symbols to this symbol hash table. Note that this function | 
|  | // destructively sort a given vector -- which is needed because | 
|  | // GNU-style hash table places some sorting requirements. | 
|  | void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &V) { | 
|  | // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce | 
|  | // its type correctly. | 
|  | std::vector<SymbolTableEntry>::iterator Mid = | 
|  | std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) { | 
|  | return S.Symbol->isUndefined(); | 
|  | }); | 
|  | if (Mid == V.end()) | 
|  | return; | 
|  |  | 
|  | for (SymbolTableEntry &Ent : llvm::make_range(Mid, V.end())) { | 
|  | SymbolBody *B = Ent.Symbol; | 
|  | Symbols.push_back({B, Ent.StrTabOffset, hashGnu(B->getName())}); | 
|  | } | 
|  |  | 
|  | NBuckets = getBucketSize(Symbols.size()); | 
|  | std::stable_sort(Symbols.begin(), Symbols.end(), | 
|  | [&](const Entry &L, const Entry &R) { | 
|  | return L.Hash % NBuckets < R.Hash % NBuckets; | 
|  | }); | 
|  |  | 
|  | V.erase(Mid, V.end()); | 
|  | for (const Entry &Ent : Symbols) | 
|  | V.push_back({Ent.Body, Ent.StrTabOffset}); | 
|  | } | 
|  |  | 
|  | HashTableSection::HashTableSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { | 
|  | this->Entsize = 4; | 
|  | } | 
|  |  | 
|  | void HashTableSection::finalizeContents() { | 
|  | getParent()->Link = InX::DynSymTab->getParent()->SectionIndex; | 
|  |  | 
|  | unsigned NumEntries = 2;                       // nbucket and nchain. | 
|  | NumEntries += InX::DynSymTab->getNumSymbols(); // The chain entries. | 
|  |  | 
|  | // Create as many buckets as there are symbols. | 
|  | // FIXME: This is simplistic. We can try to optimize it, but implementing | 
|  | // support for SHT_GNU_HASH is probably even more profitable. | 
|  | NumEntries += InX::DynSymTab->getNumSymbols(); | 
|  | this->Size = NumEntries * 4; | 
|  | } | 
|  |  | 
|  | void HashTableSection::writeTo(uint8_t *Buf) { | 
|  | unsigned NumSymbols = InX::DynSymTab->getNumSymbols(); | 
|  |  | 
|  | uint32_t *P = reinterpret_cast<uint32_t *>(Buf); | 
|  | write32(P++, NumSymbols, Config->Endianness); // nbucket | 
|  | write32(P++, NumSymbols, Config->Endianness); // nchain | 
|  |  | 
|  | uint32_t *Buckets = P; | 
|  | uint32_t *Chains = P + NumSymbols; | 
|  |  | 
|  | for (const SymbolTableEntry &S : InX::DynSymTab->getSymbols()) { | 
|  | SymbolBody *Body = S.Symbol; | 
|  | StringRef Name = Body->getName(); | 
|  | unsigned I = Body->DynsymIndex; | 
|  | uint32_t Hash = hashSysV(Name) % NumSymbols; | 
|  | Chains[I] = Buckets[Hash]; | 
|  | write32(Buckets + Hash, I, Config->Endianness); | 
|  | } | 
|  | } | 
|  |  | 
|  | PltSection::PltSection(size_t S) | 
|  | : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), | 
|  | HeaderSize(S) { | 
|  | // The PLT needs to be writable on SPARC as the dynamic linker will | 
|  | // modify the instructions in the PLT entries. | 
|  | if (Config->EMachine == EM_SPARCV9) | 
|  | this->Flags |= SHF_WRITE; | 
|  | } | 
|  |  | 
|  | void PltSection::writeTo(uint8_t *Buf) { | 
|  | // At beginning of PLT but not the IPLT, we have code to call the dynamic | 
|  | // linker to resolve dynsyms at runtime. Write such code. | 
|  | if (HeaderSize != 0) | 
|  | Target->writePltHeader(Buf); | 
|  | size_t Off = HeaderSize; | 
|  | // The IPlt is immediately after the Plt, account for this in RelOff | 
|  | unsigned PltOff = getPltRelocOff(); | 
|  |  | 
|  | for (auto &I : Entries) { | 
|  | const SymbolBody *B = I.first; | 
|  | unsigned RelOff = I.second + PltOff; | 
|  | uint64_t Got = B->getGotPltVA(); | 
|  | uint64_t Plt = this->getVA() + Off; | 
|  | Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); | 
|  | Off += Target->PltEntrySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void PltSection::addEntry(SymbolBody &Sym) { | 
|  | Sym.PltIndex = Entries.size(); | 
|  | RelocationSection<ELFT> *PltRelocSection = In<ELFT>::RelaPlt; | 
|  | if (HeaderSize == 0) { | 
|  | PltRelocSection = In<ELFT>::RelaIplt; | 
|  | Sym.IsInIplt = true; | 
|  | } | 
|  | unsigned RelOff = PltRelocSection->getRelocOffset(); | 
|  | Entries.push_back(std::make_pair(&Sym, RelOff)); | 
|  | } | 
|  |  | 
|  | size_t PltSection::getSize() const { | 
|  | return HeaderSize + Entries.size() * Target->PltEntrySize; | 
|  | } | 
|  |  | 
|  | // Some architectures such as additional symbols in the PLT section. For | 
|  | // example ARM uses mapping symbols to aid disassembly | 
|  | void PltSection::addSymbols() { | 
|  | // The PLT may have symbols defined for the Header, the IPLT has no header | 
|  | if (HeaderSize != 0) | 
|  | Target->addPltHeaderSymbols(this); | 
|  | size_t Off = HeaderSize; | 
|  | for (size_t I = 0; I < Entries.size(); ++I) { | 
|  | Target->addPltSymbols(this, Off); | 
|  | Off += Target->PltEntrySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned PltSection::getPltRelocOff() const { | 
|  | return (HeaderSize == 0) ? InX::Plt->getSize() : 0; | 
|  | } | 
|  |  | 
|  | // The string hash function for .gdb_index. | 
|  | static uint32_t computeGdbHash(StringRef S) { | 
|  | uint32_t H = 0; | 
|  | for (uint8_t C : S) | 
|  | H = H * 67 + tolower(C) - 113; | 
|  | return H; | 
|  | } | 
|  |  | 
|  | static std::vector<GdbIndexChunk::CuEntry> readCuList(DWARFContext &Dwarf) { | 
|  | std::vector<GdbIndexChunk::CuEntry> Ret; | 
|  | for (std::unique_ptr<DWARFCompileUnit> &Cu : Dwarf.compile_units()) | 
|  | Ret.push_back({Cu->getOffset(), Cu->getLength() + 4}); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static std::vector<GdbIndexChunk::AddressEntry> | 
|  | readAddressAreas(DWARFContext &Dwarf, InputSection *Sec) { | 
|  | std::vector<GdbIndexChunk::AddressEntry> Ret; | 
|  |  | 
|  | uint32_t CuIdx = 0; | 
|  | for (std::unique_ptr<DWARFCompileUnit> &Cu : Dwarf.compile_units()) { | 
|  | DWARFAddressRangesVector Ranges; | 
|  | Cu->collectAddressRanges(Ranges); | 
|  |  | 
|  | ArrayRef<InputSectionBase *> Sections = Sec->File->getSections(); | 
|  | for (DWARFAddressRange &R : Ranges) { | 
|  | InputSectionBase *S = Sections[R.SectionIndex]; | 
|  | if (!S || S == &InputSection::Discarded || !S->Live) | 
|  | continue; | 
|  | // Range list with zero size has no effect. | 
|  | if (R.LowPC == R.HighPC) | 
|  | continue; | 
|  | auto *IS = cast<InputSection>(S); | 
|  | uint64_t Offset = IS->getOffsetInFile(); | 
|  | Ret.push_back({IS, R.LowPC - Offset, R.HighPC - Offset, CuIdx}); | 
|  | } | 
|  | ++CuIdx; | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static std::vector<GdbIndexChunk::NameTypeEntry> | 
|  | readPubNamesAndTypes(DWARFContext &Dwarf) { | 
|  | StringRef Sec1 = Dwarf.getDWARFObj().getGnuPubNamesSection(); | 
|  | StringRef Sec2 = Dwarf.getDWARFObj().getGnuPubTypesSection(); | 
|  |  | 
|  | std::vector<GdbIndexChunk::NameTypeEntry> Ret; | 
|  | for (StringRef Sec : {Sec1, Sec2}) { | 
|  | DWARFDebugPubTable Table(Sec, Config->IsLE, true); | 
|  | for (const DWARFDebugPubTable::Set &Set : Table.getData()) { | 
|  | for (const DWARFDebugPubTable::Entry &Ent : Set.Entries) { | 
|  | CachedHashStringRef S(Ent.Name, computeGdbHash(Ent.Name)); | 
|  | Ret.push_back({S, Ent.Descriptor.toBits()}); | 
|  | } | 
|  | } | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static std::vector<InputSection *> getDebugInfoSections() { | 
|  | std::vector<InputSection *> Ret; | 
|  | for (InputSectionBase *S : InputSections) | 
|  | if (InputSection *IS = dyn_cast<InputSection>(S)) | 
|  | if (IS->Name == ".debug_info") | 
|  | Ret.push_back(IS); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | void GdbIndexSection::fixCuIndex() { | 
|  | uint32_t Idx = 0; | 
|  | for (GdbIndexChunk &Chunk : Chunks) { | 
|  | for (GdbIndexChunk::AddressEntry &Ent : Chunk.AddressAreas) | 
|  | Ent.CuIndex += Idx; | 
|  | Idx += Chunk.CompilationUnits.size(); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<std::vector<uint32_t>> GdbIndexSection::createCuVectors() { | 
|  | std::vector<std::vector<uint32_t>> Ret; | 
|  | uint32_t Idx = 0; | 
|  | uint32_t Off = 0; | 
|  |  | 
|  | for (GdbIndexChunk &Chunk : Chunks) { | 
|  | for (GdbIndexChunk::NameTypeEntry &Ent : Chunk.NamesAndTypes) { | 
|  | GdbSymbol *&Sym = Symbols[Ent.Name]; | 
|  | if (!Sym) { | 
|  | Sym = make<GdbSymbol>(GdbSymbol{Ent.Name.hash(), Off, Ret.size()}); | 
|  | Off += Ent.Name.size() + 1; | 
|  | Ret.push_back({}); | 
|  | } | 
|  |  | 
|  | // gcc 5.4.1 produces a buggy .debug_gnu_pubnames that contains | 
|  | // duplicate entries, so we want to dedup them. | 
|  | std::vector<uint32_t> &Vec = Ret[Sym->CuVectorIndex]; | 
|  | uint32_t Val = (Ent.Type << 24) | Idx; | 
|  | if (Vec.empty() || Vec.back() != Val) | 
|  | Vec.push_back(Val); | 
|  | } | 
|  | Idx += Chunk.CompilationUnits.size(); | 
|  | } | 
|  |  | 
|  | StringPoolSize = Off; | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | template <class ELFT> GdbIndexSection *elf::createGdbIndex() { | 
|  | std::vector<InputSection *> Sections = getDebugInfoSections(); | 
|  | std::vector<GdbIndexChunk> Chunks(Sections.size()); | 
|  |  | 
|  | parallelForEachN(0, Chunks.size(), [&](size_t I) { | 
|  | ObjFile<ELFT> *File = Sections[I]->getFile<ELFT>(); | 
|  | DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(File)); | 
|  |  | 
|  | Chunks[I].DebugInfoSec = Sections[I]; | 
|  | Chunks[I].CompilationUnits = readCuList(Dwarf); | 
|  | Chunks[I].AddressAreas = readAddressAreas(Dwarf, Sections[I]); | 
|  | Chunks[I].NamesAndTypes = readPubNamesAndTypes(Dwarf); | 
|  | }); | 
|  |  | 
|  | return make<GdbIndexSection>(std::move(Chunks)); | 
|  | } | 
|  |  | 
|  | static size_t getCuSize(ArrayRef<GdbIndexChunk> Arr) { | 
|  | size_t Ret = 0; | 
|  | for (const GdbIndexChunk &D : Arr) | 
|  | Ret += D.CompilationUnits.size(); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static size_t getAddressAreaSize(ArrayRef<GdbIndexChunk> Arr) { | 
|  | size_t Ret = 0; | 
|  | for (const GdbIndexChunk &D : Arr) | 
|  | Ret += D.AddressAreas.size(); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | std::vector<GdbSymbol *> GdbIndexSection::createGdbSymtab() { | 
|  | uint32_t Size = NextPowerOf2(Symbols.size() * 4 / 3); | 
|  | if (Size < 1024) | 
|  | Size = 1024; | 
|  |  | 
|  | uint32_t Mask = Size - 1; | 
|  | std::vector<GdbSymbol *> Ret(Size); | 
|  |  | 
|  | for (auto &KV : Symbols) { | 
|  | GdbSymbol *Sym = KV.second; | 
|  | uint32_t I = Sym->NameHash & Mask; | 
|  | uint32_t Step = ((Sym->NameHash * 17) & Mask) | 1; | 
|  |  | 
|  | while (Ret[I]) | 
|  | I = (I + Step) & Mask; | 
|  | Ret[I] = Sym; | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | GdbIndexSection::GdbIndexSection(std::vector<GdbIndexChunk> &&C) | 
|  | : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index"), Chunks(std::move(C)) { | 
|  | fixCuIndex(); | 
|  | CuVectors = createCuVectors(); | 
|  | GdbSymtab = createGdbSymtab(); | 
|  |  | 
|  | // Compute offsets early to know the section size. | 
|  | // Each chunk size needs to be in sync with what we write in writeTo. | 
|  | CuTypesOffset = CuListOffset + getCuSize(Chunks) * 16; | 
|  | SymtabOffset = CuTypesOffset + getAddressAreaSize(Chunks) * 20; | 
|  | ConstantPoolOffset = SymtabOffset + GdbSymtab.size() * 8; | 
|  |  | 
|  | size_t Off = 0; | 
|  | for (ArrayRef<uint32_t> Vec : CuVectors) { | 
|  | CuVectorOffsets.push_back(Off); | 
|  | Off += (Vec.size() + 1) * 4; | 
|  | } | 
|  | StringPoolOffset = ConstantPoolOffset + Off; | 
|  | } | 
|  |  | 
|  | size_t GdbIndexSection::getSize() const { | 
|  | return StringPoolOffset + StringPoolSize; | 
|  | } | 
|  |  | 
|  | void GdbIndexSection::writeTo(uint8_t *Buf) { | 
|  | // Write the section header. | 
|  | write32le(Buf, 7); | 
|  | write32le(Buf + 4, CuListOffset); | 
|  | write32le(Buf + 8, CuTypesOffset); | 
|  | write32le(Buf + 12, CuTypesOffset); | 
|  | write32le(Buf + 16, SymtabOffset); | 
|  | write32le(Buf + 20, ConstantPoolOffset); | 
|  | Buf += 24; | 
|  |  | 
|  | // Write the CU list. | 
|  | for (GdbIndexChunk &D : Chunks) { | 
|  | for (GdbIndexChunk::CuEntry &Cu : D.CompilationUnits) { | 
|  | write64le(Buf, D.DebugInfoSec->OutSecOff + Cu.CuOffset); | 
|  | write64le(Buf + 8, Cu.CuLength); | 
|  | Buf += 16; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Write the address area. | 
|  | for (GdbIndexChunk &D : Chunks) { | 
|  | for (GdbIndexChunk::AddressEntry &E : D.AddressAreas) { | 
|  | uint64_t BaseAddr = | 
|  | E.Section->getParent()->Addr + E.Section->getOffset(0); | 
|  | write64le(Buf, BaseAddr + E.LowAddress); | 
|  | write64le(Buf + 8, BaseAddr + E.HighAddress); | 
|  | write32le(Buf + 16, E.CuIndex); | 
|  | Buf += 20; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Write the symbol table. | 
|  | for (GdbSymbol *Sym : GdbSymtab) { | 
|  | if (Sym) { | 
|  | write32le(Buf, Sym->NameOffset + StringPoolOffset - ConstantPoolOffset); | 
|  | write32le(Buf + 4, CuVectorOffsets[Sym->CuVectorIndex]); | 
|  | } | 
|  | Buf += 8; | 
|  | } | 
|  |  | 
|  | // Write the CU vectors. | 
|  | for (ArrayRef<uint32_t> Vec : CuVectors) { | 
|  | write32le(Buf, Vec.size()); | 
|  | Buf += 4; | 
|  | for (uint32_t Val : Vec) { | 
|  | write32le(Buf, Val); | 
|  | Buf += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Write the string pool. | 
|  | for (auto &KV : Symbols) { | 
|  | CachedHashStringRef S = KV.first; | 
|  | GdbSymbol *Sym = KV.second; | 
|  | size_t Off = Sym->NameOffset; | 
|  | memcpy(Buf + Off, S.val().data(), S.size()); | 
|  | Buf[Off + S.size()] = '\0'; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool GdbIndexSection::empty() const { return !Out::DebugInfo; } | 
|  |  | 
|  | template <class ELFT> | 
|  | EhFrameHeader<ELFT>::EhFrameHeader() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame_hdr") {} | 
|  |  | 
|  | // .eh_frame_hdr contains a binary search table of pointers to FDEs. | 
|  | // Each entry of the search table consists of two values, | 
|  | // the starting PC from where FDEs covers, and the FDE's address. | 
|  | // It is sorted by PC. | 
|  | template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  |  | 
|  | // Sort the FDE list by their PC and uniqueify. Usually there is only | 
|  | // one FDE for a PC (i.e. function), but if ICF merges two functions | 
|  | // into one, there can be more than one FDEs pointing to the address. | 
|  | auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; }; | 
|  | std::stable_sort(Fdes.begin(), Fdes.end(), Less); | 
|  | auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; }; | 
|  | Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end()); | 
|  |  | 
|  | Buf[0] = 1; | 
|  | Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; | 
|  | Buf[2] = DW_EH_PE_udata4; | 
|  | Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; | 
|  | write32<E>(Buf + 4, In<ELFT>::EhFrame->getParent()->Addr - this->getVA() - 4); | 
|  | write32<E>(Buf + 8, Fdes.size()); | 
|  | Buf += 12; | 
|  |  | 
|  | uint64_t VA = this->getVA(); | 
|  | for (FdeData &Fde : Fdes) { | 
|  | write32<E>(Buf, Fde.Pc - VA); | 
|  | write32<E>(Buf + 4, Fde.FdeVA - VA); | 
|  | Buf += 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> size_t EhFrameHeader<ELFT>::getSize() const { | 
|  | // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. | 
|  | return 12 + In<ELFT>::EhFrame->NumFdes * 8; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) { | 
|  | Fdes.push_back({Pc, FdeVA}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool EhFrameHeader<ELFT>::empty() const { | 
|  | return In<ELFT>::EhFrame->empty(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | VersionDefinitionSection<ELFT>::VersionDefinitionSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), | 
|  | ".gnu.version_d") {} | 
|  |  | 
|  | static StringRef getFileDefName() { | 
|  | if (!Config->SoName.empty()) | 
|  | return Config->SoName; | 
|  | return Config->OutputFile; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionDefinitionSection<ELFT>::finalizeContents() { | 
|  | FileDefNameOff = InX::DynStrTab->addString(getFileDefName()); | 
|  | for (VersionDefinition &V : Config->VersionDefinitions) | 
|  | V.NameOff = InX::DynStrTab->addString(V.Name); | 
|  |  | 
|  | getParent()->Link = InX::DynStrTab->getParent()->SectionIndex; | 
|  |  | 
|  | // sh_info should be set to the number of definitions. This fact is missed in | 
|  | // documentation, but confirmed by binutils community: | 
|  | // https://sourceware.org/ml/binutils/2014-11/msg00355.html | 
|  | getParent()->Info = getVerDefNum(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index, | 
|  | StringRef Name, size_t NameOff) { | 
|  | auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf); | 
|  | Verdef->vd_version = 1; | 
|  | Verdef->vd_cnt = 1; | 
|  | Verdef->vd_aux = sizeof(Elf_Verdef); | 
|  | Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); | 
|  | Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0); | 
|  | Verdef->vd_ndx = Index; | 
|  | Verdef->vd_hash = hashSysV(Name); | 
|  |  | 
|  | auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef)); | 
|  | Verdaux->vda_name = NameOff; | 
|  | Verdaux->vda_next = 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | writeOne(Buf, 1, getFileDefName(), FileDefNameOff); | 
|  |  | 
|  | for (VersionDefinition &V : Config->VersionDefinitions) { | 
|  | Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); | 
|  | writeOne(Buf, V.Id, V.Name, V.NameOff); | 
|  | } | 
|  |  | 
|  | // Need to terminate the last version definition. | 
|  | Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf); | 
|  | Verdef->vd_next = 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> size_t VersionDefinitionSection<ELFT>::getSize() const { | 
|  | return (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | VersionTableSection<ELFT>::VersionTableSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), | 
|  | ".gnu.version") { | 
|  | this->Entsize = sizeof(Elf_Versym); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionTableSection<ELFT>::finalizeContents() { | 
|  | // At the moment of june 2016 GNU docs does not mention that sh_link field | 
|  | // should be set, but Sun docs do. Also readelf relies on this field. | 
|  | getParent()->Link = InX::DynSymTab->getParent()->SectionIndex; | 
|  | } | 
|  |  | 
|  | template <class ELFT> size_t VersionTableSection<ELFT>::getSize() const { | 
|  | return sizeof(Elf_Versym) * (InX::DynSymTab->getSymbols().size() + 1); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1; | 
|  | for (const SymbolTableEntry &S : InX::DynSymTab->getSymbols()) { | 
|  | OutVersym->vs_index = S.Symbol->symbol()->VersionId; | 
|  | ++OutVersym; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool VersionTableSection<ELFT>::empty() const { | 
|  | return !In<ELFT>::VerDef && In<ELFT>::VerNeed->empty(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | VersionNeedSection<ELFT>::VersionNeedSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), | 
|  | ".gnu.version_r") { | 
|  | // Identifiers in verneed section start at 2 because 0 and 1 are reserved | 
|  | // for VER_NDX_LOCAL and VER_NDX_GLOBAL. | 
|  | // First identifiers are reserved by verdef section if it exist. | 
|  | NextIndex = getVerDefNum() + 1; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void VersionNeedSection<ELFT>::addSymbol(SharedSymbol *SS) { | 
|  | auto *Ver = reinterpret_cast<const typename ELFT::Verdef *>(SS->Verdef); | 
|  | if (!Ver) { | 
|  | SS->symbol()->VersionId = VER_NDX_GLOBAL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | SharedFile<ELFT> *File = SS->getFile<ELFT>(); | 
|  |  | 
|  | // If we don't already know that we need an Elf_Verneed for this DSO, prepare | 
|  | // to create one by adding it to our needed list and creating a dynstr entry | 
|  | // for the soname. | 
|  | if (File->VerdefMap.empty()) | 
|  | Needed.push_back({File, InX::DynStrTab->addString(File->SoName)}); | 
|  | typename SharedFile<ELFT>::NeededVer &NV = File->VerdefMap[Ver]; | 
|  | // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, | 
|  | // prepare to create one by allocating a version identifier and creating a | 
|  | // dynstr entry for the version name. | 
|  | if (NV.Index == 0) { | 
|  | NV.StrTab = InX::DynStrTab->addString(File->getStringTable().data() + | 
|  | Ver->getAux()->vda_name); | 
|  | NV.Index = NextIndex++; | 
|  | } | 
|  | SS->symbol()->VersionId = NV.Index; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. | 
|  | auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf); | 
|  | auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size()); | 
|  |  | 
|  | for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) { | 
|  | // Create an Elf_Verneed for this DSO. | 
|  | Verneed->vn_version = 1; | 
|  | Verneed->vn_cnt = P.first->VerdefMap.size(); | 
|  | Verneed->vn_file = P.second; | 
|  | Verneed->vn_aux = | 
|  | reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed); | 
|  | Verneed->vn_next = sizeof(Elf_Verneed); | 
|  | ++Verneed; | 
|  |  | 
|  | // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over | 
|  | // VerdefMap, which will only contain references to needed version | 
|  | // definitions. Each Elf_Vernaux is based on the information contained in | 
|  | // the Elf_Verdef in the source DSO. This loop iterates over a std::map of | 
|  | // pointers, but is deterministic because the pointers refer to Elf_Verdef | 
|  | // data structures within a single input file. | 
|  | for (auto &NV : P.first->VerdefMap) { | 
|  | Vernaux->vna_hash = NV.first->vd_hash; | 
|  | Vernaux->vna_flags = 0; | 
|  | Vernaux->vna_other = NV.second.Index; | 
|  | Vernaux->vna_name = NV.second.StrTab; | 
|  | Vernaux->vna_next = sizeof(Elf_Vernaux); | 
|  | ++Vernaux; | 
|  | } | 
|  |  | 
|  | Vernaux[-1].vna_next = 0; | 
|  | } | 
|  | Verneed[-1].vn_next = 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { | 
|  | getParent()->Link = InX::DynStrTab->getParent()->SectionIndex; | 
|  | getParent()->Info = Needed.size(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { | 
|  | unsigned Size = Needed.size() * sizeof(Elf_Verneed); | 
|  | for (const std::pair<SharedFile<ELFT> *, size_t> &P : Needed) | 
|  | Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool VersionNeedSection<ELFT>::empty() const { | 
|  | return getNeedNum() == 0; | 
|  | } | 
|  |  | 
|  | void MergeSyntheticSection::addSection(MergeInputSection *MS) { | 
|  | MS->Parent = this; | 
|  | Sections.push_back(MS); | 
|  | } | 
|  |  | 
|  | MergeTailSection::MergeTailSection(StringRef Name, uint32_t Type, | 
|  | uint64_t Flags, uint32_t Alignment) | 
|  | : MergeSyntheticSection(Name, Type, Flags, Alignment), | 
|  | Builder(StringTableBuilder::RAW, Alignment) {} | 
|  |  | 
|  | size_t MergeTailSection::getSize() const { return Builder.getSize(); } | 
|  |  | 
|  | void MergeTailSection::writeTo(uint8_t *Buf) { Builder.write(Buf); } | 
|  |  | 
|  | void MergeTailSection::finalizeContents() { | 
|  | // Add all string pieces to the string table builder to create section | 
|  | // contents. | 
|  | for (MergeInputSection *Sec : Sections) | 
|  | for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) | 
|  | if (Sec->Pieces[I].Live) | 
|  | Builder.add(Sec->getData(I)); | 
|  |  | 
|  | // Fix the string table content. After this, the contents will never change. | 
|  | Builder.finalize(); | 
|  |  | 
|  | // finalize() fixed tail-optimized strings, so we can now get | 
|  | // offsets of strings. Get an offset for each string and save it | 
|  | // to a corresponding StringPiece for easy access. | 
|  | for (MergeInputSection *Sec : Sections) | 
|  | for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) | 
|  | if (Sec->Pieces[I].Live) | 
|  | Sec->Pieces[I].OutputOff = Builder.getOffset(Sec->getData(I)); | 
|  | } | 
|  |  | 
|  | void MergeNoTailSection::writeTo(uint8_t *Buf) { | 
|  | for (size_t I = 0; I < NumShards; ++I) | 
|  | Shards[I].write(Buf + ShardOffsets[I]); | 
|  | } | 
|  |  | 
|  | // This function is very hot (i.e. it can take several seconds to finish) | 
|  | // because sometimes the number of inputs is in an order of magnitude of | 
|  | // millions. So, we use multi-threading. | 
|  | // | 
|  | // For any strings S and T, we know S is not mergeable with T if S's hash | 
|  | // value is different from T's. If that's the case, we can safely put S and | 
|  | // T into different string builders without worrying about merge misses. | 
|  | // We do it in parallel. | 
|  | void MergeNoTailSection::finalizeContents() { | 
|  | // Initializes string table builders. | 
|  | for (size_t I = 0; I < NumShards; ++I) | 
|  | Shards.emplace_back(StringTableBuilder::RAW, Alignment); | 
|  |  | 
|  | // Concurrency level. Must be a power of 2 to avoid expensive modulo | 
|  | // operations in the following tight loop. | 
|  | size_t Concurrency = 1; | 
|  | if (Config->Threads) | 
|  | Concurrency = | 
|  | std::min<size_t>(PowerOf2Floor(hardware_concurrency()), NumShards); | 
|  |  | 
|  | // Add section pieces to the builders. | 
|  | parallelForEachN(0, Concurrency, [&](size_t ThreadId) { | 
|  | for (MergeInputSection *Sec : Sections) { | 
|  | for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) { | 
|  | if (!Sec->Pieces[I].Live) | 
|  | continue; | 
|  | CachedHashStringRef Str = Sec->getData(I); | 
|  | size_t ShardId = getShardId(Str.hash()); | 
|  | if ((ShardId & (Concurrency - 1)) == ThreadId) | 
|  | Sec->Pieces[I].OutputOff = Shards[ShardId].add(Str); | 
|  | } | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Compute an in-section offset for each shard. | 
|  | size_t Off = 0; | 
|  | for (size_t I = 0; I < NumShards; ++I) { | 
|  | Shards[I].finalizeInOrder(); | 
|  | if (Shards[I].getSize() > 0) | 
|  | Off = alignTo(Off, Alignment); | 
|  | ShardOffsets[I] = Off; | 
|  | Off += Shards[I].getSize(); | 
|  | } | 
|  | Size = Off; | 
|  |  | 
|  | // So far, section pieces have offsets from beginning of shards, but | 
|  | // we want offsets from beginning of the whole section. Fix them. | 
|  | parallelForEach(Sections, [&](MergeInputSection *Sec) { | 
|  | for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) | 
|  | if (Sec->Pieces[I].Live) | 
|  | Sec->Pieces[I].OutputOff += | 
|  | ShardOffsets[getShardId(Sec->getData(I).hash())]; | 
|  | }); | 
|  | } | 
|  |  | 
|  | static MergeSyntheticSection *createMergeSynthetic(StringRef Name, | 
|  | uint32_t Type, | 
|  | uint64_t Flags, | 
|  | uint32_t Alignment) { | 
|  | bool ShouldTailMerge = (Flags & SHF_STRINGS) && Config->Optimize >= 2; | 
|  | if (ShouldTailMerge) | 
|  | return make<MergeTailSection>(Name, Type, Flags, Alignment); | 
|  | return make<MergeNoTailSection>(Name, Type, Flags, Alignment); | 
|  | } | 
|  |  | 
|  | // This function decompresses compressed sections and scans over the input | 
|  | // sections to create mergeable synthetic sections. It removes | 
|  | // MergeInputSections from the input section array and adds new synthetic | 
|  | // sections at the location of the first input section that it replaces. It then | 
|  | // finalizes each synthetic section in order to compute an output offset for | 
|  | // each piece of each input section. | 
|  | void elf::decompressAndMergeSections() { | 
|  | // splitIntoPieces needs to be called on each MergeInputSection before calling | 
|  | // finalizeContents(). Do that first. | 
|  | parallelForEach(InputSections, [](InputSectionBase *S) { | 
|  | if (!S->Live) | 
|  | return; | 
|  | S->maybeUncompress(); | 
|  | if (auto *MS = dyn_cast<MergeInputSection>(S)) | 
|  | MS->splitIntoPieces(); | 
|  | }); | 
|  |  | 
|  | std::vector<MergeSyntheticSection *> MergeSections; | 
|  | for (InputSectionBase *&S : InputSections) { | 
|  | MergeInputSection *MS = dyn_cast<MergeInputSection>(S); | 
|  | if (!MS) | 
|  | continue; | 
|  |  | 
|  | // We do not want to handle sections that are not alive, so just remove | 
|  | // them instead of trying to merge. | 
|  | if (!MS->Live) | 
|  | continue; | 
|  |  | 
|  | StringRef OutsecName = getOutputSectionName(MS->Name); | 
|  | uint32_t Alignment = std::max<uint32_t>(MS->Alignment, MS->Entsize); | 
|  |  | 
|  | auto I = llvm::find_if(MergeSections, [=](MergeSyntheticSection *Sec) { | 
|  | return Sec->Name == OutsecName && Sec->Flags == MS->Flags && | 
|  | Sec->Alignment == Alignment; | 
|  | }); | 
|  | if (I == MergeSections.end()) { | 
|  | MergeSyntheticSection *Syn = | 
|  | createMergeSynthetic(OutsecName, MS->Type, MS->Flags, Alignment); | 
|  | MergeSections.push_back(Syn); | 
|  | I = std::prev(MergeSections.end()); | 
|  | S = Syn; | 
|  | } else { | 
|  | S = nullptr; | 
|  | } | 
|  | (*I)->addSection(MS); | 
|  | } | 
|  | for (auto *MS : MergeSections) | 
|  | MS->finalizeContents(); | 
|  |  | 
|  | std::vector<InputSectionBase *> &V = InputSections; | 
|  | V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); | 
|  | } | 
|  |  | 
|  | MipsRldMapSection::MipsRldMapSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Config->Wordsize, | 
|  | ".rld_map") {} | 
|  |  | 
|  | ARMExidxSentinelSection::ARMExidxSentinelSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, | 
|  | Config->Wordsize, ".ARM.exidx") {} | 
|  |  | 
|  | // Write a terminating sentinel entry to the end of the .ARM.exidx table. | 
|  | // This section will have been sorted last in the .ARM.exidx table. | 
|  | // This table entry will have the form: | 
|  | // | PREL31 upper bound of code that has exception tables | EXIDX_CANTUNWIND | | 
|  | // The sentinel must have the PREL31 value of an address higher than any | 
|  | // address described by any other table entry. | 
|  | void ARMExidxSentinelSection::writeTo(uint8_t *Buf) { | 
|  | // The Sections are sorted in order of ascending PREL31 address with the | 
|  | // sentinel last. We need to find the InputSection that precedes the | 
|  | // sentinel. By construction the Sentinel is in the last | 
|  | // InputSectionDescription as the InputSection that precedes it. | 
|  | OutputSection *C = getParent(); | 
|  | auto ISD = std::find_if(C->Commands.rbegin(), C->Commands.rend(), | 
|  | [](const BaseCommand *Base) { | 
|  | return isa<InputSectionDescription>(Base); | 
|  | }); | 
|  | auto L = cast<InputSectionDescription>(*ISD); | 
|  | InputSection *Highest = L->Sections[L->Sections.size() - 2]; | 
|  | InputSection *LS = Highest->getLinkOrderDep(); | 
|  | uint64_t S = LS->getParent()->Addr + LS->getOffset(LS->getSize()); | 
|  | uint64_t P = getVA(); | 
|  | Target->relocateOne(Buf, R_ARM_PREL31, S - P); | 
|  | write32le(Buf + 4, 0x1); | 
|  | } | 
|  |  | 
|  | ThunkSection::ThunkSection(OutputSection *OS, uint64_t Off) | 
|  | : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, | 
|  | Config->Wordsize, ".text.thunk") { | 
|  | this->Parent = OS; | 
|  | this->OutSecOff = Off; | 
|  | } | 
|  |  | 
|  | void ThunkSection::addThunk(Thunk *T) { | 
|  | uint64_t Off = alignTo(Size, T->Alignment); | 
|  | T->Offset = Off; | 
|  | Thunks.push_back(T); | 
|  | T->addSymbols(*this); | 
|  | Size = Off + T->size(); | 
|  | } | 
|  |  | 
|  | void ThunkSection::writeTo(uint8_t *Buf) { | 
|  | for (const Thunk *T : Thunks) | 
|  | T->writeTo(Buf + T->Offset, *this); | 
|  | } | 
|  |  | 
|  | InputSection *ThunkSection::getTargetInputSection() const { | 
|  | const Thunk *T = Thunks.front(); | 
|  | return T->getTargetInputSection(); | 
|  | } | 
|  |  | 
|  | InputSection *InX::ARMAttributes; | 
|  | BssSection *InX::Bss; | 
|  | BssSection *InX::BssRelRo; | 
|  | BuildIdSection *InX::BuildId; | 
|  | SyntheticSection *InX::Dynamic; | 
|  | StringTableSection *InX::DynStrTab; | 
|  | SymbolTableBaseSection *InX::DynSymTab; | 
|  | InputSection *InX::Interp; | 
|  | GdbIndexSection *InX::GdbIndex; | 
|  | GotSection *InX::Got; | 
|  | GotPltSection *InX::GotPlt; | 
|  | GnuHashTableSection *InX::GnuHashTab; | 
|  | HashTableSection *InX::HashTab; | 
|  | IgotPltSection *InX::IgotPlt; | 
|  | MipsGotSection *InX::MipsGot; | 
|  | MipsRldMapSection *InX::MipsRldMap; | 
|  | PltSection *InX::Plt; | 
|  | PltSection *InX::Iplt; | 
|  | StringTableSection *InX::ShStrTab; | 
|  | StringTableSection *InX::StrTab; | 
|  | SymbolTableBaseSection *InX::SymTab; | 
|  |  | 
|  | template GdbIndexSection *elf::createGdbIndex<ELF32LE>(); | 
|  | template GdbIndexSection *elf::createGdbIndex<ELF32BE>(); | 
|  | template GdbIndexSection *elf::createGdbIndex<ELF64LE>(); | 
|  | template GdbIndexSection *elf::createGdbIndex<ELF64BE>(); | 
|  |  | 
|  | template void PltSection::addEntry<ELF32LE>(SymbolBody &Sym); | 
|  | template void PltSection::addEntry<ELF32BE>(SymbolBody &Sym); | 
|  | template void PltSection::addEntry<ELF64LE>(SymbolBody &Sym); | 
|  | template void PltSection::addEntry<ELF64BE>(SymbolBody &Sym); | 
|  |  | 
|  | template void elf::createCommonSections<ELF32LE>(); | 
|  | template void elf::createCommonSections<ELF32BE>(); | 
|  | template void elf::createCommonSections<ELF64LE>(); | 
|  | template void elf::createCommonSections<ELF64BE>(); | 
|  |  | 
|  | template MergeInputSection *elf::createCommentSection<ELF32LE>(); | 
|  | template MergeInputSection *elf::createCommentSection<ELF32BE>(); | 
|  | template MergeInputSection *elf::createCommentSection<ELF64LE>(); | 
|  | template MergeInputSection *elf::createCommentSection<ELF64BE>(); | 
|  |  | 
|  | template class elf::MipsAbiFlagsSection<ELF32LE>; | 
|  | template class elf::MipsAbiFlagsSection<ELF32BE>; | 
|  | template class elf::MipsAbiFlagsSection<ELF64LE>; | 
|  | template class elf::MipsAbiFlagsSection<ELF64BE>; | 
|  |  | 
|  | template class elf::MipsOptionsSection<ELF32LE>; | 
|  | template class elf::MipsOptionsSection<ELF32BE>; | 
|  | template class elf::MipsOptionsSection<ELF64LE>; | 
|  | template class elf::MipsOptionsSection<ELF64BE>; | 
|  |  | 
|  | template class elf::MipsReginfoSection<ELF32LE>; | 
|  | template class elf::MipsReginfoSection<ELF32BE>; | 
|  | template class elf::MipsReginfoSection<ELF64LE>; | 
|  | template class elf::MipsReginfoSection<ELF64BE>; | 
|  |  | 
|  | template class elf::DynamicSection<ELF32LE>; | 
|  | template class elf::DynamicSection<ELF32BE>; | 
|  | template class elf::DynamicSection<ELF64LE>; | 
|  | template class elf::DynamicSection<ELF64BE>; | 
|  |  | 
|  | template class elf::RelocationSection<ELF32LE>; | 
|  | template class elf::RelocationSection<ELF32BE>; | 
|  | template class elf::RelocationSection<ELF64LE>; | 
|  | template class elf::RelocationSection<ELF64BE>; | 
|  |  | 
|  | template class elf::SymbolTableSection<ELF32LE>; | 
|  | template class elf::SymbolTableSection<ELF32BE>; | 
|  | template class elf::SymbolTableSection<ELF64LE>; | 
|  | template class elf::SymbolTableSection<ELF64BE>; | 
|  |  | 
|  | template class elf::EhFrameHeader<ELF32LE>; | 
|  | template class elf::EhFrameHeader<ELF32BE>; | 
|  | template class elf::EhFrameHeader<ELF64LE>; | 
|  | template class elf::EhFrameHeader<ELF64BE>; | 
|  |  | 
|  | template class elf::VersionTableSection<ELF32LE>; | 
|  | template class elf::VersionTableSection<ELF32BE>; | 
|  | template class elf::VersionTableSection<ELF64LE>; | 
|  | template class elf::VersionTableSection<ELF64BE>; | 
|  |  | 
|  | template class elf::VersionNeedSection<ELF32LE>; | 
|  | template class elf::VersionNeedSection<ELF32BE>; | 
|  | template class elf::VersionNeedSection<ELF64LE>; | 
|  | template class elf::VersionNeedSection<ELF64BE>; | 
|  |  | 
|  | template class elf::VersionDefinitionSection<ELF32LE>; | 
|  | template class elf::VersionDefinitionSection<ELF32BE>; | 
|  | template class elf::VersionDefinitionSection<ELF64LE>; | 
|  | template class elf::VersionDefinitionSection<ELF64BE>; | 
|  |  | 
|  | template class elf::EhFrameSection<ELF32LE>; | 
|  | template class elf::EhFrameSection<ELF32BE>; | 
|  | template class elf::EhFrameSection<ELF64LE>; | 
|  | template class elf::EhFrameSection<ELF64BE>; |