|  | //===- FuzzerTraceState.cpp - Trace-based fuzzer mutator ------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // This file implements a mutation algorithm based on instruction traces and | 
|  | // on taint analysis feedback from DFSan. | 
|  | // | 
|  | // Instruction traces are special hooks inserted by the compiler around | 
|  | // interesting instructions. Currently supported traces: | 
|  | //   * __sanitizer_cov_trace_cmp -- inserted before every ICMP instruction, | 
|  | //    receives the type, size and arguments of ICMP. | 
|  | // | 
|  | // Every time a traced event is intercepted we analyse the data involved | 
|  | // in the event and suggest a mutation for future executions. | 
|  | // For example if 4 bytes of data that derive from input bytes {4,5,6,7} | 
|  | // are compared with a constant 12345, | 
|  | // we try to insert 12345, 12344, 12346 into bytes | 
|  | // {4,5,6,7} of the next fuzzed inputs. | 
|  | // | 
|  | // The fuzzer can work only with the traces, or with both traces and DFSan. | 
|  | // | 
|  | // DataFlowSanitizer (DFSan) is a tool for | 
|  | // generalised dynamic data flow (taint) analysis: | 
|  | // http://clang.llvm.org/docs/DataFlowSanitizer.html . | 
|  | // | 
|  | // The approach with DFSan-based fuzzing has some similarity to | 
|  | // "Taint-based Directed Whitebox Fuzzing" | 
|  | // by Vijay Ganesh & Tim Leek & Martin Rinard: | 
|  | // http://dspace.mit.edu/openaccess-disseminate/1721.1/59320, | 
|  | // but it uses a full blown LLVM IR taint analysis and separate instrumentation | 
|  | // to analyze all of the "attack points" at once. | 
|  | // | 
|  | // Workflow with DFSan: | 
|  | //   * lib/Fuzzer/Fuzzer*.cpp is compiled w/o any instrumentation. | 
|  | //   * The code under test is compiled with DFSan *and* with instruction traces. | 
|  | //   * Every call to HOOK(a,b) is replaced by DFSan with | 
|  | //     __dfsw_HOOK(a, b, label(a), label(b)) so that __dfsw_HOOK | 
|  | //     gets all the taint labels for the arguments. | 
|  | //   * At the Fuzzer startup we assign a unique DFSan label | 
|  | //     to every byte of the input string (Fuzzer::CurrentUnit) so that for any | 
|  | //     chunk of data we know which input bytes it has derived from. | 
|  | //   * The __dfsw_* functions (implemented in this file) record the | 
|  | //     parameters (i.e. the application data and the corresponding taint labels) | 
|  | //     in a global state. | 
|  | //   * Fuzzer::ApplyTraceBasedMutation() tries to use the data recorded | 
|  | //     by __dfsw_* hooks to guide the fuzzing towards new application states. | 
|  | // | 
|  | // Parts of this code will not function when DFSan is not linked in. | 
|  | // Instead of using ifdefs and thus requiring a separate build of lib/Fuzzer | 
|  | // we redeclare the dfsan_* interface functions as weak and check if they | 
|  | // are nullptr before calling. | 
|  | // If this approach proves to be useful we may add attribute(weak) to the | 
|  | // dfsan declarations in dfsan_interface.h | 
|  | // | 
|  | // This module is in the "proof of concept" stage. | 
|  | // It is capable of solving only the simplest puzzles | 
|  | // like test/dfsan/DFSanSimpleCmpTest.cpp. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /* Example of manual usage (-fsanitize=dataflow is optional): | 
|  | ( | 
|  | cd $LLVM/lib/Fuzzer/ | 
|  | clang  -fPIC -c -g -O2 -std=c++11 Fuzzer*.cpp | 
|  | clang++ -O0 -std=c++11 -fsanitize-coverage=edge,trace-cmp \ | 
|  | -fsanitize=dataflow \ | 
|  | test/dfsan/DFSanSimpleCmpTest.cpp Fuzzer*.o | 
|  | ./a.out | 
|  | ) | 
|  | */ | 
|  |  | 
|  | #include "FuzzerInternal.h" | 
|  | #include <sanitizer/dfsan_interface.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cstring> | 
|  | #include <unordered_map> | 
|  |  | 
|  | extern "C" { | 
|  | __attribute__((weak)) | 
|  | dfsan_label dfsan_create_label(const char *desc, void *userdata); | 
|  | __attribute__((weak)) | 
|  | void dfsan_set_label(dfsan_label label, void *addr, size_t size); | 
|  | __attribute__((weak)) | 
|  | void dfsan_add_label(dfsan_label label, void *addr, size_t size); | 
|  | __attribute__((weak)) | 
|  | const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label); | 
|  | __attribute__((weak)) | 
|  | dfsan_label dfsan_read_label(const void *addr, size_t size); | 
|  | }  // extern "C" | 
|  |  | 
|  | namespace fuzzer { | 
|  |  | 
|  | static bool ReallyHaveDFSan() { | 
|  | return &dfsan_create_label != nullptr; | 
|  | } | 
|  |  | 
|  | // These values are copied from include/llvm/IR/InstrTypes.h. | 
|  | // We do not include the LLVM headers here to remain independent. | 
|  | // If these values ever change, an assertion in ComputeCmp will fail. | 
|  | enum Predicate { | 
|  | ICMP_EQ = 32,  ///< equal | 
|  | ICMP_NE = 33,  ///< not equal | 
|  | ICMP_UGT = 34, ///< unsigned greater than | 
|  | ICMP_UGE = 35, ///< unsigned greater or equal | 
|  | ICMP_ULT = 36, ///< unsigned less than | 
|  | ICMP_ULE = 37, ///< unsigned less or equal | 
|  | ICMP_SGT = 38, ///< signed greater than | 
|  | ICMP_SGE = 39, ///< signed greater or equal | 
|  | ICMP_SLT = 40, ///< signed less than | 
|  | ICMP_SLE = 41, ///< signed less or equal | 
|  | }; | 
|  |  | 
|  | template <class U, class S> | 
|  | bool ComputeCmp(size_t CmpType, U Arg1, U Arg2) { | 
|  | switch(CmpType) { | 
|  | case ICMP_EQ : return Arg1 == Arg2; | 
|  | case ICMP_NE : return Arg1 != Arg2; | 
|  | case ICMP_UGT: return Arg1 > Arg2; | 
|  | case ICMP_UGE: return Arg1 >= Arg2; | 
|  | case ICMP_ULT: return Arg1 < Arg2; | 
|  | case ICMP_ULE: return Arg1 <= Arg2; | 
|  | case ICMP_SGT: return (S)Arg1 > (S)Arg2; | 
|  | case ICMP_SGE: return (S)Arg1 >= (S)Arg2; | 
|  | case ICMP_SLT: return (S)Arg1 < (S)Arg2; | 
|  | case ICMP_SLE: return (S)Arg1 <= (S)Arg2; | 
|  | default: assert(0 && "unsupported CmpType"); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool ComputeCmp(size_t CmpSize, size_t CmpType, uint64_t Arg1, | 
|  | uint64_t Arg2) { | 
|  | if (CmpSize == 8) return ComputeCmp<uint64_t, int64_t>(CmpType, Arg1, Arg2); | 
|  | if (CmpSize == 4) return ComputeCmp<uint32_t, int32_t>(CmpType, Arg1, Arg2); | 
|  | if (CmpSize == 2) return ComputeCmp<uint16_t, int16_t>(CmpType, Arg1, Arg2); | 
|  | if (CmpSize == 1) return ComputeCmp<uint8_t, int8_t>(CmpType, Arg1, Arg2); | 
|  | // Other size, == | 
|  | if (CmpType == ICMP_EQ) return Arg1 == Arg2; | 
|  | // assert(0 && "unsupported cmp and type size combination"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // As a simplification we use the range of input bytes instead of a set of input | 
|  | // bytes. | 
|  | struct LabelRange { | 
|  | uint16_t Beg, End;  // Range is [Beg, End), thus Beg==End is an empty range. | 
|  |  | 
|  | LabelRange(uint16_t Beg = 0, uint16_t End = 0) : Beg(Beg), End(End) {} | 
|  |  | 
|  | static LabelRange Join(LabelRange LR1, LabelRange LR2) { | 
|  | if (LR1.Beg == LR1.End) return LR2; | 
|  | if (LR2.Beg == LR2.End) return LR1; | 
|  | return {std::min(LR1.Beg, LR2.Beg), std::max(LR1.End, LR2.End)}; | 
|  | } | 
|  | LabelRange &Join(LabelRange LR) { | 
|  | return *this = Join(*this, LR); | 
|  | } | 
|  | static LabelRange Singleton(const dfsan_label_info *LI) { | 
|  | uint16_t Idx = (uint16_t)(uintptr_t)LI->userdata; | 
|  | assert(Idx > 0); | 
|  | return {(uint16_t)(Idx - 1), Idx}; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // A passport for a CMP site. We want to keep track of where the given CMP is | 
|  | // and how many times it is evaluated to true or false. | 
|  | struct CmpSitePassport { | 
|  | uintptr_t PC; | 
|  | size_t Counter[2]; | 
|  |  | 
|  | bool IsInterestingCmpTarget() { | 
|  | static const size_t kRareEnough = 50; | 
|  | size_t C0 = Counter[0]; | 
|  | size_t C1 = Counter[1]; | 
|  | return C0 > kRareEnough * (C1 + 1) || C1 > kRareEnough * (C0 + 1); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // For now, just keep a simple imprecise hash table PC => CmpSitePassport. | 
|  | // Potentially, will need to have a compiler support to have a precise mapping | 
|  | // and also thread-safety. | 
|  | struct CmpSitePassportTable { | 
|  | static const size_t kSize = 99991;  // Prime. | 
|  | CmpSitePassport Passports[kSize]; | 
|  |  | 
|  | CmpSitePassport *GetPassport(uintptr_t PC) { | 
|  | uintptr_t Idx = PC & kSize; | 
|  | CmpSitePassport *Res = &Passports[Idx]; | 
|  | if (Res->PC == 0)  // Not thread safe. | 
|  | Res->PC = PC; | 
|  | return Res->PC == PC ? Res : nullptr; | 
|  | } | 
|  | }; | 
|  |  | 
|  | static CmpSitePassportTable CSPTable;  // Zero initialized. | 
|  |  | 
|  | // For now, very simple: put Size bytes of Data at position Pos. | 
|  | struct TraceBasedMutation { | 
|  | size_t Pos; | 
|  | size_t Size; | 
|  | uint64_t Data; | 
|  | }; | 
|  |  | 
|  | class TraceState { | 
|  | public: | 
|  | TraceState(const Fuzzer::FuzzingOptions &Options, const Unit &CurrentUnit) | 
|  | : Options(Options), CurrentUnit(CurrentUnit) {} | 
|  |  | 
|  | LabelRange GetLabelRange(dfsan_label L); | 
|  | void DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, | 
|  | uint64_t Arg1, uint64_t Arg2, dfsan_label L1, | 
|  | dfsan_label L2); | 
|  | void DFSanSwitchCallback(uint64_t PC, size_t ValSizeInBits, uint64_t Val, | 
|  | size_t NumCases, uint64_t *Cases, dfsan_label L); | 
|  | void TraceCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, uint64_t Arg1, | 
|  | uint64_t Arg2); | 
|  |  | 
|  | void TraceSwitchCallback(uintptr_t PC, size_t ValSizeInBits, uint64_t Val, | 
|  | size_t NumCases, uint64_t *Cases); | 
|  | int TryToAddDesiredData(uint64_t PresentData, uint64_t DesiredData, | 
|  | size_t DataSize); | 
|  |  | 
|  | void StartTraceRecording() { | 
|  | if (!Options.UseTraces) return; | 
|  | RecordingTraces = true; | 
|  | Mutations.clear(); | 
|  | } | 
|  |  | 
|  | size_t StopTraceRecording(FuzzerRandomBase &Rand) { | 
|  | RecordingTraces = false; | 
|  | return Mutations.size(); | 
|  | } | 
|  |  | 
|  | void ApplyTraceBasedMutation(size_t Idx, fuzzer::Unit *U); | 
|  |  | 
|  | private: | 
|  | bool IsTwoByteData(uint64_t Data) { | 
|  | int64_t Signed = static_cast<int64_t>(Data); | 
|  | Signed >>= 16; | 
|  | return Signed == 0 || Signed == -1L; | 
|  | } | 
|  | bool RecordingTraces = false; | 
|  | std::vector<TraceBasedMutation> Mutations; | 
|  | LabelRange LabelRanges[1 << (sizeof(dfsan_label) * 8)] = {}; | 
|  | const Fuzzer::FuzzingOptions &Options; | 
|  | const Unit &CurrentUnit; | 
|  | }; | 
|  |  | 
|  | LabelRange TraceState::GetLabelRange(dfsan_label L) { | 
|  | LabelRange &LR = LabelRanges[L]; | 
|  | if (LR.Beg < LR.End || L == 0) | 
|  | return LR; | 
|  | const dfsan_label_info *LI = dfsan_get_label_info(L); | 
|  | if (LI->l1 || LI->l2) | 
|  | return LR = LabelRange::Join(GetLabelRange(LI->l1), GetLabelRange(LI->l2)); | 
|  | return LR = LabelRange::Singleton(LI); | 
|  | } | 
|  |  | 
|  | void TraceState::ApplyTraceBasedMutation(size_t Idx, fuzzer::Unit *U) { | 
|  | assert(Idx < Mutations.size()); | 
|  | auto &M = Mutations[Idx]; | 
|  | if (Options.Verbosity >= 3) | 
|  | Printf("TBM %zd %zd %zd\n", M.Pos, M.Size, M.Data); | 
|  | if (M.Pos + M.Size > U->size()) return; | 
|  | memcpy(U->data() + M.Pos, &M.Data, M.Size); | 
|  | } | 
|  |  | 
|  | void TraceState::DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, | 
|  | uint64_t Arg1, uint64_t Arg2, dfsan_label L1, | 
|  | dfsan_label L2) { | 
|  | assert(ReallyHaveDFSan()); | 
|  | if (!RecordingTraces) return; | 
|  | if (L1 == 0 && L2 == 0) | 
|  | return;  // Not actionable. | 
|  | if (L1 != 0 && L2 != 0) | 
|  | return;  // Probably still actionable. | 
|  | bool Res = ComputeCmp(CmpSize, CmpType, Arg1, Arg2); | 
|  | uint64_t Data = L1 ? Arg2 : Arg1; | 
|  | LabelRange LR = L1 ? GetLabelRange(L1) : GetLabelRange(L2); | 
|  |  | 
|  | for (size_t Pos = LR.Beg; Pos + CmpSize <= LR.End; Pos++) { | 
|  | Mutations.push_back({Pos, CmpSize, Data}); | 
|  | Mutations.push_back({Pos, CmpSize, Data + 1}); | 
|  | Mutations.push_back({Pos, CmpSize, Data - 1}); | 
|  | } | 
|  |  | 
|  | if (CmpSize > LR.End - LR.Beg) | 
|  | Mutations.push_back({LR.Beg, (unsigned)(LR.End - LR.Beg), Data}); | 
|  |  | 
|  |  | 
|  | if (Options.Verbosity >= 3) | 
|  | Printf("DFSanCmpCallback: PC %lx S %zd T %zd A1 %llx A2 %llx R %d L1 %d L2 " | 
|  | "%d MU %zd\n", | 
|  | PC, CmpSize, CmpType, Arg1, Arg2, Res, L1, L2, Mutations.size()); | 
|  | } | 
|  |  | 
|  | void TraceState::DFSanSwitchCallback(uint64_t PC, size_t ValSizeInBits, | 
|  | uint64_t Val, size_t NumCases, | 
|  | uint64_t *Cases, dfsan_label L) { | 
|  | assert(ReallyHaveDFSan()); | 
|  | if (!RecordingTraces) return; | 
|  | if (!L) return;  // Not actionable. | 
|  | LabelRange LR = GetLabelRange(L); | 
|  | size_t ValSize = ValSizeInBits / 8; | 
|  | bool TryShort = IsTwoByteData(Val); | 
|  | for (size_t i = 0; i < NumCases; i++) | 
|  | TryShort &= IsTwoByteData(Cases[i]); | 
|  |  | 
|  | for (size_t Pos = LR.Beg; Pos + ValSize <= LR.End; Pos++) | 
|  | for (size_t i = 0; i < NumCases; i++) | 
|  | Mutations.push_back({Pos, ValSize, Cases[i]}); | 
|  |  | 
|  | if (TryShort) | 
|  | for (size_t Pos = LR.Beg; Pos + 2 <= LR.End; Pos++) | 
|  | for (size_t i = 0; i < NumCases; i++) | 
|  | Mutations.push_back({Pos, 2, Cases[i]}); | 
|  |  | 
|  | if (Options.Verbosity >= 3) | 
|  | Printf("DFSanSwitchCallback: PC %lx Val %zd SZ %zd # %zd L %d: {%d, %d} " | 
|  | "TryShort %d\n", | 
|  | PC, Val, ValSize, NumCases, L, LR.Beg, LR.End, TryShort); | 
|  | } | 
|  |  | 
|  | int TraceState::TryToAddDesiredData(uint64_t PresentData, uint64_t DesiredData, | 
|  | size_t DataSize) { | 
|  | int Res = 0; | 
|  | const uint8_t *Beg = CurrentUnit.data(); | 
|  | const uint8_t *End = Beg + CurrentUnit.size(); | 
|  | for (const uint8_t *Cur = Beg; Cur < End; Cur += DataSize) { | 
|  | Cur = (uint8_t *)memmem(Cur, End - Cur, &PresentData, DataSize); | 
|  | if (!Cur) | 
|  | break; | 
|  | size_t Pos = Cur - Beg; | 
|  | assert(Pos < CurrentUnit.size()); | 
|  | if (Mutations.size() > 100000U) return Res;  // Just in case. | 
|  | Mutations.push_back({Pos, DataSize, DesiredData}); | 
|  | Mutations.push_back({Pos, DataSize, DesiredData + 1}); | 
|  | Mutations.push_back({Pos, DataSize, DesiredData - 1}); | 
|  | Cur += DataSize; | 
|  | Res++; | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | void TraceState::TraceCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, uint64_t Arg1, | 
|  | uint64_t Arg2) { | 
|  | if (!RecordingTraces) return; | 
|  | int Added = 0; | 
|  | CmpSitePassport *CSP = CSPTable.GetPassport(PC); | 
|  | if (!CSP) return; | 
|  | CSP->Counter[ComputeCmp(CmpSize, CmpType, Arg1, Arg2)]++; | 
|  | size_t C0 = CSP->Counter[0]; | 
|  | size_t C1 = CSP->Counter[1]; | 
|  | // FIXME: is this a good idea or a bad? | 
|  | // if (!CSP->IsInterestingCmpTarget()) | 
|  | //  return; | 
|  | if (Options.Verbosity >= 3) | 
|  | Printf("TraceCmp: %p %zd/%zd; %zd %zd\n", CSP->PC, C0, C1, Arg1, Arg2); | 
|  | Added += TryToAddDesiredData(Arg1, Arg2, CmpSize); | 
|  | Added += TryToAddDesiredData(Arg2, Arg1, CmpSize); | 
|  | if (!Added && CmpSize == 4 && IsTwoByteData(Arg1) && IsTwoByteData(Arg2)) { | 
|  | Added += TryToAddDesiredData(Arg1, Arg2, 2); | 
|  | Added += TryToAddDesiredData(Arg2, Arg1, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TraceState::TraceSwitchCallback(uintptr_t PC, size_t ValSizeInBits, | 
|  | uint64_t Val, size_t NumCases, | 
|  | uint64_t *Cases) { | 
|  | if (!RecordingTraces) return; | 
|  | size_t ValSize = ValSizeInBits / 8; | 
|  | bool TryShort = IsTwoByteData(Val); | 
|  | for (size_t i = 0; i < NumCases; i++) | 
|  | TryShort &= IsTwoByteData(Cases[i]); | 
|  |  | 
|  | if (Options.Verbosity >= 3) | 
|  | Printf("TraceSwitch: %p %zd # %zd; TryShort %d\n", PC, Val, NumCases, | 
|  | TryShort); | 
|  |  | 
|  | for (size_t i = 0; i < NumCases; i++) { | 
|  | TryToAddDesiredData(Val, Cases[i], ValSize); | 
|  | if (TryShort) | 
|  | TryToAddDesiredData(Val, Cases[i], 2); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static TraceState *TS; | 
|  |  | 
|  | void Fuzzer::StartTraceRecording() { | 
|  | if (!TS) return; | 
|  | if (ReallyHaveDFSan()) | 
|  | for (size_t i = 0; i < static_cast<size_t>(Options.MaxLen); i++) | 
|  | dfsan_set_label(i + 1, &CurrentUnit[i], 1); | 
|  | TS->StartTraceRecording(); | 
|  | } | 
|  |  | 
|  | size_t Fuzzer::StopTraceRecording() { | 
|  | if (!TS) return 0; | 
|  | return TS->StopTraceRecording(USF.GetRand()); | 
|  | } | 
|  |  | 
|  | void Fuzzer::ApplyTraceBasedMutation(size_t Idx, Unit *U) { | 
|  | assert(TS); | 
|  | TS->ApplyTraceBasedMutation(Idx, U); | 
|  | } | 
|  |  | 
|  | void Fuzzer::InitializeTraceState() { | 
|  | if (!Options.UseTraces) return; | 
|  | TS = new TraceState(Options, CurrentUnit); | 
|  | CurrentUnit.resize(Options.MaxLen); | 
|  | // The rest really requires DFSan. | 
|  | if (!ReallyHaveDFSan()) return; | 
|  | for (size_t i = 0; i < static_cast<size_t>(Options.MaxLen); i++) { | 
|  | dfsan_label L = dfsan_create_label("input", (void*)(i + 1)); | 
|  | // We assume that no one else has called dfsan_create_label before. | 
|  | if (L != i + 1) { | 
|  | Printf("DFSan labels are not starting from 1, exiting\n"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static size_t InternalStrnlen(const char *S, size_t MaxLen) { | 
|  | size_t Len = 0; | 
|  | for (; Len < MaxLen && S[Len]; Len++) {} | 
|  | return Len; | 
|  | } | 
|  |  | 
|  | }  // namespace fuzzer | 
|  |  | 
|  | using fuzzer::TS; | 
|  |  | 
|  | extern "C" { | 
|  | void __dfsw___sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1, | 
|  | uint64_t Arg2, dfsan_label L0, | 
|  | dfsan_label L1, dfsan_label L2) { | 
|  | if (!TS) return; | 
|  | assert(L0 == 0); | 
|  | uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); | 
|  | uint64_t CmpSize = (SizeAndType >> 32) / 8; | 
|  | uint64_t Type = (SizeAndType << 32) >> 32; | 
|  | TS->DFSanCmpCallback(PC, CmpSize, Type, Arg1, Arg2, L1, L2); | 
|  | } | 
|  |  | 
|  | void __dfsw___sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases, | 
|  | dfsan_label L1, dfsan_label L2) { | 
|  | if (!TS) return; | 
|  | uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); | 
|  | TS->DFSanSwitchCallback(PC, Cases[1], Val, Cases[0], Cases+2, L1); | 
|  | } | 
|  |  | 
|  | void dfsan_weak_hook_memcmp(void *caller_pc, const void *s1, const void *s2, | 
|  | size_t n, dfsan_label s1_label, | 
|  | dfsan_label s2_label, dfsan_label n_label) { | 
|  | if (!TS) return; | 
|  | uintptr_t PC = reinterpret_cast<uintptr_t>(caller_pc); | 
|  | uint64_t S1 = 0, S2 = 0; | 
|  | // Simplification: handle only first 8 bytes. | 
|  | memcpy(&S1, s1, std::min(n, sizeof(S1))); | 
|  | memcpy(&S2, s2, std::min(n, sizeof(S2))); | 
|  | dfsan_label L1 = dfsan_read_label(s1, n); | 
|  | dfsan_label L2 = dfsan_read_label(s2, n); | 
|  | TS->DFSanCmpCallback(PC, n, fuzzer::ICMP_EQ, S1, S2, L1, L2); | 
|  | } | 
|  |  | 
|  | void dfsan_weak_hook_strncmp(void *caller_pc, const char *s1, const char *s2, | 
|  | size_t n, dfsan_label s1_label, | 
|  | dfsan_label s2_label, dfsan_label n_label) { | 
|  | if (!TS) return; | 
|  | uintptr_t PC = reinterpret_cast<uintptr_t>(caller_pc); | 
|  | uint64_t S1 = 0, S2 = 0; | 
|  | n = std::min(n, fuzzer::InternalStrnlen(s1, n)); | 
|  | n = std::min(n, fuzzer::InternalStrnlen(s2, n)); | 
|  | // Simplification: handle only first 8 bytes. | 
|  | memcpy(&S1, s1, std::min(n, sizeof(S1))); | 
|  | memcpy(&S2, s2, std::min(n, sizeof(S2))); | 
|  | dfsan_label L1 = dfsan_read_label(s1, n); | 
|  | dfsan_label L2 = dfsan_read_label(s2, n); | 
|  | TS->DFSanCmpCallback(PC, n, fuzzer::ICMP_EQ, S1, S2, L1, L2); | 
|  | } | 
|  |  | 
|  | void dfsan_weak_hook_strcmp(void *caller_pc, const char *s1, const char *s2, | 
|  | dfsan_label s1_label, dfsan_label s2_label) { | 
|  | if (!TS) return; | 
|  | uintptr_t PC = reinterpret_cast<uintptr_t>(caller_pc); | 
|  | uint64_t S1 = 0, S2 = 0; | 
|  | size_t Len1 = strlen(s1); | 
|  | size_t Len2 = strlen(s2); | 
|  | size_t N = std::min(Len1, Len2); | 
|  | if (N <= 1) return;  // Not interesting. | 
|  | // Simplification: handle only first 8 bytes. | 
|  | memcpy(&S1, s1, std::min(N, sizeof(S1))); | 
|  | memcpy(&S2, s2, std::min(N, sizeof(S2))); | 
|  | dfsan_label L1 = dfsan_read_label(s1, Len1); | 
|  | dfsan_label L2 = dfsan_read_label(s2, Len2); | 
|  | TS->DFSanCmpCallback(PC, N, fuzzer::ICMP_EQ, S1, S2, L1, L2); | 
|  | } | 
|  |  | 
|  | void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1, | 
|  | const void *s2, size_t n) { | 
|  | if (!TS) return; | 
|  | uintptr_t PC = reinterpret_cast<uintptr_t>(caller_pc); | 
|  | uint64_t S1 = 0, S2 = 0; | 
|  | // Simplification: handle only first 8 bytes. | 
|  | memcpy(&S1, s1, std::min(n, sizeof(S1))); | 
|  | memcpy(&S2, s2, std::min(n, sizeof(S2))); | 
|  | TS->TraceCmpCallback(PC, n, fuzzer::ICMP_EQ, S1, S2); | 
|  | } | 
|  |  | 
|  | void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1, | 
|  | const char *s2, size_t n) { | 
|  | if (!TS) return; | 
|  | uintptr_t PC = reinterpret_cast<uintptr_t>(caller_pc); | 
|  | uint64_t S1 = 0, S2 = 0; | 
|  | size_t Len1 = fuzzer::InternalStrnlen(s1, n); | 
|  | size_t Len2 = fuzzer::InternalStrnlen(s2, n); | 
|  | n = std::min(n, Len1); | 
|  | n = std::min(n, Len2); | 
|  | if (n <= 1) return;  // Not interesting. | 
|  | // Simplification: handle only first 8 bytes. | 
|  | memcpy(&S1, s1, std::min(n, sizeof(S1))); | 
|  | memcpy(&S2, s2, std::min(n, sizeof(S2))); | 
|  | TS->TraceCmpCallback(PC, n, fuzzer::ICMP_EQ, S1, S2); | 
|  | } | 
|  |  | 
|  | void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1, | 
|  | const char *s2) { | 
|  | if (!TS) return; | 
|  | uintptr_t PC = reinterpret_cast<uintptr_t>(caller_pc); | 
|  | uint64_t S1 = 0, S2 = 0; | 
|  | size_t Len1 = strlen(s1); | 
|  | size_t Len2 = strlen(s2); | 
|  | size_t N = std::min(Len1, Len2); | 
|  | if (N <= 1) return;  // Not interesting. | 
|  | // Simplification: handle only first 8 bytes. | 
|  | memcpy(&S1, s1, std::min(N, sizeof(S1))); | 
|  | memcpy(&S2, s2, std::min(N, sizeof(S2))); | 
|  | TS->TraceCmpCallback(PC, N, fuzzer::ICMP_EQ, S1, S2); | 
|  | } | 
|  |  | 
|  |  | 
|  | void __sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1, | 
|  | uint64_t Arg2) { | 
|  | if (!TS) return; | 
|  | uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); | 
|  | uint64_t CmpSize = (SizeAndType >> 32) / 8; | 
|  | uint64_t Type = (SizeAndType << 32) >> 32; | 
|  | TS->TraceCmpCallback(PC, CmpSize, Type, Arg1, Arg2); | 
|  | } | 
|  |  | 
|  | void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) { | 
|  | if (!TS) return; | 
|  | uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); | 
|  | TS->TraceSwitchCallback(PC, Cases[1], Val, Cases[0], Cases + 2); | 
|  | } | 
|  |  | 
|  | }  // extern "C" |