|  | //===- Relocations.cpp ----------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains platform-independent functions to process relocations. | 
|  | // I'll describe the overview of this file here. | 
|  | // | 
|  | // Simple relocations are easy to handle for the linker. For example, | 
|  | // for R_X86_64_PC64 relocs, the linker just has to fix up locations | 
|  | // with the relative offsets to the target symbols. It would just be | 
|  | // reading records from relocation sections and applying them to output. | 
|  | // | 
|  | // But not all relocations are that easy to handle. For example, for | 
|  | // R_386_GOTOFF relocs, the linker has to create new GOT entries for | 
|  | // symbols if they don't exist, and fix up locations with GOT entry | 
|  | // offsets from the beginning of GOT section. So there is more than | 
|  | // fixing addresses in relocation processing. | 
|  | // | 
|  | // ELF defines a large number of complex relocations. | 
|  | // | 
|  | // The functions in this file analyze relocations and do whatever needs | 
|  | // to be done. It includes, but not limited to, the following. | 
|  | // | 
|  | //  - create GOT/PLT entries | 
|  | //  - create new relocations in .dynsym to let the dynamic linker resolve | 
|  | //    them at runtime (since ELF supports dynamic linking, not all | 
|  | //    relocations can be resolved at link-time) | 
|  | //  - create COPY relocs and reserve space in .bss | 
|  | //  - replace expensive relocs (in terms of runtime cost) with cheap ones | 
|  | //  - error out infeasible combinations such as PIC and non-relative relocs | 
|  | // | 
|  | // Note that the functions in this file don't actually apply relocations | 
|  | // because it doesn't know about the output file nor the output file buffer. | 
|  | // It instead stores Relocation objects to InputSection's Relocations | 
|  | // vector to let it apply later in InputSection::writeTo. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Relocations.h" | 
|  | #include "Config.h" | 
|  | #include "Memory.h" | 
|  | #include "OutputSections.h" | 
|  | #include "Strings.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "SyntheticSections.h" | 
|  | #include "Target.h" | 
|  | #include "Thunks.h" | 
|  |  | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support::endian; | 
|  |  | 
|  | namespace lld { | 
|  | namespace elf { | 
|  |  | 
|  | static bool refersToGotEntry(RelExpr Expr) { | 
|  | return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, | 
|  | R_MIPS_GOT_OFF32, R_MIPS_TLSGD, R_MIPS_TLSLD, | 
|  | R_GOT_PAGE_PC, R_GOT_PC, R_GOT_FROM_END, R_TLSGD, | 
|  | R_TLSGD_PC, R_TLSDESC, R_TLSDESC_PAGE>(Expr); | 
|  | } | 
|  |  | 
|  | static bool isPreemptible(const SymbolBody &Body, uint32_t Type) { | 
|  | // In case of MIPS GP-relative relocations always resolve to a definition | 
|  | // in a regular input file, ignoring the one-definition rule. So we, | 
|  | // for example, should not attempt to create a dynamic relocation even | 
|  | // if the target symbol is preemptible. There are two two MIPS GP-relative | 
|  | // relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16 | 
|  | // can be against a preemptible symbol. | 
|  | // To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all | 
|  | // relocation types occupy eight bit. In case of N64 ABI we extract first | 
|  | // relocation from 3-in-1 packet because only the first relocation can | 
|  | // be against a real symbol. | 
|  | if (Config->EMachine == EM_MIPS && (Type & 0xff) == R_MIPS_GPREL16) | 
|  | return false; | 
|  | return Body.isPreemptible(); | 
|  | } | 
|  |  | 
|  | // This function is similar to the `handleTlsRelocation`. ARM and MIPS do not | 
|  | // support any relaxations for TLS relocations so by factoring out ARM and MIPS | 
|  | // handling in to the separate function we can simplify the code and do not | 
|  | // pollute `handleTlsRelocation` by ARM and MIPS `ifs` statements. | 
|  | template <class ELFT, class GOT> | 
|  | static unsigned | 
|  | handleNoRelaxTlsRelocation(GOT *Got, uint32_t Type, SymbolBody &Body, | 
|  | InputSectionBase &C, typename ELFT::uint Offset, | 
|  | int64_t Addend, RelExpr Expr) { | 
|  | typedef typename ELFT::uint uintX_t; | 
|  | auto addModuleReloc = [](SymbolBody &Body, GOT *Got, uintX_t Off, bool LD) { | 
|  | // The Dynamic TLS Module Index Relocation can be statically resolved to 1 | 
|  | // if we know that we are linking an executable. For ARM we resolve the | 
|  | // relocation when writing the Got. MIPS has a custom Got implementation | 
|  | // that writes the Module index in directly. | 
|  | if (!Body.isPreemptible() && !Config->pic() && Config->EMachine == EM_ARM) | 
|  | Got->Relocations.push_back( | 
|  | {R_ABS, Target->TlsModuleIndexRel, Off, 0, &Body}); | 
|  | else { | 
|  | SymbolBody *Dest = LD ? nullptr : &Body; | 
|  | In<ELFT>::RelaDyn->addReloc( | 
|  | {Target->TlsModuleIndexRel, Got, Off, false, Dest, 0}); | 
|  | } | 
|  | }; | 
|  | if (isRelExprOneOf<R_MIPS_TLSLD, R_TLSLD_PC>(Expr)) { | 
|  | if (Got->addTlsIndex() && (Config->pic() || Config->EMachine == EM_ARM)) | 
|  | addModuleReloc(Body, Got, Got->getTlsIndexOff(), true); | 
|  | C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  | if (Target->isTlsGlobalDynamicRel(Type)) { | 
|  | if (Got->addDynTlsEntry(Body) && | 
|  | (Body.isPreemptible() || Config->EMachine == EM_ARM)) { | 
|  | uintX_t Off = Got->getGlobalDynOffset(Body); | 
|  | addModuleReloc(Body, Got, Off, false); | 
|  | if (Body.isPreemptible()) | 
|  | In<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, Got, | 
|  | Off + (uintX_t)sizeof(uintX_t), false, | 
|  | &Body, 0}); | 
|  | } | 
|  | C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Returns the number of relocations processed. | 
|  | template <class ELFT> | 
|  | static unsigned | 
|  | handleTlsRelocation(uint32_t Type, SymbolBody &Body, InputSectionBase &C, | 
|  | typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) { | 
|  | if (!(C.Flags & SHF_ALLOC)) | 
|  | return 0; | 
|  |  | 
|  | if (!Body.isTls()) | 
|  | return 0; | 
|  |  | 
|  | typedef typename ELFT::uint uintX_t; | 
|  |  | 
|  | if (Config->EMachine == EM_ARM) | 
|  | return handleNoRelaxTlsRelocation<ELFT>(In<ELFT>::Got, Type, Body, C, | 
|  | Offset, Addend, Expr); | 
|  | if (Config->EMachine == EM_MIPS) | 
|  | return handleNoRelaxTlsRelocation<ELFT>(In<ELFT>::MipsGot, Type, Body, C, | 
|  | Offset, Addend, Expr); | 
|  |  | 
|  | bool IsPreemptible = isPreemptible(Body, Type); | 
|  | if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) && | 
|  | Config->Shared) { | 
|  | if (In<ELFT>::Got->addDynTlsEntry(Body)) { | 
|  | uintX_t Off = In<ELFT>::Got->getGlobalDynOffset(Body); | 
|  | In<ELFT>::RelaDyn->addReloc({Target->TlsDescRel, In<ELFT>::Got, Off, | 
|  | !IsPreemptible, &Body, 0}); | 
|  | } | 
|  | if (Expr != R_TLSDESC_CALL) | 
|  | C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (isRelExprOneOf<R_TLSLD_PC, R_TLSLD>(Expr)) { | 
|  | // Local-Dynamic relocs can be relaxed to Local-Exec. | 
|  | if (!Config->Shared) { | 
|  | C.Relocations.push_back( | 
|  | {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); | 
|  | return 2; | 
|  | } | 
|  | if (In<ELFT>::Got->addTlsIndex()) | 
|  | In<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, In<ELFT>::Got, | 
|  | In<ELFT>::Got->getTlsIndexOff(), false, | 
|  | nullptr, 0}); | 
|  | C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Local-Dynamic relocs can be relaxed to Local-Exec. | 
|  | if (Target->isTlsLocalDynamicRel(Type) && !Config->Shared) { | 
|  | C.Relocations.push_back( | 
|  | {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (isRelExprOneOf<R_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL>(Expr) || | 
|  | Target->isTlsGlobalDynamicRel(Type)) { | 
|  | if (Config->Shared) { | 
|  | if (In<ELFT>::Got->addDynTlsEntry(Body)) { | 
|  | uintX_t Off = In<ELFT>::Got->getGlobalDynOffset(Body); | 
|  | In<ELFT>::RelaDyn->addReloc( | 
|  | {Target->TlsModuleIndexRel, In<ELFT>::Got, Off, false, &Body, 0}); | 
|  |  | 
|  | // If the symbol is preemptible we need the dynamic linker to write | 
|  | // the offset too. | 
|  | uintX_t OffsetOff = Off + (uintX_t)sizeof(uintX_t); | 
|  | if (IsPreemptible) | 
|  | In<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, In<ELFT>::Got, | 
|  | OffsetOff, false, &Body, 0}); | 
|  | else | 
|  | In<ELFT>::Got->Relocations.push_back( | 
|  | {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Body}); | 
|  | } | 
|  | C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec | 
|  | // depending on the symbol being locally defined or not. | 
|  | if (IsPreemptible) { | 
|  | C.Relocations.push_back( | 
|  | {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type, | 
|  | Offset, Addend, &Body}); | 
|  | if (!Body.isInGot()) { | 
|  | In<ELFT>::Got->addEntry(Body); | 
|  | In<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, In<ELFT>::Got, | 
|  | Body.getGotOffset<ELFT>(), false, &Body, | 
|  | 0}); | 
|  | } | 
|  | return Target->TlsGdRelaxSkip; | 
|  | } | 
|  | C.Relocations.push_back( | 
|  | {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, | 
|  | Offset, Addend, &Body}); | 
|  | return Target->TlsGdRelaxSkip; | 
|  | } | 
|  |  | 
|  | // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally | 
|  | // defined. | 
|  | if (Target->isTlsInitialExecRel(Type) && !Config->Shared && !IsPreemptible) { | 
|  | C.Relocations.push_back( | 
|  | {R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Body}); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | template <endianness E> static int16_t readSignedLo16(const uint8_t *Loc) { | 
|  | return read32<E>(Loc) & 0xffff; | 
|  | } | 
|  |  | 
|  | template <class RelTy> | 
|  | static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) { | 
|  | switch (Rel->getType(Config->Mips64EL)) { | 
|  | case R_MIPS_HI16: | 
|  | return R_MIPS_LO16; | 
|  | case R_MIPS_GOT16: | 
|  | return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE; | 
|  | case R_MIPS_PCHI16: | 
|  | return R_MIPS_PCLO16; | 
|  | case R_MICROMIPS_HI16: | 
|  | return R_MICROMIPS_LO16; | 
|  | default: | 
|  | return R_MIPS_NONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT, class RelTy> | 
|  | static int32_t findMipsPairedAddend(const uint8_t *Buf, const uint8_t *BufLoc, | 
|  | SymbolBody &Sym, const RelTy *Rel, | 
|  | const RelTy *End) { | 
|  | uint32_t SymIndex = Rel->getSymbol(Config->Mips64EL); | 
|  | uint32_t Type = getMipsPairType(Rel, Sym); | 
|  |  | 
|  | // Some MIPS relocations use addend calculated from addend of the relocation | 
|  | // itself and addend of paired relocation. ABI requires to compute such | 
|  | // combined addend in case of REL relocation record format only. | 
|  | // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | if (RelTy::IsRela || Type == R_MIPS_NONE) | 
|  | return 0; | 
|  |  | 
|  | for (const RelTy *RI = Rel; RI != End; ++RI) { | 
|  | if (RI->getType(Config->Mips64EL) != Type) | 
|  | continue; | 
|  | if (RI->getSymbol(Config->Mips64EL) != SymIndex) | 
|  | continue; | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | return ((read32<E>(BufLoc) & 0xffff) << 16) + | 
|  | readSignedLo16<E>(Buf + RI->r_offset); | 
|  | } | 
|  | warn("can't find matching " + toString(Type) + " relocation for " + | 
|  | toString(Rel->getType(Config->Mips64EL))); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // True if non-preemptable symbol always has the same value regardless of where | 
|  | // the DSO is loaded. | 
|  | template <class ELFT> static bool isAbsolute(const SymbolBody &Body) { | 
|  | if (Body.isUndefined()) | 
|  | return !Body.isLocal() && Body.symbol()->isWeak(); | 
|  | if (const auto *DR = dyn_cast<DefinedRegular<ELFT>>(&Body)) | 
|  | return DR->Section == nullptr; // Absolute symbol. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool isAbsoluteValue(const SymbolBody &Body) { | 
|  | return isAbsolute<ELFT>(Body) || Body.isTls(); | 
|  | } | 
|  |  | 
|  | static bool needsPlt(RelExpr Expr) { | 
|  | return isRelExprOneOf<R_PLT_PC, R_PPC_PLT_OPD, R_PLT, R_PLT_PAGE_PC>(Expr); | 
|  | } | 
|  |  | 
|  | // True if this expression is of the form Sym - X, where X is a position in the | 
|  | // file (PC, or GOT for example). | 
|  | static bool isRelExpr(RelExpr Expr) { | 
|  | return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL, | 
|  | R_PAGE_PC, R_RELAX_GOT_PC>(Expr); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static bool | 
|  | isStaticLinkTimeConstant(RelExpr E, uint32_t Type, const SymbolBody &Body, | 
|  | InputSectionBase &S, typename ELFT::uint RelOff) { | 
|  | // These expressions always compute a constant | 
|  | if (isRelExprOneOf<R_SIZE, R_GOT_FROM_END, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, | 
|  | R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_TLSGD, | 
|  | R_GOT_PAGE_PC, R_GOT_PC, R_PLT_PC, R_TLSGD_PC, R_TLSGD, | 
|  | R_PPC_PLT_OPD, R_TLSDESC_CALL, R_TLSDESC_PAGE, R_HINT>(E)) | 
|  | return true; | 
|  |  | 
|  | // These never do, except if the entire file is position dependent or if | 
|  | // only the low bits are used. | 
|  | if (E == R_GOT || E == R_PLT || E == R_TLSDESC) | 
|  | return Target->usesOnlyLowPageBits(Type) || !Config->pic(); | 
|  |  | 
|  | if (isPreemptible(Body, Type)) | 
|  | return false; | 
|  |  | 
|  | if (!Config->pic()) | 
|  | return true; | 
|  |  | 
|  | bool AbsVal = isAbsoluteValue<ELFT>(Body); | 
|  | bool RelE = isRelExpr(E); | 
|  | if (AbsVal && !RelE) | 
|  | return true; | 
|  | if (!AbsVal && RelE) | 
|  | return true; | 
|  |  | 
|  | // Relative relocation to an absolute value. This is normally unrepresentable, | 
|  | // but if the relocation refers to a weak undefined symbol, we allow it to | 
|  | // resolve to the image base. This is a little strange, but it allows us to | 
|  | // link function calls to such symbols. Normally such a call will be guarded | 
|  | // with a comparison, which will load a zero from the GOT. | 
|  | // Another special case is MIPS _gp_disp symbol which represents offset | 
|  | // between start of a function and '_gp' value and defined as absolute just | 
|  | // to simplify the code. | 
|  | if (AbsVal && RelE) { | 
|  | if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) | 
|  | return true; | 
|  | if (&Body == ElfSym<ELFT>::MipsGpDisp) | 
|  | return true; | 
|  | error(S.getLocation<ELFT>(RelOff) + ": relocation " + toString(Type) + | 
|  | " cannot refer to absolute symbol '" + toString(Body) + | 
|  | "' defined in " + toString(Body.File)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return Target->usesOnlyLowPageBits(Type); | 
|  | } | 
|  |  | 
|  | static RelExpr toPlt(RelExpr Expr) { | 
|  | if (Expr == R_PPC_OPD) | 
|  | return R_PPC_PLT_OPD; | 
|  | if (Expr == R_PC) | 
|  | return R_PLT_PC; | 
|  | if (Expr == R_PAGE_PC) | 
|  | return R_PLT_PAGE_PC; | 
|  | if (Expr == R_ABS) | 
|  | return R_PLT; | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | static RelExpr fromPlt(RelExpr Expr) { | 
|  | // We decided not to use a plt. Optimize a reference to the plt to a | 
|  | // reference to the symbol itself. | 
|  | if (Expr == R_PLT_PC) | 
|  | return R_PC; | 
|  | if (Expr == R_PPC_PLT_OPD) | 
|  | return R_PPC_OPD; | 
|  | if (Expr == R_PLT) | 
|  | return R_ABS; | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool isReadOnly(SharedSymbol *SS) { | 
|  | typedef typename ELFT::Phdr Elf_Phdr; | 
|  | uint64_t Value = SS->getValue<ELFT>(); | 
|  |  | 
|  | // Determine if the symbol is read-only by scanning the DSO's program headers. | 
|  | auto *File = cast<SharedFile<ELFT>>(SS->File); | 
|  | for (const Elf_Phdr &Phdr : check(File->getObj().program_headers())) | 
|  | if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) && | 
|  | !(Phdr.p_flags & ELF::PF_W) && Value >= Phdr.p_vaddr && | 
|  | Value < Phdr.p_vaddr + Phdr.p_memsz) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns symbols at the same offset as a given symbol, including SS itself. | 
|  | // | 
|  | // If two or more symbols are at the same offset, and at least one of | 
|  | // them are copied by a copy relocation, all of them need to be copied. | 
|  | // Otherwise, they would refer different places at runtime. | 
|  | template <class ELFT> | 
|  | static std::vector<SharedSymbol *> getSymbolsAt(SharedSymbol *SS) { | 
|  | typedef typename ELFT::Sym Elf_Sym; | 
|  |  | 
|  | auto *File = cast<SharedFile<ELFT>>(SS->File); | 
|  | uint64_t Shndx = SS->getShndx<ELFT>(); | 
|  | uint64_t Value = SS->getValue<ELFT>(); | 
|  |  | 
|  | std::vector<SharedSymbol *> Ret; | 
|  | for (const Elf_Sym &S : File->getGlobalSymbols()) { | 
|  | if (S.st_shndx != Shndx || S.st_value != Value) | 
|  | continue; | 
|  | StringRef Name = check(S.getName(File->getStringTable())); | 
|  | SymbolBody *Sym = Symtab<ELFT>::X->find(Name); | 
|  | if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym)) | 
|  | Ret.push_back(Alias); | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | // Reserve space in .bss or .bss.rel.ro for copy relocation. | 
|  | // | 
|  | // The copy relocation is pretty much a hack. If you use a copy relocation | 
|  | // in your program, not only the symbol name but the symbol's size, RW/RO | 
|  | // bit and alignment become part of the ABI. In addition to that, if the | 
|  | // symbol has aliases, the aliases become part of the ABI. That's subtle, | 
|  | // but if you violate that implicit ABI, that can cause very counter- | 
|  | // intuitive consequences. | 
|  | // | 
|  | // So, what is the copy relocation? It's for linking non-position | 
|  | // independent code to DSOs. In an ideal world, all references to data | 
|  | // exported by DSOs should go indirectly through GOT. But if object files | 
|  | // are compiled as non-PIC, all data references are direct. There is no | 
|  | // way for the linker to transform the code to use GOT, as machine | 
|  | // instructions are already set in stone in object files. This is where | 
|  | // the copy relocation takes a role. | 
|  | // | 
|  | // A copy relocation instructs the dynamic linker to copy data from a DSO | 
|  | // to a specified address (which is usually in .bss) at load-time. If the | 
|  | // static linker (that's us) finds a direct data reference to a DSO | 
|  | // symbol, it creates a copy relocation, so that the symbol can be | 
|  | // resolved as if it were in .bss rather than in a DSO. | 
|  | // | 
|  | // As you can see in this function, we create a copy relocation for the | 
|  | // dynamic linker, and the relocation contains not only symbol name but | 
|  | // various other informtion about the symbol. So, such attributes become a | 
|  | // part of the ABI. | 
|  | // | 
|  | // Note for application developers: I can give you a piece of advice if | 
|  | // you are writing a shared library. You probably should export only | 
|  | // functions from your library. You shouldn't export variables. | 
|  | // | 
|  | // As an example what can happen when you export variables without knowing | 
|  | // the semantics of copy relocations, assume that you have an exported | 
|  | // variable of type T. It is an ABI-breaking change to add new members at | 
|  | // end of T even though doing that doesn't change the layout of the | 
|  | // existing members. That's because the space for the new members are not | 
|  | // reserved in .bss unless you recompile the main program. That means they | 
|  | // are likely to overlap with other data that happens to be laid out next | 
|  | // to the variable in .bss. This kind of issue is sometimes very hard to | 
|  | // debug. What's a solution? Instead of exporting a varaible V from a DSO, | 
|  | // define an accessor getV(). | 
|  | template <class ELFT> static void addCopyRelSymbol(SharedSymbol *SS) { | 
|  | typedef typename ELFT::uint uintX_t; | 
|  |  | 
|  | // Copy relocation against zero-sized symbol doesn't make sense. | 
|  | uintX_t SymSize = SS->template getSize<ELFT>(); | 
|  | if (SymSize == 0) | 
|  | fatal("cannot create a copy relocation for symbol " + toString(*SS)); | 
|  |  | 
|  | // See if this symbol is in a read-only segment. If so, preserve the symbol's | 
|  | // memory protection by reserving space in the .bss.rel.ro section. | 
|  | bool IsReadOnly = isReadOnly<ELFT>(SS); | 
|  | OutputSection *OSec = IsReadOnly ? Out::BssRelRo : Out::Bss; | 
|  |  | 
|  | // Create a SyntheticSection in Out to hold the .bss and the Copy Reloc. | 
|  | auto *ISec = | 
|  | make<CopyRelSection<ELFT>>(IsReadOnly, SS->getAlignment<ELFT>(), SymSize); | 
|  | OSec->addSection(ISec); | 
|  |  | 
|  | // Look through the DSO's dynamic symbol table for aliases and create a | 
|  | // dynamic symbol for each one. This causes the copy relocation to correctly | 
|  | // interpose any aliases. | 
|  | for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) { | 
|  | Sym->NeedsCopy = true; | 
|  | Sym->Section = ISec; | 
|  | Sym->symbol()->IsUsedInRegularObj = true; | 
|  | } | 
|  |  | 
|  | In<ELFT>::RelaDyn->addReloc({Target->CopyRel, ISec, 0, false, SS, 0}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static RelExpr adjustExpr(const elf::ObjectFile<ELFT> &File, SymbolBody &Body, | 
|  | bool IsWrite, RelExpr Expr, uint32_t Type, | 
|  | const uint8_t *Data, InputSectionBase &S, | 
|  | typename ELFT::uint RelOff) { | 
|  | bool Preemptible = isPreemptible(Body, Type); | 
|  | if (Body.isGnuIFunc()) { | 
|  | Expr = toPlt(Expr); | 
|  | } else if (!Preemptible) { | 
|  | if (needsPlt(Expr)) | 
|  | Expr = fromPlt(Expr); | 
|  | if (Expr == R_GOT_PC && !isAbsoluteValue<ELFT>(Body)) | 
|  | Expr = Target->adjustRelaxExpr(Type, Data, Expr); | 
|  | } | 
|  |  | 
|  | if (IsWrite || isStaticLinkTimeConstant<ELFT>(Expr, Type, Body, S, RelOff)) | 
|  | return Expr; | 
|  |  | 
|  | // This relocation would require the dynamic linker to write a value to read | 
|  | // only memory. We can hack around it if we are producing an executable and | 
|  | // the refered symbol can be preemepted to refer to the executable. | 
|  | if (Config->Shared || (Config->pic() && !isRelExpr(Expr))) { | 
|  | error(S.getLocation<ELFT>(RelOff) + ": can't create dynamic relocation " + | 
|  | toString(Type) + " against " + | 
|  | (Body.getName().empty() ? "local symbol in readonly segment" | 
|  | : "symbol '" + toString(Body) + "'") + | 
|  | " defined in " + toString(Body.File)); | 
|  | return Expr; | 
|  | } | 
|  | if (Body.getVisibility() != STV_DEFAULT) { | 
|  | error(S.getLocation<ELFT>(RelOff) + ": cannot preempt symbol '" + | 
|  | toString(Body) + "' defined in " + toString(Body.File)); | 
|  | return Expr; | 
|  | } | 
|  | if (Body.isObject()) { | 
|  | // Produce a copy relocation. | 
|  | auto *B = cast<SharedSymbol>(&Body); | 
|  | if (!B->NeedsCopy) { | 
|  | if (Config->ZNocopyreloc) | 
|  | error(S.getLocation<ELFT>(RelOff) + ": unresolvable relocation " + | 
|  | toString(Type) + " against symbol '" + toString(*B) + | 
|  | "'; recompile with -fPIC or remove '-z nocopyreloc'"); | 
|  |  | 
|  | addCopyRelSymbol<ELFT>(B); | 
|  | } | 
|  | return Expr; | 
|  | } | 
|  | if (Body.isFunc()) { | 
|  | // This handles a non PIC program call to function in a shared library. In | 
|  | // an ideal world, we could just report an error saying the relocation can | 
|  | // overflow at runtime. In the real world with glibc, crt1.o has a | 
|  | // R_X86_64_PC32 pointing to libc.so. | 
|  | // | 
|  | // The general idea on how to handle such cases is to create a PLT entry and | 
|  | // use that as the function value. | 
|  | // | 
|  | // For the static linking part, we just return a plt expr and everything | 
|  | // else will use the the PLT entry as the address. | 
|  | // | 
|  | // The remaining problem is making sure pointer equality still works. We | 
|  | // need the help of the dynamic linker for that. We let it know that we have | 
|  | // a direct reference to a so symbol by creating an undefined symbol with a | 
|  | // non zero st_value. Seeing that, the dynamic linker resolves the symbol to | 
|  | // the value of the symbol we created. This is true even for got entries, so | 
|  | // pointer equality is maintained. To avoid an infinite loop, the only entry | 
|  | // that points to the real function is a dedicated got entry used by the | 
|  | // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, | 
|  | // R_386_JMP_SLOT, etc). | 
|  | Body.NeedsPltAddr = true; | 
|  | return toPlt(Expr); | 
|  | } | 
|  | error("symbol '" + toString(Body) + "' defined in " + toString(Body.File) + | 
|  | " is missing type"); | 
|  |  | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | template <class ELFT, class RelTy> | 
|  | static int64_t computeAddend(const elf::ObjectFile<ELFT> &File, | 
|  | const uint8_t *SectionData, const RelTy *End, | 
|  | const RelTy &RI, RelExpr Expr, SymbolBody &Body) { | 
|  | uint32_t Type = RI.getType(Config->Mips64EL); | 
|  | int64_t Addend = getAddend<ELFT>(RI); | 
|  | const uint8_t *BufLoc = SectionData + RI.r_offset; | 
|  | if (!RelTy::IsRela) | 
|  | Addend += Target->getImplicitAddend(BufLoc, Type); | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | Addend += findMipsPairedAddend<ELFT>(SectionData, BufLoc, Body, &RI, End); | 
|  | if (Type == R_MIPS_LO16 && Expr == R_PC) | 
|  | // R_MIPS_LO16 expression has R_PC type iif the target is _gp_disp | 
|  | // symbol. In that case we should use the following formula for | 
|  | // calculation "AHL + GP - P + 4". Let's add 4 right here. | 
|  | // For details see p. 4-19 at | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | Addend += 4; | 
|  | if (Expr == R_MIPS_GOTREL && Body.isLocal()) | 
|  | Addend += File.MipsGp0; | 
|  | } | 
|  | if (Config->pic() && Config->EMachine == EM_PPC64 && Type == R_PPC64_TOC) | 
|  | Addend += getPPC64TocBase(); | 
|  | return Addend; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void reportUndefined(SymbolBody &Sym, InputSectionBase &S, | 
|  | typename ELFT::uint Offset) { | 
|  | bool CanBeExternal = Sym.symbol()->computeBinding() != STB_LOCAL && | 
|  | Sym.getVisibility() == STV_DEFAULT; | 
|  | if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll || | 
|  | (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal)) | 
|  | return; | 
|  |  | 
|  | std::string Msg = S.getLocation<ELFT>(Offset) + ": undefined symbol '" + | 
|  | toString(Sym) + "'"; | 
|  |  | 
|  | if (Config->UnresolvedSymbols == UnresolvedPolicy::WarnAll || | 
|  | (Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal)) | 
|  | warn(Msg); | 
|  | else | 
|  | error(Msg); | 
|  | } | 
|  |  | 
|  | template <class RelTy> | 
|  | static std::pair<uint32_t, uint32_t> | 
|  | mergeMipsN32RelTypes(uint32_t Type, uint32_t Offset, RelTy *I, RelTy *E) { | 
|  | // MIPS N32 ABI treats series of successive relocations with the same offset | 
|  | // as a single relocation. The similar approach used by N64 ABI, but this ABI | 
|  | // packs all relocations into the single relocation record. Here we emulate | 
|  | // this for the N32 ABI. Iterate over relocation with the same offset and put | 
|  | // theirs types into the single bit-set. | 
|  | uint32_t Processed = 0; | 
|  | for (; I != E && Offset == I->r_offset; ++I) { | 
|  | ++Processed; | 
|  | Type |= I->getType(Config->Mips64EL) << (8 * Processed); | 
|  | } | 
|  | return std::make_pair(Type, Processed); | 
|  | } | 
|  |  | 
|  | // The reason we have to do this early scan is as follows | 
|  | // * To mmap the output file, we need to know the size | 
|  | // * For that, we need to know how many dynamic relocs we will have. | 
|  | // It might be possible to avoid this by outputting the file with write: | 
|  | // * Write the allocated output sections, computing addresses. | 
|  | // * Apply relocations, recording which ones require a dynamic reloc. | 
|  | // * Write the dynamic relocations. | 
|  | // * Write the rest of the file. | 
|  | // This would have some drawbacks. For example, we would only know if .rela.dyn | 
|  | // is needed after applying relocations. If it is, it will go after rw and rx | 
|  | // sections. Given that it is ro, we will need an extra PT_LOAD. This | 
|  | // complicates things for the dynamic linker and means we would have to reserve | 
|  | // space for the extra PT_LOAD even if we end up not using it. | 
|  | template <class ELFT, class RelTy> | 
|  | static void scanRelocs(InputSectionBase &C, ArrayRef<RelTy> Rels) { | 
|  | typedef typename ELFT::uint uintX_t; | 
|  |  | 
|  | bool IsWrite = C.Flags & SHF_WRITE; | 
|  |  | 
|  | auto AddDyn = [=](const DynamicReloc<ELFT> &Reloc) { | 
|  | In<ELFT>::RelaDyn->addReloc(Reloc); | 
|  | }; | 
|  |  | 
|  | const elf::ObjectFile<ELFT> *File = C.getFile<ELFT>(); | 
|  | ArrayRef<uint8_t> SectionData = C.Data; | 
|  | const uint8_t *Buf = SectionData.begin(); | 
|  |  | 
|  | ArrayRef<EhSectionPiece> Pieces; | 
|  | if (auto *Eh = dyn_cast<EhInputSection<ELFT>>(&C)) | 
|  | Pieces = Eh->Pieces; | 
|  |  | 
|  | ArrayRef<EhSectionPiece>::iterator PieceI = Pieces.begin(); | 
|  | ArrayRef<EhSectionPiece>::iterator PieceE = Pieces.end(); | 
|  |  | 
|  | for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) { | 
|  | const RelTy &RI = *I; | 
|  | SymbolBody &Body = File->getRelocTargetSym(RI); | 
|  | uint32_t Type = RI.getType(Config->Mips64EL); | 
|  |  | 
|  | if (Config->MipsN32Abi) { | 
|  | uint32_t Processed; | 
|  | std::tie(Type, Processed) = | 
|  | mergeMipsN32RelTypes(Type, RI.r_offset, I + 1, E); | 
|  | I += Processed; | 
|  | } | 
|  |  | 
|  | // We only report undefined symbols if they are referenced somewhere in the | 
|  | // code. | 
|  | if (!Body.isLocal() && Body.isUndefined() && !Body.symbol()->isWeak()) | 
|  | reportUndefined<ELFT>(Body, C, RI.r_offset); | 
|  |  | 
|  | RelExpr Expr = Target->getRelExpr(Type, Body); | 
|  |  | 
|  | // Ignore "hint" relocations because they are only markers for relaxation. | 
|  | if (isRelExprOneOf<R_HINT, R_NONE>(Expr)) | 
|  | continue; | 
|  |  | 
|  | bool Preemptible = isPreemptible(Body, Type); | 
|  | Expr = adjustExpr(*File, Body, IsWrite, Expr, Type, Buf + RI.r_offset, C, | 
|  | RI.r_offset); | 
|  | if (ErrorCount) | 
|  | continue; | 
|  |  | 
|  | // Skip a relocation that points to a dead piece | 
|  | // in a eh_frame section. | 
|  | while (PieceI != PieceE && | 
|  | (PieceI->InputOff + PieceI->size() <= RI.r_offset)) | 
|  | ++PieceI; | 
|  |  | 
|  | // Compute the offset of this section in the output section. We do it here | 
|  | // to try to compute it only once. | 
|  | uintX_t Offset; | 
|  | if (PieceI != PieceE) { | 
|  | assert(PieceI->InputOff <= RI.r_offset && "Relocation not in any piece"); | 
|  | if (PieceI->OutputOff == -1) | 
|  | continue; | 
|  | Offset = PieceI->OutputOff + RI.r_offset - PieceI->InputOff; | 
|  | } else { | 
|  | Offset = RI.r_offset; | 
|  | } | 
|  |  | 
|  | // This relocation does not require got entry, but it is relative to got and | 
|  | // needs it to be created. Here we request for that. | 
|  | if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL, | 
|  | R_GOTREL_FROM_END, R_PPC_TOC>(Expr)) | 
|  | In<ELFT>::Got->HasGotOffRel = true; | 
|  |  | 
|  | int64_t Addend = computeAddend(*File, Buf, E, RI, Expr, Body); | 
|  |  | 
|  | if (unsigned Processed = | 
|  | handleTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr)) { | 
|  | I += (Processed - 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Expr == R_TLSDESC_CALL) | 
|  | continue; | 
|  |  | 
|  | if (needsPlt(Expr) || | 
|  | refersToGotEntry(Expr) || !isPreemptible(Body, Type)) { | 
|  | // If the relocation points to something in the file, we can process it. | 
|  | bool Constant = | 
|  | isStaticLinkTimeConstant<ELFT>(Expr, Type, Body, C, RI.r_offset); | 
|  |  | 
|  | // If the output being produced is position independent, the final value | 
|  | // is still not known. In that case we still need some help from the | 
|  | // dynamic linker. We can however do better than just copying the incoming | 
|  | // relocation. We can process some of it and and just ask the dynamic | 
|  | // linker to add the load address. | 
|  | if (!Constant) | 
|  | AddDyn({Target->RelativeRel, &C, Offset, true, &Body, Addend}); | 
|  |  | 
|  | // If the produced value is a constant, we just remember to write it | 
|  | // when outputting this section. We also have to do it if the format | 
|  | // uses Elf_Rel, since in that case the written value is the addend. | 
|  | if (Constant || !RelTy::IsRela) | 
|  | C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); | 
|  | } else { | 
|  | // We don't know anything about the finaly symbol. Just ask the dynamic | 
|  | // linker to handle the relocation for us. | 
|  | if (!Target->isPicRel(Type)) | 
|  | error(C.getLocation<ELFT>(Offset) + ": relocation " + toString(Type) + | 
|  | " cannot be used against shared object; recompile with -fPIC."); | 
|  | AddDyn({Target->getDynRel(Type), &C, Offset, false, &Body, Addend}); | 
|  |  | 
|  | // MIPS ABI turns using of GOT and dynamic relocations inside out. | 
|  | // While regular ABI uses dynamic relocations to fill up GOT entries | 
|  | // MIPS ABI requires dynamic linker to fills up GOT entries using | 
|  | // specially sorted dynamic symbol table. This affects even dynamic | 
|  | // relocations against symbols which do not require GOT entries | 
|  | // creation explicitly, i.e. do not have any GOT-relocations. So if | 
|  | // a preemptible symbol has a dynamic relocation we anyway have | 
|  | // to create a GOT entry for it. | 
|  | // If a non-preemptible symbol has a dynamic relocation against it, | 
|  | // dynamic linker takes it st_value, adds offset and writes down | 
|  | // result of the dynamic relocation. In case of preemptible symbol | 
|  | // dynamic linker performs symbol resolution, writes the symbol value | 
|  | // to the GOT entry and reads the GOT entry when it needs to perform | 
|  | // a dynamic relocation. | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 | 
|  | if (Config->EMachine == EM_MIPS) | 
|  | In<ELFT>::MipsGot->addEntry(Body, Addend, Expr); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // At this point we are done with the relocated position. Some relocations | 
|  | // also require us to create a got or plt entry. | 
|  |  | 
|  | // If a relocation needs PLT, we create a PLT and a GOT slot for the symbol. | 
|  | if (needsPlt(Expr)) { | 
|  | if (Body.isInPlt()) | 
|  | continue; | 
|  |  | 
|  | if (Body.isGnuIFunc() && !Preemptible) { | 
|  | In<ELFT>::Iplt->addEntry(Body); | 
|  | In<ELFT>::IgotPlt->addEntry(Body); | 
|  | In<ELFT>::RelaIplt->addReloc({Target->IRelativeRel, In<ELFT>::IgotPlt, | 
|  | Body.getGotPltOffset<ELFT>(), | 
|  | !Preemptible, &Body, 0}); | 
|  | } else { | 
|  | In<ELFT>::Plt->addEntry(Body); | 
|  | In<ELFT>::GotPlt->addEntry(Body); | 
|  | In<ELFT>::RelaPlt->addReloc({Target->PltRel, In<ELFT>::GotPlt, | 
|  | Body.getGotPltOffset<ELFT>(), !Preemptible, | 
|  | &Body, 0}); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (refersToGotEntry(Expr)) { | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | // MIPS ABI has special rules to process GOT entries and doesn't | 
|  | // require relocation entries for them. A special case is TLS | 
|  | // relocations. In that case dynamic loader applies dynamic | 
|  | // relocations to initialize TLS GOT entries. | 
|  | // See "Global Offset Table" in Chapter 5 in the following document | 
|  | // for detailed description: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | In<ELFT>::MipsGot->addEntry(Body, Addend, Expr); | 
|  | if (Body.isTls() && Body.isPreemptible()) | 
|  | AddDyn({Target->TlsGotRel, In<ELFT>::MipsGot, | 
|  | Body.getGotOffset<ELFT>(), false, &Body, 0}); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Body.isInGot()) | 
|  | continue; | 
|  |  | 
|  | In<ELFT>::Got->addEntry(Body); | 
|  | uintX_t Off = Body.getGotOffset<ELFT>(); | 
|  | uint32_t DynType; | 
|  | RelExpr GotRE = R_ABS; | 
|  | if (Body.isTls()) { | 
|  | DynType = Target->TlsGotRel; | 
|  | GotRE = R_TLS; | 
|  | } else if (!Preemptible && Config->pic() && !isAbsolute<ELFT>(Body)) | 
|  | DynType = Target->RelativeRel; | 
|  | else | 
|  | DynType = Target->GotRel; | 
|  |  | 
|  | // FIXME: this logic is almost duplicated above. | 
|  | bool Constant = | 
|  | !Preemptible && !(Config->pic() && !isAbsolute<ELFT>(Body)); | 
|  | if (!Constant) | 
|  | AddDyn({DynType, In<ELFT>::Got, Off, !Preemptible, &Body, 0}); | 
|  | if (Constant || (!RelTy::IsRela && !Preemptible)) | 
|  | In<ELFT>::Got->Relocations.push_back({GotRE, DynType, Off, 0, &Body}); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void scanRelocations(InputSectionBase &S) { | 
|  | if (S.AreRelocsRela) | 
|  | scanRelocs<ELFT>(S, S.relas<ELFT>()); | 
|  | else | 
|  | scanRelocs<ELFT>(S, S.rels<ELFT>()); | 
|  | } | 
|  |  | 
|  | // Insert the Thunks for OutputSection OS into their designated place | 
|  | // in the Sections vector, and recalculate the InputSection output section | 
|  | // offsets. | 
|  | // This may invalidate any output section offsets stored outside of InputSection | 
|  | template <class ELFT> | 
|  | static void mergeThunks(OutputSection *OS, | 
|  | std::vector<ThunkSection<ELFT> *> &Thunks) { | 
|  | // Order Thunks in ascending OutSecOff | 
|  | auto ThunkCmp = [](const ThunkSection<ELFT> *A, const ThunkSection<ELFT> *B) { | 
|  | return A->OutSecOff < B->OutSecOff; | 
|  | }; | 
|  | std::stable_sort(Thunks.begin(), Thunks.end(), ThunkCmp); | 
|  |  | 
|  | // Merge sorted vectors of Thunks and InputSections by OutSecOff | 
|  | std::vector<InputSection *> Tmp; | 
|  | Tmp.reserve(OS->Sections.size() + Thunks.size()); | 
|  | auto MergeCmp = [](const InputSection *A, const InputSection *B) { | 
|  | // std::merge requires a strict weak ordering. | 
|  | if (A->OutSecOff < B->OutSecOff) | 
|  | return true; | 
|  | if (A->OutSecOff == B->OutSecOff) | 
|  | // Check if Thunk is immediately before any specific Target InputSection | 
|  | // for example Mips LA25 Thunks. | 
|  | if (auto *TA = dyn_cast<ThunkSection<ELFT>>(A)) | 
|  | if (TA && TA->getTargetInputSection() == B) | 
|  | return true; | 
|  | return false; | 
|  | }; | 
|  | std::merge(OS->Sections.begin(), OS->Sections.end(), Thunks.begin(), | 
|  | Thunks.end(), std::back_inserter(Tmp), MergeCmp); | 
|  | OS->Sections = std::move(Tmp); | 
|  | OS->Size = 0; | 
|  | OS->assignOffsets<ELFT>(); | 
|  | } | 
|  |  | 
|  | // Process all relocations from the InputSections that have been assigned | 
|  | // to OutputSections and redirect through Thunks if needed. | 
|  | // | 
|  | // createThunks must be called after scanRelocs has created the Relocations for | 
|  | // each InputSection. It must be called before the static symbol table is | 
|  | // finalized. If any Thunks are added to an OutputSection the output section | 
|  | // offsets of the InputSections will change. | 
|  | // | 
|  | // FIXME: All Thunks are assumed to be in range of the relocation. Range | 
|  | // extension Thunks are not yet supported. | 
|  | template <class ELFT> | 
|  | void createThunks(ArrayRef<OutputSection *> OutputSections) { | 
|  | // Track Symbols that already have a Thunk | 
|  | DenseMap<SymbolBody *, Thunk<ELFT> *> ThunkedSymbols; | 
|  | // Track InputSections that have a ThunkSection placed in front | 
|  | DenseMap<InputSection *, ThunkSection<ELFT> *> ThunkedSections; | 
|  | // Track the ThunksSections that need to be inserted into an OutputSection | 
|  | std::map<OutputSection *, std::vector<ThunkSection<ELFT> *>> ThunkSections; | 
|  |  | 
|  | // Find or create a Thunk for Body for relocation Type | 
|  | auto GetThunk = [&](SymbolBody &Body, uint32_t Type) { | 
|  | auto res = ThunkedSymbols.insert({&Body, nullptr}); | 
|  | if (res.second == true) | 
|  | res.first->second = addThunk<ELFT>(Type, Body); | 
|  | return std::make_pair(res.first->second, res.second); | 
|  | }; | 
|  |  | 
|  | // Find or create a ThunkSection to be placed immediately before IS | 
|  | auto GetISThunkSec = [&](InputSection *IS, OutputSection *OS) { | 
|  | ThunkSection<ELFT> *TS = ThunkedSections.lookup(IS); | 
|  | if (TS) | 
|  | return TS; | 
|  | auto *TOS = cast<OutputSection>(IS->OutSec); | 
|  | TS = make<ThunkSection<ELFT>>(TOS, IS->OutSecOff); | 
|  | ThunkSections[OS].push_back(TS); | 
|  | ThunkedSections[IS] = TS; | 
|  | return TS; | 
|  | }; | 
|  | // Find or create a ThunkSection to be placed as last executable section in | 
|  | // OS. | 
|  | auto GetOSThunkSec = [&](ThunkSection<ELFT> *&TS, OutputSection *OS) { | 
|  | if (TS == nullptr) { | 
|  | uint32_t Off = 0; | 
|  | for (auto *IS : OS->Sections) { | 
|  | Off = IS->OutSecOff + IS->template getSize<ELFT>(); | 
|  | if ((IS->Flags & SHF_EXECINSTR) == 0) | 
|  | break; | 
|  | } | 
|  | TS = make<ThunkSection<ELFT>>(OS, Off); | 
|  | ThunkSections[OS].push_back(TS); | 
|  | } | 
|  | return TS; | 
|  | }; | 
|  | // Create all the Thunks and insert them into synthetic ThunkSections. The | 
|  | // ThunkSections are later inserted back into the OutputSection. | 
|  |  | 
|  | // We separate the creation of ThunkSections from the insertion of the | 
|  | // ThunkSections back into the OutputSection as ThunkSections are not always | 
|  | // inserted into the same OutputSection as the caller. | 
|  | for (OutputSection *Base : OutputSections) { | 
|  | auto *OS = dyn_cast<OutputSection>(Base); | 
|  | if (OS == nullptr) | 
|  | continue; | 
|  |  | 
|  | ThunkSection<ELFT> *OSTS = nullptr; | 
|  | for (InputSection *IS : OS->Sections) { | 
|  | for (Relocation &Rel : IS->Relocations) { | 
|  | SymbolBody &Body = *Rel.Sym; | 
|  | if (Target->needsThunk(Rel.Expr, Rel.Type, IS->template getFile<ELFT>(), | 
|  | Body)) { | 
|  | Thunk<ELFT> *T; | 
|  | bool IsNew; | 
|  | std::tie(T, IsNew) = GetThunk(Body, Rel.Type); | 
|  | if (IsNew) { | 
|  | // Find or create a ThunkSection for the new Thunk | 
|  | ThunkSection<ELFT> *TS; | 
|  | if (auto *TIS = T->getTargetInputSection()) | 
|  | TS = GetISThunkSec(TIS, OS); | 
|  | else | 
|  | TS = GetOSThunkSec(OSTS, OS); | 
|  | TS->addThunk(T); | 
|  | } | 
|  | // Redirect relocation to Thunk, we never go via the PLT to a Thunk | 
|  | Rel.Sym = T->ThunkSym; | 
|  | Rel.Expr = fromPlt(Rel.Expr); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Merge all created synthetic ThunkSections back into OutputSection | 
|  | for (auto &KV : ThunkSections) | 
|  | mergeThunks<ELFT>(KV.first, KV.second); | 
|  | } | 
|  |  | 
|  | template void scanRelocations<ELF32LE>(InputSectionBase &); | 
|  | template void scanRelocations<ELF32BE>(InputSectionBase &); | 
|  | template void scanRelocations<ELF64LE>(InputSectionBase &); | 
|  | template void scanRelocations<ELF64BE>(InputSectionBase &); | 
|  |  | 
|  | template void createThunks<ELF32LE>(ArrayRef<OutputSection *>); | 
|  | template void createThunks<ELF32BE>(ArrayRef<OutputSection *>); | 
|  | template void createThunks<ELF64LE>(ArrayRef<OutputSection *>); | 
|  | template void createThunks<ELF64BE>(ArrayRef<OutputSection *>); | 
|  | } | 
|  | } |