|  | //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for statements. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Sema.h" | 
|  | #include "SemaInit.h" | 
|  | #include "clang/AST/APValue.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExprObjC.h" | 
|  | #include "clang/AST/StmtObjC.h" | 
|  | #include "clang/AST/StmtCXX.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | using namespace clang; | 
|  |  | 
|  | Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) { | 
|  | Expr *E = expr->takeAs<Expr>(); | 
|  | assert(E && "ActOnExprStmt(): missing expression"); | 
|  | if (E->getType()->isObjCInterfaceType()) { | 
|  | if (LangOpts.ObjCNonFragileABI) | 
|  | Diag(E->getLocEnd(), diag::err_indirection_requires_nonfragile_object) | 
|  | << E->getType(); | 
|  | else | 
|  | Diag(E->getLocEnd(), diag::err_direct_interface_unsupported) | 
|  | << E->getType(); | 
|  | return StmtError(); | 
|  | } | 
|  | // C99 6.8.3p2: The expression in an expression statement is evaluated as a | 
|  | // void expression for its side effects.  Conversion to void allows any | 
|  | // operand, even incomplete types. | 
|  |  | 
|  | // Same thing in for stmt first clause (when expr) and third clause. | 
|  | return Owned(static_cast<Stmt*>(E)); | 
|  | } | 
|  |  | 
|  |  | 
|  | Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) { | 
|  | return Owned(new (Context) NullStmt(SemiLoc)); | 
|  | } | 
|  |  | 
|  | Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, | 
|  | SourceLocation StartLoc, | 
|  | SourceLocation EndLoc) { | 
|  | DeclGroupRef DG = dg.getAsVal<DeclGroupRef>(); | 
|  |  | 
|  | // If we have an invalid decl, just return an error. | 
|  | if (DG.isNull()) return StmtError(); | 
|  |  | 
|  | return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc)); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) { | 
|  | DeclGroupRef DG = dg.getAsVal<DeclGroupRef>(); | 
|  |  | 
|  | // If we have an invalid decl, just return. | 
|  | if (DG.isNull() || !DG.isSingleDecl()) return; | 
|  | // suppress any potential 'unused variable' warning. | 
|  | DG.getSingleDecl()->setUsed(); | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseUnusedExprResult(const Stmt *S) { | 
|  | const Expr *E = dyn_cast_or_null<Expr>(S); | 
|  | if (!E) | 
|  | return; | 
|  |  | 
|  | // Ignore expressions that have void type. | 
|  | if (E->getType()->isVoidType()) | 
|  | return; | 
|  |  | 
|  | SourceLocation Loc; | 
|  | SourceRange R1, R2; | 
|  | if (!E->isUnusedResultAWarning(Loc, R1, R2, Context)) | 
|  | return; | 
|  |  | 
|  | // Okay, we have an unused result.  Depending on what the base expression is, | 
|  | // we might want to make a more specific diagnostic.  Check for one of these | 
|  | // cases now. | 
|  | unsigned DiagID = diag::warn_unused_expr; | 
|  | E = E->IgnoreParens(); | 
|  | if (isa<ObjCImplicitSetterGetterRefExpr>(E)) | 
|  | DiagID = diag::warn_unused_property_expr; | 
|  |  | 
|  | if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { | 
|  | // If the callee has attribute pure, const, or warn_unused_result, warn with | 
|  | // a more specific message to make it clear what is happening. | 
|  | if (const Decl *FD = CE->getCalleeDecl()) { | 
|  | if (FD->getAttr<WarnUnusedResultAttr>()) { | 
|  | Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result"; | 
|  | return; | 
|  | } | 
|  | if (FD->getAttr<PureAttr>()) { | 
|  | Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure"; | 
|  | return; | 
|  | } | 
|  | if (FD->getAttr<ConstAttr>()) { | 
|  | Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const"; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Diag(Loc, DiagID) << R1 << R2; | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, | 
|  | MultiStmtArg elts, bool isStmtExpr) { | 
|  | unsigned NumElts = elts.size(); | 
|  | Stmt **Elts = reinterpret_cast<Stmt**>(elts.release()); | 
|  | // If we're in C89 mode, check that we don't have any decls after stmts.  If | 
|  | // so, emit an extension diagnostic. | 
|  | if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) { | 
|  | // Note that __extension__ can be around a decl. | 
|  | unsigned i = 0; | 
|  | // Skip over all declarations. | 
|  | for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i) | 
|  | /*empty*/; | 
|  |  | 
|  | // We found the end of the list or a statement.  Scan for another declstmt. | 
|  | for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i) | 
|  | /*empty*/; | 
|  |  | 
|  | if (i != NumElts) { | 
|  | Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin(); | 
|  | Diag(D->getLocation(), diag::ext_mixed_decls_code); | 
|  | } | 
|  | } | 
|  | // Warn about unused expressions in statements. | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | // Ignore statements that are last in a statement expression. | 
|  | if (isStmtExpr && i == NumElts - 1) | 
|  | continue; | 
|  |  | 
|  | DiagnoseUnusedExprResult(Elts[i]); | 
|  | } | 
|  |  | 
|  | return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R)); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval, | 
|  | SourceLocation DotDotDotLoc, ExprArg rhsval, | 
|  | SourceLocation ColonLoc) { | 
|  | assert((lhsval.get() != 0) && "missing expression in case statement"); | 
|  |  | 
|  | // C99 6.8.4.2p3: The expression shall be an integer constant. | 
|  | // However, GCC allows any evaluatable integer expression. | 
|  | Expr *LHSVal = static_cast<Expr*>(lhsval.get()); | 
|  | if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() && | 
|  | VerifyIntegerConstantExpression(LHSVal)) | 
|  | return StmtError(); | 
|  |  | 
|  | // GCC extension: The expression shall be an integer constant. | 
|  |  | 
|  | Expr *RHSVal = static_cast<Expr*>(rhsval.get()); | 
|  | if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() && | 
|  | VerifyIntegerConstantExpression(RHSVal)) { | 
|  | RHSVal = 0;  // Recover by just forgetting about it. | 
|  | rhsval = 0; | 
|  | } | 
|  |  | 
|  | if (getSwitchStack().empty()) { | 
|  | Diag(CaseLoc, diag::err_case_not_in_switch); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | // Only now release the smart pointers. | 
|  | lhsval.release(); | 
|  | rhsval.release(); | 
|  | CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc, | 
|  | ColonLoc); | 
|  | getSwitchStack().back()->addSwitchCase(CS); | 
|  | return Owned(CS); | 
|  | } | 
|  |  | 
|  | /// ActOnCaseStmtBody - This installs a statement as the body of a case. | 
|  | void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) { | 
|  | CaseStmt *CS = static_cast<CaseStmt*>(caseStmt); | 
|  | Stmt *SubStmt = subStmt.takeAs<Stmt>(); | 
|  | CS->setSubStmt(SubStmt); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, | 
|  | StmtArg subStmt, Scope *CurScope) { | 
|  | Stmt *SubStmt = subStmt.takeAs<Stmt>(); | 
|  |  | 
|  | if (getSwitchStack().empty()) { | 
|  | Diag(DefaultLoc, diag::err_default_not_in_switch); | 
|  | return Owned(SubStmt); | 
|  | } | 
|  |  | 
|  | DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt); | 
|  | getSwitchStack().back()->addSwitchCase(DS); | 
|  | return Owned(DS); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II, | 
|  | SourceLocation ColonLoc, StmtArg subStmt) { | 
|  | Stmt *SubStmt = subStmt.takeAs<Stmt>(); | 
|  | // Look up the record for this label identifier. | 
|  | LabelStmt *&LabelDecl = getLabelMap()[II]; | 
|  |  | 
|  | // If not forward referenced or defined already, just create a new LabelStmt. | 
|  | if (LabelDecl == 0) | 
|  | return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt)); | 
|  |  | 
|  | assert(LabelDecl->getID() == II && "Label mismatch!"); | 
|  |  | 
|  | // Otherwise, this label was either forward reference or multiply defined.  If | 
|  | // multiply defined, reject it now. | 
|  | if (LabelDecl->getSubStmt()) { | 
|  | Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID(); | 
|  | Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition); | 
|  | return Owned(SubStmt); | 
|  | } | 
|  |  | 
|  | // Otherwise, this label was forward declared, and we just found its real | 
|  | // definition.  Fill in the forward definition and return it. | 
|  | LabelDecl->setIdentLoc(IdentLoc); | 
|  | LabelDecl->setSubStmt(SubStmt); | 
|  | return Owned(LabelDecl); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, DeclPtrTy CondVar, | 
|  | StmtArg ThenVal, SourceLocation ElseLoc, | 
|  | StmtArg ElseVal) { | 
|  | OwningExprResult CondResult(CondVal.release()); | 
|  |  | 
|  | VarDecl *ConditionVar = 0; | 
|  | if (CondVar.get()) { | 
|  | ConditionVar = CondVar.getAs<VarDecl>(); | 
|  | CondResult = CheckConditionVariable(ConditionVar); | 
|  | if (CondResult.isInvalid()) | 
|  | return StmtError(); | 
|  | } | 
|  | Expr *ConditionExpr = CondResult.takeAs<Expr>(); | 
|  | if (!ConditionExpr) | 
|  | return StmtError(); | 
|  |  | 
|  | if (CheckBooleanCondition(ConditionExpr, IfLoc)) { | 
|  | CondResult = ConditionExpr; | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | Stmt *thenStmt = ThenVal.takeAs<Stmt>(); | 
|  | DiagnoseUnusedExprResult(thenStmt); | 
|  |  | 
|  | // Warn if the if block has a null body without an else value. | 
|  | // this helps prevent bugs due to typos, such as | 
|  | // if (condition); | 
|  | //   do_stuff(); | 
|  | if (!ElseVal.get()) { | 
|  | if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt)) | 
|  | Diag(stmt->getSemiLoc(), diag::warn_empty_if_body); | 
|  | } | 
|  |  | 
|  | Stmt *elseStmt = ElseVal.takeAs<Stmt>(); | 
|  | DiagnoseUnusedExprResult(elseStmt); | 
|  |  | 
|  | CondResult.release(); | 
|  | return Owned(new (Context) IfStmt(IfLoc, ConditionVar, ConditionExpr, | 
|  | thenStmt, ElseLoc, elseStmt)); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnStartOfSwitchStmt(FullExprArg cond, DeclPtrTy CondVar) { | 
|  | OwningExprResult CondResult(cond.release()); | 
|  |  | 
|  | VarDecl *ConditionVar = 0; | 
|  | if (CondVar.get()) { | 
|  | ConditionVar = CondVar.getAs<VarDecl>(); | 
|  | CondResult = CheckConditionVariable(ConditionVar); | 
|  | if (CondResult.isInvalid()) | 
|  | return StmtError(); | 
|  | } | 
|  | SwitchStmt *SS = new (Context) SwitchStmt(ConditionVar, | 
|  | CondResult.takeAs<Expr>()); | 
|  | getSwitchStack().push_back(SS); | 
|  | return Owned(SS); | 
|  | } | 
|  |  | 
|  | /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have | 
|  | /// the specified width and sign.  If an overflow occurs, detect it and emit | 
|  | /// the specified diagnostic. | 
|  | void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val, | 
|  | unsigned NewWidth, bool NewSign, | 
|  | SourceLocation Loc, | 
|  | unsigned DiagID) { | 
|  | // Perform a conversion to the promoted condition type if needed. | 
|  | if (NewWidth > Val.getBitWidth()) { | 
|  | // If this is an extension, just do it. | 
|  | llvm::APSInt OldVal(Val); | 
|  | Val.extend(NewWidth); | 
|  |  | 
|  | // If the input was signed and negative and the output is unsigned, | 
|  | // warn. | 
|  | if (!NewSign && OldVal.isSigned() && OldVal.isNegative()) | 
|  | Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10); | 
|  |  | 
|  | Val.setIsSigned(NewSign); | 
|  | } else if (NewWidth < Val.getBitWidth()) { | 
|  | // If this is a truncation, check for overflow. | 
|  | llvm::APSInt ConvVal(Val); | 
|  | ConvVal.trunc(NewWidth); | 
|  | ConvVal.setIsSigned(NewSign); | 
|  | ConvVal.extend(Val.getBitWidth()); | 
|  | ConvVal.setIsSigned(Val.isSigned()); | 
|  | if (ConvVal != Val) | 
|  | Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10); | 
|  |  | 
|  | // Regardless of whether a diagnostic was emitted, really do the | 
|  | // truncation. | 
|  | Val.trunc(NewWidth); | 
|  | Val.setIsSigned(NewSign); | 
|  | } else if (NewSign != Val.isSigned()) { | 
|  | // Convert the sign to match the sign of the condition.  This can cause | 
|  | // overflow as well: unsigned(INTMIN) | 
|  | llvm::APSInt OldVal(Val); | 
|  | Val.setIsSigned(NewSign); | 
|  |  | 
|  | if (Val.isNegative())  // Sign bit changes meaning. | 
|  | Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct CaseCompareFunctor { | 
|  | bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, | 
|  | const llvm::APSInt &RHS) { | 
|  | return LHS.first < RHS; | 
|  | } | 
|  | bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, | 
|  | const std::pair<llvm::APSInt, CaseStmt*> &RHS) { | 
|  | return LHS.first < RHS.first; | 
|  | } | 
|  | bool operator()(const llvm::APSInt &LHS, | 
|  | const std::pair<llvm::APSInt, CaseStmt*> &RHS) { | 
|  | return LHS < RHS.first; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// CmpCaseVals - Comparison predicate for sorting case values. | 
|  | /// | 
|  | static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, | 
|  | const std::pair<llvm::APSInt, CaseStmt*>& rhs) { | 
|  | if (lhs.first < rhs.first) | 
|  | return true; | 
|  |  | 
|  | if (lhs.first == rhs.first && | 
|  | lhs.second->getCaseLoc().getRawEncoding() | 
|  | < rhs.second->getCaseLoc().getRawEncoding()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of | 
|  | /// potentially integral-promoted expression @p expr. | 
|  | static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) { | 
|  | const ImplicitCastExpr *ImplicitCast = | 
|  | dyn_cast_or_null<ImplicitCastExpr>(expr); | 
|  | if (ImplicitCast != NULL) { | 
|  | const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr(); | 
|  | QualType TypeBeforePromotion = ExprBeforePromotion->getType(); | 
|  | if (TypeBeforePromotion->isIntegralType()) { | 
|  | return TypeBeforePromotion; | 
|  | } | 
|  | } | 
|  | return expr->getType(); | 
|  | } | 
|  |  | 
|  | /// \brief Check (and possibly convert) the condition in a switch | 
|  | /// statement in C++. | 
|  | static bool CheckCXXSwitchCondition(Sema &S, SourceLocation SwitchLoc, | 
|  | Expr *&CondExpr) { | 
|  | if (CondExpr->isTypeDependent()) | 
|  | return false; | 
|  |  | 
|  | QualType CondType = CondExpr->getType(); | 
|  |  | 
|  | // C++ 6.4.2.p2: | 
|  | // The condition shall be of integral type, enumeration type, or of a class | 
|  | // type for which a single conversion function to integral or enumeration | 
|  | // type exists (12.3). If the condition is of class type, the condition is | 
|  | // converted by calling that conversion function, and the result of the | 
|  | // conversion is used in place of the original condition for the remainder | 
|  | // of this section. Integral promotions are performed. | 
|  |  | 
|  | // Make sure that the condition expression has a complete type, | 
|  | // otherwise we'll never find any conversions. | 
|  | if (S.RequireCompleteType(SwitchLoc, CondType, | 
|  | PDiag(diag::err_switch_incomplete_class_type) | 
|  | << CondExpr->getSourceRange())) | 
|  | return true; | 
|  |  | 
|  | llvm::SmallVector<CXXConversionDecl *, 4> ViableConversions; | 
|  | llvm::SmallVector<CXXConversionDecl *, 4> ExplicitConversions; | 
|  | if (const RecordType *RecordTy = CondType->getAs<RecordType>()) { | 
|  | const UnresolvedSetImpl *Conversions | 
|  | = cast<CXXRecordDecl>(RecordTy->getDecl()) | 
|  | ->getVisibleConversionFunctions(); | 
|  | for (UnresolvedSetImpl::iterator I = Conversions->begin(), | 
|  | E = Conversions->end(); I != E; ++I) { | 
|  | if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(*I)) | 
|  | if (Conversion->getConversionType().getNonReferenceType() | 
|  | ->isIntegralType()) { | 
|  | if (Conversion->isExplicit()) | 
|  | ExplicitConversions.push_back(Conversion); | 
|  | else | 
|  | ViableConversions.push_back(Conversion); | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (ViableConversions.size()) { | 
|  | case 0: | 
|  | if (ExplicitConversions.size() == 1) { | 
|  | // The user probably meant to invoke the given explicit | 
|  | // conversion; use it. | 
|  | QualType ConvTy | 
|  | = ExplicitConversions[0]->getConversionType() | 
|  | .getNonReferenceType(); | 
|  | std::string TypeStr; | 
|  | ConvTy.getAsStringInternal(TypeStr, S.Context.PrintingPolicy); | 
|  |  | 
|  | S.Diag(SwitchLoc, diag::err_switch_explicit_conversion) | 
|  | << CondType << ConvTy << CondExpr->getSourceRange() | 
|  | << CodeModificationHint::CreateInsertion(CondExpr->getLocStart(), | 
|  | "static_cast<" + TypeStr + ">(") | 
|  | << CodeModificationHint::CreateInsertion( | 
|  | S.PP.getLocForEndOfToken(CondExpr->getLocEnd()), | 
|  | ")"); | 
|  | S.Diag(ExplicitConversions[0]->getLocation(), | 
|  | diag::note_switch_conversion) | 
|  | << ConvTy->isEnumeralType() << ConvTy; | 
|  |  | 
|  | // If we aren't in a SFINAE context, build a call to the | 
|  | // explicit conversion function. | 
|  | if (S.isSFINAEContext()) | 
|  | return true; | 
|  |  | 
|  | CondExpr = S.BuildCXXMemberCallExpr(CondExpr, ExplicitConversions[0]); | 
|  | } | 
|  |  | 
|  | // We'll complain below about a non-integral condition type. | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | // Apply this conversion. | 
|  | CondExpr = S.BuildCXXMemberCallExpr(CondExpr, ViableConversions[0]); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | S.Diag(SwitchLoc, diag::err_switch_multiple_conversions) | 
|  | << CondType << CondExpr->getSourceRange(); | 
|  | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { | 
|  | QualType ConvTy | 
|  | = ViableConversions[I]->getConversionType().getNonReferenceType(); | 
|  | S.Diag(ViableConversions[I]->getLocation(), | 
|  | diag::note_switch_conversion) | 
|  | << ConvTy->isEnumeralType() << ConvTy; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ActOnSwitchBodyError - This is called if there is an error parsing the | 
|  | /// body of the switch stmt instead of ActOnFinishSwitchStmt. | 
|  | void Sema::ActOnSwitchBodyError(SourceLocation SwitchLoc, StmtArg Switch, | 
|  | StmtArg Body) { | 
|  | // Keep the switch stack balanced. | 
|  | assert(getSwitchStack().back() == (SwitchStmt*)Switch.get() && | 
|  | "switch stack missing push/pop!"); | 
|  | getSwitchStack().pop_back(); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch, | 
|  | StmtArg Body) { | 
|  | Stmt *BodyStmt = Body.takeAs<Stmt>(); | 
|  |  | 
|  | SwitchStmt *SS = getSwitchStack().back(); | 
|  | assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!"); | 
|  |  | 
|  | SS->setBody(BodyStmt, SwitchLoc); | 
|  | getSwitchStack().pop_back(); | 
|  |  | 
|  | if (SS->getCond() == 0) { | 
|  | SS->Destroy(Context); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | Expr *CondExpr = SS->getCond(); | 
|  | QualType CondTypeBeforePromotion = | 
|  | GetTypeBeforeIntegralPromotion(CondExpr); | 
|  |  | 
|  | if (getLangOptions().CPlusPlus && | 
|  | CheckCXXSwitchCondition(*this, SwitchLoc, CondExpr)) | 
|  | return StmtError(); | 
|  |  | 
|  | // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. | 
|  | UsualUnaryConversions(CondExpr); | 
|  | QualType CondType = CondExpr->getType(); | 
|  | SS->setCond(CondExpr); | 
|  |  | 
|  | // C++ 6.4.2.p2: | 
|  | // Integral promotions are performed (on the switch condition). | 
|  | // | 
|  | // A case value unrepresentable by the original switch condition | 
|  | // type (before the promotion) doesn't make sense, even when it can | 
|  | // be represented by the promoted type.  Therefore we need to find | 
|  | // the pre-promotion type of the switch condition. | 
|  | if (!CondExpr->isTypeDependent()) { | 
|  | if (!CondType->isIntegerType()) { // C99 6.8.4.2p1 | 
|  | Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer) | 
|  | << CondType << CondExpr->getSourceRange(); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | if (CondTypeBeforePromotion->isBooleanType()) { | 
|  | // switch(bool_expr) {...} is often a programmer error, e.g. | 
|  | //   switch(n && mask) { ... }  // Doh - should be "n & mask". | 
|  | // One can always use an if statement instead of switch(bool_expr). | 
|  | Diag(SwitchLoc, diag::warn_bool_switch_condition) | 
|  | << CondExpr->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the bitwidth of the switched-on value before promotions.  We must | 
|  | // convert the integer case values to this width before comparison. | 
|  | bool HasDependentValue | 
|  | = CondExpr->isTypeDependent() || CondExpr->isValueDependent(); | 
|  | unsigned CondWidth | 
|  | = HasDependentValue? 0 | 
|  | : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion)); | 
|  | bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType(); | 
|  |  | 
|  | // Accumulate all of the case values in a vector so that we can sort them | 
|  | // and detect duplicates.  This vector contains the APInt for the case after | 
|  | // it has been converted to the condition type. | 
|  | typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; | 
|  | CaseValsTy CaseVals; | 
|  |  | 
|  | // Keep track of any GNU case ranges we see.  The APSInt is the low value. | 
|  | std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges; | 
|  |  | 
|  | DefaultStmt *TheDefaultStmt = 0; | 
|  |  | 
|  | bool CaseListIsErroneous = false; | 
|  |  | 
|  | for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue; | 
|  | SC = SC->getNextSwitchCase()) { | 
|  |  | 
|  | if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) { | 
|  | if (TheDefaultStmt) { | 
|  | Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); | 
|  | Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); | 
|  |  | 
|  | // FIXME: Remove the default statement from the switch block so that | 
|  | // we'll return a valid AST.  This requires recursing down the AST and | 
|  | // finding it, not something we are set up to do right now.  For now, | 
|  | // just lop the entire switch stmt out of the AST. | 
|  | CaseListIsErroneous = true; | 
|  | } | 
|  | TheDefaultStmt = DS; | 
|  |  | 
|  | } else { | 
|  | CaseStmt *CS = cast<CaseStmt>(SC); | 
|  |  | 
|  | // We already verified that the expression has a i-c-e value (C99 | 
|  | // 6.8.4.2p3) - get that value now. | 
|  | Expr *Lo = CS->getLHS(); | 
|  |  | 
|  | if (Lo->isTypeDependent() || Lo->isValueDependent()) { | 
|  | HasDependentValue = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | llvm::APSInt LoVal = Lo->EvaluateAsInt(Context); | 
|  |  | 
|  | // Convert the value to the same width/sign as the condition. | 
|  | ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned, | 
|  | CS->getLHS()->getLocStart(), | 
|  | diag::warn_case_value_overflow); | 
|  |  | 
|  | // If the LHS is not the same type as the condition, insert an implicit | 
|  | // cast. | 
|  | ImpCastExprToType(Lo, CondType, CastExpr::CK_IntegralCast); | 
|  | CS->setLHS(Lo); | 
|  |  | 
|  | // If this is a case range, remember it in CaseRanges, otherwise CaseVals. | 
|  | if (CS->getRHS()) { | 
|  | if (CS->getRHS()->isTypeDependent() || | 
|  | CS->getRHS()->isValueDependent()) { | 
|  | HasDependentValue = true; | 
|  | break; | 
|  | } | 
|  | CaseRanges.push_back(std::make_pair(LoVal, CS)); | 
|  | } else | 
|  | CaseVals.push_back(std::make_pair(LoVal, CS)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!HasDependentValue) { | 
|  | // Sort all the scalar case values so we can easily detect duplicates. | 
|  | std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals); | 
|  |  | 
|  | if (!CaseVals.empty()) { | 
|  | for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) { | 
|  | if (CaseVals[i].first == CaseVals[i+1].first) { | 
|  | // If we have a duplicate, report it. | 
|  | Diag(CaseVals[i+1].second->getLHS()->getLocStart(), | 
|  | diag::err_duplicate_case) << CaseVals[i].first.toString(10); | 
|  | Diag(CaseVals[i].second->getLHS()->getLocStart(), | 
|  | diag::note_duplicate_case_prev); | 
|  | // FIXME: We really want to remove the bogus case stmt from the | 
|  | // substmt, but we have no way to do this right now. | 
|  | CaseListIsErroneous = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Detect duplicate case ranges, which usually don't exist at all in | 
|  | // the first place. | 
|  | if (!CaseRanges.empty()) { | 
|  | // Sort all the case ranges by their low value so we can easily detect | 
|  | // overlaps between ranges. | 
|  | std::stable_sort(CaseRanges.begin(), CaseRanges.end()); | 
|  |  | 
|  | // Scan the ranges, computing the high values and removing empty ranges. | 
|  | std::vector<llvm::APSInt> HiVals; | 
|  | for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { | 
|  | CaseStmt *CR = CaseRanges[i].second; | 
|  | Expr *Hi = CR->getRHS(); | 
|  | llvm::APSInt HiVal = Hi->EvaluateAsInt(Context); | 
|  |  | 
|  | // Convert the value to the same width/sign as the condition. | 
|  | ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned, | 
|  | CR->getRHS()->getLocStart(), | 
|  | diag::warn_case_value_overflow); | 
|  |  | 
|  | // If the LHS is not the same type as the condition, insert an implicit | 
|  | // cast. | 
|  | ImpCastExprToType(Hi, CondType, CastExpr::CK_IntegralCast); | 
|  | CR->setRHS(Hi); | 
|  |  | 
|  | // If the low value is bigger than the high value, the case is empty. | 
|  | if (CaseRanges[i].first > HiVal) { | 
|  | Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range) | 
|  | << SourceRange(CR->getLHS()->getLocStart(), | 
|  | CR->getRHS()->getLocEnd()); | 
|  | CaseRanges.erase(CaseRanges.begin()+i); | 
|  | --i, --e; | 
|  | continue; | 
|  | } | 
|  | HiVals.push_back(HiVal); | 
|  | } | 
|  |  | 
|  | // Rescan the ranges, looking for overlap with singleton values and other | 
|  | // ranges.  Since the range list is sorted, we only need to compare case | 
|  | // ranges with their neighbors. | 
|  | for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { | 
|  | llvm::APSInt &CRLo = CaseRanges[i].first; | 
|  | llvm::APSInt &CRHi = HiVals[i]; | 
|  | CaseStmt *CR = CaseRanges[i].second; | 
|  |  | 
|  | // Check to see whether the case range overlaps with any | 
|  | // singleton cases. | 
|  | CaseStmt *OverlapStmt = 0; | 
|  | llvm::APSInt OverlapVal(32); | 
|  |  | 
|  | // Find the smallest value >= the lower bound.  If I is in the | 
|  | // case range, then we have overlap. | 
|  | CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(), | 
|  | CaseVals.end(), CRLo, | 
|  | CaseCompareFunctor()); | 
|  | if (I != CaseVals.end() && I->first < CRHi) { | 
|  | OverlapVal  = I->first;   // Found overlap with scalar. | 
|  | OverlapStmt = I->second; | 
|  | } | 
|  |  | 
|  | // Find the smallest value bigger than the upper bound. | 
|  | I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); | 
|  | if (I != CaseVals.begin() && (I-1)->first >= CRLo) { | 
|  | OverlapVal  = (I-1)->first;      // Found overlap with scalar. | 
|  | OverlapStmt = (I-1)->second; | 
|  | } | 
|  |  | 
|  | // Check to see if this case stmt overlaps with the subsequent | 
|  | // case range. | 
|  | if (i && CRLo <= HiVals[i-1]) { | 
|  | OverlapVal  = HiVals[i-1];       // Found overlap with range. | 
|  | OverlapStmt = CaseRanges[i-1].second; | 
|  | } | 
|  |  | 
|  | if (OverlapStmt) { | 
|  | // If we have a duplicate, report it. | 
|  | Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case) | 
|  | << OverlapVal.toString(10); | 
|  | Diag(OverlapStmt->getLHS()->getLocStart(), | 
|  | diag::note_duplicate_case_prev); | 
|  | // FIXME: We really want to remove the bogus case stmt from the | 
|  | // substmt, but we have no way to do this right now. | 
|  | CaseListIsErroneous = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: If the case list was broken is some way, we don't have a good system | 
|  | // to patch it up.  Instead, just return the whole substmt as broken. | 
|  | if (CaseListIsErroneous) | 
|  | return StmtError(); | 
|  |  | 
|  | Switch.release(); | 
|  | return Owned(SS); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, | 
|  | DeclPtrTy CondVar, StmtArg Body) { | 
|  | OwningExprResult CondResult(Cond.release()); | 
|  |  | 
|  | VarDecl *ConditionVar = 0; | 
|  | if (CondVar.get()) { | 
|  | ConditionVar = CondVar.getAs<VarDecl>(); | 
|  | CondResult = CheckConditionVariable(ConditionVar); | 
|  | if (CondResult.isInvalid()) | 
|  | return StmtError(); | 
|  | } | 
|  | Expr *ConditionExpr = CondResult.takeAs<Expr>(); | 
|  | if (!ConditionExpr) | 
|  | return StmtError(); | 
|  |  | 
|  | if (CheckBooleanCondition(ConditionExpr, WhileLoc)) { | 
|  | CondResult = ConditionExpr; | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | Stmt *bodyStmt = Body.takeAs<Stmt>(); | 
|  | DiagnoseUnusedExprResult(bodyStmt); | 
|  |  | 
|  | CondResult.release(); | 
|  | return Owned(new (Context) WhileStmt(ConditionVar, ConditionExpr, bodyStmt, | 
|  | WhileLoc)); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body, | 
|  | SourceLocation WhileLoc, SourceLocation CondLParen, | 
|  | ExprArg Cond, SourceLocation CondRParen) { | 
|  | Expr *condExpr = Cond.takeAs<Expr>(); | 
|  | assert(condExpr && "ActOnDoStmt(): missing expression"); | 
|  |  | 
|  | if (CheckBooleanCondition(condExpr, DoLoc)) { | 
|  | Cond = condExpr; | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | Stmt *bodyStmt = Body.takeAs<Stmt>(); | 
|  | DiagnoseUnusedExprResult(bodyStmt); | 
|  |  | 
|  | Cond.release(); | 
|  | return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc, | 
|  | WhileLoc, CondRParen)); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, | 
|  | StmtArg first, FullExprArg second, DeclPtrTy secondVar, | 
|  | FullExprArg third, | 
|  | SourceLocation RParenLoc, StmtArg body) { | 
|  | Stmt *First  = static_cast<Stmt*>(first.get()); | 
|  |  | 
|  | if (!getLangOptions().CPlusPlus) { | 
|  | if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) { | 
|  | // C99 6.8.5p3: The declaration part of a 'for' statement shall only | 
|  | // declare identifiers for objects having storage class 'auto' or | 
|  | // 'register'. | 
|  | for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end(); | 
|  | DI!=DE; ++DI) { | 
|  | VarDecl *VD = dyn_cast<VarDecl>(*DI); | 
|  | if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage()) | 
|  | VD = 0; | 
|  | if (VD == 0) | 
|  | Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for); | 
|  | // FIXME: mark decl erroneous! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | OwningExprResult SecondResult(second.release()); | 
|  | VarDecl *ConditionVar = 0; | 
|  | if (secondVar.get()) { | 
|  | ConditionVar = secondVar.getAs<VarDecl>(); | 
|  | SecondResult = CheckConditionVariable(ConditionVar); | 
|  | if (SecondResult.isInvalid()) | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | Expr *Second = SecondResult.takeAs<Expr>(); | 
|  | if (Second && CheckBooleanCondition(Second, ForLoc)) { | 
|  | SecondResult = Second; | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | Expr *Third  = third.release().takeAs<Expr>(); | 
|  | Stmt *Body  = static_cast<Stmt*>(body.get()); | 
|  |  | 
|  | DiagnoseUnusedExprResult(First); | 
|  | DiagnoseUnusedExprResult(Third); | 
|  | DiagnoseUnusedExprResult(Body); | 
|  |  | 
|  | first.release(); | 
|  | body.release(); | 
|  | return Owned(new (Context) ForStmt(First, Second, ConditionVar, Third, Body, | 
|  | ForLoc, LParenLoc, RParenLoc)); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, | 
|  | SourceLocation LParenLoc, | 
|  | StmtArg first, ExprArg second, | 
|  | SourceLocation RParenLoc, StmtArg body) { | 
|  | Stmt *First  = static_cast<Stmt*>(first.get()); | 
|  | Expr *Second = static_cast<Expr*>(second.get()); | 
|  | Stmt *Body  = static_cast<Stmt*>(body.get()); | 
|  | if (First) { | 
|  | QualType FirstType; | 
|  | if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) { | 
|  | if (!DS->isSingleDecl()) | 
|  | return StmtError(Diag((*DS->decl_begin())->getLocation(), | 
|  | diag::err_toomany_element_decls)); | 
|  |  | 
|  | Decl *D = DS->getSingleDecl(); | 
|  | FirstType = cast<ValueDecl>(D)->getType(); | 
|  | // C99 6.8.5p3: The declaration part of a 'for' statement shall only | 
|  | // declare identifiers for objects having storage class 'auto' or | 
|  | // 'register'. | 
|  | VarDecl *VD = cast<VarDecl>(D); | 
|  | if (VD->isBlockVarDecl() && !VD->hasLocalStorage()) | 
|  | return StmtError(Diag(VD->getLocation(), | 
|  | diag::err_non_variable_decl_in_for)); | 
|  | } else { | 
|  | if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid) | 
|  | return StmtError(Diag(First->getLocStart(), | 
|  | diag::err_selector_element_not_lvalue) | 
|  | << First->getSourceRange()); | 
|  |  | 
|  | FirstType = static_cast<Expr*>(First)->getType(); | 
|  | } | 
|  | if (!FirstType->isObjCObjectPointerType() && | 
|  | !FirstType->isBlockPointerType()) | 
|  | Diag(ForLoc, diag::err_selector_element_type) | 
|  | << FirstType << First->getSourceRange(); | 
|  | } | 
|  | if (Second) { | 
|  | DefaultFunctionArrayConversion(Second); | 
|  | QualType SecondType = Second->getType(); | 
|  | if (!SecondType->isObjCObjectPointerType()) | 
|  | Diag(ForLoc, diag::err_collection_expr_type) | 
|  | << SecondType << Second->getSourceRange(); | 
|  | } | 
|  | first.release(); | 
|  | second.release(); | 
|  | body.release(); | 
|  | return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body, | 
|  | ForLoc, RParenLoc)); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, | 
|  | IdentifierInfo *LabelII) { | 
|  | // Look up the record for this label identifier. | 
|  | LabelStmt *&LabelDecl = getLabelMap()[LabelII]; | 
|  |  | 
|  | // If we haven't seen this label yet, create a forward reference. | 
|  | if (LabelDecl == 0) | 
|  | LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0); | 
|  |  | 
|  | return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc)); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, | 
|  | ExprArg DestExp) { | 
|  | // Convert operand to void* | 
|  | Expr* E = DestExp.takeAs<Expr>(); | 
|  | if (!E->isTypeDependent()) { | 
|  | QualType ETy = E->getType(); | 
|  | AssignConvertType ConvTy = | 
|  | CheckSingleAssignmentConstraints(Context.VoidPtrTy, E); | 
|  | if (DiagnoseAssignmentResult(ConvTy, StarLoc, Context.VoidPtrTy, ETy, | 
|  | E, AA_Passing)) | 
|  | return StmtError(); | 
|  | } | 
|  | return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E)); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { | 
|  | Scope *S = CurScope->getContinueParent(); | 
|  | if (!S) { | 
|  | // C99 6.8.6.2p1: A break shall appear only in or as a loop body. | 
|  | return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); | 
|  | } | 
|  |  | 
|  | return Owned(new (Context) ContinueStmt(ContinueLoc)); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { | 
|  | Scope *S = CurScope->getBreakParent(); | 
|  | if (!S) { | 
|  | // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. | 
|  | return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); | 
|  | } | 
|  |  | 
|  | return Owned(new (Context) BreakStmt(BreakLoc)); | 
|  | } | 
|  |  | 
|  | /// ActOnBlockReturnStmt - Utility routine to figure out block's return type. | 
|  | /// | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { | 
|  | // If this is the first return we've seen in the block, infer the type of | 
|  | // the block from it. | 
|  | if (CurBlock->ReturnType.isNull()) { | 
|  | if (RetValExp) { | 
|  | // Don't call UsualUnaryConversions(), since we don't want to do | 
|  | // integer promotions here. | 
|  | DefaultFunctionArrayConversion(RetValExp); | 
|  | CurBlock->ReturnType = RetValExp->getType(); | 
|  | if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) { | 
|  | // We have to remove a 'const' added to copied-in variable which was | 
|  | // part of the implementation spec. and not the actual qualifier for | 
|  | // the variable. | 
|  | if (CDRE->isConstQualAdded()) | 
|  | CurBlock->ReturnType.removeConst(); | 
|  | } | 
|  | } else | 
|  | CurBlock->ReturnType = Context.VoidTy; | 
|  | } | 
|  | QualType FnRetType = CurBlock->ReturnType; | 
|  |  | 
|  | if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) { | 
|  | Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr) | 
|  | << getCurFunctionOrMethodDecl()->getDeclName(); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | // Otherwise, verify that this result type matches the previous one.  We are | 
|  | // pickier with blocks than for normal functions because we don't have GCC | 
|  | // compatibility to worry about here. | 
|  | if (CurBlock->ReturnType->isVoidType()) { | 
|  | if (RetValExp) { | 
|  | Diag(ReturnLoc, diag::err_return_block_has_expr); | 
|  | RetValExp->Destroy(Context); | 
|  | RetValExp = 0; | 
|  | } | 
|  | return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp)); | 
|  | } | 
|  |  | 
|  | if (!RetValExp) | 
|  | return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); | 
|  |  | 
|  | if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) { | 
|  | // we have a non-void block with an expression, continue checking | 
|  |  | 
|  | // C99 6.8.6.4p3(136): The return statement is not an assignment. The | 
|  | // overlap restriction of subclause 6.5.16.1 does not apply to the case of | 
|  | // function return. | 
|  |  | 
|  | // In C++ the return statement is handled via a copy initialization. | 
|  | // the C version of which boils down to CheckSingleAssignmentConstraints. | 
|  | OwningExprResult Res = PerformCopyInitialization( | 
|  | InitializedEntity::InitializeResult(ReturnLoc, | 
|  | FnRetType), | 
|  | SourceLocation(), | 
|  | Owned(RetValExp)); | 
|  | if (Res.isInvalid()) { | 
|  | // FIXME: Cleanup temporaries here, anyway? | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | RetValExp = Res.takeAs<Expr>(); | 
|  | if (RetValExp) | 
|  | CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc); | 
|  | } | 
|  |  | 
|  | return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp)); | 
|  | } | 
|  |  | 
|  | /// IsReturnCopyElidable - Whether returning @p RetExpr from a function that | 
|  | /// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15). | 
|  | static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType, | 
|  | Expr *RetExpr) { | 
|  | QualType ExprType = RetExpr->getType(); | 
|  | // - in a return statement in a function with ... | 
|  | // ... a class return type ... | 
|  | if (!RetType->isRecordType()) | 
|  | return false; | 
|  | // ... the same cv-unqualified type as the function return type ... | 
|  | if (!Ctx.hasSameUnqualifiedType(RetType, ExprType)) | 
|  | return false; | 
|  | // ... the expression is the name of a non-volatile automatic object ... | 
|  | // We ignore parentheses here. | 
|  | // FIXME: Is this compliant? | 
|  | const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens()); | 
|  | if (!DR) | 
|  | return false; | 
|  | const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()); | 
|  | if (!VD) | 
|  | return false; | 
|  | return VD->hasLocalStorage() && !VD->getType()->isReferenceType() | 
|  | && !VD->getType().isVolatileQualified(); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) { | 
|  | Expr *RetValExp = rex.takeAs<Expr>(); | 
|  | if (CurBlock) | 
|  | return ActOnBlockReturnStmt(ReturnLoc, RetValExp); | 
|  |  | 
|  | QualType FnRetType; | 
|  | if (const FunctionDecl *FD = getCurFunctionDecl()) { | 
|  | FnRetType = FD->getResultType(); | 
|  | if (FD->hasAttr<NoReturnAttr>()) | 
|  | Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) | 
|  | << getCurFunctionOrMethodDecl()->getDeclName(); | 
|  | } else if (ObjCMethodDecl *MD = getCurMethodDecl()) | 
|  | FnRetType = MD->getResultType(); | 
|  | else // If we don't have a function/method context, bail. | 
|  | return StmtError(); | 
|  |  | 
|  | if (FnRetType->isVoidType()) { | 
|  | if (RetValExp && !RetValExp->isTypeDependent()) { | 
|  | // C99 6.8.6.4p1 (ext_ since GCC warns) | 
|  | unsigned D = diag::ext_return_has_expr; | 
|  | if (RetValExp->getType()->isVoidType()) | 
|  | D = diag::ext_return_has_void_expr; | 
|  |  | 
|  | // return (some void expression); is legal in C++. | 
|  | if (D != diag::ext_return_has_void_expr || | 
|  | !getLangOptions().CPlusPlus) { | 
|  | NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); | 
|  | Diag(ReturnLoc, D) | 
|  | << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl) | 
|  | << RetValExp->getSourceRange(); | 
|  | } | 
|  |  | 
|  | RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp); | 
|  | } | 
|  | return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp)); | 
|  | } | 
|  |  | 
|  | if (!RetValExp && !FnRetType->isDependentType()) { | 
|  | unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4 | 
|  | // C99 6.8.6.4p1 (ext_ since GCC warns) | 
|  | if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr; | 
|  |  | 
|  | if (FunctionDecl *FD = getCurFunctionDecl()) | 
|  | Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/; | 
|  | else | 
|  | Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/; | 
|  | return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0)); | 
|  | } | 
|  |  | 
|  | if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) { | 
|  | // we have a non-void function with an expression, continue checking | 
|  |  | 
|  | // C99 6.8.6.4p3(136): The return statement is not an assignment. The | 
|  | // overlap restriction of subclause 6.5.16.1 does not apply to the case of | 
|  | // function return. | 
|  |  | 
|  | // C++0x 12.8p15: When certain criteria are met, an implementation is | 
|  | //   allowed to omit the copy construction of a class object, [...] | 
|  | //   - in a return statement in a function with a class return type, when | 
|  | //     the expression is the name of a non-volatile automatic object with | 
|  | //     the same cv-unqualified type as the function return type, the copy | 
|  | //     operation can be omitted [...] | 
|  | // C++0x 12.8p16: When the criteria for elision of a copy operation are met | 
|  | //   and the object to be copied is designated by an lvalue, overload | 
|  | //   resolution to select the constructor for the copy is first performed | 
|  | //   as if the object were designated by an rvalue. | 
|  | // Note that we only compute Elidable if we're in C++0x, since we don't | 
|  | // care otherwise. | 
|  | bool Elidable = getLangOptions().CPlusPlus0x ? | 
|  | IsReturnCopyElidable(Context, FnRetType, RetValExp) : | 
|  | false; | 
|  | // FIXME: Elidable | 
|  | (void)Elidable; | 
|  |  | 
|  | // In C++ the return statement is handled via a copy initialization. | 
|  | // the C version of which boils down to CheckSingleAssignmentConstraints. | 
|  | OwningExprResult Res = PerformCopyInitialization( | 
|  | InitializedEntity::InitializeResult(ReturnLoc, | 
|  | FnRetType), | 
|  | SourceLocation(), | 
|  | Owned(RetValExp)); | 
|  | if (Res.isInvalid()) { | 
|  | // FIXME: Cleanup temporaries here, anyway? | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | RetValExp = Res.takeAs<Expr>(); | 
|  | if (RetValExp) | 
|  | CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc); | 
|  | } | 
|  |  | 
|  | if (RetValExp) | 
|  | RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp); | 
|  | return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp)); | 
|  | } | 
|  |  | 
|  | /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently | 
|  | /// ignore "noop" casts in places where an lvalue is required by an inline asm. | 
|  | /// We emulate this behavior when -fheinous-gnu-extensions is specified, but | 
|  | /// provide a strong guidance to not use it. | 
|  | /// | 
|  | /// This method checks to see if the argument is an acceptable l-value and | 
|  | /// returns false if it is a case we can handle. | 
|  | static bool CheckAsmLValue(const Expr *E, Sema &S) { | 
|  | // Type dependent expressions will be checked during instantiation. | 
|  | if (E->isTypeDependent()) | 
|  | return false; | 
|  |  | 
|  | if (E->isLvalue(S.Context) == Expr::LV_Valid) | 
|  | return false;  // Cool, this is an lvalue. | 
|  |  | 
|  | // Okay, this is not an lvalue, but perhaps it is the result of a cast that we | 
|  | // are supposed to allow. | 
|  | const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); | 
|  | if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) { | 
|  | if (!S.getLangOptions().HeinousExtensions) | 
|  | S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) | 
|  | << E->getSourceRange(); | 
|  | else | 
|  | S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) | 
|  | << E->getSourceRange(); | 
|  | // Accept, even if we emitted an error diagnostic. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // None of the above, just randomly invalid non-lvalue. | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, | 
|  | bool IsSimple, | 
|  | bool IsVolatile, | 
|  | unsigned NumOutputs, | 
|  | unsigned NumInputs, | 
|  | const std::string *Names, | 
|  | MultiExprArg constraints, | 
|  | MultiExprArg exprs, | 
|  | ExprArg asmString, | 
|  | MultiExprArg clobbers, | 
|  | SourceLocation RParenLoc, | 
|  | bool MSAsm) { | 
|  | unsigned NumClobbers = clobbers.size(); | 
|  | StringLiteral **Constraints = | 
|  | reinterpret_cast<StringLiteral**>(constraints.get()); | 
|  | Expr **Exprs = reinterpret_cast<Expr **>(exprs.get()); | 
|  | StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get()); | 
|  | StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get()); | 
|  |  | 
|  | llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; | 
|  |  | 
|  | // The parser verifies that there is a string literal here. | 
|  | if (AsmString->isWide()) | 
|  | return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character) | 
|  | << AsmString->getSourceRange()); | 
|  |  | 
|  | for (unsigned i = 0; i != NumOutputs; i++) { | 
|  | StringLiteral *Literal = Constraints[i]; | 
|  | if (Literal->isWide()) | 
|  | return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) | 
|  | << Literal->getSourceRange()); | 
|  |  | 
|  | TargetInfo::ConstraintInfo Info(Literal->getStrData(), | 
|  | Literal->getByteLength(), | 
|  | Names[i]); | 
|  | if (!Context.Target.validateOutputConstraint(Info)) | 
|  | return StmtError(Diag(Literal->getLocStart(), | 
|  | diag::err_asm_invalid_output_constraint) | 
|  | << Info.getConstraintStr()); | 
|  |  | 
|  | // Check that the output exprs are valid lvalues. | 
|  | Expr *OutputExpr = Exprs[i]; | 
|  | if (CheckAsmLValue(OutputExpr, *this)) { | 
|  | return StmtError(Diag(OutputExpr->getLocStart(), | 
|  | diag::err_asm_invalid_lvalue_in_output) | 
|  | << OutputExpr->getSourceRange()); | 
|  | } | 
|  |  | 
|  | OutputConstraintInfos.push_back(Info); | 
|  | } | 
|  |  | 
|  | llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; | 
|  |  | 
|  | for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { | 
|  | StringLiteral *Literal = Constraints[i]; | 
|  | if (Literal->isWide()) | 
|  | return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) | 
|  | << Literal->getSourceRange()); | 
|  |  | 
|  | TargetInfo::ConstraintInfo Info(Literal->getStrData(), | 
|  | Literal->getByteLength(), | 
|  | Names[i]); | 
|  | if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(), | 
|  | NumOutputs, Info)) { | 
|  | return StmtError(Diag(Literal->getLocStart(), | 
|  | diag::err_asm_invalid_input_constraint) | 
|  | << Info.getConstraintStr()); | 
|  | } | 
|  |  | 
|  | Expr *InputExpr = Exprs[i]; | 
|  |  | 
|  | // Only allow void types for memory constraints. | 
|  | if (Info.allowsMemory() && !Info.allowsRegister()) { | 
|  | if (CheckAsmLValue(InputExpr, *this)) | 
|  | return StmtError(Diag(InputExpr->getLocStart(), | 
|  | diag::err_asm_invalid_lvalue_in_input) | 
|  | << Info.getConstraintStr() | 
|  | << InputExpr->getSourceRange()); | 
|  | } | 
|  |  | 
|  | if (Info.allowsRegister()) { | 
|  | if (InputExpr->getType()->isVoidType()) { | 
|  | return StmtError(Diag(InputExpr->getLocStart(), | 
|  | diag::err_asm_invalid_type_in_input) | 
|  | << InputExpr->getType() << Info.getConstraintStr() | 
|  | << InputExpr->getSourceRange()); | 
|  | } | 
|  | } | 
|  |  | 
|  | DefaultFunctionArrayConversion(Exprs[i]); | 
|  |  | 
|  | InputConstraintInfos.push_back(Info); | 
|  | } | 
|  |  | 
|  | // Check that the clobbers are valid. | 
|  | for (unsigned i = 0; i != NumClobbers; i++) { | 
|  | StringLiteral *Literal = Clobbers[i]; | 
|  | if (Literal->isWide()) | 
|  | return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) | 
|  | << Literal->getSourceRange()); | 
|  |  | 
|  | std::string Clobber(Literal->getStrData(), | 
|  | Literal->getStrData() + | 
|  | Literal->getByteLength()); | 
|  |  | 
|  | if (!Context.Target.isValidGCCRegisterName(Clobber.c_str())) | 
|  | return StmtError(Diag(Literal->getLocStart(), | 
|  | diag::err_asm_unknown_register_name) << Clobber); | 
|  | } | 
|  |  | 
|  | constraints.release(); | 
|  | exprs.release(); | 
|  | asmString.release(); | 
|  | clobbers.release(); | 
|  | AsmStmt *NS = | 
|  | new (Context) AsmStmt(AsmLoc, IsSimple, IsVolatile, MSAsm, NumOutputs, | 
|  | NumInputs, Names, Constraints, Exprs, AsmString, | 
|  | NumClobbers, Clobbers, RParenLoc); | 
|  | // Validate the asm string, ensuring it makes sense given the operands we | 
|  | // have. | 
|  | llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces; | 
|  | unsigned DiagOffs; | 
|  | if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { | 
|  | Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) | 
|  | << AsmString->getSourceRange(); | 
|  | DeleteStmt(NS); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | // Validate tied input operands for type mismatches. | 
|  | for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { | 
|  | TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; | 
|  |  | 
|  | // If this is a tied constraint, verify that the output and input have | 
|  | // either exactly the same type, or that they are int/ptr operands with the | 
|  | // same size (int/long, int*/long, are ok etc). | 
|  | if (!Info.hasTiedOperand()) continue; | 
|  |  | 
|  | unsigned TiedTo = Info.getTiedOperand(); | 
|  | Expr *OutputExpr = Exprs[TiedTo]; | 
|  | Expr *InputExpr = Exprs[i+NumOutputs]; | 
|  | QualType InTy = InputExpr->getType(); | 
|  | QualType OutTy = OutputExpr->getType(); | 
|  | if (Context.hasSameType(InTy, OutTy)) | 
|  | continue;  // All types can be tied to themselves. | 
|  |  | 
|  | // Int/ptr operands have some special cases that we allow. | 
|  | if ((OutTy->isIntegerType() || OutTy->isPointerType()) && | 
|  | (InTy->isIntegerType() || InTy->isPointerType())) { | 
|  |  | 
|  | // They are ok if they are the same size.  Tying void* to int is ok if | 
|  | // they are the same size, for example.  This also allows tying void* to | 
|  | // int*. | 
|  | uint64_t OutSize = Context.getTypeSize(OutTy); | 
|  | uint64_t InSize = Context.getTypeSize(InTy); | 
|  | if (OutSize == InSize) | 
|  | continue; | 
|  |  | 
|  | // If the smaller input/output operand is not mentioned in the asm string, | 
|  | // then we can promote it and the asm string won't notice.  Check this | 
|  | // case now. | 
|  | bool SmallerValueMentioned = false; | 
|  | for (unsigned p = 0, e = Pieces.size(); p != e; ++p) { | 
|  | AsmStmt::AsmStringPiece &Piece = Pieces[p]; | 
|  | if (!Piece.isOperand()) continue; | 
|  |  | 
|  | // If this is a reference to the input and if the input was the smaller | 
|  | // one, then we have to reject this asm. | 
|  | if (Piece.getOperandNo() == i+NumOutputs) { | 
|  | if (InSize < OutSize) { | 
|  | SmallerValueMentioned = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a reference to the input and if the input was the smaller | 
|  | // one, then we have to reject this asm. | 
|  | if (Piece.getOperandNo() == TiedTo) { | 
|  | if (InSize > OutSize) { | 
|  | SmallerValueMentioned = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the smaller value wasn't mentioned in the asm string, and if the | 
|  | // output was a register, just extend the shorter one to the size of the | 
|  | // larger one. | 
|  | if (!SmallerValueMentioned && | 
|  | OutputConstraintInfos[TiedTo].allowsRegister()) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Diag(InputExpr->getLocStart(), | 
|  | diag::err_asm_tying_incompatible_types) | 
|  | << InTy << OutTy << OutputExpr->getSourceRange() | 
|  | << InputExpr->getSourceRange(); | 
|  | DeleteStmt(NS); | 
|  | return StmtError(); | 
|  | } | 
|  |  | 
|  | return Owned(NS); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, | 
|  | SourceLocation RParen, DeclPtrTy Parm, | 
|  | StmtArg Body, StmtArg catchList) { | 
|  | Stmt *CatchList = catchList.takeAs<Stmt>(); | 
|  | ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>()); | 
|  |  | 
|  | // PVD == 0 implies @catch(...). | 
|  | if (PVD) { | 
|  | // If we already know the decl is invalid, reject it. | 
|  | if (PVD->isInvalidDecl()) | 
|  | return StmtError(); | 
|  |  | 
|  | if (!PVD->getType()->isObjCObjectPointerType()) | 
|  | return StmtError(Diag(PVD->getLocation(), | 
|  | diag::err_catch_param_not_objc_type)); | 
|  | if (PVD->getType()->isObjCQualifiedIdType()) | 
|  | return StmtError(Diag(PVD->getLocation(), | 
|  | diag::err_illegal_qualifiers_on_catch_parm)); | 
|  | } | 
|  |  | 
|  | ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen, | 
|  | PVD, Body.takeAs<Stmt>(), CatchList); | 
|  | return Owned(CatchList ? CatchList : CS); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) { | 
|  | return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, | 
|  | static_cast<Stmt*>(Body.release()))); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, | 
|  | StmtArg Try, StmtArg Catch, StmtArg Finally) { | 
|  | CurFunctionNeedsScopeChecking = true; | 
|  | return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(), | 
|  | Catch.takeAs<Stmt>(), | 
|  | Finally.takeAs<Stmt>())); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) { | 
|  | Expr *ThrowExpr = expr.takeAs<Expr>(); | 
|  | if (!ThrowExpr) { | 
|  | // @throw without an expression designates a rethrow (which much occur | 
|  | // in the context of an @catch clause). | 
|  | Scope *AtCatchParent = CurScope; | 
|  | while (AtCatchParent && !AtCatchParent->isAtCatchScope()) | 
|  | AtCatchParent = AtCatchParent->getParent(); | 
|  | if (!AtCatchParent) | 
|  | return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch)); | 
|  | } else { | 
|  | QualType ThrowType = ThrowExpr->getType(); | 
|  | // Make sure the expression type is an ObjC pointer or "void *". | 
|  | if (!ThrowType->isObjCObjectPointerType()) { | 
|  | const PointerType *PT = ThrowType->getAs<PointerType>(); | 
|  | if (!PT || !PT->getPointeeType()->isVoidType()) | 
|  | return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object) | 
|  | << ThrowExpr->getType() << ThrowExpr->getSourceRange()); | 
|  | } | 
|  | } | 
|  | return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr)); | 
|  | } | 
|  |  | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr, | 
|  | StmtArg SynchBody) { | 
|  | CurFunctionNeedsScopeChecking = true; | 
|  |  | 
|  | // Make sure the expression type is an ObjC pointer or "void *". | 
|  | Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get()); | 
|  | if (!SyncExpr->getType()->isObjCObjectPointerType()) { | 
|  | const PointerType *PT = SyncExpr->getType()->getAs<PointerType>(); | 
|  | if (!PT || !PT->getPointeeType()->isVoidType()) | 
|  | return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object) | 
|  | << SyncExpr->getType() << SyncExpr->getSourceRange()); | 
|  | } | 
|  |  | 
|  | return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, | 
|  | SynchExpr.takeAs<Stmt>(), | 
|  | SynchBody.takeAs<Stmt>())); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block | 
|  | /// and creates a proper catch handler from them. | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl, | 
|  | StmtArg HandlerBlock) { | 
|  | // There's nothing to test that ActOnExceptionDecl didn't already test. | 
|  | return Owned(new (Context) CXXCatchStmt(CatchLoc, | 
|  | cast_or_null<VarDecl>(ExDecl.getAs<Decl>()), | 
|  | HandlerBlock.takeAs<Stmt>())); | 
|  | } | 
|  |  | 
|  | class TypeWithHandler { | 
|  | QualType t; | 
|  | CXXCatchStmt *stmt; | 
|  | public: | 
|  | TypeWithHandler(const QualType &type, CXXCatchStmt *statement) | 
|  | : t(type), stmt(statement) {} | 
|  |  | 
|  | // An arbitrary order is fine as long as it places identical | 
|  | // types next to each other. | 
|  | bool operator<(const TypeWithHandler &y) const { | 
|  | if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr()) | 
|  | return true; | 
|  | if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr()) | 
|  | return false; | 
|  | else | 
|  | return getTypeSpecStartLoc() < y.getTypeSpecStartLoc(); | 
|  | } | 
|  |  | 
|  | bool operator==(const TypeWithHandler& other) const { | 
|  | return t == other.t; | 
|  | } | 
|  |  | 
|  | QualType getQualType() const { return t; } | 
|  | CXXCatchStmt *getCatchStmt() const { return stmt; } | 
|  | SourceLocation getTypeSpecStartLoc() const { | 
|  | return stmt->getExceptionDecl()->getTypeSpecStartLoc(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// ActOnCXXTryBlock - Takes a try compound-statement and a number of | 
|  | /// handlers and creates a try statement from them. | 
|  | Action::OwningStmtResult | 
|  | Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock, | 
|  | MultiStmtArg RawHandlers) { | 
|  | unsigned NumHandlers = RawHandlers.size(); | 
|  | assert(NumHandlers > 0 && | 
|  | "The parser shouldn't call this if there are no handlers."); | 
|  | Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get()); | 
|  |  | 
|  | llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers; | 
|  |  | 
|  | for (unsigned i = 0; i < NumHandlers; ++i) { | 
|  | CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]); | 
|  | if (!Handler->getExceptionDecl()) { | 
|  | if (i < NumHandlers - 1) | 
|  | return StmtError(Diag(Handler->getLocStart(), | 
|  | diag::err_early_catch_all)); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const QualType CaughtType = Handler->getCaughtType(); | 
|  | const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType); | 
|  | TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler)); | 
|  | } | 
|  |  | 
|  | // Detect handlers for the same type as an earlier one. | 
|  | if (NumHandlers > 1) { | 
|  | llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end()); | 
|  |  | 
|  | TypeWithHandler prev = TypesWithHandlers[0]; | 
|  | for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) { | 
|  | TypeWithHandler curr = TypesWithHandlers[i]; | 
|  |  | 
|  | if (curr == prev) { | 
|  | Diag(curr.getTypeSpecStartLoc(), | 
|  | diag::warn_exception_caught_by_earlier_handler) | 
|  | << curr.getCatchStmt()->getCaughtType().getAsString(); | 
|  | Diag(prev.getTypeSpecStartLoc(), | 
|  | diag::note_previous_exception_handler) | 
|  | << prev.getCatchStmt()->getCaughtType().getAsString(); | 
|  | } | 
|  |  | 
|  | prev = curr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: We should detect handlers that cannot catch anything because an | 
|  | // earlier handler catches a superclass. Need to find a method that is not | 
|  | // quadratic for this. | 
|  | // Neither of these are explicitly forbidden, but every compiler detects them | 
|  | // and warns. | 
|  |  | 
|  | CurFunctionNeedsScopeChecking = true; | 
|  | RawHandlers.release(); | 
|  | return Owned(new (Context) CXXTryStmt(TryLoc, | 
|  | static_cast<Stmt*>(TryBlock.release()), | 
|  | Handlers, NumHandlers)); | 
|  | } |