|  | //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This contains code to emit Stmt nodes as LLVM code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CodeGenFunction.h" | 
|  | #include "CGDebugInfo.h" | 
|  | #include "CodeGenModule.h" | 
|  | #include "TargetInfo.h" | 
|  | #include "clang/AST/StmtVisitor.h" | 
|  | #include "clang/Basic/PrettyStackTrace.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Sema/LoopHint.h" | 
|  | #include "clang/Sema/SemaDiagnostic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              Statement Emission | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void CodeGenFunction::EmitStopPoint(const Stmt *S) { | 
|  | if (CGDebugInfo *DI = getDebugInfo()) { | 
|  | SourceLocation Loc; | 
|  | Loc = S->getLocStart(); | 
|  | DI->EmitLocation(Builder, Loc); | 
|  |  | 
|  | LastStopPoint = Loc; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitStmt(const Stmt *S) { | 
|  | assert(S && "Null statement?"); | 
|  | PGO.setCurrentStmt(S); | 
|  |  | 
|  | // These statements have their own debug info handling. | 
|  | if (EmitSimpleStmt(S)) | 
|  | return; | 
|  |  | 
|  | // Check if we are generating unreachable code. | 
|  | if (!HaveInsertPoint()) { | 
|  | // If so, and the statement doesn't contain a label, then we do not need to | 
|  | // generate actual code. This is safe because (1) the current point is | 
|  | // unreachable, so we don't need to execute the code, and (2) we've already | 
|  | // handled the statements which update internal data structures (like the | 
|  | // local variable map) which could be used by subsequent statements. | 
|  | if (!ContainsLabel(S)) { | 
|  | // Verify that any decl statements were handled as simple, they may be in | 
|  | // scope of subsequent reachable statements. | 
|  | assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, make a new block to hold the code. | 
|  | EnsureInsertPoint(); | 
|  | } | 
|  |  | 
|  | // Generate a stoppoint if we are emitting debug info. | 
|  | EmitStopPoint(S); | 
|  |  | 
|  | switch (S->getStmtClass()) { | 
|  | case Stmt::NoStmtClass: | 
|  | case Stmt::CXXCatchStmtClass: | 
|  | case Stmt::SEHExceptStmtClass: | 
|  | case Stmt::SEHFinallyStmtClass: | 
|  | case Stmt::MSDependentExistsStmtClass: | 
|  | llvm_unreachable("invalid statement class to emit generically"); | 
|  | case Stmt::NullStmtClass: | 
|  | case Stmt::CompoundStmtClass: | 
|  | case Stmt::DeclStmtClass: | 
|  | case Stmt::LabelStmtClass: | 
|  | case Stmt::AttributedStmtClass: | 
|  | case Stmt::GotoStmtClass: | 
|  | case Stmt::BreakStmtClass: | 
|  | case Stmt::ContinueStmtClass: | 
|  | case Stmt::DefaultStmtClass: | 
|  | case Stmt::CaseStmtClass: | 
|  | case Stmt::SEHLeaveStmtClass: | 
|  | llvm_unreachable("should have emitted these statements as simple"); | 
|  |  | 
|  | #define STMT(Type, Base) | 
|  | #define ABSTRACT_STMT(Op) | 
|  | #define EXPR(Type, Base) \ | 
|  | case Stmt::Type##Class: | 
|  | #include "clang/AST/StmtNodes.inc" | 
|  | { | 
|  | // Remember the block we came in on. | 
|  | llvm::BasicBlock *incoming = Builder.GetInsertBlock(); | 
|  | assert(incoming && "expression emission must have an insertion point"); | 
|  |  | 
|  | EmitIgnoredExpr(cast<Expr>(S)); | 
|  |  | 
|  | llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); | 
|  | assert(outgoing && "expression emission cleared block!"); | 
|  |  | 
|  | // The expression emitters assume (reasonably!) that the insertion | 
|  | // point is always set.  To maintain that, the call-emission code | 
|  | // for noreturn functions has to enter a new block with no | 
|  | // predecessors.  We want to kill that block and mark the current | 
|  | // insertion point unreachable in the common case of a call like | 
|  | // "exit();".  Since expression emission doesn't otherwise create | 
|  | // blocks with no predecessors, we can just test for that. | 
|  | // However, we must be careful not to do this to our incoming | 
|  | // block, because *statement* emission does sometimes create | 
|  | // reachable blocks which will have no predecessors until later in | 
|  | // the function.  This occurs with, e.g., labels that are not | 
|  | // reachable by fallthrough. | 
|  | if (incoming != outgoing && outgoing->use_empty()) { | 
|  | outgoing->eraseFromParent(); | 
|  | Builder.ClearInsertionPoint(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Stmt::IndirectGotoStmtClass: | 
|  | EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; | 
|  |  | 
|  | case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break; | 
|  | case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break; | 
|  | case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break; | 
|  | case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break; | 
|  |  | 
|  | case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break; | 
|  |  | 
|  | case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break; | 
|  | case Stmt::GCCAsmStmtClass:   // Intentional fall-through. | 
|  | case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break; | 
|  | case Stmt::CapturedStmtClass: { | 
|  | const CapturedStmt *CS = cast<CapturedStmt>(S); | 
|  | EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); | 
|  | } | 
|  | break; | 
|  | case Stmt::ObjCAtTryStmtClass: | 
|  | EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); | 
|  | break; | 
|  | case Stmt::ObjCAtCatchStmtClass: | 
|  | llvm_unreachable( | 
|  | "@catch statements should be handled by EmitObjCAtTryStmt"); | 
|  | case Stmt::ObjCAtFinallyStmtClass: | 
|  | llvm_unreachable( | 
|  | "@finally statements should be handled by EmitObjCAtTryStmt"); | 
|  | case Stmt::ObjCAtThrowStmtClass: | 
|  | EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); | 
|  | break; | 
|  | case Stmt::ObjCAtSynchronizedStmtClass: | 
|  | EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); | 
|  | break; | 
|  | case Stmt::ObjCForCollectionStmtClass: | 
|  | EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); | 
|  | break; | 
|  | case Stmt::ObjCAutoreleasePoolStmtClass: | 
|  | EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); | 
|  | break; | 
|  |  | 
|  | case Stmt::CXXTryStmtClass: | 
|  | EmitCXXTryStmt(cast<CXXTryStmt>(*S)); | 
|  | break; | 
|  | case Stmt::CXXForRangeStmtClass: | 
|  | EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); | 
|  | break; | 
|  | case Stmt::SEHTryStmtClass: | 
|  | EmitSEHTryStmt(cast<SEHTryStmt>(*S)); | 
|  | break; | 
|  | case Stmt::OMPParallelDirectiveClass: | 
|  | EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPSimdDirectiveClass: | 
|  | EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPForDirectiveClass: | 
|  | EmitOMPForDirective(cast<OMPForDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPForSimdDirectiveClass: | 
|  | EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPSectionsDirectiveClass: | 
|  | EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPSectionDirectiveClass: | 
|  | EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPSingleDirectiveClass: | 
|  | EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPMasterDirectiveClass: | 
|  | EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPCriticalDirectiveClass: | 
|  | EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPParallelForDirectiveClass: | 
|  | EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPParallelForSimdDirectiveClass: | 
|  | EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPParallelSectionsDirectiveClass: | 
|  | EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPTaskDirectiveClass: | 
|  | EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPTaskyieldDirectiveClass: | 
|  | EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPBarrierDirectiveClass: | 
|  | EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPTaskwaitDirectiveClass: | 
|  | EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPTaskgroupDirectiveClass: | 
|  | EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPFlushDirectiveClass: | 
|  | EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPOrderedDirectiveClass: | 
|  | EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPAtomicDirectiveClass: | 
|  | EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPTargetDirectiveClass: | 
|  | EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPTeamsDirectiveClass: | 
|  | EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPCancellationPointDirectiveClass: | 
|  | EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPCancelDirectiveClass: | 
|  | EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); | 
|  | break; | 
|  | case Stmt::OMPTargetDataDirectiveClass: | 
|  | EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { | 
|  | switch (S->getStmtClass()) { | 
|  | default: return false; | 
|  | case Stmt::NullStmtClass: break; | 
|  | case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; | 
|  | case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break; | 
|  | case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break; | 
|  | case Stmt::AttributedStmtClass: | 
|  | EmitAttributedStmt(cast<AttributedStmt>(*S)); break; | 
|  | case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break; | 
|  | case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break; | 
|  | case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; | 
|  | case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break; | 
|  | case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break; | 
|  | case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true, | 
|  | /// this captures the expression result of the last sub-statement and returns it | 
|  | /// (for use by the statement expression extension). | 
|  | llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, | 
|  | AggValueSlot AggSlot) { | 
|  | PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), | 
|  | "LLVM IR generation of compound statement ('{}')"); | 
|  |  | 
|  | // Keep track of the current cleanup stack depth, including debug scopes. | 
|  | LexicalScope Scope(*this, S.getSourceRange()); | 
|  |  | 
|  | return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); | 
|  | } | 
|  |  | 
|  | llvm::Value* | 
|  | CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, | 
|  | bool GetLast, | 
|  | AggValueSlot AggSlot) { | 
|  |  | 
|  | for (CompoundStmt::const_body_iterator I = S.body_begin(), | 
|  | E = S.body_end()-GetLast; I != E; ++I) | 
|  | EmitStmt(*I); | 
|  |  | 
|  | llvm::Value *RetAlloca = nullptr; | 
|  | if (GetLast) { | 
|  | // We have to special case labels here.  They are statements, but when put | 
|  | // at the end of a statement expression, they yield the value of their | 
|  | // subexpression.  Handle this by walking through all labels we encounter, | 
|  | // emitting them before we evaluate the subexpr. | 
|  | const Stmt *LastStmt = S.body_back(); | 
|  | while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { | 
|  | EmitLabel(LS->getDecl()); | 
|  | LastStmt = LS->getSubStmt(); | 
|  | } | 
|  |  | 
|  | EnsureInsertPoint(); | 
|  |  | 
|  | QualType ExprTy = cast<Expr>(LastStmt)->getType(); | 
|  | if (hasAggregateEvaluationKind(ExprTy)) { | 
|  | EmitAggExpr(cast<Expr>(LastStmt), AggSlot); | 
|  | } else { | 
|  | // We can't return an RValue here because there might be cleanups at | 
|  | // the end of the StmtExpr.  Because of that, we have to emit the result | 
|  | // here into a temporary alloca. | 
|  | RetAlloca = CreateMemTemp(ExprTy); | 
|  | EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), | 
|  | /*IsInit*/false); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return RetAlloca; | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { | 
|  | llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); | 
|  |  | 
|  | // If there is a cleanup stack, then we it isn't worth trying to | 
|  | // simplify this block (we would need to remove it from the scope map | 
|  | // and cleanup entry). | 
|  | if (!EHStack.empty()) | 
|  | return; | 
|  |  | 
|  | // Can only simplify direct branches. | 
|  | if (!BI || !BI->isUnconditional()) | 
|  | return; | 
|  |  | 
|  | // Can only simplify empty blocks. | 
|  | if (BI != BB->begin()) | 
|  | return; | 
|  |  | 
|  | BB->replaceAllUsesWith(BI->getSuccessor(0)); | 
|  | BI->eraseFromParent(); | 
|  | BB->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { | 
|  | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Fall out of the current block (if necessary). | 
|  | EmitBranch(BB); | 
|  |  | 
|  | if (IsFinished && BB->use_empty()) { | 
|  | delete BB; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Place the block after the current block, if possible, or else at | 
|  | // the end of the function. | 
|  | if (CurBB && CurBB->getParent()) | 
|  | CurFn->getBasicBlockList().insertAfter(CurBB, BB); | 
|  | else | 
|  | CurFn->getBasicBlockList().push_back(BB); | 
|  | Builder.SetInsertPoint(BB); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { | 
|  | // Emit a branch from the current block to the target one if this | 
|  | // was a real block.  If this was just a fall-through block after a | 
|  | // terminator, don't emit it. | 
|  | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | if (!CurBB || CurBB->getTerminator()) { | 
|  | // If there is no insert point or the previous block is already | 
|  | // terminated, don't touch it. | 
|  | } else { | 
|  | // Otherwise, create a fall-through branch. | 
|  | Builder.CreateBr(Target); | 
|  | } | 
|  |  | 
|  | Builder.ClearInsertionPoint(); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { | 
|  | bool inserted = false; | 
|  | for (llvm::User *u : block->users()) { | 
|  | if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { | 
|  | CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); | 
|  | inserted = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!inserted) | 
|  | CurFn->getBasicBlockList().push_back(block); | 
|  |  | 
|  | Builder.SetInsertPoint(block); | 
|  | } | 
|  |  | 
|  | CodeGenFunction::JumpDest | 
|  | CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { | 
|  | JumpDest &Dest = LabelMap[D]; | 
|  | if (Dest.isValid()) return Dest; | 
|  |  | 
|  | // Create, but don't insert, the new block. | 
|  | Dest = JumpDest(createBasicBlock(D->getName()), | 
|  | EHScopeStack::stable_iterator::invalid(), | 
|  | NextCleanupDestIndex++); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitLabel(const LabelDecl *D) { | 
|  | // Add this label to the current lexical scope if we're within any | 
|  | // normal cleanups.  Jumps "in" to this label --- when permitted by | 
|  | // the language --- may need to be routed around such cleanups. | 
|  | if (EHStack.hasNormalCleanups() && CurLexicalScope) | 
|  | CurLexicalScope->addLabel(D); | 
|  |  | 
|  | JumpDest &Dest = LabelMap[D]; | 
|  |  | 
|  | // If we didn't need a forward reference to this label, just go | 
|  | // ahead and create a destination at the current scope. | 
|  | if (!Dest.isValid()) { | 
|  | Dest = getJumpDestInCurrentScope(D->getName()); | 
|  |  | 
|  | // Otherwise, we need to give this label a target depth and remove | 
|  | // it from the branch-fixups list. | 
|  | } else { | 
|  | assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); | 
|  | Dest.setScopeDepth(EHStack.stable_begin()); | 
|  | ResolveBranchFixups(Dest.getBlock()); | 
|  | } | 
|  |  | 
|  | EmitBlock(Dest.getBlock()); | 
|  | incrementProfileCounter(D->getStmt()); | 
|  | } | 
|  |  | 
|  | /// Change the cleanup scope of the labels in this lexical scope to | 
|  | /// match the scope of the enclosing context. | 
|  | void CodeGenFunction::LexicalScope::rescopeLabels() { | 
|  | assert(!Labels.empty()); | 
|  | EHScopeStack::stable_iterator innermostScope | 
|  | = CGF.EHStack.getInnermostNormalCleanup(); | 
|  |  | 
|  | // Change the scope depth of all the labels. | 
|  | for (SmallVectorImpl<const LabelDecl*>::const_iterator | 
|  | i = Labels.begin(), e = Labels.end(); i != e; ++i) { | 
|  | assert(CGF.LabelMap.count(*i)); | 
|  | JumpDest &dest = CGF.LabelMap.find(*i)->second; | 
|  | assert(dest.getScopeDepth().isValid()); | 
|  | assert(innermostScope.encloses(dest.getScopeDepth())); | 
|  | dest.setScopeDepth(innermostScope); | 
|  | } | 
|  |  | 
|  | // Reparent the labels if the new scope also has cleanups. | 
|  | if (innermostScope != EHScopeStack::stable_end() && ParentScope) { | 
|  | ParentScope->Labels.append(Labels.begin(), Labels.end()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { | 
|  | EmitLabel(S.getDecl()); | 
|  | EmitStmt(S.getSubStmt()); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { | 
|  | const Stmt *SubStmt = S.getSubStmt(); | 
|  | switch (SubStmt->getStmtClass()) { | 
|  | case Stmt::DoStmtClass: | 
|  | EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); | 
|  | break; | 
|  | case Stmt::ForStmtClass: | 
|  | EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); | 
|  | break; | 
|  | case Stmt::WhileStmtClass: | 
|  | EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); | 
|  | break; | 
|  | case Stmt::CXXForRangeStmtClass: | 
|  | EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); | 
|  | break; | 
|  | default: | 
|  | EmitStmt(SubStmt); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { | 
|  | // If this code is reachable then emit a stop point (if generating | 
|  | // debug info). We have to do this ourselves because we are on the | 
|  | // "simple" statement path. | 
|  | if (HaveInsertPoint()) | 
|  | EmitStopPoint(&S); | 
|  |  | 
|  | EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); | 
|  | } | 
|  |  | 
|  |  | 
|  | void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { | 
|  | if (const LabelDecl *Target = S.getConstantTarget()) { | 
|  | EmitBranchThroughCleanup(getJumpDestForLabel(Target)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Ensure that we have an i8* for our PHI node. | 
|  | llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), | 
|  | Int8PtrTy, "addr"); | 
|  | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Get the basic block for the indirect goto. | 
|  | llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); | 
|  |  | 
|  | // The first instruction in the block has to be the PHI for the switch dest, | 
|  | // add an entry for this branch. | 
|  | cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); | 
|  |  | 
|  | EmitBranch(IndGotoBB); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitIfStmt(const IfStmt &S) { | 
|  | // C99 6.8.4.1: The first substatement is executed if the expression compares | 
|  | // unequal to 0.  The condition must be a scalar type. | 
|  | LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); | 
|  |  | 
|  | if (S.getConditionVariable()) | 
|  | EmitAutoVarDecl(*S.getConditionVariable()); | 
|  |  | 
|  | // If the condition constant folds and can be elided, try to avoid emitting | 
|  | // the condition and the dead arm of the if/else. | 
|  | bool CondConstant; | 
|  | if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { | 
|  | // Figure out which block (then or else) is executed. | 
|  | const Stmt *Executed = S.getThen(); | 
|  | const Stmt *Skipped  = S.getElse(); | 
|  | if (!CondConstant)  // Condition false? | 
|  | std::swap(Executed, Skipped); | 
|  |  | 
|  | // If the skipped block has no labels in it, just emit the executed block. | 
|  | // This avoids emitting dead code and simplifies the CFG substantially. | 
|  | if (!ContainsLabel(Skipped)) { | 
|  | if (CondConstant) | 
|  | incrementProfileCounter(&S); | 
|  | if (Executed) { | 
|  | RunCleanupsScope ExecutedScope(*this); | 
|  | EmitStmt(Executed); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit | 
|  | // the conditional branch. | 
|  | llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); | 
|  | llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); | 
|  | llvm::BasicBlock *ElseBlock = ContBlock; | 
|  | if (S.getElse()) | 
|  | ElseBlock = createBasicBlock("if.else"); | 
|  |  | 
|  | EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, | 
|  | getProfileCount(S.getThen())); | 
|  |  | 
|  | // Emit the 'then' code. | 
|  | EmitBlock(ThenBlock); | 
|  | incrementProfileCounter(&S); | 
|  | { | 
|  | RunCleanupsScope ThenScope(*this); | 
|  | EmitStmt(S.getThen()); | 
|  | } | 
|  | EmitBranch(ContBlock); | 
|  |  | 
|  | // Emit the 'else' code if present. | 
|  | if (const Stmt *Else = S.getElse()) { | 
|  | { | 
|  | // There is no need to emit line number for an unconditional branch. | 
|  | auto NL = ApplyDebugLocation::CreateEmpty(*this); | 
|  | EmitBlock(ElseBlock); | 
|  | } | 
|  | { | 
|  | RunCleanupsScope ElseScope(*this); | 
|  | EmitStmt(Else); | 
|  | } | 
|  | { | 
|  | // There is no need to emit line number for an unconditional branch. | 
|  | auto NL = ApplyDebugLocation::CreateEmpty(*this); | 
|  | EmitBranch(ContBlock); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the continuation block for code after the if. | 
|  | EmitBlock(ContBlock, true); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, | 
|  | ArrayRef<const Attr *> WhileAttrs) { | 
|  | // Emit the header for the loop, which will also become | 
|  | // the continue target. | 
|  | JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); | 
|  | EmitBlock(LoopHeader.getBlock()); | 
|  |  | 
|  | LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs); | 
|  |  | 
|  | // Create an exit block for when the condition fails, which will | 
|  | // also become the break target. | 
|  | JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); | 
|  |  | 
|  | // Store the blocks to use for break and continue. | 
|  | BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); | 
|  |  | 
|  | // C++ [stmt.while]p2: | 
|  | //   When the condition of a while statement is a declaration, the | 
|  | //   scope of the variable that is declared extends from its point | 
|  | //   of declaration (3.3.2) to the end of the while statement. | 
|  | //   [...] | 
|  | //   The object created in a condition is destroyed and created | 
|  | //   with each iteration of the loop. | 
|  | RunCleanupsScope ConditionScope(*this); | 
|  |  | 
|  | if (S.getConditionVariable()) | 
|  | EmitAutoVarDecl(*S.getConditionVariable()); | 
|  |  | 
|  | // Evaluate the conditional in the while header.  C99 6.8.5.1: The | 
|  | // evaluation of the controlling expression takes place before each | 
|  | // execution of the loop body. | 
|  | llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
|  |  | 
|  | // while(1) is common, avoid extra exit blocks.  Be sure | 
|  | // to correctly handle break/continue though. | 
|  | bool EmitBoolCondBranch = true; | 
|  | if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) | 
|  | if (C->isOne()) | 
|  | EmitBoolCondBranch = false; | 
|  |  | 
|  | // As long as the condition is true, go to the loop body. | 
|  | llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); | 
|  | if (EmitBoolCondBranch) { | 
|  | llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); | 
|  | if (ConditionScope.requiresCleanups()) | 
|  | ExitBlock = createBasicBlock("while.exit"); | 
|  | Builder.CreateCondBr( | 
|  | BoolCondVal, LoopBody, ExitBlock, | 
|  | createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); | 
|  |  | 
|  | if (ExitBlock != LoopExit.getBlock()) { | 
|  | EmitBlock(ExitBlock); | 
|  | EmitBranchThroughCleanup(LoopExit); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the loop body.  We have to emit this in a cleanup scope | 
|  | // because it might be a singleton DeclStmt. | 
|  | { | 
|  | RunCleanupsScope BodyScope(*this); | 
|  | EmitBlock(LoopBody); | 
|  | incrementProfileCounter(&S); | 
|  | EmitStmt(S.getBody()); | 
|  | } | 
|  |  | 
|  | BreakContinueStack.pop_back(); | 
|  |  | 
|  | // Immediately force cleanup. | 
|  | ConditionScope.ForceCleanup(); | 
|  |  | 
|  | EmitStopPoint(&S); | 
|  | // Branch to the loop header again. | 
|  | EmitBranch(LoopHeader.getBlock()); | 
|  |  | 
|  | LoopStack.pop(); | 
|  |  | 
|  | // Emit the exit block. | 
|  | EmitBlock(LoopExit.getBlock(), true); | 
|  |  | 
|  | // The LoopHeader typically is just a branch if we skipped emitting | 
|  | // a branch, try to erase it. | 
|  | if (!EmitBoolCondBranch) | 
|  | SimplifyForwardingBlocks(LoopHeader.getBlock()); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitDoStmt(const DoStmt &S, | 
|  | ArrayRef<const Attr *> DoAttrs) { | 
|  | JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); | 
|  | JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); | 
|  |  | 
|  | uint64_t ParentCount = getCurrentProfileCount(); | 
|  |  | 
|  | // Store the blocks to use for break and continue. | 
|  | BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); | 
|  |  | 
|  | // Emit the body of the loop. | 
|  | llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); | 
|  |  | 
|  | LoopStack.push(LoopBody, CGM.getContext(), DoAttrs); | 
|  |  | 
|  | EmitBlockWithFallThrough(LoopBody, &S); | 
|  | { | 
|  | RunCleanupsScope BodyScope(*this); | 
|  | EmitStmt(S.getBody()); | 
|  | } | 
|  |  | 
|  | EmitBlock(LoopCond.getBlock()); | 
|  |  | 
|  | // C99 6.8.5.2: "The evaluation of the controlling expression takes place | 
|  | // after each execution of the loop body." | 
|  |  | 
|  | // Evaluate the conditional in the while header. | 
|  | // C99 6.8.5p2/p4: The first substatement is executed if the expression | 
|  | // compares unequal to 0.  The condition must be a scalar type. | 
|  | llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
|  |  | 
|  | BreakContinueStack.pop_back(); | 
|  |  | 
|  | // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure | 
|  | // to correctly handle break/continue though. | 
|  | bool EmitBoolCondBranch = true; | 
|  | if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) | 
|  | if (C->isZero()) | 
|  | EmitBoolCondBranch = false; | 
|  |  | 
|  | // As long as the condition is true, iterate the loop. | 
|  | if (EmitBoolCondBranch) { | 
|  | uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; | 
|  | Builder.CreateCondBr( | 
|  | BoolCondVal, LoopBody, LoopExit.getBlock(), | 
|  | createProfileWeightsForLoop(S.getCond(), BackedgeCount)); | 
|  | } | 
|  |  | 
|  | LoopStack.pop(); | 
|  |  | 
|  | // Emit the exit block. | 
|  | EmitBlock(LoopExit.getBlock()); | 
|  |  | 
|  | // The DoCond block typically is just a branch if we skipped | 
|  | // emitting a branch, try to erase it. | 
|  | if (!EmitBoolCondBranch) | 
|  | SimplifyForwardingBlocks(LoopCond.getBlock()); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitForStmt(const ForStmt &S, | 
|  | ArrayRef<const Attr *> ForAttrs) { | 
|  | JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); | 
|  |  | 
|  | LexicalScope ForScope(*this, S.getSourceRange()); | 
|  |  | 
|  | // Evaluate the first part before the loop. | 
|  | if (S.getInit()) | 
|  | EmitStmt(S.getInit()); | 
|  |  | 
|  | // Start the loop with a block that tests the condition. | 
|  | // If there's an increment, the continue scope will be overwritten | 
|  | // later. | 
|  | JumpDest Continue = getJumpDestInCurrentScope("for.cond"); | 
|  | llvm::BasicBlock *CondBlock = Continue.getBlock(); | 
|  | EmitBlock(CondBlock); | 
|  |  | 
|  | LoopStack.push(CondBlock, CGM.getContext(), ForAttrs); | 
|  |  | 
|  | // If the for loop doesn't have an increment we can just use the | 
|  | // condition as the continue block.  Otherwise we'll need to create | 
|  | // a block for it (in the current scope, i.e. in the scope of the | 
|  | // condition), and that we will become our continue block. | 
|  | if (S.getInc()) | 
|  | Continue = getJumpDestInCurrentScope("for.inc"); | 
|  |  | 
|  | // Store the blocks to use for break and continue. | 
|  | BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); | 
|  |  | 
|  | // Create a cleanup scope for the condition variable cleanups. | 
|  | LexicalScope ConditionScope(*this, S.getSourceRange()); | 
|  |  | 
|  | if (S.getCond()) { | 
|  | // If the for statement has a condition scope, emit the local variable | 
|  | // declaration. | 
|  | if (S.getConditionVariable()) { | 
|  | EmitAutoVarDecl(*S.getConditionVariable()); | 
|  | } | 
|  |  | 
|  | llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); | 
|  | // If there are any cleanups between here and the loop-exit scope, | 
|  | // create a block to stage a loop exit along. | 
|  | if (ForScope.requiresCleanups()) | 
|  | ExitBlock = createBasicBlock("for.cond.cleanup"); | 
|  |  | 
|  | // As long as the condition is true, iterate the loop. | 
|  | llvm::BasicBlock *ForBody = createBasicBlock("for.body"); | 
|  |  | 
|  | // C99 6.8.5p2/p4: The first substatement is executed if the expression | 
|  | // compares unequal to 0.  The condition must be a scalar type. | 
|  | llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
|  | Builder.CreateCondBr( | 
|  | BoolCondVal, ForBody, ExitBlock, | 
|  | createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); | 
|  |  | 
|  | if (ExitBlock != LoopExit.getBlock()) { | 
|  | EmitBlock(ExitBlock); | 
|  | EmitBranchThroughCleanup(LoopExit); | 
|  | } | 
|  |  | 
|  | EmitBlock(ForBody); | 
|  | } else { | 
|  | // Treat it as a non-zero constant.  Don't even create a new block for the | 
|  | // body, just fall into it. | 
|  | } | 
|  | incrementProfileCounter(&S); | 
|  |  | 
|  | { | 
|  | // Create a separate cleanup scope for the body, in case it is not | 
|  | // a compound statement. | 
|  | RunCleanupsScope BodyScope(*this); | 
|  | EmitStmt(S.getBody()); | 
|  | } | 
|  |  | 
|  | // If there is an increment, emit it next. | 
|  | if (S.getInc()) { | 
|  | EmitBlock(Continue.getBlock()); | 
|  | EmitStmt(S.getInc()); | 
|  | } | 
|  |  | 
|  | BreakContinueStack.pop_back(); | 
|  |  | 
|  | ConditionScope.ForceCleanup(); | 
|  |  | 
|  | EmitStopPoint(&S); | 
|  | EmitBranch(CondBlock); | 
|  |  | 
|  | ForScope.ForceCleanup(); | 
|  |  | 
|  | LoopStack.pop(); | 
|  |  | 
|  | // Emit the fall-through block. | 
|  | EmitBlock(LoopExit.getBlock(), true); | 
|  | } | 
|  |  | 
|  | void | 
|  | CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, | 
|  | ArrayRef<const Attr *> ForAttrs) { | 
|  | JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); | 
|  |  | 
|  | LexicalScope ForScope(*this, S.getSourceRange()); | 
|  |  | 
|  | // Evaluate the first pieces before the loop. | 
|  | EmitStmt(S.getRangeStmt()); | 
|  | EmitStmt(S.getBeginEndStmt()); | 
|  |  | 
|  | // Start the loop with a block that tests the condition. | 
|  | // If there's an increment, the continue scope will be overwritten | 
|  | // later. | 
|  | llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); | 
|  | EmitBlock(CondBlock); | 
|  |  | 
|  | LoopStack.push(CondBlock, CGM.getContext(), ForAttrs); | 
|  |  | 
|  | // If there are any cleanups between here and the loop-exit scope, | 
|  | // create a block to stage a loop exit along. | 
|  | llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); | 
|  | if (ForScope.requiresCleanups()) | 
|  | ExitBlock = createBasicBlock("for.cond.cleanup"); | 
|  |  | 
|  | // The loop body, consisting of the specified body and the loop variable. | 
|  | llvm::BasicBlock *ForBody = createBasicBlock("for.body"); | 
|  |  | 
|  | // The body is executed if the expression, contextually converted | 
|  | // to bool, is true. | 
|  | llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
|  | Builder.CreateCondBr( | 
|  | BoolCondVal, ForBody, ExitBlock, | 
|  | createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); | 
|  |  | 
|  | if (ExitBlock != LoopExit.getBlock()) { | 
|  | EmitBlock(ExitBlock); | 
|  | EmitBranchThroughCleanup(LoopExit); | 
|  | } | 
|  |  | 
|  | EmitBlock(ForBody); | 
|  | incrementProfileCounter(&S); | 
|  |  | 
|  | // Create a block for the increment. In case of a 'continue', we jump there. | 
|  | JumpDest Continue = getJumpDestInCurrentScope("for.inc"); | 
|  |  | 
|  | // Store the blocks to use for break and continue. | 
|  | BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); | 
|  |  | 
|  | { | 
|  | // Create a separate cleanup scope for the loop variable and body. | 
|  | LexicalScope BodyScope(*this, S.getSourceRange()); | 
|  | EmitStmt(S.getLoopVarStmt()); | 
|  | EmitStmt(S.getBody()); | 
|  | } | 
|  |  | 
|  | EmitStopPoint(&S); | 
|  | // If there is an increment, emit it next. | 
|  | EmitBlock(Continue.getBlock()); | 
|  | EmitStmt(S.getInc()); | 
|  |  | 
|  | BreakContinueStack.pop_back(); | 
|  |  | 
|  | EmitBranch(CondBlock); | 
|  |  | 
|  | ForScope.ForceCleanup(); | 
|  |  | 
|  | LoopStack.pop(); | 
|  |  | 
|  | // Emit the fall-through block. | 
|  | EmitBlock(LoopExit.getBlock(), true); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { | 
|  | if (RV.isScalar()) { | 
|  | Builder.CreateStore(RV.getScalarVal(), ReturnValue); | 
|  | } else if (RV.isAggregate()) { | 
|  | EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); | 
|  | } else { | 
|  | EmitStoreOfComplex(RV.getComplexVal(), | 
|  | MakeNaturalAlignAddrLValue(ReturnValue, Ty), | 
|  | /*init*/ true); | 
|  | } | 
|  | EmitBranchThroughCleanup(ReturnBlock); | 
|  | } | 
|  |  | 
|  | /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand | 
|  | /// if the function returns void, or may be missing one if the function returns | 
|  | /// non-void.  Fun stuff :). | 
|  | void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { | 
|  | // Returning from an outlined SEH helper is UB, and we already warn on it. | 
|  | if (IsOutlinedSEHHelper) { | 
|  | Builder.CreateUnreachable(); | 
|  | Builder.ClearInsertionPoint(); | 
|  | } | 
|  |  | 
|  | // Emit the result value, even if unused, to evalute the side effects. | 
|  | const Expr *RV = S.getRetValue(); | 
|  |  | 
|  | // Treat block literals in a return expression as if they appeared | 
|  | // in their own scope.  This permits a small, easily-implemented | 
|  | // exception to our over-conservative rules about not jumping to | 
|  | // statements following block literals with non-trivial cleanups. | 
|  | RunCleanupsScope cleanupScope(*this); | 
|  | if (const ExprWithCleanups *cleanups = | 
|  | dyn_cast_or_null<ExprWithCleanups>(RV)) { | 
|  | enterFullExpression(cleanups); | 
|  | RV = cleanups->getSubExpr(); | 
|  | } | 
|  |  | 
|  | // FIXME: Clean this up by using an LValue for ReturnTemp, | 
|  | // EmitStoreThroughLValue, and EmitAnyExpr. | 
|  | if (getLangOpts().ElideConstructors && | 
|  | S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { | 
|  | // Apply the named return value optimization for this return statement, | 
|  | // which means doing nothing: the appropriate result has already been | 
|  | // constructed into the NRVO variable. | 
|  |  | 
|  | // If there is an NRVO flag for this variable, set it to 1 into indicate | 
|  | // that the cleanup code should not destroy the variable. | 
|  | if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) | 
|  | Builder.CreateStore(Builder.getTrue(), NRVOFlag); | 
|  | } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { | 
|  | // Make sure not to return anything, but evaluate the expression | 
|  | // for side effects. | 
|  | if (RV) | 
|  | EmitAnyExpr(RV); | 
|  | } else if (!RV) { | 
|  | // Do nothing (return value is left uninitialized) | 
|  | } else if (FnRetTy->isReferenceType()) { | 
|  | // If this function returns a reference, take the address of the expression | 
|  | // rather than the value. | 
|  | RValue Result = EmitReferenceBindingToExpr(RV); | 
|  | Builder.CreateStore(Result.getScalarVal(), ReturnValue); | 
|  | } else { | 
|  | switch (getEvaluationKind(RV->getType())) { | 
|  | case TEK_Scalar: | 
|  | Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); | 
|  | break; | 
|  | case TEK_Complex: | 
|  | EmitComplexExprIntoLValue(RV, | 
|  | MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), | 
|  | /*isInit*/ true); | 
|  | break; | 
|  | case TEK_Aggregate: { | 
|  | CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); | 
|  | EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, | 
|  | Qualifiers(), | 
|  | AggValueSlot::IsDestructed, | 
|  | AggValueSlot::DoesNotNeedGCBarriers, | 
|  | AggValueSlot::IsNotAliased)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ++NumReturnExprs; | 
|  | if (!RV || RV->isEvaluatable(getContext())) | 
|  | ++NumSimpleReturnExprs; | 
|  |  | 
|  | cleanupScope.ForceCleanup(); | 
|  | EmitBranchThroughCleanup(ReturnBlock); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { | 
|  | // As long as debug info is modeled with instructions, we have to ensure we | 
|  | // have a place to insert here and write the stop point here. | 
|  | if (HaveInsertPoint()) | 
|  | EmitStopPoint(&S); | 
|  |  | 
|  | for (const auto *I : S.decls()) | 
|  | EmitDecl(*I); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { | 
|  | assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); | 
|  |  | 
|  | // If this code is reachable then emit a stop point (if generating | 
|  | // debug info). We have to do this ourselves because we are on the | 
|  | // "simple" statement path. | 
|  | if (HaveInsertPoint()) | 
|  | EmitStopPoint(&S); | 
|  |  | 
|  | EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { | 
|  | assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); | 
|  |  | 
|  | // If this code is reachable then emit a stop point (if generating | 
|  | // debug info). We have to do this ourselves because we are on the | 
|  | // "simple" statement path. | 
|  | if (HaveInsertPoint()) | 
|  | EmitStopPoint(&S); | 
|  |  | 
|  | EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); | 
|  | } | 
|  |  | 
|  | /// EmitCaseStmtRange - If case statement range is not too big then | 
|  | /// add multiple cases to switch instruction, one for each value within | 
|  | /// the range. If range is too big then emit "if" condition check. | 
|  | void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { | 
|  | assert(S.getRHS() && "Expected RHS value in CaseStmt"); | 
|  |  | 
|  | llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); | 
|  | llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); | 
|  |  | 
|  | // Emit the code for this case. We do this first to make sure it is | 
|  | // properly chained from our predecessor before generating the | 
|  | // switch machinery to enter this block. | 
|  | llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); | 
|  | EmitBlockWithFallThrough(CaseDest, &S); | 
|  | EmitStmt(S.getSubStmt()); | 
|  |  | 
|  | // If range is empty, do nothing. | 
|  | if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) | 
|  | return; | 
|  |  | 
|  | llvm::APInt Range = RHS - LHS; | 
|  | // FIXME: parameters such as this should not be hardcoded. | 
|  | if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { | 
|  | // Range is small enough to add multiple switch instruction cases. | 
|  | uint64_t Total = getProfileCount(&S); | 
|  | unsigned NCases = Range.getZExtValue() + 1; | 
|  | // We only have one region counter for the entire set of cases here, so we | 
|  | // need to divide the weights evenly between the generated cases, ensuring | 
|  | // that the total weight is preserved. E.g., a weight of 5 over three cases | 
|  | // will be distributed as weights of 2, 2, and 1. | 
|  | uint64_t Weight = Total / NCases, Rem = Total % NCases; | 
|  | for (unsigned I = 0; I != NCases; ++I) { | 
|  | if (SwitchWeights) | 
|  | SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); | 
|  | if (Rem) | 
|  | Rem--; | 
|  | SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); | 
|  | LHS++; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The range is too big. Emit "if" condition into a new block, | 
|  | // making sure to save and restore the current insertion point. | 
|  | llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Push this test onto the chain of range checks (which terminates | 
|  | // in the default basic block). The switch's default will be changed | 
|  | // to the top of this chain after switch emission is complete. | 
|  | llvm::BasicBlock *FalseDest = CaseRangeBlock; | 
|  | CaseRangeBlock = createBasicBlock("sw.caserange"); | 
|  |  | 
|  | CurFn->getBasicBlockList().push_back(CaseRangeBlock); | 
|  | Builder.SetInsertPoint(CaseRangeBlock); | 
|  |  | 
|  | // Emit range check. | 
|  | llvm::Value *Diff = | 
|  | Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); | 
|  | llvm::Value *Cond = | 
|  | Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); | 
|  |  | 
|  | llvm::MDNode *Weights = nullptr; | 
|  | if (SwitchWeights) { | 
|  | uint64_t ThisCount = getProfileCount(&S); | 
|  | uint64_t DefaultCount = (*SwitchWeights)[0]; | 
|  | Weights = createProfileWeights(ThisCount, DefaultCount); | 
|  |  | 
|  | // Since we're chaining the switch default through each large case range, we | 
|  | // need to update the weight for the default, ie, the first case, to include | 
|  | // this case. | 
|  | (*SwitchWeights)[0] += ThisCount; | 
|  | } | 
|  | Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); | 
|  |  | 
|  | // Restore the appropriate insertion point. | 
|  | if (RestoreBB) | 
|  | Builder.SetInsertPoint(RestoreBB); | 
|  | else | 
|  | Builder.ClearInsertionPoint(); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { | 
|  | // If there is no enclosing switch instance that we're aware of, then this | 
|  | // case statement and its block can be elided.  This situation only happens | 
|  | // when we've constant-folded the switch, are emitting the constant case, | 
|  | // and part of the constant case includes another case statement.  For | 
|  | // instance: switch (4) { case 4: do { case 5: } while (1); } | 
|  | if (!SwitchInsn) { | 
|  | EmitStmt(S.getSubStmt()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle case ranges. | 
|  | if (S.getRHS()) { | 
|  | EmitCaseStmtRange(S); | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm::ConstantInt *CaseVal = | 
|  | Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); | 
|  |  | 
|  | // If the body of the case is just a 'break', try to not emit an empty block. | 
|  | // If we're profiling or we're not optimizing, leave the block in for better | 
|  | // debug and coverage analysis. | 
|  | if (!CGM.getCodeGenOpts().ProfileInstrGenerate && | 
|  | CGM.getCodeGenOpts().OptimizationLevel > 0 && | 
|  | isa<BreakStmt>(S.getSubStmt())) { | 
|  | JumpDest Block = BreakContinueStack.back().BreakBlock; | 
|  |  | 
|  | // Only do this optimization if there are no cleanups that need emitting. | 
|  | if (isObviouslyBranchWithoutCleanups(Block)) { | 
|  | if (SwitchWeights) | 
|  | SwitchWeights->push_back(getProfileCount(&S)); | 
|  | SwitchInsn->addCase(CaseVal, Block.getBlock()); | 
|  |  | 
|  | // If there was a fallthrough into this case, make sure to redirect it to | 
|  | // the end of the switch as well. | 
|  | if (Builder.GetInsertBlock()) { | 
|  | Builder.CreateBr(Block.getBlock()); | 
|  | Builder.ClearInsertionPoint(); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); | 
|  | EmitBlockWithFallThrough(CaseDest, &S); | 
|  | if (SwitchWeights) | 
|  | SwitchWeights->push_back(getProfileCount(&S)); | 
|  | SwitchInsn->addCase(CaseVal, CaseDest); | 
|  |  | 
|  | // Recursively emitting the statement is acceptable, but is not wonderful for | 
|  | // code where we have many case statements nested together, i.e.: | 
|  | //  case 1: | 
|  | //    case 2: | 
|  | //      case 3: etc. | 
|  | // Handling this recursively will create a new block for each case statement | 
|  | // that falls through to the next case which is IR intensive.  It also causes | 
|  | // deep recursion which can run into stack depth limitations.  Handle | 
|  | // sequential non-range case statements specially. | 
|  | const CaseStmt *CurCase = &S; | 
|  | const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); | 
|  |  | 
|  | // Otherwise, iteratively add consecutive cases to this switch stmt. | 
|  | while (NextCase && NextCase->getRHS() == nullptr) { | 
|  | CurCase = NextCase; | 
|  | llvm::ConstantInt *CaseVal = | 
|  | Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); | 
|  |  | 
|  | if (SwitchWeights) | 
|  | SwitchWeights->push_back(getProfileCount(NextCase)); | 
|  | if (CGM.getCodeGenOpts().ProfileInstrGenerate) { | 
|  | CaseDest = createBasicBlock("sw.bb"); | 
|  | EmitBlockWithFallThrough(CaseDest, &S); | 
|  | } | 
|  |  | 
|  | SwitchInsn->addCase(CaseVal, CaseDest); | 
|  | NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); | 
|  | } | 
|  |  | 
|  | // Normal default recursion for non-cases. | 
|  | EmitStmt(CurCase->getSubStmt()); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { | 
|  | llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); | 
|  | assert(DefaultBlock->empty() && | 
|  | "EmitDefaultStmt: Default block already defined?"); | 
|  |  | 
|  | EmitBlockWithFallThrough(DefaultBlock, &S); | 
|  |  | 
|  | EmitStmt(S.getSubStmt()); | 
|  | } | 
|  |  | 
|  | /// CollectStatementsForCase - Given the body of a 'switch' statement and a | 
|  | /// constant value that is being switched on, see if we can dead code eliminate | 
|  | /// the body of the switch to a simple series of statements to emit.  Basically, | 
|  | /// on a switch (5) we want to find these statements: | 
|  | ///    case 5: | 
|  | ///      printf(...);    <-- | 
|  | ///      ++i;            <-- | 
|  | ///      break; | 
|  | /// | 
|  | /// and add them to the ResultStmts vector.  If it is unsafe to do this | 
|  | /// transformation (for example, one of the elided statements contains a label | 
|  | /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S' | 
|  | /// should include statements after it (e.g. the printf() line is a substmt of | 
|  | /// the case) then return CSFC_FallThrough.  If we handled it and found a break | 
|  | /// statement, then return CSFC_Success. | 
|  | /// | 
|  | /// If Case is non-null, then we are looking for the specified case, checking | 
|  | /// that nothing we jump over contains labels.  If Case is null, then we found | 
|  | /// the case and are looking for the break. | 
|  | /// | 
|  | /// If the recursive walk actually finds our Case, then we set FoundCase to | 
|  | /// true. | 
|  | /// | 
|  | enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; | 
|  | static CSFC_Result CollectStatementsForCase(const Stmt *S, | 
|  | const SwitchCase *Case, | 
|  | bool &FoundCase, | 
|  | SmallVectorImpl<const Stmt*> &ResultStmts) { | 
|  | // If this is a null statement, just succeed. | 
|  | if (!S) | 
|  | return Case ? CSFC_Success : CSFC_FallThrough; | 
|  |  | 
|  | // If this is the switchcase (case 4: or default) that we're looking for, then | 
|  | // we're in business.  Just add the substatement. | 
|  | if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { | 
|  | if (S == Case) { | 
|  | FoundCase = true; | 
|  | return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, | 
|  | ResultStmts); | 
|  | } | 
|  |  | 
|  | // Otherwise, this is some other case or default statement, just ignore it. | 
|  | return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, | 
|  | ResultStmts); | 
|  | } | 
|  |  | 
|  | // If we are in the live part of the code and we found our break statement, | 
|  | // return a success! | 
|  | if (!Case && isa<BreakStmt>(S)) | 
|  | return CSFC_Success; | 
|  |  | 
|  | // If this is a switch statement, then it might contain the SwitchCase, the | 
|  | // break, or neither. | 
|  | if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { | 
|  | // Handle this as two cases: we might be looking for the SwitchCase (if so | 
|  | // the skipped statements must be skippable) or we might already have it. | 
|  | CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); | 
|  | if (Case) { | 
|  | // Keep track of whether we see a skipped declaration.  The code could be | 
|  | // using the declaration even if it is skipped, so we can't optimize out | 
|  | // the decl if the kept statements might refer to it. | 
|  | bool HadSkippedDecl = false; | 
|  |  | 
|  | // If we're looking for the case, just see if we can skip each of the | 
|  | // substatements. | 
|  | for (; Case && I != E; ++I) { | 
|  | HadSkippedDecl |= isa<DeclStmt>(*I); | 
|  |  | 
|  | switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { | 
|  | case CSFC_Failure: return CSFC_Failure; | 
|  | case CSFC_Success: | 
|  | // A successful result means that either 1) that the statement doesn't | 
|  | // have the case and is skippable, or 2) does contain the case value | 
|  | // and also contains the break to exit the switch.  In the later case, | 
|  | // we just verify the rest of the statements are elidable. | 
|  | if (FoundCase) { | 
|  | // If we found the case and skipped declarations, we can't do the | 
|  | // optimization. | 
|  | if (HadSkippedDecl) | 
|  | return CSFC_Failure; | 
|  |  | 
|  | for (++I; I != E; ++I) | 
|  | if (CodeGenFunction::ContainsLabel(*I, true)) | 
|  | return CSFC_Failure; | 
|  | return CSFC_Success; | 
|  | } | 
|  | break; | 
|  | case CSFC_FallThrough: | 
|  | // If we have a fallthrough condition, then we must have found the | 
|  | // case started to include statements.  Consider the rest of the | 
|  | // statements in the compound statement as candidates for inclusion. | 
|  | assert(FoundCase && "Didn't find case but returned fallthrough?"); | 
|  | // We recursively found Case, so we're not looking for it anymore. | 
|  | Case = nullptr; | 
|  |  | 
|  | // If we found the case and skipped declarations, we can't do the | 
|  | // optimization. | 
|  | if (HadSkippedDecl) | 
|  | return CSFC_Failure; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have statements in our range, then we know that the statements are | 
|  | // live and need to be added to the set of statements we're tracking. | 
|  | for (; I != E; ++I) { | 
|  | switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { | 
|  | case CSFC_Failure: return CSFC_Failure; | 
|  | case CSFC_FallThrough: | 
|  | // A fallthrough result means that the statement was simple and just | 
|  | // included in ResultStmt, keep adding them afterwards. | 
|  | break; | 
|  | case CSFC_Success: | 
|  | // A successful result means that we found the break statement and | 
|  | // stopped statement inclusion.  We just ensure that any leftover stmts | 
|  | // are skippable and return success ourselves. | 
|  | for (++I; I != E; ++I) | 
|  | if (CodeGenFunction::ContainsLabel(*I, true)) | 
|  | return CSFC_Failure; | 
|  | return CSFC_Success; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Case ? CSFC_Success : CSFC_FallThrough; | 
|  | } | 
|  |  | 
|  | // Okay, this is some other statement that we don't handle explicitly, like a | 
|  | // for statement or increment etc.  If we are skipping over this statement, | 
|  | // just verify it doesn't have labels, which would make it invalid to elide. | 
|  | if (Case) { | 
|  | if (CodeGenFunction::ContainsLabel(S, true)) | 
|  | return CSFC_Failure; | 
|  | return CSFC_Success; | 
|  | } | 
|  |  | 
|  | // Otherwise, we want to include this statement.  Everything is cool with that | 
|  | // so long as it doesn't contain a break out of the switch we're in. | 
|  | if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; | 
|  |  | 
|  | // Otherwise, everything is great.  Include the statement and tell the caller | 
|  | // that we fall through and include the next statement as well. | 
|  | ResultStmts.push_back(S); | 
|  | return CSFC_FallThrough; | 
|  | } | 
|  |  | 
|  | /// FindCaseStatementsForValue - Find the case statement being jumped to and | 
|  | /// then invoke CollectStatementsForCase to find the list of statements to emit | 
|  | /// for a switch on constant.  See the comment above CollectStatementsForCase | 
|  | /// for more details. | 
|  | static bool FindCaseStatementsForValue(const SwitchStmt &S, | 
|  | const llvm::APSInt &ConstantCondValue, | 
|  | SmallVectorImpl<const Stmt*> &ResultStmts, | 
|  | ASTContext &C, | 
|  | const SwitchCase *&ResultCase) { | 
|  | // First step, find the switch case that is being branched to.  We can do this | 
|  | // efficiently by scanning the SwitchCase list. | 
|  | const SwitchCase *Case = S.getSwitchCaseList(); | 
|  | const DefaultStmt *DefaultCase = nullptr; | 
|  |  | 
|  | for (; Case; Case = Case->getNextSwitchCase()) { | 
|  | // It's either a default or case.  Just remember the default statement in | 
|  | // case we're not jumping to any numbered cases. | 
|  | if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { | 
|  | DefaultCase = DS; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check to see if this case is the one we're looking for. | 
|  | const CaseStmt *CS = cast<CaseStmt>(Case); | 
|  | // Don't handle case ranges yet. | 
|  | if (CS->getRHS()) return false; | 
|  |  | 
|  | // If we found our case, remember it as 'case'. | 
|  | if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we didn't find a matching case, we use a default if it exists, or we | 
|  | // elide the whole switch body! | 
|  | if (!Case) { | 
|  | // It is safe to elide the body of the switch if it doesn't contain labels | 
|  | // etc.  If it is safe, return successfully with an empty ResultStmts list. | 
|  | if (!DefaultCase) | 
|  | return !CodeGenFunction::ContainsLabel(&S); | 
|  | Case = DefaultCase; | 
|  | } | 
|  |  | 
|  | // Ok, we know which case is being jumped to, try to collect all the | 
|  | // statements that follow it.  This can fail for a variety of reasons.  Also, | 
|  | // check to see that the recursive walk actually found our case statement. | 
|  | // Insane cases like this can fail to find it in the recursive walk since we | 
|  | // don't handle every stmt kind: | 
|  | // switch (4) { | 
|  | //   while (1) { | 
|  | //     case 4: ... | 
|  | bool FoundCase = false; | 
|  | ResultCase = Case; | 
|  | return CollectStatementsForCase(S.getBody(), Case, FoundCase, | 
|  | ResultStmts) != CSFC_Failure && | 
|  | FoundCase; | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { | 
|  | // Handle nested switch statements. | 
|  | llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; | 
|  | SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; | 
|  | llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; | 
|  |  | 
|  | // See if we can constant fold the condition of the switch and therefore only | 
|  | // emit the live case statement (if any) of the switch. | 
|  | llvm::APSInt ConstantCondValue; | 
|  | if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { | 
|  | SmallVector<const Stmt*, 4> CaseStmts; | 
|  | const SwitchCase *Case = nullptr; | 
|  | if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, | 
|  | getContext(), Case)) { | 
|  | if (Case) | 
|  | incrementProfileCounter(Case); | 
|  | RunCleanupsScope ExecutedScope(*this); | 
|  |  | 
|  | // Emit the condition variable if needed inside the entire cleanup scope | 
|  | // used by this special case for constant folded switches. | 
|  | if (S.getConditionVariable()) | 
|  | EmitAutoVarDecl(*S.getConditionVariable()); | 
|  |  | 
|  | // At this point, we are no longer "within" a switch instance, so | 
|  | // we can temporarily enforce this to ensure that any embedded case | 
|  | // statements are not emitted. | 
|  | SwitchInsn = nullptr; | 
|  |  | 
|  | // Okay, we can dead code eliminate everything except this case.  Emit the | 
|  | // specified series of statements and we're good. | 
|  | for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) | 
|  | EmitStmt(CaseStmts[i]); | 
|  | incrementProfileCounter(&S); | 
|  |  | 
|  | // Now we want to restore the saved switch instance so that nested | 
|  | // switches continue to function properly | 
|  | SwitchInsn = SavedSwitchInsn; | 
|  |  | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); | 
|  |  | 
|  | RunCleanupsScope ConditionScope(*this); | 
|  | if (S.getConditionVariable()) | 
|  | EmitAutoVarDecl(*S.getConditionVariable()); | 
|  | llvm::Value *CondV = EmitScalarExpr(S.getCond()); | 
|  |  | 
|  | // Create basic block to hold stuff that comes after switch | 
|  | // statement. We also need to create a default block now so that | 
|  | // explicit case ranges tests can have a place to jump to on | 
|  | // failure. | 
|  | llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); | 
|  | SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); | 
|  | if (PGO.haveRegionCounts()) { | 
|  | // Walk the SwitchCase list to find how many there are. | 
|  | uint64_t DefaultCount = 0; | 
|  | unsigned NumCases = 0; | 
|  | for (const SwitchCase *Case = S.getSwitchCaseList(); | 
|  | Case; | 
|  | Case = Case->getNextSwitchCase()) { | 
|  | if (isa<DefaultStmt>(Case)) | 
|  | DefaultCount = getProfileCount(Case); | 
|  | NumCases += 1; | 
|  | } | 
|  | SwitchWeights = new SmallVector<uint64_t, 16>(); | 
|  | SwitchWeights->reserve(NumCases); | 
|  | // The default needs to be first. We store the edge count, so we already | 
|  | // know the right weight. | 
|  | SwitchWeights->push_back(DefaultCount); | 
|  | } | 
|  | CaseRangeBlock = DefaultBlock; | 
|  |  | 
|  | // Clear the insertion point to indicate we are in unreachable code. | 
|  | Builder.ClearInsertionPoint(); | 
|  |  | 
|  | // All break statements jump to NextBlock. If BreakContinueStack is non-empty | 
|  | // then reuse last ContinueBlock. | 
|  | JumpDest OuterContinue; | 
|  | if (!BreakContinueStack.empty()) | 
|  | OuterContinue = BreakContinueStack.back().ContinueBlock; | 
|  |  | 
|  | BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); | 
|  |  | 
|  | // Emit switch body. | 
|  | EmitStmt(S.getBody()); | 
|  |  | 
|  | BreakContinueStack.pop_back(); | 
|  |  | 
|  | // Update the default block in case explicit case range tests have | 
|  | // been chained on top. | 
|  | SwitchInsn->setDefaultDest(CaseRangeBlock); | 
|  |  | 
|  | // If a default was never emitted: | 
|  | if (!DefaultBlock->getParent()) { | 
|  | // If we have cleanups, emit the default block so that there's a | 
|  | // place to jump through the cleanups from. | 
|  | if (ConditionScope.requiresCleanups()) { | 
|  | EmitBlock(DefaultBlock); | 
|  |  | 
|  | // Otherwise, just forward the default block to the switch end. | 
|  | } else { | 
|  | DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); | 
|  | delete DefaultBlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | ConditionScope.ForceCleanup(); | 
|  |  | 
|  | // Emit continuation. | 
|  | EmitBlock(SwitchExit.getBlock(), true); | 
|  | incrementProfileCounter(&S); | 
|  |  | 
|  | if (SwitchWeights) { | 
|  | assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && | 
|  | "switch weights do not match switch cases"); | 
|  | // If there's only one jump destination there's no sense weighting it. | 
|  | if (SwitchWeights->size() > 1) | 
|  | SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, | 
|  | createProfileWeights(*SwitchWeights)); | 
|  | delete SwitchWeights; | 
|  | } | 
|  | SwitchInsn = SavedSwitchInsn; | 
|  | SwitchWeights = SavedSwitchWeights; | 
|  | CaseRangeBlock = SavedCRBlock; | 
|  | } | 
|  |  | 
|  | static std::string | 
|  | SimplifyConstraint(const char *Constraint, const TargetInfo &Target, | 
|  | SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { | 
|  | std::string Result; | 
|  |  | 
|  | while (*Constraint) { | 
|  | switch (*Constraint) { | 
|  | default: | 
|  | Result += Target.convertConstraint(Constraint); | 
|  | break; | 
|  | // Ignore these | 
|  | case '*': | 
|  | case '?': | 
|  | case '!': | 
|  | case '=': // Will see this and the following in mult-alt constraints. | 
|  | case '+': | 
|  | break; | 
|  | case '#': // Ignore the rest of the constraint alternative. | 
|  | while (Constraint[1] && Constraint[1] != ',') | 
|  | Constraint++; | 
|  | break; | 
|  | case '&': | 
|  | case '%': | 
|  | Result += *Constraint; | 
|  | while (Constraint[1] && Constraint[1] == *Constraint) | 
|  | Constraint++; | 
|  | break; | 
|  | case ',': | 
|  | Result += "|"; | 
|  | break; | 
|  | case 'g': | 
|  | Result += "imr"; | 
|  | break; | 
|  | case '[': { | 
|  | assert(OutCons && | 
|  | "Must pass output names to constraints with a symbolic name"); | 
|  | unsigned Index; | 
|  | bool result = Target.resolveSymbolicName(Constraint, | 
|  | &(*OutCons)[0], | 
|  | OutCons->size(), Index); | 
|  | assert(result && "Could not resolve symbolic name"); (void)result; | 
|  | Result += llvm::utostr(Index); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | Constraint++; | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared | 
|  | /// as using a particular register add that as a constraint that will be used | 
|  | /// in this asm stmt. | 
|  | static std::string | 
|  | AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, | 
|  | const TargetInfo &Target, CodeGenModule &CGM, | 
|  | const AsmStmt &Stmt, const bool EarlyClobber) { | 
|  | const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); | 
|  | if (!AsmDeclRef) | 
|  | return Constraint; | 
|  | const ValueDecl &Value = *AsmDeclRef->getDecl(); | 
|  | const VarDecl *Variable = dyn_cast<VarDecl>(&Value); | 
|  | if (!Variable) | 
|  | return Constraint; | 
|  | if (Variable->getStorageClass() != SC_Register) | 
|  | return Constraint; | 
|  | AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); | 
|  | if (!Attr) | 
|  | return Constraint; | 
|  | StringRef Register = Attr->getLabel(); | 
|  | assert(Target.isValidGCCRegisterName(Register)); | 
|  | // We're using validateOutputConstraint here because we only care if | 
|  | // this is a register constraint. | 
|  | TargetInfo::ConstraintInfo Info(Constraint, ""); | 
|  | if (Target.validateOutputConstraint(Info) && | 
|  | !Info.allowsRegister()) { | 
|  | CGM.ErrorUnsupported(&Stmt, "__asm__"); | 
|  | return Constraint; | 
|  | } | 
|  | // Canonicalize the register here before returning it. | 
|  | Register = Target.getNormalizedGCCRegisterName(Register); | 
|  | return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; | 
|  | } | 
|  |  | 
|  | llvm::Value* | 
|  | CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, | 
|  | LValue InputValue, QualType InputType, | 
|  | std::string &ConstraintStr, | 
|  | SourceLocation Loc) { | 
|  | llvm::Value *Arg; | 
|  | if (Info.allowsRegister() || !Info.allowsMemory()) { | 
|  | if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { | 
|  | Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); | 
|  | } else { | 
|  | llvm::Type *Ty = ConvertType(InputType); | 
|  | uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); | 
|  | if (Size <= 64 && llvm::isPowerOf2_64(Size)) { | 
|  | Ty = llvm::IntegerType::get(getLLVMContext(), Size); | 
|  | Ty = llvm::PointerType::getUnqual(Ty); | 
|  |  | 
|  | Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), | 
|  | Ty)); | 
|  | } else { | 
|  | Arg = InputValue.getAddress(); | 
|  | ConstraintStr += '*'; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | Arg = InputValue.getAddress(); | 
|  | ConstraintStr += '*'; | 
|  | } | 
|  |  | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | llvm::Value* CodeGenFunction::EmitAsmInput( | 
|  | const TargetInfo::ConstraintInfo &Info, | 
|  | const Expr *InputExpr, | 
|  | std::string &ConstraintStr) { | 
|  | // If this can't be a register or memory, i.e., has to be a constant | 
|  | // (immediate or symbolic), try to emit it as such. | 
|  | if (!Info.allowsRegister() && !Info.allowsMemory()) { | 
|  | llvm::APSInt Result; | 
|  | if (InputExpr->EvaluateAsInt(Result, getContext())) | 
|  | return llvm::ConstantInt::get(getLLVMContext(), Result); | 
|  | assert(!Info.requiresImmediateConstant() && | 
|  | "Required-immediate inlineasm arg isn't constant?"); | 
|  | } | 
|  |  | 
|  | if (Info.allowsRegister() || !Info.allowsMemory()) | 
|  | if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) | 
|  | return EmitScalarExpr(InputExpr); | 
|  |  | 
|  | InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); | 
|  | LValue Dest = EmitLValue(InputExpr); | 
|  | return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, | 
|  | InputExpr->getExprLoc()); | 
|  | } | 
|  |  | 
|  | /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline | 
|  | /// asm call instruction.  The !srcloc MDNode contains a list of constant | 
|  | /// integers which are the source locations of the start of each line in the | 
|  | /// asm. | 
|  | static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, | 
|  | CodeGenFunction &CGF) { | 
|  | SmallVector<llvm::Metadata *, 8> Locs; | 
|  | // Add the location of the first line to the MDNode. | 
|  | Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( | 
|  | CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); | 
|  | StringRef StrVal = Str->getString(); | 
|  | if (!StrVal.empty()) { | 
|  | const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); | 
|  | const LangOptions &LangOpts = CGF.CGM.getLangOpts(); | 
|  |  | 
|  | // Add the location of the start of each subsequent line of the asm to the | 
|  | // MDNode. | 
|  | for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { | 
|  | if (StrVal[i] != '\n') continue; | 
|  | SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, | 
|  | CGF.getTarget()); | 
|  | Locs.push_back(llvm::ConstantAsMetadata::get( | 
|  | llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); | 
|  | } | 
|  | } | 
|  |  | 
|  | return llvm::MDNode::get(CGF.getLLVMContext(), Locs); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { | 
|  | // Assemble the final asm string. | 
|  | std::string AsmString = S.generateAsmString(getContext()); | 
|  |  | 
|  | // Get all the output and input constraints together. | 
|  | SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; | 
|  | SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; | 
|  |  | 
|  | for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { | 
|  | StringRef Name; | 
|  | if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) | 
|  | Name = GAS->getOutputName(i); | 
|  | TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); | 
|  | bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; | 
|  | assert(IsValid && "Failed to parse output constraint"); | 
|  | OutputConstraintInfos.push_back(Info); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { | 
|  | StringRef Name; | 
|  | if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) | 
|  | Name = GAS->getInputName(i); | 
|  | TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); | 
|  | bool IsValid = | 
|  | getTarget().validateInputConstraint(OutputConstraintInfos.data(), | 
|  | S.getNumOutputs(), Info); | 
|  | assert(IsValid && "Failed to parse input constraint"); (void)IsValid; | 
|  | InputConstraintInfos.push_back(Info); | 
|  | } | 
|  |  | 
|  | std::string Constraints; | 
|  |  | 
|  | std::vector<LValue> ResultRegDests; | 
|  | std::vector<QualType> ResultRegQualTys; | 
|  | std::vector<llvm::Type *> ResultRegTypes; | 
|  | std::vector<llvm::Type *> ResultTruncRegTypes; | 
|  | std::vector<llvm::Type *> ArgTypes; | 
|  | std::vector<llvm::Value*> Args; | 
|  |  | 
|  | // Keep track of inout constraints. | 
|  | std::string InOutConstraints; | 
|  | std::vector<llvm::Value*> InOutArgs; | 
|  | std::vector<llvm::Type*> InOutArgTypes; | 
|  |  | 
|  | // An inline asm can be marked readonly if it meets the following conditions: | 
|  | //  - it doesn't have any sideeffects | 
|  | //  - it doesn't clobber memory | 
|  | //  - it doesn't return a value by-reference | 
|  | // It can be marked readnone if it doesn't have any input memory constraints | 
|  | // in addition to meeting the conditions listed above. | 
|  | bool ReadOnly = true, ReadNone = true; | 
|  |  | 
|  | for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { | 
|  | TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; | 
|  |  | 
|  | // Simplify the output constraint. | 
|  | std::string OutputConstraint(S.getOutputConstraint(i)); | 
|  | OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, | 
|  | getTarget()); | 
|  |  | 
|  | const Expr *OutExpr = S.getOutputExpr(i); | 
|  | OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); | 
|  |  | 
|  | OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, | 
|  | getTarget(), CGM, S, | 
|  | Info.earlyClobber()); | 
|  |  | 
|  | LValue Dest = EmitLValue(OutExpr); | 
|  | if (!Constraints.empty()) | 
|  | Constraints += ','; | 
|  |  | 
|  | // If this is a register output, then make the inline asm return it | 
|  | // by-value.  If this is a memory result, return the value by-reference. | 
|  | if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { | 
|  | Constraints += "=" + OutputConstraint; | 
|  | ResultRegQualTys.push_back(OutExpr->getType()); | 
|  | ResultRegDests.push_back(Dest); | 
|  | ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); | 
|  | ResultTruncRegTypes.push_back(ResultRegTypes.back()); | 
|  |  | 
|  | // If this output is tied to an input, and if the input is larger, then | 
|  | // we need to set the actual result type of the inline asm node to be the | 
|  | // same as the input type. | 
|  | if (Info.hasMatchingInput()) { | 
|  | unsigned InputNo; | 
|  | for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { | 
|  | TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; | 
|  | if (Input.hasTiedOperand() && Input.getTiedOperand() == i) | 
|  | break; | 
|  | } | 
|  | assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); | 
|  |  | 
|  | QualType InputTy = S.getInputExpr(InputNo)->getType(); | 
|  | QualType OutputType = OutExpr->getType(); | 
|  |  | 
|  | uint64_t InputSize = getContext().getTypeSize(InputTy); | 
|  | if (getContext().getTypeSize(OutputType) < InputSize) { | 
|  | // Form the asm to return the value as a larger integer or fp type. | 
|  | ResultRegTypes.back() = ConvertType(InputTy); | 
|  | } | 
|  | } | 
|  | if (llvm::Type* AdjTy = | 
|  | getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, | 
|  | ResultRegTypes.back())) | 
|  | ResultRegTypes.back() = AdjTy; | 
|  | else { | 
|  | CGM.getDiags().Report(S.getAsmLoc(), | 
|  | diag::err_asm_invalid_type_in_input) | 
|  | << OutExpr->getType() << OutputConstraint; | 
|  | } | 
|  | } else { | 
|  | ArgTypes.push_back(Dest.getAddress()->getType()); | 
|  | Args.push_back(Dest.getAddress()); | 
|  | Constraints += "=*"; | 
|  | Constraints += OutputConstraint; | 
|  | ReadOnly = ReadNone = false; | 
|  | } | 
|  |  | 
|  | if (Info.isReadWrite()) { | 
|  | InOutConstraints += ','; | 
|  |  | 
|  | const Expr *InputExpr = S.getOutputExpr(i); | 
|  | llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), | 
|  | InOutConstraints, | 
|  | InputExpr->getExprLoc()); | 
|  |  | 
|  | if (llvm::Type* AdjTy = | 
|  | getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, | 
|  | Arg->getType())) | 
|  | Arg = Builder.CreateBitCast(Arg, AdjTy); | 
|  |  | 
|  | if (Info.allowsRegister()) | 
|  | InOutConstraints += llvm::utostr(i); | 
|  | else | 
|  | InOutConstraints += OutputConstraint; | 
|  |  | 
|  | InOutArgTypes.push_back(Arg->getType()); | 
|  | InOutArgs.push_back(Arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) | 
|  | // to the return value slot. Only do this when returning in registers. | 
|  | if (isa<MSAsmStmt>(&S)) { | 
|  | const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); | 
|  | if (RetAI.isDirect() || RetAI.isExtend()) { | 
|  | // Make a fake lvalue for the return value slot. | 
|  | LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); | 
|  | CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( | 
|  | *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, | 
|  | ResultRegDests, AsmString, S.getNumOutputs()); | 
|  | SawAsmBlock = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { | 
|  | const Expr *InputExpr = S.getInputExpr(i); | 
|  |  | 
|  | TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; | 
|  |  | 
|  | if (Info.allowsMemory()) | 
|  | ReadNone = false; | 
|  |  | 
|  | if (!Constraints.empty()) | 
|  | Constraints += ','; | 
|  |  | 
|  | // Simplify the input constraint. | 
|  | std::string InputConstraint(S.getInputConstraint(i)); | 
|  | InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), | 
|  | &OutputConstraintInfos); | 
|  |  | 
|  | InputConstraint = AddVariableConstraints( | 
|  | InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), | 
|  | getTarget(), CGM, S, false /* No EarlyClobber */); | 
|  |  | 
|  | llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); | 
|  |  | 
|  | // If this input argument is tied to a larger output result, extend the | 
|  | // input to be the same size as the output.  The LLVM backend wants to see | 
|  | // the input and output of a matching constraint be the same size.  Note | 
|  | // that GCC does not define what the top bits are here.  We use zext because | 
|  | // that is usually cheaper, but LLVM IR should really get an anyext someday. | 
|  | if (Info.hasTiedOperand()) { | 
|  | unsigned Output = Info.getTiedOperand(); | 
|  | QualType OutputType = S.getOutputExpr(Output)->getType(); | 
|  | QualType InputTy = InputExpr->getType(); | 
|  |  | 
|  | if (getContext().getTypeSize(OutputType) > | 
|  | getContext().getTypeSize(InputTy)) { | 
|  | // Use ptrtoint as appropriate so that we can do our extension. | 
|  | if (isa<llvm::PointerType>(Arg->getType())) | 
|  | Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); | 
|  | llvm::Type *OutputTy = ConvertType(OutputType); | 
|  | if (isa<llvm::IntegerType>(OutputTy)) | 
|  | Arg = Builder.CreateZExt(Arg, OutputTy); | 
|  | else if (isa<llvm::PointerType>(OutputTy)) | 
|  | Arg = Builder.CreateZExt(Arg, IntPtrTy); | 
|  | else { | 
|  | assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); | 
|  | Arg = Builder.CreateFPExt(Arg, OutputTy); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (llvm::Type* AdjTy = | 
|  | getTargetHooks().adjustInlineAsmType(*this, InputConstraint, | 
|  | Arg->getType())) | 
|  | Arg = Builder.CreateBitCast(Arg, AdjTy); | 
|  | else | 
|  | CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) | 
|  | << InputExpr->getType() << InputConstraint; | 
|  |  | 
|  | ArgTypes.push_back(Arg->getType()); | 
|  | Args.push_back(Arg); | 
|  | Constraints += InputConstraint; | 
|  | } | 
|  |  | 
|  | // Append the "input" part of inout constraints last. | 
|  | for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { | 
|  | ArgTypes.push_back(InOutArgTypes[i]); | 
|  | Args.push_back(InOutArgs[i]); | 
|  | } | 
|  | Constraints += InOutConstraints; | 
|  |  | 
|  | // Clobbers | 
|  | for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { | 
|  | StringRef Clobber = S.getClobber(i); | 
|  |  | 
|  | if (Clobber == "memory") | 
|  | ReadOnly = ReadNone = false; | 
|  | else if (Clobber != "cc") | 
|  | Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); | 
|  |  | 
|  | if (!Constraints.empty()) | 
|  | Constraints += ','; | 
|  |  | 
|  | Constraints += "~{"; | 
|  | Constraints += Clobber; | 
|  | Constraints += '}'; | 
|  | } | 
|  |  | 
|  | // Add machine specific clobbers | 
|  | std::string MachineClobbers = getTarget().getClobbers(); | 
|  | if (!MachineClobbers.empty()) { | 
|  | if (!Constraints.empty()) | 
|  | Constraints += ','; | 
|  | Constraints += MachineClobbers; | 
|  | } | 
|  |  | 
|  | llvm::Type *ResultType; | 
|  | if (ResultRegTypes.empty()) | 
|  | ResultType = VoidTy; | 
|  | else if (ResultRegTypes.size() == 1) | 
|  | ResultType = ResultRegTypes[0]; | 
|  | else | 
|  | ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); | 
|  |  | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(ResultType, ArgTypes, false); | 
|  |  | 
|  | bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; | 
|  | llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? | 
|  | llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; | 
|  | llvm::InlineAsm *IA = | 
|  | llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, | 
|  | /* IsAlignStack */ false, AsmDialect); | 
|  | llvm::CallInst *Result = Builder.CreateCall(IA, Args); | 
|  | Result->addAttribute(llvm::AttributeSet::FunctionIndex, | 
|  | llvm::Attribute::NoUnwind); | 
|  |  | 
|  | // Attach readnone and readonly attributes. | 
|  | if (!HasSideEffect) { | 
|  | if (ReadNone) | 
|  | Result->addAttribute(llvm::AttributeSet::FunctionIndex, | 
|  | llvm::Attribute::ReadNone); | 
|  | else if (ReadOnly) | 
|  | Result->addAttribute(llvm::AttributeSet::FunctionIndex, | 
|  | llvm::Attribute::ReadOnly); | 
|  | } | 
|  |  | 
|  | // Slap the source location of the inline asm into a !srcloc metadata on the | 
|  | // call. | 
|  | if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { | 
|  | Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), | 
|  | *this)); | 
|  | } else { | 
|  | // At least put the line number on MS inline asm blobs. | 
|  | auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); | 
|  | Result->setMetadata("srcloc", | 
|  | llvm::MDNode::get(getLLVMContext(), | 
|  | llvm::ConstantAsMetadata::get(Loc))); | 
|  | } | 
|  |  | 
|  | // Extract all of the register value results from the asm. | 
|  | std::vector<llvm::Value*> RegResults; | 
|  | if (ResultRegTypes.size() == 1) { | 
|  | RegResults.push_back(Result); | 
|  | } else { | 
|  | for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { | 
|  | llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); | 
|  | RegResults.push_back(Tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(RegResults.size() == ResultRegTypes.size()); | 
|  | assert(RegResults.size() == ResultTruncRegTypes.size()); | 
|  | assert(RegResults.size() == ResultRegDests.size()); | 
|  | for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { | 
|  | llvm::Value *Tmp = RegResults[i]; | 
|  |  | 
|  | // If the result type of the LLVM IR asm doesn't match the result type of | 
|  | // the expression, do the conversion. | 
|  | if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { | 
|  | llvm::Type *TruncTy = ResultTruncRegTypes[i]; | 
|  |  | 
|  | // Truncate the integer result to the right size, note that TruncTy can be | 
|  | // a pointer. | 
|  | if (TruncTy->isFloatingPointTy()) | 
|  | Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); | 
|  | else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { | 
|  | uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); | 
|  | Tmp = Builder.CreateTrunc(Tmp, | 
|  | llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); | 
|  | Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); | 
|  | } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { | 
|  | uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); | 
|  | Tmp = Builder.CreatePtrToInt(Tmp, | 
|  | llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); | 
|  | Tmp = Builder.CreateTrunc(Tmp, TruncTy); | 
|  | } else if (TruncTy->isIntegerTy()) { | 
|  | Tmp = Builder.CreateTrunc(Tmp, TruncTy); | 
|  | } else if (TruncTy->isVectorTy()) { | 
|  | Tmp = Builder.CreateBitCast(Tmp, TruncTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { | 
|  | const RecordDecl *RD = S.getCapturedRecordDecl(); | 
|  | QualType RecordTy = getContext().getRecordType(RD); | 
|  |  | 
|  | // Initialize the captured struct. | 
|  | LValue SlotLV = MakeNaturalAlignAddrLValue( | 
|  | CreateMemTemp(RecordTy, "agg.captured"), RecordTy); | 
|  |  | 
|  | RecordDecl::field_iterator CurField = RD->field_begin(); | 
|  | for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), | 
|  | E = S.capture_init_end(); | 
|  | I != E; ++I, ++CurField) { | 
|  | LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); | 
|  | if (CurField->hasCapturedVLAType()) { | 
|  | auto VAT = CurField->getCapturedVLAType(); | 
|  | EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); | 
|  | } else { | 
|  | EmitInitializerForField(*CurField, LV, *I, None); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SlotLV; | 
|  | } | 
|  |  | 
|  | /// Generate an outlined function for the body of a CapturedStmt, store any | 
|  | /// captured variables into the captured struct, and call the outlined function. | 
|  | llvm::Function * | 
|  | CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { | 
|  | LValue CapStruct = InitCapturedStruct(S); | 
|  |  | 
|  | // Emit the CapturedDecl | 
|  | CodeGenFunction CGF(CGM, true); | 
|  | CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); | 
|  | llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); | 
|  | delete CGF.CapturedStmtInfo; | 
|  |  | 
|  | // Emit call to the helper function. | 
|  | EmitCallOrInvoke(F, CapStruct.getAddress()); | 
|  |  | 
|  | return F; | 
|  | } | 
|  |  | 
|  | llvm::Value * | 
|  | CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { | 
|  | LValue CapStruct = InitCapturedStruct(S); | 
|  | return CapStruct.getAddress(); | 
|  | } | 
|  |  | 
|  | /// Creates the outlined function for a CapturedStmt. | 
|  | llvm::Function * | 
|  | CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { | 
|  | assert(CapturedStmtInfo && | 
|  | "CapturedStmtInfo should be set when generating the captured function"); | 
|  | const CapturedDecl *CD = S.getCapturedDecl(); | 
|  | const RecordDecl *RD = S.getCapturedRecordDecl(); | 
|  | SourceLocation Loc = S.getLocStart(); | 
|  | assert(CD->hasBody() && "missing CapturedDecl body"); | 
|  |  | 
|  | // Build the argument list. | 
|  | ASTContext &Ctx = CGM.getContext(); | 
|  | FunctionArgList Args; | 
|  | Args.append(CD->param_begin(), CD->param_end()); | 
|  |  | 
|  | // Create the function declaration. | 
|  | FunctionType::ExtInfo ExtInfo; | 
|  | const CGFunctionInfo &FuncInfo = | 
|  | CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, | 
|  | /*IsVariadic=*/false); | 
|  | llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); | 
|  |  | 
|  | llvm::Function *F = | 
|  | llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, | 
|  | CapturedStmtInfo->getHelperName(), &CGM.getModule()); | 
|  | CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); | 
|  | if (CD->isNothrow()) | 
|  | F->addFnAttr(llvm::Attribute::NoUnwind); | 
|  |  | 
|  | // Generate the function. | 
|  | StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, | 
|  | CD->getLocation(), | 
|  | CD->getBody()->getLocStart()); | 
|  | // Set the context parameter in CapturedStmtInfo. | 
|  | llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; | 
|  | assert(DeclPtr && "missing context parameter for CapturedStmt"); | 
|  | CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); | 
|  |  | 
|  | // Initialize variable-length arrays. | 
|  | LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), | 
|  | Ctx.getTagDeclType(RD)); | 
|  | for (auto *FD : RD->fields()) { | 
|  | if (FD->hasCapturedVLAType()) { | 
|  | auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), | 
|  | S.getLocStart()).getScalarVal(); | 
|  | auto VAT = FD->getCapturedVLAType(); | 
|  | VLASizeMap[VAT->getSizeExpr()] = ExprArg; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If 'this' is captured, load it into CXXThisValue. | 
|  | if (CapturedStmtInfo->isCXXThisExprCaptured()) { | 
|  | FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); | 
|  | LValue ThisLValue = EmitLValueForField(Base, FD); | 
|  | CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); | 
|  | } | 
|  |  | 
|  | PGO.assignRegionCounters(CD, F); | 
|  | CapturedStmtInfo->EmitBody(*this, CD->getBody()); | 
|  | FinishFunction(CD->getBodyRBrace()); | 
|  |  | 
|  | return F; | 
|  | } |