|  | //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for inline asm statements. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/ScopeInfo.h" | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/StringSet.h" | 
|  | #include "llvm/MC/MCParser/MCAsmParser.h" | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | /// Remove the upper-level LValueToRValue cast from an expression. | 
|  | static void removeLValueToRValueCast(Expr *E) { | 
|  | Expr *Parent = E; | 
|  | Expr *ExprUnderCast = nullptr; | 
|  | SmallVector<Expr *, 8> ParentsToUpdate; | 
|  |  | 
|  | while (true) { | 
|  | ParentsToUpdate.push_back(Parent); | 
|  | if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) { | 
|  | Parent = ParenE->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Expr *Child = nullptr; | 
|  | CastExpr *ParentCast = dyn_cast<CastExpr>(Parent); | 
|  | if (ParentCast) | 
|  | Child = ParentCast->getSubExpr(); | 
|  | else | 
|  | return; | 
|  |  | 
|  | if (auto *CastE = dyn_cast<CastExpr>(Child)) | 
|  | if (CastE->getCastKind() == CK_LValueToRValue) { | 
|  | ExprUnderCast = CastE->getSubExpr(); | 
|  | // LValueToRValue cast inside GCCAsmStmt requires an explicit cast. | 
|  | ParentCast->setSubExpr(ExprUnderCast); | 
|  | break; | 
|  | } | 
|  | Parent = Child; | 
|  | } | 
|  |  | 
|  | // Update parent expressions to have same ValueType as the underlying. | 
|  | assert(ExprUnderCast && | 
|  | "Should be reachable only if LValueToRValue cast was found!"); | 
|  | auto ValueKind = ExprUnderCast->getValueKind(); | 
|  | for (Expr *E : ParentsToUpdate) | 
|  | E->setValueKind(ValueKind); | 
|  | } | 
|  |  | 
|  | /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension) | 
|  | /// and fix the argument with removing LValueToRValue cast from the expression. | 
|  | static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument, | 
|  | Sema &S) { | 
|  | if (!S.getLangOpts().HeinousExtensions) { | 
|  | S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue) | 
|  | << BadArgument->getSourceRange(); | 
|  | } else { | 
|  | S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue) | 
|  | << BadArgument->getSourceRange(); | 
|  | } | 
|  | removeLValueToRValueCast(BadArgument); | 
|  | } | 
|  |  | 
|  | /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently | 
|  | /// ignore "noop" casts in places where an lvalue is required by an inline asm. | 
|  | /// We emulate this behavior when -fheinous-gnu-extensions is specified, but | 
|  | /// provide a strong guidance to not use it. | 
|  | /// | 
|  | /// This method checks to see if the argument is an acceptable l-value and | 
|  | /// returns false if it is a case we can handle. | 
|  | static bool CheckAsmLValue(Expr *E, Sema &S) { | 
|  | // Type dependent expressions will be checked during instantiation. | 
|  | if (E->isTypeDependent()) | 
|  | return false; | 
|  |  | 
|  | if (E->isLValue()) | 
|  | return false;  // Cool, this is an lvalue. | 
|  |  | 
|  | // Okay, this is not an lvalue, but perhaps it is the result of a cast that we | 
|  | // are supposed to allow. | 
|  | const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); | 
|  | if (E != E2 && E2->isLValue()) { | 
|  | emitAndFixInvalidAsmCastLValue(E2, E, S); | 
|  | // Accept, even if we emitted an error diagnostic. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // None of the above, just randomly invalid non-lvalue. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isOperandMentioned - Return true if the specified operand # is mentioned | 
|  | /// anywhere in the decomposed asm string. | 
|  | static bool | 
|  | isOperandMentioned(unsigned OpNo, | 
|  | ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { | 
|  | for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { | 
|  | const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; | 
|  | if (!Piece.isOperand()) | 
|  | continue; | 
|  |  | 
|  | // If this is a reference to the input and if the input was the smaller | 
|  | // one, then we have to reject this asm. | 
|  | if (Piece.getOperandNo() == OpNo) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool CheckNakedParmReference(Expr *E, Sema &S) { | 
|  | FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext); | 
|  | if (!Func) | 
|  | return false; | 
|  | if (!Func->hasAttr<NakedAttr>()) | 
|  | return false; | 
|  |  | 
|  | SmallVector<Expr*, 4> WorkList; | 
|  | WorkList.push_back(E); | 
|  | while (WorkList.size()) { | 
|  | Expr *E = WorkList.pop_back_val(); | 
|  | if (isa<CXXThisExpr>(E)) { | 
|  | S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref); | 
|  | S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); | 
|  | return true; | 
|  | } | 
|  | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { | 
|  | if (isa<ParmVarDecl>(DRE->getDecl())) { | 
|  | S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref); | 
|  | S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | for (Stmt *Child : E->children()) { | 
|  | if (Expr *E = dyn_cast_or_null<Expr>(Child)) | 
|  | WorkList.push_back(E); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true if given expression is not compatible with inline | 
|  | /// assembly's memory constraint; false otherwise. | 
|  | static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E, | 
|  | TargetInfo::ConstraintInfo &Info, | 
|  | bool is_input_expr) { | 
|  | enum { | 
|  | ExprBitfield = 0, | 
|  | ExprVectorElt, | 
|  | ExprGlobalRegVar, | 
|  | ExprSafeType | 
|  | } EType = ExprSafeType; | 
|  |  | 
|  | // Bitfields, vector elements and global register variables are not | 
|  | // compatible. | 
|  | if (E->refersToBitField()) | 
|  | EType = ExprBitfield; | 
|  | else if (E->refersToVectorElement()) | 
|  | EType = ExprVectorElt; | 
|  | else if (E->refersToGlobalRegisterVar()) | 
|  | EType = ExprGlobalRegVar; | 
|  |  | 
|  | if (EType != ExprSafeType) { | 
|  | S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint) | 
|  | << EType << is_input_expr << Info.getConstraintStr() | 
|  | << E->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Extracting the register name from the Expression value, | 
|  | // if there is no register name to extract, returns "" | 
|  | static StringRef extractRegisterName(const Expr *Expression, | 
|  | const TargetInfo &Target) { | 
|  | Expression = Expression->IgnoreImpCasts(); | 
|  | if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) { | 
|  | // Handle cases where the expression is a variable | 
|  | const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl()); | 
|  | if (Variable && Variable->getStorageClass() == SC_Register) { | 
|  | if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>()) | 
|  | if (Target.isValidGCCRegisterName(Attr->getLabel())) | 
|  | return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true); | 
|  | } | 
|  | } | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | // Checks if there is a conflict between the input and output lists with the | 
|  | // clobbers list. If there's a conflict, returns the location of the | 
|  | // conflicted clobber, else returns nullptr | 
|  | static SourceLocation | 
|  | getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints, | 
|  | StringLiteral **Clobbers, int NumClobbers, | 
|  | const TargetInfo &Target, ASTContext &Cont) { | 
|  | llvm::StringSet<> InOutVars; | 
|  | // Collect all the input and output registers from the extended asm | 
|  | // statement in order to check for conflicts with the clobber list | 
|  | for (unsigned int i = 0; i < Exprs.size(); ++i) { | 
|  | StringRef Constraint = Constraints[i]->getString(); | 
|  | StringRef InOutReg = Target.getConstraintRegister( | 
|  | Constraint, extractRegisterName(Exprs[i], Target)); | 
|  | if (InOutReg != "") | 
|  | InOutVars.insert(InOutReg); | 
|  | } | 
|  | // Check for each item in the clobber list if it conflicts with the input | 
|  | // or output | 
|  | for (int i = 0; i < NumClobbers; ++i) { | 
|  | StringRef Clobber = Clobbers[i]->getString(); | 
|  | // We only check registers, therefore we don't check cc and memory | 
|  | // clobbers | 
|  | if (Clobber == "cc" || Clobber == "memory") | 
|  | continue; | 
|  | Clobber = Target.getNormalizedGCCRegisterName(Clobber, true); | 
|  | // Go over the output's registers we collected | 
|  | if (InOutVars.count(Clobber)) | 
|  | return Clobbers[i]->getBeginLoc(); | 
|  | } | 
|  | return SourceLocation(); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, | 
|  | bool IsVolatile, unsigned NumOutputs, | 
|  | unsigned NumInputs, IdentifierInfo **Names, | 
|  | MultiExprArg constraints, MultiExprArg Exprs, | 
|  | Expr *asmString, MultiExprArg clobbers, | 
|  | SourceLocation RParenLoc) { | 
|  | unsigned NumClobbers = clobbers.size(); | 
|  | StringLiteral **Constraints = | 
|  | reinterpret_cast<StringLiteral**>(constraints.data()); | 
|  | StringLiteral *AsmString = cast<StringLiteral>(asmString); | 
|  | StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); | 
|  |  | 
|  | SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; | 
|  |  | 
|  | // The parser verifies that there is a string literal here. | 
|  | assert(AsmString->isAscii()); | 
|  |  | 
|  | // If we're compiling CUDA file and function attributes indicate that it's not | 
|  | // for this compilation side, skip all the checks. | 
|  | if (!DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) { | 
|  | GCCAsmStmt *NS = new (Context) GCCAsmStmt( | 
|  | Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, | 
|  | Constraints, Exprs.data(), AsmString, NumClobbers, Clobbers, RParenLoc); | 
|  | return NS; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i != NumOutputs; i++) { | 
|  | StringLiteral *Literal = Constraints[i]; | 
|  | assert(Literal->isAscii()); | 
|  |  | 
|  | StringRef OutputName; | 
|  | if (Names[i]) | 
|  | OutputName = Names[i]->getName(); | 
|  |  | 
|  | TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); | 
|  | if (!Context.getTargetInfo().validateOutputConstraint(Info)) | 
|  | return StmtResult(targetDiag(Literal->getBeginLoc(), | 
|  | diag::err_asm_invalid_output_constraint) | 
|  | << Info.getConstraintStr()); | 
|  |  | 
|  | ExprResult ER = CheckPlaceholderExpr(Exprs[i]); | 
|  | if (ER.isInvalid()) | 
|  | return StmtError(); | 
|  | Exprs[i] = ER.get(); | 
|  |  | 
|  | // Check that the output exprs are valid lvalues. | 
|  | Expr *OutputExpr = Exprs[i]; | 
|  |  | 
|  | // Referring to parameters is not allowed in naked functions. | 
|  | if (CheckNakedParmReference(OutputExpr, *this)) | 
|  | return StmtError(); | 
|  |  | 
|  | // Check that the output expression is compatible with memory constraint. | 
|  | if (Info.allowsMemory() && | 
|  | checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false)) | 
|  | return StmtError(); | 
|  |  | 
|  | OutputConstraintInfos.push_back(Info); | 
|  |  | 
|  | // If this is dependent, just continue. | 
|  | if (OutputExpr->isTypeDependent()) | 
|  | continue; | 
|  |  | 
|  | Expr::isModifiableLvalueResult IsLV = | 
|  | OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr); | 
|  | switch (IsLV) { | 
|  | case Expr::MLV_Valid: | 
|  | // Cool, this is an lvalue. | 
|  | break; | 
|  | case Expr::MLV_ArrayType: | 
|  | // This is OK too. | 
|  | break; | 
|  | case Expr::MLV_LValueCast: { | 
|  | const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context); | 
|  | emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this); | 
|  | // Accept, even if we emitted an error diagnostic. | 
|  | break; | 
|  | } | 
|  | case Expr::MLV_IncompleteType: | 
|  | case Expr::MLV_IncompleteVoidType: | 
|  | if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(), | 
|  | diag::err_dereference_incomplete_type)) | 
|  | return StmtError(); | 
|  | LLVM_FALLTHROUGH; | 
|  | default: | 
|  | return StmtError(Diag(OutputExpr->getBeginLoc(), | 
|  | diag::err_asm_invalid_lvalue_in_output) | 
|  | << OutputExpr->getSourceRange()); | 
|  | } | 
|  |  | 
|  | unsigned Size = Context.getTypeSize(OutputExpr->getType()); | 
|  | if (!Context.getTargetInfo().validateOutputSize(Literal->getString(), Size)) | 
|  | return StmtResult(targetDiag(OutputExpr->getBeginLoc(), | 
|  | diag::err_asm_invalid_output_size) | 
|  | << Info.getConstraintStr()); | 
|  | } | 
|  |  | 
|  | SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; | 
|  |  | 
|  | for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { | 
|  | StringLiteral *Literal = Constraints[i]; | 
|  | assert(Literal->isAscii()); | 
|  |  | 
|  | StringRef InputName; | 
|  | if (Names[i]) | 
|  | InputName = Names[i]->getName(); | 
|  |  | 
|  | TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); | 
|  | if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos, | 
|  | Info)) { | 
|  | return StmtResult(targetDiag(Literal->getBeginLoc(), | 
|  | diag::err_asm_invalid_input_constraint) | 
|  | << Info.getConstraintStr()); | 
|  | } | 
|  |  | 
|  | ExprResult ER = CheckPlaceholderExpr(Exprs[i]); | 
|  | if (ER.isInvalid()) | 
|  | return StmtError(); | 
|  | Exprs[i] = ER.get(); | 
|  |  | 
|  | Expr *InputExpr = Exprs[i]; | 
|  |  | 
|  | // Referring to parameters is not allowed in naked functions. | 
|  | if (CheckNakedParmReference(InputExpr, *this)) | 
|  | return StmtError(); | 
|  |  | 
|  | // Check that the input expression is compatible with memory constraint. | 
|  | if (Info.allowsMemory() && | 
|  | checkExprMemoryConstraintCompat(*this, InputExpr, Info, true)) | 
|  | return StmtError(); | 
|  |  | 
|  | // Only allow void types for memory constraints. | 
|  | if (Info.allowsMemory() && !Info.allowsRegister()) { | 
|  | if (CheckAsmLValue(InputExpr, *this)) | 
|  | return StmtError(Diag(InputExpr->getBeginLoc(), | 
|  | diag::err_asm_invalid_lvalue_in_input) | 
|  | << Info.getConstraintStr() | 
|  | << InputExpr->getSourceRange()); | 
|  | } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { | 
|  | if (!InputExpr->isValueDependent()) { | 
|  | Expr::EvalResult EVResult; | 
|  | if (!InputExpr->EvaluateAsRValue(EVResult, Context, true)) | 
|  | return StmtError( | 
|  | Diag(InputExpr->getBeginLoc(), diag::err_asm_immediate_expected) | 
|  | << Info.getConstraintStr() << InputExpr->getSourceRange()); | 
|  | llvm::APSInt Result = EVResult.Val.getInt(); | 
|  | if (!Info.isValidAsmImmediate(Result)) | 
|  | return StmtError(Diag(InputExpr->getBeginLoc(), | 
|  | diag::err_invalid_asm_value_for_constraint) | 
|  | << Result.toString(10) << Info.getConstraintStr() | 
|  | << InputExpr->getSourceRange()); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); | 
|  | if (Result.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | Exprs[i] = Result.get(); | 
|  | } | 
|  |  | 
|  | if (Info.allowsRegister()) { | 
|  | if (InputExpr->getType()->isVoidType()) { | 
|  | return StmtError( | 
|  | Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input) | 
|  | << InputExpr->getType() << Info.getConstraintStr() | 
|  | << InputExpr->getSourceRange()); | 
|  | } | 
|  | } | 
|  |  | 
|  | InputConstraintInfos.push_back(Info); | 
|  |  | 
|  | const Type *Ty = Exprs[i]->getType().getTypePtr(); | 
|  | if (Ty->isDependentType()) | 
|  | continue; | 
|  |  | 
|  | if (!Ty->isVoidType() || !Info.allowsMemory()) | 
|  | if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(), | 
|  | diag::err_dereference_incomplete_type)) | 
|  | return StmtError(); | 
|  |  | 
|  | unsigned Size = Context.getTypeSize(Ty); | 
|  | if (!Context.getTargetInfo().validateInputSize(Literal->getString(), | 
|  | Size)) | 
|  | return StmtResult( | 
|  | targetDiag(InputExpr->getBeginLoc(), diag::err_asm_invalid_input_size) | 
|  | << Info.getConstraintStr()); | 
|  | } | 
|  |  | 
|  | // Check that the clobbers are valid. | 
|  | for (unsigned i = 0; i != NumClobbers; i++) { | 
|  | StringLiteral *Literal = Clobbers[i]; | 
|  | assert(Literal->isAscii()); | 
|  |  | 
|  | StringRef Clobber = Literal->getString(); | 
|  |  | 
|  | if (!Context.getTargetInfo().isValidClobber(Clobber)) | 
|  | return StmtResult(targetDiag(Literal->getBeginLoc(), | 
|  | diag::err_asm_unknown_register_name) | 
|  | << Clobber); | 
|  | } | 
|  |  | 
|  | GCCAsmStmt *NS = | 
|  | new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, | 
|  | NumInputs, Names, Constraints, Exprs.data(), | 
|  | AsmString, NumClobbers, Clobbers, RParenLoc); | 
|  | // Validate the asm string, ensuring it makes sense given the operands we | 
|  | // have. | 
|  | SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; | 
|  | unsigned DiagOffs; | 
|  | if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) | 
|  | return StmtResult( | 
|  | targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) | 
|  | << AsmString->getSourceRange()); | 
|  |  | 
|  | // Validate constraints and modifiers. | 
|  | for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { | 
|  | GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; | 
|  | if (!Piece.isOperand()) continue; | 
|  |  | 
|  | // Look for the correct constraint index. | 
|  | unsigned ConstraintIdx = Piece.getOperandNo(); | 
|  | unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs(); | 
|  |  | 
|  | // Look for the (ConstraintIdx - NumOperands + 1)th constraint with | 
|  | // modifier '+'. | 
|  | if (ConstraintIdx >= NumOperands) { | 
|  | unsigned I = 0, E = NS->getNumOutputs(); | 
|  |  | 
|  | for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I) | 
|  | if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) { | 
|  | ConstraintIdx = I; | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(I != E && "Invalid operand number should have been caught in " | 
|  | " AnalyzeAsmString"); | 
|  | } | 
|  |  | 
|  | // Now that we have the right indexes go ahead and check. | 
|  | StringLiteral *Literal = Constraints[ConstraintIdx]; | 
|  | const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); | 
|  | if (Ty->isDependentType() || Ty->isIncompleteType()) | 
|  | continue; | 
|  |  | 
|  | unsigned Size = Context.getTypeSize(Ty); | 
|  | std::string SuggestedModifier; | 
|  | if (!Context.getTargetInfo().validateConstraintModifier( | 
|  | Literal->getString(), Piece.getModifier(), Size, | 
|  | SuggestedModifier)) { | 
|  | targetDiag(Exprs[ConstraintIdx]->getBeginLoc(), | 
|  | diag::warn_asm_mismatched_size_modifier); | 
|  |  | 
|  | if (!SuggestedModifier.empty()) { | 
|  | auto B = targetDiag(Piece.getRange().getBegin(), | 
|  | diag::note_asm_missing_constraint_modifier) | 
|  | << SuggestedModifier; | 
|  | SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); | 
|  | B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Validate tied input operands for type mismatches. | 
|  | unsigned NumAlternatives = ~0U; | 
|  | for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { | 
|  | TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; | 
|  | StringRef ConstraintStr = Info.getConstraintStr(); | 
|  | unsigned AltCount = ConstraintStr.count(',') + 1; | 
|  | if (NumAlternatives == ~0U) | 
|  | NumAlternatives = AltCount; | 
|  | else if (NumAlternatives != AltCount) | 
|  | return StmtResult( | 
|  | targetDiag(NS->getOutputExpr(i)->getBeginLoc(), | 
|  | diag::err_asm_unexpected_constraint_alternatives) | 
|  | << NumAlternatives << AltCount); | 
|  | } | 
|  | SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(), | 
|  | ~0U); | 
|  | for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { | 
|  | TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; | 
|  | StringRef ConstraintStr = Info.getConstraintStr(); | 
|  | unsigned AltCount = ConstraintStr.count(',') + 1; | 
|  | if (NumAlternatives == ~0U) | 
|  | NumAlternatives = AltCount; | 
|  | else if (NumAlternatives != AltCount) | 
|  | return StmtResult( | 
|  | targetDiag(NS->getInputExpr(i)->getBeginLoc(), | 
|  | diag::err_asm_unexpected_constraint_alternatives) | 
|  | << NumAlternatives << AltCount); | 
|  |  | 
|  | // If this is a tied constraint, verify that the output and input have | 
|  | // either exactly the same type, or that they are int/ptr operands with the | 
|  | // same size (int/long, int*/long, are ok etc). | 
|  | if (!Info.hasTiedOperand()) continue; | 
|  |  | 
|  | unsigned TiedTo = Info.getTiedOperand(); | 
|  | unsigned InputOpNo = i+NumOutputs; | 
|  | Expr *OutputExpr = Exprs[TiedTo]; | 
|  | Expr *InputExpr = Exprs[InputOpNo]; | 
|  |  | 
|  | // Make sure no more than one input constraint matches each output. | 
|  | assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range"); | 
|  | if (InputMatchedToOutput[TiedTo] != ~0U) { | 
|  | targetDiag(NS->getInputExpr(i)->getBeginLoc(), | 
|  | diag::err_asm_input_duplicate_match) | 
|  | << TiedTo; | 
|  | return StmtResult( | 
|  | targetDiag( | 
|  | NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(), | 
|  | diag::note_asm_input_duplicate_first) | 
|  | << TiedTo); | 
|  | } | 
|  | InputMatchedToOutput[TiedTo] = i; | 
|  |  | 
|  | if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) | 
|  | continue; | 
|  |  | 
|  | QualType InTy = InputExpr->getType(); | 
|  | QualType OutTy = OutputExpr->getType(); | 
|  | if (Context.hasSameType(InTy, OutTy)) | 
|  | continue;  // All types can be tied to themselves. | 
|  |  | 
|  | // Decide if the input and output are in the same domain (integer/ptr or | 
|  | // floating point. | 
|  | enum AsmDomain { | 
|  | AD_Int, AD_FP, AD_Other | 
|  | } InputDomain, OutputDomain; | 
|  |  | 
|  | if (InTy->isIntegerType() || InTy->isPointerType()) | 
|  | InputDomain = AD_Int; | 
|  | else if (InTy->isRealFloatingType()) | 
|  | InputDomain = AD_FP; | 
|  | else | 
|  | InputDomain = AD_Other; | 
|  |  | 
|  | if (OutTy->isIntegerType() || OutTy->isPointerType()) | 
|  | OutputDomain = AD_Int; | 
|  | else if (OutTy->isRealFloatingType()) | 
|  | OutputDomain = AD_FP; | 
|  | else | 
|  | OutputDomain = AD_Other; | 
|  |  | 
|  | // They are ok if they are the same size and in the same domain.  This | 
|  | // allows tying things like: | 
|  | //   void* to int* | 
|  | //   void* to int            if they are the same size. | 
|  | //   double to long double   if they are the same size. | 
|  | // | 
|  | uint64_t OutSize = Context.getTypeSize(OutTy); | 
|  | uint64_t InSize = Context.getTypeSize(InTy); | 
|  | if (OutSize == InSize && InputDomain == OutputDomain && | 
|  | InputDomain != AD_Other) | 
|  | continue; | 
|  |  | 
|  | // If the smaller input/output operand is not mentioned in the asm string, | 
|  | // then we can promote the smaller one to a larger input and the asm string | 
|  | // won't notice. | 
|  | bool SmallerValueMentioned = false; | 
|  |  | 
|  | // If this is a reference to the input and if the input was the smaller | 
|  | // one, then we have to reject this asm. | 
|  | if (isOperandMentioned(InputOpNo, Pieces)) { | 
|  | // This is a use in the asm string of the smaller operand.  Since we | 
|  | // codegen this by promoting to a wider value, the asm will get printed | 
|  | // "wrong". | 
|  | SmallerValueMentioned |= InSize < OutSize; | 
|  | } | 
|  | if (isOperandMentioned(TiedTo, Pieces)) { | 
|  | // If this is a reference to the output, and if the output is the larger | 
|  | // value, then it's ok because we'll promote the input to the larger type. | 
|  | SmallerValueMentioned |= OutSize < InSize; | 
|  | } | 
|  |  | 
|  | // If the smaller value wasn't mentioned in the asm string, and if the | 
|  | // output was a register, just extend the shorter one to the size of the | 
|  | // larger one. | 
|  | if (!SmallerValueMentioned && InputDomain != AD_Other && | 
|  | OutputConstraintInfos[TiedTo].allowsRegister()) | 
|  | continue; | 
|  |  | 
|  | // Either both of the operands were mentioned or the smaller one was | 
|  | // mentioned.  One more special case that we'll allow: if the tied input is | 
|  | // integer, unmentioned, and is a constant, then we'll allow truncating it | 
|  | // down to the size of the destination. | 
|  | if (InputDomain == AD_Int && OutputDomain == AD_Int && | 
|  | !isOperandMentioned(InputOpNo, Pieces) && | 
|  | InputExpr->isEvaluatable(Context)) { | 
|  | CastKind castKind = | 
|  | (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); | 
|  | InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get(); | 
|  | Exprs[InputOpNo] = InputExpr; | 
|  | NS->setInputExpr(i, InputExpr); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | return StmtResult(targetDiag(InputExpr->getBeginLoc(), | 
|  | diag::err_asm_tying_incompatible_types) | 
|  | << InTy << OutTy << OutputExpr->getSourceRange() | 
|  | << InputExpr->getSourceRange()); | 
|  | } | 
|  |  | 
|  | // Check for conflicts between clobber list and input or output lists | 
|  | SourceLocation ConstraintLoc = | 
|  | getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers, | 
|  | Context.getTargetInfo(), Context); | 
|  | if (ConstraintLoc.isValid()) | 
|  | return StmtResult( | 
|  | targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber)); | 
|  |  | 
|  | return NS; | 
|  | } | 
|  |  | 
|  | void Sema::FillInlineAsmIdentifierInfo(Expr *Res, | 
|  | llvm::InlineAsmIdentifierInfo &Info) { | 
|  | QualType T = Res->getType(); | 
|  | Expr::EvalResult Eval; | 
|  | if (T->isFunctionType() || T->isDependentType()) | 
|  | return Info.setLabel(Res); | 
|  | if (Res->isRValue()) { | 
|  | if (isa<clang::EnumType>(T) && Res->EvaluateAsRValue(Eval, Context)) | 
|  | return Info.setEnum(Eval.Val.getInt().getSExtValue()); | 
|  | return Info.setLabel(Res); | 
|  | } | 
|  | unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); | 
|  | unsigned Type = Size; | 
|  | if (const auto *ATy = Context.getAsArrayType(T)) | 
|  | Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); | 
|  | bool IsGlobalLV = false; | 
|  | if (Res->EvaluateAsLValue(Eval, Context)) | 
|  | IsGlobalLV = Eval.isGlobalLValue(); | 
|  | Info.setVar(Res, IsGlobalLV, Size, Type); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, | 
|  | SourceLocation TemplateKWLoc, | 
|  | UnqualifiedId &Id, | 
|  | bool IsUnevaluatedContext) { | 
|  |  | 
|  | if (IsUnevaluatedContext) | 
|  | PushExpressionEvaluationContext( | 
|  | ExpressionEvaluationContext::UnevaluatedAbstract, | 
|  | ReuseLambdaContextDecl); | 
|  |  | 
|  | ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, | 
|  | /*trailing lparen*/ false, | 
|  | /*is & operand*/ false, | 
|  | /*CorrectionCandidateCallback=*/nullptr, | 
|  | /*IsInlineAsmIdentifier=*/ true); | 
|  |  | 
|  | if (IsUnevaluatedContext) | 
|  | PopExpressionEvaluationContext(); | 
|  |  | 
|  | if (!Result.isUsable()) return Result; | 
|  |  | 
|  | Result = CheckPlaceholderExpr(Result.get()); | 
|  | if (!Result.isUsable()) return Result; | 
|  |  | 
|  | // Referring to parameters is not allowed in naked functions. | 
|  | if (CheckNakedParmReference(Result.get(), *this)) | 
|  | return ExprError(); | 
|  |  | 
|  | QualType T = Result.get()->getType(); | 
|  |  | 
|  | if (T->isDependentType()) { | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Any sort of function type is fine. | 
|  | if (T->isFunctionType()) { | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Otherwise, it needs to be a complete type. | 
|  | if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, | 
|  | unsigned &Offset, SourceLocation AsmLoc) { | 
|  | Offset = 0; | 
|  | SmallVector<StringRef, 2> Members; | 
|  | Member.split(Members, "."); | 
|  |  | 
|  | NamedDecl *FoundDecl = nullptr; | 
|  |  | 
|  | // MS InlineAsm uses 'this' as a base | 
|  | if (getLangOpts().CPlusPlus && Base.equals("this")) { | 
|  | if (const Type *PT = getCurrentThisType().getTypePtrOrNull()) | 
|  | FoundDecl = PT->getPointeeType()->getAsTagDecl(); | 
|  | } else { | 
|  | LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), | 
|  | LookupOrdinaryName); | 
|  | if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult()) | 
|  | FoundDecl = BaseResult.getFoundDecl(); | 
|  | } | 
|  |  | 
|  | if (!FoundDecl) | 
|  | return true; | 
|  |  | 
|  | for (StringRef NextMember : Members) { | 
|  | const RecordType *RT = nullptr; | 
|  | if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) | 
|  | RT = VD->getType()->getAs<RecordType>(); | 
|  | else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) { | 
|  | MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); | 
|  | // MS InlineAsm often uses struct pointer aliases as a base | 
|  | QualType QT = TD->getUnderlyingType(); | 
|  | if (const auto *PT = QT->getAs<PointerType>()) | 
|  | QT = PT->getPointeeType(); | 
|  | RT = QT->getAs<RecordType>(); | 
|  | } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl)) | 
|  | RT = TD->getTypeForDecl()->getAs<RecordType>(); | 
|  | else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl)) | 
|  | RT = TD->getType()->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return true; | 
|  |  | 
|  | if (RequireCompleteType(AsmLoc, QualType(RT, 0), | 
|  | diag::err_asm_incomplete_type)) | 
|  | return true; | 
|  |  | 
|  | LookupResult FieldResult(*this, &Context.Idents.get(NextMember), | 
|  | SourceLocation(), LookupMemberName); | 
|  |  | 
|  | if (!LookupQualifiedName(FieldResult, RT->getDecl())) | 
|  | return true; | 
|  |  | 
|  | if (!FieldResult.isSingleResult()) | 
|  | return true; | 
|  | FoundDecl = FieldResult.getFoundDecl(); | 
|  |  | 
|  | // FIXME: Handle IndirectFieldDecl? | 
|  | FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl); | 
|  | if (!FD) | 
|  | return true; | 
|  |  | 
|  | const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); | 
|  | unsigned i = FD->getFieldIndex(); | 
|  | CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); | 
|  | Offset += (unsigned)Result.getQuantity(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, | 
|  | SourceLocation AsmLoc) { | 
|  |  | 
|  | QualType T = E->getType(); | 
|  | if (T->isDependentType()) { | 
|  | DeclarationNameInfo NameInfo; | 
|  | NameInfo.setLoc(AsmLoc); | 
|  | NameInfo.setName(&Context.Idents.get(Member)); | 
|  | return CXXDependentScopeMemberExpr::Create( | 
|  | Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(), | 
|  | SourceLocation(), | 
|  | /*FirstQualifierInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr); | 
|  | } | 
|  |  | 
|  | const RecordType *RT = T->getAs<RecordType>(); | 
|  | // FIXME: Diagnose this as field access into a scalar type. | 
|  | if (!RT) | 
|  | return ExprResult(); | 
|  |  | 
|  | LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc, | 
|  | LookupMemberName); | 
|  |  | 
|  | if (!LookupQualifiedName(FieldResult, RT->getDecl())) | 
|  | return ExprResult(); | 
|  |  | 
|  | // Only normal and indirect field results will work. | 
|  | ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); | 
|  | if (!FD) | 
|  | FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl()); | 
|  | if (!FD) | 
|  | return ExprResult(); | 
|  |  | 
|  | // Make an Expr to thread through OpDecl. | 
|  | ExprResult Result = BuildMemberReferenceExpr( | 
|  | E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(), | 
|  | SourceLocation(), nullptr, FieldResult, nullptr, nullptr); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, | 
|  | ArrayRef<Token> AsmToks, | 
|  | StringRef AsmString, | 
|  | unsigned NumOutputs, unsigned NumInputs, | 
|  | ArrayRef<StringRef> Constraints, | 
|  | ArrayRef<StringRef> Clobbers, | 
|  | ArrayRef<Expr*> Exprs, | 
|  | SourceLocation EndLoc) { | 
|  | bool IsSimple = (NumOutputs != 0 || NumInputs != 0); | 
|  | setFunctionHasBranchProtectedScope(); | 
|  | MSAsmStmt *NS = | 
|  | new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, | 
|  | /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, | 
|  | Constraints, Exprs, AsmString, | 
|  | Clobbers, EndLoc); | 
|  | return NS; | 
|  | } | 
|  |  | 
|  | LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, | 
|  | SourceLocation Location, | 
|  | bool AlwaysCreate) { | 
|  | LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName), | 
|  | Location); | 
|  |  | 
|  | if (Label->isMSAsmLabel()) { | 
|  | // If we have previously created this label implicitly, mark it as used. | 
|  | Label->markUsed(Context); | 
|  | } else { | 
|  | // Otherwise, insert it, but only resolve it if we have seen the label itself. | 
|  | std::string InternalName; | 
|  | llvm::raw_string_ostream OS(InternalName); | 
|  | // Create an internal name for the label.  The name should not be a valid | 
|  | // mangled name, and should be unique.  We use a dot to make the name an | 
|  | // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a | 
|  | // unique label is generated each time this blob is emitted, even after | 
|  | // inlining or LTO. | 
|  | OS << "__MSASMLABEL_.${:uid}__"; | 
|  | for (char C : ExternalLabelName) { | 
|  | OS << C; | 
|  | // We escape '$' in asm strings by replacing it with "$$" | 
|  | if (C == '$') | 
|  | OS << '$'; | 
|  | } | 
|  | Label->setMSAsmLabel(OS.str()); | 
|  | } | 
|  | if (AlwaysCreate) { | 
|  | // The label might have been created implicitly from a previously encountered | 
|  | // goto statement.  So, for both newly created and looked up labels, we mark | 
|  | // them as resolved. | 
|  | Label->setMSAsmLabelResolved(); | 
|  | } | 
|  | // Adjust their location for being able to generate accurate diagnostics. | 
|  | Label->setLocation(Location); | 
|  |  | 
|  | return Label; | 
|  | } |