|  | //===- Attributor.cpp - Module-wide attribute deduction -------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements an inter procedural pass that deduces and/or propagating | 
|  | // attributes. This is done in an abstract interpretation style fixpoint | 
|  | // iteration. See the Attributor.h file comment and the class descriptions in | 
|  | // that file for more information. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/IPO/Attributor.h" | 
|  |  | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  |  | 
|  | #include <cassert> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "attributor" | 
|  |  | 
|  | STATISTIC(NumFnWithExactDefinition, | 
|  | "Number of function with exact definitions"); | 
|  | STATISTIC(NumFnWithoutExactDefinition, | 
|  | "Number of function without exact definitions"); | 
|  | STATISTIC(NumAttributesTimedOut, | 
|  | "Number of abstract attributes timed out before fixpoint"); | 
|  | STATISTIC(NumAttributesValidFixpoint, | 
|  | "Number of abstract attributes in a valid fixpoint state"); | 
|  | STATISTIC(NumAttributesManifested, | 
|  | "Number of abstract attributes manifested in IR"); | 
|  | STATISTIC(NumFnNoUnwind, "Number of functions marked nounwind"); | 
|  |  | 
|  | STATISTIC(NumFnUniqueReturned, "Number of function with unique return"); | 
|  | STATISTIC(NumFnKnownReturns, "Number of function with known return values"); | 
|  | STATISTIC(NumFnArgumentReturned, | 
|  | "Number of function arguments marked returned"); | 
|  | STATISTIC(NumFnNoSync, "Number of functions marked nosync"); | 
|  | STATISTIC(NumFnNoFree, "Number of functions marked nofree"); | 
|  | STATISTIC(NumFnReturnedNonNull, | 
|  | "Number of function return values marked nonnull"); | 
|  | STATISTIC(NumFnArgumentNonNull, "Number of function arguments marked nonnull"); | 
|  | STATISTIC(NumCSArgumentNonNull, "Number of call site arguments marked nonnull"); | 
|  | STATISTIC(NumFnWillReturn, "Number of functions marked willreturn"); | 
|  | STATISTIC(NumFnArgumentNoAlias, "Number of function arguments marked noalias"); | 
|  | STATISTIC(NumFnReturnedDereferenceable, | 
|  | "Number of function return values marked dereferenceable"); | 
|  | STATISTIC(NumFnArgumentDereferenceable, | 
|  | "Number of function arguments marked dereferenceable"); | 
|  | STATISTIC(NumCSArgumentDereferenceable, | 
|  | "Number of call site arguments marked dereferenceable"); | 
|  |  | 
|  | // TODO: Determine a good default value. | 
|  | // | 
|  | // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads | 
|  | // (when run with the first 5 abstract attributes). The results also indicate | 
|  | // that we never reach 32 iterations but always find a fixpoint sooner. | 
|  | // | 
|  | // This will become more evolved once we perform two interleaved fixpoint | 
|  | // iterations: bottom-up and top-down. | 
|  | static cl::opt<unsigned> | 
|  | MaxFixpointIterations("attributor-max-iterations", cl::Hidden, | 
|  | cl::desc("Maximal number of fixpoint iterations."), | 
|  | cl::init(32)); | 
|  |  | 
|  | static cl::opt<bool> DisableAttributor( | 
|  | "attributor-disable", cl::Hidden, | 
|  | cl::desc("Disable the attributor inter-procedural deduction pass."), | 
|  | cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> VerifyAttributor( | 
|  | "attributor-verify", cl::Hidden, | 
|  | cl::desc("Verify the Attributor deduction and " | 
|  | "manifestation of attributes -- may issue false-positive errors"), | 
|  | cl::init(false)); | 
|  |  | 
|  | /// Logic operators for the change status enum class. | 
|  | /// | 
|  | ///{ | 
|  | ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) { | 
|  | return l == ChangeStatus::CHANGED ? l : r; | 
|  | } | 
|  | ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) { | 
|  | return l == ChangeStatus::UNCHANGED ? l : r; | 
|  | } | 
|  | ///} | 
|  |  | 
|  | /// Helper to adjust the statistics. | 
|  | static void bookkeeping(AbstractAttribute::ManifestPosition MP, | 
|  | const Attribute &Attr) { | 
|  | if (!AreStatisticsEnabled()) | 
|  | return; | 
|  |  | 
|  | switch (Attr.getKindAsEnum()) { | 
|  | case Attribute::Dereferenceable: | 
|  | switch (MP) { | 
|  | case AbstractAttribute::MP_RETURNED: | 
|  | NumFnReturnedDereferenceable++; | 
|  | break; | 
|  | case AbstractAttribute::MP_ARGUMENT: | 
|  | NumFnArgumentDereferenceable++; | 
|  | break; | 
|  | case AbstractAttribute::MP_CALL_SITE_ARGUMENT: | 
|  | NumCSArgumentDereferenceable++; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case Attribute::NoUnwind: | 
|  | NumFnNoUnwind++; | 
|  | return; | 
|  | case Attribute::Returned: | 
|  | NumFnArgumentReturned++; | 
|  | return; | 
|  | case Attribute::NoSync: | 
|  | NumFnNoSync++; | 
|  | break; | 
|  | case Attribute::NoFree: | 
|  | NumFnNoFree++; | 
|  | break; | 
|  | case Attribute::NonNull: | 
|  | switch (MP) { | 
|  | case AbstractAttribute::MP_RETURNED: | 
|  | NumFnReturnedNonNull++; | 
|  | break; | 
|  | case AbstractAttribute::MP_ARGUMENT: | 
|  | NumFnArgumentNonNull++; | 
|  | break; | 
|  | case AbstractAttribute::MP_CALL_SITE_ARGUMENT: | 
|  | NumCSArgumentNonNull++; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case Attribute::WillReturn: | 
|  | NumFnWillReturn++; | 
|  | break; | 
|  | case Attribute::NoAlias: | 
|  | NumFnArgumentNoAlias++; | 
|  | return; | 
|  | default: | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename StateTy> | 
|  | using followValueCB_t = std::function<bool(Value *, StateTy &State)>; | 
|  | template <typename StateTy> | 
|  | using visitValueCB_t = std::function<void(Value *, StateTy &State)>; | 
|  |  | 
|  | /// Recursively visit all values that might become \p InitV at some point. This | 
|  | /// will be done by looking through cast instructions, selects, phis, and calls | 
|  | /// with the "returned" attribute. The callback \p FollowValueCB is asked before | 
|  | /// a potential origin value is looked at. If no \p FollowValueCB is passed, a | 
|  | /// default one is used that will make sure we visit every value only once. Once | 
|  | /// we cannot look through the value any further, the callback \p VisitValueCB | 
|  | /// is invoked and passed the current value and the \p State. To limit how much | 
|  | /// effort is invested, we will never visit more than \p MaxValues values. | 
|  | template <typename StateTy> | 
|  | static bool genericValueTraversal( | 
|  | Value *InitV, StateTy &State, visitValueCB_t<StateTy> &VisitValueCB, | 
|  | followValueCB_t<StateTy> *FollowValueCB = nullptr, int MaxValues = 8) { | 
|  |  | 
|  | SmallPtrSet<Value *, 16> Visited; | 
|  | followValueCB_t<bool> DefaultFollowValueCB = [&](Value *Val, bool &) { | 
|  | return Visited.insert(Val).second; | 
|  | }; | 
|  |  | 
|  | if (!FollowValueCB) | 
|  | FollowValueCB = &DefaultFollowValueCB; | 
|  |  | 
|  | SmallVector<Value *, 16> Worklist; | 
|  | Worklist.push_back(InitV); | 
|  |  | 
|  | int Iteration = 0; | 
|  | do { | 
|  | Value *V = Worklist.pop_back_val(); | 
|  |  | 
|  | // Check if we should process the current value. To prevent endless | 
|  | // recursion keep a record of the values we followed! | 
|  | if (!(*FollowValueCB)(V, State)) | 
|  | continue; | 
|  |  | 
|  | // Make sure we limit the compile time for complex expressions. | 
|  | if (Iteration++ >= MaxValues) | 
|  | return false; | 
|  |  | 
|  | // Explicitly look through calls with a "returned" attribute if we do | 
|  | // not have a pointer as stripPointerCasts only works on them. | 
|  | if (V->getType()->isPointerTy()) { | 
|  | V = V->stripPointerCasts(); | 
|  | } else { | 
|  | CallSite CS(V); | 
|  | if (CS && CS.getCalledFunction()) { | 
|  | Value *NewV = nullptr; | 
|  | for (Argument &Arg : CS.getCalledFunction()->args()) | 
|  | if (Arg.hasReturnedAttr()) { | 
|  | NewV = CS.getArgOperand(Arg.getArgNo()); | 
|  | break; | 
|  | } | 
|  | if (NewV) { | 
|  | Worklist.push_back(NewV); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look through select instructions, visit both potential values. | 
|  | if (auto *SI = dyn_cast<SelectInst>(V)) { | 
|  | Worklist.push_back(SI->getTrueValue()); | 
|  | Worklist.push_back(SI->getFalseValue()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Look through phi nodes, visit all operands. | 
|  | if (auto *PHI = dyn_cast<PHINode>(V)) { | 
|  | Worklist.append(PHI->op_begin(), PHI->op_end()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Once a leaf is reached we inform the user through the callback. | 
|  | VisitValueCB(V, State); | 
|  | } while (!Worklist.empty()); | 
|  |  | 
|  | // All values have been visited. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Helper to identify the correct offset into an attribute list. | 
|  | static unsigned getAttrIndex(AbstractAttribute::ManifestPosition MP, | 
|  | unsigned ArgNo = 0) { | 
|  | switch (MP) { | 
|  | case AbstractAttribute::MP_ARGUMENT: | 
|  | case AbstractAttribute::MP_CALL_SITE_ARGUMENT: | 
|  | return ArgNo + AttributeList::FirstArgIndex; | 
|  | case AbstractAttribute::MP_FUNCTION: | 
|  | return AttributeList::FunctionIndex; | 
|  | case AbstractAttribute::MP_RETURNED: | 
|  | return AttributeList::ReturnIndex; | 
|  | } | 
|  | llvm_unreachable("Unknown manifest position!"); | 
|  | } | 
|  |  | 
|  | /// Return true if \p New is equal or worse than \p Old. | 
|  | static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) { | 
|  | if (!Old.isIntAttribute()) | 
|  | return true; | 
|  |  | 
|  | return Old.getValueAsInt() >= New.getValueAsInt(); | 
|  | } | 
|  |  | 
|  | /// Return true if the information provided by \p Attr was added to the | 
|  | /// attribute list \p Attrs. This is only the case if it was not already present | 
|  | /// in \p Attrs at the position describe by \p MP and \p ArgNo. | 
|  | static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr, | 
|  | AttributeList &Attrs, | 
|  | AbstractAttribute::ManifestPosition MP, | 
|  | unsigned ArgNo = 0) { | 
|  | unsigned AttrIdx = getAttrIndex(MP, ArgNo); | 
|  |  | 
|  | if (Attr.isEnumAttribute()) { | 
|  | Attribute::AttrKind Kind = Attr.getKindAsEnum(); | 
|  | if (Attrs.hasAttribute(AttrIdx, Kind)) | 
|  | if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind))) | 
|  | return false; | 
|  | Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr); | 
|  | return true; | 
|  | } | 
|  | if (Attr.isStringAttribute()) { | 
|  | StringRef Kind = Attr.getKindAsString(); | 
|  | if (Attrs.hasAttribute(AttrIdx, Kind)) | 
|  | if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind))) | 
|  | return false; | 
|  | Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr); | 
|  | return true; | 
|  | } | 
|  | if (Attr.isIntAttribute()) { | 
|  | Attribute::AttrKind Kind = Attr.getKindAsEnum(); | 
|  | if (Attrs.hasAttribute(AttrIdx, Kind)) | 
|  | if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind))) | 
|  | return false; | 
|  | Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind); | 
|  | Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Expected enum or string attribute!"); | 
|  | } | 
|  |  | 
|  | ChangeStatus AbstractAttribute::update(Attributor &A) { | 
|  | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; | 
|  | if (getState().isAtFixpoint()) | 
|  | return HasChanged; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n"); | 
|  |  | 
|  | HasChanged = updateImpl(A); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this | 
|  | << "\n"); | 
|  |  | 
|  | return HasChanged; | 
|  | } | 
|  |  | 
|  | ChangeStatus AbstractAttribute::manifest(Attributor &A) { | 
|  | assert(getState().isValidState() && | 
|  | "Attempted to manifest an invalid state!"); | 
|  | assert(getAssociatedValue() && | 
|  | "Attempted to manifest an attribute without associated value!"); | 
|  |  | 
|  | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; | 
|  | SmallVector<Attribute, 4> DeducedAttrs; | 
|  | getDeducedAttributes(DeducedAttrs); | 
|  |  | 
|  | Function &ScopeFn = getAnchorScope(); | 
|  | LLVMContext &Ctx = ScopeFn.getContext(); | 
|  | ManifestPosition MP = getManifestPosition(); | 
|  |  | 
|  | AttributeList Attrs; | 
|  | SmallVector<unsigned, 4> ArgNos; | 
|  |  | 
|  | // In the following some generic code that will manifest attributes in | 
|  | // DeducedAttrs if they improve the current IR. Due to the different | 
|  | // annotation positions we use the underlying AttributeList interface. | 
|  | // Note that MP_CALL_SITE_ARGUMENT can annotate multiple locations. | 
|  |  | 
|  | switch (MP) { | 
|  | case MP_ARGUMENT: | 
|  | ArgNos.push_back(cast<Argument>(getAssociatedValue())->getArgNo()); | 
|  | Attrs = ScopeFn.getAttributes(); | 
|  | break; | 
|  | case MP_FUNCTION: | 
|  | case MP_RETURNED: | 
|  | ArgNos.push_back(0); | 
|  | Attrs = ScopeFn.getAttributes(); | 
|  | break; | 
|  | case MP_CALL_SITE_ARGUMENT: { | 
|  | CallSite CS(&getAnchoredValue()); | 
|  | for (unsigned u = 0, e = CS.getNumArgOperands(); u != e; u++) | 
|  | if (CS.getArgOperand(u) == getAssociatedValue()) | 
|  | ArgNos.push_back(u); | 
|  | Attrs = CS.getAttributes(); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const Attribute &Attr : DeducedAttrs) { | 
|  | for (unsigned ArgNo : ArgNos) { | 
|  | if (!addIfNotExistent(Ctx, Attr, Attrs, MP, ArgNo)) | 
|  | continue; | 
|  |  | 
|  | HasChanged = ChangeStatus::CHANGED; | 
|  | bookkeeping(MP, Attr); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasChanged == ChangeStatus::UNCHANGED) | 
|  | return HasChanged; | 
|  |  | 
|  | switch (MP) { | 
|  | case MP_ARGUMENT: | 
|  | case MP_FUNCTION: | 
|  | case MP_RETURNED: | 
|  | ScopeFn.setAttributes(Attrs); | 
|  | break; | 
|  | case MP_CALL_SITE_ARGUMENT: | 
|  | CallSite(&getAnchoredValue()).setAttributes(Attrs); | 
|  | } | 
|  |  | 
|  | return HasChanged; | 
|  | } | 
|  |  | 
|  | Function &AbstractAttribute::getAnchorScope() { | 
|  | Value &V = getAnchoredValue(); | 
|  | if (isa<Function>(V)) | 
|  | return cast<Function>(V); | 
|  | if (isa<Argument>(V)) | 
|  | return *cast<Argument>(V).getParent(); | 
|  | if (isa<Instruction>(V)) | 
|  | return *cast<Instruction>(V).getFunction(); | 
|  | llvm_unreachable("No scope for anchored value found!"); | 
|  | } | 
|  |  | 
|  | const Function &AbstractAttribute::getAnchorScope() const { | 
|  | return const_cast<AbstractAttribute *>(this)->getAnchorScope(); | 
|  | } | 
|  |  | 
|  | // Helper function that returns argument index of value. | 
|  | // If the value is not an argument, this returns -1. | 
|  | static int getArgNo(Value &V) { | 
|  | if (auto *Arg = dyn_cast<Argument>(&V)) | 
|  | return Arg->getArgNo(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /// -----------------------NoUnwind Function Attribute-------------------------- | 
|  |  | 
|  | struct AANoUnwindFunction : AANoUnwind, BooleanState { | 
|  |  | 
|  | AANoUnwindFunction(Function &F, InformationCache &InfoCache) | 
|  | : AANoUnwind(F, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getState() | 
|  | /// { | 
|  | AbstractState &getState() override { return *this; } | 
|  | const AbstractState &getState() const override { return *this; } | 
|  | /// } | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | ManifestPosition getManifestPosition() const override { return MP_FUNCTION; } | 
|  |  | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "nounwind" : "may-unwind"; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | /// See AANoUnwind::isAssumedNoUnwind(). | 
|  | bool isAssumedNoUnwind() const override { return getAssumed(); } | 
|  |  | 
|  | /// See AANoUnwind::isKnownNoUnwind(). | 
|  | bool isKnownNoUnwind() const override { return getKnown(); } | 
|  | }; | 
|  |  | 
|  | ChangeStatus AANoUnwindFunction::updateImpl(Attributor &A) { | 
|  | Function &F = getAnchorScope(); | 
|  |  | 
|  | // The map from instruction opcodes to those instructions in the function. | 
|  | auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F); | 
|  | auto Opcodes = { | 
|  | (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr, | 
|  | (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet, | 
|  | (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume}; | 
|  |  | 
|  | for (unsigned Opcode : Opcodes) { | 
|  | for (Instruction *I : OpcodeInstMap[Opcode]) { | 
|  | if (!I->mayThrow()) | 
|  | continue; | 
|  |  | 
|  | auto *NoUnwindAA = A.getAAFor<AANoUnwind>(*this, *I); | 
|  |  | 
|  | if (!NoUnwindAA || !NoUnwindAA->isAssumedNoUnwind()) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  | } | 
|  | } | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// --------------------- Function Return Values ------------------------------- | 
|  |  | 
|  | /// "Attribute" that collects all potential returned values and the return | 
|  | /// instructions that they arise from. | 
|  | /// | 
|  | /// If there is a unique returned value R, the manifest method will: | 
|  | ///   - mark R with the "returned" attribute, if R is an argument. | 
|  | class AAReturnedValuesImpl final : public AAReturnedValues, AbstractState { | 
|  |  | 
|  | /// Mapping of values potentially returned by the associated function to the | 
|  | /// return instructions that might return them. | 
|  | DenseMap<Value *, SmallPtrSet<ReturnInst *, 2>> ReturnedValues; | 
|  |  | 
|  | /// State flags | 
|  | /// | 
|  | ///{ | 
|  | bool IsFixed; | 
|  | bool IsValidState; | 
|  | bool HasOverdefinedReturnedCalls; | 
|  | ///} | 
|  |  | 
|  | /// Collect values that could become \p V in the set \p Values, each mapped to | 
|  | /// \p ReturnInsts. | 
|  | void collectValuesRecursively( | 
|  | Attributor &A, Value *V, SmallPtrSetImpl<ReturnInst *> &ReturnInsts, | 
|  | DenseMap<Value *, SmallPtrSet<ReturnInst *, 2>> &Values) { | 
|  |  | 
|  | visitValueCB_t<bool> VisitValueCB = [&](Value *Val, bool &) { | 
|  | assert(!isa<Instruction>(Val) || | 
|  | &getAnchorScope() == cast<Instruction>(Val)->getFunction()); | 
|  | Values[Val].insert(ReturnInsts.begin(), ReturnInsts.end()); | 
|  | }; | 
|  |  | 
|  | bool UnusedBool; | 
|  | bool Success = genericValueTraversal(V, UnusedBool, VisitValueCB); | 
|  |  | 
|  | // If we did abort the above traversal we haven't see all the values. | 
|  | // Consequently, we cannot know if the information we would derive is | 
|  | // accurate so we give up early. | 
|  | if (!Success) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// See AbstractAttribute::AbstractAttribute(...). | 
|  | AAReturnedValuesImpl(Function &F, InformationCache &InfoCache) | 
|  | : AAReturnedValues(F, InfoCache) { | 
|  | // We do not have an associated argument yet. | 
|  | AssociatedVal = nullptr; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | // Reset the state. | 
|  | AssociatedVal = nullptr; | 
|  | IsFixed = false; | 
|  | IsValidState = true; | 
|  | HasOverdefinedReturnedCalls = false; | 
|  | ReturnedValues.clear(); | 
|  |  | 
|  | Function &F = cast<Function>(getAnchoredValue()); | 
|  |  | 
|  | // The map from instruction opcodes to those instructions in the function. | 
|  | auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F); | 
|  |  | 
|  | // Look through all arguments, if one is marked as returned we are done. | 
|  | for (Argument &Arg : F.args()) { | 
|  | if (Arg.hasReturnedAttr()) { | 
|  |  | 
|  | auto &ReturnInstSet = ReturnedValues[&Arg]; | 
|  | for (Instruction *RI : OpcodeInstMap[Instruction::Ret]) | 
|  | ReturnInstSet.insert(cast<ReturnInst>(RI)); | 
|  |  | 
|  | indicateOptimisticFixpoint(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If no argument was marked as returned we look at all return instructions | 
|  | // and collect potentially returned values. | 
|  | for (Instruction *RI : OpcodeInstMap[Instruction::Ret]) { | 
|  | SmallPtrSet<ReturnInst *, 1> RISet({cast<ReturnInst>(RI)}); | 
|  | collectValuesRecursively(A, cast<ReturnInst>(RI)->getReturnValue(), RISet, | 
|  | ReturnedValues); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override; | 
|  |  | 
|  | /// See AbstractAttribute::getState(...). | 
|  | AbstractState &getState() override { return *this; } | 
|  |  | 
|  | /// See AbstractAttribute::getState(...). | 
|  | const AbstractState &getState() const override { return *this; } | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | ManifestPosition getManifestPosition() const override { return MP_ARGUMENT; } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(Attributor &A). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | /// Return the number of potential return values, -1 if unknown. | 
|  | size_t getNumReturnValues() const { | 
|  | return isValidState() ? ReturnedValues.size() : -1; | 
|  | } | 
|  |  | 
|  | /// Return an assumed unique return value if a single candidate is found. If | 
|  | /// there cannot be one, return a nullptr. If it is not clear yet, return the | 
|  | /// Optional::NoneType. | 
|  | Optional<Value *> getAssumedUniqueReturnValue() const; | 
|  |  | 
|  | /// See AbstractState::checkForallReturnedValues(...). | 
|  | bool | 
|  | checkForallReturnedValues(std::function<bool(Value &)> &Pred) const override; | 
|  |  | 
|  | /// Pretty print the attribute similar to the IR representation. | 
|  | const std::string getAsStr() const override; | 
|  |  | 
|  | /// See AbstractState::isAtFixpoint(). | 
|  | bool isAtFixpoint() const override { return IsFixed; } | 
|  |  | 
|  | /// See AbstractState::isValidState(). | 
|  | bool isValidState() const override { return IsValidState; } | 
|  |  | 
|  | /// See AbstractState::indicateOptimisticFixpoint(...). | 
|  | void indicateOptimisticFixpoint() override { | 
|  | IsFixed = true; | 
|  | IsValidState &= true; | 
|  | } | 
|  | void indicatePessimisticFixpoint() override { | 
|  | IsFixed = true; | 
|  | IsValidState = false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) { | 
|  | ChangeStatus Changed = ChangeStatus::UNCHANGED; | 
|  |  | 
|  | // Bookkeeping. | 
|  | assert(isValidState()); | 
|  | NumFnKnownReturns++; | 
|  |  | 
|  | // Check if we have an assumed unique return value that we could manifest. | 
|  | Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(); | 
|  |  | 
|  | if (!UniqueRV.hasValue() || !UniqueRV.getValue()) | 
|  | return Changed; | 
|  |  | 
|  | // Bookkeeping. | 
|  | NumFnUniqueReturned++; | 
|  |  | 
|  | // If the assumed unique return value is an argument, annotate it. | 
|  | if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) { | 
|  | AssociatedVal = UniqueRVArg; | 
|  | Changed = AbstractAttribute::manifest(A) | Changed; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | const std::string AAReturnedValuesImpl::getAsStr() const { | 
|  | return (isAtFixpoint() ? "returns(#" : "may-return(#") + | 
|  | (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")"; | 
|  | } | 
|  |  | 
|  | Optional<Value *> AAReturnedValuesImpl::getAssumedUniqueReturnValue() const { | 
|  | // If checkForallReturnedValues provides a unique value, ignoring potential | 
|  | // undef values that can also be present, it is assumed to be the actual | 
|  | // return value and forwarded to the caller of this method. If there are | 
|  | // multiple, a nullptr is returned indicating there cannot be a unique | 
|  | // returned value. | 
|  | Optional<Value *> UniqueRV; | 
|  |  | 
|  | std::function<bool(Value &)> Pred = [&](Value &RV) -> bool { | 
|  | // If we found a second returned value and neither the current nor the saved | 
|  | // one is an undef, there is no unique returned value. Undefs are special | 
|  | // since we can pretend they have any value. | 
|  | if (UniqueRV.hasValue() && UniqueRV != &RV && | 
|  | !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) { | 
|  | UniqueRV = nullptr; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Do not overwrite a value with an undef. | 
|  | if (!UniqueRV.hasValue() || !isa<UndefValue>(RV)) | 
|  | UniqueRV = &RV; | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | if (!checkForallReturnedValues(Pred)) | 
|  | UniqueRV = nullptr; | 
|  |  | 
|  | return UniqueRV; | 
|  | } | 
|  |  | 
|  | bool AAReturnedValuesImpl::checkForallReturnedValues( | 
|  | std::function<bool(Value &)> &Pred) const { | 
|  | if (!isValidState()) | 
|  | return false; | 
|  |  | 
|  | // Check all returned values but ignore call sites as long as we have not | 
|  | // encountered an overdefined one during an update. | 
|  | for (auto &It : ReturnedValues) { | 
|  | Value *RV = It.first; | 
|  |  | 
|  | ImmutableCallSite ICS(RV); | 
|  | if (ICS && !HasOverdefinedReturnedCalls) | 
|  | continue; | 
|  |  | 
|  | if (!Pred(*RV)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) { | 
|  |  | 
|  | // Check if we know of any values returned by the associated function, | 
|  | // if not, we are done. | 
|  | if (getNumReturnValues() == 0) { | 
|  | indicateOptimisticFixpoint(); | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | // Check if any of the returned values is a call site we can refine. | 
|  | decltype(ReturnedValues) AddRVs; | 
|  | bool HasCallSite = false; | 
|  |  | 
|  | // Look at all returned call sites. | 
|  | for (auto &It : ReturnedValues) { | 
|  | SmallPtrSet<ReturnInst *, 2> &ReturnInsts = It.second; | 
|  | Value *RV = It.first; | 
|  | LLVM_DEBUG(dbgs() << "[AAReturnedValues] Potentially returned value " << *RV | 
|  | << "\n"); | 
|  |  | 
|  | // Only call sites can change during an update, ignore the rest. | 
|  | CallSite RetCS(RV); | 
|  | if (!RetCS) | 
|  | continue; | 
|  |  | 
|  | // For now, any call site we see will prevent us from directly fixing the | 
|  | // state. However, if the information on the callees is fixed, the call | 
|  | // sites will be removed and we will fix the information for this state. | 
|  | HasCallSite = true; | 
|  |  | 
|  | // Try to find a assumed unique return value for the called function. | 
|  | auto *RetCSAA = A.getAAFor<AAReturnedValuesImpl>(*this, *RV); | 
|  | if (!RetCSAA) { | 
|  | HasOverdefinedReturnedCalls = true; | 
|  | LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned call site (" << *RV | 
|  | << ") with " << (RetCSAA ? "invalid" : "no") | 
|  | << " associated state\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Try to find a assumed unique return value for the called function. | 
|  | Optional<Value *> AssumedUniqueRV = RetCSAA->getAssumedUniqueReturnValue(); | 
|  |  | 
|  | // If no assumed unique return value was found due to the lack of | 
|  | // candidates, we may need to resolve more calls (through more update | 
|  | // iterations) or the called function will not return. Either way, we simply | 
|  | // stick with the call sites as return values. Because there were not | 
|  | // multiple possibilities, we do not treat it as overdefined. | 
|  | if (!AssumedUniqueRV.hasValue()) | 
|  | continue; | 
|  |  | 
|  | // If multiple, non-refinable values were found, there cannot be a unique | 
|  | // return value for the called function. The returned call is overdefined! | 
|  | if (!AssumedUniqueRV.getValue()) { | 
|  | HasOverdefinedReturnedCalls = true; | 
|  | LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned call site has multiple " | 
|  | "potentially returned values\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | bool UniqueRVIsKnown = RetCSAA->isAtFixpoint(); | 
|  | dbgs() << "[AAReturnedValues] Returned call site " | 
|  | << (UniqueRVIsKnown ? "known" : "assumed") | 
|  | << " unique return value: " << *AssumedUniqueRV << "\n"; | 
|  | }); | 
|  |  | 
|  | // The assumed unique return value. | 
|  | Value *AssumedRetVal = AssumedUniqueRV.getValue(); | 
|  |  | 
|  | // If the assumed unique return value is an argument, lookup the matching | 
|  | // call site operand and recursively collect new returned values. | 
|  | // If it is not an argument, it is just put into the set of returned values | 
|  | // as we would have already looked through casts, phis, and similar values. | 
|  | if (Argument *AssumedRetArg = dyn_cast<Argument>(AssumedRetVal)) | 
|  | collectValuesRecursively(A, | 
|  | RetCS.getArgOperand(AssumedRetArg->getArgNo()), | 
|  | ReturnInsts, AddRVs); | 
|  | else | 
|  | AddRVs[AssumedRetVal].insert(ReturnInsts.begin(), ReturnInsts.end()); | 
|  | } | 
|  |  | 
|  | // Keep track of any change to trigger updates on dependent attributes. | 
|  | ChangeStatus Changed = ChangeStatus::UNCHANGED; | 
|  |  | 
|  | for (auto &It : AddRVs) { | 
|  | assert(!It.second.empty() && "Entry does not add anything."); | 
|  | auto &ReturnInsts = ReturnedValues[It.first]; | 
|  | for (ReturnInst *RI : It.second) | 
|  | if (ReturnInsts.insert(RI).second) { | 
|  | LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value " | 
|  | << *It.first << " => " << *RI << "\n"); | 
|  | Changed = ChangeStatus::CHANGED; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is no call site in the returned values we are done. | 
|  | if (!HasCallSite) { | 
|  | indicateOptimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// ------------------------ NoSync Function Attribute ------------------------- | 
|  |  | 
|  | struct AANoSyncFunction : AANoSync, BooleanState { | 
|  |  | 
|  | AANoSyncFunction(Function &F, InformationCache &InfoCache) | 
|  | : AANoSync(F, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getState() | 
|  | /// { | 
|  | AbstractState &getState() override { return *this; } | 
|  | const AbstractState &getState() const override { return *this; } | 
|  | /// } | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | ManifestPosition getManifestPosition() const override { return MP_FUNCTION; } | 
|  |  | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "nosync" : "may-sync"; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | /// See AANoSync::isAssumedNoSync() | 
|  | bool isAssumedNoSync() const override { return getAssumed(); } | 
|  |  | 
|  | /// See AANoSync::isKnownNoSync() | 
|  | bool isKnownNoSync() const override { return getKnown(); } | 
|  |  | 
|  | /// Helper function used to determine whether an instruction is non-relaxed | 
|  | /// atomic. In other words, if an atomic instruction does not have unordered | 
|  | /// or monotonic ordering | 
|  | static bool isNonRelaxedAtomic(Instruction *I); | 
|  |  | 
|  | /// Helper function used to determine whether an instruction is volatile. | 
|  | static bool isVolatile(Instruction *I); | 
|  |  | 
|  | /// Helper function uset to check if intrinsic is volatile (memcpy, memmove, | 
|  | /// memset). | 
|  | static bool isNoSyncIntrinsic(Instruction *I); | 
|  | }; | 
|  |  | 
|  | bool AANoSyncFunction::isNonRelaxedAtomic(Instruction *I) { | 
|  | if (!I->isAtomic()) | 
|  | return false; | 
|  |  | 
|  | AtomicOrdering Ordering; | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::AtomicRMW: | 
|  | Ordering = cast<AtomicRMWInst>(I)->getOrdering(); | 
|  | break; | 
|  | case Instruction::Store: | 
|  | Ordering = cast<StoreInst>(I)->getOrdering(); | 
|  | break; | 
|  | case Instruction::Load: | 
|  | Ordering = cast<LoadInst>(I)->getOrdering(); | 
|  | break; | 
|  | case Instruction::Fence: { | 
|  | auto *FI = cast<FenceInst>(I); | 
|  | if (FI->getSyncScopeID() == SyncScope::SingleThread) | 
|  | return false; | 
|  | Ordering = FI->getOrdering(); | 
|  | break; | 
|  | } | 
|  | case Instruction::AtomicCmpXchg: { | 
|  | AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering(); | 
|  | AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering(); | 
|  | // Only if both are relaxed, than it can be treated as relaxed. | 
|  | // Otherwise it is non-relaxed. | 
|  | if (Success != AtomicOrdering::Unordered && | 
|  | Success != AtomicOrdering::Monotonic) | 
|  | return true; | 
|  | if (Failure != AtomicOrdering::Unordered && | 
|  | Failure != AtomicOrdering::Monotonic) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable( | 
|  | "New atomic operations need to be known in the attributor."); | 
|  | } | 
|  |  | 
|  | // Relaxed. | 
|  | if (Ordering == AtomicOrdering::Unordered || | 
|  | Ordering == AtomicOrdering::Monotonic) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics. | 
|  | /// FIXME: We should ipmrove the handling of intrinsics. | 
|  | bool AANoSyncFunction::isNoSyncIntrinsic(Instruction *I) { | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | /// Element wise atomic memory intrinsics are can only be unordered, | 
|  | /// therefore nosync. | 
|  | case Intrinsic::memset_element_unordered_atomic: | 
|  | case Intrinsic::memmove_element_unordered_atomic: | 
|  | case Intrinsic::memcpy_element_unordered_atomic: | 
|  | return true; | 
|  | case Intrinsic::memset: | 
|  | case Intrinsic::memmove: | 
|  | case Intrinsic::memcpy: | 
|  | if (!cast<MemIntrinsic>(II)->isVolatile()) | 
|  | return true; | 
|  | return false; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AANoSyncFunction::isVolatile(Instruction *I) { | 
|  | assert(!ImmutableCallSite(I) && !isa<CallBase>(I) && | 
|  | "Calls should not be checked here"); | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::AtomicRMW: | 
|  | return cast<AtomicRMWInst>(I)->isVolatile(); | 
|  | case Instruction::Store: | 
|  | return cast<StoreInst>(I)->isVolatile(); | 
|  | case Instruction::Load: | 
|  | return cast<LoadInst>(I)->isVolatile(); | 
|  | case Instruction::AtomicCmpXchg: | 
|  | return cast<AtomicCmpXchgInst>(I)->isVolatile(); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | ChangeStatus AANoSyncFunction::updateImpl(Attributor &A) { | 
|  | Function &F = getAnchorScope(); | 
|  |  | 
|  | /// We are looking for volatile instructions or Non-Relaxed atomics. | 
|  | /// FIXME: We should ipmrove the handling of intrinsics. | 
|  | for (Instruction *I : InfoCache.getReadOrWriteInstsForFunction(F)) { | 
|  | ImmutableCallSite ICS(I); | 
|  | auto *NoSyncAA = A.getAAFor<AANoSyncFunction>(*this, *I); | 
|  |  | 
|  | if (isa<IntrinsicInst>(I) && isNoSyncIntrinsic(I)) | 
|  | continue; | 
|  |  | 
|  | if (ICS && (!NoSyncAA || !NoSyncAA->isAssumedNoSync()) && | 
|  | !ICS.hasFnAttr(Attribute::NoSync)) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | if (ICS) | 
|  | continue; | 
|  |  | 
|  | if (!isVolatile(I) && !isNonRelaxedAtomic(I)) | 
|  | continue; | 
|  |  | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F); | 
|  | auto Opcodes = {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, | 
|  | (unsigned)Instruction::Call}; | 
|  |  | 
|  | for (unsigned Opcode : Opcodes) { | 
|  | for (Instruction *I : OpcodeInstMap[Opcode]) { | 
|  | // At this point we handled all read/write effects and they are all | 
|  | // nosync, so they can be skipped. | 
|  | if (I->mayReadOrWriteMemory()) | 
|  | continue; | 
|  |  | 
|  | ImmutableCallSite ICS(I); | 
|  |  | 
|  | // non-convergent and readnone imply nosync. | 
|  | if (!ICS.isConvergent()) | 
|  | continue; | 
|  |  | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// ------------------------ No-Free Attributes ---------------------------- | 
|  |  | 
|  | struct AANoFreeFunction : AbstractAttribute, BooleanState { | 
|  |  | 
|  | /// See AbstractAttribute::AbstractAttribute(...). | 
|  | AANoFreeFunction(Function &F, InformationCache &InfoCache) | 
|  | : AbstractAttribute(F, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getState() | 
|  | ///{ | 
|  | AbstractState &getState() override { return *this; } | 
|  | const AbstractState &getState() const override { return *this; } | 
|  | ///} | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | ManifestPosition getManifestPosition() const override { return MP_FUNCTION; } | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "nofree" : "may-free"; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | /// See AbstractAttribute::getAttrKind(). | 
|  | Attribute::AttrKind getAttrKind() const override { return ID; } | 
|  |  | 
|  | /// Return true if "nofree" is assumed. | 
|  | bool isAssumedNoFree() const { return getAssumed(); } | 
|  |  | 
|  | /// Return true if "nofree" is known. | 
|  | bool isKnownNoFree() const { return getKnown(); } | 
|  |  | 
|  | /// The identifier used by the Attributor for this class of attributes. | 
|  | static constexpr Attribute::AttrKind ID = Attribute::NoFree; | 
|  | }; | 
|  |  | 
|  | ChangeStatus AANoFreeFunction::updateImpl(Attributor &A) { | 
|  | Function &F = getAnchorScope(); | 
|  |  | 
|  | // The map from instruction opcodes to those instructions in the function. | 
|  | auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F); | 
|  |  | 
|  | for (unsigned Opcode : | 
|  | {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, | 
|  | (unsigned)Instruction::Call}) { | 
|  | for (Instruction *I : OpcodeInstMap[Opcode]) { | 
|  |  | 
|  | auto ICS = ImmutableCallSite(I); | 
|  | auto *NoFreeAA = A.getAAFor<AANoFreeFunction>(*this, *I); | 
|  |  | 
|  | if ((!NoFreeAA || !NoFreeAA->isAssumedNoFree()) && | 
|  | !ICS.hasFnAttr(Attribute::NoFree)) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  | } | 
|  | } | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// ------------------------ NonNull Argument Attribute ------------------------ | 
|  | struct AANonNullImpl : AANonNull, BooleanState { | 
|  |  | 
|  | AANonNullImpl(Value &V, InformationCache &InfoCache) | 
|  | : AANonNull(V, InfoCache) {} | 
|  |  | 
|  | AANonNullImpl(Value *AssociatedVal, Value &AnchoredValue, | 
|  | InformationCache &InfoCache) | 
|  | : AANonNull(AssociatedVal, AnchoredValue, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getState() | 
|  | /// { | 
|  | AbstractState &getState() override { return *this; } | 
|  | const AbstractState &getState() const override { return *this; } | 
|  | /// } | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "nonnull" : "may-null"; | 
|  | } | 
|  |  | 
|  | /// See AANonNull::isAssumedNonNull(). | 
|  | bool isAssumedNonNull() const override { return getAssumed(); } | 
|  |  | 
|  | /// See AANonNull::isKnownNonNull(). | 
|  | bool isKnownNonNull() const override { return getKnown(); } | 
|  |  | 
|  | /// Generate a predicate that checks if a given value is assumed nonnull. | 
|  | /// The generated function returns true if a value satisfies any of | 
|  | /// following conditions. | 
|  | /// (i) A value is known nonZero(=nonnull). | 
|  | /// (ii) A value is associated with AANonNull and its isAssumedNonNull() is | 
|  | /// true. | 
|  | std::function<bool(Value &)> generatePredicate(Attributor &); | 
|  | }; | 
|  |  | 
|  | std::function<bool(Value &)> AANonNullImpl::generatePredicate(Attributor &A) { | 
|  | // FIXME: The `AAReturnedValues` should provide the predicate with the | 
|  | // `ReturnInst` vector as well such that we can use the control flow sensitive | 
|  | // version of `isKnownNonZero`. This should fix `test11` in | 
|  | // `test/Transforms/FunctionAttrs/nonnull.ll` | 
|  |  | 
|  | std::function<bool(Value &)> Pred = [&](Value &RV) -> bool { | 
|  | if (isKnownNonZero(&RV, getAnchorScope().getParent()->getDataLayout())) | 
|  | return true; | 
|  |  | 
|  | auto *NonNullAA = A.getAAFor<AANonNull>(*this, RV); | 
|  |  | 
|  | ImmutableCallSite ICS(&RV); | 
|  |  | 
|  | if ((!NonNullAA || !NonNullAA->isAssumedNonNull()) && | 
|  | (!ICS || !ICS.hasRetAttr(Attribute::NonNull))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | return Pred; | 
|  | } | 
|  |  | 
|  | /// NonNull attribute for function return value. | 
|  | struct AANonNullReturned : AANonNullImpl { | 
|  |  | 
|  | AANonNullReturned(Function &F, InformationCache &InfoCache) | 
|  | : AANonNullImpl(F, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | ManifestPosition getManifestPosition() const override { return MP_RETURNED; } | 
|  |  | 
|  | /// See AbstractAttriubute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | Function &F = getAnchorScope(); | 
|  |  | 
|  | // Already nonnull. | 
|  | if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex, | 
|  | Attribute::NonNull) || | 
|  | F.getAttributes().hasAttribute(AttributeList::ReturnIndex, | 
|  | Attribute::Dereferenceable)) | 
|  | indicateOptimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  | }; | 
|  |  | 
|  | ChangeStatus AANonNullReturned::updateImpl(Attributor &A) { | 
|  | Function &F = getAnchorScope(); | 
|  |  | 
|  | auto *AARetVal = A.getAAFor<AAReturnedValues>(*this, F); | 
|  | if (!AARetVal) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | std::function<bool(Value &)> Pred = this->generatePredicate(A); | 
|  | if (!AARetVal->checkForallReturnedValues(Pred)) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// NonNull attribute for function argument. | 
|  | struct AANonNullArgument : AANonNullImpl { | 
|  |  | 
|  | AANonNullArgument(Argument &A, InformationCache &InfoCache) | 
|  | : AANonNullImpl(A, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | ManifestPosition getManifestPosition() const override { return MP_ARGUMENT; } | 
|  |  | 
|  | /// See AbstractAttriubute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | Argument *Arg = cast<Argument>(getAssociatedValue()); | 
|  | if (Arg->hasNonNullAttr()) | 
|  | indicateOptimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  | }; | 
|  |  | 
|  | /// NonNull attribute for a call site argument. | 
|  | struct AANonNullCallSiteArgument : AANonNullImpl { | 
|  |  | 
|  | /// See AANonNullImpl::AANonNullImpl(...). | 
|  | AANonNullCallSiteArgument(CallSite CS, unsigned ArgNo, | 
|  | InformationCache &InfoCache) | 
|  | : AANonNullImpl(CS.getArgOperand(ArgNo), *CS.getInstruction(), InfoCache), | 
|  | ArgNo(ArgNo) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | CallSite CS(&getAnchoredValue()); | 
|  | if (CS.paramHasAttr(ArgNo, getAttrKind()) || | 
|  | CS.paramHasAttr(ArgNo, Attribute::Dereferenceable) || | 
|  | isKnownNonZero(getAssociatedValue(), | 
|  | getAnchorScope().getParent()->getDataLayout())) | 
|  | indicateOptimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(Attributor &A). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | ManifestPosition getManifestPosition() const override { | 
|  | return MP_CALL_SITE_ARGUMENT; | 
|  | }; | 
|  |  | 
|  | // Return argument index of associated value. | 
|  | int getArgNo() const { return ArgNo; } | 
|  |  | 
|  | private: | 
|  | unsigned ArgNo; | 
|  | }; | 
|  | ChangeStatus AANonNullArgument::updateImpl(Attributor &A) { | 
|  | Function &F = getAnchorScope(); | 
|  | Argument &Arg = cast<Argument>(getAnchoredValue()); | 
|  |  | 
|  | unsigned ArgNo = Arg.getArgNo(); | 
|  |  | 
|  | // Callback function | 
|  | std::function<bool(CallSite)> CallSiteCheck = [&](CallSite CS) { | 
|  | assert(CS && "Sanity check: Call site was not initialized properly!"); | 
|  |  | 
|  | auto *NonNullAA = A.getAAFor<AANonNull>(*this, *CS.getInstruction(), ArgNo); | 
|  |  | 
|  | // Check that NonNullAA is AANonNullCallSiteArgument. | 
|  | if (NonNullAA) { | 
|  | ImmutableCallSite ICS(&NonNullAA->getAnchoredValue()); | 
|  | if (ICS && CS.getInstruction() == ICS.getInstruction()) | 
|  | return NonNullAA->isAssumedNonNull(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CS.paramHasAttr(ArgNo, Attribute::NonNull)) | 
|  | return true; | 
|  |  | 
|  | Value *V = CS.getArgOperand(ArgNo); | 
|  | if (isKnownNonZero(V, getAnchorScope().getParent()->getDataLayout())) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | }; | 
|  | if (!A.checkForAllCallSites(F, CallSiteCheck, true)) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | ChangeStatus AANonNullCallSiteArgument::updateImpl(Attributor &A) { | 
|  | // NOTE: Never look at the argument of the callee in this method. | 
|  | //       If we do this, "nonnull" is always deduced because of the assumption. | 
|  |  | 
|  | Value &V = *getAssociatedValue(); | 
|  |  | 
|  | auto *NonNullAA = A.getAAFor<AANonNull>(*this, V); | 
|  |  | 
|  | if (!NonNullAA || !NonNullAA->isAssumedNonNull()) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// ------------------------ Will-Return Attributes ---------------------------- | 
|  |  | 
|  | struct AAWillReturnImpl : public AAWillReturn, BooleanState { | 
|  |  | 
|  | /// See AbstractAttribute::AbstractAttribute(...). | 
|  | AAWillReturnImpl(Function &F, InformationCache &InfoCache) | 
|  | : AAWillReturn(F, InfoCache) {} | 
|  |  | 
|  | /// See AAWillReturn::isKnownWillReturn(). | 
|  | bool isKnownWillReturn() const override { return getKnown(); } | 
|  |  | 
|  | /// See AAWillReturn::isAssumedWillReturn(). | 
|  | bool isAssumedWillReturn() const override { return getAssumed(); } | 
|  |  | 
|  | /// See AbstractAttribute::getState(...). | 
|  | AbstractState &getState() override { return *this; } | 
|  |  | 
|  | /// See AbstractAttribute::getState(...). | 
|  | const AbstractState &getState() const override { return *this; } | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr() | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "willreturn" : "may-noreturn"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AAWillReturnFunction final : AAWillReturnImpl { | 
|  |  | 
|  | /// See AbstractAttribute::AbstractAttribute(...). | 
|  | AAWillReturnFunction(Function &F, InformationCache &InfoCache) | 
|  | : AAWillReturnImpl(F, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | ManifestPosition getManifestPosition() const override { | 
|  | return MP_FUNCTION; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override; | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  | }; | 
|  |  | 
|  | // Helper function that checks whether a function has any cycle. | 
|  | // TODO: Replace with more efficent code | 
|  | bool containsCycle(Function &F) { | 
|  | SmallPtrSet<BasicBlock *, 32> Visited; | 
|  |  | 
|  | // Traverse BB by dfs and check whether successor is already visited. | 
|  | for (BasicBlock *BB : depth_first(&F)) { | 
|  | Visited.insert(BB); | 
|  | for (auto *SuccBB : successors(BB)) { | 
|  | if (Visited.count(SuccBB)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Helper function that checks the function have a loop which might become an | 
|  | // endless loop | 
|  | // FIXME: Any cycle is regarded as endless loop for now. | 
|  | //        We have to allow some patterns. | 
|  | bool containsPossiblyEndlessLoop(Function &F) { return containsCycle(F); } | 
|  |  | 
|  | void AAWillReturnFunction::initialize(Attributor &A) { | 
|  | Function &F = getAnchorScope(); | 
|  |  | 
|  | if (containsPossiblyEndlessLoop(F)) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | ChangeStatus AAWillReturnFunction::updateImpl(Attributor &A) { | 
|  | Function &F = getAnchorScope(); | 
|  |  | 
|  | // The map from instruction opcodes to those instructions in the function. | 
|  | auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F); | 
|  |  | 
|  | for (unsigned Opcode : | 
|  | {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, | 
|  | (unsigned)Instruction::Call}) { | 
|  | for (Instruction *I : OpcodeInstMap[Opcode]) { | 
|  | auto ICS = ImmutableCallSite(I); | 
|  |  | 
|  | if (ICS.hasFnAttr(Attribute::WillReturn)) | 
|  | continue; | 
|  |  | 
|  | auto *WillReturnAA = A.getAAFor<AAWillReturn>(*this, *I); | 
|  | if (!WillReturnAA || !WillReturnAA->isAssumedWillReturn()) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | auto *NoRecurseAA = A.getAAFor<AANoRecurse>(*this, *I); | 
|  |  | 
|  | // FIXME: (i) Prohibit any recursion for now. | 
|  | //        (ii) AANoRecurse isn't implemented yet so currently any call is | 
|  | //        regarded as having recursion. | 
|  | //       Code below should be | 
|  | //       if ((!NoRecurseAA || !NoRecurseAA->isAssumedNoRecurse()) && | 
|  | if (!NoRecurseAA && !ICS.hasFnAttr(Attribute::NoRecurse)) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// ------------------------ NoAlias Argument Attribute ------------------------ | 
|  |  | 
|  | struct AANoAliasImpl : AANoAlias, BooleanState { | 
|  |  | 
|  | AANoAliasImpl(Value &V, InformationCache &InfoCache) | 
|  | : AANoAlias(V, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getState() | 
|  | /// { | 
|  | AbstractState &getState() override { return *this; } | 
|  | const AbstractState &getState() const override { return *this; } | 
|  | /// } | 
|  |  | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "noalias" : "may-alias"; | 
|  | } | 
|  |  | 
|  | /// See AANoAlias::isAssumedNoAlias(). | 
|  | bool isAssumedNoAlias() const override { return getAssumed(); } | 
|  |  | 
|  | /// See AANoAlias::isKnowndNoAlias(). | 
|  | bool isKnownNoAlias() const override { return getKnown(); } | 
|  | }; | 
|  |  | 
|  | /// NoAlias attribute for function return value. | 
|  | struct AANoAliasReturned : AANoAliasImpl { | 
|  |  | 
|  | AANoAliasReturned(Function &F, InformationCache &InfoCache) | 
|  | : AANoAliasImpl(F, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | virtual ManifestPosition getManifestPosition() const override { | 
|  | return MP_RETURNED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttriubute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | Function &F = getAnchorScope(); | 
|  |  | 
|  | // Already noalias. | 
|  | if (F.returnDoesNotAlias()) { | 
|  | indicateOptimisticFixpoint(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | virtual ChangeStatus updateImpl(Attributor &A) override; | 
|  | }; | 
|  |  | 
|  | ChangeStatus AANoAliasReturned::updateImpl(Attributor &A) { | 
|  | Function &F = getAnchorScope(); | 
|  |  | 
|  | auto *AARetValImpl = A.getAAFor<AAReturnedValuesImpl>(*this, F); | 
|  | if (!AARetValImpl) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | std::function<bool(Value &)> Pred = [&](Value &RV) -> bool { | 
|  | if (Constant *C = dyn_cast<Constant>(&RV)) | 
|  | if (C->isNullValue() || isa<UndefValue>(C)) | 
|  | return true; | 
|  |  | 
|  | /// For now, we can only deduce noalias if we have call sites. | 
|  | /// FIXME: add more support. | 
|  | ImmutableCallSite ICS(&RV); | 
|  | if (!ICS) | 
|  | return false; | 
|  |  | 
|  | auto *NoAliasAA = A.getAAFor<AANoAlias>(*this, RV); | 
|  |  | 
|  | if (!ICS.returnDoesNotAlias() && (!NoAliasAA || | 
|  | !NoAliasAA->isAssumedNoAlias())) | 
|  | return false; | 
|  |  | 
|  | /// FIXME: We can improve capture check in two ways: | 
|  | /// 1. Use the AANoCapture facilities. | 
|  | /// 2. Use the location of return insts for escape queries. | 
|  | if (PointerMayBeCaptured(&RV, /* ReturnCaptures */ false, | 
|  | /* StoreCaptures */ true)) | 
|  | return false; | 
|  |  | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | if (!AARetValImpl->checkForallReturnedValues(Pred)) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// -------------------AAIsDead Function Attribute----------------------- | 
|  |  | 
|  | struct AAIsDeadFunction : AAIsDead, BooleanState { | 
|  |  | 
|  | AAIsDeadFunction(Function &F, InformationCache &InfoCache) | 
|  | : AAIsDead(F, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getState() | 
|  | /// { | 
|  | AbstractState &getState() override { return *this; } | 
|  | const AbstractState &getState() const override { return *this; } | 
|  | /// } | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | ManifestPosition getManifestPosition() const override { return MP_FUNCTION; } | 
|  |  | 
|  | void initialize(Attributor &A) override { | 
|  | Function &F = getAnchorScope(); | 
|  |  | 
|  | ToBeExploredPaths.insert(&(F.getEntryBlock().front())); | 
|  | AssumedLiveBlocks.insert(&(F.getEntryBlock())); | 
|  | for (size_t i = 0; i < ToBeExploredPaths.size(); ++i) | 
|  | explorePath(A, ToBeExploredPaths[i]); | 
|  | } | 
|  |  | 
|  | /// Explores new instructions starting from \p I. If instruction is dead, stop | 
|  | /// and return true if it discovered a new instruction. | 
|  | bool explorePath(Attributor &A, Instruction *I); | 
|  |  | 
|  | const std::string getAsStr() const override { | 
|  | return "LiveBBs(" + std::to_string(AssumedLiveBlocks.size()) + "/" + | 
|  | std::to_string(getAnchorScope().size()) + ")"; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | assert(getState().isValidState() && | 
|  | "Attempted to manifest an invalid state!"); | 
|  |  | 
|  | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; | 
|  |  | 
|  | for (Instruction *I : NoReturnCalls) { | 
|  | BasicBlock *BB = I->getParent(); | 
|  |  | 
|  | /// Invoke is replaced with a call and unreachable is placed after it. | 
|  | if (auto *II = dyn_cast<InvokeInst>(I)) { | 
|  | changeToCall(II); | 
|  | changeToUnreachable(BB->getTerminator(), /* UseLLVMTrap */ false); | 
|  | LLVM_DEBUG(dbgs() << "[AAIsDead] Replaced invoke with call inst\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SplitBlock(BB, I->getNextNode()); | 
|  | changeToUnreachable(BB->getTerminator(), /* UseLLVMTrap */ false); | 
|  | HasChanged = ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | return HasChanged; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | /// See AAIsDead::isAssumedDead(). | 
|  | bool isAssumedDead(BasicBlock *BB) const override { | 
|  | if (!getAssumed()) | 
|  | return false; | 
|  | return !AssumedLiveBlocks.count(BB); | 
|  | } | 
|  |  | 
|  | /// See AAIsDead::isKnownDead(). | 
|  | bool isKnownDead(BasicBlock *BB) const override { | 
|  | if (!getKnown()) | 
|  | return false; | 
|  | return !AssumedLiveBlocks.count(BB); | 
|  | } | 
|  |  | 
|  | /// Collection of to be explored paths. | 
|  | SmallSetVector<Instruction *, 8> ToBeExploredPaths; | 
|  |  | 
|  | /// Collection of all assumed live BasicBlocks. | 
|  | DenseSet<BasicBlock *> AssumedLiveBlocks; | 
|  |  | 
|  | /// Collection of calls with noreturn attribute, assumed or knwon. | 
|  | SmallSetVector<Instruction *, 4> NoReturnCalls; | 
|  | }; | 
|  |  | 
|  | bool AAIsDeadFunction::explorePath(Attributor &A, Instruction *I) { | 
|  | BasicBlock *BB = I->getParent(); | 
|  |  | 
|  | while (I) { | 
|  | ImmutableCallSite ICS(I); | 
|  |  | 
|  | if (ICS) { | 
|  | auto *NoReturnAA = A.getAAFor<AANoReturn>(*this, *I); | 
|  |  | 
|  | if (NoReturnAA && NoReturnAA->isAssumedNoReturn()) { | 
|  | if (!NoReturnCalls.insert(I)) | 
|  | // If I is already in the NoReturnCalls set, then it stayed noreturn | 
|  | // and we didn't discover any new instructions. | 
|  | return false; | 
|  |  | 
|  | // Discovered new noreturn call, return true to indicate that I is not | 
|  | // noreturn anymore and should be deleted from NoReturnCalls. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (ICS.hasFnAttr(Attribute::NoReturn)) { | 
|  | if(!NoReturnCalls.insert(I)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | I = I->getNextNode(); | 
|  | } | 
|  |  | 
|  | // get new paths (reachable blocks). | 
|  | for (BasicBlock *SuccBB : successors(BB)) { | 
|  | Instruction *Inst = &(SuccBB->front()); | 
|  | AssumedLiveBlocks.insert(SuccBB); | 
|  | ToBeExploredPaths.insert(Inst); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) { | 
|  | // Temporary collection to iterate over existing noreturn instructions. This | 
|  | // will alow easier modification of NoReturnCalls collection | 
|  | SmallVector<Instruction *, 8> NoReturnChanged; | 
|  | ChangeStatus Status = ChangeStatus::UNCHANGED; | 
|  |  | 
|  | for (Instruction *I : NoReturnCalls) | 
|  | NoReturnChanged.push_back(I); | 
|  |  | 
|  | for (Instruction *I : NoReturnChanged) { | 
|  | size_t Size = ToBeExploredPaths.size(); | 
|  |  | 
|  | // Still noreturn. | 
|  | if (!explorePath(A, I)) | 
|  | continue; | 
|  |  | 
|  | NoReturnCalls.remove(I); | 
|  |  | 
|  | // No new paths. | 
|  | if (Size == ToBeExploredPaths.size()) | 
|  | continue; | 
|  |  | 
|  | // At least one new path. | 
|  | Status = ChangeStatus::CHANGED; | 
|  |  | 
|  | // explore new paths. | 
|  | while (Size != ToBeExploredPaths.size()) | 
|  | explorePath(A, ToBeExploredPaths[Size++]); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "[AAIsDead] AssumedLiveBlocks: " << AssumedLiveBlocks.size() | 
|  | << "Total number of blocks: " << getAnchorScope().size() << "\n"); | 
|  |  | 
|  | return Status; | 
|  | } | 
|  |  | 
|  | /// -------------------- Dereferenceable Argument Attribute -------------------- | 
|  |  | 
|  | struct DerefState : AbstractState { | 
|  |  | 
|  | /// State representing for dereferenceable bytes. | 
|  | IntegerState DerefBytesState; | 
|  |  | 
|  | /// State representing that whether the value is nonnull or global. | 
|  | IntegerState NonNullGlobalState; | 
|  |  | 
|  | /// Bits encoding for NonNullGlobalState. | 
|  | enum { | 
|  | DEREF_NONNULL = 1 << 0, | 
|  | DEREF_GLOBAL = 1 << 1, | 
|  | }; | 
|  |  | 
|  | /// See AbstractState::isValidState() | 
|  | bool isValidState() const override { return DerefBytesState.isValidState(); } | 
|  |  | 
|  | // See AbstractState::isAtFixpoint() | 
|  | bool isAtFixpoint() const override { | 
|  | return DerefBytesState.isAtFixpoint() && NonNullGlobalState.isAtFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractState::indicateOptimisticFixpoint(...) | 
|  | void indicateOptimisticFixpoint() override { | 
|  | DerefBytesState.indicateOptimisticFixpoint(); | 
|  | NonNullGlobalState.indicateOptimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractState::indicatePessimisticFixpoint(...) | 
|  | void indicatePessimisticFixpoint() override { | 
|  | DerefBytesState.indicatePessimisticFixpoint(); | 
|  | NonNullGlobalState.indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// Update known dereferenceable bytes. | 
|  | void takeKnownDerefBytesMaximum(uint64_t Bytes) { | 
|  | DerefBytesState.takeKnownMaximum(Bytes); | 
|  | } | 
|  |  | 
|  | /// Update assumed dereferenceable bytes. | 
|  | void takeAssumedDerefBytesMinimum(uint64_t Bytes) { | 
|  | DerefBytesState.takeAssumedMinimum(Bytes); | 
|  | } | 
|  |  | 
|  | /// Update assumed NonNullGlobalState | 
|  | void updateAssumedNonNullGlobalState(bool IsNonNull, bool IsGlobal) { | 
|  | if (!IsNonNull) | 
|  | NonNullGlobalState.removeAssumedBits(DEREF_NONNULL); | 
|  | if (!IsGlobal) | 
|  | NonNullGlobalState.removeAssumedBits(DEREF_GLOBAL); | 
|  | } | 
|  |  | 
|  | /// Equality for DerefState. | 
|  | bool operator==(const DerefState &R) { | 
|  | return this->DerefBytesState == R.DerefBytesState && | 
|  | this->NonNullGlobalState == R.NonNullGlobalState; | 
|  | } | 
|  | }; | 
|  | struct AADereferenceableImpl : AADereferenceable, DerefState { | 
|  |  | 
|  | AADereferenceableImpl(Value &V, InformationCache &InfoCache) | 
|  | : AADereferenceable(V, InfoCache) {} | 
|  |  | 
|  | AADereferenceableImpl(Value *AssociatedVal, Value &AnchoredValue, | 
|  | InformationCache &InfoCache) | 
|  | : AADereferenceable(AssociatedVal, AnchoredValue, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getState() | 
|  | /// { | 
|  | AbstractState &getState() override { return *this; } | 
|  | const AbstractState &getState() const override { return *this; } | 
|  | /// } | 
|  |  | 
|  | /// See AADereferenceable::getAssumedDereferenceableBytes(). | 
|  | uint32_t getAssumedDereferenceableBytes() const override { | 
|  | return DerefBytesState.getAssumed(); | 
|  | } | 
|  |  | 
|  | /// See AADereferenceable::getKnownDereferenceableBytes(). | 
|  | uint32_t getKnownDereferenceableBytes() const override { | 
|  | return DerefBytesState.getKnown(); | 
|  | } | 
|  |  | 
|  | // Helper function for syncing nonnull state. | 
|  | void syncNonNull(const AANonNull *NonNullAA) { | 
|  | if (!NonNullAA) { | 
|  | NonNullGlobalState.removeAssumedBits(DEREF_NONNULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (NonNullAA->isKnownNonNull()) | 
|  | NonNullGlobalState.addKnownBits(DEREF_NONNULL); | 
|  |  | 
|  | if (!NonNullAA->isAssumedNonNull()) | 
|  | NonNullGlobalState.removeAssumedBits(DEREF_NONNULL); | 
|  | } | 
|  |  | 
|  | /// See AADereferenceable::isAssumedGlobal(). | 
|  | bool isAssumedGlobal() const override { | 
|  | return NonNullGlobalState.isAssumed(DEREF_GLOBAL); | 
|  | } | 
|  |  | 
|  | /// See AADereferenceable::isKnownGlobal(). | 
|  | bool isKnownGlobal() const override { | 
|  | return NonNullGlobalState.isKnown(DEREF_GLOBAL); | 
|  | } | 
|  |  | 
|  | /// See AADereferenceable::isAssumedNonNull(). | 
|  | bool isAssumedNonNull() const override { | 
|  | return NonNullGlobalState.isAssumed(DEREF_NONNULL); | 
|  | } | 
|  |  | 
|  | /// See AADereferenceable::isKnownNonNull(). | 
|  | bool isKnownNonNull() const override { | 
|  | return NonNullGlobalState.isKnown(DEREF_NONNULL); | 
|  | } | 
|  |  | 
|  | void getDeducedAttributes(SmallVectorImpl<Attribute> &Attrs) const override { | 
|  | LLVMContext &Ctx = AnchoredVal.getContext(); | 
|  |  | 
|  | // TODO: Add *_globally support | 
|  | if (isAssumedNonNull()) | 
|  | Attrs.emplace_back(Attribute::getWithDereferenceableBytes( | 
|  | Ctx, getAssumedDereferenceableBytes())); | 
|  | else | 
|  | Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes( | 
|  | Ctx, getAssumedDereferenceableBytes())); | 
|  | } | 
|  | uint64_t computeAssumedDerefenceableBytes(Attributor &A, Value &V, | 
|  | bool &IsNonNull, bool &IsGlobal); | 
|  |  | 
|  | void initialize(Attributor &A) override { | 
|  | Function &F = getAnchorScope(); | 
|  | unsigned AttrIdx = | 
|  | getAttrIndex(getManifestPosition(), getArgNo(getAnchoredValue())); | 
|  |  | 
|  | for (Attribute::AttrKind AK : | 
|  | {Attribute::Dereferenceable, Attribute::DereferenceableOrNull}) | 
|  | if (F.getAttributes().hasAttribute(AttrIdx, AK)) | 
|  | takeKnownDerefBytesMaximum(F.getAttribute(AttrIdx, AK).getValueAsInt()); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | if (!getAssumedDereferenceableBytes()) | 
|  | return "unknown-dereferenceable"; | 
|  | return std::string("dereferenceable") + | 
|  | (isAssumedNonNull() ? "" : "_or_null") + | 
|  | (isAssumedGlobal() ? "_globally" : "") + "<" + | 
|  | std::to_string(getKnownDereferenceableBytes()) + "-" + | 
|  | std::to_string(getAssumedDereferenceableBytes()) + ">"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AADereferenceableReturned : AADereferenceableImpl { | 
|  | AADereferenceableReturned(Function &F, InformationCache &InfoCache) | 
|  | : AADereferenceableImpl(F, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | ManifestPosition getManifestPosition() const override { return MP_RETURNED; } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  | }; | 
|  |  | 
|  | // Helper function that returns dereferenceable bytes. | 
|  | static uint64_t calcDifferenceIfBaseIsNonNull(int64_t DerefBytes, | 
|  | int64_t Offset, bool IsNonNull) { | 
|  | if (!IsNonNull) | 
|  | return 0; | 
|  | return std::max((int64_t)0, DerefBytes - Offset); | 
|  | } | 
|  |  | 
|  | uint64_t AADereferenceableImpl::computeAssumedDerefenceableBytes( | 
|  | Attributor &A, Value &V, bool &IsNonNull, bool &IsGlobal) { | 
|  | // TODO: Tracking the globally flag. | 
|  | IsGlobal = false; | 
|  |  | 
|  | // First, we try to get information about V from Attributor. | 
|  | if (auto *DerefAA = A.getAAFor<AADereferenceable>(*this, V)) { | 
|  | IsNonNull &= DerefAA->isAssumedNonNull(); | 
|  | return DerefAA->getAssumedDereferenceableBytes(); | 
|  | } | 
|  |  | 
|  | // Otherwise, we try to compute assumed bytes from base pointer. | 
|  | const DataLayout &DL = getAnchorScope().getParent()->getDataLayout(); | 
|  | unsigned IdxWidth = | 
|  | DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace()); | 
|  | APInt Offset(IdxWidth, 0); | 
|  | Value *Base = V.stripAndAccumulateInBoundsConstantOffsets(DL, Offset); | 
|  |  | 
|  | if (auto *BaseDerefAA = A.getAAFor<AADereferenceable>(*this, *Base)) { | 
|  | IsNonNull &= Offset != 0; | 
|  | return calcDifferenceIfBaseIsNonNull( | 
|  | BaseDerefAA->getAssumedDereferenceableBytes(), Offset.getSExtValue(), | 
|  | Offset != 0 || BaseDerefAA->isAssumedNonNull()); | 
|  | } | 
|  |  | 
|  | // Then, use IR information. | 
|  |  | 
|  | if (isDereferenceablePointer(Base, Base->getType(), DL)) | 
|  | return calcDifferenceIfBaseIsNonNull( | 
|  | DL.getTypeStoreSize(Base->getType()->getPointerElementType()), | 
|  | Offset.getSExtValue(), | 
|  | !NullPointerIsDefined(&getAnchorScope(), | 
|  | V.getType()->getPointerAddressSpace())); | 
|  |  | 
|  | IsNonNull = false; | 
|  | return 0; | 
|  | } | 
|  | ChangeStatus AADereferenceableReturned::updateImpl(Attributor &A) { | 
|  | Function &F = getAnchorScope(); | 
|  | auto BeforeState = static_cast<DerefState>(*this); | 
|  |  | 
|  | syncNonNull(A.getAAFor<AANonNull>(*this, F)); | 
|  |  | 
|  | auto *AARetVal = A.getAAFor<AAReturnedValues>(*this, F); | 
|  | if (!AARetVal) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | bool IsNonNull = isAssumedNonNull(); | 
|  | bool IsGlobal = isAssumedGlobal(); | 
|  |  | 
|  | std::function<bool(Value &)> Pred = [&](Value &RV) -> bool { | 
|  | takeAssumedDerefBytesMinimum( | 
|  | computeAssumedDerefenceableBytes(A, RV, IsNonNull, IsGlobal)); | 
|  | return isValidState(); | 
|  | }; | 
|  |  | 
|  | if (AARetVal->checkForallReturnedValues(Pred)) { | 
|  | updateAssumedNonNullGlobalState(IsNonNull, IsGlobal); | 
|  | return BeforeState == static_cast<DerefState>(*this) | 
|  | ? ChangeStatus::UNCHANGED | 
|  | : ChangeStatus::CHANGED; | 
|  | } | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | struct AADereferenceableArgument : AADereferenceableImpl { | 
|  | AADereferenceableArgument(Argument &A, InformationCache &InfoCache) | 
|  | : AADereferenceableImpl(A, InfoCache) {} | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | ManifestPosition getManifestPosition() const override { return MP_ARGUMENT; } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  | }; | 
|  |  | 
|  | ChangeStatus AADereferenceableArgument::updateImpl(Attributor &A) { | 
|  | Function &F = getAnchorScope(); | 
|  | Argument &Arg = cast<Argument>(getAnchoredValue()); | 
|  |  | 
|  | auto BeforeState = static_cast<DerefState>(*this); | 
|  |  | 
|  | unsigned ArgNo = Arg.getArgNo(); | 
|  |  | 
|  | syncNonNull(A.getAAFor<AANonNull>(*this, F, ArgNo)); | 
|  |  | 
|  | bool IsNonNull = isAssumedNonNull(); | 
|  | bool IsGlobal = isAssumedGlobal(); | 
|  |  | 
|  | // Callback function | 
|  | std::function<bool(CallSite)> CallSiteCheck = [&](CallSite CS) -> bool { | 
|  | assert(CS && "Sanity check: Call site was not initialized properly!"); | 
|  |  | 
|  | // Check that DereferenceableAA is AADereferenceableCallSiteArgument. | 
|  | if (auto *DereferenceableAA = | 
|  | A.getAAFor<AADereferenceable>(*this, *CS.getInstruction(), ArgNo)) { | 
|  | ImmutableCallSite ICS(&DereferenceableAA->getAnchoredValue()); | 
|  | if (ICS && CS.getInstruction() == ICS.getInstruction()) { | 
|  | takeAssumedDerefBytesMinimum( | 
|  | DereferenceableAA->getAssumedDereferenceableBytes()); | 
|  | IsNonNull &= DereferenceableAA->isAssumedNonNull(); | 
|  | IsGlobal &= DereferenceableAA->isAssumedGlobal(); | 
|  | return isValidState(); | 
|  | } | 
|  | } | 
|  |  | 
|  | takeAssumedDerefBytesMinimum(computeAssumedDerefenceableBytes( | 
|  | A, *CS.getArgOperand(ArgNo), IsNonNull, IsGlobal)); | 
|  |  | 
|  | return isValidState(); | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllCallSites(F, CallSiteCheck, true)) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | updateAssumedNonNullGlobalState(IsNonNull, IsGlobal); | 
|  |  | 
|  | return BeforeState == static_cast<DerefState>(*this) ? ChangeStatus::UNCHANGED | 
|  | : ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | /// Dereferenceable attribute for a call site argument. | 
|  | struct AADereferenceableCallSiteArgument : AADereferenceableImpl { | 
|  |  | 
|  | /// See AADereferenceableImpl::AADereferenceableImpl(...). | 
|  | AADereferenceableCallSiteArgument(CallSite CS, unsigned ArgNo, | 
|  | InformationCache &InfoCache) | 
|  | : AADereferenceableImpl(CS.getArgOperand(ArgNo), *CS.getInstruction(), | 
|  | InfoCache), | 
|  | ArgNo(ArgNo) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | CallSite CS(&getAnchoredValue()); | 
|  | if (CS.paramHasAttr(ArgNo, Attribute::Dereferenceable)) | 
|  | takeKnownDerefBytesMaximum(CS.getDereferenceableBytes(ArgNo)); | 
|  |  | 
|  | if (CS.paramHasAttr(ArgNo, Attribute::DereferenceableOrNull)) | 
|  | takeKnownDerefBytesMaximum(CS.getDereferenceableOrNullBytes(ArgNo)); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(Attributor &A). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | /// See AbstractAttribute::getManifestPosition(). | 
|  | ManifestPosition getManifestPosition() const override { | 
|  | return MP_CALL_SITE_ARGUMENT; | 
|  | }; | 
|  |  | 
|  | // Return argument index of associated value. | 
|  | int getArgNo() const { return ArgNo; } | 
|  |  | 
|  | private: | 
|  | unsigned ArgNo; | 
|  | }; | 
|  |  | 
|  | ChangeStatus AADereferenceableCallSiteArgument::updateImpl(Attributor &A) { | 
|  | // NOTE: Never look at the argument of the callee in this method. | 
|  | //       If we do this, "dereferenceable" is always deduced because of the | 
|  | //       assumption. | 
|  |  | 
|  | Value &V = *getAssociatedValue(); | 
|  |  | 
|  | auto BeforeState = static_cast<DerefState>(*this); | 
|  |  | 
|  | syncNonNull(A.getAAFor<AANonNull>(*this, getAnchoredValue(), ArgNo)); | 
|  | bool IsNonNull = isAssumedNonNull(); | 
|  | bool IsGlobal = isKnownGlobal(); | 
|  |  | 
|  | takeAssumedDerefBytesMinimum( | 
|  | computeAssumedDerefenceableBytes(A, V, IsNonNull, IsGlobal)); | 
|  | updateAssumedNonNullGlobalState(IsNonNull, IsGlobal); | 
|  |  | 
|  | return BeforeState == static_cast<DerefState>(*this) ? ChangeStatus::UNCHANGED | 
|  | : ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | /// ---------------------------------------------------------------------------- | 
|  | ///                               Attributor | 
|  | /// ---------------------------------------------------------------------------- | 
|  |  | 
|  | bool Attributor::checkForAllCallSites(Function &F, | 
|  | std::function<bool(CallSite)> &Pred, | 
|  | bool RequireAllCallSites) { | 
|  | // We can try to determine information from | 
|  | // the call sites. However, this is only possible all call sites are known, | 
|  | // hence the function has internal linkage. | 
|  | if (RequireAllCallSites && !F.hasInternalLinkage()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "Attributor: Function " << F.getName() | 
|  | << " has no internal linkage, hence not all call sites are known\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (const Use &U : F.uses()) { | 
|  |  | 
|  | CallSite CS(U.getUser()); | 
|  | if (!CS || !CS.isCallee(&U) || !CS.getCaller()->hasExactDefinition()) { | 
|  | if (!RequireAllCallSites) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Attributor: User " << *U.getUser() | 
|  | << " is an invalid use of " << F.getName() << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Pred(CS)) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Attributor: Call site callback failed for " | 
|  | << *CS.getInstruction() << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ChangeStatus Attributor::run() { | 
|  | // Initialize all abstract attributes. | 
|  | for (AbstractAttribute *AA : AllAbstractAttributes) | 
|  | AA->initialize(*this); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized " | 
|  | << AllAbstractAttributes.size() | 
|  | << " abstract attributes.\n"); | 
|  |  | 
|  | // Now that all abstract attributes are collected and initialized we start | 
|  | // the abstract analysis. | 
|  |  | 
|  | unsigned IterationCounter = 1; | 
|  |  | 
|  | SmallVector<AbstractAttribute *, 64> ChangedAAs; | 
|  | SetVector<AbstractAttribute *> Worklist; | 
|  | Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end()); | 
|  |  | 
|  | do { | 
|  | LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter | 
|  | << ", Worklist size: " << Worklist.size() << "\n"); | 
|  |  | 
|  | // Add all abstract attributes that are potentially dependent on one that | 
|  | // changed to the work list. | 
|  | for (AbstractAttribute *ChangedAA : ChangedAAs) { | 
|  | auto &QuerriedAAs = QueryMap[ChangedAA]; | 
|  | Worklist.insert(QuerriedAAs.begin(), QuerriedAAs.end()); | 
|  | } | 
|  |  | 
|  | // Reset the changed set. | 
|  | ChangedAAs.clear(); | 
|  |  | 
|  | // Update all abstract attribute in the work list and record the ones that | 
|  | // changed. | 
|  | for (AbstractAttribute *AA : Worklist) | 
|  | if (AA->update(*this) == ChangeStatus::CHANGED) | 
|  | ChangedAAs.push_back(AA); | 
|  |  | 
|  | // Reset the work list and repopulate with the changed abstract attributes. | 
|  | // Note that dependent ones are added above. | 
|  | Worklist.clear(); | 
|  | Worklist.insert(ChangedAAs.begin(), ChangedAAs.end()); | 
|  |  | 
|  | } while (!Worklist.empty() && ++IterationCounter < MaxFixpointIterations); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: " | 
|  | << IterationCounter << "/" << MaxFixpointIterations | 
|  | << " iterations\n"); | 
|  |  | 
|  | bool FinishedAtFixpoint = Worklist.empty(); | 
|  |  | 
|  | // Reset abstract arguments not settled in a sound fixpoint by now. This | 
|  | // happens when we stopped the fixpoint iteration early. Note that only the | 
|  | // ones marked as "changed" *and* the ones transitively depending on them | 
|  | // need to be reverted to a pessimistic state. Others might not be in a | 
|  | // fixpoint state but we can use the optimistic results for them anyway. | 
|  | SmallPtrSet<AbstractAttribute *, 32> Visited; | 
|  | for (unsigned u = 0; u < ChangedAAs.size(); u++) { | 
|  | AbstractAttribute *ChangedAA = ChangedAAs[u]; | 
|  | if (!Visited.insert(ChangedAA).second) | 
|  | continue; | 
|  |  | 
|  | AbstractState &State = ChangedAA->getState(); | 
|  | if (!State.isAtFixpoint()) { | 
|  | State.indicatePessimisticFixpoint(); | 
|  |  | 
|  | NumAttributesTimedOut++; | 
|  | } | 
|  |  | 
|  | auto &QuerriedAAs = QueryMap[ChangedAA]; | 
|  | ChangedAAs.append(QuerriedAAs.begin(), QuerriedAAs.end()); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | if (!Visited.empty()) | 
|  | dbgs() << "\n[Attributor] Finalized " << Visited.size() | 
|  | << " abstract attributes.\n"; | 
|  | }); | 
|  |  | 
|  | unsigned NumManifested = 0; | 
|  | unsigned NumAtFixpoint = 0; | 
|  | ChangeStatus ManifestChange = ChangeStatus::UNCHANGED; | 
|  | for (AbstractAttribute *AA : AllAbstractAttributes) { | 
|  | AbstractState &State = AA->getState(); | 
|  |  | 
|  | // If there is not already a fixpoint reached, we can now take the | 
|  | // optimistic state. This is correct because we enforced a pessimistic one | 
|  | // on abstract attributes that were transitively dependent on a changed one | 
|  | // already above. | 
|  | if (!State.isAtFixpoint()) | 
|  | State.indicateOptimisticFixpoint(); | 
|  |  | 
|  | // If the state is invalid, we do not try to manifest it. | 
|  | if (!State.isValidState()) | 
|  | continue; | 
|  |  | 
|  | // Manifest the state and record if we changed the IR. | 
|  | ChangeStatus LocalChange = AA->manifest(*this); | 
|  | ManifestChange = ManifestChange | LocalChange; | 
|  |  | 
|  | NumAtFixpoint++; | 
|  | NumManifested += (LocalChange == ChangeStatus::CHANGED); | 
|  | } | 
|  |  | 
|  | (void)NumManifested; | 
|  | (void)NumAtFixpoint; | 
|  | LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested | 
|  | << " arguments while " << NumAtFixpoint | 
|  | << " were in a valid fixpoint state\n"); | 
|  |  | 
|  | // If verification is requested, we finished this run at a fixpoint, and the | 
|  | // IR was changed, we re-run the whole fixpoint analysis, starting at | 
|  | // re-initialization of the arguments. This re-run should not result in an IR | 
|  | // change. Though, the (virtual) state of attributes at the end of the re-run | 
|  | // might be more optimistic than the known state or the IR state if the better | 
|  | // state cannot be manifested. | 
|  | if (VerifyAttributor && FinishedAtFixpoint && | 
|  | ManifestChange == ChangeStatus::CHANGED) { | 
|  | VerifyAttributor = false; | 
|  | ChangeStatus VerifyStatus = run(); | 
|  | if (VerifyStatus != ChangeStatus::UNCHANGED) | 
|  | llvm_unreachable( | 
|  | "Attributor verification failed, re-run did result in an IR change " | 
|  | "even after a fixpoint was reached in the original run. (False " | 
|  | "positives possible!)"); | 
|  | VerifyAttributor = true; | 
|  | } | 
|  |  | 
|  | NumAttributesManifested += NumManifested; | 
|  | NumAttributesValidFixpoint += NumAtFixpoint; | 
|  |  | 
|  | return ManifestChange; | 
|  | } | 
|  |  | 
|  | void Attributor::identifyDefaultAbstractAttributes( | 
|  | Function &F, InformationCache &InfoCache, | 
|  | DenseSet</* Attribute::AttrKind */ unsigned> *Whitelist) { | 
|  |  | 
|  | // Every function can be nounwind. | 
|  | registerAA(*new AANoUnwindFunction(F, InfoCache)); | 
|  |  | 
|  | // Every function might be marked "nosync" | 
|  | registerAA(*new AANoSyncFunction(F, InfoCache)); | 
|  |  | 
|  | // Every function might be "no-free". | 
|  | registerAA(*new AANoFreeFunction(F, InfoCache)); | 
|  |  | 
|  | // Return attributes are only appropriate if the return type is non void. | 
|  | Type *ReturnType = F.getReturnType(); | 
|  | if (!ReturnType->isVoidTy()) { | 
|  | // Argument attribute "returned" --- Create only one per function even | 
|  | // though it is an argument attribute. | 
|  | if (!Whitelist || Whitelist->count(AAReturnedValues::ID)) | 
|  | registerAA(*new AAReturnedValuesImpl(F, InfoCache)); | 
|  |  | 
|  | if (ReturnType->isPointerTy()) { | 
|  | // Every function with pointer return type might be marked nonnull. | 
|  | if (!Whitelist || Whitelist->count(AANonNullReturned::ID)) | 
|  | registerAA(*new AANonNullReturned(F, InfoCache)); | 
|  |  | 
|  | // Every function with pointer return type might be marked noalias. | 
|  | if (!Whitelist || Whitelist->count(AANoAliasReturned::ID)) | 
|  | registerAA(*new AANoAliasReturned(F, InfoCache)); | 
|  |  | 
|  | // Every function with pointer return type might be marked | 
|  | // dereferenceable. | 
|  | if (ReturnType->isPointerTy() && | 
|  | (!Whitelist || Whitelist->count(AADereferenceableReturned::ID))) | 
|  | registerAA(*new AADereferenceableReturned(F, InfoCache)); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (Argument &Arg : F.args()) { | 
|  | if (Arg.getType()->isPointerTy()) { | 
|  | // Every argument with pointer type might be marked nonnull. | 
|  | if (!Whitelist || Whitelist->count(AANonNullArgument::ID)) | 
|  | registerAA(*new AANonNullArgument(Arg, InfoCache)); | 
|  |  | 
|  | // Every argument with pointer type might be marked dereferenceable. | 
|  | if (!Whitelist || Whitelist->count(AADereferenceableArgument::ID)) | 
|  | registerAA(*new AADereferenceableArgument(Arg, InfoCache)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Every function might be "will-return". | 
|  | registerAA(*new AAWillReturnFunction(F, InfoCache)); | 
|  |  | 
|  | // Check for dead BasicBlocks in every function. | 
|  | registerAA(*new AAIsDeadFunction(F, InfoCache)); | 
|  |  | 
|  | // Walk all instructions to find more attribute opportunities and also | 
|  | // interesting instructions that might be queried by abstract attributes | 
|  | // during their initialization or update. | 
|  | auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F]; | 
|  | auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F]; | 
|  |  | 
|  | for (Instruction &I : instructions(&F)) { | 
|  | bool IsInterestingOpcode = false; | 
|  |  | 
|  | // To allow easy access to all instructions in a function with a given | 
|  | // opcode we store them in the InfoCache. As not all opcodes are interesting | 
|  | // to concrete attributes we only cache the ones that are as identified in | 
|  | // the following switch. | 
|  | // Note: There are no concrete attributes now so this is initially empty. | 
|  | switch (I.getOpcode()) { | 
|  | default: | 
|  | assert((!ImmutableCallSite(&I)) && (!isa<CallBase>(&I)) && | 
|  | "New call site/base instruction type needs to be known int the " | 
|  | "attributor."); | 
|  | break; | 
|  | case Instruction::Call: | 
|  | case Instruction::CallBr: | 
|  | case Instruction::Invoke: | 
|  | case Instruction::CleanupRet: | 
|  | case Instruction::CatchSwitch: | 
|  | case Instruction::Resume: | 
|  | case Instruction::Ret: | 
|  | IsInterestingOpcode = true; | 
|  | } | 
|  | if (IsInterestingOpcode) | 
|  | InstOpcodeMap[I.getOpcode()].push_back(&I); | 
|  | if (I.mayReadOrWriteMemory()) | 
|  | ReadOrWriteInsts.push_back(&I); | 
|  |  | 
|  | CallSite CS(&I); | 
|  | if (CS && CS.getCalledFunction()) { | 
|  | for (int i = 0, e = CS.getCalledFunction()->arg_size(); i < e; i++) { | 
|  | if (!CS.getArgument(i)->getType()->isPointerTy()) | 
|  | continue; | 
|  |  | 
|  | // Call site argument attribute "non-null". | 
|  | if (!Whitelist || Whitelist->count(AANonNullCallSiteArgument::ID)) | 
|  | registerAA(*new AANonNullCallSiteArgument(CS, i, InfoCache), i); | 
|  |  | 
|  | // Call site argument attribute "dereferenceable". | 
|  | if (!Whitelist || | 
|  | Whitelist->count(AADereferenceableCallSiteArgument::ID)) | 
|  | registerAA(*new AADereferenceableCallSiteArgument(CS, i, InfoCache), | 
|  | i); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Helpers to ease debugging through output streams and print calls. | 
|  | /// | 
|  | ///{ | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) { | 
|  | return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged"); | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, | 
|  | AbstractAttribute::ManifestPosition AP) { | 
|  | switch (AP) { | 
|  | case AbstractAttribute::MP_ARGUMENT: | 
|  | return OS << "arg"; | 
|  | case AbstractAttribute::MP_CALL_SITE_ARGUMENT: | 
|  | return OS << "cs_arg"; | 
|  | case AbstractAttribute::MP_FUNCTION: | 
|  | return OS << "fn"; | 
|  | case AbstractAttribute::MP_RETURNED: | 
|  | return OS << "fn_ret"; | 
|  | } | 
|  | llvm_unreachable("Unknown attribute position!"); | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) { | 
|  | return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : "")); | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) { | 
|  | AA.print(OS); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | void AbstractAttribute::print(raw_ostream &OS) const { | 
|  | OS << "[" << getManifestPosition() << "][" << getAsStr() << "][" | 
|  | << AnchoredVal.getName() << "]"; | 
|  | } | 
|  | ///} | 
|  |  | 
|  | /// ---------------------------------------------------------------------------- | 
|  | ///                       Pass (Manager) Boilerplate | 
|  | /// ---------------------------------------------------------------------------- | 
|  |  | 
|  | static bool runAttributorOnModule(Module &M) { | 
|  | if (DisableAttributor) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << M.size() | 
|  | << " functions.\n"); | 
|  |  | 
|  | // Create an Attributor and initially empty information cache that is filled | 
|  | // while we identify default attribute opportunities. | 
|  | Attributor A; | 
|  | InformationCache InfoCache; | 
|  |  | 
|  | for (Function &F : M) { | 
|  | // TODO: Not all attributes require an exact definition. Find a way to | 
|  | //       enable deduction for some but not all attributes in case the | 
|  | //       definition might be changed at runtime, see also | 
|  | //       http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html. | 
|  | // TODO: We could always determine abstract attributes and if sufficient | 
|  | //       information was found we could duplicate the functions that do not | 
|  | //       have an exact definition. | 
|  | if (!F.hasExactDefinition()) { | 
|  | NumFnWithoutExactDefinition++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For now we ignore naked and optnone functions. | 
|  | if (F.hasFnAttribute(Attribute::Naked) || | 
|  | F.hasFnAttribute(Attribute::OptimizeNone)) | 
|  | continue; | 
|  |  | 
|  | NumFnWithExactDefinition++; | 
|  |  | 
|  | // Populate the Attributor with abstract attribute opportunities in the | 
|  | // function and the information cache with IR information. | 
|  | A.identifyDefaultAbstractAttributes(F, InfoCache); | 
|  | } | 
|  |  | 
|  | return A.run() == ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) { | 
|  | if (runAttributorOnModule(M)) { | 
|  | // FIXME: Think about passes we will preserve and add them here. | 
|  | return PreservedAnalyses::none(); | 
|  | } | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct AttributorLegacyPass : public ModulePass { | 
|  | static char ID; | 
|  |  | 
|  | AttributorLegacyPass() : ModulePass(ID) { | 
|  | initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnModule(Module &M) override { | 
|  | if (skipModule(M)) | 
|  | return false; | 
|  | return runAttributorOnModule(M); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | // FIXME: Think about passes we will preserve and add them here. | 
|  | AU.setPreservesCFG(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); } | 
|  |  | 
|  | char AttributorLegacyPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor", | 
|  | "Deduce and propagate attributes", false, false) | 
|  | INITIALIZE_PASS_END(AttributorLegacyPass, "attributor", | 
|  | "Deduce and propagate attributes", false, false) |