|  | //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for C++ expressions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/Sema/DeclSpec.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/ParsedTemplate.h" | 
|  | #include "clang/Sema/ScopeInfo.h" | 
|  | #include "clang/Sema/TemplateDeduction.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExprObjC.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | ParsedType Sema::getDestructorName(SourceLocation TildeLoc, | 
|  | IdentifierInfo &II, | 
|  | SourceLocation NameLoc, | 
|  | Scope *S, CXXScopeSpec &SS, | 
|  | ParsedType ObjectTypePtr, | 
|  | bool EnteringContext) { | 
|  | // Determine where to perform name lookup. | 
|  |  | 
|  | // FIXME: This area of the standard is very messy, and the current | 
|  | // wording is rather unclear about which scopes we search for the | 
|  | // destructor name; see core issues 399 and 555. Issue 399 in | 
|  | // particular shows where the current description of destructor name | 
|  | // lookup is completely out of line with existing practice, e.g., | 
|  | // this appears to be ill-formed: | 
|  | // | 
|  | //   namespace N { | 
|  | //     template <typename T> struct S { | 
|  | //       ~S(); | 
|  | //     }; | 
|  | //   } | 
|  | // | 
|  | //   void f(N::S<int>* s) { | 
|  | //     s->N::S<int>::~S(); | 
|  | //   } | 
|  | // | 
|  | // See also PR6358 and PR6359. | 
|  | // For this reason, we're currently only doing the C++03 version of this | 
|  | // code; the C++0x version has to wait until we get a proper spec. | 
|  | QualType SearchType; | 
|  | DeclContext *LookupCtx = 0; | 
|  | bool isDependent = false; | 
|  | bool LookInScope = false; | 
|  |  | 
|  | // If we have an object type, it's because we are in a | 
|  | // pseudo-destructor-expression or a member access expression, and | 
|  | // we know what type we're looking for. | 
|  | if (ObjectTypePtr) | 
|  | SearchType = GetTypeFromParser(ObjectTypePtr); | 
|  |  | 
|  | if (SS.isSet()) { | 
|  | NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); | 
|  |  | 
|  | bool AlreadySearched = false; | 
|  | bool LookAtPrefix = true; | 
|  | // C++ [basic.lookup.qual]p6: | 
|  | //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, | 
|  | //   the type-names are looked up as types in the scope designated by the | 
|  | //   nested-name-specifier. In a qualified-id of the form: | 
|  | // | 
|  | //     ::[opt] nested-name-specifier  ~ class-name | 
|  | // | 
|  | //   where the nested-name-specifier designates a namespace scope, and in | 
|  | //   a qualified-id of the form: | 
|  | // | 
|  | //     ::opt nested-name-specifier class-name ::  ~ class-name | 
|  | // | 
|  | //   the class-names are looked up as types in the scope designated by | 
|  | //   the nested-name-specifier. | 
|  | // | 
|  | // Here, we check the first case (completely) and determine whether the | 
|  | // code below is permitted to look at the prefix of the | 
|  | // nested-name-specifier. | 
|  | DeclContext *DC = computeDeclContext(SS, EnteringContext); | 
|  | if (DC && DC->isFileContext()) { | 
|  | AlreadySearched = true; | 
|  | LookupCtx = DC; | 
|  | isDependent = false; | 
|  | } else if (DC && isa<CXXRecordDecl>(DC)) | 
|  | LookAtPrefix = false; | 
|  |  | 
|  | // The second case from the C++03 rules quoted further above. | 
|  | NestedNameSpecifier *Prefix = 0; | 
|  | if (AlreadySearched) { | 
|  | // Nothing left to do. | 
|  | } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { | 
|  | CXXScopeSpec PrefixSS; | 
|  | PrefixSS.setScopeRep(Prefix); | 
|  | LookupCtx = computeDeclContext(PrefixSS, EnteringContext); | 
|  | isDependent = isDependentScopeSpecifier(PrefixSS); | 
|  | } else if (ObjectTypePtr) { | 
|  | LookupCtx = computeDeclContext(SearchType); | 
|  | isDependent = SearchType->isDependentType(); | 
|  | } else { | 
|  | LookupCtx = computeDeclContext(SS, EnteringContext); | 
|  | isDependent = LookupCtx && LookupCtx->isDependentContext(); | 
|  | } | 
|  |  | 
|  | LookInScope = false; | 
|  | } else if (ObjectTypePtr) { | 
|  | // C++ [basic.lookup.classref]p3: | 
|  | //   If the unqualified-id is ~type-name, the type-name is looked up | 
|  | //   in the context of the entire postfix-expression. If the type T | 
|  | //   of the object expression is of a class type C, the type-name is | 
|  | //   also looked up in the scope of class C. At least one of the | 
|  | //   lookups shall find a name that refers to (possibly | 
|  | //   cv-qualified) T. | 
|  | LookupCtx = computeDeclContext(SearchType); | 
|  | isDependent = SearchType->isDependentType(); | 
|  | assert((isDependent || !SearchType->isIncompleteType()) && | 
|  | "Caller should have completed object type"); | 
|  |  | 
|  | LookInScope = true; | 
|  | } else { | 
|  | // Perform lookup into the current scope (only). | 
|  | LookInScope = true; | 
|  | } | 
|  |  | 
|  | LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); | 
|  | for (unsigned Step = 0; Step != 2; ++Step) { | 
|  | // Look for the name first in the computed lookup context (if we | 
|  | // have one) and, if that fails to find a match, in the sope (if | 
|  | // we're allowed to look there). | 
|  | Found.clear(); | 
|  | if (Step == 0 && LookupCtx) | 
|  | LookupQualifiedName(Found, LookupCtx); | 
|  | else if (Step == 1 && LookInScope && S) | 
|  | LookupName(Found, S); | 
|  | else | 
|  | continue; | 
|  |  | 
|  | // FIXME: Should we be suppressing ambiguities here? | 
|  | if (Found.isAmbiguous()) | 
|  | return ParsedType(); | 
|  |  | 
|  | if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { | 
|  | QualType T = Context.getTypeDeclType(Type); | 
|  |  | 
|  | if (SearchType.isNull() || SearchType->isDependentType() || | 
|  | Context.hasSameUnqualifiedType(T, SearchType)) { | 
|  | // We found our type! | 
|  |  | 
|  | return ParsedType::make(T); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the name that we found is a class template name, and it is | 
|  | // the same name as the template name in the last part of the | 
|  | // nested-name-specifier (if present) or the object type, then | 
|  | // this is the destructor for that class. | 
|  | // FIXME: This is a workaround until we get real drafting for core | 
|  | // issue 399, for which there isn't even an obvious direction. | 
|  | if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) { | 
|  | QualType MemberOfType; | 
|  | if (SS.isSet()) { | 
|  | if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { | 
|  | // Figure out the type of the context, if it has one. | 
|  | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | MemberOfType = Context.getTypeDeclType(Record); | 
|  | } | 
|  | } | 
|  | if (MemberOfType.isNull()) | 
|  | MemberOfType = SearchType; | 
|  |  | 
|  | if (MemberOfType.isNull()) | 
|  | continue; | 
|  |  | 
|  | // We're referring into a class template specialization. If the | 
|  | // class template we found is the same as the template being | 
|  | // specialized, we found what we are looking for. | 
|  | if (const RecordType *Record = MemberOfType->getAs<RecordType>()) { | 
|  | if (ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) { | 
|  | if (Spec->getSpecializedTemplate()->getCanonicalDecl() == | 
|  | Template->getCanonicalDecl()) | 
|  | return ParsedType::make(MemberOfType); | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We're referring to an unresolved class template | 
|  | // specialization. Determine whether we class template we found | 
|  | // is the same as the template being specialized or, if we don't | 
|  | // know which template is being specialized, that it at least | 
|  | // has the same name. | 
|  | if (const TemplateSpecializationType *SpecType | 
|  | = MemberOfType->getAs<TemplateSpecializationType>()) { | 
|  | TemplateName SpecName = SpecType->getTemplateName(); | 
|  |  | 
|  | // The class template we found is the same template being | 
|  | // specialized. | 
|  | if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { | 
|  | if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) | 
|  | return ParsedType::make(MemberOfType); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The class template we found has the same name as the | 
|  | // (dependent) template name being specialized. | 
|  | if (DependentTemplateName *DepTemplate | 
|  | = SpecName.getAsDependentTemplateName()) { | 
|  | if (DepTemplate->isIdentifier() && | 
|  | DepTemplate->getIdentifier() == Template->getIdentifier()) | 
|  | return ParsedType::make(MemberOfType); | 
|  |  | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isDependent) { | 
|  | // We didn't find our type, but that's okay: it's dependent | 
|  | // anyway. | 
|  | NestedNameSpecifier *NNS = 0; | 
|  | SourceRange Range; | 
|  | if (SS.isSet()) { | 
|  | NNS = (NestedNameSpecifier *)SS.getScopeRep(); | 
|  | Range = SourceRange(SS.getRange().getBegin(), NameLoc); | 
|  | } else { | 
|  | NNS = NestedNameSpecifier::Create(Context, &II); | 
|  | Range = SourceRange(NameLoc); | 
|  | } | 
|  |  | 
|  | QualType T = CheckTypenameType(ETK_None, NNS, II, | 
|  | SourceLocation(), | 
|  | Range, NameLoc); | 
|  | return ParsedType::make(T); | 
|  | } | 
|  |  | 
|  | if (ObjectTypePtr) | 
|  | Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type) | 
|  | << &II; | 
|  | else | 
|  | Diag(NameLoc, diag::err_destructor_class_name); | 
|  |  | 
|  | return ParsedType(); | 
|  | } | 
|  |  | 
|  | /// \brief Build a C++ typeid expression with a type operand. | 
|  | ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, | 
|  | SourceLocation TypeidLoc, | 
|  | TypeSourceInfo *Operand, | 
|  | SourceLocation RParenLoc) { | 
|  | // C++ [expr.typeid]p4: | 
|  | //   The top-level cv-qualifiers of the lvalue expression or the type-id | 
|  | //   that is the operand of typeid are always ignored. | 
|  | //   If the type of the type-id is a class type or a reference to a class | 
|  | //   type, the class shall be completely-defined. | 
|  | Qualifiers Quals; | 
|  | QualType T | 
|  | = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), | 
|  | Quals); | 
|  | if (T->getAs<RecordType>() && | 
|  | RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) | 
|  | return ExprError(); | 
|  |  | 
|  | return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), | 
|  | Operand, | 
|  | SourceRange(TypeidLoc, RParenLoc))); | 
|  | } | 
|  |  | 
|  | /// \brief Build a C++ typeid expression with an expression operand. | 
|  | ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, | 
|  | SourceLocation TypeidLoc, | 
|  | Expr *E, | 
|  | SourceLocation RParenLoc) { | 
|  | bool isUnevaluatedOperand = true; | 
|  | if (E && !E->isTypeDependent()) { | 
|  | QualType T = E->getType(); | 
|  | if (const RecordType *RecordT = T->getAs<RecordType>()) { | 
|  | CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); | 
|  | // C++ [expr.typeid]p3: | 
|  | //   [...] If the type of the expression is a class type, the class | 
|  | //   shall be completely-defined. | 
|  | if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) | 
|  | return ExprError(); | 
|  |  | 
|  | // C++ [expr.typeid]p3: | 
|  | //   When typeid is applied to an expression other than an glvalue of a | 
|  | //   polymorphic class type [...] [the] expression is an unevaluated | 
|  | //   operand. [...] | 
|  | if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) { | 
|  | isUnevaluatedOperand = false; | 
|  |  | 
|  | // We require a vtable to query the type at run time. | 
|  | MarkVTableUsed(TypeidLoc, RecordD); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [expr.typeid]p4: | 
|  | //   [...] If the type of the type-id is a reference to a possibly | 
|  | //   cv-qualified type, the result of the typeid expression refers to a | 
|  | //   std::type_info object representing the cv-unqualified referenced | 
|  | //   type. | 
|  | Qualifiers Quals; | 
|  | QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); | 
|  | if (!Context.hasSameType(T, UnqualT)) { | 
|  | T = UnqualT; | 
|  | ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is an unevaluated operand, clear out the set of | 
|  | // declaration references we have been computing and eliminate any | 
|  | // temporaries introduced in its computation. | 
|  | if (isUnevaluatedOperand) | 
|  | ExprEvalContexts.back().Context = Unevaluated; | 
|  |  | 
|  | return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), | 
|  | E, | 
|  | SourceRange(TypeidLoc, RParenLoc))); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); | 
|  | ExprResult | 
|  | Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, | 
|  | bool isType, void *TyOrExpr, SourceLocation RParenLoc) { | 
|  | // Find the std::type_info type. | 
|  | if (!StdNamespace) | 
|  | return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); | 
|  |  | 
|  | if (!CXXTypeInfoDecl) { | 
|  | IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); | 
|  | LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); | 
|  | LookupQualifiedName(R, getStdNamespace()); | 
|  | CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); | 
|  | if (!CXXTypeInfoDecl) | 
|  | return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); | 
|  | } | 
|  |  | 
|  | QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); | 
|  |  | 
|  | if (isType) { | 
|  | // The operand is a type; handle it as such. | 
|  | TypeSourceInfo *TInfo = 0; | 
|  | QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), | 
|  | &TInfo); | 
|  | if (T.isNull()) | 
|  | return ExprError(); | 
|  |  | 
|  | if (!TInfo) | 
|  | TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); | 
|  |  | 
|  | return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); | 
|  | } | 
|  |  | 
|  | // The operand is an expression. | 
|  | return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc); | 
|  | } | 
|  |  | 
|  | /// Retrieve the UuidAttr associated with QT. | 
|  | static UuidAttr *GetUuidAttrOfType(QualType QT) { | 
|  | // Optionally remove one level of pointer, reference or array indirection. | 
|  | const Type *Ty = QT.getTypePtr();; | 
|  | if (QT->isPointerType() || QT->isReferenceType()) | 
|  | Ty = QT->getPointeeType().getTypePtr(); | 
|  | else if (QT->isArrayType()) | 
|  | Ty = cast<ArrayType>(QT)->getElementType().getTypePtr(); | 
|  |  | 
|  | // Loop all class definition and declaration looking for an uuid attribute. | 
|  | CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); | 
|  | while (RD) { | 
|  | if (UuidAttr *Uuid = RD->getAttr<UuidAttr>()) | 
|  | return Uuid; | 
|  | RD = RD->getPreviousDeclaration(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// \brief Build a Microsoft __uuidof expression with a type operand. | 
|  | ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, | 
|  | SourceLocation TypeidLoc, | 
|  | TypeSourceInfo *Operand, | 
|  | SourceLocation RParenLoc) { | 
|  | if (!Operand->getType()->isDependentType()) { | 
|  | if (!GetUuidAttrOfType(Operand->getType())) | 
|  | return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); | 
|  | } | 
|  |  | 
|  | // FIXME: add __uuidof semantic analysis for type operand. | 
|  | return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(), | 
|  | Operand, | 
|  | SourceRange(TypeidLoc, RParenLoc))); | 
|  | } | 
|  |  | 
|  | /// \brief Build a Microsoft __uuidof expression with an expression operand. | 
|  | ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, | 
|  | SourceLocation TypeidLoc, | 
|  | Expr *E, | 
|  | SourceLocation RParenLoc) { | 
|  | if (!E->getType()->isDependentType()) { | 
|  | if (!GetUuidAttrOfType(E->getType()) && | 
|  | !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) | 
|  | return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); | 
|  | } | 
|  | // FIXME: add __uuidof semantic analysis for type operand. | 
|  | return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(), | 
|  | E, | 
|  | SourceRange(TypeidLoc, RParenLoc))); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); | 
|  | ExprResult | 
|  | Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, | 
|  | bool isType, void *TyOrExpr, SourceLocation RParenLoc) { | 
|  | // If MSVCGuidDecl has not been cached, do the lookup. | 
|  | if (!MSVCGuidDecl) { | 
|  | IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID"); | 
|  | LookupResult R(*this, GuidII, SourceLocation(), LookupTagName); | 
|  | LookupQualifiedName(R, Context.getTranslationUnitDecl()); | 
|  | MSVCGuidDecl = R.getAsSingle<RecordDecl>(); | 
|  | if (!MSVCGuidDecl) | 
|  | return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof)); | 
|  | } | 
|  |  | 
|  | QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl); | 
|  |  | 
|  | if (isType) { | 
|  | // The operand is a type; handle it as such. | 
|  | TypeSourceInfo *TInfo = 0; | 
|  | QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), | 
|  | &TInfo); | 
|  | if (T.isNull()) | 
|  | return ExprError(); | 
|  |  | 
|  | if (!TInfo) | 
|  | TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); | 
|  |  | 
|  | return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); | 
|  | } | 
|  |  | 
|  | // The operand is an expression. | 
|  | return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXBoolLiteral - Parse {true,false} literals. | 
|  | ExprResult | 
|  | Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { | 
|  | assert((Kind == tok::kw_true || Kind == tok::kw_false) && | 
|  | "Unknown C++ Boolean value!"); | 
|  | return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, | 
|  | Context.BoolTy, OpLoc)); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. | 
|  | ExprResult | 
|  | Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { | 
|  | return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXThrow - Parse throw expressions. | 
|  | ExprResult | 
|  | Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) { | 
|  | if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex)) | 
|  | return ExprError(); | 
|  | return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc)); | 
|  | } | 
|  |  | 
|  | /// CheckCXXThrowOperand - Validate the operand of a throw. | 
|  | bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) { | 
|  | // C++ [except.throw]p3: | 
|  | //   A throw-expression initializes a temporary object, called the exception | 
|  | //   object, the type of which is determined by removing any top-level | 
|  | //   cv-qualifiers from the static type of the operand of throw and adjusting | 
|  | //   the type from "array of T" or "function returning T" to "pointer to T" | 
|  | //   or "pointer to function returning T", [...] | 
|  | if (E->getType().hasQualifiers()) | 
|  | ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp, | 
|  | CastCategory(E)); | 
|  |  | 
|  | DefaultFunctionArrayConversion(E); | 
|  |  | 
|  | //   If the type of the exception would be an incomplete type or a pointer | 
|  | //   to an incomplete type other than (cv) void the program is ill-formed. | 
|  | QualType Ty = E->getType(); | 
|  | bool isPointer = false; | 
|  | if (const PointerType* Ptr = Ty->getAs<PointerType>()) { | 
|  | Ty = Ptr->getPointeeType(); | 
|  | isPointer = true; | 
|  | } | 
|  | if (!isPointer || !Ty->isVoidType()) { | 
|  | if (RequireCompleteType(ThrowLoc, Ty, | 
|  | PDiag(isPointer ? diag::err_throw_incomplete_ptr | 
|  | : diag::err_throw_incomplete) | 
|  | << E->getSourceRange())) | 
|  | return true; | 
|  |  | 
|  | if (RequireNonAbstractType(ThrowLoc, E->getType(), | 
|  | PDiag(diag::err_throw_abstract_type) | 
|  | << E->getSourceRange())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Initialize the exception result.  This implicitly weeds out | 
|  | // abstract types or types with inaccessible copy constructors. | 
|  | const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false); | 
|  |  | 
|  | // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32. | 
|  | InitializedEntity Entity = | 
|  | InitializedEntity::InitializeException(ThrowLoc, E->getType(), | 
|  | /*NRVO=*/false); | 
|  | ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable, | 
|  | QualType(), E); | 
|  | if (Res.isInvalid()) | 
|  | return true; | 
|  | E = Res.takeAs<Expr>(); | 
|  |  | 
|  | // If the exception has class type, we need additional handling. | 
|  | const RecordType *RecordTy = Ty->getAs<RecordType>(); | 
|  | if (!RecordTy) | 
|  | return false; | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  |  | 
|  | // If we are throwing a polymorphic class type or pointer thereof, | 
|  | // exception handling will make use of the vtable. | 
|  | MarkVTableUsed(ThrowLoc, RD); | 
|  |  | 
|  | // If a pointer is thrown, the referenced object will not be destroyed. | 
|  | if (isPointer) | 
|  | return false; | 
|  |  | 
|  | // If the class has a non-trivial destructor, we must be able to call it. | 
|  | if (RD->hasTrivialDestructor()) | 
|  | return false; | 
|  |  | 
|  | CXXDestructorDecl *Destructor | 
|  | = const_cast<CXXDestructorDecl*>(LookupDestructor(RD)); | 
|  | if (!Destructor) | 
|  | return false; | 
|  |  | 
|  | MarkDeclarationReferenced(E->getExprLoc(), Destructor); | 
|  | CheckDestructorAccess(E->getExprLoc(), Destructor, | 
|  | PDiag(diag::err_access_dtor_exception) << Ty); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CXXMethodDecl *Sema::tryCaptureCXXThis() { | 
|  | // Ignore block scopes: we can capture through them. | 
|  | // Ignore nested enum scopes: we'll diagnose non-constant expressions | 
|  | // where they're invalid, and other uses are legitimate. | 
|  | // Don't ignore nested class scopes: you can't use 'this' in a local class. | 
|  | DeclContext *DC = CurContext; | 
|  | while (true) { | 
|  | if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext(); | 
|  | else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext(); | 
|  | else break; | 
|  | } | 
|  |  | 
|  | // If we're not in an instance method, error out. | 
|  | CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC); | 
|  | if (!method || !method->isInstance()) | 
|  | return 0; | 
|  |  | 
|  | // Mark that we're closing on 'this' in all the block scopes, if applicable. | 
|  | for (unsigned idx = FunctionScopes.size() - 1; | 
|  | isa<BlockScopeInfo>(FunctionScopes[idx]); | 
|  | --idx) | 
|  | cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true; | 
|  |  | 
|  | return method; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnCXXThis(SourceLocation loc) { | 
|  | /// C++ 9.3.2: In the body of a non-static member function, the keyword this | 
|  | /// is a non-lvalue expression whose value is the address of the object for | 
|  | /// which the function is called. | 
|  |  | 
|  | CXXMethodDecl *method = tryCaptureCXXThis(); | 
|  | if (!method) return Diag(loc, diag::err_invalid_this_use); | 
|  |  | 
|  | return Owned(new (Context) CXXThisExpr(loc, method->getThisType(Context), | 
|  | /*isImplicit=*/false)); | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg exprs, | 
|  | SourceLocation RParenLoc) { | 
|  | if (!TypeRep) | 
|  | return ExprError(); | 
|  |  | 
|  | TypeSourceInfo *TInfo; | 
|  | QualType Ty = GetTypeFromParser(TypeRep, &TInfo); | 
|  | if (!TInfo) | 
|  | TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); | 
|  |  | 
|  | return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. | 
|  | /// Can be interpreted either as function-style casting ("int(x)") | 
|  | /// or class type construction ("ClassType(x,y,z)") | 
|  | /// or creation of a value-initialized type ("int()"). | 
|  | ExprResult | 
|  | Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg exprs, | 
|  | SourceLocation RParenLoc) { | 
|  | QualType Ty = TInfo->getType(); | 
|  | unsigned NumExprs = exprs.size(); | 
|  | Expr **Exprs = (Expr**)exprs.get(); | 
|  | SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); | 
|  | SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc); | 
|  |  | 
|  | if (Ty->isDependentType() || | 
|  | CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) { | 
|  | exprs.release(); | 
|  |  | 
|  | return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo, | 
|  | LParenLoc, | 
|  | Exprs, NumExprs, | 
|  | RParenLoc)); | 
|  | } | 
|  |  | 
|  | if (Ty->isArrayType()) | 
|  | return ExprError(Diag(TyBeginLoc, | 
|  | diag::err_value_init_for_array_type) << FullRange); | 
|  | if (!Ty->isVoidType() && | 
|  | RequireCompleteType(TyBeginLoc, Ty, | 
|  | PDiag(diag::err_invalid_incomplete_type_use) | 
|  | << FullRange)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (RequireNonAbstractType(TyBeginLoc, Ty, | 
|  | diag::err_allocation_of_abstract_type)) | 
|  | return ExprError(); | 
|  |  | 
|  |  | 
|  | // C++ [expr.type.conv]p1: | 
|  | // If the expression list is a single expression, the type conversion | 
|  | // expression is equivalent (in definedness, and if defined in meaning) to the | 
|  | // corresponding cast expression. | 
|  | // | 
|  | if (NumExprs == 1) { | 
|  | CastKind Kind = CK_Invalid; | 
|  | ExprValueKind VK = VK_RValue; | 
|  | CXXCastPath BasePath; | 
|  | if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0], | 
|  | Kind, VK, BasePath, | 
|  | /*FunctionalStyle=*/true)) | 
|  | return ExprError(); | 
|  |  | 
|  | exprs.release(); | 
|  |  | 
|  | return Owned(CXXFunctionalCastExpr::Create(Context, | 
|  | Ty.getNonLValueExprType(Context), | 
|  | VK, TInfo, TyBeginLoc, Kind, | 
|  | Exprs[0], &BasePath, | 
|  | RParenLoc)); | 
|  | } | 
|  |  | 
|  | InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); | 
|  | InitializationKind Kind | 
|  | = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc, | 
|  | LParenLoc, RParenLoc) | 
|  | : InitializationKind::CreateValue(TyBeginLoc, | 
|  | LParenLoc, RParenLoc); | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs); | 
|  | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs)); | 
|  |  | 
|  | // FIXME: Improve AST representation? | 
|  | return move(Result); | 
|  | } | 
|  |  | 
|  | /// doesUsualArrayDeleteWantSize - Answers whether the usual | 
|  | /// operator delete[] for the given type has a size_t parameter. | 
|  | static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, | 
|  | QualType allocType) { | 
|  | const RecordType *record = | 
|  | allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); | 
|  | if (!record) return false; | 
|  |  | 
|  | // Try to find an operator delete[] in class scope. | 
|  |  | 
|  | DeclarationName deleteName = | 
|  | S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); | 
|  | LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); | 
|  | S.LookupQualifiedName(ops, record->getDecl()); | 
|  |  | 
|  | // We're just doing this for information. | 
|  | ops.suppressDiagnostics(); | 
|  |  | 
|  | // Very likely: there's no operator delete[]. | 
|  | if (ops.empty()) return false; | 
|  |  | 
|  | // If it's ambiguous, it should be illegal to call operator delete[] | 
|  | // on this thing, so it doesn't matter if we allocate extra space or not. | 
|  | if (ops.isAmbiguous()) return false; | 
|  |  | 
|  | LookupResult::Filter filter = ops.makeFilter(); | 
|  | while (filter.hasNext()) { | 
|  | NamedDecl *del = filter.next()->getUnderlyingDecl(); | 
|  |  | 
|  | // C++0x [basic.stc.dynamic.deallocation]p2: | 
|  | //   A template instance is never a usual deallocation function, | 
|  | //   regardless of its signature. | 
|  | if (isa<FunctionTemplateDecl>(del)) { | 
|  | filter.erase(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // C++0x [basic.stc.dynamic.deallocation]p2: | 
|  | //   If class T does not declare [an operator delete[] with one | 
|  | //   parameter] but does declare a member deallocation function | 
|  | //   named operator delete[] with exactly two parameters, the | 
|  | //   second of which has type std::size_t, then this function | 
|  | //   is a usual deallocation function. | 
|  | if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) { | 
|  | filter.erase(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | filter.done(); | 
|  |  | 
|  | if (!ops.isSingleResult()) return false; | 
|  |  | 
|  | const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl()); | 
|  | return (del->getNumParams() == 2); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.: | 
|  | /// @code new (memory) int[size][4] @endcode | 
|  | /// or | 
|  | /// @code ::new Foo(23, "hello") @endcode | 
|  | /// For the interpretation of this heap of arguments, consult the base version. | 
|  | ExprResult | 
|  | Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, | 
|  | SourceLocation PlacementLParen, MultiExprArg PlacementArgs, | 
|  | SourceLocation PlacementRParen, SourceRange TypeIdParens, | 
|  | Declarator &D, SourceLocation ConstructorLParen, | 
|  | MultiExprArg ConstructorArgs, | 
|  | SourceLocation ConstructorRParen) { | 
|  | Expr *ArraySize = 0; | 
|  | // If the specified type is an array, unwrap it and save the expression. | 
|  | if (D.getNumTypeObjects() > 0 && | 
|  | D.getTypeObject(0).Kind == DeclaratorChunk::Array) { | 
|  | DeclaratorChunk &Chunk = D.getTypeObject(0); | 
|  | if (Chunk.Arr.hasStatic) | 
|  | return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) | 
|  | << D.getSourceRange()); | 
|  | if (!Chunk.Arr.NumElts) | 
|  | return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) | 
|  | << D.getSourceRange()); | 
|  |  | 
|  | ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); | 
|  | D.DropFirstTypeObject(); | 
|  | } | 
|  |  | 
|  | // Every dimension shall be of constant size. | 
|  | if (ArraySize) { | 
|  | for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { | 
|  | if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) | 
|  | break; | 
|  |  | 
|  | DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; | 
|  | if (Expr *NumElts = (Expr *)Array.NumElts) { | 
|  | if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() && | 
|  | !NumElts->isIntegerConstantExpr(Context)) { | 
|  | Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst) | 
|  | << NumElts->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0); | 
|  | QualType AllocType = TInfo->getType(); | 
|  | if (D.isInvalidType()) | 
|  | return ExprError(); | 
|  |  | 
|  | if (!TInfo) | 
|  | TInfo = Context.getTrivialTypeSourceInfo(AllocType); | 
|  |  | 
|  | return BuildCXXNew(StartLoc, UseGlobal, | 
|  | PlacementLParen, | 
|  | move(PlacementArgs), | 
|  | PlacementRParen, | 
|  | TypeIdParens, | 
|  | AllocType, | 
|  | TInfo, | 
|  | ArraySize, | 
|  | ConstructorLParen, | 
|  | move(ConstructorArgs), | 
|  | ConstructorRParen); | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, | 
|  | SourceLocation PlacementLParen, | 
|  | MultiExprArg PlacementArgs, | 
|  | SourceLocation PlacementRParen, | 
|  | SourceRange TypeIdParens, | 
|  | QualType AllocType, | 
|  | TypeSourceInfo *AllocTypeInfo, | 
|  | Expr *ArraySize, | 
|  | SourceLocation ConstructorLParen, | 
|  | MultiExprArg ConstructorArgs, | 
|  | SourceLocation ConstructorRParen) { | 
|  | SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); | 
|  |  | 
|  | // Per C++0x [expr.new]p5, the type being constructed may be a | 
|  | // typedef of an array type. | 
|  | if (!ArraySize) { | 
|  | if (const ConstantArrayType *Array | 
|  | = Context.getAsConstantArrayType(AllocType)) { | 
|  | ArraySize = IntegerLiteral::Create(Context, Array->getSize(), | 
|  | Context.getSizeType(), | 
|  | TypeRange.getEnd()); | 
|  | AllocType = Array->getElementType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) | 
|  | return ExprError(); | 
|  |  | 
|  | QualType ResultType = Context.getPointerType(AllocType); | 
|  |  | 
|  | // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral | 
|  | //   or enumeration type with a non-negative value." | 
|  | if (ArraySize && !ArraySize->isTypeDependent()) { | 
|  |  | 
|  | QualType SizeType = ArraySize->getType(); | 
|  |  | 
|  | ExprResult ConvertedSize | 
|  | = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, | 
|  | PDiag(diag::err_array_size_not_integral), | 
|  | PDiag(diag::err_array_size_incomplete_type) | 
|  | << ArraySize->getSourceRange(), | 
|  | PDiag(diag::err_array_size_explicit_conversion), | 
|  | PDiag(diag::note_array_size_conversion), | 
|  | PDiag(diag::err_array_size_ambiguous_conversion), | 
|  | PDiag(diag::note_array_size_conversion), | 
|  | PDiag(getLangOptions().CPlusPlus0x? 0 | 
|  | : diag::ext_array_size_conversion)); | 
|  | if (ConvertedSize.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | ArraySize = ConvertedSize.take(); | 
|  | SizeType = ArraySize->getType(); | 
|  | if (!SizeType->isIntegralOrUnscopedEnumerationType()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Let's see if this is a constant < 0. If so, we reject it out of hand. | 
|  | // We don't care about special rules, so we tell the machinery it's not | 
|  | // evaluated - it gives us a result in more cases. | 
|  | if (!ArraySize->isValueDependent()) { | 
|  | llvm::APSInt Value; | 
|  | if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) { | 
|  | if (Value < llvm::APSInt( | 
|  | llvm::APInt::getNullValue(Value.getBitWidth()), | 
|  | Value.isUnsigned())) | 
|  | return ExprError(Diag(ArraySize->getSourceRange().getBegin(), | 
|  | diag::err_typecheck_negative_array_size) | 
|  | << ArraySize->getSourceRange()); | 
|  |  | 
|  | if (!AllocType->isDependentType()) { | 
|  | unsigned ActiveSizeBits | 
|  | = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value); | 
|  | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { | 
|  | Diag(ArraySize->getSourceRange().getBegin(), | 
|  | diag::err_array_too_large) | 
|  | << Value.toString(10) | 
|  | << ArraySize->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  | } else if (TypeIdParens.isValid()) { | 
|  | // Can't have dynamic array size when the type-id is in parentheses. | 
|  | Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst) | 
|  | << ArraySize->getSourceRange() | 
|  | << FixItHint::CreateRemoval(TypeIdParens.getBegin()) | 
|  | << FixItHint::CreateRemoval(TypeIdParens.getEnd()); | 
|  |  | 
|  | TypeIdParens = SourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | ImpCastExprToType(ArraySize, Context.getSizeType(), | 
|  | CK_IntegralCast); | 
|  | } | 
|  |  | 
|  | FunctionDecl *OperatorNew = 0; | 
|  | FunctionDecl *OperatorDelete = 0; | 
|  | Expr **PlaceArgs = (Expr**)PlacementArgs.get(); | 
|  | unsigned NumPlaceArgs = PlacementArgs.size(); | 
|  |  | 
|  | if (!AllocType->isDependentType() && | 
|  | !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) && | 
|  | FindAllocationFunctions(StartLoc, | 
|  | SourceRange(PlacementLParen, PlacementRParen), | 
|  | UseGlobal, AllocType, ArraySize, PlaceArgs, | 
|  | NumPlaceArgs, OperatorNew, OperatorDelete)) | 
|  | return ExprError(); | 
|  |  | 
|  | // If this is an array allocation, compute whether the usual array | 
|  | // deallocation function for the type has a size_t parameter. | 
|  | bool UsualArrayDeleteWantsSize = false; | 
|  | if (ArraySize && !AllocType->isDependentType()) | 
|  | UsualArrayDeleteWantsSize | 
|  | = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); | 
|  |  | 
|  | llvm::SmallVector<Expr *, 8> AllPlaceArgs; | 
|  | if (OperatorNew) { | 
|  | // Add default arguments, if any. | 
|  | const FunctionProtoType *Proto = | 
|  | OperatorNew->getType()->getAs<FunctionProtoType>(); | 
|  | VariadicCallType CallType = | 
|  | Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; | 
|  |  | 
|  | if (GatherArgumentsForCall(PlacementLParen, OperatorNew, | 
|  | Proto, 1, PlaceArgs, NumPlaceArgs, | 
|  | AllPlaceArgs, CallType)) | 
|  | return ExprError(); | 
|  |  | 
|  | NumPlaceArgs = AllPlaceArgs.size(); | 
|  | if (NumPlaceArgs > 0) | 
|  | PlaceArgs = &AllPlaceArgs[0]; | 
|  | } | 
|  |  | 
|  | bool Init = ConstructorLParen.isValid(); | 
|  | // --- Choosing a constructor --- | 
|  | CXXConstructorDecl *Constructor = 0; | 
|  | Expr **ConsArgs = (Expr**)ConstructorArgs.get(); | 
|  | unsigned NumConsArgs = ConstructorArgs.size(); | 
|  | ASTOwningVector<Expr*> ConvertedConstructorArgs(*this); | 
|  |  | 
|  | // Array 'new' can't have any initializers. | 
|  | if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) { | 
|  | SourceRange InitRange(ConsArgs[0]->getLocStart(), | 
|  | ConsArgs[NumConsArgs - 1]->getLocEnd()); | 
|  |  | 
|  | Diag(StartLoc, diag::err_new_array_init_args) << InitRange; | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (!AllocType->isDependentType() && | 
|  | !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) { | 
|  | // C++0x [expr.new]p15: | 
|  | //   A new-expression that creates an object of type T initializes that | 
|  | //   object as follows: | 
|  | InitializationKind Kind | 
|  | //     - If the new-initializer is omitted, the object is default- | 
|  | //       initialized (8.5); if no initialization is performed, | 
|  | //       the object has indeterminate value | 
|  | = !Init? InitializationKind::CreateDefault(TypeRange.getBegin()) | 
|  | //     - Otherwise, the new-initializer is interpreted according to the | 
|  | //       initialization rules of 8.5 for direct-initialization. | 
|  | : InitializationKind::CreateDirect(TypeRange.getBegin(), | 
|  | ConstructorLParen, | 
|  | ConstructorRParen); | 
|  |  | 
|  | InitializedEntity Entity | 
|  | = InitializedEntity::InitializeNew(StartLoc, AllocType); | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs); | 
|  | ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, | 
|  | move(ConstructorArgs)); | 
|  | if (FullInit.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // FullInit is our initializer; walk through it to determine if it's a | 
|  | // constructor call, which CXXNewExpr handles directly. | 
|  | if (Expr *FullInitExpr = (Expr *)FullInit.get()) { | 
|  | if (CXXBindTemporaryExpr *Binder | 
|  | = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr)) | 
|  | FullInitExpr = Binder->getSubExpr(); | 
|  | if (CXXConstructExpr *Construct | 
|  | = dyn_cast<CXXConstructExpr>(FullInitExpr)) { | 
|  | Constructor = Construct->getConstructor(); | 
|  | for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(), | 
|  | AEnd = Construct->arg_end(); | 
|  | A != AEnd; ++A) | 
|  | ConvertedConstructorArgs.push_back(*A); | 
|  | } else { | 
|  | // Take the converted initializer. | 
|  | ConvertedConstructorArgs.push_back(FullInit.release()); | 
|  | } | 
|  | } else { | 
|  | // No initialization required. | 
|  | } | 
|  |  | 
|  | // Take the converted arguments and use them for the new expression. | 
|  | NumConsArgs = ConvertedConstructorArgs.size(); | 
|  | ConsArgs = (Expr **)ConvertedConstructorArgs.take(); | 
|  | } | 
|  |  | 
|  | // Mark the new and delete operators as referenced. | 
|  | if (OperatorNew) | 
|  | MarkDeclarationReferenced(StartLoc, OperatorNew); | 
|  | if (OperatorDelete) | 
|  | MarkDeclarationReferenced(StartLoc, OperatorDelete); | 
|  |  | 
|  | // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16) | 
|  |  | 
|  | PlacementArgs.release(); | 
|  | ConstructorArgs.release(); | 
|  |  | 
|  | return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew, | 
|  | PlaceArgs, NumPlaceArgs, TypeIdParens, | 
|  | ArraySize, Constructor, Init, | 
|  | ConsArgs, NumConsArgs, OperatorDelete, | 
|  | UsualArrayDeleteWantsSize, | 
|  | ResultType, AllocTypeInfo, | 
|  | StartLoc, | 
|  | Init ? ConstructorRParen : | 
|  | TypeRange.getEnd(), | 
|  | ConstructorLParen, ConstructorRParen)); | 
|  | } | 
|  |  | 
|  | /// CheckAllocatedType - Checks that a type is suitable as the allocated type | 
|  | /// in a new-expression. | 
|  | /// dimension off and stores the size expression in ArraySize. | 
|  | bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, | 
|  | SourceRange R) { | 
|  | // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an | 
|  | //   abstract class type or array thereof. | 
|  | if (AllocType->isFunctionType()) | 
|  | return Diag(Loc, diag::err_bad_new_type) | 
|  | << AllocType << 0 << R; | 
|  | else if (AllocType->isReferenceType()) | 
|  | return Diag(Loc, diag::err_bad_new_type) | 
|  | << AllocType << 1 << R; | 
|  | else if (!AllocType->isDependentType() && | 
|  | RequireCompleteType(Loc, AllocType, | 
|  | PDiag(diag::err_new_incomplete_type) | 
|  | << R)) | 
|  | return true; | 
|  | else if (RequireNonAbstractType(Loc, AllocType, | 
|  | diag::err_allocation_of_abstract_type)) | 
|  | return true; | 
|  | else if (AllocType->isVariablyModifiedType()) | 
|  | return Diag(Loc, diag::err_variably_modified_new_type) | 
|  | << AllocType; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the given function is a non-placement | 
|  | /// deallocation function. | 
|  | static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) { | 
|  | if (FD->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) | 
|  | return Method->isUsualDeallocationFunction(); | 
|  |  | 
|  | return ((FD->getOverloadedOperator() == OO_Delete || | 
|  | FD->getOverloadedOperator() == OO_Array_Delete) && | 
|  | FD->getNumParams() == 1); | 
|  | } | 
|  |  | 
|  | /// FindAllocationFunctions - Finds the overloads of operator new and delete | 
|  | /// that are appropriate for the allocation. | 
|  | bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, | 
|  | bool UseGlobal, QualType AllocType, | 
|  | bool IsArray, Expr **PlaceArgs, | 
|  | unsigned NumPlaceArgs, | 
|  | FunctionDecl *&OperatorNew, | 
|  | FunctionDecl *&OperatorDelete) { | 
|  | // --- Choosing an allocation function --- | 
|  | // C++ 5.3.4p8 - 14 & 18 | 
|  | // 1) If UseGlobal is true, only look in the global scope. Else, also look | 
|  | //   in the scope of the allocated class. | 
|  | // 2) If an array size is given, look for operator new[], else look for | 
|  | //   operator new. | 
|  | // 3) The first argument is always size_t. Append the arguments from the | 
|  | //   placement form. | 
|  |  | 
|  | llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs); | 
|  | // We don't care about the actual value of this argument. | 
|  | // FIXME: Should the Sema create the expression and embed it in the syntax | 
|  | // tree? Or should the consumer just recalculate the value? | 
|  | IntegerLiteral Size(Context, llvm::APInt::getNullValue( | 
|  | Context.Target.getPointerWidth(0)), | 
|  | Context.getSizeType(), | 
|  | SourceLocation()); | 
|  | AllocArgs[0] = &Size; | 
|  | std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1); | 
|  |  | 
|  | // C++ [expr.new]p8: | 
|  | //   If the allocated type is a non-array type, the allocation | 
|  | //   function's name is operator new and the deallocation function's | 
|  | //   name is operator delete. If the allocated type is an array | 
|  | //   type, the allocation function's name is operator new[] and the | 
|  | //   deallocation function's name is operator delete[]. | 
|  | DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( | 
|  | IsArray ? OO_Array_New : OO_New); | 
|  | DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( | 
|  | IsArray ? OO_Array_Delete : OO_Delete); | 
|  |  | 
|  | QualType AllocElemType = Context.getBaseElementType(AllocType); | 
|  |  | 
|  | if (AllocElemType->isRecordType() && !UseGlobal) { | 
|  | CXXRecordDecl *Record | 
|  | = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); | 
|  | if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], | 
|  | AllocArgs.size(), Record, /*AllowMissing=*/true, | 
|  | OperatorNew)) | 
|  | return true; | 
|  | } | 
|  | if (!OperatorNew) { | 
|  | // Didn't find a member overload. Look for a global one. | 
|  | DeclareGlobalNewDelete(); | 
|  | DeclContext *TUDecl = Context.getTranslationUnitDecl(); | 
|  | if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], | 
|  | AllocArgs.size(), TUDecl, /*AllowMissing=*/false, | 
|  | OperatorNew)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We don't need an operator delete if we're running under | 
|  | // -fno-exceptions. | 
|  | if (!getLangOptions().Exceptions) { | 
|  | OperatorDelete = 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FindAllocationOverload can change the passed in arguments, so we need to | 
|  | // copy them back. | 
|  | if (NumPlaceArgs > 0) | 
|  | std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs); | 
|  |  | 
|  | // C++ [expr.new]p19: | 
|  | // | 
|  | //   If the new-expression begins with a unary :: operator, the | 
|  | //   deallocation function's name is looked up in the global | 
|  | //   scope. Otherwise, if the allocated type is a class type T or an | 
|  | //   array thereof, the deallocation function's name is looked up in | 
|  | //   the scope of T. If this lookup fails to find the name, or if | 
|  | //   the allocated type is not a class type or array thereof, the | 
|  | //   deallocation function's name is looked up in the global scope. | 
|  | LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); | 
|  | if (AllocElemType->isRecordType() && !UseGlobal) { | 
|  | CXXRecordDecl *RD | 
|  | = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); | 
|  | LookupQualifiedName(FoundDelete, RD); | 
|  | } | 
|  | if (FoundDelete.isAmbiguous()) | 
|  | return true; // FIXME: clean up expressions? | 
|  |  | 
|  | if (FoundDelete.empty()) { | 
|  | DeclareGlobalNewDelete(); | 
|  | LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); | 
|  | } | 
|  |  | 
|  | FoundDelete.suppressDiagnostics(); | 
|  |  | 
|  | llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; | 
|  |  | 
|  | // Whether we're looking for a placement operator delete is dictated | 
|  | // by whether we selected a placement operator new, not by whether | 
|  | // we had explicit placement arguments.  This matters for things like | 
|  | //   struct A { void *operator new(size_t, int = 0); ... }; | 
|  | //   A *a = new A() | 
|  | bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1); | 
|  |  | 
|  | if (isPlacementNew) { | 
|  | // C++ [expr.new]p20: | 
|  | //   A declaration of a placement deallocation function matches the | 
|  | //   declaration of a placement allocation function if it has the | 
|  | //   same number of parameters and, after parameter transformations | 
|  | //   (8.3.5), all parameter types except the first are | 
|  | //   identical. [...] | 
|  | // | 
|  | // To perform this comparison, we compute the function type that | 
|  | // the deallocation function should have, and use that type both | 
|  | // for template argument deduction and for comparison purposes. | 
|  | // | 
|  | // FIXME: this comparison should ignore CC and the like. | 
|  | QualType ExpectedFunctionType; | 
|  | { | 
|  | const FunctionProtoType *Proto | 
|  | = OperatorNew->getType()->getAs<FunctionProtoType>(); | 
|  |  | 
|  | llvm::SmallVector<QualType, 4> ArgTypes; | 
|  | ArgTypes.push_back(Context.VoidPtrTy); | 
|  | for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I) | 
|  | ArgTypes.push_back(Proto->getArgType(I)); | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo EPI; | 
|  | EPI.Variadic = Proto->isVariadic(); | 
|  |  | 
|  | ExpectedFunctionType | 
|  | = Context.getFunctionType(Context.VoidTy, ArgTypes.data(), | 
|  | ArgTypes.size(), EPI); | 
|  | } | 
|  |  | 
|  | for (LookupResult::iterator D = FoundDelete.begin(), | 
|  | DEnd = FoundDelete.end(); | 
|  | D != DEnd; ++D) { | 
|  | FunctionDecl *Fn = 0; | 
|  | if (FunctionTemplateDecl *FnTmpl | 
|  | = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { | 
|  | // Perform template argument deduction to try to match the | 
|  | // expected function type. | 
|  | TemplateDeductionInfo Info(Context, StartLoc); | 
|  | if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info)) | 
|  | continue; | 
|  | } else | 
|  | Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); | 
|  |  | 
|  | if (Context.hasSameType(Fn->getType(), ExpectedFunctionType)) | 
|  | Matches.push_back(std::make_pair(D.getPair(), Fn)); | 
|  | } | 
|  | } else { | 
|  | // C++ [expr.new]p20: | 
|  | //   [...] Any non-placement deallocation function matches a | 
|  | //   non-placement allocation function. [...] | 
|  | for (LookupResult::iterator D = FoundDelete.begin(), | 
|  | DEnd = FoundDelete.end(); | 
|  | D != DEnd; ++D) { | 
|  | if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl())) | 
|  | if (isNonPlacementDeallocationFunction(Fn)) | 
|  | Matches.push_back(std::make_pair(D.getPair(), Fn)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [expr.new]p20: | 
|  | //   [...] If the lookup finds a single matching deallocation | 
|  | //   function, that function will be called; otherwise, no | 
|  | //   deallocation function will be called. | 
|  | if (Matches.size() == 1) { | 
|  | OperatorDelete = Matches[0].second; | 
|  |  | 
|  | // C++0x [expr.new]p20: | 
|  | //   If the lookup finds the two-parameter form of a usual | 
|  | //   deallocation function (3.7.4.2) and that function, considered | 
|  | //   as a placement deallocation function, would have been | 
|  | //   selected as a match for the allocation function, the program | 
|  | //   is ill-formed. | 
|  | if (NumPlaceArgs && getLangOptions().CPlusPlus0x && | 
|  | isNonPlacementDeallocationFunction(OperatorDelete)) { | 
|  | Diag(StartLoc, diag::err_placement_new_non_placement_delete) | 
|  | << SourceRange(PlaceArgs[0]->getLocStart(), | 
|  | PlaceArgs[NumPlaceArgs - 1]->getLocEnd()); | 
|  | Diag(OperatorDelete->getLocation(), diag::note_previous_decl) | 
|  | << DeleteName; | 
|  | } else { | 
|  | CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), | 
|  | Matches[0].first); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// FindAllocationOverload - Find an fitting overload for the allocation | 
|  | /// function in the specified scope. | 
|  | bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, | 
|  | DeclarationName Name, Expr** Args, | 
|  | unsigned NumArgs, DeclContext *Ctx, | 
|  | bool AllowMissing, FunctionDecl *&Operator) { | 
|  | LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); | 
|  | LookupQualifiedName(R, Ctx); | 
|  | if (R.empty()) { | 
|  | if (AllowMissing) | 
|  | return false; | 
|  | return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) | 
|  | << Name << Range; | 
|  | } | 
|  |  | 
|  | if (R.isAmbiguous()) | 
|  | return true; | 
|  |  | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | OverloadCandidateSet Candidates(StartLoc); | 
|  | for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); | 
|  | Alloc != AllocEnd; ++Alloc) { | 
|  | // Even member operator new/delete are implicitly treated as | 
|  | // static, so don't use AddMemberCandidate. | 
|  | NamedDecl *D = (*Alloc)->getUnderlyingDecl(); | 
|  |  | 
|  | if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { | 
|  | AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), | 
|  | /*ExplicitTemplateArgs=*/0, Args, NumArgs, | 
|  | Candidates, | 
|  | /*SuppressUserConversions=*/false); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FunctionDecl *Fn = cast<FunctionDecl>(D); | 
|  | AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates, | 
|  | /*SuppressUserConversions=*/false); | 
|  | } | 
|  |  | 
|  | // Do the resolution. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (Candidates.BestViableFunction(*this, StartLoc, Best)) { | 
|  | case OR_Success: { | 
|  | // Got one! | 
|  | FunctionDecl *FnDecl = Best->Function; | 
|  | // The first argument is size_t, and the first parameter must be size_t, | 
|  | // too. This is checked on declaration and can be assumed. (It can't be | 
|  | // asserted on, though, since invalid decls are left in there.) | 
|  | // Watch out for variadic allocator function. | 
|  | unsigned NumArgsInFnDecl = FnDecl->getNumParams(); | 
|  | for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) { | 
|  | ExprResult Result | 
|  | = PerformCopyInitialization(InitializedEntity::InitializeParameter( | 
|  | Context, | 
|  | FnDecl->getParamDecl(i)), | 
|  | SourceLocation(), | 
|  | Owned(Args[i])); | 
|  | if (Result.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | Args[i] = Result.takeAs<Expr>(); | 
|  | } | 
|  | Operator = FnDecl; | 
|  | CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) | 
|  | << Name << Range; | 
|  | Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); | 
|  | return true; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | Diag(StartLoc, diag::err_ovl_ambiguous_call) | 
|  | << Name << Range; | 
|  | Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); | 
|  | return true; | 
|  |  | 
|  | case OR_Deleted: | 
|  | Diag(StartLoc, diag::err_ovl_deleted_call) | 
|  | << Best->Function->isDeleted() | 
|  | << Name << Range; | 
|  | Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); | 
|  | return true; | 
|  | } | 
|  | assert(false && "Unreachable, bad result from BestViableFunction"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// DeclareGlobalNewDelete - Declare the global forms of operator new and | 
|  | /// delete. These are: | 
|  | /// @code | 
|  | ///   void* operator new(std::size_t) throw(std::bad_alloc); | 
|  | ///   void* operator new[](std::size_t) throw(std::bad_alloc); | 
|  | ///   void operator delete(void *) throw(); | 
|  | ///   void operator delete[](void *) throw(); | 
|  | /// @endcode | 
|  | /// Note that the placement and nothrow forms of new are *not* implicitly | 
|  | /// declared. Their use requires including \<new\>. | 
|  | void Sema::DeclareGlobalNewDelete() { | 
|  | if (GlobalNewDeleteDeclared) | 
|  | return; | 
|  |  | 
|  | // C++ [basic.std.dynamic]p2: | 
|  | //   [...] The following allocation and deallocation functions (18.4) are | 
|  | //   implicitly declared in global scope in each translation unit of a | 
|  | //   program | 
|  | // | 
|  | //     void* operator new(std::size_t) throw(std::bad_alloc); | 
|  | //     void* operator new[](std::size_t) throw(std::bad_alloc); | 
|  | //     void  operator delete(void*) throw(); | 
|  | //     void  operator delete[](void*) throw(); | 
|  | // | 
|  | //   These implicit declarations introduce only the function names operator | 
|  | //   new, operator new[], operator delete, operator delete[]. | 
|  | // | 
|  | // Here, we need to refer to std::bad_alloc, so we will implicitly declare | 
|  | // "std" or "bad_alloc" as necessary to form the exception specification. | 
|  | // However, we do not make these implicit declarations visible to name | 
|  | // lookup. | 
|  | if (!StdBadAlloc) { | 
|  | // The "std::bad_alloc" class has not yet been declared, so build it | 
|  | // implicitly. | 
|  | StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, | 
|  | getOrCreateStdNamespace(), | 
|  | SourceLocation(), | 
|  | &PP.getIdentifierTable().get("bad_alloc"), | 
|  | SourceLocation(), 0); | 
|  | getStdBadAlloc()->setImplicit(true); | 
|  | } | 
|  |  | 
|  | GlobalNewDeleteDeclared = true; | 
|  |  | 
|  | QualType VoidPtr = Context.getPointerType(Context.VoidTy); | 
|  | QualType SizeT = Context.getSizeType(); | 
|  | bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew; | 
|  |  | 
|  | DeclareGlobalAllocationFunction( | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_New), | 
|  | VoidPtr, SizeT, AssumeSaneOperatorNew); | 
|  | DeclareGlobalAllocationFunction( | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Array_New), | 
|  | VoidPtr, SizeT, AssumeSaneOperatorNew); | 
|  | DeclareGlobalAllocationFunction( | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Delete), | 
|  | Context.VoidTy, VoidPtr); | 
|  | DeclareGlobalAllocationFunction( | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), | 
|  | Context.VoidTy, VoidPtr); | 
|  | } | 
|  |  | 
|  | /// DeclareGlobalAllocationFunction - Declares a single implicit global | 
|  | /// allocation function if it doesn't already exist. | 
|  | void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, | 
|  | QualType Return, QualType Argument, | 
|  | bool AddMallocAttr) { | 
|  | DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); | 
|  |  | 
|  | // Check if this function is already declared. | 
|  | { | 
|  | DeclContext::lookup_iterator Alloc, AllocEnd; | 
|  | for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name); | 
|  | Alloc != AllocEnd; ++Alloc) { | 
|  | // Only look at non-template functions, as it is the predefined, | 
|  | // non-templated allocation function we are trying to declare here. | 
|  | if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { | 
|  | QualType InitialParamType = | 
|  | Context.getCanonicalType( | 
|  | Func->getParamDecl(0)->getType().getUnqualifiedType()); | 
|  | // FIXME: Do we need to check for default arguments here? | 
|  | if (Func->getNumParams() == 1 && InitialParamType == Argument) { | 
|  | if(AddMallocAttr && !Func->hasAttr<MallocAttr>()) | 
|  | Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | QualType BadAllocType; | 
|  | bool HasBadAllocExceptionSpec | 
|  | = (Name.getCXXOverloadedOperator() == OO_New || | 
|  | Name.getCXXOverloadedOperator() == OO_Array_New); | 
|  | if (HasBadAllocExceptionSpec) { | 
|  | assert(StdBadAlloc && "Must have std::bad_alloc declared"); | 
|  | BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); | 
|  | } | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo EPI; | 
|  | EPI.HasExceptionSpec = true; | 
|  | if (HasBadAllocExceptionSpec) { | 
|  | EPI.NumExceptions = 1; | 
|  | EPI.Exceptions = &BadAllocType; | 
|  | } | 
|  |  | 
|  | QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI); | 
|  | FunctionDecl *Alloc = | 
|  | FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name, | 
|  | FnType, /*TInfo=*/0, SC_None, | 
|  | SC_None, false, true); | 
|  | Alloc->setImplicit(); | 
|  |  | 
|  | if (AddMallocAttr) | 
|  | Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context)); | 
|  |  | 
|  | ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(), | 
|  | 0, Argument, /*TInfo=*/0, | 
|  | SC_None, | 
|  | SC_None, 0); | 
|  | Alloc->setParams(&Param, 1); | 
|  |  | 
|  | // FIXME: Also add this declaration to the IdentifierResolver, but | 
|  | // make sure it is at the end of the chain to coincide with the | 
|  | // global scope. | 
|  | Context.getTranslationUnitDecl()->addDecl(Alloc); | 
|  | } | 
|  |  | 
|  | bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, | 
|  | DeclarationName Name, | 
|  | FunctionDecl* &Operator) { | 
|  | LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); | 
|  | // Try to find operator delete/operator delete[] in class scope. | 
|  | LookupQualifiedName(Found, RD); | 
|  |  | 
|  | if (Found.isAmbiguous()) | 
|  | return true; | 
|  |  | 
|  | Found.suppressDiagnostics(); | 
|  |  | 
|  | llvm::SmallVector<DeclAccessPair,4> Matches; | 
|  | for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); | 
|  | F != FEnd; ++F) { | 
|  | NamedDecl *ND = (*F)->getUnderlyingDecl(); | 
|  |  | 
|  | // Ignore template operator delete members from the check for a usual | 
|  | // deallocation function. | 
|  | if (isa<FunctionTemplateDecl>(ND)) | 
|  | continue; | 
|  |  | 
|  | if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction()) | 
|  | Matches.push_back(F.getPair()); | 
|  | } | 
|  |  | 
|  | // There's exactly one suitable operator;  pick it. | 
|  | if (Matches.size() == 1) { | 
|  | Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl()); | 
|  | CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), | 
|  | Matches[0]); | 
|  | return false; | 
|  |  | 
|  | // We found multiple suitable operators;  complain about the ambiguity. | 
|  | } else if (!Matches.empty()) { | 
|  | Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) | 
|  | << Name << RD; | 
|  |  | 
|  | for (llvm::SmallVectorImpl<DeclAccessPair>::iterator | 
|  | F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F) | 
|  | Diag((*F)->getUnderlyingDecl()->getLocation(), | 
|  | diag::note_member_declared_here) << Name; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We did find operator delete/operator delete[] declarations, but | 
|  | // none of them were suitable. | 
|  | if (!Found.empty()) { | 
|  | Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) | 
|  | << Name << RD; | 
|  |  | 
|  | for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); | 
|  | F != FEnd; ++F) | 
|  | Diag((*F)->getUnderlyingDecl()->getLocation(), | 
|  | diag::note_member_declared_here) << Name; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Look for a global declaration. | 
|  | DeclareGlobalNewDelete(); | 
|  | DeclContext *TUDecl = Context.getTranslationUnitDecl(); | 
|  |  | 
|  | CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation()); | 
|  | Expr* DeallocArgs[1]; | 
|  | DeallocArgs[0] = &Null; | 
|  | if (FindAllocationOverload(StartLoc, SourceRange(), Name, | 
|  | DeallocArgs, 1, TUDecl, /*AllowMissing=*/false, | 
|  | Operator)) | 
|  | return true; | 
|  |  | 
|  | assert(Operator && "Did not find a deallocation function!"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: | 
|  | /// @code ::delete ptr; @endcode | 
|  | /// or | 
|  | /// @code delete [] ptr; @endcode | 
|  | ExprResult | 
|  | Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, | 
|  | bool ArrayForm, Expr *Ex) { | 
|  | // C++ [expr.delete]p1: | 
|  | //   The operand shall have a pointer type, or a class type having a single | 
|  | //   conversion function to a pointer type. The result has type void. | 
|  | // | 
|  | // DR599 amends "pointer type" to "pointer to object type" in both cases. | 
|  |  | 
|  | FunctionDecl *OperatorDelete = 0; | 
|  | bool ArrayFormAsWritten = ArrayForm; | 
|  | bool UsualArrayDeleteWantsSize = false; | 
|  |  | 
|  | if (!Ex->isTypeDependent()) { | 
|  | QualType Type = Ex->getType(); | 
|  |  | 
|  | if (const RecordType *Record = Type->getAs<RecordType>()) { | 
|  | if (RequireCompleteType(StartLoc, Type, | 
|  | PDiag(diag::err_delete_incomplete_class_type))) | 
|  | return ExprError(); | 
|  |  | 
|  | llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions; | 
|  |  | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); | 
|  | const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions(); | 
|  | for (UnresolvedSetImpl::iterator I = Conversions->begin(), | 
|  | E = Conversions->end(); I != E; ++I) { | 
|  | NamedDecl *D = I.getDecl(); | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | // Skip over templated conversion functions; they aren't considered. | 
|  | if (isa<FunctionTemplateDecl>(D)) | 
|  | continue; | 
|  |  | 
|  | CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); | 
|  |  | 
|  | QualType ConvType = Conv->getConversionType().getNonReferenceType(); | 
|  | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) | 
|  | if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) | 
|  | ObjectPtrConversions.push_back(Conv); | 
|  | } | 
|  | if (ObjectPtrConversions.size() == 1) { | 
|  | // We have a single conversion to a pointer-to-object type. Perform | 
|  | // that conversion. | 
|  | // TODO: don't redo the conversion calculation. | 
|  | if (!PerformImplicitConversion(Ex, | 
|  | ObjectPtrConversions.front()->getConversionType(), | 
|  | AA_Converting)) { | 
|  | Type = Ex->getType(); | 
|  | } | 
|  | } | 
|  | else if (ObjectPtrConversions.size() > 1) { | 
|  | Diag(StartLoc, diag::err_ambiguous_delete_operand) | 
|  | << Type << Ex->getSourceRange(); | 
|  | for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) | 
|  | NoteOverloadCandidate(ObjectPtrConversions[i]); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Type->isPointerType()) | 
|  | return ExprError(Diag(StartLoc, diag::err_delete_operand) | 
|  | << Type << Ex->getSourceRange()); | 
|  |  | 
|  | QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); | 
|  | if (Pointee->isVoidType() && !isSFINAEContext()) { | 
|  | // The C++ standard bans deleting a pointer to a non-object type, which | 
|  | // effectively bans deletion of "void*". However, most compilers support | 
|  | // this, so we treat it as a warning unless we're in a SFINAE context. | 
|  | Diag(StartLoc, diag::ext_delete_void_ptr_operand) | 
|  | << Type << Ex->getSourceRange(); | 
|  | } else if (Pointee->isFunctionType() || Pointee->isVoidType()) | 
|  | return ExprError(Diag(StartLoc, diag::err_delete_operand) | 
|  | << Type << Ex->getSourceRange()); | 
|  | else if (!Pointee->isDependentType() && | 
|  | RequireCompleteType(StartLoc, Pointee, | 
|  | PDiag(diag::warn_delete_incomplete) | 
|  | << Ex->getSourceRange())) | 
|  | return ExprError(); | 
|  |  | 
|  | // C++ [expr.delete]p2: | 
|  | //   [Note: a pointer to a const type can be the operand of a | 
|  | //   delete-expression; it is not necessary to cast away the constness | 
|  | //   (5.2.11) of the pointer expression before it is used as the operand | 
|  | //   of the delete-expression. ] | 
|  | ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy), | 
|  | CK_NoOp); | 
|  |  | 
|  | if (Pointee->isArrayType() && !ArrayForm) { | 
|  | Diag(StartLoc, diag::warn_delete_array_type) | 
|  | << Type << Ex->getSourceRange() | 
|  | << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]"); | 
|  | ArrayForm = true; | 
|  | } | 
|  |  | 
|  | DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( | 
|  | ArrayForm ? OO_Array_Delete : OO_Delete); | 
|  |  | 
|  | QualType PointeeElem = Context.getBaseElementType(Pointee); | 
|  | if (const RecordType *RT = PointeeElem->getAs<RecordType>()) { | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | 
|  |  | 
|  | if (!UseGlobal && | 
|  | FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete)) | 
|  | return ExprError(); | 
|  |  | 
|  | // If we're allocating an array of records, check whether the | 
|  | // usual operator delete[] has a size_t parameter. | 
|  | if (ArrayForm) { | 
|  | // If the user specifically asked to use the global allocator, | 
|  | // we'll need to do the lookup into the class. | 
|  | if (UseGlobal) | 
|  | UsualArrayDeleteWantsSize = | 
|  | doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); | 
|  |  | 
|  | // Otherwise, the usual operator delete[] should be the | 
|  | // function we just found. | 
|  | else if (isa<CXXMethodDecl>(OperatorDelete)) | 
|  | UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2); | 
|  | } | 
|  |  | 
|  | if (!RD->hasTrivialDestructor()) | 
|  | if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) { | 
|  | MarkDeclarationReferenced(StartLoc, | 
|  | const_cast<CXXDestructorDecl*>(Dtor)); | 
|  | DiagnoseUseOfDecl(Dtor, StartLoc); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!OperatorDelete) { | 
|  | // Look for a global declaration. | 
|  | DeclareGlobalNewDelete(); | 
|  | DeclContext *TUDecl = Context.getTranslationUnitDecl(); | 
|  | if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName, | 
|  | &Ex, 1, TUDecl, /*AllowMissing=*/false, | 
|  | OperatorDelete)) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | MarkDeclarationReferenced(StartLoc, OperatorDelete); | 
|  |  | 
|  | // Check access and ambiguity of operator delete and destructor. | 
|  | if (const RecordType *RT = PointeeElem->getAs<RecordType>()) { | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) { | 
|  | CheckDestructorAccess(Ex->getExprLoc(), Dtor, | 
|  | PDiag(diag::err_access_dtor) << PointeeElem); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, | 
|  | ArrayFormAsWritten, | 
|  | UsualArrayDeleteWantsSize, | 
|  | OperatorDelete, Ex, StartLoc)); | 
|  | } | 
|  |  | 
|  | /// \brief Check the use of the given variable as a C++ condition in an if, | 
|  | /// while, do-while, or switch statement. | 
|  | ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, | 
|  | SourceLocation StmtLoc, | 
|  | bool ConvertToBoolean) { | 
|  | QualType T = ConditionVar->getType(); | 
|  |  | 
|  | // C++ [stmt.select]p2: | 
|  | //   The declarator shall not specify a function or an array. | 
|  | if (T->isFunctionType()) | 
|  | return ExprError(Diag(ConditionVar->getLocation(), | 
|  | diag::err_invalid_use_of_function_type) | 
|  | << ConditionVar->getSourceRange()); | 
|  | else if (T->isArrayType()) | 
|  | return ExprError(Diag(ConditionVar->getLocation(), | 
|  | diag::err_invalid_use_of_array_type) | 
|  | << ConditionVar->getSourceRange()); | 
|  |  | 
|  | Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar, | 
|  | ConditionVar->getLocation(), | 
|  | ConditionVar->getType().getNonReferenceType(), | 
|  | VK_LValue); | 
|  | if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | return Owned(Condition); | 
|  | } | 
|  |  | 
|  | /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. | 
|  | bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) { | 
|  | // C++ 6.4p4: | 
|  | // The value of a condition that is an initialized declaration in a statement | 
|  | // other than a switch statement is the value of the declared variable | 
|  | // implicitly converted to type bool. If that conversion is ill-formed, the | 
|  | // program is ill-formed. | 
|  | // The value of a condition that is an expression is the value of the | 
|  | // expression, implicitly converted to bool. | 
|  | // | 
|  | return PerformContextuallyConvertToBool(CondExpr); | 
|  | } | 
|  |  | 
|  | /// Helper function to determine whether this is the (deprecated) C++ | 
|  | /// conversion from a string literal to a pointer to non-const char or | 
|  | /// non-const wchar_t (for narrow and wide string literals, | 
|  | /// respectively). | 
|  | bool | 
|  | Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { | 
|  | // Look inside the implicit cast, if it exists. | 
|  | if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) | 
|  | From = Cast->getSubExpr(); | 
|  |  | 
|  | // A string literal (2.13.4) that is not a wide string literal can | 
|  | // be converted to an rvalue of type "pointer to char"; a wide | 
|  | // string literal can be converted to an rvalue of type "pointer | 
|  | // to wchar_t" (C++ 4.2p2). | 
|  | if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) | 
|  | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) | 
|  | if (const BuiltinType *ToPointeeType | 
|  | = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { | 
|  | // This conversion is considered only when there is an | 
|  | // explicit appropriate pointer target type (C++ 4.2p2). | 
|  | if (!ToPtrType->getPointeeType().hasQualifiers() && | 
|  | ((StrLit->isWide() && ToPointeeType->isWideCharType()) || | 
|  | (!StrLit->isWide() && | 
|  | (ToPointeeType->getKind() == BuiltinType::Char_U || | 
|  | ToPointeeType->getKind() == BuiltinType::Char_S)))) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static ExprResult BuildCXXCastArgument(Sema &S, | 
|  | SourceLocation CastLoc, | 
|  | QualType Ty, | 
|  | CastKind Kind, | 
|  | CXXMethodDecl *Method, | 
|  | NamedDecl *FoundDecl, | 
|  | Expr *From) { | 
|  | switch (Kind) { | 
|  | default: assert(0 && "Unhandled cast kind!"); | 
|  | case CK_ConstructorConversion: { | 
|  | ASTOwningVector<Expr*> ConstructorArgs(S); | 
|  |  | 
|  | if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method), | 
|  | MultiExprArg(&From, 1), | 
|  | CastLoc, ConstructorArgs)) | 
|  | return ExprError(); | 
|  |  | 
|  | ExprResult Result = | 
|  | S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method), | 
|  | move_arg(ConstructorArgs), | 
|  | /*ZeroInit*/ false, CXXConstructExpr::CK_Complete, | 
|  | SourceRange()); | 
|  | if (Result.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | return S.MaybeBindToTemporary(Result.takeAs<Expr>()); | 
|  | } | 
|  |  | 
|  | case CK_UserDefinedConversion: { | 
|  | assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); | 
|  |  | 
|  | // Create an implicit call expr that calls it. | 
|  | ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method); | 
|  | if (Result.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | return S.MaybeBindToTemporary(Result.get()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// PerformImplicitConversion - Perform an implicit conversion of the | 
|  | /// expression From to the type ToType using the pre-computed implicit | 
|  | /// conversion sequence ICS. Returns true if there was an error, false | 
|  | /// otherwise. The expression From is replaced with the converted | 
|  | /// expression. Action is the kind of conversion we're performing, | 
|  | /// used in the error message. | 
|  | bool | 
|  | Sema::PerformImplicitConversion(Expr *&From, QualType ToType, | 
|  | const ImplicitConversionSequence &ICS, | 
|  | AssignmentAction Action, bool CStyle) { | 
|  | switch (ICS.getKind()) { | 
|  | case ImplicitConversionSequence::StandardConversion: | 
|  | if (PerformImplicitConversion(From, ToType, ICS.Standard, Action, | 
|  | CStyle)) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::UserDefinedConversion: { | 
|  |  | 
|  | FunctionDecl *FD = ICS.UserDefined.ConversionFunction; | 
|  | CastKind CastKind; | 
|  | QualType BeforeToType; | 
|  | if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { | 
|  | CastKind = CK_UserDefinedConversion; | 
|  |  | 
|  | // If the user-defined conversion is specified by a conversion function, | 
|  | // the initial standard conversion sequence converts the source type to | 
|  | // the implicit object parameter of the conversion function. | 
|  | BeforeToType = Context.getTagDeclType(Conv->getParent()); | 
|  | } else { | 
|  | const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); | 
|  | CastKind = CK_ConstructorConversion; | 
|  | // Do no conversion if dealing with ... for the first conversion. | 
|  | if (!ICS.UserDefined.EllipsisConversion) { | 
|  | // If the user-defined conversion is specified by a constructor, the | 
|  | // initial standard conversion sequence converts the source type to the | 
|  | // type required by the argument of the constructor | 
|  | BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); | 
|  | } | 
|  | } | 
|  | // Watch out for elipsis conversion. | 
|  | if (!ICS.UserDefined.EllipsisConversion) { | 
|  | if (PerformImplicitConversion(From, BeforeToType, | 
|  | ICS.UserDefined.Before, AA_Converting, | 
|  | CStyle)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ExprResult CastArg | 
|  | = BuildCXXCastArgument(*this, | 
|  | From->getLocStart(), | 
|  | ToType.getNonReferenceType(), | 
|  | CastKind, cast<CXXMethodDecl>(FD), | 
|  | ICS.UserDefined.FoundConversionFunction, | 
|  | From); | 
|  |  | 
|  | if (CastArg.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | From = CastArg.takeAs<Expr>(); | 
|  |  | 
|  | return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, | 
|  | AA_Converting, CStyle); | 
|  | } | 
|  |  | 
|  | case ImplicitConversionSequence::AmbiguousConversion: | 
|  | ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), | 
|  | PDiag(diag::err_typecheck_ambiguous_condition) | 
|  | << From->getSourceRange()); | 
|  | return true; | 
|  |  | 
|  | case ImplicitConversionSequence::EllipsisConversion: | 
|  | assert(false && "Cannot perform an ellipsis conversion"); | 
|  | return false; | 
|  |  | 
|  | case ImplicitConversionSequence::BadConversion: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Everything went well. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// PerformImplicitConversion - Perform an implicit conversion of the | 
|  | /// expression From to the type ToType by following the standard | 
|  | /// conversion sequence SCS. Returns true if there was an error, false | 
|  | /// otherwise. The expression From is replaced with the converted | 
|  | /// expression. Flavor is the context in which we're performing this | 
|  | /// conversion, for use in error messages. | 
|  | bool | 
|  | Sema::PerformImplicitConversion(Expr *&From, QualType ToType, | 
|  | const StandardConversionSequence& SCS, | 
|  | AssignmentAction Action, bool CStyle) { | 
|  | // Overall FIXME: we are recomputing too many types here and doing far too | 
|  | // much extra work. What this means is that we need to keep track of more | 
|  | // information that is computed when we try the implicit conversion initially, | 
|  | // so that we don't need to recompute anything here. | 
|  | QualType FromType = From->getType(); | 
|  |  | 
|  | if (SCS.CopyConstructor) { | 
|  | // FIXME: When can ToType be a reference type? | 
|  | assert(!ToType->isReferenceType()); | 
|  | if (SCS.Second == ICK_Derived_To_Base) { | 
|  | ASTOwningVector<Expr*> ConstructorArgs(*this); | 
|  | if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), | 
|  | MultiExprArg(*this, &From, 1), | 
|  | /*FIXME:ConstructLoc*/SourceLocation(), | 
|  | ConstructorArgs)) | 
|  | return true; | 
|  | ExprResult FromResult = | 
|  | BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), | 
|  | ToType, SCS.CopyConstructor, | 
|  | move_arg(ConstructorArgs), | 
|  | /*ZeroInit*/ false, | 
|  | CXXConstructExpr::CK_Complete, | 
|  | SourceRange()); | 
|  | if (FromResult.isInvalid()) | 
|  | return true; | 
|  | From = FromResult.takeAs<Expr>(); | 
|  | return false; | 
|  | } | 
|  | ExprResult FromResult = | 
|  | BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), | 
|  | ToType, SCS.CopyConstructor, | 
|  | MultiExprArg(*this, &From, 1), | 
|  | /*ZeroInit*/ false, | 
|  | CXXConstructExpr::CK_Complete, | 
|  | SourceRange()); | 
|  |  | 
|  | if (FromResult.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | From = FromResult.takeAs<Expr>(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Resolve overloaded function references. | 
|  | if (Context.hasSameType(FromType, Context.OverloadTy)) { | 
|  | DeclAccessPair Found; | 
|  | FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, | 
|  | true, Found); | 
|  | if (!Fn) | 
|  | return true; | 
|  |  | 
|  | if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin())) | 
|  | return true; | 
|  |  | 
|  | From = FixOverloadedFunctionReference(From, Found, Fn); | 
|  | FromType = From->getType(); | 
|  | } | 
|  |  | 
|  | // Perform the first implicit conversion. | 
|  | switch (SCS.First) { | 
|  | case ICK_Identity: | 
|  | // Nothing to do. | 
|  | break; | 
|  |  | 
|  | case ICK_Lvalue_To_Rvalue: | 
|  | // Should this get its own ICK? | 
|  | if (From->getObjectKind() == OK_ObjCProperty) { | 
|  | ConvertPropertyForRValue(From); | 
|  | if (!From->isGLValue()) break; | 
|  | } | 
|  |  | 
|  | // Check for trivial buffer overflows. | 
|  | if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(From)) | 
|  | CheckArrayAccess(AE); | 
|  |  | 
|  | FromType = FromType.getUnqualifiedType(); | 
|  | From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue, | 
|  | From, 0, VK_RValue); | 
|  | break; | 
|  |  | 
|  | case ICK_Array_To_Pointer: | 
|  | FromType = Context.getArrayDecayedType(FromType); | 
|  | ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay); | 
|  | break; | 
|  |  | 
|  | case ICK_Function_To_Pointer: | 
|  | FromType = Context.getPointerType(FromType); | 
|  | ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | assert(false && "Improper first standard conversion"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Perform the second implicit conversion | 
|  | switch (SCS.Second) { | 
|  | case ICK_Identity: | 
|  | // If both sides are functions (or pointers/references to them), there could | 
|  | // be incompatible exception declarations. | 
|  | if (CheckExceptionSpecCompatibility(From, ToType)) | 
|  | return true; | 
|  | // Nothing else to do. | 
|  | break; | 
|  |  | 
|  | case ICK_NoReturn_Adjustment: | 
|  | // If both sides are functions (or pointers/references to them), there could | 
|  | // be incompatible exception declarations. | 
|  | if (CheckExceptionSpecCompatibility(From, ToType)) | 
|  | return true; | 
|  |  | 
|  | ImpCastExprToType(From, ToType, CK_NoOp); | 
|  | break; | 
|  |  | 
|  | case ICK_Integral_Promotion: | 
|  | case ICK_Integral_Conversion: | 
|  | ImpCastExprToType(From, ToType, CK_IntegralCast); | 
|  | break; | 
|  |  | 
|  | case ICK_Floating_Promotion: | 
|  | case ICK_Floating_Conversion: | 
|  | ImpCastExprToType(From, ToType, CK_FloatingCast); | 
|  | break; | 
|  |  | 
|  | case ICK_Complex_Promotion: | 
|  | case ICK_Complex_Conversion: { | 
|  | QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType(); | 
|  | QualType ToEl = ToType->getAs<ComplexType>()->getElementType(); | 
|  | CastKind CK; | 
|  | if (FromEl->isRealFloatingType()) { | 
|  | if (ToEl->isRealFloatingType()) | 
|  | CK = CK_FloatingComplexCast; | 
|  | else | 
|  | CK = CK_FloatingComplexToIntegralComplex; | 
|  | } else if (ToEl->isRealFloatingType()) { | 
|  | CK = CK_IntegralComplexToFloatingComplex; | 
|  | } else { | 
|  | CK = CK_IntegralComplexCast; | 
|  | } | 
|  | ImpCastExprToType(From, ToType, CK); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ICK_Floating_Integral: | 
|  | if (ToType->isRealFloatingType()) | 
|  | ImpCastExprToType(From, ToType, CK_IntegralToFloating); | 
|  | else | 
|  | ImpCastExprToType(From, ToType, CK_FloatingToIntegral); | 
|  | break; | 
|  |  | 
|  | case ICK_Compatible_Conversion: | 
|  | ImpCastExprToType(From, ToType, CK_NoOp); | 
|  | break; | 
|  |  | 
|  | case ICK_Pointer_Conversion: { | 
|  | if (SCS.IncompatibleObjC && Action != AA_Casting) { | 
|  | // Diagnose incompatible Objective-C conversions | 
|  | Diag(From->getSourceRange().getBegin(), | 
|  | diag::ext_typecheck_convert_incompatible_pointer) | 
|  | << From->getType() << ToType << Action | 
|  | << From->getSourceRange(); | 
|  | } | 
|  |  | 
|  | CastKind Kind = CK_Invalid; | 
|  | CXXCastPath BasePath; | 
|  | if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle)) | 
|  | return true; | 
|  | ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ICK_Pointer_Member: { | 
|  | CastKind Kind = CK_Invalid; | 
|  | CXXCastPath BasePath; | 
|  | if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) | 
|  | return true; | 
|  | if (CheckExceptionSpecCompatibility(From, ToType)) | 
|  | return true; | 
|  | ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath); | 
|  | break; | 
|  | } | 
|  | case ICK_Boolean_Conversion: { | 
|  | CastKind Kind = CK_Invalid; | 
|  | switch (FromType->getScalarTypeKind()) { | 
|  | case Type::STK_Pointer: Kind = CK_PointerToBoolean; break; | 
|  | case Type::STK_MemberPointer: Kind = CK_MemberPointerToBoolean; break; | 
|  | case Type::STK_Bool: llvm_unreachable("bool -> bool conversion?"); | 
|  | case Type::STK_Integral: Kind = CK_IntegralToBoolean; break; | 
|  | case Type::STK_Floating: Kind = CK_FloatingToBoolean; break; | 
|  | case Type::STK_IntegralComplex: Kind = CK_IntegralComplexToBoolean; break; | 
|  | case Type::STK_FloatingComplex: Kind = CK_FloatingComplexToBoolean; break; | 
|  | } | 
|  |  | 
|  | ImpCastExprToType(From, Context.BoolTy, Kind); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ICK_Derived_To_Base: { | 
|  | CXXCastPath BasePath; | 
|  | if (CheckDerivedToBaseConversion(From->getType(), | 
|  | ToType.getNonReferenceType(), | 
|  | From->getLocStart(), | 
|  | From->getSourceRange(), | 
|  | &BasePath, | 
|  | CStyle)) | 
|  | return true; | 
|  |  | 
|  | ImpCastExprToType(From, ToType.getNonReferenceType(), | 
|  | CK_DerivedToBase, CastCategory(From), | 
|  | &BasePath); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ICK_Vector_Conversion: | 
|  | ImpCastExprToType(From, ToType, CK_BitCast); | 
|  | break; | 
|  |  | 
|  | case ICK_Vector_Splat: | 
|  | ImpCastExprToType(From, ToType, CK_VectorSplat); | 
|  | break; | 
|  |  | 
|  | case ICK_Complex_Real: | 
|  | // Case 1.  x -> _Complex y | 
|  | if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { | 
|  | QualType ElType = ToComplex->getElementType(); | 
|  | bool isFloatingComplex = ElType->isRealFloatingType(); | 
|  |  | 
|  | // x -> y | 
|  | if (Context.hasSameUnqualifiedType(ElType, From->getType())) { | 
|  | // do nothing | 
|  | } else if (From->getType()->isRealFloatingType()) { | 
|  | ImpCastExprToType(From, ElType, | 
|  | isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral); | 
|  | } else { | 
|  | assert(From->getType()->isIntegerType()); | 
|  | ImpCastExprToType(From, ElType, | 
|  | isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast); | 
|  | } | 
|  | // y -> _Complex y | 
|  | ImpCastExprToType(From, ToType, | 
|  | isFloatingComplex ? CK_FloatingRealToComplex | 
|  | : CK_IntegralRealToComplex); | 
|  |  | 
|  | // Case 2.  _Complex x -> y | 
|  | } else { | 
|  | const ComplexType *FromComplex = From->getType()->getAs<ComplexType>(); | 
|  | assert(FromComplex); | 
|  |  | 
|  | QualType ElType = FromComplex->getElementType(); | 
|  | bool isFloatingComplex = ElType->isRealFloatingType(); | 
|  |  | 
|  | // _Complex x -> x | 
|  | ImpCastExprToType(From, ElType, | 
|  | isFloatingComplex ? CK_FloatingComplexToReal | 
|  | : CK_IntegralComplexToReal); | 
|  |  | 
|  | // x -> y | 
|  | if (Context.hasSameUnqualifiedType(ElType, ToType)) { | 
|  | // do nothing | 
|  | } else if (ToType->isRealFloatingType()) { | 
|  | ImpCastExprToType(From, ToType, | 
|  | isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating); | 
|  | } else { | 
|  | assert(ToType->isIntegerType()); | 
|  | ImpCastExprToType(From, ToType, | 
|  | isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ICK_Block_Pointer_Conversion: { | 
|  | ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, VK_RValue); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ICK_Lvalue_To_Rvalue: | 
|  | case ICK_Array_To_Pointer: | 
|  | case ICK_Function_To_Pointer: | 
|  | case ICK_Qualification: | 
|  | case ICK_Num_Conversion_Kinds: | 
|  | assert(false && "Improper second standard conversion"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (SCS.Third) { | 
|  | case ICK_Identity: | 
|  | // Nothing to do. | 
|  | break; | 
|  |  | 
|  | case ICK_Qualification: { | 
|  | // The qualification keeps the category of the inner expression, unless the | 
|  | // target type isn't a reference. | 
|  | ExprValueKind VK = ToType->isReferenceType() ? | 
|  | CastCategory(From) : VK_RValue; | 
|  | ImpCastExprToType(From, ToType.getNonLValueExprType(Context), | 
|  | CK_NoOp, VK); | 
|  |  | 
|  | if (SCS.DeprecatedStringLiteralToCharPtr) | 
|  | Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion) | 
|  | << ToType.getNonReferenceType(); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | assert(false && "Improper third standard conversion"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT, | 
|  | SourceLocation KWLoc, | 
|  | ParsedType Ty, | 
|  | SourceLocation RParen) { | 
|  | TypeSourceInfo *TSInfo; | 
|  | QualType T = GetTypeFromParser(Ty, &TSInfo); | 
|  |  | 
|  | if (!TSInfo) | 
|  | TSInfo = Context.getTrivialTypeSourceInfo(T); | 
|  | return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen); | 
|  | } | 
|  |  | 
|  | static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T, | 
|  | SourceLocation KeyLoc) { | 
|  | // FIXME: For many of these traits, we need a complete type before we can | 
|  | // check these properties. | 
|  | assert(!T->isDependentType() && | 
|  | "Cannot evaluate traits for dependent types."); | 
|  | ASTContext &C = Self.Context; | 
|  | switch(UTT) { | 
|  | default: assert(false && "Unknown type trait or not implemented"); | 
|  | case UTT_IsPOD: return T->isPODType(); | 
|  | case UTT_IsLiteral: return T->isLiteralType(); | 
|  | case UTT_IsClass: // Fallthrough | 
|  | case UTT_IsUnion: | 
|  | if (const RecordType *Record = T->getAs<RecordType>()) { | 
|  | bool Union = Record->getDecl()->isUnion(); | 
|  | return UTT == UTT_IsUnion ? Union : !Union; | 
|  | } | 
|  | return false; | 
|  | case UTT_IsEnum: return T->isEnumeralType(); | 
|  | case UTT_IsPolymorphic: | 
|  | if (const RecordType *Record = T->getAs<RecordType>()) { | 
|  | // Type traits are only parsed in C++, so we've got CXXRecords. | 
|  | return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic(); | 
|  | } | 
|  | return false; | 
|  | case UTT_IsAbstract: | 
|  | if (const RecordType *RT = T->getAs<RecordType>()) | 
|  | return cast<CXXRecordDecl>(RT->getDecl())->isAbstract(); | 
|  | return false; | 
|  | case UTT_IsEmpty: | 
|  | if (const RecordType *Record = T->getAs<RecordType>()) { | 
|  | return !Record->getDecl()->isUnion() | 
|  | && cast<CXXRecordDecl>(Record->getDecl())->isEmpty(); | 
|  | } | 
|  | return false; | 
|  | case UTT_HasTrivialConstructor: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If __is_pod (type) is true then the trait is true, else if type is | 
|  | //   a cv class or union type (or array thereof) with a trivial default | 
|  | //   constructor ([class.ctor]) then the trait is true, else it is false. | 
|  | if (T->isPODType()) | 
|  | return true; | 
|  | if (const RecordType *RT = | 
|  | C.getBaseElementType(T)->getAs<RecordType>()) | 
|  | return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor(); | 
|  | return false; | 
|  | case UTT_HasTrivialCopy: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If __is_pod (type) is true or type is a reference type then | 
|  | //   the trait is true, else if type is a cv class or union type | 
|  | //   with a trivial copy constructor ([class.copy]) then the trait | 
|  | //   is true, else it is false. | 
|  | if (T->isPODType() || T->isReferenceType()) | 
|  | return true; | 
|  | if (const RecordType *RT = T->getAs<RecordType>()) | 
|  | return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor(); | 
|  | return false; | 
|  | case UTT_HasTrivialAssign: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If type is const qualified or is a reference type then the | 
|  | //   trait is false. Otherwise if __is_pod (type) is true then the | 
|  | //   trait is true, else if type is a cv class or union type with | 
|  | //   a trivial copy assignment ([class.copy]) then the trait is | 
|  | //   true, else it is false. | 
|  | // Note: the const and reference restrictions are interesting, | 
|  | // given that const and reference members don't prevent a class | 
|  | // from having a trivial copy assignment operator (but do cause | 
|  | // errors if the copy assignment operator is actually used, q.v. | 
|  | // [class.copy]p12). | 
|  |  | 
|  | if (C.getBaseElementType(T).isConstQualified()) | 
|  | return false; | 
|  | if (T->isPODType()) | 
|  | return true; | 
|  | if (const RecordType *RT = T->getAs<RecordType>()) | 
|  | return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment(); | 
|  | return false; | 
|  | case UTT_HasTrivialDestructor: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If __is_pod (type) is true or type is a reference type | 
|  | //   then the trait is true, else if type is a cv class or union | 
|  | //   type (or array thereof) with a trivial destructor | 
|  | //   ([class.dtor]) then the trait is true, else it is | 
|  | //   false. | 
|  | if (T->isPODType() || T->isReferenceType()) | 
|  | return true; | 
|  | if (const RecordType *RT = | 
|  | C.getBaseElementType(T)->getAs<RecordType>()) | 
|  | return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor(); | 
|  | return false; | 
|  | // TODO: Propagate nothrowness for implicitly declared special members. | 
|  | case UTT_HasNothrowAssign: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If type is const qualified or is a reference type then the | 
|  | //   trait is false. Otherwise if __has_trivial_assign (type) | 
|  | //   is true then the trait is true, else if type is a cv class | 
|  | //   or union type with copy assignment operators that are known | 
|  | //   not to throw an exception then the trait is true, else it is | 
|  | //   false. | 
|  | if (C.getBaseElementType(T).isConstQualified()) | 
|  | return false; | 
|  | if (T->isReferenceType()) | 
|  | return false; | 
|  | if (T->isPODType()) | 
|  | return true; | 
|  | if (const RecordType *RT = T->getAs<RecordType>()) { | 
|  | CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (RD->hasTrivialCopyAssignment()) | 
|  | return true; | 
|  |  | 
|  | bool FoundAssign = false; | 
|  | bool AllNoThrow = true; | 
|  | DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal); | 
|  | LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc), | 
|  | Sema::LookupOrdinaryName); | 
|  | if (Self.LookupQualifiedName(Res, RD)) { | 
|  | for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); | 
|  | Op != OpEnd; ++Op) { | 
|  | CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); | 
|  | if (Operator->isCopyAssignmentOperator()) { | 
|  | FoundAssign = true; | 
|  | const FunctionProtoType *CPT | 
|  | = Operator->getType()->getAs<FunctionProtoType>(); | 
|  | if (!CPT->hasEmptyExceptionSpec()) { | 
|  | AllNoThrow = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return FoundAssign && AllNoThrow; | 
|  | } | 
|  | return false; | 
|  | case UTT_HasNothrowCopy: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If __has_trivial_copy (type) is true then the trait is true, else | 
|  | //   if type is a cv class or union type with copy constructors that are | 
|  | //   known not to throw an exception then the trait is true, else it is | 
|  | //   false. | 
|  | if (T->isPODType() || T->isReferenceType()) | 
|  | return true; | 
|  | if (const RecordType *RT = T->getAs<RecordType>()) { | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (RD->hasTrivialCopyConstructor()) | 
|  | return true; | 
|  |  | 
|  | bool FoundConstructor = false; | 
|  | bool AllNoThrow = true; | 
|  | unsigned FoundTQs; | 
|  | DeclContext::lookup_const_iterator Con, ConEnd; | 
|  | for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD); | 
|  | Con != ConEnd; ++Con) { | 
|  | // A template constructor is never a copy constructor. | 
|  | // FIXME: However, it may actually be selected at the actual overload | 
|  | // resolution point. | 
|  | if (isa<FunctionTemplateDecl>(*Con)) | 
|  | continue; | 
|  | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); | 
|  | if (Constructor->isCopyConstructor(FoundTQs)) { | 
|  | FoundConstructor = true; | 
|  | const FunctionProtoType *CPT | 
|  | = Constructor->getType()->getAs<FunctionProtoType>(); | 
|  | // TODO: check whether evaluating default arguments can throw. | 
|  | // For now, we'll be conservative and assume that they can throw. | 
|  | if (!CPT->hasEmptyExceptionSpec() || CPT->getNumArgs() > 1) { | 
|  | AllNoThrow = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return FoundConstructor && AllNoThrow; | 
|  | } | 
|  | return false; | 
|  | case UTT_HasNothrowConstructor: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If __has_trivial_constructor (type) is true then the trait is | 
|  | //   true, else if type is a cv class or union type (or array | 
|  | //   thereof) with a default constructor that is known not to | 
|  | //   throw an exception then the trait is true, else it is false. | 
|  | if (T->isPODType()) | 
|  | return true; | 
|  | if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) { | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (RD->hasTrivialConstructor()) | 
|  | return true; | 
|  |  | 
|  | DeclContext::lookup_const_iterator Con, ConEnd; | 
|  | for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD); | 
|  | Con != ConEnd; ++Con) { | 
|  | // FIXME: In C++0x, a constructor template can be a default constructor. | 
|  | if (isa<FunctionTemplateDecl>(*Con)) | 
|  | continue; | 
|  | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); | 
|  | if (Constructor->isDefaultConstructor()) { | 
|  | const FunctionProtoType *CPT | 
|  | = Constructor->getType()->getAs<FunctionProtoType>(); | 
|  | // TODO: check whether evaluating default arguments can throw. | 
|  | // For now, we'll be conservative and assume that they can throw. | 
|  | return CPT->hasEmptyExceptionSpec() && CPT->getNumArgs() == 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | case UTT_HasVirtualDestructor: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: | 
|  | //   If type is a class type with a virtual destructor ([class.dtor]) | 
|  | //   then the trait is true, else it is false. | 
|  | if (const RecordType *Record = T->getAs<RecordType>()) { | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); | 
|  | if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) | 
|  | return Destructor->isVirtual(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT, | 
|  | SourceLocation KWLoc, | 
|  | TypeSourceInfo *TSInfo, | 
|  | SourceLocation RParen) { | 
|  | QualType T = TSInfo->getType(); | 
|  |  | 
|  | // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html | 
|  | // all traits except __is_class, __is_enum and __is_union require a the type | 
|  | // to be complete, an array of unknown bound, or void. | 
|  | if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) { | 
|  | QualType E = T; | 
|  | if (T->isIncompleteArrayType()) | 
|  | E = Context.getAsArrayType(T)->getElementType(); | 
|  | if (!T->isVoidType() && | 
|  | RequireCompleteType(KWLoc, E, | 
|  | diag::err_incomplete_type_used_in_type_trait_expr)) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | bool Value = false; | 
|  | if (!T->isDependentType()) | 
|  | Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc); | 
|  |  | 
|  | return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value, | 
|  | RParen, Context.BoolTy)); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT, | 
|  | SourceLocation KWLoc, | 
|  | ParsedType LhsTy, | 
|  | ParsedType RhsTy, | 
|  | SourceLocation RParen) { | 
|  | TypeSourceInfo *LhsTSInfo; | 
|  | QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo); | 
|  | if (!LhsTSInfo) | 
|  | LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT); | 
|  |  | 
|  | TypeSourceInfo *RhsTSInfo; | 
|  | QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo); | 
|  | if (!RhsTSInfo) | 
|  | RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT); | 
|  |  | 
|  | return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen); | 
|  | } | 
|  |  | 
|  | static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT, | 
|  | QualType LhsT, QualType RhsT, | 
|  | SourceLocation KeyLoc) { | 
|  | assert((!LhsT->isDependentType() || RhsT->isDependentType()) && | 
|  | "Cannot evaluate traits for dependent types."); | 
|  |  | 
|  | switch(BTT) { | 
|  | case BTT_IsBaseOf: { | 
|  | // C++0x [meta.rel]p2 | 
|  | // Base is a base class of Derived without regard to cv-qualifiers or | 
|  | // Base and Derived are not unions and name the same class type without | 
|  | // regard to cv-qualifiers. | 
|  |  | 
|  | const RecordType *lhsRecord = LhsT->getAs<RecordType>(); | 
|  | if (!lhsRecord) return false; | 
|  |  | 
|  | const RecordType *rhsRecord = RhsT->getAs<RecordType>(); | 
|  | if (!rhsRecord) return false; | 
|  |  | 
|  | assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) | 
|  | == (lhsRecord == rhsRecord)); | 
|  |  | 
|  | if (lhsRecord == rhsRecord) | 
|  | return !lhsRecord->getDecl()->isUnion(); | 
|  |  | 
|  | // C++0x [meta.rel]p2: | 
|  | //   If Base and Derived are class types and are different types | 
|  | //   (ignoring possible cv-qualifiers) then Derived shall be a | 
|  | //   complete type. | 
|  | if (Self.RequireCompleteType(KeyLoc, RhsT, | 
|  | diag::err_incomplete_type_used_in_type_trait_expr)) | 
|  | return false; | 
|  |  | 
|  | return cast<CXXRecordDecl>(rhsRecord->getDecl()) | 
|  | ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); | 
|  | } | 
|  |  | 
|  | case BTT_TypeCompatible: | 
|  | return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(), | 
|  | RhsT.getUnqualifiedType()); | 
|  |  | 
|  | case BTT_IsConvertibleTo: { | 
|  | // C++0x [meta.rel]p4: | 
|  | //   Given the following function prototype: | 
|  | // | 
|  | //     template <class T> | 
|  | //       typename add_rvalue_reference<T>::type create(); | 
|  | // | 
|  | //   the predicate condition for a template specialization | 
|  | //   is_convertible<From, To> shall be satisfied if and only if | 
|  | //   the return expression in the following code would be | 
|  | //   well-formed, including any implicit conversions to the return | 
|  | //   type of the function: | 
|  | // | 
|  | //     To test() { | 
|  | //       return create<From>(); | 
|  | //     } | 
|  | // | 
|  | //   Access checking is performed as if in a context unrelated to To and | 
|  | //   From. Only the validity of the immediate context of the expression | 
|  | //   of the return-statement (including conversions to the return type) | 
|  | //   is considered. | 
|  | // | 
|  | // We model the initialization as a copy-initialization of a temporary | 
|  | // of the appropriate type, which for this expression is identical to the | 
|  | // return statement (since NRVO doesn't apply). | 
|  | if (LhsT->isObjectType() || LhsT->isFunctionType()) | 
|  | LhsT = Self.Context.getRValueReferenceType(LhsT); | 
|  |  | 
|  | InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); | 
|  | OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), | 
|  | Expr::getValueKindForType(LhsT)); | 
|  | Expr *FromPtr = &From; | 
|  | InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, | 
|  | SourceLocation())); | 
|  |  | 
|  | // Perform the initialization within a SFINAE trap at translation unit | 
|  | // scope. | 
|  | Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); | 
|  | Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); | 
|  | InitializationSequence Init(Self, To, Kind, &FromPtr, 1); | 
|  | if (Init.getKind() == InitializationSequence::FailedSequence) | 
|  | return false; | 
|  |  | 
|  | ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1)); | 
|  | return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Unknown type trait or not implemented"); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT, | 
|  | SourceLocation KWLoc, | 
|  | TypeSourceInfo *LhsTSInfo, | 
|  | TypeSourceInfo *RhsTSInfo, | 
|  | SourceLocation RParen) { | 
|  | QualType LhsT = LhsTSInfo->getType(); | 
|  | QualType RhsT = RhsTSInfo->getType(); | 
|  |  | 
|  | if (BTT == BTT_TypeCompatible) { | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus) | 
|  | << SourceRange(KWLoc, RParen); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Value = false; | 
|  | if (!LhsT->isDependentType() && !RhsT->isDependentType()) | 
|  | Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc); | 
|  |  | 
|  | // Select trait result type. | 
|  | QualType ResultType; | 
|  | switch (BTT) { | 
|  | case BTT_IsBaseOf:       ResultType = Context.BoolTy; break; | 
|  | case BTT_TypeCompatible: ResultType = Context.IntTy; break; | 
|  | case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break; | 
|  | } | 
|  |  | 
|  | return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo, | 
|  | RhsTSInfo, Value, RParen, | 
|  | ResultType)); | 
|  | } | 
|  |  | 
|  | QualType Sema::CheckPointerToMemberOperands(Expr *&lex, Expr *&rex, | 
|  | ExprValueKind &VK, | 
|  | SourceLocation Loc, | 
|  | bool isIndirect) { | 
|  | const char *OpSpelling = isIndirect ? "->*" : ".*"; | 
|  | // C++ 5.5p2 | 
|  | //   The binary operator .* [p3: ->*] binds its second operand, which shall | 
|  | //   be of type "pointer to member of T" (where T is a completely-defined | 
|  | //   class type) [...] | 
|  | QualType RType = rex->getType(); | 
|  | const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>(); | 
|  | if (!MemPtr) { | 
|  | Diag(Loc, diag::err_bad_memptr_rhs) | 
|  | << OpSpelling << RType << rex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | QualType Class(MemPtr->getClass(), 0); | 
|  |  | 
|  | // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the | 
|  | // member pointer points must be completely-defined. However, there is no | 
|  | // reason for this semantic distinction, and the rule is not enforced by | 
|  | // other compilers. Therefore, we do not check this property, as it is | 
|  | // likely to be considered a defect. | 
|  |  | 
|  | // C++ 5.5p2 | 
|  | //   [...] to its first operand, which shall be of class T or of a class of | 
|  | //   which T is an unambiguous and accessible base class. [p3: a pointer to | 
|  | //   such a class] | 
|  | QualType LType = lex->getType(); | 
|  | if (isIndirect) { | 
|  | if (const PointerType *Ptr = LType->getAs<PointerType>()) | 
|  | LType = Ptr->getPointeeType(); | 
|  | else { | 
|  | Diag(Loc, diag::err_bad_memptr_lhs) | 
|  | << OpSpelling << 1 << LType | 
|  | << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); | 
|  | return QualType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Context.hasSameUnqualifiedType(Class, LType)) { | 
|  | // If we want to check the hierarchy, we need a complete type. | 
|  | if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs) | 
|  | << OpSpelling << (int)isIndirect)) { | 
|  | return QualType(); | 
|  | } | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/false); | 
|  | // FIXME: Would it be useful to print full ambiguity paths, or is that | 
|  | // overkill? | 
|  | if (!IsDerivedFrom(LType, Class, Paths) || | 
|  | Paths.isAmbiguous(Context.getCanonicalType(Class))) { | 
|  | Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling | 
|  | << (int)isIndirect << lex->getType(); | 
|  | return QualType(); | 
|  | } | 
|  | // Cast LHS to type of use. | 
|  | QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; | 
|  | ExprValueKind VK = | 
|  | isIndirect ? VK_RValue : CastCategory(lex); | 
|  |  | 
|  | CXXCastPath BasePath; | 
|  | BuildBasePathArray(Paths, BasePath); | 
|  | ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath); | 
|  | } | 
|  |  | 
|  | if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) { | 
|  | // Diagnose use of pointer-to-member type which when used as | 
|  | // the functional cast in a pointer-to-member expression. | 
|  | Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // C++ 5.5p2 | 
|  | //   The result is an object or a function of the type specified by the | 
|  | //   second operand. | 
|  | // The cv qualifiers are the union of those in the pointer and the left side, | 
|  | // in accordance with 5.5p5 and 5.2.5. | 
|  | // FIXME: This returns a dereferenced member function pointer as a normal | 
|  | // function type. However, the only operation valid on such functions is | 
|  | // calling them. There's also a GCC extension to get a function pointer to the | 
|  | // thing, which is another complication, because this type - unlike the type | 
|  | // that is the result of this expression - takes the class as the first | 
|  | // argument. | 
|  | // We probably need a "MemberFunctionClosureType" or something like that. | 
|  | QualType Result = MemPtr->getPointeeType(); | 
|  | Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers()); | 
|  |  | 
|  | // C++0x [expr.mptr.oper]p6: | 
|  | //   In a .* expression whose object expression is an rvalue, the program is | 
|  | //   ill-formed if the second operand is a pointer to member function with | 
|  | //   ref-qualifier &. In a ->* expression or in a .* expression whose object | 
|  | //   expression is an lvalue, the program is ill-formed if the second operand | 
|  | //   is a pointer to member function with ref-qualifier &&. | 
|  | if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { | 
|  | switch (Proto->getRefQualifier()) { | 
|  | case RQ_None: | 
|  | // Do nothing | 
|  | break; | 
|  |  | 
|  | case RQ_LValue: | 
|  | if (!isIndirect && !lex->Classify(Context).isLValue()) | 
|  | Diag(Loc, diag::err_pointer_to_member_oper_value_classify) | 
|  | << RType << 1 << lex->getSourceRange(); | 
|  | break; | 
|  |  | 
|  | case RQ_RValue: | 
|  | if (isIndirect || !lex->Classify(Context).isRValue()) | 
|  | Diag(Loc, diag::err_pointer_to_member_oper_value_classify) | 
|  | << RType << 0 << lex->getSourceRange(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [expr.mptr.oper]p6: | 
|  | //   The result of a .* expression whose second operand is a pointer | 
|  | //   to a data member is of the same value category as its | 
|  | //   first operand. The result of a .* expression whose second | 
|  | //   operand is a pointer to a member function is a prvalue. The | 
|  | //   result of an ->* expression is an lvalue if its second operand | 
|  | //   is a pointer to data member and a prvalue otherwise. | 
|  | if (Result->isFunctionType()) | 
|  | VK = VK_RValue; | 
|  | else if (isIndirect) | 
|  | VK = VK_LValue; | 
|  | else | 
|  | VK = lex->getValueKind(); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// \brief Try to convert a type to another according to C++0x 5.16p3. | 
|  | /// | 
|  | /// This is part of the parameter validation for the ? operator. If either | 
|  | /// value operand is a class type, the two operands are attempted to be | 
|  | /// converted to each other. This function does the conversion in one direction. | 
|  | /// It returns true if the program is ill-formed and has already been diagnosed | 
|  | /// as such. | 
|  | static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, | 
|  | SourceLocation QuestionLoc, | 
|  | bool &HaveConversion, | 
|  | QualType &ToType) { | 
|  | HaveConversion = false; | 
|  | ToType = To->getType(); | 
|  |  | 
|  | InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(), | 
|  | SourceLocation()); | 
|  | // C++0x 5.16p3 | 
|  | //   The process for determining whether an operand expression E1 of type T1 | 
|  | //   can be converted to match an operand expression E2 of type T2 is defined | 
|  | //   as follows: | 
|  | //   -- If E2 is an lvalue: | 
|  | bool ToIsLvalue = To->isLValue(); | 
|  | if (ToIsLvalue) { | 
|  | //   E1 can be converted to match E2 if E1 can be implicitly converted to | 
|  | //   type "lvalue reference to T2", subject to the constraint that in the | 
|  | //   conversion the reference must bind directly to E1. | 
|  | QualType T = Self.Context.getLValueReferenceType(ToType); | 
|  | InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); | 
|  |  | 
|  | InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); | 
|  | if (InitSeq.isDirectReferenceBinding()) { | 
|  | ToType = T; | 
|  | HaveConversion = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (InitSeq.isAmbiguous()) | 
|  | return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); | 
|  | } | 
|  |  | 
|  | //   -- If E2 is an rvalue, or if the conversion above cannot be done: | 
|  | //      -- if E1 and E2 have class type, and the underlying class types are | 
|  | //         the same or one is a base class of the other: | 
|  | QualType FTy = From->getType(); | 
|  | QualType TTy = To->getType(); | 
|  | const RecordType *FRec = FTy->getAs<RecordType>(); | 
|  | const RecordType *TRec = TTy->getAs<RecordType>(); | 
|  | bool FDerivedFromT = FRec && TRec && FRec != TRec && | 
|  | Self.IsDerivedFrom(FTy, TTy); | 
|  | if (FRec && TRec && | 
|  | (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { | 
|  | //         E1 can be converted to match E2 if the class of T2 is the | 
|  | //         same type as, or a base class of, the class of T1, and | 
|  | //         [cv2 > cv1]. | 
|  | if (FRec == TRec || FDerivedFromT) { | 
|  | if (TTy.isAtLeastAsQualifiedAs(FTy)) { | 
|  | InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); | 
|  | InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); | 
|  | if (InitSeq.getKind() != InitializationSequence::FailedSequence) { | 
|  | HaveConversion = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (InitSeq.isAmbiguous()) | 
|  | return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //     -- Otherwise: E1 can be converted to match E2 if E1 can be | 
|  | //        implicitly converted to the type that expression E2 would have | 
|  | //        if E2 were converted to an rvalue (or the type it has, if E2 is | 
|  | //        an rvalue). | 
|  | // | 
|  | // This actually refers very narrowly to the lvalue-to-rvalue conversion, not | 
|  | // to the array-to-pointer or function-to-pointer conversions. | 
|  | if (!TTy->getAs<TagType>()) | 
|  | TTy = TTy.getUnqualifiedType(); | 
|  |  | 
|  | InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); | 
|  | InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); | 
|  | HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence; | 
|  | ToType = TTy; | 
|  | if (InitSeq.isAmbiguous()) | 
|  | return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Try to find a common type for two according to C++0x 5.16p5. | 
|  | /// | 
|  | /// This is part of the parameter validation for the ? operator. If either | 
|  | /// value operand is a class type, overload resolution is used to find a | 
|  | /// conversion to a common type. | 
|  | static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS, | 
|  | SourceLocation Loc) { | 
|  | Expr *Args[2] = { LHS, RHS }; | 
|  | OverloadCandidateSet CandidateSet(Loc); | 
|  | Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(Self, Loc, Best)) { | 
|  | case OR_Success: | 
|  | // We found a match. Perform the conversions on the arguments and move on. | 
|  | if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0], | 
|  | Best->Conversions[0], Sema::AA_Converting) || | 
|  | Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1], | 
|  | Best->Conversions[1], Sema::AA_Converting)) | 
|  | break; | 
|  | return false; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) | 
|  | << LHS->getType() << RHS->getType() | 
|  | << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | return true; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | Self.Diag(Loc, diag::err_conditional_ambiguous_ovl) | 
|  | << LHS->getType() << RHS->getType() | 
|  | << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | // FIXME: Print the possible common types by printing the return types of | 
|  | // the viable candidates. | 
|  | break; | 
|  |  | 
|  | case OR_Deleted: | 
|  | assert(false && "Conditional operator has only built-in overloads"); | 
|  | break; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Perform an "extended" implicit conversion as returned by | 
|  | /// TryClassUnification. | 
|  | static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) { | 
|  | InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); | 
|  | InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(), | 
|  | SourceLocation()); | 
|  | InitializationSequence InitSeq(Self, Entity, Kind, &E, 1); | 
|  | ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1)); | 
|  | if (Result.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | E = Result.takeAs<Expr>(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Check the operands of ?: under C++ semantics. | 
|  | /// | 
|  | /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y | 
|  | /// extension. In this case, LHS == Cond. (But they're not aliases.) | 
|  | QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, | 
|  | ExprValueKind &VK, ExprObjectKind &OK, | 
|  | SourceLocation QuestionLoc) { | 
|  | // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ | 
|  | // interface pointers. | 
|  |  | 
|  | // C++0x 5.16p1 | 
|  | //   The first expression is contextually converted to bool. | 
|  | if (!Cond->isTypeDependent()) { | 
|  | if (CheckCXXBooleanCondition(Cond)) | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // Assume r-value. | 
|  | VK = VK_RValue; | 
|  | OK = OK_Ordinary; | 
|  |  | 
|  | // Either of the arguments dependent? | 
|  | if (LHS->isTypeDependent() || RHS->isTypeDependent()) | 
|  | return Context.DependentTy; | 
|  |  | 
|  | // C++0x 5.16p2 | 
|  | //   If either the second or the third operand has type (cv) void, ... | 
|  | QualType LTy = LHS->getType(); | 
|  | QualType RTy = RHS->getType(); | 
|  | bool LVoid = LTy->isVoidType(); | 
|  | bool RVoid = RTy->isVoidType(); | 
|  | if (LVoid || RVoid) { | 
|  | //   ... then the [l2r] conversions are performed on the second and third | 
|  | //   operands ... | 
|  | DefaultFunctionArrayLvalueConversion(LHS); | 
|  | DefaultFunctionArrayLvalueConversion(RHS); | 
|  | LTy = LHS->getType(); | 
|  | RTy = RHS->getType(); | 
|  |  | 
|  | //   ... and one of the following shall hold: | 
|  | //   -- The second or the third operand (but not both) is a throw- | 
|  | //      expression; the result is of the type of the other and is an rvalue. | 
|  | bool LThrow = isa<CXXThrowExpr>(LHS); | 
|  | bool RThrow = isa<CXXThrowExpr>(RHS); | 
|  | if (LThrow && !RThrow) | 
|  | return RTy; | 
|  | if (RThrow && !LThrow) | 
|  | return LTy; | 
|  |  | 
|  | //   -- Both the second and third operands have type void; the result is of | 
|  | //      type void and is an rvalue. | 
|  | if (LVoid && RVoid) | 
|  | return Context.VoidTy; | 
|  |  | 
|  | // Neither holds, error. | 
|  | Diag(QuestionLoc, diag::err_conditional_void_nonvoid) | 
|  | << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) | 
|  | << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // Neither is void. | 
|  |  | 
|  | // C++0x 5.16p3 | 
|  | //   Otherwise, if the second and third operand have different types, and | 
|  | //   either has (cv) class type, and attempt is made to convert each of those | 
|  | //   operands to the other. | 
|  | if (!Context.hasSameType(LTy, RTy) && | 
|  | (LTy->isRecordType() || RTy->isRecordType())) { | 
|  | ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft; | 
|  | // These return true if a single direction is already ambiguous. | 
|  | QualType L2RType, R2LType; | 
|  | bool HaveL2R, HaveR2L; | 
|  | if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType)) | 
|  | return QualType(); | 
|  | if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType)) | 
|  | return QualType(); | 
|  |  | 
|  | //   If both can be converted, [...] the program is ill-formed. | 
|  | if (HaveL2R && HaveR2L) { | 
|  | Diag(QuestionLoc, diag::err_conditional_ambiguous) | 
|  | << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | //   If exactly one conversion is possible, that conversion is applied to | 
|  | //   the chosen operand and the converted operands are used in place of the | 
|  | //   original operands for the remainder of this section. | 
|  | if (HaveL2R) { | 
|  | if (ConvertForConditional(*this, LHS, L2RType)) | 
|  | return QualType(); | 
|  | LTy = LHS->getType(); | 
|  | } else if (HaveR2L) { | 
|  | if (ConvertForConditional(*this, RHS, R2LType)) | 
|  | return QualType(); | 
|  | RTy = RHS->getType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++0x 5.16p4 | 
|  | //   If the second and third operands are glvalues of the same value | 
|  | //   category and have the same type, the result is of that type and | 
|  | //   value category and it is a bit-field if the second or the third | 
|  | //   operand is a bit-field, or if both are bit-fields. | 
|  | // We only extend this to bitfields, not to the crazy other kinds of | 
|  | // l-values. | 
|  | bool Same = Context.hasSameType(LTy, RTy); | 
|  | if (Same && | 
|  | LHS->isGLValue() && | 
|  | LHS->getValueKind() == RHS->getValueKind() && | 
|  | LHS->isOrdinaryOrBitFieldObject() && | 
|  | RHS->isOrdinaryOrBitFieldObject()) { | 
|  | VK = LHS->getValueKind(); | 
|  | if (LHS->getObjectKind() == OK_BitField || | 
|  | RHS->getObjectKind() == OK_BitField) | 
|  | OK = OK_BitField; | 
|  | return LTy; | 
|  | } | 
|  |  | 
|  | // C++0x 5.16p5 | 
|  | //   Otherwise, the result is an rvalue. If the second and third operands | 
|  | //   do not have the same type, and either has (cv) class type, ... | 
|  | if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { | 
|  | //   ... overload resolution is used to determine the conversions (if any) | 
|  | //   to be applied to the operands. If the overload resolution fails, the | 
|  | //   program is ill-formed. | 
|  | if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // C++0x 5.16p6 | 
|  | //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard | 
|  | //   conversions are performed on the second and third operands. | 
|  | DefaultFunctionArrayLvalueConversion(LHS); | 
|  | DefaultFunctionArrayLvalueConversion(RHS); | 
|  | LTy = LHS->getType(); | 
|  | RTy = RHS->getType(); | 
|  |  | 
|  | //   After those conversions, one of the following shall hold: | 
|  | //   -- The second and third operands have the same type; the result | 
|  | //      is of that type. If the operands have class type, the result | 
|  | //      is a prvalue temporary of the result type, which is | 
|  | //      copy-initialized from either the second operand or the third | 
|  | //      operand depending on the value of the first operand. | 
|  | if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { | 
|  | if (LTy->isRecordType()) { | 
|  | // The operands have class type. Make a temporary copy. | 
|  | InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); | 
|  | ExprResult LHSCopy = PerformCopyInitialization(Entity, | 
|  | SourceLocation(), | 
|  | Owned(LHS)); | 
|  | if (LHSCopy.isInvalid()) | 
|  | return QualType(); | 
|  |  | 
|  | ExprResult RHSCopy = PerformCopyInitialization(Entity, | 
|  | SourceLocation(), | 
|  | Owned(RHS)); | 
|  | if (RHSCopy.isInvalid()) | 
|  | return QualType(); | 
|  |  | 
|  | LHS = LHSCopy.takeAs<Expr>(); | 
|  | RHS = RHSCopy.takeAs<Expr>(); | 
|  | } | 
|  |  | 
|  | return LTy; | 
|  | } | 
|  |  | 
|  | // Extension: conditional operator involving vector types. | 
|  | if (LTy->isVectorType() || RTy->isVectorType()) | 
|  | return CheckVectorOperands(QuestionLoc, LHS, RHS); | 
|  |  | 
|  | //   -- The second and third operands have arithmetic or enumeration type; | 
|  | //      the usual arithmetic conversions are performed to bring them to a | 
|  | //      common type, and the result is of that type. | 
|  | if (LTy->isArithmeticType() && RTy->isArithmeticType()) { | 
|  | UsualArithmeticConversions(LHS, RHS); | 
|  | return LHS->getType(); | 
|  | } | 
|  |  | 
|  | //   -- The second and third operands have pointer type, or one has pointer | 
|  | //      type and the other is a null pointer constant; pointer conversions | 
|  | //      and qualification conversions are performed to bring them to their | 
|  | //      composite pointer type. The result is of the composite pointer type. | 
|  | //   -- The second and third operands have pointer to member type, or one has | 
|  | //      pointer to member type and the other is a null pointer constant; | 
|  | //      pointer to member conversions and qualification conversions are | 
|  | //      performed to bring them to a common type, whose cv-qualification | 
|  | //      shall match the cv-qualification of either the second or the third | 
|  | //      operand. The result is of the common type. | 
|  | bool NonStandardCompositeType = false; | 
|  | QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS, | 
|  | isSFINAEContext()? 0 : &NonStandardCompositeType); | 
|  | if (!Composite.isNull()) { | 
|  | if (NonStandardCompositeType) | 
|  | Diag(QuestionLoc, | 
|  | diag::ext_typecheck_cond_incompatible_operands_nonstandard) | 
|  | << LTy << RTy << Composite | 
|  | << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  |  | 
|  | return Composite; | 
|  | } | 
|  |  | 
|  | // Similarly, attempt to find composite type of two objective-c pointers. | 
|  | Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); | 
|  | if (!Composite.isNull()) | 
|  | return Composite; | 
|  |  | 
|  | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) | 
|  | << LHS->getType() << RHS->getType() | 
|  | << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | /// \brief Find a merged pointer type and convert the two expressions to it. | 
|  | /// | 
|  | /// This finds the composite pointer type (or member pointer type) for @p E1 | 
|  | /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this | 
|  | /// type and returns it. | 
|  | /// It does not emit diagnostics. | 
|  | /// | 
|  | /// \param Loc The location of the operator requiring these two expressions to | 
|  | /// be converted to the composite pointer type. | 
|  | /// | 
|  | /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find | 
|  | /// a non-standard (but still sane) composite type to which both expressions | 
|  | /// can be converted. When such a type is chosen, \c *NonStandardCompositeType | 
|  | /// will be set true. | 
|  | QualType Sema::FindCompositePointerType(SourceLocation Loc, | 
|  | Expr *&E1, Expr *&E2, | 
|  | bool *NonStandardCompositeType) { | 
|  | if (NonStandardCompositeType) | 
|  | *NonStandardCompositeType = false; | 
|  |  | 
|  | assert(getLangOptions().CPlusPlus && "This function assumes C++"); | 
|  | QualType T1 = E1->getType(), T2 = E2->getType(); | 
|  |  | 
|  | if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && | 
|  | !T2->isAnyPointerType() && !T2->isMemberPointerType()) | 
|  | return QualType(); | 
|  |  | 
|  | // C++0x 5.9p2 | 
|  | //   Pointer conversions and qualification conversions are performed on | 
|  | //   pointer operands to bring them to their composite pointer type. If | 
|  | //   one operand is a null pointer constant, the composite pointer type is | 
|  | //   the type of the other operand. | 
|  | if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { | 
|  | if (T2->isMemberPointerType()) | 
|  | ImpCastExprToType(E1, T2, CK_NullToMemberPointer); | 
|  | else | 
|  | ImpCastExprToType(E1, T2, CK_NullToPointer); | 
|  | return T2; | 
|  | } | 
|  | if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { | 
|  | if (T1->isMemberPointerType()) | 
|  | ImpCastExprToType(E2, T1, CK_NullToMemberPointer); | 
|  | else | 
|  | ImpCastExprToType(E2, T1, CK_NullToPointer); | 
|  | return T1; | 
|  | } | 
|  |  | 
|  | // Now both have to be pointers or member pointers. | 
|  | if ((!T1->isPointerType() && !T1->isMemberPointerType()) || | 
|  | (!T2->isPointerType() && !T2->isMemberPointerType())) | 
|  | return QualType(); | 
|  |  | 
|  | //   Otherwise, of one of the operands has type "pointer to cv1 void," then | 
|  | //   the other has type "pointer to cv2 T" and the composite pointer type is | 
|  | //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2. | 
|  | //   Otherwise, the composite pointer type is a pointer type similar to the | 
|  | //   type of one of the operands, with a cv-qualification signature that is | 
|  | //   the union of the cv-qualification signatures of the operand types. | 
|  | // In practice, the first part here is redundant; it's subsumed by the second. | 
|  | // What we do here is, we build the two possible composite types, and try the | 
|  | // conversions in both directions. If only one works, or if the two composite | 
|  | // types are the same, we have succeeded. | 
|  | // FIXME: extended qualifiers? | 
|  | typedef llvm::SmallVector<unsigned, 4> QualifierVector; | 
|  | QualifierVector QualifierUnion; | 
|  | typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4> | 
|  | ContainingClassVector; | 
|  | ContainingClassVector MemberOfClass; | 
|  | QualType Composite1 = Context.getCanonicalType(T1), | 
|  | Composite2 = Context.getCanonicalType(T2); | 
|  | unsigned NeedConstBefore = 0; | 
|  | do { | 
|  | const PointerType *Ptr1, *Ptr2; | 
|  | if ((Ptr1 = Composite1->getAs<PointerType>()) && | 
|  | (Ptr2 = Composite2->getAs<PointerType>())) { | 
|  | Composite1 = Ptr1->getPointeeType(); | 
|  | Composite2 = Ptr2->getPointeeType(); | 
|  |  | 
|  | // If we're allowed to create a non-standard composite type, keep track | 
|  | // of where we need to fill in additional 'const' qualifiers. | 
|  | if (NonStandardCompositeType && | 
|  | Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) | 
|  | NeedConstBefore = QualifierUnion.size(); | 
|  |  | 
|  | QualifierUnion.push_back( | 
|  | Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); | 
|  | MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const MemberPointerType *MemPtr1, *MemPtr2; | 
|  | if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && | 
|  | (MemPtr2 = Composite2->getAs<MemberPointerType>())) { | 
|  | Composite1 = MemPtr1->getPointeeType(); | 
|  | Composite2 = MemPtr2->getPointeeType(); | 
|  |  | 
|  | // If we're allowed to create a non-standard composite type, keep track | 
|  | // of where we need to fill in additional 'const' qualifiers. | 
|  | if (NonStandardCompositeType && | 
|  | Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) | 
|  | NeedConstBefore = QualifierUnion.size(); | 
|  |  | 
|  | QualifierUnion.push_back( | 
|  | Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); | 
|  | MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), | 
|  | MemPtr2->getClass())); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // FIXME: block pointer types? | 
|  |  | 
|  | // Cannot unwrap any more types. | 
|  | break; | 
|  | } while (true); | 
|  |  | 
|  | if (NeedConstBefore && NonStandardCompositeType) { | 
|  | // Extension: Add 'const' to qualifiers that come before the first qualifier | 
|  | // mismatch, so that our (non-standard!) composite type meets the | 
|  | // requirements of C++ [conv.qual]p4 bullet 3. | 
|  | for (unsigned I = 0; I != NeedConstBefore; ++I) { | 
|  | if ((QualifierUnion[I] & Qualifiers::Const) == 0) { | 
|  | QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; | 
|  | *NonStandardCompositeType = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rewrap the composites as pointers or member pointers with the union CVRs. | 
|  | ContainingClassVector::reverse_iterator MOC | 
|  | = MemberOfClass.rbegin(); | 
|  | for (QualifierVector::reverse_iterator | 
|  | I = QualifierUnion.rbegin(), | 
|  | E = QualifierUnion.rend(); | 
|  | I != E; (void)++I, ++MOC) { | 
|  | Qualifiers Quals = Qualifiers::fromCVRMask(*I); | 
|  | if (MOC->first && MOC->second) { | 
|  | // Rebuild member pointer type | 
|  | Composite1 = Context.getMemberPointerType( | 
|  | Context.getQualifiedType(Composite1, Quals), | 
|  | MOC->first); | 
|  | Composite2 = Context.getMemberPointerType( | 
|  | Context.getQualifiedType(Composite2, Quals), | 
|  | MOC->second); | 
|  | } else { | 
|  | // Rebuild pointer type | 
|  | Composite1 | 
|  | = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); | 
|  | Composite2 | 
|  | = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to convert to the first composite pointer type. | 
|  | InitializedEntity Entity1 | 
|  | = InitializedEntity::InitializeTemporary(Composite1); | 
|  | InitializationKind Kind | 
|  | = InitializationKind::CreateCopy(Loc, SourceLocation()); | 
|  | InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1); | 
|  | InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1); | 
|  |  | 
|  | if (E1ToC1 && E2ToC1) { | 
|  | // Conversion to Composite1 is viable. | 
|  | if (!Context.hasSameType(Composite1, Composite2)) { | 
|  | // Composite2 is a different type from Composite1. Check whether | 
|  | // Composite2 is also viable. | 
|  | InitializedEntity Entity2 | 
|  | = InitializedEntity::InitializeTemporary(Composite2); | 
|  | InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); | 
|  | InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); | 
|  | if (E1ToC2 && E2ToC2) { | 
|  | // Both Composite1 and Composite2 are viable and are different; | 
|  | // this is an ambiguity. | 
|  | return QualType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Convert E1 to Composite1 | 
|  | ExprResult E1Result | 
|  | = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1)); | 
|  | if (E1Result.isInvalid()) | 
|  | return QualType(); | 
|  | E1 = E1Result.takeAs<Expr>(); | 
|  |  | 
|  | // Convert E2 to Composite1 | 
|  | ExprResult E2Result | 
|  | = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1)); | 
|  | if (E2Result.isInvalid()) | 
|  | return QualType(); | 
|  | E2 = E2Result.takeAs<Expr>(); | 
|  |  | 
|  | return Composite1; | 
|  | } | 
|  |  | 
|  | // Check whether Composite2 is viable. | 
|  | InitializedEntity Entity2 | 
|  | = InitializedEntity::InitializeTemporary(Composite2); | 
|  | InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); | 
|  | InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); | 
|  | if (!E1ToC2 || !E2ToC2) | 
|  | return QualType(); | 
|  |  | 
|  | // Convert E1 to Composite2 | 
|  | ExprResult E1Result | 
|  | = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1)); | 
|  | if (E1Result.isInvalid()) | 
|  | return QualType(); | 
|  | E1 = E1Result.takeAs<Expr>(); | 
|  |  | 
|  | // Convert E2 to Composite2 | 
|  | ExprResult E2Result | 
|  | = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1)); | 
|  | if (E2Result.isInvalid()) | 
|  | return QualType(); | 
|  | E2 = E2Result.takeAs<Expr>(); | 
|  |  | 
|  | return Composite2; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::MaybeBindToTemporary(Expr *E) { | 
|  | if (!E) | 
|  | return ExprError(); | 
|  |  | 
|  | if (!Context.getLangOptions().CPlusPlus) | 
|  | return Owned(E); | 
|  |  | 
|  | assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); | 
|  |  | 
|  | const RecordType *RT = E->getType()->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return Owned(E); | 
|  |  | 
|  | // If the result is a glvalue, we shouldn't bind it. | 
|  | if (E->Classify(Context).isGLValue()) | 
|  | return Owned(E); | 
|  |  | 
|  | // That should be enough to guarantee that this type is complete. | 
|  | // If it has a trivial destructor, we can avoid the extra copy. | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (RD->isInvalidDecl() || RD->hasTrivialDestructor()) | 
|  | return Owned(E); | 
|  |  | 
|  | CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD)); | 
|  | ExprTemporaries.push_back(Temp); | 
|  | if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { | 
|  | MarkDeclarationReferenced(E->getExprLoc(), Destructor); | 
|  | CheckDestructorAccess(E->getExprLoc(), Destructor, | 
|  | PDiag(diag::err_access_dtor_temp) | 
|  | << E->getType()); | 
|  | } | 
|  | // FIXME: Add the temporary to the temporaries vector. | 
|  | return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E)); | 
|  | } | 
|  |  | 
|  | Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { | 
|  | assert(SubExpr && "sub expression can't be null!"); | 
|  |  | 
|  | unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries; | 
|  | assert(ExprTemporaries.size() >= FirstTemporary); | 
|  | if (ExprTemporaries.size() == FirstTemporary) | 
|  | return SubExpr; | 
|  |  | 
|  | Expr *E = ExprWithCleanups::Create(Context, SubExpr, | 
|  | &ExprTemporaries[FirstTemporary], | 
|  | ExprTemporaries.size() - FirstTemporary); | 
|  | ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary, | 
|  | ExprTemporaries.end()); | 
|  |  | 
|  | return E; | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { | 
|  | if (SubExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | return Owned(MaybeCreateExprWithCleanups(SubExpr.take())); | 
|  | } | 
|  |  | 
|  | Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { | 
|  | assert(SubStmt && "sub statement can't be null!"); | 
|  |  | 
|  | unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries; | 
|  | assert(ExprTemporaries.size() >= FirstTemporary); | 
|  | if (ExprTemporaries.size() == FirstTemporary) | 
|  | return SubStmt; | 
|  |  | 
|  | // FIXME: In order to attach the temporaries, wrap the statement into | 
|  | // a StmtExpr; currently this is only used for asm statements. | 
|  | // This is hacky, either create a new CXXStmtWithTemporaries statement or | 
|  | // a new AsmStmtWithTemporaries. | 
|  | CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1, | 
|  | SourceLocation(), | 
|  | SourceLocation()); | 
|  | Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), | 
|  | SourceLocation()); | 
|  | return MaybeCreateExprWithCleanups(E); | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc, | 
|  | tok::TokenKind OpKind, ParsedType &ObjectType, | 
|  | bool &MayBePseudoDestructor) { | 
|  | // Since this might be a postfix expression, get rid of ParenListExprs. | 
|  | ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); | 
|  | if (Result.isInvalid()) return ExprError(); | 
|  | Base = Result.get(); | 
|  |  | 
|  | QualType BaseType = Base->getType(); | 
|  | MayBePseudoDestructor = false; | 
|  | if (BaseType->isDependentType()) { | 
|  | // If we have a pointer to a dependent type and are using the -> operator, | 
|  | // the object type is the type that the pointer points to. We might still | 
|  | // have enough information about that type to do something useful. | 
|  | if (OpKind == tok::arrow) | 
|  | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) | 
|  | BaseType = Ptr->getPointeeType(); | 
|  |  | 
|  | ObjectType = ParsedType::make(BaseType); | 
|  | MayBePseudoDestructor = true; | 
|  | return Owned(Base); | 
|  | } | 
|  |  | 
|  | // C++ [over.match.oper]p8: | 
|  | //   [...] When operator->returns, the operator-> is applied  to the value | 
|  | //   returned, with the original second operand. | 
|  | if (OpKind == tok::arrow) { | 
|  | // The set of types we've considered so far. | 
|  | llvm::SmallPtrSet<CanQualType,8> CTypes; | 
|  | llvm::SmallVector<SourceLocation, 8> Locations; | 
|  | CTypes.insert(Context.getCanonicalType(BaseType)); | 
|  |  | 
|  | while (BaseType->isRecordType()) { | 
|  | Result = BuildOverloadedArrowExpr(S, Base, OpLoc); | 
|  | if (Result.isInvalid()) | 
|  | return ExprError(); | 
|  | Base = Result.get(); | 
|  | if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) | 
|  | Locations.push_back(OpCall->getDirectCallee()->getLocation()); | 
|  | BaseType = Base->getType(); | 
|  | CanQualType CBaseType = Context.getCanonicalType(BaseType); | 
|  | if (!CTypes.insert(CBaseType)) { | 
|  | Diag(OpLoc, diag::err_operator_arrow_circular); | 
|  | for (unsigned i = 0; i < Locations.size(); i++) | 
|  | Diag(Locations[i], diag::note_declared_at); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BaseType->isPointerType()) | 
|  | BaseType = BaseType->getPointeeType(); | 
|  | } | 
|  |  | 
|  | // We could end up with various non-record types here, such as extended | 
|  | // vector types or Objective-C interfaces. Just return early and let | 
|  | // ActOnMemberReferenceExpr do the work. | 
|  | if (!BaseType->isRecordType()) { | 
|  | // C++ [basic.lookup.classref]p2: | 
|  | //   [...] If the type of the object expression is of pointer to scalar | 
|  | //   type, the unqualified-id is looked up in the context of the complete | 
|  | //   postfix-expression. | 
|  | // | 
|  | // This also indicates that we should be parsing a | 
|  | // pseudo-destructor-name. | 
|  | ObjectType = ParsedType(); | 
|  | MayBePseudoDestructor = true; | 
|  | return Owned(Base); | 
|  | } | 
|  |  | 
|  | // The object type must be complete (or dependent). | 
|  | if (!BaseType->isDependentType() && | 
|  | RequireCompleteType(OpLoc, BaseType, | 
|  | PDiag(diag::err_incomplete_member_access))) | 
|  | return ExprError(); | 
|  |  | 
|  | // C++ [basic.lookup.classref]p2: | 
|  | //   If the id-expression in a class member access (5.2.5) is an | 
|  | //   unqualified-id, and the type of the object expression is of a class | 
|  | //   type C (or of pointer to a class type C), the unqualified-id is looked | 
|  | //   up in the scope of class C. [...] | 
|  | ObjectType = ParsedType::make(BaseType); | 
|  | return move(Base); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc, | 
|  | Expr *MemExpr) { | 
|  | SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc); | 
|  | Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call) | 
|  | << isa<CXXPseudoDestructorExpr>(MemExpr) | 
|  | << FixItHint::CreateInsertion(ExpectedLParenLoc, "()"); | 
|  |  | 
|  | return ActOnCallExpr(/*Scope*/ 0, | 
|  | MemExpr, | 
|  | /*LPLoc*/ ExpectedLParenLoc, | 
|  | MultiExprArg(), | 
|  | /*RPLoc*/ ExpectedLParenLoc); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, | 
|  | SourceLocation OpLoc, | 
|  | tok::TokenKind OpKind, | 
|  | const CXXScopeSpec &SS, | 
|  | TypeSourceInfo *ScopeTypeInfo, | 
|  | SourceLocation CCLoc, | 
|  | SourceLocation TildeLoc, | 
|  | PseudoDestructorTypeStorage Destructed, | 
|  | bool HasTrailingLParen) { | 
|  | TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); | 
|  |  | 
|  | // C++ [expr.pseudo]p2: | 
|  | //   The left-hand side of the dot operator shall be of scalar type. The | 
|  | //   left-hand side of the arrow operator shall be of pointer to scalar type. | 
|  | //   This scalar type is the object type. | 
|  | QualType ObjectType = Base->getType(); | 
|  | if (OpKind == tok::arrow) { | 
|  | if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { | 
|  | ObjectType = Ptr->getPointeeType(); | 
|  | } else if (!Base->isTypeDependent()) { | 
|  | // The user wrote "p->" when she probably meant "p."; fix it. | 
|  | Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) | 
|  | << ObjectType << true | 
|  | << FixItHint::CreateReplacement(OpLoc, "."); | 
|  | if (isSFINAEContext()) | 
|  | return ExprError(); | 
|  |  | 
|  | OpKind = tok::period; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) { | 
|  | Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) | 
|  | << ObjectType << Base->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // C++ [expr.pseudo]p2: | 
|  | //   [...] The cv-unqualified versions of the object type and of the type | 
|  | //   designated by the pseudo-destructor-name shall be the same type. | 
|  | if (DestructedTypeInfo) { | 
|  | QualType DestructedType = DestructedTypeInfo->getType(); | 
|  | SourceLocation DestructedTypeStart | 
|  | = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); | 
|  | if (!DestructedType->isDependentType() && !ObjectType->isDependentType() && | 
|  | !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { | 
|  | Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) | 
|  | << ObjectType << DestructedType << Base->getSourceRange() | 
|  | << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); | 
|  |  | 
|  | // Recover by setting the destructed type to the object type. | 
|  | DestructedType = ObjectType; | 
|  | DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, | 
|  | DestructedTypeStart); | 
|  | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [expr.pseudo]p2: | 
|  | //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the | 
|  | //   form | 
|  | // | 
|  | //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name | 
|  | // | 
|  | //   shall designate the same scalar type. | 
|  | if (ScopeTypeInfo) { | 
|  | QualType ScopeType = ScopeTypeInfo->getType(); | 
|  | if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && | 
|  | !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { | 
|  |  | 
|  | Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), | 
|  | diag::err_pseudo_dtor_type_mismatch) | 
|  | << ObjectType << ScopeType << Base->getSourceRange() | 
|  | << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); | 
|  |  | 
|  | ScopeType = QualType(); | 
|  | ScopeTypeInfo = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | Expr *Result | 
|  | = new (Context) CXXPseudoDestructorExpr(Context, Base, | 
|  | OpKind == tok::arrow, OpLoc, | 
|  | SS.getScopeRep(), SS.getRange(), | 
|  | ScopeTypeInfo, | 
|  | CCLoc, | 
|  | TildeLoc, | 
|  | Destructed); | 
|  |  | 
|  | if (HasTrailingLParen) | 
|  | return Owned(Result); | 
|  |  | 
|  | return DiagnoseDtorReference(Destructed.getLocation(), Result); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, | 
|  | SourceLocation OpLoc, | 
|  | tok::TokenKind OpKind, | 
|  | CXXScopeSpec &SS, | 
|  | UnqualifiedId &FirstTypeName, | 
|  | SourceLocation CCLoc, | 
|  | SourceLocation TildeLoc, | 
|  | UnqualifiedId &SecondTypeName, | 
|  | bool HasTrailingLParen) { | 
|  | assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || | 
|  | FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && | 
|  | "Invalid first type name in pseudo-destructor"); | 
|  | assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || | 
|  | SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && | 
|  | "Invalid second type name in pseudo-destructor"); | 
|  |  | 
|  | // C++ [expr.pseudo]p2: | 
|  | //   The left-hand side of the dot operator shall be of scalar type. The | 
|  | //   left-hand side of the arrow operator shall be of pointer to scalar type. | 
|  | //   This scalar type is the object type. | 
|  | QualType ObjectType = Base->getType(); | 
|  | if (OpKind == tok::arrow) { | 
|  | if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { | 
|  | ObjectType = Ptr->getPointeeType(); | 
|  | } else if (!ObjectType->isDependentType()) { | 
|  | // The user wrote "p->" when she probably meant "p."; fix it. | 
|  | Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) | 
|  | << ObjectType << true | 
|  | << FixItHint::CreateReplacement(OpLoc, "."); | 
|  | if (isSFINAEContext()) | 
|  | return ExprError(); | 
|  |  | 
|  | OpKind = tok::period; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the object type that we should use for name lookup purposes. Only | 
|  | // record types and dependent types matter. | 
|  | ParsedType ObjectTypePtrForLookup; | 
|  | if (!SS.isSet()) { | 
|  | if (const Type *T = ObjectType->getAs<RecordType>()) | 
|  | ObjectTypePtrForLookup = ParsedType::make(QualType(T, 0)); | 
|  | else if (ObjectType->isDependentType()) | 
|  | ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); | 
|  | } | 
|  |  | 
|  | // Convert the name of the type being destructed (following the ~) into a | 
|  | // type (with source-location information). | 
|  | QualType DestructedType; | 
|  | TypeSourceInfo *DestructedTypeInfo = 0; | 
|  | PseudoDestructorTypeStorage Destructed; | 
|  | if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) { | 
|  | ParsedType T = getTypeName(*SecondTypeName.Identifier, | 
|  | SecondTypeName.StartLocation, | 
|  | S, &SS, true, false, ObjectTypePtrForLookup); | 
|  | if (!T && | 
|  | ((SS.isSet() && !computeDeclContext(SS, false)) || | 
|  | (!SS.isSet() && ObjectType->isDependentType()))) { | 
|  | // The name of the type being destroyed is a dependent name, and we | 
|  | // couldn't find anything useful in scope. Just store the identifier and | 
|  | // it's location, and we'll perform (qualified) name lookup again at | 
|  | // template instantiation time. | 
|  | Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, | 
|  | SecondTypeName.StartLocation); | 
|  | } else if (!T) { | 
|  | Diag(SecondTypeName.StartLocation, | 
|  | diag::err_pseudo_dtor_destructor_non_type) | 
|  | << SecondTypeName.Identifier << ObjectType; | 
|  | if (isSFINAEContext()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Recover by assuming we had the right type all along. | 
|  | DestructedType = ObjectType; | 
|  | } else | 
|  | DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); | 
|  | } else { | 
|  | // Resolve the template-id to a type. | 
|  | TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; | 
|  | ASTTemplateArgsPtr TemplateArgsPtr(*this, | 
|  | TemplateId->getTemplateArgs(), | 
|  | TemplateId->NumArgs); | 
|  | TypeResult T = ActOnTemplateIdType(TemplateId->Template, | 
|  | TemplateId->TemplateNameLoc, | 
|  | TemplateId->LAngleLoc, | 
|  | TemplateArgsPtr, | 
|  | TemplateId->RAngleLoc); | 
|  | if (T.isInvalid() || !T.get()) { | 
|  | // Recover by assuming we had the right type all along. | 
|  | DestructedType = ObjectType; | 
|  | } else | 
|  | DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); | 
|  | } | 
|  |  | 
|  | // If we've performed some kind of recovery, (re-)build the type source | 
|  | // information. | 
|  | if (!DestructedType.isNull()) { | 
|  | if (!DestructedTypeInfo) | 
|  | DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, | 
|  | SecondTypeName.StartLocation); | 
|  | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); | 
|  | } | 
|  |  | 
|  | // Convert the name of the scope type (the type prior to '::') into a type. | 
|  | TypeSourceInfo *ScopeTypeInfo = 0; | 
|  | QualType ScopeType; | 
|  | if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || | 
|  | FirstTypeName.Identifier) { | 
|  | if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) { | 
|  | ParsedType T = getTypeName(*FirstTypeName.Identifier, | 
|  | FirstTypeName.StartLocation, | 
|  | S, &SS, false, false, ObjectTypePtrForLookup); | 
|  | if (!T) { | 
|  | Diag(FirstTypeName.StartLocation, | 
|  | diag::err_pseudo_dtor_destructor_non_type) | 
|  | << FirstTypeName.Identifier << ObjectType; | 
|  |  | 
|  | if (isSFINAEContext()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Just drop this type. It's unnecessary anyway. | 
|  | ScopeType = QualType(); | 
|  | } else | 
|  | ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); | 
|  | } else { | 
|  | // Resolve the template-id to a type. | 
|  | TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; | 
|  | ASTTemplateArgsPtr TemplateArgsPtr(*this, | 
|  | TemplateId->getTemplateArgs(), | 
|  | TemplateId->NumArgs); | 
|  | TypeResult T = ActOnTemplateIdType(TemplateId->Template, | 
|  | TemplateId->TemplateNameLoc, | 
|  | TemplateId->LAngleLoc, | 
|  | TemplateArgsPtr, | 
|  | TemplateId->RAngleLoc); | 
|  | if (T.isInvalid() || !T.get()) { | 
|  | // Recover by dropping this type. | 
|  | ScopeType = QualType(); | 
|  | } else | 
|  | ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ScopeType.isNull() && !ScopeTypeInfo) | 
|  | ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, | 
|  | FirstTypeName.StartLocation); | 
|  |  | 
|  |  | 
|  | return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, | 
|  | ScopeTypeInfo, CCLoc, TildeLoc, | 
|  | Destructed, HasTrailingLParen); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl, | 
|  | CXXMethodDecl *Method) { | 
|  | if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0, | 
|  | FoundDecl, Method)) | 
|  | return true; | 
|  |  | 
|  | MemberExpr *ME = | 
|  | new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method, | 
|  | SourceLocation(), Method->getType(), | 
|  | VK_RValue, OK_Ordinary); | 
|  | QualType ResultType = Method->getResultType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultType); | 
|  | ResultType = ResultType.getNonLValueExprType(Context); | 
|  |  | 
|  | MarkDeclarationReferenced(Exp->getLocStart(), Method); | 
|  | CXXMemberCallExpr *CE = | 
|  | new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK, | 
|  | Exp->getLocEnd()); | 
|  | return CE; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, | 
|  | SourceLocation RParen) { | 
|  | return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand, | 
|  | Operand->CanThrow(Context), | 
|  | KeyLoc, RParen)); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, | 
|  | Expr *Operand, SourceLocation RParen) { | 
|  | return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); | 
|  | } | 
|  |  | 
|  | /// Perform the conversions required for an expression used in a | 
|  | /// context that ignores the result. | 
|  | void Sema::IgnoredValueConversions(Expr *&E) { | 
|  | // C99 6.3.2.1: | 
|  | //   [Except in specific positions,] an lvalue that does not have | 
|  | //   array type is converted to the value stored in the | 
|  | //   designated object (and is no longer an lvalue). | 
|  | if (E->isRValue()) return; | 
|  |  | 
|  | // We always want to do this on ObjC property references. | 
|  | if (E->getObjectKind() == OK_ObjCProperty) { | 
|  | ConvertPropertyForRValue(E); | 
|  | if (E->isRValue()) return; | 
|  | } | 
|  |  | 
|  | // Otherwise, this rule does not apply in C++, at least not for the moment. | 
|  | if (getLangOptions().CPlusPlus) return; | 
|  |  | 
|  | // GCC seems to also exclude expressions of incomplete enum type. | 
|  | if (const EnumType *T = E->getType()->getAs<EnumType>()) { | 
|  | if (!T->getDecl()->isComplete()) { | 
|  | // FIXME: stupid workaround for a codegen bug! | 
|  | ImpCastExprToType(E, Context.VoidTy, CK_ToVoid); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | DefaultFunctionArrayLvalueConversion(E); | 
|  | if (!E->getType()->isVoidType()) | 
|  | RequireCompleteType(E->getExprLoc(), E->getType(), | 
|  | diag::err_incomplete_type); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) { | 
|  | if (!FullExpr) | 
|  | return ExprError(); | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(FullExpr)) | 
|  | return ExprError(); | 
|  |  | 
|  | IgnoredValueConversions(FullExpr); | 
|  | CheckImplicitConversions(FullExpr); | 
|  | return MaybeCreateExprWithCleanups(FullExpr); | 
|  | } | 
|  |  | 
|  | StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { | 
|  | if (!FullStmt) return StmtError(); | 
|  |  | 
|  | return MaybeCreateStmtWithCleanups(FullStmt); | 
|  | } |