|  | //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // \file | 
|  | // This file implements a TargetTransformInfo analysis pass specific to the | 
|  | // AMDGPU target machine. It uses the target's detailed information to provide | 
|  | // more precise answers to certain TTI queries, while letting the target | 
|  | // independent and default TTI implementations handle the rest. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AMDGPUTargetTransformInfo.h" | 
|  | #include "AMDGPUSubtarget.h" | 
|  | #include "Utils/AMDGPUBaseInfo.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/MC/SubtargetFeature.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <limits> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "AMDGPUtti" | 
|  |  | 
|  | static cl::opt<unsigned> UnrollThresholdPrivate( | 
|  | "amdgpu-unroll-threshold-private", | 
|  | cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), | 
|  | cl::init(2500), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> UnrollThresholdLocal( | 
|  | "amdgpu-unroll-threshold-local", | 
|  | cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), | 
|  | cl::init(1000), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> UnrollThresholdIf( | 
|  | "amdgpu-unroll-threshold-if", | 
|  | cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), | 
|  | cl::init(150), cl::Hidden); | 
|  |  | 
|  | static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, | 
|  | unsigned Depth = 0) { | 
|  | const Instruction *I = dyn_cast<Instruction>(Cond); | 
|  | if (!I) | 
|  | return false; | 
|  |  | 
|  | for (const Value *V : I->operand_values()) { | 
|  | if (!L->contains(I)) | 
|  | continue; | 
|  | if (const PHINode *PHI = dyn_cast<PHINode>(V)) { | 
|  | if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { | 
|  | return SubLoop->contains(PHI); })) | 
|  | return true; | 
|  | } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, | 
|  | TTI::UnrollingPreferences &UP) { | 
|  | UP.Threshold = 300; // Twice the default. | 
|  | UP.MaxCount = std::numeric_limits<unsigned>::max(); | 
|  | UP.Partial = true; | 
|  |  | 
|  | // TODO: Do we want runtime unrolling? | 
|  |  | 
|  | // Maximum alloca size than can fit registers. Reserve 16 registers. | 
|  | const unsigned MaxAlloca = (256 - 16) * 4; | 
|  | unsigned ThresholdPrivate = UnrollThresholdPrivate; | 
|  | unsigned ThresholdLocal = UnrollThresholdLocal; | 
|  | unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); | 
|  | AMDGPUAS ASST = ST->getAMDGPUAS(); | 
|  | for (const BasicBlock *BB : L->getBlocks()) { | 
|  | const DataLayout &DL = BB->getModule()->getDataLayout(); | 
|  | unsigned LocalGEPsSeen = 0; | 
|  |  | 
|  | if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { | 
|  | return SubLoop->contains(BB); })) | 
|  | continue; // Block belongs to an inner loop. | 
|  |  | 
|  | for (const Instruction &I : *BB) { | 
|  | // Unroll a loop which contains an "if" statement whose condition | 
|  | // defined by a PHI belonging to the loop. This may help to eliminate | 
|  | // if region and potentially even PHI itself, saving on both divergence | 
|  | // and registers used for the PHI. | 
|  | // Add a small bonus for each of such "if" statements. | 
|  | if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { | 
|  | if (UP.Threshold < MaxBoost && Br->isConditional()) { | 
|  | if (L->isLoopExiting(Br->getSuccessor(0)) || | 
|  | L->isLoopExiting(Br->getSuccessor(1))) | 
|  | continue; | 
|  | if (dependsOnLocalPhi(L, Br->getCondition())) { | 
|  | UP.Threshold += UnrollThresholdIf; | 
|  | LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold | 
|  | << " for loop:\n" | 
|  | << *L << " due to " << *Br << '\n'); | 
|  | if (UP.Threshold >= MaxBoost) | 
|  | return; | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); | 
|  | if (!GEP) | 
|  | continue; | 
|  |  | 
|  | unsigned AS = GEP->getAddressSpace(); | 
|  | unsigned Threshold = 0; | 
|  | if (AS == ASST.PRIVATE_ADDRESS) | 
|  | Threshold = ThresholdPrivate; | 
|  | else if (AS == ASST.LOCAL_ADDRESS) | 
|  | Threshold = ThresholdLocal; | 
|  | else | 
|  | continue; | 
|  |  | 
|  | if (UP.Threshold >= Threshold) | 
|  | continue; | 
|  |  | 
|  | if (AS == ASST.PRIVATE_ADDRESS) { | 
|  | const Value *Ptr = GEP->getPointerOperand(); | 
|  | const AllocaInst *Alloca = | 
|  | dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); | 
|  | if (!Alloca || !Alloca->isStaticAlloca()) | 
|  | continue; | 
|  | Type *Ty = Alloca->getAllocatedType(); | 
|  | unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; | 
|  | if (AllocaSize > MaxAlloca) | 
|  | continue; | 
|  | } else if (AS == ASST.LOCAL_ADDRESS) { | 
|  | LocalGEPsSeen++; | 
|  | // Inhibit unroll for local memory if we have seen addressing not to | 
|  | // a variable, most likely we will be unable to combine it. | 
|  | // Do not unroll too deep inner loops for local memory to give a chance | 
|  | // to unroll an outer loop for a more important reason. | 
|  | if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || | 
|  | (!isa<GlobalVariable>(GEP->getPointerOperand()) && | 
|  | !isa<Argument>(GEP->getPointerOperand()))) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check if GEP depends on a value defined by this loop itself. | 
|  | bool HasLoopDef = false; | 
|  | for (const Value *Op : GEP->operands()) { | 
|  | const Instruction *Inst = dyn_cast<Instruction>(Op); | 
|  | if (!Inst || L->isLoopInvariant(Op)) | 
|  | continue; | 
|  |  | 
|  | if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { | 
|  | return SubLoop->contains(Inst); })) | 
|  | continue; | 
|  | HasLoopDef = true; | 
|  | break; | 
|  | } | 
|  | if (!HasLoopDef) | 
|  | continue; | 
|  |  | 
|  | // We want to do whatever we can to limit the number of alloca | 
|  | // instructions that make it through to the code generator.  allocas | 
|  | // require us to use indirect addressing, which is slow and prone to | 
|  | // compiler bugs.  If this loop does an address calculation on an | 
|  | // alloca ptr, then we want to use a higher than normal loop unroll | 
|  | // threshold. This will give SROA a better chance to eliminate these | 
|  | // allocas. | 
|  | // | 
|  | // We also want to have more unrolling for local memory to let ds | 
|  | // instructions with different offsets combine. | 
|  | // | 
|  | // Don't use the maximum allowed value here as it will make some | 
|  | // programs way too big. | 
|  | UP.Threshold = Threshold; | 
|  | LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold | 
|  | << " for loop:\n" | 
|  | << *L << " due to " << *GEP << '\n'); | 
|  | if (UP.Threshold >= MaxBoost) | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { | 
|  | // The concept of vector registers doesn't really exist. Some packed vector | 
|  | // operations operate on the normal 32-bit registers. | 
|  |  | 
|  | // Number of VGPRs on SI. | 
|  | if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) | 
|  | return 256; | 
|  |  | 
|  | return 4 * 128; // XXX - 4 channels. Should these count as vector instead? | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) const { | 
|  | // This is really the number of registers to fill when vectorizing / | 
|  | // interleaving loops, so we lie to avoid trying to use all registers. | 
|  | return getHardwareNumberOfRegisters(Vec) >> 3; | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) const { | 
|  | return 32; | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTTIImpl::getMinVectorRegisterBitWidth() const { | 
|  | return 32; | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, | 
|  | unsigned ChainSizeInBytes, | 
|  | VectorType *VecTy) const { | 
|  | unsigned VecRegBitWidth = VF * LoadSize; | 
|  | if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) | 
|  | // TODO: Support element-size less than 32bit? | 
|  | return 128 / LoadSize; | 
|  |  | 
|  | return VF; | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, | 
|  | unsigned ChainSizeInBytes, | 
|  | VectorType *VecTy) const { | 
|  | unsigned VecRegBitWidth = VF * StoreSize; | 
|  | if (VecRegBitWidth > 128) | 
|  | return 128 / StoreSize; | 
|  |  | 
|  | return VF; | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { | 
|  | AMDGPUAS AS = ST->getAMDGPUAS(); | 
|  | if (AddrSpace == AS.GLOBAL_ADDRESS || | 
|  | AddrSpace == AS.CONSTANT_ADDRESS || | 
|  | AddrSpace == AS.CONSTANT_ADDRESS_32BIT) { | 
|  | if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) | 
|  | return 128; | 
|  | return 512; | 
|  | } | 
|  |  | 
|  | if (AddrSpace == AS.FLAT_ADDRESS || | 
|  | AddrSpace == AS.LOCAL_ADDRESS || | 
|  | AddrSpace == AS.REGION_ADDRESS) | 
|  | return 128; | 
|  |  | 
|  | if (AddrSpace == AS.PRIVATE_ADDRESS) | 
|  | return 8 * ST->getMaxPrivateElementSize(); | 
|  |  | 
|  | if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS && | 
|  | (AddrSpace == AS.PARAM_D_ADDRESS || | 
|  | AddrSpace == AS.PARAM_I_ADDRESS || | 
|  | (AddrSpace >= AS.CONSTANT_BUFFER_0 && | 
|  | AddrSpace <= AS.CONSTANT_BUFFER_15))) | 
|  | return 128; | 
|  | llvm_unreachable("unhandled address space"); | 
|  | } | 
|  |  | 
|  | bool AMDGPUTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, | 
|  | unsigned Alignment, | 
|  | unsigned AddrSpace) const { | 
|  | // We allow vectorization of flat stores, even though we may need to decompose | 
|  | // them later if they may access private memory. We don't have enough context | 
|  | // here, and legalization can handle it. | 
|  | if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) { | 
|  | return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && | 
|  | ChainSizeInBytes <= ST->getMaxPrivateElementSize(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, | 
|  | unsigned Alignment, | 
|  | unsigned AddrSpace) const { | 
|  | return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); | 
|  | } | 
|  |  | 
|  | bool AMDGPUTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, | 
|  | unsigned Alignment, | 
|  | unsigned AddrSpace) const { | 
|  | return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) { | 
|  | // Disable unrolling if the loop is not vectorized. | 
|  | // TODO: Enable this again. | 
|  | if (VF == 1) | 
|  | return 1; | 
|  |  | 
|  | return 8; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, | 
|  | MemIntrinsicInfo &Info) const { | 
|  | switch (Inst->getIntrinsicID()) { | 
|  | case Intrinsic::amdgcn_atomic_inc: | 
|  | case Intrinsic::amdgcn_atomic_dec: | 
|  | case Intrinsic::amdgcn_ds_fadd: | 
|  | case Intrinsic::amdgcn_ds_fmin: | 
|  | case Intrinsic::amdgcn_ds_fmax: { | 
|  | auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); | 
|  | auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); | 
|  | if (!Ordering || !Volatile) | 
|  | return false; // Invalid. | 
|  |  | 
|  | unsigned OrderingVal = Ordering->getZExtValue(); | 
|  | if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) | 
|  | return false; | 
|  |  | 
|  | Info.PtrVal = Inst->getArgOperand(0); | 
|  | Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); | 
|  | Info.ReadMem = true; | 
|  | Info.WriteMem = true; | 
|  | Info.IsVolatile = !Volatile->isNullValue(); | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | int AMDGPUTTIImpl::getArithmeticInstrCost( | 
|  | unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, | 
|  | TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, | 
|  | TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) { | 
|  | EVT OrigTy = TLI->getValueType(DL, Ty); | 
|  | if (!OrigTy.isSimple()) { | 
|  | return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, | 
|  | Opd1PropInfo, Opd2PropInfo); | 
|  | } | 
|  |  | 
|  | // Legalize the type. | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); | 
|  | int ISD = TLI->InstructionOpcodeToISD(Opcode); | 
|  |  | 
|  | // Because we don't have any legal vector operations, but the legal types, we | 
|  | // need to account for split vectors. | 
|  | unsigned NElts = LT.second.isVector() ? | 
|  | LT.second.getVectorNumElements() : 1; | 
|  |  | 
|  | MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; | 
|  |  | 
|  | switch (ISD) { | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::SRA: | 
|  | if (SLT == MVT::i64) | 
|  | return get64BitInstrCost() * LT.first * NElts; | 
|  |  | 
|  | // i32 | 
|  | return getFullRateInstrCost() * LT.first * NElts; | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | if (SLT == MVT::i64){ | 
|  | // and, or and xor are typically split into 2 VALU instructions. | 
|  | return 2 * getFullRateInstrCost() * LT.first * NElts; | 
|  | } | 
|  |  | 
|  | return LT.first * NElts * getFullRateInstrCost(); | 
|  | case ISD::MUL: { | 
|  | const int QuarterRateCost = getQuarterRateInstrCost(); | 
|  | if (SLT == MVT::i64) { | 
|  | const int FullRateCost = getFullRateInstrCost(); | 
|  | return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; | 
|  | } | 
|  |  | 
|  | // i32 | 
|  | return QuarterRateCost * NElts * LT.first; | 
|  | } | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | if (SLT == MVT::f64) | 
|  | return LT.first * NElts * get64BitInstrCost(); | 
|  |  | 
|  | if (SLT == MVT::f32 || SLT == MVT::f16) | 
|  | return LT.first * NElts * getFullRateInstrCost(); | 
|  | break; | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | // FIXME: frem should be handled separately. The fdiv in it is most of it, | 
|  | // but the current lowering is also not entirely correct. | 
|  | if (SLT == MVT::f64) { | 
|  | int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); | 
|  | // Add cost of workaround. | 
|  | if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) | 
|  | Cost += 3 * getFullRateInstrCost(); | 
|  |  | 
|  | return LT.first * Cost * NElts; | 
|  | } | 
|  |  | 
|  | if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { | 
|  | // TODO: This is more complicated, unsafe flags etc. | 
|  | if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) || | 
|  | (SLT == MVT::f16 && ST->has16BitInsts())) { | 
|  | return LT.first * getQuarterRateInstrCost() * NElts; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SLT == MVT::f16 && ST->has16BitInsts()) { | 
|  | // 2 x v_cvt_f32_f16 | 
|  | // f32 rcp | 
|  | // f32 fmul | 
|  | // v_cvt_f16_f32 | 
|  | // f16 div_fixup | 
|  | int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); | 
|  | return LT.first * Cost * NElts; | 
|  | } | 
|  |  | 
|  | if (SLT == MVT::f32 || SLT == MVT::f16) { | 
|  | int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); | 
|  |  | 
|  | if (!ST->hasFP32Denormals()) { | 
|  | // FP mode switches. | 
|  | Cost += 2 * getFullRateInstrCost(); | 
|  | } | 
|  |  | 
|  | return LT.first * NElts * Cost; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, | 
|  | Opd1PropInfo, Opd2PropInfo); | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) { | 
|  | // XXX - For some reason this isn't called for switch. | 
|  | switch (Opcode) { | 
|  | case Instruction::Br: | 
|  | case Instruction::Ret: | 
|  | return 10; | 
|  | default: | 
|  | return BaseT::getCFInstrCost(Opcode); | 
|  | } | 
|  | } | 
|  |  | 
|  | int AMDGPUTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty, | 
|  | bool IsPairwise) { | 
|  | EVT OrigTy = TLI->getValueType(DL, Ty); | 
|  |  | 
|  | // Computes cost on targets that have packed math instructions(which support | 
|  | // 16-bit types only). | 
|  | if (IsPairwise || | 
|  | !ST->hasVOP3PInsts() || | 
|  | OrigTy.getScalarSizeInBits() != 16) | 
|  | return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise); | 
|  |  | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); | 
|  | return LT.first * getFullRateInstrCost(); | 
|  | } | 
|  |  | 
|  | int AMDGPUTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy, | 
|  | bool IsPairwise, | 
|  | bool IsUnsigned) { | 
|  | EVT OrigTy = TLI->getValueType(DL, Ty); | 
|  |  | 
|  | // Computes cost on targets that have packed math instructions(which support | 
|  | // 16-bit types only). | 
|  | if (IsPairwise || | 
|  | !ST->hasVOP3PInsts() || | 
|  | OrigTy.getScalarSizeInBits() != 16) | 
|  | return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned); | 
|  |  | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); | 
|  | return LT.first * getHalfRateInstrCost(); | 
|  | } | 
|  |  | 
|  | int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, | 
|  | unsigned Index) { | 
|  | switch (Opcode) { | 
|  | case Instruction::ExtractElement: | 
|  | case Instruction::InsertElement: { | 
|  | unsigned EltSize | 
|  | = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); | 
|  | if (EltSize < 32) { | 
|  | if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) | 
|  | return 0; | 
|  | return BaseT::getVectorInstrCost(Opcode, ValTy, Index); | 
|  | } | 
|  |  | 
|  | // Extracts are just reads of a subregister, so are free. Inserts are | 
|  | // considered free because we don't want to have any cost for scalarizing | 
|  | // operations, and we don't have to copy into a different register class. | 
|  |  | 
|  | // Dynamic indexing isn't free and is best avoided. | 
|  | return Index == ~0u ? 2 : 0; | 
|  | } | 
|  | default: | 
|  | return BaseT::getVectorInstrCost(Opcode, ValTy, Index); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static bool isArgPassedInSGPR(const Argument *A) { | 
|  | const Function *F = A->getParent(); | 
|  |  | 
|  | // Arguments to compute shaders are never a source of divergence. | 
|  | CallingConv::ID CC = F->getCallingConv(); | 
|  | switch (CC) { | 
|  | case CallingConv::AMDGPU_KERNEL: | 
|  | case CallingConv::SPIR_KERNEL: | 
|  | return true; | 
|  | case CallingConv::AMDGPU_VS: | 
|  | case CallingConv::AMDGPU_LS: | 
|  | case CallingConv::AMDGPU_HS: | 
|  | case CallingConv::AMDGPU_ES: | 
|  | case CallingConv::AMDGPU_GS: | 
|  | case CallingConv::AMDGPU_PS: | 
|  | case CallingConv::AMDGPU_CS: | 
|  | // For non-compute shaders, SGPR inputs are marked with either inreg or byval. | 
|  | // Everything else is in VGPRs. | 
|  | return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || | 
|  | F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); | 
|  | default: | 
|  | // TODO: Should calls support inreg for SGPR inputs? | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \returns true if the result of the value could potentially be | 
|  | /// different across workitems in a wavefront. | 
|  | bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const { | 
|  | if (const Argument *A = dyn_cast<Argument>(V)) | 
|  | return !isArgPassedInSGPR(A); | 
|  |  | 
|  | // Loads from the private address space are divergent, because threads | 
|  | // can execute the load instruction with the same inputs and get different | 
|  | // results. | 
|  | // | 
|  | // All other loads are not divergent, because if threads issue loads with the | 
|  | // same arguments, they will always get the same result. | 
|  | if (const LoadInst *Load = dyn_cast<LoadInst>(V)) | 
|  | return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS; | 
|  |  | 
|  | // Atomics are divergent because they are executed sequentially: when an | 
|  | // atomic operation refers to the same address in each thread, then each | 
|  | // thread after the first sees the value written by the previous thread as | 
|  | // original value. | 
|  | if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) | 
|  | return true; | 
|  |  | 
|  | if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) | 
|  | return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); | 
|  |  | 
|  | // Assume all function calls are a source of divergence. | 
|  | if (isa<CallInst>(V) || isa<InvokeInst>(V)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTTIImpl::isAlwaysUniform(const Value *V) const { | 
|  | if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { | 
|  | switch (Intrinsic->getIntrinsicID()) { | 
|  | default: | 
|  | return false; | 
|  | case Intrinsic::amdgcn_readfirstlane: | 
|  | case Intrinsic::amdgcn_readlane: | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, | 
|  | Type *SubTp) { | 
|  | if (ST->hasVOP3PInsts()) { | 
|  | VectorType *VT = cast<VectorType>(Tp); | 
|  | if (VT->getNumElements() == 2 && | 
|  | DL.getTypeSizeInBits(VT->getElementType()) == 16) { | 
|  | // With op_sel VOP3P instructions freely can access the low half or high | 
|  | // half of a register, so any swizzle is free. | 
|  |  | 
|  | switch (Kind) { | 
|  | case TTI::SK_Broadcast: | 
|  | case TTI::SK_Reverse: | 
|  | case TTI::SK_PermuteSingleSrc: | 
|  | return 0; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  | } | 
|  |  | 
|  | bool AMDGPUTTIImpl::areInlineCompatible(const Function *Caller, | 
|  | const Function *Callee) const { | 
|  | const TargetMachine &TM = getTLI()->getTargetMachine(); | 
|  | const FeatureBitset &CallerBits = | 
|  | TM.getSubtargetImpl(*Caller)->getFeatureBits(); | 
|  | const FeatureBitset &CalleeBits = | 
|  | TM.getSubtargetImpl(*Callee)->getFeatureBits(); | 
|  |  | 
|  | FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; | 
|  | FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; | 
|  | return ((RealCallerBits & RealCalleeBits) == RealCalleeBits); | 
|  | } |