|  | //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements sparse conditional constant propagation and merging: | 
|  | // | 
|  | // Specifically, this: | 
|  | //   * Assumes values are constant unless proven otherwise | 
|  | //   * Assumes BasicBlocks are dead unless proven otherwise | 
|  | //   * Proves values to be constant, and replaces them with constants | 
|  | //   * Proves conditional branches to be unconditional | 
|  | // | 
|  | // Notice that: | 
|  | //   * This pass has a habit of making definitions be dead.  It is a good idea | 
|  | //     to to run a DCE pass sometime after running this pass. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "sccp" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Type.h" | 
|  | #include "llvm/Support/InstVisitor.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/ADT/hash_map" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include <algorithm> | 
|  | #include <set> | 
|  | using namespace llvm; | 
|  |  | 
|  | // LatticeVal class - This class represents the different lattice values that an | 
|  | // instruction may occupy.  It is a simple class with value semantics. | 
|  | // | 
|  | namespace { | 
|  | Statistic<> NumInstRemoved("sccp", "Number of instructions removed"); | 
|  | Statistic<> NumDeadBlocks ("sccp", "Number of basic blocks unreachable"); | 
|  |  | 
|  | class LatticeVal { | 
|  | enum { | 
|  | undefined,           // This instruction has no known value | 
|  | constant,            // This instruction has a constant value | 
|  | overdefined          // This instruction has an unknown value | 
|  | } LatticeValue;        // The current lattice position | 
|  | Constant *ConstantVal; // If Constant value, the current value | 
|  | public: | 
|  | inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} | 
|  |  | 
|  | // markOverdefined - Return true if this is a new status to be in... | 
|  | inline bool markOverdefined() { | 
|  | if (LatticeValue != overdefined) { | 
|  | LatticeValue = overdefined; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // markConstant - Return true if this is a new status for us... | 
|  | inline bool markConstant(Constant *V) { | 
|  | if (LatticeValue != constant) { | 
|  | LatticeValue = constant; | 
|  | ConstantVal = V; | 
|  | return true; | 
|  | } else { | 
|  | assert(ConstantVal == V && "Marking constant with different value"); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | inline bool isUndefined()   const { return LatticeValue == undefined; } | 
|  | inline bool isConstant()    const { return LatticeValue == constant; } | 
|  | inline bool isOverdefined() const { return LatticeValue == overdefined; } | 
|  |  | 
|  | inline Constant *getConstant() const { | 
|  | assert(isConstant() && "Cannot get the constant of a non-constant!"); | 
|  | return ConstantVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// SCCPSolver - This class is a general purpose solver for Sparse Conditional | 
|  | /// Constant Propagation. | 
|  | /// | 
|  | class SCCPSolver : public InstVisitor<SCCPSolver> { | 
|  | std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable | 
|  | hash_map<Value*, LatticeVal> ValueState;  // The state each value is in... | 
|  |  | 
|  | // The reason for two worklists is that overdefined is the lowest state | 
|  | // on the lattice, and moving things to overdefined as fast as possible | 
|  | // makes SCCP converge much faster. | 
|  | // By having a separate worklist, we accomplish this because everything | 
|  | // possibly overdefined will become overdefined at the soonest possible | 
|  | // point. | 
|  | std::vector<Instruction*> OverdefinedInstWorkList;// The overdefined | 
|  | // instruction work list | 
|  | std::vector<Instruction*> InstWorkList;// The instruction work list | 
|  |  | 
|  |  | 
|  | std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list | 
|  |  | 
|  | /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not | 
|  | /// overdefined, despite the fact that the PHI node is overdefined. | 
|  | std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; | 
|  |  | 
|  | /// KnownFeasibleEdges - Entries in this set are edges which have already had | 
|  | /// PHI nodes retriggered. | 
|  | typedef std::pair<BasicBlock*,BasicBlock*> Edge; | 
|  | std::set<Edge> KnownFeasibleEdges; | 
|  | public: | 
|  |  | 
|  | /// MarkBlockExecutable - This method can be used by clients to mark all of | 
|  | /// the blocks that are known to be intrinsically live in the processed unit. | 
|  | void MarkBlockExecutable(BasicBlock *BB) { | 
|  | DEBUG(std::cerr << "Marking Block Executable: " << BB->getName() << "\n"); | 
|  | BBExecutable.insert(BB);   // Basic block is executable! | 
|  | BBWorkList.push_back(BB);  // Add the block to the work list! | 
|  | } | 
|  |  | 
|  | /// Solve - Solve for constants and executable blocks. | 
|  | /// | 
|  | void Solve(); | 
|  |  | 
|  | /// getExecutableBlocks - Once we have solved for constants, return the set of | 
|  | /// blocks that is known to be executable. | 
|  | std::set<BasicBlock*> &getExecutableBlocks() { | 
|  | return BBExecutable; | 
|  | } | 
|  |  | 
|  | /// getValueMapping - Once we have solved for constants, return the mapping of | 
|  | /// LLVM values to LatticeVals. | 
|  | hash_map<Value*, LatticeVal> &getValueMapping() { | 
|  | return ValueState; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // markConstant - Make a value be marked as "constant".  If the value | 
|  | // is not already a constant, add it to the instruction work list so that | 
|  | // the users of the instruction are updated later. | 
|  | // | 
|  | inline void markConstant(LatticeVal &IV, Instruction *I, Constant *C) { | 
|  | if (IV.markConstant(C)) { | 
|  | DEBUG(std::cerr << "markConstant: " << *C << ": " << *I); | 
|  | InstWorkList.push_back(I); | 
|  | } | 
|  | } | 
|  | inline void markConstant(Instruction *I, Constant *C) { | 
|  | markConstant(ValueState[I], I, C); | 
|  | } | 
|  |  | 
|  | // markOverdefined - Make a value be marked as "overdefined". If the | 
|  | // value is not already overdefined, add it to the overdefined instruction | 
|  | // work list so that the users of the instruction are updated later. | 
|  |  | 
|  | inline void markOverdefined(LatticeVal &IV, Instruction *I) { | 
|  | if (IV.markOverdefined()) { | 
|  | DEBUG(std::cerr << "markOverdefined: " << *I); | 
|  | // Only instructions go on the work list | 
|  | OverdefinedInstWorkList.push_back(I); | 
|  | } | 
|  | } | 
|  | inline void markOverdefined(Instruction *I) { | 
|  | markOverdefined(ValueState[I], I); | 
|  | } | 
|  |  | 
|  | // getValueState - Return the LatticeVal object that corresponds to the value. | 
|  | // This function is necessary because not all values should start out in the | 
|  | // underdefined state... Argument's should be overdefined, and | 
|  | // constants should be marked as constants.  If a value is not known to be an | 
|  | // Instruction object, then use this accessor to get its value from the map. | 
|  | // | 
|  | inline LatticeVal &getValueState(Value *V) { | 
|  | hash_map<Value*, LatticeVal>::iterator I = ValueState.find(V); | 
|  | if (I != ValueState.end()) return I->second;  // Common case, in the map | 
|  |  | 
|  | if (Constant *CPV = dyn_cast<Constant>(V)) { | 
|  | if (isa<UndefValue>(V)) { | 
|  | // Nothing to do, remain undefined. | 
|  | } else { | 
|  | ValueState[CPV].markConstant(CPV);          // Constants are constant | 
|  | } | 
|  | } | 
|  | // All others are underdefined by default... | 
|  | return ValueState[V]; | 
|  | } | 
|  |  | 
|  | // markEdgeExecutable - Mark a basic block as executable, adding it to the BB | 
|  | // work list if it is not already executable... | 
|  | // | 
|  | void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { | 
|  | if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) | 
|  | return;  // This edge is already known to be executable! | 
|  |  | 
|  | if (BBExecutable.count(Dest)) { | 
|  | DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName() | 
|  | << " -> " << Dest->getName() << "\n"); | 
|  |  | 
|  | // The destination is already executable, but we just made an edge | 
|  | // feasible that wasn't before.  Revisit the PHI nodes in the block | 
|  | // because they have potentially new operands. | 
|  | for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | visitPHINode(*PN); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | MarkBlockExecutable(Dest); | 
|  | } | 
|  | } | 
|  |  | 
|  | // getFeasibleSuccessors - Return a vector of booleans to indicate which | 
|  | // successors are reachable from a given terminator instruction. | 
|  | // | 
|  | void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); | 
|  |  | 
|  | // isEdgeFeasible - Return true if the control flow edge from the 'From' basic | 
|  | // block to the 'To' basic block is currently feasible... | 
|  | // | 
|  | bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); | 
|  |  | 
|  | // OperandChangedState - This method is invoked on all of the users of an | 
|  | // instruction that was just changed state somehow....  Based on this | 
|  | // information, we need to update the specified user of this instruction. | 
|  | // | 
|  | void OperandChangedState(User *U) { | 
|  | // Only instructions use other variable values! | 
|  | Instruction &I = cast<Instruction>(*U); | 
|  | if (BBExecutable.count(I.getParent()))   // Inst is executable? | 
|  | visit(I); | 
|  | } | 
|  |  | 
|  | private: | 
|  | friend class InstVisitor<SCCPSolver>; | 
|  |  | 
|  | // visit implementations - Something changed in this instruction... Either an | 
|  | // operand made a transition, or the instruction is newly executable.  Change | 
|  | // the value type of I to reflect these changes if appropriate. | 
|  | // | 
|  | void visitPHINode(PHINode &I); | 
|  |  | 
|  | // Terminators | 
|  | void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ } | 
|  | void visitTerminatorInst(TerminatorInst &TI); | 
|  |  | 
|  | void visitCastInst(CastInst &I); | 
|  | void visitSelectInst(SelectInst &I); | 
|  | void visitBinaryOperator(Instruction &I); | 
|  | void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } | 
|  |  | 
|  | // Instructions that cannot be folded away... | 
|  | void visitStoreInst     (Instruction &I) { /*returns void*/ } | 
|  | void visitLoadInst      (LoadInst &I); | 
|  | void visitGetElementPtrInst(GetElementPtrInst &I); | 
|  | void visitCallInst      (CallInst &I); | 
|  | void visitInvokeInst    (TerminatorInst &I) { | 
|  | if (I.getType() != Type::VoidTy) markOverdefined(&I); | 
|  | visitTerminatorInst(I); | 
|  | } | 
|  | void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ } | 
|  | void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } | 
|  | void visitAllocationInst(Instruction &I) { markOverdefined(&I); } | 
|  | void visitVANextInst    (Instruction &I) { markOverdefined(&I); } | 
|  | void visitVAArgInst     (Instruction &I) { markOverdefined(&I); } | 
|  | void visitFreeInst      (Instruction &I) { /*returns void*/ } | 
|  |  | 
|  | void visitInstruction(Instruction &I) { | 
|  | // If a new instruction is added to LLVM that we don't handle... | 
|  | std::cerr << "SCCP: Don't know how to handle: " << I; | 
|  | markOverdefined(&I);   // Just in case | 
|  | } | 
|  | }; | 
|  |  | 
|  | // getFeasibleSuccessors - Return a vector of booleans to indicate which | 
|  | // successors are reachable from a given terminator instruction. | 
|  | // | 
|  | void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, | 
|  | std::vector<bool> &Succs) { | 
|  | Succs.resize(TI.getNumSuccessors()); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { | 
|  | if (BI->isUnconditional()) { | 
|  | Succs[0] = true; | 
|  | } else { | 
|  | LatticeVal &BCValue = getValueState(BI->getCondition()); | 
|  | if (BCValue.isOverdefined() || | 
|  | (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) { | 
|  | // Overdefined condition variables, and branches on unfoldable constant | 
|  | // conditions, mean the branch could go either way. | 
|  | Succs[0] = Succs[1] = true; | 
|  | } else if (BCValue.isConstant()) { | 
|  | // Constant condition variables mean the branch can only go a single way | 
|  | Succs[BCValue.getConstant() == ConstantBool::False] = true; | 
|  | } | 
|  | } | 
|  | } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) { | 
|  | // Invoke instructions successors are always executable. | 
|  | Succs[0] = Succs[1] = true; | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { | 
|  | LatticeVal &SCValue = getValueState(SI->getCondition()); | 
|  | if (SCValue.isOverdefined() ||   // Overdefined condition? | 
|  | (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { | 
|  | // All destinations are executable! | 
|  | Succs.assign(TI.getNumSuccessors(), true); | 
|  | } else if (SCValue.isConstant()) { | 
|  | Constant *CPV = SCValue.getConstant(); | 
|  | // Make sure to skip the "default value" which isn't a value | 
|  | for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { | 
|  | if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... | 
|  | Succs[i] = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Constant value not equal to any of the branches... must execute | 
|  | // default branch then... | 
|  | Succs[0] = true; | 
|  | } | 
|  | } else { | 
|  | std::cerr << "SCCP: Don't know how to handle: " << TI; | 
|  | Succs.assign(TI.getNumSuccessors(), true); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // isEdgeFeasible - Return true if the control flow edge from the 'From' basic | 
|  | // block to the 'To' basic block is currently feasible... | 
|  | // | 
|  | bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { | 
|  | assert(BBExecutable.count(To) && "Dest should always be alive!"); | 
|  |  | 
|  | // Make sure the source basic block is executable!! | 
|  | if (!BBExecutable.count(From)) return false; | 
|  |  | 
|  | // Check to make sure this edge itself is actually feasible now... | 
|  | TerminatorInst *TI = From->getTerminator(); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (BI->isUnconditional()) | 
|  | return true; | 
|  | else { | 
|  | LatticeVal &BCValue = getValueState(BI->getCondition()); | 
|  | if (BCValue.isOverdefined()) { | 
|  | // Overdefined condition variables mean the branch could go either way. | 
|  | return true; | 
|  | } else if (BCValue.isConstant()) { | 
|  | // Not branching on an evaluatable constant? | 
|  | if (!isa<ConstantBool>(BCValue.getConstant())) return true; | 
|  |  | 
|  | // Constant condition variables mean the branch can only go a single way | 
|  | return BI->getSuccessor(BCValue.getConstant() == | 
|  | ConstantBool::False) == To; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { | 
|  | // Invoke instructions successors are always executable. | 
|  | return true; | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | LatticeVal &SCValue = getValueState(SI->getCondition()); | 
|  | if (SCValue.isOverdefined()) {  // Overdefined condition? | 
|  | // All destinations are executable! | 
|  | return true; | 
|  | } else if (SCValue.isConstant()) { | 
|  | Constant *CPV = SCValue.getConstant(); | 
|  | if (!isa<ConstantInt>(CPV)) | 
|  | return true;  // not a foldable constant? | 
|  |  | 
|  | // Make sure to skip the "default value" which isn't a value | 
|  | for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) | 
|  | if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... | 
|  | return SI->getSuccessor(i) == To; | 
|  |  | 
|  | // Constant value not equal to any of the branches... must execute | 
|  | // default branch then... | 
|  | return SI->getDefaultDest() == To; | 
|  | } | 
|  | return false; | 
|  | } else { | 
|  | std::cerr << "Unknown terminator instruction: " << *TI; | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // visit Implementations - Something changed in this instruction... Either an | 
|  | // operand made a transition, or the instruction is newly executable.  Change | 
|  | // the value type of I to reflect these changes if appropriate.  This method | 
|  | // makes sure to do the following actions: | 
|  | // | 
|  | // 1. If a phi node merges two constants in, and has conflicting value coming | 
|  | //    from different branches, or if the PHI node merges in an overdefined | 
|  | //    value, then the PHI node becomes overdefined. | 
|  | // 2. If a phi node merges only constants in, and they all agree on value, the | 
|  | //    PHI node becomes a constant value equal to that. | 
|  | // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant | 
|  | // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined | 
|  | // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined | 
|  | // 6. If a conditional branch has a value that is constant, make the selected | 
|  | //    destination executable | 
|  | // 7. If a conditional branch has a value that is overdefined, make all | 
|  | //    successors executable. | 
|  | // | 
|  | void SCCPSolver::visitPHINode(PHINode &PN) { | 
|  | LatticeVal &PNIV = getValueState(&PN); | 
|  | if (PNIV.isOverdefined()) { | 
|  | // There may be instructions using this PHI node that are not overdefined | 
|  | // themselves.  If so, make sure that they know that the PHI node operand | 
|  | // changed. | 
|  | std::multimap<PHINode*, Instruction*>::iterator I, E; | 
|  | tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); | 
|  | if (I != E) { | 
|  | std::vector<Instruction*> Users; | 
|  | Users.reserve(std::distance(I, E)); | 
|  | for (; I != E; ++I) Users.push_back(I->second); | 
|  | while (!Users.empty()) { | 
|  | visit(Users.back()); | 
|  | Users.pop_back(); | 
|  | } | 
|  | } | 
|  | return;  // Quick exit | 
|  | } | 
|  |  | 
|  | // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, | 
|  | // and slow us down a lot.  Just mark them overdefined. | 
|  | if (PN.getNumIncomingValues() > 64) { | 
|  | markOverdefined(PNIV, &PN); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Look at all of the executable operands of the PHI node.  If any of them | 
|  | // are overdefined, the PHI becomes overdefined as well.  If they are all | 
|  | // constant, and they agree with each other, the PHI becomes the identical | 
|  | // constant.  If they are constant and don't agree, the PHI is overdefined. | 
|  | // If there are no executable operands, the PHI remains undefined. | 
|  | // | 
|  | Constant *OperandVal = 0; | 
|  | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | LatticeVal &IV = getValueState(PN.getIncomingValue(i)); | 
|  | if (IV.isUndefined()) continue;  // Doesn't influence PHI node. | 
|  |  | 
|  | if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { | 
|  | if (IV.isOverdefined()) {   // PHI node becomes overdefined! | 
|  | markOverdefined(PNIV, &PN); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (OperandVal == 0) {   // Grab the first value... | 
|  | OperandVal = IV.getConstant(); | 
|  | } else {                // Another value is being merged in! | 
|  | // There is already a reachable operand.  If we conflict with it, | 
|  | // then the PHI node becomes overdefined.  If we agree with it, we | 
|  | // can continue on. | 
|  |  | 
|  | // Check to see if there are two different constants merging... | 
|  | if (IV.getConstant() != OperandVal) { | 
|  | // Yes there is.  This means the PHI node is not constant. | 
|  | // You must be overdefined poor PHI. | 
|  | // | 
|  | markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined | 
|  | return;    // I'm done analyzing you | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we exited the loop, this means that the PHI node only has constant | 
|  | // arguments that agree with each other(and OperandVal is the constant) or | 
|  | // OperandVal is null because there are no defined incoming arguments.  If | 
|  | // this is the case, the PHI remains undefined. | 
|  | // | 
|  | if (OperandVal) | 
|  | markConstant(PNIV, &PN, OperandVal);      // Acquire operand value | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { | 
|  | std::vector<bool> SuccFeasible; | 
|  | getFeasibleSuccessors(TI, SuccFeasible); | 
|  |  | 
|  | BasicBlock *BB = TI.getParent(); | 
|  |  | 
|  | // Mark all feasible successors executable... | 
|  | for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) | 
|  | if (SuccFeasible[i]) | 
|  | markEdgeExecutable(BB, TI.getSuccessor(i)); | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitCastInst(CastInst &I) { | 
|  | Value *V = I.getOperand(0); | 
|  | LatticeVal &VState = getValueState(V); | 
|  | if (VState.isOverdefined())          // Inherit overdefinedness of operand | 
|  | markOverdefined(&I); | 
|  | else if (VState.isConstant())        // Propagate constant value | 
|  | markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType())); | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitSelectInst(SelectInst &I) { | 
|  | LatticeVal &CondValue = getValueState(I.getCondition()); | 
|  | if (CondValue.isOverdefined()) | 
|  | markOverdefined(&I); | 
|  | else if (CondValue.isConstant()) { | 
|  | if (CondValue.getConstant() == ConstantBool::True) { | 
|  | LatticeVal &Val = getValueState(I.getTrueValue()); | 
|  | if (Val.isOverdefined()) | 
|  | markOverdefined(&I); | 
|  | else if (Val.isConstant()) | 
|  | markConstant(&I, Val.getConstant()); | 
|  | } else if (CondValue.getConstant() == ConstantBool::False) { | 
|  | LatticeVal &Val = getValueState(I.getFalseValue()); | 
|  | if (Val.isOverdefined()) | 
|  | markOverdefined(&I); | 
|  | else if (Val.isConstant()) | 
|  | markConstant(&I, Val.getConstant()); | 
|  | } else | 
|  | markOverdefined(&I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle BinaryOperators and Shift Instructions... | 
|  | void SCCPSolver::visitBinaryOperator(Instruction &I) { | 
|  | LatticeVal &IV = ValueState[&I]; | 
|  | if (IV.isOverdefined()) return; | 
|  |  | 
|  | LatticeVal &V1State = getValueState(I.getOperand(0)); | 
|  | LatticeVal &V2State = getValueState(I.getOperand(1)); | 
|  |  | 
|  | if (V1State.isOverdefined() || V2State.isOverdefined()) { | 
|  | // If both operands are PHI nodes, it is possible that this instruction has | 
|  | // a constant value, despite the fact that the PHI node doesn't.  Check for | 
|  | // this condition now. | 
|  | if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) | 
|  | if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) | 
|  | if (PN1->getParent() == PN2->getParent()) { | 
|  | // Since the two PHI nodes are in the same basic block, they must have | 
|  | // entries for the same predecessors.  Walk the predecessor list, and | 
|  | // if all of the incoming values are constants, and the result of | 
|  | // evaluating this expression with all incoming value pairs is the | 
|  | // same, then this expression is a constant even though the PHI node | 
|  | // is not a constant! | 
|  | LatticeVal Result; | 
|  | for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { | 
|  | LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); | 
|  | BasicBlock *InBlock = PN1->getIncomingBlock(i); | 
|  | LatticeVal &In2 = | 
|  | getValueState(PN2->getIncomingValueForBlock(InBlock)); | 
|  |  | 
|  | if (In1.isOverdefined() || In2.isOverdefined()) { | 
|  | Result.markOverdefined(); | 
|  | break;  // Cannot fold this operation over the PHI nodes! | 
|  | } else if (In1.isConstant() && In2.isConstant()) { | 
|  | Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), | 
|  | In2.getConstant()); | 
|  | if (Result.isUndefined()) | 
|  | Result.markConstant(V); | 
|  | else if (Result.isConstant() && Result.getConstant() != V) { | 
|  | Result.markOverdefined(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we found a constant value here, then we know the instruction is | 
|  | // constant despite the fact that the PHI nodes are overdefined. | 
|  | if (Result.isConstant()) { | 
|  | markConstant(IV, &I, Result.getConstant()); | 
|  | // Remember that this instruction is virtually using the PHI node | 
|  | // operands. | 
|  | UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); | 
|  | UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); | 
|  | return; | 
|  | } else if (Result.isUndefined()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Okay, this really is overdefined now.  Since we might have | 
|  | // speculatively thought that this was not overdefined before, and | 
|  | // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, | 
|  | // make sure to clean out any entries that we put there, for | 
|  | // efficiency. | 
|  | std::multimap<PHINode*, Instruction*>::iterator It, E; | 
|  | tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); | 
|  | while (It != E) { | 
|  | if (It->second == &I) { | 
|  | UsersOfOverdefinedPHIs.erase(It++); | 
|  | } else | 
|  | ++It; | 
|  | } | 
|  | tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); | 
|  | while (It != E) { | 
|  | if (It->second == &I) { | 
|  | UsersOfOverdefinedPHIs.erase(It++); | 
|  | } else | 
|  | ++It; | 
|  | } | 
|  | } | 
|  |  | 
|  | markOverdefined(IV, &I); | 
|  | } else if (V1State.isConstant() && V2State.isConstant()) { | 
|  | markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), | 
|  | V2State.getConstant())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle getelementptr instructions... if all operands are constants then we | 
|  | // can turn this into a getelementptr ConstantExpr. | 
|  | // | 
|  | void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { | 
|  | LatticeVal &IV = ValueState[&I]; | 
|  | if (IV.isOverdefined()) return; | 
|  |  | 
|  | std::vector<Constant*> Operands; | 
|  | Operands.reserve(I.getNumOperands()); | 
|  |  | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { | 
|  | LatticeVal &State = getValueState(I.getOperand(i)); | 
|  | if (State.isUndefined()) | 
|  | return;  // Operands are not resolved yet... | 
|  | else if (State.isOverdefined()) { | 
|  | markOverdefined(IV, &I); | 
|  | return; | 
|  | } | 
|  | assert(State.isConstant() && "Unknown state!"); | 
|  | Operands.push_back(State.getConstant()); | 
|  | } | 
|  |  | 
|  | Constant *Ptr = Operands[0]; | 
|  | Operands.erase(Operands.begin());  // Erase the pointer from idx list... | 
|  |  | 
|  | markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands)); | 
|  | } | 
|  |  | 
|  | /// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr, | 
|  | /// return the constant value being addressed by the constant expression, or | 
|  | /// null if something is funny. | 
|  | /// | 
|  | static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) { | 
|  | if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType())) | 
|  | return 0;  // Do not allow stepping over the value! | 
|  |  | 
|  | // Loop over all of the operands, tracking down which value we are | 
|  | // addressing... | 
|  | for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) | 
|  | if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) { | 
|  | ConstantStruct *CS = dyn_cast<ConstantStruct>(C); | 
|  | if (CS == 0) return 0; | 
|  | if (CU->getValue() >= CS->getNumOperands()) return 0; | 
|  | C = CS->getOperand(CU->getValue()); | 
|  | } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) { | 
|  | ConstantArray *CA = dyn_cast<ConstantArray>(C); | 
|  | if (CA == 0) return 0; | 
|  | if ((uint64_t)CS->getValue() >= CA->getNumOperands()) return 0; | 
|  | C = CA->getOperand(CS->getValue()); | 
|  | } else | 
|  | return 0; | 
|  | return C; | 
|  | } | 
|  |  | 
|  | // Handle load instructions.  If the operand is a constant pointer to a constant | 
|  | // global, we can replace the load with the loaded constant value! | 
|  | void SCCPSolver::visitLoadInst(LoadInst &I) { | 
|  | LatticeVal &IV = ValueState[&I]; | 
|  | if (IV.isOverdefined()) return; | 
|  |  | 
|  | LatticeVal &PtrVal = getValueState(I.getOperand(0)); | 
|  | if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet! | 
|  | if (PtrVal.isConstant() && !I.isVolatile()) { | 
|  | Value *Ptr = PtrVal.getConstant(); | 
|  | if (isa<ConstantPointerNull>(Ptr)) { | 
|  | // load null -> null | 
|  | markConstant(IV, &I, Constant::getNullValue(I.getType())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Transform load (constant global) into the value loaded. | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) | 
|  | if (GV->isConstant() && !GV->isExternal()) { | 
|  | markConstant(IV, &I, GV->getInitializer()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) | 
|  | if (GV->isConstant() && !GV->isExternal()) | 
|  | if (Constant *V = | 
|  | GetGEPGlobalInitializer(GV->getInitializer(), CE)) { | 
|  | markConstant(IV, &I, V); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise we cannot say for certain what value this load will produce. | 
|  | // Bail out. | 
|  | markOverdefined(IV, &I); | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitCallInst(CallInst &I) { | 
|  | LatticeVal &IV = ValueState[&I]; | 
|  | if (IV.isOverdefined()) return; | 
|  |  | 
|  | Function *F = I.getCalledFunction(); | 
|  | if (F == 0 || !canConstantFoldCallTo(F)) { | 
|  | markOverdefined(IV, &I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | std::vector<Constant*> Operands; | 
|  | Operands.reserve(I.getNumOperands()-1); | 
|  |  | 
|  | for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { | 
|  | LatticeVal &State = getValueState(I.getOperand(i)); | 
|  | if (State.isUndefined()) | 
|  | return;  // Operands are not resolved yet... | 
|  | else if (State.isOverdefined()) { | 
|  | markOverdefined(IV, &I); | 
|  | return; | 
|  | } | 
|  | assert(State.isConstant() && "Unknown state!"); | 
|  | Operands.push_back(State.getConstant()); | 
|  | } | 
|  |  | 
|  | if (Constant *C = ConstantFoldCall(F, Operands)) | 
|  | markConstant(IV, &I, C); | 
|  | else | 
|  | markOverdefined(IV, &I); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SCCPSolver::Solve() { | 
|  | // Process the work lists until they are empty! | 
|  | while (!BBWorkList.empty() || !InstWorkList.empty() || | 
|  | !OverdefinedInstWorkList.empty()) { | 
|  | // Process the instruction work list... | 
|  | while (!OverdefinedInstWorkList.empty()) { | 
|  | Instruction *I = OverdefinedInstWorkList.back(); | 
|  | OverdefinedInstWorkList.pop_back(); | 
|  |  | 
|  | DEBUG(std::cerr << "\nPopped off OI-WL: " << I); | 
|  |  | 
|  | // "I" got into the work list because it either made the transition from | 
|  | // bottom to constant | 
|  | // | 
|  | // Anything on this worklist that is overdefined need not be visited | 
|  | // since all of its users will have already been marked as overdefined | 
|  | // Update all of the users of this instruction's value... | 
|  | // | 
|  | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); | 
|  | UI != E; ++UI) | 
|  | OperandChangedState(*UI); | 
|  | } | 
|  | // Process the instruction work list... | 
|  | while (!InstWorkList.empty()) { | 
|  | Instruction *I = InstWorkList.back(); | 
|  | InstWorkList.pop_back(); | 
|  |  | 
|  | DEBUG(std::cerr << "\nPopped off I-WL: " << *I); | 
|  |  | 
|  | // "I" got into the work list because it either made the transition from | 
|  | // bottom to constant | 
|  | // | 
|  | // Anything on this worklist that is overdefined need not be visited | 
|  | // since all of its users will have already been marked as overdefined. | 
|  | // Update all of the users of this instruction's value... | 
|  | // | 
|  | if (!getValueState(I).isOverdefined()) | 
|  | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); | 
|  | UI != E; ++UI) | 
|  | OperandChangedState(*UI); | 
|  | } | 
|  |  | 
|  | // Process the basic block work list... | 
|  | while (!BBWorkList.empty()) { | 
|  | BasicBlock *BB = BBWorkList.back(); | 
|  | BBWorkList.pop_back(); | 
|  |  | 
|  | DEBUG(std::cerr << "\nPopped off BBWL: " << *BB); | 
|  |  | 
|  | // Notify all instructions in this basic block that they are newly | 
|  | // executable. | 
|  | visit(BB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | //===--------------------------------------------------------------------===// | 
|  | // | 
|  | /// SCCP Class - This class uses the SCCPSolver to implement a per-function | 
|  | /// Sparse Conditional COnstant Propagator. | 
|  | /// | 
|  | struct SCCP : public FunctionPass { | 
|  | // runOnFunction - Run the Sparse Conditional Constant Propagation | 
|  | // algorithm, and return true if the function was modified. | 
|  | // | 
|  | bool runOnFunction(Function &F); | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); | 
|  | } // end anonymous namespace | 
|  |  | 
|  |  | 
|  | // createSCCPPass - This is the public interface to this file... | 
|  | FunctionPass *llvm::createSCCPPass() { | 
|  | return new SCCP(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, | 
|  | // and return true if the function was modified. | 
|  | // | 
|  | bool SCCP::runOnFunction(Function &F) { | 
|  | DEBUG(std::cerr << "SCCP on function '" << F.getName() << "'\n"); | 
|  | SCCPSolver Solver; | 
|  |  | 
|  | // Mark the first block of the function as being executable. | 
|  | Solver.MarkBlockExecutable(F.begin()); | 
|  |  | 
|  | // Mark all arguments to the function as being overdefined. | 
|  | hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping(); | 
|  | for (Function::aiterator AI = F.abegin(), E = F.aend(); AI != E; ++AI) | 
|  | Values[AI].markOverdefined(); | 
|  |  | 
|  | // Solve for constants. | 
|  | Solver.Solve(); | 
|  |  | 
|  | bool MadeChanges = false; | 
|  |  | 
|  | // If we decided that there are basic blocks that are dead in this function, | 
|  | // delete their contents now.  Note that we cannot actually delete the blocks, | 
|  | // as we cannot modify the CFG of the function. | 
|  | // | 
|  | std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks(); | 
|  | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) | 
|  | if (!ExecutableBBs.count(BB)) { | 
|  | DEBUG(std::cerr << "  BasicBlock Dead:" << *BB); | 
|  | ++NumDeadBlocks; | 
|  |  | 
|  | // Delete the instructions backwards, as it has a reduced likelihood of | 
|  | // having to update as many def-use and use-def chains. | 
|  | std::vector<Instruction*> Insts; | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); | 
|  | I != E; ++I) | 
|  | Insts.push_back(I); | 
|  | while (!Insts.empty()) { | 
|  | Instruction *I = Insts.back(); | 
|  | Insts.pop_back(); | 
|  | if (!I->use_empty()) | 
|  | I->replaceAllUsesWith(UndefValue::get(I->getType())); | 
|  | BB->getInstList().erase(I); | 
|  | MadeChanges = true; | 
|  | ++NumInstRemoved; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Iterate over all of the instructions in a function, replacing them with | 
|  | // constants if we have found them to be of constant values. | 
|  | // | 
|  | for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) | 
|  | for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { | 
|  | Instruction *Inst = BI++; | 
|  | if (Inst->getType() != Type::VoidTy) { | 
|  | LatticeVal &IV = Values[Inst]; | 
|  | if (IV.isConstant() || IV.isUndefined()) { | 
|  | Constant *Const; | 
|  | if (IV.isConstant()) { | 
|  | Const = IV.getConstant(); | 
|  | DEBUG(std::cerr << "  Constant: " << *Const << " = " << *Inst); | 
|  | } else { | 
|  | Const = UndefValue::get(Inst->getType()); | 
|  | DEBUG(std::cerr << "  Undefined: " << *Inst); | 
|  | } | 
|  |  | 
|  | // Replaces all of the uses of a variable with uses of the constant. | 
|  | Inst->replaceAllUsesWith(Const); | 
|  |  | 
|  | // Delete the instruction. | 
|  | BB->getInstList().erase(Inst); | 
|  |  | 
|  | // Hey, we just changed something! | 
|  | MadeChanges = true; | 
|  | ++NumInstRemoved; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChanges; | 
|  | } | 
|  |  |