|  | //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass munges the code in the input function to better prepare it for | 
|  | // SelectionDAG-based code generation. This works around limitations in it's | 
|  | // basic-block-at-a-time approach. It should eventually be removed. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/PointerIntPair.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/BlockFrequencyInfo.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/ProfileSummaryInfo.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Statepoint.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/IR/ValueMap.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/BlockFrequency.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/BypassSlowDivision.h" | 
|  | #include "llvm/Transforms/Utils/SimplifyLibCalls.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <memory> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "codegenprepare" | 
|  |  | 
|  | STATISTIC(NumBlocksElim, "Number of blocks eliminated"); | 
|  | STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated"); | 
|  | STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts"); | 
|  | STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " | 
|  | "sunken Cmps"); | 
|  | STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " | 
|  | "of sunken Casts"); | 
|  | STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " | 
|  | "computations were sunk"); | 
|  | STATISTIC(NumMemoryInstsPhiCreated, | 
|  | "Number of phis created when address " | 
|  | "computations were sunk to memory instructions"); | 
|  | STATISTIC(NumMemoryInstsSelectCreated, | 
|  | "Number of select created when address " | 
|  | "computations were sunk to memory instructions"); | 
|  | STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads"); | 
|  | STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized"); | 
|  | STATISTIC(NumAndsAdded, | 
|  | "Number of and mask instructions added to form ext loads"); | 
|  | STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); | 
|  | STATISTIC(NumRetsDup,    "Number of return instructions duplicated"); | 
|  | STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); | 
|  | STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); | 
|  | STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); | 
|  |  | 
|  | static cl::opt<bool> DisableBranchOpts( | 
|  | "disable-cgp-branch-opts", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable branch optimizations in CodeGenPrepare")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable GC optimizations in CodeGenPrepare")); | 
|  |  | 
|  | static cl::opt<bool> DisableSelectToBranch( | 
|  | "disable-cgp-select2branch", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable select to branch conversion.")); | 
|  |  | 
|  | static cl::opt<bool> AddrSinkUsingGEPs( | 
|  | "addr-sink-using-gep", cl::Hidden, cl::init(true), | 
|  | cl::desc("Address sinking in CGP using GEPs.")); | 
|  |  | 
|  | static cl::opt<bool> EnableAndCmpSinking( | 
|  | "enable-andcmp-sinking", cl::Hidden, cl::init(true), | 
|  | cl::desc("Enable sinkinig and/cmp into branches.")); | 
|  |  | 
|  | static cl::opt<bool> DisableStoreExtract( | 
|  | "disable-cgp-store-extract", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); | 
|  |  | 
|  | static cl::opt<bool> StressStoreExtract( | 
|  | "stress-cgp-store-extract", cl::Hidden, cl::init(false), | 
|  | cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); | 
|  |  | 
|  | static cl::opt<bool> DisableExtLdPromotion( | 
|  | "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " | 
|  | "CodeGenPrepare")); | 
|  |  | 
|  | static cl::opt<bool> StressExtLdPromotion( | 
|  | "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), | 
|  | cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " | 
|  | "optimization in CodeGenPrepare")); | 
|  |  | 
|  | static cl::opt<bool> DisablePreheaderProtect( | 
|  | "disable-preheader-prot", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable protection against removing loop preheaders")); | 
|  |  | 
|  | static cl::opt<bool> ProfileGuidedSectionPrefix( | 
|  | "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, | 
|  | cl::desc("Use profile info to add section prefix for hot/cold functions")); | 
|  |  | 
|  | static cl::opt<unsigned> FreqRatioToSkipMerge( | 
|  | "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), | 
|  | cl::desc("Skip merging empty blocks if (frequency of empty block) / " | 
|  | "(frequency of destination block) is greater than this ratio")); | 
|  |  | 
|  | static cl::opt<bool> ForceSplitStore( | 
|  | "force-split-store", cl::Hidden, cl::init(false), | 
|  | cl::desc("Force store splitting no matter what the target query says.")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, | 
|  | cl::desc("Enable merging of redundant sexts when one is dominating" | 
|  | " the other."), cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> DisableComplexAddrModes( | 
|  | "disable-complex-addr-modes", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disables combining addressing modes with different parts " | 
|  | "in optimizeMemoryInst.")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), | 
|  | cl::desc("Allow creation of Phis in Address sinking.")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), | 
|  | cl::desc("Allow creation of selects in Address sinking.")); | 
|  |  | 
|  | static cl::opt<bool> AddrSinkCombineBaseReg( | 
|  | "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), | 
|  | cl::desc("Allow combining of BaseReg field in Address sinking.")); | 
|  |  | 
|  | static cl::opt<bool> AddrSinkCombineBaseGV( | 
|  | "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), | 
|  | cl::desc("Allow combining of BaseGV field in Address sinking.")); | 
|  |  | 
|  | static cl::opt<bool> AddrSinkCombineBaseOffs( | 
|  | "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), | 
|  | cl::desc("Allow combining of BaseOffs field in Address sinking.")); | 
|  |  | 
|  | static cl::opt<bool> AddrSinkCombineScaledReg( | 
|  | "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), | 
|  | cl::desc("Allow combining of ScaledReg field in Address sinking.")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, | 
|  | cl::init(true), | 
|  | cl::desc("Enable splitting large offset of GEP.")); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | enum ExtType { | 
|  | ZeroExtension,   // Zero extension has been seen. | 
|  | SignExtension,   // Sign extension has been seen. | 
|  | BothExtension    // This extension type is used if we saw sext after | 
|  | // ZeroExtension had been set, or if we saw zext after | 
|  | // SignExtension had been set. It makes the type | 
|  | // information of a promoted instruction invalid. | 
|  | }; | 
|  |  | 
|  | using SetOfInstrs = SmallPtrSet<Instruction *, 16>; | 
|  | using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; | 
|  | using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; | 
|  | using SExts = SmallVector<Instruction *, 16>; | 
|  | using ValueToSExts = DenseMap<Value *, SExts>; | 
|  |  | 
|  | class TypePromotionTransaction; | 
|  |  | 
|  | class CodeGenPrepare : public FunctionPass { | 
|  | const TargetMachine *TM = nullptr; | 
|  | const TargetSubtargetInfo *SubtargetInfo; | 
|  | const TargetLowering *TLI = nullptr; | 
|  | const TargetRegisterInfo *TRI; | 
|  | const TargetTransformInfo *TTI = nullptr; | 
|  | const TargetLibraryInfo *TLInfo; | 
|  | const LoopInfo *LI; | 
|  | std::unique_ptr<BlockFrequencyInfo> BFI; | 
|  | std::unique_ptr<BranchProbabilityInfo> BPI; | 
|  |  | 
|  | /// As we scan instructions optimizing them, this is the next instruction | 
|  | /// to optimize. Transforms that can invalidate this should update it. | 
|  | BasicBlock::iterator CurInstIterator; | 
|  |  | 
|  | /// Keeps track of non-local addresses that have been sunk into a block. | 
|  | /// This allows us to avoid inserting duplicate code for blocks with | 
|  | /// multiple load/stores of the same address. The usage of WeakTrackingVH | 
|  | /// enables SunkAddrs to be treated as a cache whose entries can be | 
|  | /// invalidated if a sunken address computation has been erased. | 
|  | ValueMap<Value*, WeakTrackingVH> SunkAddrs; | 
|  |  | 
|  | /// Keeps track of all instructions inserted for the current function. | 
|  | SetOfInstrs InsertedInsts; | 
|  |  | 
|  | /// Keeps track of the type of the related instruction before their | 
|  | /// promotion for the current function. | 
|  | InstrToOrigTy PromotedInsts; | 
|  |  | 
|  | /// Keep track of instructions removed during promotion. | 
|  | SetOfInstrs RemovedInsts; | 
|  |  | 
|  | /// Keep track of sext chains based on their initial value. | 
|  | DenseMap<Value *, Instruction *> SeenChainsForSExt; | 
|  |  | 
|  | /// Keep track of GEPs accessing the same data structures such as structs or | 
|  | /// arrays that are candidates to be split later because of their large | 
|  | /// size. | 
|  | MapVector< | 
|  | AssertingVH<Value>, | 
|  | SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> | 
|  | LargeOffsetGEPMap; | 
|  |  | 
|  | /// Keep track of new GEP base after splitting the GEPs having large offset. | 
|  | SmallSet<AssertingVH<Value>, 2> NewGEPBases; | 
|  |  | 
|  | /// Map serial numbers to Large offset GEPs. | 
|  | DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; | 
|  |  | 
|  | /// Keep track of SExt promoted. | 
|  | ValueToSExts ValToSExtendedUses; | 
|  |  | 
|  | /// True if CFG is modified in any way. | 
|  | bool ModifiedDT; | 
|  |  | 
|  | /// True if optimizing for size. | 
|  | bool OptSize; | 
|  |  | 
|  | /// DataLayout for the Function being processed. | 
|  | const DataLayout *DL = nullptr; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  |  | 
|  | CodeGenPrepare() : FunctionPass(ID) { | 
|  | initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | StringRef getPassName() const override { return "CodeGen Prepare"; } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | // FIXME: When we can selectively preserve passes, preserve the domtree. | 
|  | AU.addRequired<ProfileSummaryInfoWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename F> | 
|  | void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { | 
|  | // Substituting can cause recursive simplifications, which can invalidate | 
|  | // our iterator.  Use a WeakTrackingVH to hold onto it in case this | 
|  | // happens. | 
|  | Value *CurValue = &*CurInstIterator; | 
|  | WeakTrackingVH IterHandle(CurValue); | 
|  |  | 
|  | f(); | 
|  |  | 
|  | // If the iterator instruction was recursively deleted, start over at the | 
|  | // start of the block. | 
|  | if (IterHandle != CurValue) { | 
|  | CurInstIterator = BB->begin(); | 
|  | SunkAddrs.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool eliminateFallThrough(Function &F); | 
|  | bool eliminateMostlyEmptyBlocks(Function &F); | 
|  | BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); | 
|  | bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; | 
|  | void eliminateMostlyEmptyBlock(BasicBlock *BB); | 
|  | bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, | 
|  | bool isPreheader); | 
|  | bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); | 
|  | bool optimizeInst(Instruction *I, bool &ModifiedDT); | 
|  | bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, | 
|  | Type *AccessTy, unsigned AddrSpace); | 
|  | bool optimizeInlineAsmInst(CallInst *CS); | 
|  | bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); | 
|  | bool optimizeExt(Instruction *&I); | 
|  | bool optimizeExtUses(Instruction *I); | 
|  | bool optimizeLoadExt(LoadInst *Load); | 
|  | bool optimizeSelectInst(SelectInst *SI); | 
|  | bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); | 
|  | bool optimizeSwitchInst(SwitchInst *SI); | 
|  | bool optimizeExtractElementInst(Instruction *Inst); | 
|  | bool dupRetToEnableTailCallOpts(BasicBlock *BB); | 
|  | bool placeDbgValues(Function &F); | 
|  | bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, | 
|  | LoadInst *&LI, Instruction *&Inst, bool HasPromoted); | 
|  | bool tryToPromoteExts(TypePromotionTransaction &TPT, | 
|  | const SmallVectorImpl<Instruction *> &Exts, | 
|  | SmallVectorImpl<Instruction *> &ProfitablyMovedExts, | 
|  | unsigned CreatedInstsCost = 0); | 
|  | bool mergeSExts(Function &F); | 
|  | bool splitLargeGEPOffsets(); | 
|  | bool performAddressTypePromotion( | 
|  | Instruction *&Inst, | 
|  | bool AllowPromotionWithoutCommonHeader, | 
|  | bool HasPromoted, TypePromotionTransaction &TPT, | 
|  | SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); | 
|  | bool splitBranchCondition(Function &F); | 
|  | bool simplifyOffsetableRelocate(Instruction &I); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char CodeGenPrepare::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, | 
|  | "Optimize for code generation", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, | 
|  | "Optimize for code generation", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } | 
|  |  | 
|  | bool CodeGenPrepare::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | DL = &F.getParent()->getDataLayout(); | 
|  |  | 
|  | bool EverMadeChange = false; | 
|  | // Clear per function information. | 
|  | InsertedInsts.clear(); | 
|  | PromotedInsts.clear(); | 
|  |  | 
|  | ModifiedDT = false; | 
|  | if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { | 
|  | TM = &TPC->getTM<TargetMachine>(); | 
|  | SubtargetInfo = TM->getSubtargetImpl(F); | 
|  | TLI = SubtargetInfo->getTargetLowering(); | 
|  | TRI = SubtargetInfo->getRegisterInfo(); | 
|  | } | 
|  | TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  | TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | 
|  | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | BPI.reset(new BranchProbabilityInfo(F, *LI)); | 
|  | BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); | 
|  | OptSize = F.optForSize(); | 
|  |  | 
|  | ProfileSummaryInfo *PSI = | 
|  | &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); | 
|  | if (ProfileGuidedSectionPrefix) { | 
|  | if (PSI->isFunctionHotInCallGraph(&F, *BFI)) | 
|  | F.setSectionPrefix(".hot"); | 
|  | else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) | 
|  | F.setSectionPrefix(".unlikely"); | 
|  | } | 
|  |  | 
|  | /// This optimization identifies DIV instructions that can be | 
|  | /// profitably bypassed and carried out with a shorter, faster divide. | 
|  | if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && | 
|  | TLI->isSlowDivBypassed()) { | 
|  | const DenseMap<unsigned int, unsigned int> &BypassWidths = | 
|  | TLI->getBypassSlowDivWidths(); | 
|  | BasicBlock* BB = &*F.begin(); | 
|  | while (BB != nullptr) { | 
|  | // bypassSlowDivision may create new BBs, but we don't want to reapply the | 
|  | // optimization to those blocks. | 
|  | BasicBlock* Next = BB->getNextNode(); | 
|  | EverMadeChange |= bypassSlowDivision(BB, BypassWidths); | 
|  | BB = Next; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eliminate blocks that contain only PHI nodes and an | 
|  | // unconditional branch. | 
|  | EverMadeChange |= eliminateMostlyEmptyBlocks(F); | 
|  |  | 
|  | if (!DisableBranchOpts) | 
|  | EverMadeChange |= splitBranchCondition(F); | 
|  |  | 
|  | // Split some critical edges where one of the sources is an indirect branch, | 
|  | // to help generate sane code for PHIs involving such edges. | 
|  | EverMadeChange |= SplitIndirectBrCriticalEdges(F); | 
|  |  | 
|  | bool MadeChange = true; | 
|  | while (MadeChange) { | 
|  | MadeChange = false; | 
|  | for (Function::iterator I = F.begin(); I != F.end(); ) { | 
|  | BasicBlock *BB = &*I++; | 
|  | bool ModifiedDTOnIteration = false; | 
|  | MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); | 
|  |  | 
|  | // Restart BB iteration if the dominator tree of the Function was changed | 
|  | if (ModifiedDTOnIteration) | 
|  | break; | 
|  | } | 
|  | if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) | 
|  | MadeChange |= mergeSExts(F); | 
|  | if (!LargeOffsetGEPMap.empty()) | 
|  | MadeChange |= splitLargeGEPOffsets(); | 
|  |  | 
|  | // Really free removed instructions during promotion. | 
|  | for (Instruction *I : RemovedInsts) | 
|  | I->deleteValue(); | 
|  |  | 
|  | EverMadeChange |= MadeChange; | 
|  | SeenChainsForSExt.clear(); | 
|  | ValToSExtendedUses.clear(); | 
|  | RemovedInsts.clear(); | 
|  | LargeOffsetGEPMap.clear(); | 
|  | LargeOffsetGEPID.clear(); | 
|  | } | 
|  |  | 
|  | SunkAddrs.clear(); | 
|  |  | 
|  | if (!DisableBranchOpts) { | 
|  | MadeChange = false; | 
|  | // Use a set vector to get deterministic iteration order. The order the | 
|  | // blocks are removed may affect whether or not PHI nodes in successors | 
|  | // are removed. | 
|  | SmallSetVector<BasicBlock*, 8> WorkList; | 
|  | for (BasicBlock &BB : F) { | 
|  | SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); | 
|  | MadeChange |= ConstantFoldTerminator(&BB, true); | 
|  | if (!MadeChange) continue; | 
|  |  | 
|  | for (SmallVectorImpl<BasicBlock*>::iterator | 
|  | II = Successors.begin(), IE = Successors.end(); II != IE; ++II) | 
|  | if (pred_begin(*II) == pred_end(*II)) | 
|  | WorkList.insert(*II); | 
|  | } | 
|  |  | 
|  | // Delete the dead blocks and any of their dead successors. | 
|  | MadeChange |= !WorkList.empty(); | 
|  | while (!WorkList.empty()) { | 
|  | BasicBlock *BB = WorkList.pop_back_val(); | 
|  | SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); | 
|  |  | 
|  | DeleteDeadBlock(BB); | 
|  |  | 
|  | for (SmallVectorImpl<BasicBlock*>::iterator | 
|  | II = Successors.begin(), IE = Successors.end(); II != IE; ++II) | 
|  | if (pred_begin(*II) == pred_end(*II)) | 
|  | WorkList.insert(*II); | 
|  | } | 
|  |  | 
|  | // Merge pairs of basic blocks with unconditional branches, connected by | 
|  | // a single edge. | 
|  | if (EverMadeChange || MadeChange) | 
|  | MadeChange |= eliminateFallThrough(F); | 
|  |  | 
|  | EverMadeChange |= MadeChange; | 
|  | } | 
|  |  | 
|  | if (!DisableGCOpts) { | 
|  | SmallVector<Instruction *, 2> Statepoints; | 
|  | for (BasicBlock &BB : F) | 
|  | for (Instruction &I : BB) | 
|  | if (isStatepoint(I)) | 
|  | Statepoints.push_back(&I); | 
|  | for (auto &I : Statepoints) | 
|  | EverMadeChange |= simplifyOffsetableRelocate(*I); | 
|  | } | 
|  |  | 
|  | // Do this last to clean up use-before-def scenarios introduced by other | 
|  | // preparatory transforms. | 
|  | EverMadeChange |= placeDbgValues(F); | 
|  |  | 
|  | return EverMadeChange; | 
|  | } | 
|  |  | 
|  | /// Merge basic blocks which are connected by a single edge, where one of the | 
|  | /// basic blocks has a single successor pointing to the other basic block, | 
|  | /// which has a single predecessor. | 
|  | bool CodeGenPrepare::eliminateFallThrough(Function &F) { | 
|  | bool Changed = false; | 
|  | // Scan all of the blocks in the function, except for the entry block. | 
|  | // Use a temporary array to avoid iterator being invalidated when | 
|  | // deleting blocks. | 
|  | SmallVector<WeakTrackingVH, 16> Blocks; | 
|  | for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) | 
|  | Blocks.push_back(&Block); | 
|  |  | 
|  | for (auto &Block : Blocks) { | 
|  | auto *BB = cast_or_null<BasicBlock>(Block); | 
|  | if (!BB) | 
|  | continue; | 
|  | // If the destination block has a single pred, then this is a trivial | 
|  | // edge, just collapse it. | 
|  | BasicBlock *SinglePred = BB->getSinglePredecessor(); | 
|  |  | 
|  | // Don't merge if BB's address is taken. | 
|  | if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; | 
|  |  | 
|  | BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); | 
|  | if (Term && !Term->isConditional()) { | 
|  | Changed = true; | 
|  | LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); | 
|  |  | 
|  | // Merge BB into SinglePred and delete it. | 
|  | MergeBlockIntoPredecessor(BB); | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Find a destination block from BB if BB is mergeable empty block. | 
|  | BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { | 
|  | // If this block doesn't end with an uncond branch, ignore it. | 
|  | BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); | 
|  | if (!BI || !BI->isUnconditional()) | 
|  | return nullptr; | 
|  |  | 
|  | // If the instruction before the branch (skipping debug info) isn't a phi | 
|  | // node, then other stuff is happening here. | 
|  | BasicBlock::iterator BBI = BI->getIterator(); | 
|  | if (BBI != BB->begin()) { | 
|  | --BBI; | 
|  | while (isa<DbgInfoIntrinsic>(BBI)) { | 
|  | if (BBI == BB->begin()) | 
|  | break; | 
|  | --BBI; | 
|  | } | 
|  | if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Do not break infinite loops. | 
|  | BasicBlock *DestBB = BI->getSuccessor(0); | 
|  | if (DestBB == BB) | 
|  | return nullptr; | 
|  |  | 
|  | if (!canMergeBlocks(BB, DestBB)) | 
|  | DestBB = nullptr; | 
|  |  | 
|  | return DestBB; | 
|  | } | 
|  |  | 
|  | /// Eliminate blocks that contain only PHI nodes, debug info directives, and an | 
|  | /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split | 
|  | /// edges in ways that are non-optimal for isel. Start by eliminating these | 
|  | /// blocks so we can split them the way we want them. | 
|  | bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { | 
|  | SmallPtrSet<BasicBlock *, 16> Preheaders; | 
|  | SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); | 
|  | while (!LoopList.empty()) { | 
|  | Loop *L = LoopList.pop_back_val(); | 
|  | LoopList.insert(LoopList.end(), L->begin(), L->end()); | 
|  | if (BasicBlock *Preheader = L->getLoopPreheader()) | 
|  | Preheaders.insert(Preheader); | 
|  | } | 
|  |  | 
|  | bool MadeChange = false; | 
|  | // Copy blocks into a temporary array to avoid iterator invalidation issues | 
|  | // as we remove them. | 
|  | // Note that this intentionally skips the entry block. | 
|  | SmallVector<WeakTrackingVH, 16> Blocks; | 
|  | for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) | 
|  | Blocks.push_back(&Block); | 
|  |  | 
|  | for (auto &Block : Blocks) { | 
|  | BasicBlock *BB = cast_or_null<BasicBlock>(Block); | 
|  | if (!BB) | 
|  | continue; | 
|  | BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); | 
|  | if (!DestBB || | 
|  | !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) | 
|  | continue; | 
|  |  | 
|  | eliminateMostlyEmptyBlock(BB); | 
|  | MadeChange = true; | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, | 
|  | BasicBlock *DestBB, | 
|  | bool isPreheader) { | 
|  | // Do not delete loop preheaders if doing so would create a critical edge. | 
|  | // Loop preheaders can be good locations to spill registers. If the | 
|  | // preheader is deleted and we create a critical edge, registers may be | 
|  | // spilled in the loop body instead. | 
|  | if (!DisablePreheaderProtect && isPreheader && | 
|  | !(BB->getSinglePredecessor() && | 
|  | BB->getSinglePredecessor()->getSingleSuccessor())) | 
|  | return false; | 
|  |  | 
|  | // Try to skip merging if the unique predecessor of BB is terminated by a | 
|  | // switch or indirect branch instruction, and BB is used as an incoming block | 
|  | // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to | 
|  | // add COPY instructions in the predecessor of BB instead of BB (if it is not | 
|  | // merged). Note that the critical edge created by merging such blocks wont be | 
|  | // split in MachineSink because the jump table is not analyzable. By keeping | 
|  | // such empty block (BB), ISel will place COPY instructions in BB, not in the | 
|  | // predecessor of BB. | 
|  | BasicBlock *Pred = BB->getUniquePredecessor(); | 
|  | if (!Pred || | 
|  | !(isa<SwitchInst>(Pred->getTerminator()) || | 
|  | isa<IndirectBrInst>(Pred->getTerminator()))) | 
|  | return true; | 
|  |  | 
|  | if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) | 
|  | return true; | 
|  |  | 
|  | // We use a simple cost heuristic which determine skipping merging is | 
|  | // profitable if the cost of skipping merging is less than the cost of | 
|  | // merging : Cost(skipping merging) < Cost(merging BB), where the | 
|  | // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and | 
|  | // the Cost(merging BB) is Freq(Pred) * Cost(Copy). | 
|  | // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : | 
|  | //   Freq(Pred) / Freq(BB) > 2. | 
|  | // Note that if there are multiple empty blocks sharing the same incoming | 
|  | // value for the PHIs in the DestBB, we consider them together. In such | 
|  | // case, Cost(merging BB) will be the sum of their frequencies. | 
|  |  | 
|  | if (!isa<PHINode>(DestBB->begin())) | 
|  | return true; | 
|  |  | 
|  | SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; | 
|  |  | 
|  | // Find all other incoming blocks from which incoming values of all PHIs in | 
|  | // DestBB are the same as the ones from BB. | 
|  | for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; | 
|  | ++PI) { | 
|  | BasicBlock *DestBBPred = *PI; | 
|  | if (DestBBPred == BB) | 
|  | continue; | 
|  |  | 
|  | if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { | 
|  | return DestPN.getIncomingValueForBlock(BB) == | 
|  | DestPN.getIncomingValueForBlock(DestBBPred); | 
|  | })) | 
|  | SameIncomingValueBBs.insert(DestBBPred); | 
|  | } | 
|  |  | 
|  | // See if all BB's incoming values are same as the value from Pred. In this | 
|  | // case, no reason to skip merging because COPYs are expected to be place in | 
|  | // Pred already. | 
|  | if (SameIncomingValueBBs.count(Pred)) | 
|  | return true; | 
|  |  | 
|  | BlockFrequency PredFreq = BFI->getBlockFreq(Pred); | 
|  | BlockFrequency BBFreq = BFI->getBlockFreq(BB); | 
|  |  | 
|  | for (auto SameValueBB : SameIncomingValueBBs) | 
|  | if (SameValueBB->getUniquePredecessor() == Pred && | 
|  | DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) | 
|  | BBFreq += BFI->getBlockFreq(SameValueBB); | 
|  |  | 
|  | return PredFreq.getFrequency() <= | 
|  | BBFreq.getFrequency() * FreqRatioToSkipMerge; | 
|  | } | 
|  |  | 
|  | /// Return true if we can merge BB into DestBB if there is a single | 
|  | /// unconditional branch between them, and BB contains no other non-phi | 
|  | /// instructions. | 
|  | bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, | 
|  | const BasicBlock *DestBB) const { | 
|  | // We only want to eliminate blocks whose phi nodes are used by phi nodes in | 
|  | // the successor.  If there are more complex condition (e.g. preheaders), | 
|  | // don't mess around with them. | 
|  | for (const PHINode &PN : BB->phis()) { | 
|  | for (const User *U : PN.users()) { | 
|  | const Instruction *UI = cast<Instruction>(U); | 
|  | if (UI->getParent() != DestBB || !isa<PHINode>(UI)) | 
|  | return false; | 
|  | // If User is inside DestBB block and it is a PHINode then check | 
|  | // incoming value. If incoming value is not from BB then this is | 
|  | // a complex condition (e.g. preheaders) we want to avoid here. | 
|  | if (UI->getParent() == DestBB) { | 
|  | if (const PHINode *UPN = dyn_cast<PHINode>(UI)) | 
|  | for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { | 
|  | Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); | 
|  | if (Insn && Insn->getParent() == BB && | 
|  | Insn->getParent() != UPN->getIncomingBlock(I)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If BB and DestBB contain any common predecessors, then the phi nodes in BB | 
|  | // and DestBB may have conflicting incoming values for the block.  If so, we | 
|  | // can't merge the block. | 
|  | const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); | 
|  | if (!DestBBPN) return true;  // no conflict. | 
|  |  | 
|  | // Collect the preds of BB. | 
|  | SmallPtrSet<const BasicBlock*, 16> BBPreds; | 
|  | if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { | 
|  | // It is faster to get preds from a PHI than with pred_iterator. | 
|  | for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) | 
|  | BBPreds.insert(BBPN->getIncomingBlock(i)); | 
|  | } else { | 
|  | BBPreds.insert(pred_begin(BB), pred_end(BB)); | 
|  | } | 
|  |  | 
|  | // Walk the preds of DestBB. | 
|  | for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *Pred = DestBBPN->getIncomingBlock(i); | 
|  | if (BBPreds.count(Pred)) {   // Common predecessor? | 
|  | for (const PHINode &PN : DestBB->phis()) { | 
|  | const Value *V1 = PN.getIncomingValueForBlock(Pred); | 
|  | const Value *V2 = PN.getIncomingValueForBlock(BB); | 
|  |  | 
|  | // If V2 is a phi node in BB, look up what the mapped value will be. | 
|  | if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) | 
|  | if (V2PN->getParent() == BB) | 
|  | V2 = V2PN->getIncomingValueForBlock(Pred); | 
|  |  | 
|  | // If there is a conflict, bail out. | 
|  | if (V1 != V2) return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Eliminate a basic block that has only phi's and an unconditional branch in | 
|  | /// it. | 
|  | void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { | 
|  | BranchInst *BI = cast<BranchInst>(BB->getTerminator()); | 
|  | BasicBlock *DestBB = BI->getSuccessor(0); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" | 
|  | << *BB << *DestBB); | 
|  |  | 
|  | // If the destination block has a single pred, then this is a trivial edge, | 
|  | // just collapse it. | 
|  | if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { | 
|  | if (SinglePred != DestBB) { | 
|  | assert(SinglePred == BB && | 
|  | "Single predecessor not the same as predecessor"); | 
|  | // Merge DestBB into SinglePred/BB and delete it. | 
|  | MergeBlockIntoPredecessor(DestBB); | 
|  | // Note: BB(=SinglePred) will not be deleted on this path. | 
|  | // DestBB(=its single successor) is the one that was deleted. | 
|  | LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB | 
|  | // to handle the new incoming edges it is about to have. | 
|  | for (PHINode &PN : DestBB->phis()) { | 
|  | // Remove the incoming value for BB, and remember it. | 
|  | Value *InVal = PN.removeIncomingValue(BB, false); | 
|  |  | 
|  | // Two options: either the InVal is a phi node defined in BB or it is some | 
|  | // value that dominates BB. | 
|  | PHINode *InValPhi = dyn_cast<PHINode>(InVal); | 
|  | if (InValPhi && InValPhi->getParent() == BB) { | 
|  | // Add all of the input values of the input PHI as inputs of this phi. | 
|  | for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) | 
|  | PN.addIncoming(InValPhi->getIncomingValue(i), | 
|  | InValPhi->getIncomingBlock(i)); | 
|  | } else { | 
|  | // Otherwise, add one instance of the dominating value for each edge that | 
|  | // we will be adding. | 
|  | if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { | 
|  | for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) | 
|  | PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); | 
|  | } else { | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) | 
|  | PN.addIncoming(InVal, *PI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The PHIs are now updated, change everything that refers to BB to use | 
|  | // DestBB and remove BB. | 
|  | BB->replaceAllUsesWith(DestBB); | 
|  | BB->eraseFromParent(); | 
|  | ++NumBlocksElim; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); | 
|  | } | 
|  |  | 
|  | // Computes a map of base pointer relocation instructions to corresponding | 
|  | // derived pointer relocation instructions given a vector of all relocate calls | 
|  | static void computeBaseDerivedRelocateMap( | 
|  | const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, | 
|  | DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> | 
|  | &RelocateInstMap) { | 
|  | // Collect information in two maps: one primarily for locating the base object | 
|  | // while filling the second map; the second map is the final structure holding | 
|  | // a mapping between Base and corresponding Derived relocate calls | 
|  | DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; | 
|  | for (auto *ThisRelocate : AllRelocateCalls) { | 
|  | auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), | 
|  | ThisRelocate->getDerivedPtrIndex()); | 
|  | RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); | 
|  | } | 
|  | for (auto &Item : RelocateIdxMap) { | 
|  | std::pair<unsigned, unsigned> Key = Item.first; | 
|  | if (Key.first == Key.second) | 
|  | // Base relocation: nothing to insert | 
|  | continue; | 
|  |  | 
|  | GCRelocateInst *I = Item.second; | 
|  | auto BaseKey = std::make_pair(Key.first, Key.first); | 
|  |  | 
|  | // We're iterating over RelocateIdxMap so we cannot modify it. | 
|  | auto MaybeBase = RelocateIdxMap.find(BaseKey); | 
|  | if (MaybeBase == RelocateIdxMap.end()) | 
|  | // TODO: We might want to insert a new base object relocate and gep off | 
|  | // that, if there are enough derived object relocates. | 
|  | continue; | 
|  |  | 
|  | RelocateInstMap[MaybeBase->second].push_back(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Accepts a GEP and extracts the operands into a vector provided they're all | 
|  | // small integer constants | 
|  | static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, | 
|  | SmallVectorImpl<Value *> &OffsetV) { | 
|  | for (unsigned i = 1; i < GEP->getNumOperands(); i++) { | 
|  | // Only accept small constant integer operands | 
|  | auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); | 
|  | if (!Op || Op->getZExtValue() > 20) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 1; i < GEP->getNumOperands(); i++) | 
|  | OffsetV.push_back(GEP->getOperand(i)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Takes a RelocatedBase (base pointer relocation instruction) and Targets to | 
|  | // replace, computes a replacement, and affects it. | 
|  | static bool | 
|  | simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, | 
|  | const SmallVectorImpl<GCRelocateInst *> &Targets) { | 
|  | bool MadeChange = false; | 
|  | // We must ensure the relocation of derived pointer is defined after | 
|  | // relocation of base pointer. If we find a relocation corresponding to base | 
|  | // defined earlier than relocation of base then we move relocation of base | 
|  | // right before found relocation. We consider only relocation in the same | 
|  | // basic block as relocation of base. Relocations from other basic block will | 
|  | // be skipped by optimization and we do not care about them. | 
|  | for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); | 
|  | &*R != RelocatedBase; ++R) | 
|  | if (auto RI = dyn_cast<GCRelocateInst>(R)) | 
|  | if (RI->getStatepoint() == RelocatedBase->getStatepoint()) | 
|  | if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { | 
|  | RelocatedBase->moveBefore(RI); | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (GCRelocateInst *ToReplace : Targets) { | 
|  | assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && | 
|  | "Not relocating a derived object of the original base object"); | 
|  | if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { | 
|  | // A duplicate relocate call. TODO: coalesce duplicates. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (RelocatedBase->getParent() != ToReplace->getParent()) { | 
|  | // Base and derived relocates are in different basic blocks. | 
|  | // In this case transform is only valid when base dominates derived | 
|  | // relocate. However it would be too expensive to check dominance | 
|  | // for each such relocate, so we skip the whole transformation. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Value *Base = ToReplace->getBasePtr(); | 
|  | auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); | 
|  | if (!Derived || Derived->getPointerOperand() != Base) | 
|  | continue; | 
|  |  | 
|  | SmallVector<Value *, 2> OffsetV; | 
|  | if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) | 
|  | continue; | 
|  |  | 
|  | // Create a Builder and replace the target callsite with a gep | 
|  | assert(RelocatedBase->getNextNode() && | 
|  | "Should always have one since it's not a terminator"); | 
|  |  | 
|  | // Insert after RelocatedBase | 
|  | IRBuilder<> Builder(RelocatedBase->getNextNode()); | 
|  | Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); | 
|  |  | 
|  | // If gc_relocate does not match the actual type, cast it to the right type. | 
|  | // In theory, there must be a bitcast after gc_relocate if the type does not | 
|  | // match, and we should reuse it to get the derived pointer. But it could be | 
|  | // cases like this: | 
|  | // bb1: | 
|  | //  ... | 
|  | //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) | 
|  | //  br label %merge | 
|  | // | 
|  | // bb2: | 
|  | //  ... | 
|  | //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) | 
|  | //  br label %merge | 
|  | // | 
|  | // merge: | 
|  | //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] | 
|  | //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* | 
|  | // | 
|  | // In this case, we can not find the bitcast any more. So we insert a new bitcast | 
|  | // no matter there is already one or not. In this way, we can handle all cases, and | 
|  | // the extra bitcast should be optimized away in later passes. | 
|  | Value *ActualRelocatedBase = RelocatedBase; | 
|  | if (RelocatedBase->getType() != Base->getType()) { | 
|  | ActualRelocatedBase = | 
|  | Builder.CreateBitCast(RelocatedBase, Base->getType()); | 
|  | } | 
|  | Value *Replacement = Builder.CreateGEP( | 
|  | Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); | 
|  | Replacement->takeName(ToReplace); | 
|  | // If the newly generated derived pointer's type does not match the original derived | 
|  | // pointer's type, cast the new derived pointer to match it. Same reasoning as above. | 
|  | Value *ActualReplacement = Replacement; | 
|  | if (Replacement->getType() != ToReplace->getType()) { | 
|  | ActualReplacement = | 
|  | Builder.CreateBitCast(Replacement, ToReplace->getType()); | 
|  | } | 
|  | ToReplace->replaceAllUsesWith(ActualReplacement); | 
|  | ToReplace->eraseFromParent(); | 
|  |  | 
|  | MadeChange = true; | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | // Turns this: | 
|  | // | 
|  | // %base = ... | 
|  | // %ptr = gep %base + 15 | 
|  | // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) | 
|  | // %base' = relocate(%tok, i32 4, i32 4) | 
|  | // %ptr' = relocate(%tok, i32 4, i32 5) | 
|  | // %val = load %ptr' | 
|  | // | 
|  | // into this: | 
|  | // | 
|  | // %base = ... | 
|  | // %ptr = gep %base + 15 | 
|  | // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) | 
|  | // %base' = gc.relocate(%tok, i32 4, i32 4) | 
|  | // %ptr' = gep %base' + 15 | 
|  | // %val = load %ptr' | 
|  | bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { | 
|  | bool MadeChange = false; | 
|  | SmallVector<GCRelocateInst *, 2> AllRelocateCalls; | 
|  |  | 
|  | for (auto *U : I.users()) | 
|  | if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) | 
|  | // Collect all the relocate calls associated with a statepoint | 
|  | AllRelocateCalls.push_back(Relocate); | 
|  |  | 
|  | // We need atleast one base pointer relocation + one derived pointer | 
|  | // relocation to mangle | 
|  | if (AllRelocateCalls.size() < 2) | 
|  | return false; | 
|  |  | 
|  | // RelocateInstMap is a mapping from the base relocate instruction to the | 
|  | // corresponding derived relocate instructions | 
|  | DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; | 
|  | computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); | 
|  | if (RelocateInstMap.empty()) | 
|  | return false; | 
|  |  | 
|  | for (auto &Item : RelocateInstMap) | 
|  | // Item.first is the RelocatedBase to offset against | 
|  | // Item.second is the vector of Targets to replace | 
|  | MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// SinkCast - Sink the specified cast instruction into its user blocks | 
|  | static bool SinkCast(CastInst *CI) { | 
|  | BasicBlock *DefBB = CI->getParent(); | 
|  |  | 
|  | /// InsertedCasts - Only insert a cast in each block once. | 
|  | DenseMap<BasicBlock*, CastInst*> InsertedCasts; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); | 
|  | UI != E; ) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | Instruction *User = cast<Instruction>(*UI); | 
|  |  | 
|  | // Figure out which BB this cast is used in.  For PHI's this is the | 
|  | // appropriate predecessor block. | 
|  | BasicBlock *UserBB = User->getParent(); | 
|  | if (PHINode *PN = dyn_cast<PHINode>(User)) { | 
|  | UserBB = PN->getIncomingBlock(TheUse); | 
|  | } | 
|  |  | 
|  | // Preincrement use iterator so we don't invalidate it. | 
|  | ++UI; | 
|  |  | 
|  | // The first insertion point of a block containing an EH pad is after the | 
|  | // pad.  If the pad is the user, we cannot sink the cast past the pad. | 
|  | if (User->isEHPad()) | 
|  | continue; | 
|  |  | 
|  | // If the block selected to receive the cast is an EH pad that does not | 
|  | // allow non-PHI instructions before the terminator, we can't sink the | 
|  | // cast. | 
|  | if (UserBB->getTerminator()->isEHPad()) | 
|  | continue; | 
|  |  | 
|  | // If this user is in the same block as the cast, don't change the cast. | 
|  | if (UserBB == DefBB) continue; | 
|  |  | 
|  | // If we have already inserted a cast into this block, use it. | 
|  | CastInst *&InsertedCast = InsertedCasts[UserBB]; | 
|  |  | 
|  | if (!InsertedCast) { | 
|  | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | 
|  | assert(InsertPt != UserBB->end()); | 
|  | InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), | 
|  | CI->getType(), "", &*InsertPt); | 
|  | InsertedCast->setDebugLoc(CI->getDebugLoc()); | 
|  | } | 
|  |  | 
|  | // Replace a use of the cast with a use of the new cast. | 
|  | TheUse = InsertedCast; | 
|  | MadeChange = true; | 
|  | ++NumCastUses; | 
|  | } | 
|  |  | 
|  | // If we removed all uses, nuke the cast. | 
|  | if (CI->use_empty()) { | 
|  | salvageDebugInfo(*CI); | 
|  | CI->eraseFromParent(); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// If the specified cast instruction is a noop copy (e.g. it's casting from | 
|  | /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to | 
|  | /// reduce the number of virtual registers that must be created and coalesced. | 
|  | /// | 
|  | /// Return true if any changes are made. | 
|  | static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, | 
|  | const DataLayout &DL) { | 
|  | // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition | 
|  | // than sinking only nop casts, but is helpful on some platforms. | 
|  | if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { | 
|  | if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), | 
|  | ASC->getDestAddressSpace())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If this is a noop copy, | 
|  | EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); | 
|  | EVT DstVT = TLI.getValueType(DL, CI->getType()); | 
|  |  | 
|  | // This is an fp<->int conversion? | 
|  | if (SrcVT.isInteger() != DstVT.isInteger()) | 
|  | return false; | 
|  |  | 
|  | // If this is an extension, it will be a zero or sign extension, which | 
|  | // isn't a noop. | 
|  | if (SrcVT.bitsLT(DstVT)) return false; | 
|  |  | 
|  | // If these values will be promoted, find out what they will be promoted | 
|  | // to.  This helps us consider truncates on PPC as noop copies when they | 
|  | // are. | 
|  | if (TLI.getTypeAction(CI->getContext(), SrcVT) == | 
|  | TargetLowering::TypePromoteInteger) | 
|  | SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); | 
|  | if (TLI.getTypeAction(CI->getContext(), DstVT) == | 
|  | TargetLowering::TypePromoteInteger) | 
|  | DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); | 
|  |  | 
|  | // If, after promotion, these are the same types, this is a noop copy. | 
|  | if (SrcVT != DstVT) | 
|  | return false; | 
|  |  | 
|  | return SinkCast(CI); | 
|  | } | 
|  |  | 
|  | /// Try to combine the compare into a call to the llvm.uadd.with.overflow | 
|  | /// intrinsic. Return true if any changes were made. | 
|  | static bool combineToUAddWithOverflow(CmpInst *Cmp, const TargetLowering &TLI, | 
|  | const DataLayout &DL) { | 
|  | Value *A, *B; | 
|  | Instruction *AddI; | 
|  | if (!match(Cmp, | 
|  | m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) | 
|  | return false; | 
|  |  | 
|  | // Allow the transform as long as we have an integer type that is not | 
|  | // obviously illegal and unsupported. | 
|  | Type *Ty = AddI->getType(); | 
|  | if (!isa<IntegerType>(Ty)) | 
|  | return false; | 
|  | EVT CodegenVT = TLI.getValueType(DL, Ty); | 
|  | if (!CodegenVT.isSimple() && TLI.isOperationExpand(ISD::UADDO, CodegenVT)) | 
|  | return false; | 
|  |  | 
|  | // We don't want to move around uses of condition values this late, so we we | 
|  | // check if it is legal to create the call to the intrinsic in the basic | 
|  | // block containing the icmp: | 
|  | if (AddI->getParent() != Cmp->getParent() && !AddI->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption | 
|  | // for now: | 
|  | if (AddI->hasOneUse()) | 
|  | assert(*AddI->user_begin() == Cmp && "expected!"); | 
|  | #endif | 
|  |  | 
|  | Module *M = Cmp->getModule(); | 
|  | Function *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); | 
|  | Instruction *InsertPt = AddI->hasOneUse() ? Cmp : AddI; | 
|  | DebugLoc Loc = Cmp->getDebugLoc(); | 
|  | Instruction *UAddWithOverflow = CallInst::Create(F, {A, B}, "uadd.overflow", | 
|  | InsertPt); | 
|  | UAddWithOverflow->setDebugLoc(Loc); | 
|  | Instruction *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", | 
|  | InsertPt); | 
|  | UAdd->setDebugLoc(Loc); | 
|  | Instruction *Overflow = ExtractValueInst::Create(UAddWithOverflow, 1, | 
|  | "overflow", InsertPt); | 
|  | Overflow->setDebugLoc(Loc); | 
|  | Cmp->replaceAllUsesWith(Overflow); | 
|  | AddI->replaceAllUsesWith(UAdd); | 
|  | Cmp->eraseFromParent(); | 
|  | AddI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Sink the given CmpInst into user blocks to reduce the number of virtual | 
|  | /// registers that must be created and coalesced. This is a clear win except on | 
|  | /// targets with multiple condition code registers (PowerPC), where it might | 
|  | /// lose; some adjustment may be wanted there. | 
|  | /// | 
|  | /// Return true if any changes are made. | 
|  | static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { | 
|  | if (TLI.hasMultipleConditionRegisters()) | 
|  | return false; | 
|  |  | 
|  | // Avoid sinking soft-FP comparisons, since this can move them into a loop. | 
|  | if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) | 
|  | return false; | 
|  |  | 
|  | // Only insert a cmp in each block once. | 
|  | DenseMap<BasicBlock*, CmpInst*> InsertedCmps; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); | 
|  | UI != E; ) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | Instruction *User = cast<Instruction>(*UI); | 
|  |  | 
|  | // Preincrement use iterator so we don't invalidate it. | 
|  | ++UI; | 
|  |  | 
|  | // Don't bother for PHI nodes. | 
|  | if (isa<PHINode>(User)) | 
|  | continue; | 
|  |  | 
|  | // Figure out which BB this cmp is used in. | 
|  | BasicBlock *UserBB = User->getParent(); | 
|  | BasicBlock *DefBB = Cmp->getParent(); | 
|  |  | 
|  | // If this user is in the same block as the cmp, don't change the cmp. | 
|  | if (UserBB == DefBB) continue; | 
|  |  | 
|  | // If we have already inserted a cmp into this block, use it. | 
|  | CmpInst *&InsertedCmp = InsertedCmps[UserBB]; | 
|  |  | 
|  | if (!InsertedCmp) { | 
|  | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | 
|  | assert(InsertPt != UserBB->end()); | 
|  | InsertedCmp = | 
|  | CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), | 
|  | Cmp->getOperand(0), Cmp->getOperand(1), "", | 
|  | &*InsertPt); | 
|  | // Propagate the debug info. | 
|  | InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); | 
|  | } | 
|  |  | 
|  | // Replace a use of the cmp with a use of the new cmp. | 
|  | TheUse = InsertedCmp; | 
|  | MadeChange = true; | 
|  | ++NumCmpUses; | 
|  | } | 
|  |  | 
|  | // If we removed all uses, nuke the cmp. | 
|  | if (Cmp->use_empty()) { | 
|  | Cmp->eraseFromParent(); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | static bool optimizeCmpExpression(CmpInst *Cmp, const TargetLowering &TLI, | 
|  | const DataLayout &DL) { | 
|  | if (sinkCmpExpression(Cmp, TLI)) | 
|  | return true; | 
|  |  | 
|  | if (combineToUAddWithOverflow(Cmp, TLI, DL)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Duplicate and sink the given 'and' instruction into user blocks where it is | 
|  | /// used in a compare to allow isel to generate better code for targets where | 
|  | /// this operation can be combined. | 
|  | /// | 
|  | /// Return true if any changes are made. | 
|  | static bool sinkAndCmp0Expression(Instruction *AndI, | 
|  | const TargetLowering &TLI, | 
|  | SetOfInstrs &InsertedInsts) { | 
|  | // Double-check that we're not trying to optimize an instruction that was | 
|  | // already optimized by some other part of this pass. | 
|  | assert(!InsertedInsts.count(AndI) && | 
|  | "Attempting to optimize already optimized and instruction"); | 
|  | (void) InsertedInsts; | 
|  |  | 
|  | // Nothing to do for single use in same basic block. | 
|  | if (AndI->hasOneUse() && | 
|  | AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) | 
|  | return false; | 
|  |  | 
|  | // Try to avoid cases where sinking/duplicating is likely to increase register | 
|  | // pressure. | 
|  | if (!isa<ConstantInt>(AndI->getOperand(0)) && | 
|  | !isa<ConstantInt>(AndI->getOperand(1)) && | 
|  | AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | for (auto *U : AndI->users()) { | 
|  | Instruction *User = cast<Instruction>(U); | 
|  |  | 
|  | // Only sink for and mask feeding icmp with 0. | 
|  | if (!isa<ICmpInst>(User)) | 
|  | return false; | 
|  |  | 
|  | auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); | 
|  | if (!CmpC || !CmpC->isZero()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); | 
|  | LLVM_DEBUG(AndI->getParent()->dump()); | 
|  |  | 
|  | // Push the 'and' into the same block as the icmp 0.  There should only be | 
|  | // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any | 
|  | // others, so we don't need to keep track of which BBs we insert into. | 
|  | for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); | 
|  | UI != E; ) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | Instruction *User = cast<Instruction>(*UI); | 
|  |  | 
|  | // Preincrement use iterator so we don't invalidate it. | 
|  | ++UI; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); | 
|  |  | 
|  | // Keep the 'and' in the same place if the use is already in the same block. | 
|  | Instruction *InsertPt = | 
|  | User->getParent() == AndI->getParent() ? AndI : User; | 
|  | Instruction *InsertedAnd = | 
|  | BinaryOperator::Create(Instruction::And, AndI->getOperand(0), | 
|  | AndI->getOperand(1), "", InsertPt); | 
|  | // Propagate the debug info. | 
|  | InsertedAnd->setDebugLoc(AndI->getDebugLoc()); | 
|  |  | 
|  | // Replace a use of the 'and' with a use of the new 'and'. | 
|  | TheUse = InsertedAnd; | 
|  | ++NumAndUses; | 
|  | LLVM_DEBUG(User->getParent()->dump()); | 
|  | } | 
|  |  | 
|  | // We removed all uses, nuke the and. | 
|  | AndI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check if the candidates could be combined with a shift instruction, which | 
|  | /// includes: | 
|  | /// 1. Truncate instruction | 
|  | /// 2. And instruction and the imm is a mask of the low bits: | 
|  | /// imm & (imm+1) == 0 | 
|  | static bool isExtractBitsCandidateUse(Instruction *User) { | 
|  | if (!isa<TruncInst>(User)) { | 
|  | if (User->getOpcode() != Instruction::And || | 
|  | !isa<ConstantInt>(User->getOperand(1))) | 
|  | return false; | 
|  |  | 
|  | const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); | 
|  |  | 
|  | if ((Cimm & (Cimm + 1)).getBoolValue()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Sink both shift and truncate instruction to the use of truncate's BB. | 
|  | static bool | 
|  | SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, | 
|  | DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, | 
|  | const TargetLowering &TLI, const DataLayout &DL) { | 
|  | BasicBlock *UserBB = User->getParent(); | 
|  | DenseMap<BasicBlock *, CastInst *> InsertedTruncs; | 
|  | TruncInst *TruncI = dyn_cast<TruncInst>(User); | 
|  | bool MadeChange = false; | 
|  |  | 
|  | for (Value::user_iterator TruncUI = TruncI->user_begin(), | 
|  | TruncE = TruncI->user_end(); | 
|  | TruncUI != TruncE;) { | 
|  |  | 
|  | Use &TruncTheUse = TruncUI.getUse(); | 
|  | Instruction *TruncUser = cast<Instruction>(*TruncUI); | 
|  | // Preincrement use iterator so we don't invalidate it. | 
|  |  | 
|  | ++TruncUI; | 
|  |  | 
|  | int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); | 
|  | if (!ISDOpcode) | 
|  | continue; | 
|  |  | 
|  | // If the use is actually a legal node, there will not be an | 
|  | // implicit truncate. | 
|  | // FIXME: always querying the result type is just an | 
|  | // approximation; some nodes' legality is determined by the | 
|  | // operand or other means. There's no good way to find out though. | 
|  | if (TLI.isOperationLegalOrCustom( | 
|  | ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) | 
|  | continue; | 
|  |  | 
|  | // Don't bother for PHI nodes. | 
|  | if (isa<PHINode>(TruncUser)) | 
|  | continue; | 
|  |  | 
|  | BasicBlock *TruncUserBB = TruncUser->getParent(); | 
|  |  | 
|  | if (UserBB == TruncUserBB) | 
|  | continue; | 
|  |  | 
|  | BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; | 
|  | CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; | 
|  |  | 
|  | if (!InsertedShift && !InsertedTrunc) { | 
|  | BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); | 
|  | assert(InsertPt != TruncUserBB->end()); | 
|  | // Sink the shift | 
|  | if (ShiftI->getOpcode() == Instruction::AShr) | 
|  | InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, | 
|  | "", &*InsertPt); | 
|  | else | 
|  | InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, | 
|  | "", &*InsertPt); | 
|  | InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); | 
|  |  | 
|  | // Sink the trunc | 
|  | BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); | 
|  | TruncInsertPt++; | 
|  | assert(TruncInsertPt != TruncUserBB->end()); | 
|  |  | 
|  | InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, | 
|  | TruncI->getType(), "", &*TruncInsertPt); | 
|  | InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); | 
|  |  | 
|  | MadeChange = true; | 
|  |  | 
|  | TruncTheUse = InsertedTrunc; | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// Sink the shift *right* instruction into user blocks if the uses could | 
|  | /// potentially be combined with this shift instruction and generate BitExtract | 
|  | /// instruction. It will only be applied if the architecture supports BitExtract | 
|  | /// instruction. Here is an example: | 
|  | /// BB1: | 
|  | ///   %x.extract.shift = lshr i64 %arg1, 32 | 
|  | /// BB2: | 
|  | ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16 | 
|  | /// ==> | 
|  | /// | 
|  | /// BB2: | 
|  | ///   %x.extract.shift.1 = lshr i64 %arg1, 32 | 
|  | ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 | 
|  | /// | 
|  | /// CodeGen will recognize the pattern in BB2 and generate BitExtract | 
|  | /// instruction. | 
|  | /// Return true if any changes are made. | 
|  | static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, | 
|  | const TargetLowering &TLI, | 
|  | const DataLayout &DL) { | 
|  | BasicBlock *DefBB = ShiftI->getParent(); | 
|  |  | 
|  | /// Only insert instructions in each block once. | 
|  | DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; | 
|  |  | 
|  | bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); | 
|  | UI != E;) { | 
|  | Use &TheUse = UI.getUse(); | 
|  | Instruction *User = cast<Instruction>(*UI); | 
|  | // Preincrement use iterator so we don't invalidate it. | 
|  | ++UI; | 
|  |  | 
|  | // Don't bother for PHI nodes. | 
|  | if (isa<PHINode>(User)) | 
|  | continue; | 
|  |  | 
|  | if (!isExtractBitsCandidateUse(User)) | 
|  | continue; | 
|  |  | 
|  | BasicBlock *UserBB = User->getParent(); | 
|  |  | 
|  | if (UserBB == DefBB) { | 
|  | // If the shift and truncate instruction are in the same BB. The use of | 
|  | // the truncate(TruncUse) may still introduce another truncate if not | 
|  | // legal. In this case, we would like to sink both shift and truncate | 
|  | // instruction to the BB of TruncUse. | 
|  | // for example: | 
|  | // BB1: | 
|  | // i64 shift.result = lshr i64 opnd, imm | 
|  | // trunc.result = trunc shift.result to i16 | 
|  | // | 
|  | // BB2: | 
|  | //   ----> We will have an implicit truncate here if the architecture does | 
|  | //   not have i16 compare. | 
|  | // cmp i16 trunc.result, opnd2 | 
|  | // | 
|  | if (isa<TruncInst>(User) && shiftIsLegal | 
|  | // If the type of the truncate is legal, no truncate will be | 
|  | // introduced in other basic blocks. | 
|  | && | 
|  | (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) | 
|  | MadeChange = | 
|  | SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); | 
|  |  | 
|  | continue; | 
|  | } | 
|  | // If we have already inserted a shift into this block, use it. | 
|  | BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; | 
|  |  | 
|  | if (!InsertedShift) { | 
|  | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | 
|  | assert(InsertPt != UserBB->end()); | 
|  |  | 
|  | if (ShiftI->getOpcode() == Instruction::AShr) | 
|  | InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, | 
|  | "", &*InsertPt); | 
|  | else | 
|  | InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, | 
|  | "", &*InsertPt); | 
|  | InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); | 
|  |  | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // Replace a use of the shift with a use of the new shift. | 
|  | TheUse = InsertedShift; | 
|  | } | 
|  |  | 
|  | // If we removed all uses, nuke the shift. | 
|  | if (ShiftI->use_empty()) { | 
|  | salvageDebugInfo(*ShiftI); | 
|  | ShiftI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// If counting leading or trailing zeros is an expensive operation and a zero | 
|  | /// input is defined, add a check for zero to avoid calling the intrinsic. | 
|  | /// | 
|  | /// We want to transform: | 
|  | ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) | 
|  | /// | 
|  | /// into: | 
|  | ///   entry: | 
|  | ///     %cmpz = icmp eq i64 %A, 0 | 
|  | ///     br i1 %cmpz, label %cond.end, label %cond.false | 
|  | ///   cond.false: | 
|  | ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) | 
|  | ///     br label %cond.end | 
|  | ///   cond.end: | 
|  | ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] | 
|  | /// | 
|  | /// If the transform is performed, return true and set ModifiedDT to true. | 
|  | static bool despeculateCountZeros(IntrinsicInst *CountZeros, | 
|  | const TargetLowering *TLI, | 
|  | const DataLayout *DL, | 
|  | bool &ModifiedDT) { | 
|  | if (!TLI || !DL) | 
|  | return false; | 
|  |  | 
|  | // If a zero input is undefined, it doesn't make sense to despeculate that. | 
|  | if (match(CountZeros->getOperand(1), m_One())) | 
|  | return false; | 
|  |  | 
|  | // If it's cheap to speculate, there's nothing to do. | 
|  | auto IntrinsicID = CountZeros->getIntrinsicID(); | 
|  | if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || | 
|  | (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) | 
|  | return false; | 
|  |  | 
|  | // Only handle legal scalar cases. Anything else requires too much work. | 
|  | Type *Ty = CountZeros->getType(); | 
|  | unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); | 
|  | if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) | 
|  | return false; | 
|  |  | 
|  | // The intrinsic will be sunk behind a compare against zero and branch. | 
|  | BasicBlock *StartBlock = CountZeros->getParent(); | 
|  | BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); | 
|  |  | 
|  | // Create another block after the count zero intrinsic. A PHI will be added | 
|  | // in this block to select the result of the intrinsic or the bit-width | 
|  | // constant if the input to the intrinsic is zero. | 
|  | BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); | 
|  | BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); | 
|  |  | 
|  | // Set up a builder to create a compare, conditional branch, and PHI. | 
|  | IRBuilder<> Builder(CountZeros->getContext()); | 
|  | Builder.SetInsertPoint(StartBlock->getTerminator()); | 
|  | Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); | 
|  |  | 
|  | // Replace the unconditional branch that was created by the first split with | 
|  | // a compare against zero and a conditional branch. | 
|  | Value *Zero = Constant::getNullValue(Ty); | 
|  | Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); | 
|  | Builder.CreateCondBr(Cmp, EndBlock, CallBlock); | 
|  | StartBlock->getTerminator()->eraseFromParent(); | 
|  |  | 
|  | // Create a PHI in the end block to select either the output of the intrinsic | 
|  | // or the bit width of the operand. | 
|  | Builder.SetInsertPoint(&EndBlock->front()); | 
|  | PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); | 
|  | CountZeros->replaceAllUsesWith(PN); | 
|  | Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); | 
|  | PN->addIncoming(BitWidth, StartBlock); | 
|  | PN->addIncoming(CountZeros, CallBlock); | 
|  |  | 
|  | // We are explicitly handling the zero case, so we can set the intrinsic's | 
|  | // undefined zero argument to 'true'. This will also prevent reprocessing the | 
|  | // intrinsic; we only despeculate when a zero input is defined. | 
|  | CountZeros->setArgOperand(1, Builder.getTrue()); | 
|  | ModifiedDT = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { | 
|  | BasicBlock *BB = CI->getParent(); | 
|  |  | 
|  | // Lower inline assembly if we can. | 
|  | // If we found an inline asm expession, and if the target knows how to | 
|  | // lower it to normal LLVM code, do so now. | 
|  | if (TLI && isa<InlineAsm>(CI->getCalledValue())) { | 
|  | if (TLI->ExpandInlineAsm(CI)) { | 
|  | // Avoid invalidating the iterator. | 
|  | CurInstIterator = BB->begin(); | 
|  | // Avoid processing instructions out of order, which could cause | 
|  | // reuse before a value is defined. | 
|  | SunkAddrs.clear(); | 
|  | return true; | 
|  | } | 
|  | // Sink address computing for memory operands into the block. | 
|  | if (optimizeInlineAsmInst(CI)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Align the pointer arguments to this call if the target thinks it's a good | 
|  | // idea | 
|  | unsigned MinSize, PrefAlign; | 
|  | if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { | 
|  | for (auto &Arg : CI->arg_operands()) { | 
|  | // We want to align both objects whose address is used directly and | 
|  | // objects whose address is used in casts and GEPs, though it only makes | 
|  | // sense for GEPs if the offset is a multiple of the desired alignment and | 
|  | // if size - offset meets the size threshold. | 
|  | if (!Arg->getType()->isPointerTy()) | 
|  | continue; | 
|  | APInt Offset(DL->getIndexSizeInBits( | 
|  | cast<PointerType>(Arg->getType())->getAddressSpace()), | 
|  | 0); | 
|  | Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); | 
|  | uint64_t Offset2 = Offset.getLimitedValue(); | 
|  | if ((Offset2 & (PrefAlign-1)) != 0) | 
|  | continue; | 
|  | AllocaInst *AI; | 
|  | if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && | 
|  | DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) | 
|  | AI->setAlignment(PrefAlign); | 
|  | // Global variables can only be aligned if they are defined in this | 
|  | // object (i.e. they are uniquely initialized in this object), and | 
|  | // over-aligning global variables that have an explicit section is | 
|  | // forbidden. | 
|  | GlobalVariable *GV; | 
|  | if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && | 
|  | GV->getPointerAlignment(*DL) < PrefAlign && | 
|  | DL->getTypeAllocSize(GV->getValueType()) >= | 
|  | MinSize + Offset2) | 
|  | GV->setAlignment(PrefAlign); | 
|  | } | 
|  | // If this is a memcpy (or similar) then we may be able to improve the | 
|  | // alignment | 
|  | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { | 
|  | unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); | 
|  | if (DestAlign > MI->getDestAlignment()) | 
|  | MI->setDestAlignment(DestAlign); | 
|  | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { | 
|  | unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); | 
|  | if (SrcAlign > MTI->getSourceAlignment()) | 
|  | MTI->setSourceAlignment(SrcAlign); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have a cold call site, try to sink addressing computation into the | 
|  | // cold block.  This interacts with our handling for loads and stores to | 
|  | // ensure that we can fold all uses of a potential addressing computation | 
|  | // into their uses.  TODO: generalize this to work over profiling data | 
|  | if (!OptSize && CI->hasFnAttr(Attribute::Cold)) | 
|  | for (auto &Arg : CI->arg_operands()) { | 
|  | if (!Arg->getType()->isPointerTy()) | 
|  | continue; | 
|  | unsigned AS = Arg->getType()->getPointerAddressSpace(); | 
|  | return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); | 
|  | } | 
|  |  | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); | 
|  | if (II) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::experimental_widenable_condition: { | 
|  | // Give up on future widening oppurtunties so that we can fold away dead | 
|  | // paths and merge blocks before going into block-local instruction | 
|  | // selection. | 
|  | if (II->use_empty()) { | 
|  | II->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | Constant *RetVal = ConstantInt::getTrue(II->getContext()); | 
|  | resetIteratorIfInvalidatedWhileCalling(BB, [&]() { | 
|  | replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); | 
|  | }); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::objectsize: { | 
|  | // Lower all uses of llvm.objectsize.* | 
|  | Value *RetVal = | 
|  | lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); | 
|  |  | 
|  | resetIteratorIfInvalidatedWhileCalling(BB, [&]() { | 
|  | replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); | 
|  | }); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::is_constant: { | 
|  | // If is_constant hasn't folded away yet, lower it to false now. | 
|  | Constant *RetVal = ConstantInt::get(II->getType(), 0); | 
|  | resetIteratorIfInvalidatedWhileCalling(BB, [&]() { | 
|  | replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); | 
|  | }); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::aarch64_stlxr: | 
|  | case Intrinsic::aarch64_stxr: { | 
|  | ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); | 
|  | if (!ExtVal || !ExtVal->hasOneUse() || | 
|  | ExtVal->getParent() == CI->getParent()) | 
|  | return false; | 
|  | // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. | 
|  | ExtVal->moveBefore(CI); | 
|  | // Mark this instruction as "inserted by CGP", so that other | 
|  | // optimizations don't touch it. | 
|  | InsertedInsts.insert(ExtVal); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::launder_invariant_group: | 
|  | case Intrinsic::strip_invariant_group: { | 
|  | Value *ArgVal = II->getArgOperand(0); | 
|  | auto it = LargeOffsetGEPMap.find(II); | 
|  | if (it != LargeOffsetGEPMap.end()) { | 
|  | // Merge entries in LargeOffsetGEPMap to reflect the RAUW. | 
|  | // Make sure not to have to deal with iterator invalidation | 
|  | // after possibly adding ArgVal to LargeOffsetGEPMap. | 
|  | auto GEPs = std::move(it->second); | 
|  | LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); | 
|  | LargeOffsetGEPMap.erase(II); | 
|  | } | 
|  |  | 
|  | II->replaceAllUsesWith(ArgVal); | 
|  | II->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::cttz: | 
|  | case Intrinsic::ctlz: | 
|  | // If counting zeros is expensive, try to avoid it. | 
|  | return despeculateCountZeros(II, TLI, DL, ModifiedDT); | 
|  | } | 
|  |  | 
|  | if (TLI) { | 
|  | SmallVector<Value*, 2> PtrOps; | 
|  | Type *AccessTy; | 
|  | if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) | 
|  | while (!PtrOps.empty()) { | 
|  | Value *PtrVal = PtrOps.pop_back_val(); | 
|  | unsigned AS = PtrVal->getType()->getPointerAddressSpace(); | 
|  | if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // From here on out we're working with named functions. | 
|  | if (!CI->getCalledFunction()) return false; | 
|  |  | 
|  | // Lower all default uses of _chk calls.  This is very similar | 
|  | // to what InstCombineCalls does, but here we are only lowering calls | 
|  | // to fortified library functions (e.g. __memcpy_chk) that have the default | 
|  | // "don't know" as the objectsize.  Anything else should be left alone. | 
|  | FortifiedLibCallSimplifier Simplifier(TLInfo, true); | 
|  | if (Value *V = Simplifier.optimizeCall(CI)) { | 
|  | CI->replaceAllUsesWith(V); | 
|  | CI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Look for opportunities to duplicate return instructions to the predecessor | 
|  | /// to enable tail call optimizations. The case it is currently looking for is: | 
|  | /// @code | 
|  | /// bb0: | 
|  | ///   %tmp0 = tail call i32 @f0() | 
|  | ///   br label %return | 
|  | /// bb1: | 
|  | ///   %tmp1 = tail call i32 @f1() | 
|  | ///   br label %return | 
|  | /// bb2: | 
|  | ///   %tmp2 = tail call i32 @f2() | 
|  | ///   br label %return | 
|  | /// return: | 
|  | ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] | 
|  | ///   ret i32 %retval | 
|  | /// @endcode | 
|  | /// | 
|  | /// => | 
|  | /// | 
|  | /// @code | 
|  | /// bb0: | 
|  | ///   %tmp0 = tail call i32 @f0() | 
|  | ///   ret i32 %tmp0 | 
|  | /// bb1: | 
|  | ///   %tmp1 = tail call i32 @f1() | 
|  | ///   ret i32 %tmp1 | 
|  | /// bb2: | 
|  | ///   %tmp2 = tail call i32 @f2() | 
|  | ///   ret i32 %tmp2 | 
|  | /// @endcode | 
|  | bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { | 
|  | if (!TLI) | 
|  | return false; | 
|  |  | 
|  | ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); | 
|  | if (!RetI) | 
|  | return false; | 
|  |  | 
|  | PHINode *PN = nullptr; | 
|  | BitCastInst *BCI = nullptr; | 
|  | Value *V = RetI->getReturnValue(); | 
|  | if (V) { | 
|  | BCI = dyn_cast<BitCastInst>(V); | 
|  | if (BCI) | 
|  | V = BCI->getOperand(0); | 
|  |  | 
|  | PN = dyn_cast<PHINode>(V); | 
|  | if (!PN) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (PN && PN->getParent() != BB) | 
|  | return false; | 
|  |  | 
|  | // Make sure there are no instructions between the PHI and return, or that the | 
|  | // return is the first instruction in the block. | 
|  | if (PN) { | 
|  | BasicBlock::iterator BI = BB->begin(); | 
|  | // Skip over debug and the bitcast. | 
|  | do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); | 
|  | if (&*BI != RetI) | 
|  | return false; | 
|  | } else { | 
|  | BasicBlock::iterator BI = BB->begin(); | 
|  | while (isa<DbgInfoIntrinsic>(BI)) ++BI; | 
|  | if (&*BI != RetI) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail | 
|  | /// call. | 
|  | const Function *F = BB->getParent(); | 
|  | SmallVector<CallInst*, 4> TailCalls; | 
|  | if (PN) { | 
|  | for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { | 
|  | CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); | 
|  | // Make sure the phi value is indeed produced by the tail call. | 
|  | if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && | 
|  | TLI->mayBeEmittedAsTailCall(CI) && | 
|  | attributesPermitTailCall(F, CI, RetI, *TLI)) | 
|  | TailCalls.push_back(CI); | 
|  | } | 
|  | } else { | 
|  | SmallPtrSet<BasicBlock*, 4> VisitedBBs; | 
|  | for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { | 
|  | if (!VisitedBBs.insert(*PI).second) | 
|  | continue; | 
|  |  | 
|  | BasicBlock::InstListType &InstList = (*PI)->getInstList(); | 
|  | BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); | 
|  | BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); | 
|  | do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); | 
|  | if (RI == RE) | 
|  | continue; | 
|  |  | 
|  | CallInst *CI = dyn_cast<CallInst>(&*RI); | 
|  | if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && | 
|  | attributesPermitTailCall(F, CI, RetI, *TLI)) | 
|  | TailCalls.push_back(CI); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Changed = false; | 
|  | for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { | 
|  | CallInst *CI = TailCalls[i]; | 
|  | CallSite CS(CI); | 
|  |  | 
|  | // Make sure the call instruction is followed by an unconditional branch to | 
|  | // the return block. | 
|  | BasicBlock *CallBB = CI->getParent(); | 
|  | BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); | 
|  | if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) | 
|  | continue; | 
|  |  | 
|  | // Duplicate the return into CallBB. | 
|  | (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); | 
|  | ModifiedDT = Changed = true; | 
|  | ++NumRetsDup; | 
|  | } | 
|  |  | 
|  | // If we eliminated all predecessors of the block, delete the block now. | 
|  | if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) | 
|  | BB->eraseFromParent(); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Memory Optimization | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// This is an extended version of TargetLowering::AddrMode | 
|  | /// which holds actual Value*'s for register values. | 
|  | struct ExtAddrMode : public TargetLowering::AddrMode { | 
|  | Value *BaseReg = nullptr; | 
|  | Value *ScaledReg = nullptr; | 
|  | Value *OriginalValue = nullptr; | 
|  |  | 
|  | enum FieldName { | 
|  | NoField        = 0x00, | 
|  | BaseRegField   = 0x01, | 
|  | BaseGVField    = 0x02, | 
|  | BaseOffsField  = 0x04, | 
|  | ScaledRegField = 0x08, | 
|  | ScaleField     = 0x10, | 
|  | MultipleFields = 0xff | 
|  | }; | 
|  |  | 
|  | ExtAddrMode() = default; | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  |  | 
|  | FieldName compare(const ExtAddrMode &other) { | 
|  | // First check that the types are the same on each field, as differing types | 
|  | // is something we can't cope with later on. | 
|  | if (BaseReg && other.BaseReg && | 
|  | BaseReg->getType() != other.BaseReg->getType()) | 
|  | return MultipleFields; | 
|  | if (BaseGV && other.BaseGV && | 
|  | BaseGV->getType() != other.BaseGV->getType()) | 
|  | return MultipleFields; | 
|  | if (ScaledReg && other.ScaledReg && | 
|  | ScaledReg->getType() != other.ScaledReg->getType()) | 
|  | return MultipleFields; | 
|  |  | 
|  | // Check each field to see if it differs. | 
|  | unsigned Result = NoField; | 
|  | if (BaseReg != other.BaseReg) | 
|  | Result |= BaseRegField; | 
|  | if (BaseGV != other.BaseGV) | 
|  | Result |= BaseGVField; | 
|  | if (BaseOffs != other.BaseOffs) | 
|  | Result |= BaseOffsField; | 
|  | if (ScaledReg != other.ScaledReg) | 
|  | Result |= ScaledRegField; | 
|  | // Don't count 0 as being a different scale, because that actually means | 
|  | // unscaled (which will already be counted by having no ScaledReg). | 
|  | if (Scale && other.Scale && Scale != other.Scale) | 
|  | Result |= ScaleField; | 
|  |  | 
|  | if (countPopulation(Result) > 1) | 
|  | return MultipleFields; | 
|  | else | 
|  | return static_cast<FieldName>(Result); | 
|  | } | 
|  |  | 
|  | // An AddrMode is trivial if it involves no calculation i.e. it is just a base | 
|  | // with no offset. | 
|  | bool isTrivial() { | 
|  | // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is | 
|  | // trivial if at most one of these terms is nonzero, except that BaseGV and | 
|  | // BaseReg both being zero actually means a null pointer value, which we | 
|  | // consider to be 'non-zero' here. | 
|  | return !BaseOffs && !Scale && !(BaseGV && BaseReg); | 
|  | } | 
|  |  | 
|  | Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { | 
|  | switch (Field) { | 
|  | default: | 
|  | return nullptr; | 
|  | case BaseRegField: | 
|  | return BaseReg; | 
|  | case BaseGVField: | 
|  | return BaseGV; | 
|  | case ScaledRegField: | 
|  | return ScaledReg; | 
|  | case BaseOffsField: | 
|  | return ConstantInt::get(IntPtrTy, BaseOffs); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SetCombinedField(FieldName Field, Value *V, | 
|  | const SmallVectorImpl<ExtAddrMode> &AddrModes) { | 
|  | switch (Field) { | 
|  | default: | 
|  | llvm_unreachable("Unhandled fields are expected to be rejected earlier"); | 
|  | break; | 
|  | case ExtAddrMode::BaseRegField: | 
|  | BaseReg = V; | 
|  | break; | 
|  | case ExtAddrMode::BaseGVField: | 
|  | // A combined BaseGV is an Instruction, not a GlobalValue, so it goes | 
|  | // in the BaseReg field. | 
|  | assert(BaseReg == nullptr); | 
|  | BaseReg = V; | 
|  | BaseGV = nullptr; | 
|  | break; | 
|  | case ExtAddrMode::ScaledRegField: | 
|  | ScaledReg = V; | 
|  | // If we have a mix of scaled and unscaled addrmodes then we want scale | 
|  | // to be the scale and not zero. | 
|  | if (!Scale) | 
|  | for (const ExtAddrMode &AM : AddrModes) | 
|  | if (AM.Scale) { | 
|  | Scale = AM.Scale; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ExtAddrMode::BaseOffsField: | 
|  | // The offset is no longer a constant, so it goes in ScaledReg with a | 
|  | // scale of 1. | 
|  | assert(ScaledReg == nullptr); | 
|  | ScaledReg = V; | 
|  | Scale = 1; | 
|  | BaseOffs = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { | 
|  | AM.print(OS); | 
|  | return OS; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void ExtAddrMode::print(raw_ostream &OS) const { | 
|  | bool NeedPlus = false; | 
|  | OS << "["; | 
|  | if (BaseGV) { | 
|  | OS << (NeedPlus ? " + " : "") | 
|  | << "GV:"; | 
|  | BaseGV->printAsOperand(OS, /*PrintType=*/false); | 
|  | NeedPlus = true; | 
|  | } | 
|  |  | 
|  | if (BaseOffs) { | 
|  | OS << (NeedPlus ? " + " : "") | 
|  | << BaseOffs; | 
|  | NeedPlus = true; | 
|  | } | 
|  |  | 
|  | if (BaseReg) { | 
|  | OS << (NeedPlus ? " + " : "") | 
|  | << "Base:"; | 
|  | BaseReg->printAsOperand(OS, /*PrintType=*/false); | 
|  | NeedPlus = true; | 
|  | } | 
|  | if (Scale) { | 
|  | OS << (NeedPlus ? " + " : "") | 
|  | << Scale << "*"; | 
|  | ScaledReg->printAsOperand(OS, /*PrintType=*/false); | 
|  | } | 
|  |  | 
|  | OS << ']'; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void ExtAddrMode::dump() const { | 
|  | print(dbgs()); | 
|  | dbgs() << '\n'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// This class provides transaction based operation on the IR. | 
|  | /// Every change made through this class is recorded in the internal state and | 
|  | /// can be undone (rollback) until commit is called. | 
|  | class TypePromotionTransaction { | 
|  | /// This represents the common interface of the individual transaction. | 
|  | /// Each class implements the logic for doing one specific modification on | 
|  | /// the IR via the TypePromotionTransaction. | 
|  | class TypePromotionAction { | 
|  | protected: | 
|  | /// The Instruction modified. | 
|  | Instruction *Inst; | 
|  |  | 
|  | public: | 
|  | /// Constructor of the action. | 
|  | /// The constructor performs the related action on the IR. | 
|  | TypePromotionAction(Instruction *Inst) : Inst(Inst) {} | 
|  |  | 
|  | virtual ~TypePromotionAction() = default; | 
|  |  | 
|  | /// Undo the modification done by this action. | 
|  | /// When this method is called, the IR must be in the same state as it was | 
|  | /// before this action was applied. | 
|  | /// \pre Undoing the action works if and only if the IR is in the exact same | 
|  | /// state as it was directly after this action was applied. | 
|  | virtual void undo() = 0; | 
|  |  | 
|  | /// Advocate every change made by this action. | 
|  | /// When the results on the IR of the action are to be kept, it is important | 
|  | /// to call this function, otherwise hidden information may be kept forever. | 
|  | virtual void commit() { | 
|  | // Nothing to be done, this action is not doing anything. | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Utility to remember the position of an instruction. | 
|  | class InsertionHandler { | 
|  | /// Position of an instruction. | 
|  | /// Either an instruction: | 
|  | /// - Is the first in a basic block: BB is used. | 
|  | /// - Has a previous instruction: PrevInst is used. | 
|  | union { | 
|  | Instruction *PrevInst; | 
|  | BasicBlock *BB; | 
|  | } Point; | 
|  |  | 
|  | /// Remember whether or not the instruction had a previous instruction. | 
|  | bool HasPrevInstruction; | 
|  |  | 
|  | public: | 
|  | /// Record the position of \p Inst. | 
|  | InsertionHandler(Instruction *Inst) { | 
|  | BasicBlock::iterator It = Inst->getIterator(); | 
|  | HasPrevInstruction = (It != (Inst->getParent()->begin())); | 
|  | if (HasPrevInstruction) | 
|  | Point.PrevInst = &*--It; | 
|  | else | 
|  | Point.BB = Inst->getParent(); | 
|  | } | 
|  |  | 
|  | /// Insert \p Inst at the recorded position. | 
|  | void insert(Instruction *Inst) { | 
|  | if (HasPrevInstruction) { | 
|  | if (Inst->getParent()) | 
|  | Inst->removeFromParent(); | 
|  | Inst->insertAfter(Point.PrevInst); | 
|  | } else { | 
|  | Instruction *Position = &*Point.BB->getFirstInsertionPt(); | 
|  | if (Inst->getParent()) | 
|  | Inst->moveBefore(Position); | 
|  | else | 
|  | Inst->insertBefore(Position); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Move an instruction before another. | 
|  | class InstructionMoveBefore : public TypePromotionAction { | 
|  | /// Original position of the instruction. | 
|  | InsertionHandler Position; | 
|  |  | 
|  | public: | 
|  | /// Move \p Inst before \p Before. | 
|  | InstructionMoveBefore(Instruction *Inst, Instruction *Before) | 
|  | : TypePromotionAction(Inst), Position(Inst) { | 
|  | LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before | 
|  | << "\n"); | 
|  | Inst->moveBefore(Before); | 
|  | } | 
|  |  | 
|  | /// Move the instruction back to its original position. | 
|  | void undo() override { | 
|  | LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); | 
|  | Position.insert(Inst); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Set the operand of an instruction with a new value. | 
|  | class OperandSetter : public TypePromotionAction { | 
|  | /// Original operand of the instruction. | 
|  | Value *Origin; | 
|  |  | 
|  | /// Index of the modified instruction. | 
|  | unsigned Idx; | 
|  |  | 
|  | public: | 
|  | /// Set \p Idx operand of \p Inst with \p NewVal. | 
|  | OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) | 
|  | : TypePromotionAction(Inst), Idx(Idx) { | 
|  | LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" | 
|  | << "for:" << *Inst << "\n" | 
|  | << "with:" << *NewVal << "\n"); | 
|  | Origin = Inst->getOperand(Idx); | 
|  | Inst->setOperand(Idx, NewVal); | 
|  | } | 
|  |  | 
|  | /// Restore the original value of the instruction. | 
|  | void undo() override { | 
|  | LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" | 
|  | << "for: " << *Inst << "\n" | 
|  | << "with: " << *Origin << "\n"); | 
|  | Inst->setOperand(Idx, Origin); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Hide the operands of an instruction. | 
|  | /// Do as if this instruction was not using any of its operands. | 
|  | class OperandsHider : public TypePromotionAction { | 
|  | /// The list of original operands. | 
|  | SmallVector<Value *, 4> OriginalValues; | 
|  |  | 
|  | public: | 
|  | /// Remove \p Inst from the uses of the operands of \p Inst. | 
|  | OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { | 
|  | LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); | 
|  | unsigned NumOpnds = Inst->getNumOperands(); | 
|  | OriginalValues.reserve(NumOpnds); | 
|  | for (unsigned It = 0; It < NumOpnds; ++It) { | 
|  | // Save the current operand. | 
|  | Value *Val = Inst->getOperand(It); | 
|  | OriginalValues.push_back(Val); | 
|  | // Set a dummy one. | 
|  | // We could use OperandSetter here, but that would imply an overhead | 
|  | // that we are not willing to pay. | 
|  | Inst->setOperand(It, UndefValue::get(Val->getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Restore the original list of uses. | 
|  | void undo() override { | 
|  | LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); | 
|  | for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) | 
|  | Inst->setOperand(It, OriginalValues[It]); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Build a truncate instruction. | 
|  | class TruncBuilder : public TypePromotionAction { | 
|  | Value *Val; | 
|  |  | 
|  | public: | 
|  | /// Build a truncate instruction of \p Opnd producing a \p Ty | 
|  | /// result. | 
|  | /// trunc Opnd to Ty. | 
|  | TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { | 
|  | IRBuilder<> Builder(Opnd); | 
|  | Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); | 
|  | LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); | 
|  | } | 
|  |  | 
|  | /// Get the built value. | 
|  | Value *getBuiltValue() { return Val; } | 
|  |  | 
|  | /// Remove the built instruction. | 
|  | void undo() override { | 
|  | LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); | 
|  | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | 
|  | IVal->eraseFromParent(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Build a sign extension instruction. | 
|  | class SExtBuilder : public TypePromotionAction { | 
|  | Value *Val; | 
|  |  | 
|  | public: | 
|  | /// Build a sign extension instruction of \p Opnd producing a \p Ty | 
|  | /// result. | 
|  | /// sext Opnd to Ty. | 
|  | SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) | 
|  | : TypePromotionAction(InsertPt) { | 
|  | IRBuilder<> Builder(InsertPt); | 
|  | Val = Builder.CreateSExt(Opnd, Ty, "promoted"); | 
|  | LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); | 
|  | } | 
|  |  | 
|  | /// Get the built value. | 
|  | Value *getBuiltValue() { return Val; } | 
|  |  | 
|  | /// Remove the built instruction. | 
|  | void undo() override { | 
|  | LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); | 
|  | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | 
|  | IVal->eraseFromParent(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Build a zero extension instruction. | 
|  | class ZExtBuilder : public TypePromotionAction { | 
|  | Value *Val; | 
|  |  | 
|  | public: | 
|  | /// Build a zero extension instruction of \p Opnd producing a \p Ty | 
|  | /// result. | 
|  | /// zext Opnd to Ty. | 
|  | ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) | 
|  | : TypePromotionAction(InsertPt) { | 
|  | IRBuilder<> Builder(InsertPt); | 
|  | Val = Builder.CreateZExt(Opnd, Ty, "promoted"); | 
|  | LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); | 
|  | } | 
|  |  | 
|  | /// Get the built value. | 
|  | Value *getBuiltValue() { return Val; } | 
|  |  | 
|  | /// Remove the built instruction. | 
|  | void undo() override { | 
|  | LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); | 
|  | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | 
|  | IVal->eraseFromParent(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Mutate an instruction to another type. | 
|  | class TypeMutator : public TypePromotionAction { | 
|  | /// Record the original type. | 
|  | Type *OrigTy; | 
|  |  | 
|  | public: | 
|  | /// Mutate the type of \p Inst into \p NewTy. | 
|  | TypeMutator(Instruction *Inst, Type *NewTy) | 
|  | : TypePromotionAction(Inst), OrigTy(Inst->getType()) { | 
|  | LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy | 
|  | << "\n"); | 
|  | Inst->mutateType(NewTy); | 
|  | } | 
|  |  | 
|  | /// Mutate the instruction back to its original type. | 
|  | void undo() override { | 
|  | LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy | 
|  | << "\n"); | 
|  | Inst->mutateType(OrigTy); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Replace the uses of an instruction by another instruction. | 
|  | class UsesReplacer : public TypePromotionAction { | 
|  | /// Helper structure to keep track of the replaced uses. | 
|  | struct InstructionAndIdx { | 
|  | /// The instruction using the instruction. | 
|  | Instruction *Inst; | 
|  |  | 
|  | /// The index where this instruction is used for Inst. | 
|  | unsigned Idx; | 
|  |  | 
|  | InstructionAndIdx(Instruction *Inst, unsigned Idx) | 
|  | : Inst(Inst), Idx(Idx) {} | 
|  | }; | 
|  |  | 
|  | /// Keep track of the original uses (pair Instruction, Index). | 
|  | SmallVector<InstructionAndIdx, 4> OriginalUses; | 
|  | /// Keep track of the debug users. | 
|  | SmallVector<DbgValueInst *, 1> DbgValues; | 
|  |  | 
|  | using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; | 
|  |  | 
|  | public: | 
|  | /// Replace all the use of \p Inst by \p New. | 
|  | UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { | 
|  | LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New | 
|  | << "\n"); | 
|  | // Record the original uses. | 
|  | for (Use &U : Inst->uses()) { | 
|  | Instruction *UserI = cast<Instruction>(U.getUser()); | 
|  | OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); | 
|  | } | 
|  | // Record the debug uses separately. They are not in the instruction's | 
|  | // use list, but they are replaced by RAUW. | 
|  | findDbgValues(DbgValues, Inst); | 
|  |  | 
|  | // Now, we can replace the uses. | 
|  | Inst->replaceAllUsesWith(New); | 
|  | } | 
|  |  | 
|  | /// Reassign the original uses of Inst to Inst. | 
|  | void undo() override { | 
|  | LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); | 
|  | for (use_iterator UseIt = OriginalUses.begin(), | 
|  | EndIt = OriginalUses.end(); | 
|  | UseIt != EndIt; ++UseIt) { | 
|  | UseIt->Inst->setOperand(UseIt->Idx, Inst); | 
|  | } | 
|  | // RAUW has replaced all original uses with references to the new value, | 
|  | // including the debug uses. Since we are undoing the replacements, | 
|  | // the original debug uses must also be reinstated to maintain the | 
|  | // correctness and utility of debug value instructions. | 
|  | for (auto *DVI: DbgValues) { | 
|  | LLVMContext &Ctx = Inst->getType()->getContext(); | 
|  | auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); | 
|  | DVI->setOperand(0, MV); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Remove an instruction from the IR. | 
|  | class InstructionRemover : public TypePromotionAction { | 
|  | /// Original position of the instruction. | 
|  | InsertionHandler Inserter; | 
|  |  | 
|  | /// Helper structure to hide all the link to the instruction. In other | 
|  | /// words, this helps to do as if the instruction was removed. | 
|  | OperandsHider Hider; | 
|  |  | 
|  | /// Keep track of the uses replaced, if any. | 
|  | UsesReplacer *Replacer = nullptr; | 
|  |  | 
|  | /// Keep track of instructions removed. | 
|  | SetOfInstrs &RemovedInsts; | 
|  |  | 
|  | public: | 
|  | /// Remove all reference of \p Inst and optionally replace all its | 
|  | /// uses with New. | 
|  | /// \p RemovedInsts Keep track of the instructions removed by this Action. | 
|  | /// \pre If !Inst->use_empty(), then New != nullptr | 
|  | InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, | 
|  | Value *New = nullptr) | 
|  | : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), | 
|  | RemovedInsts(RemovedInsts) { | 
|  | if (New) | 
|  | Replacer = new UsesReplacer(Inst, New); | 
|  | LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); | 
|  | RemovedInsts.insert(Inst); | 
|  | /// The instructions removed here will be freed after completing | 
|  | /// optimizeBlock() for all blocks as we need to keep track of the | 
|  | /// removed instructions during promotion. | 
|  | Inst->removeFromParent(); | 
|  | } | 
|  |  | 
|  | ~InstructionRemover() override { delete Replacer; } | 
|  |  | 
|  | /// Resurrect the instruction and reassign it to the proper uses if | 
|  | /// new value was provided when build this action. | 
|  | void undo() override { | 
|  | LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); | 
|  | Inserter.insert(Inst); | 
|  | if (Replacer) | 
|  | Replacer->undo(); | 
|  | Hider.undo(); | 
|  | RemovedInsts.erase(Inst); | 
|  | } | 
|  | }; | 
|  |  | 
|  | public: | 
|  | /// Restoration point. | 
|  | /// The restoration point is a pointer to an action instead of an iterator | 
|  | /// because the iterator may be invalidated but not the pointer. | 
|  | using ConstRestorationPt = const TypePromotionAction *; | 
|  |  | 
|  | TypePromotionTransaction(SetOfInstrs &RemovedInsts) | 
|  | : RemovedInsts(RemovedInsts) {} | 
|  |  | 
|  | /// Advocate every changes made in that transaction. | 
|  | void commit(); | 
|  |  | 
|  | /// Undo all the changes made after the given point. | 
|  | void rollback(ConstRestorationPt Point); | 
|  |  | 
|  | /// Get the current restoration point. | 
|  | ConstRestorationPt getRestorationPoint() const; | 
|  |  | 
|  | /// \name API for IR modification with state keeping to support rollback. | 
|  | /// @{ | 
|  | /// Same as Instruction::setOperand. | 
|  | void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); | 
|  |  | 
|  | /// Same as Instruction::eraseFromParent. | 
|  | void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); | 
|  |  | 
|  | /// Same as Value::replaceAllUsesWith. | 
|  | void replaceAllUsesWith(Instruction *Inst, Value *New); | 
|  |  | 
|  | /// Same as Value::mutateType. | 
|  | void mutateType(Instruction *Inst, Type *NewTy); | 
|  |  | 
|  | /// Same as IRBuilder::createTrunc. | 
|  | Value *createTrunc(Instruction *Opnd, Type *Ty); | 
|  |  | 
|  | /// Same as IRBuilder::createSExt. | 
|  | Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); | 
|  |  | 
|  | /// Same as IRBuilder::createZExt. | 
|  | Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); | 
|  |  | 
|  | /// Same as Instruction::moveBefore. | 
|  | void moveBefore(Instruction *Inst, Instruction *Before); | 
|  | /// @} | 
|  |  | 
|  | private: | 
|  | /// The ordered list of actions made so far. | 
|  | SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; | 
|  |  | 
|  | using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; | 
|  |  | 
|  | SetOfInstrs &RemovedInsts; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, | 
|  | Value *NewVal) { | 
|  | Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( | 
|  | Inst, Idx, NewVal)); | 
|  | } | 
|  |  | 
|  | void TypePromotionTransaction::eraseInstruction(Instruction *Inst, | 
|  | Value *NewVal) { | 
|  | Actions.push_back( | 
|  | llvm::make_unique<TypePromotionTransaction::InstructionRemover>( | 
|  | Inst, RemovedInsts, NewVal)); | 
|  | } | 
|  |  | 
|  | void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, | 
|  | Value *New) { | 
|  | Actions.push_back( | 
|  | llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); | 
|  | } | 
|  |  | 
|  | void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { | 
|  | Actions.push_back( | 
|  | llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); | 
|  | } | 
|  |  | 
|  | Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, | 
|  | Type *Ty) { | 
|  | std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); | 
|  | Value *Val = Ptr->getBuiltValue(); | 
|  | Actions.push_back(std::move(Ptr)); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | Value *TypePromotionTransaction::createSExt(Instruction *Inst, | 
|  | Value *Opnd, Type *Ty) { | 
|  | std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); | 
|  | Value *Val = Ptr->getBuiltValue(); | 
|  | Actions.push_back(std::move(Ptr)); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | Value *TypePromotionTransaction::createZExt(Instruction *Inst, | 
|  | Value *Opnd, Type *Ty) { | 
|  | std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); | 
|  | Value *Val = Ptr->getBuiltValue(); | 
|  | Actions.push_back(std::move(Ptr)); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | void TypePromotionTransaction::moveBefore(Instruction *Inst, | 
|  | Instruction *Before) { | 
|  | Actions.push_back( | 
|  | llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( | 
|  | Inst, Before)); | 
|  | } | 
|  |  | 
|  | TypePromotionTransaction::ConstRestorationPt | 
|  | TypePromotionTransaction::getRestorationPoint() const { | 
|  | return !Actions.empty() ? Actions.back().get() : nullptr; | 
|  | } | 
|  |  | 
|  | void TypePromotionTransaction::commit() { | 
|  | for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; | 
|  | ++It) | 
|  | (*It)->commit(); | 
|  | Actions.clear(); | 
|  | } | 
|  |  | 
|  | void TypePromotionTransaction::rollback( | 
|  | TypePromotionTransaction::ConstRestorationPt Point) { | 
|  | while (!Actions.empty() && Point != Actions.back().get()) { | 
|  | std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); | 
|  | Curr->undo(); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// A helper class for matching addressing modes. | 
|  | /// | 
|  | /// This encapsulates the logic for matching the target-legal addressing modes. | 
|  | class AddressingModeMatcher { | 
|  | SmallVectorImpl<Instruction*> &AddrModeInsts; | 
|  | const TargetLowering &TLI; | 
|  | const TargetRegisterInfo &TRI; | 
|  | const DataLayout &DL; | 
|  |  | 
|  | /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and | 
|  | /// the memory instruction that we're computing this address for. | 
|  | Type *AccessTy; | 
|  | unsigned AddrSpace; | 
|  | Instruction *MemoryInst; | 
|  |  | 
|  | /// This is the addressing mode that we're building up. This is | 
|  | /// part of the return value of this addressing mode matching stuff. | 
|  | ExtAddrMode &AddrMode; | 
|  |  | 
|  | /// The instructions inserted by other CodeGenPrepare optimizations. | 
|  | const SetOfInstrs &InsertedInsts; | 
|  |  | 
|  | /// A map from the instructions to their type before promotion. | 
|  | InstrToOrigTy &PromotedInsts; | 
|  |  | 
|  | /// The ongoing transaction where every action should be registered. | 
|  | TypePromotionTransaction &TPT; | 
|  |  | 
|  | // A GEP which has too large offset to be folded into the addressing mode. | 
|  | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; | 
|  |  | 
|  | /// This is set to true when we should not do profitability checks. | 
|  | /// When true, IsProfitableToFoldIntoAddressingMode always returns true. | 
|  | bool IgnoreProfitability; | 
|  |  | 
|  | AddressingModeMatcher( | 
|  | SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, | 
|  | const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, | 
|  | ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, | 
|  | InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, | 
|  | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) | 
|  | : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), | 
|  | DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), | 
|  | MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), | 
|  | PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { | 
|  | IgnoreProfitability = false; | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// Find the maximal addressing mode that a load/store of V can fold, | 
|  | /// give an access type of AccessTy.  This returns a list of involved | 
|  | /// instructions in AddrModeInsts. | 
|  | /// \p InsertedInsts The instructions inserted by other CodeGenPrepare | 
|  | /// optimizations. | 
|  | /// \p PromotedInsts maps the instructions to their type before promotion. | 
|  | /// \p The ongoing transaction where every action should be registered. | 
|  | static ExtAddrMode | 
|  | Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, | 
|  | SmallVectorImpl<Instruction *> &AddrModeInsts, | 
|  | const TargetLowering &TLI, const TargetRegisterInfo &TRI, | 
|  | const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, | 
|  | TypePromotionTransaction &TPT, | 
|  | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { | 
|  | ExtAddrMode Result; | 
|  |  | 
|  | bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, | 
|  | MemoryInst, Result, InsertedInsts, | 
|  | PromotedInsts, TPT, LargeOffsetGEP) | 
|  | .matchAddr(V, 0); | 
|  | (void)Success; assert(Success && "Couldn't select *anything*?"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); | 
|  | bool matchAddr(Value *Addr, unsigned Depth); | 
|  | bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, | 
|  | bool *MovedAway = nullptr); | 
|  | bool isProfitableToFoldIntoAddressingMode(Instruction *I, | 
|  | ExtAddrMode &AMBefore, | 
|  | ExtAddrMode &AMAfter); | 
|  | bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); | 
|  | bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, | 
|  | Value *PromotedOperand) const; | 
|  | }; | 
|  |  | 
|  | class PhiNodeSet; | 
|  |  | 
|  | /// An iterator for PhiNodeSet. | 
|  | class PhiNodeSetIterator { | 
|  | PhiNodeSet * const Set; | 
|  | size_t CurrentIndex = 0; | 
|  |  | 
|  | public: | 
|  | /// The constructor. Start should point to either a valid element, or be equal | 
|  | /// to the size of the underlying SmallVector of the PhiNodeSet. | 
|  | PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); | 
|  | PHINode * operator*() const; | 
|  | PhiNodeSetIterator& operator++(); | 
|  | bool operator==(const PhiNodeSetIterator &RHS) const; | 
|  | bool operator!=(const PhiNodeSetIterator &RHS) const; | 
|  | }; | 
|  |  | 
|  | /// Keeps a set of PHINodes. | 
|  | /// | 
|  | /// This is a minimal set implementation for a specific use case: | 
|  | /// It is very fast when there are very few elements, but also provides good | 
|  | /// performance when there are many. It is similar to SmallPtrSet, but also | 
|  | /// provides iteration by insertion order, which is deterministic and stable | 
|  | /// across runs. It is also similar to SmallSetVector, but provides removing | 
|  | /// elements in O(1) time. This is achieved by not actually removing the element | 
|  | /// from the underlying vector, so comes at the cost of using more memory, but | 
|  | /// that is fine, since PhiNodeSets are used as short lived objects. | 
|  | class PhiNodeSet { | 
|  | friend class PhiNodeSetIterator; | 
|  |  | 
|  | using MapType = SmallDenseMap<PHINode *, size_t, 32>; | 
|  | using iterator =  PhiNodeSetIterator; | 
|  |  | 
|  | /// Keeps the elements in the order of their insertion in the underlying | 
|  | /// vector. To achieve constant time removal, it never deletes any element. | 
|  | SmallVector<PHINode *, 32> NodeList; | 
|  |  | 
|  | /// Keeps the elements in the underlying set implementation. This (and not the | 
|  | /// NodeList defined above) is the source of truth on whether an element | 
|  | /// is actually in the collection. | 
|  | MapType NodeMap; | 
|  |  | 
|  | /// Points to the first valid (not deleted) element when the set is not empty | 
|  | /// and the value is not zero. Equals to the size of the underlying vector | 
|  | /// when the set is empty. When the value is 0, as in the beginning, the | 
|  | /// first element may or may not be valid. | 
|  | size_t FirstValidElement = 0; | 
|  |  | 
|  | public: | 
|  | /// Inserts a new element to the collection. | 
|  | /// \returns true if the element is actually added, i.e. was not in the | 
|  | /// collection before the operation. | 
|  | bool insert(PHINode *Ptr) { | 
|  | if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { | 
|  | NodeList.push_back(Ptr); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Removes the element from the collection. | 
|  | /// \returns whether the element is actually removed, i.e. was in the | 
|  | /// collection before the operation. | 
|  | bool erase(PHINode *Ptr) { | 
|  | auto it = NodeMap.find(Ptr); | 
|  | if (it != NodeMap.end()) { | 
|  | NodeMap.erase(Ptr); | 
|  | SkipRemovedElements(FirstValidElement); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Removes all elements and clears the collection. | 
|  | void clear() { | 
|  | NodeMap.clear(); | 
|  | NodeList.clear(); | 
|  | FirstValidElement = 0; | 
|  | } | 
|  |  | 
|  | /// \returns an iterator that will iterate the elements in the order of | 
|  | /// insertion. | 
|  | iterator begin() { | 
|  | if (FirstValidElement == 0) | 
|  | SkipRemovedElements(FirstValidElement); | 
|  | return PhiNodeSetIterator(this, FirstValidElement); | 
|  | } | 
|  |  | 
|  | /// \returns an iterator that points to the end of the collection. | 
|  | iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } | 
|  |  | 
|  | /// Returns the number of elements in the collection. | 
|  | size_t size() const { | 
|  | return NodeMap.size(); | 
|  | } | 
|  |  | 
|  | /// \returns 1 if the given element is in the collection, and 0 if otherwise. | 
|  | size_t count(PHINode *Ptr) const { | 
|  | return NodeMap.count(Ptr); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Updates the CurrentIndex so that it will point to a valid element. | 
|  | /// | 
|  | /// If the element of NodeList at CurrentIndex is valid, it does not | 
|  | /// change it. If there are no more valid elements, it updates CurrentIndex | 
|  | /// to point to the end of the NodeList. | 
|  | void SkipRemovedElements(size_t &CurrentIndex) { | 
|  | while (CurrentIndex < NodeList.size()) { | 
|  | auto it = NodeMap.find(NodeList[CurrentIndex]); | 
|  | // If the element has been deleted and added again later, NodeMap will | 
|  | // point to a different index, so CurrentIndex will still be invalid. | 
|  | if (it != NodeMap.end() && it->second == CurrentIndex) | 
|  | break; | 
|  | ++CurrentIndex; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) | 
|  | : Set(Set), CurrentIndex(Start) {} | 
|  |  | 
|  | PHINode * PhiNodeSetIterator::operator*() const { | 
|  | assert(CurrentIndex < Set->NodeList.size() && | 
|  | "PhiNodeSet access out of range"); | 
|  | return Set->NodeList[CurrentIndex]; | 
|  | } | 
|  |  | 
|  | PhiNodeSetIterator& PhiNodeSetIterator::operator++() { | 
|  | assert(CurrentIndex < Set->NodeList.size() && | 
|  | "PhiNodeSet access out of range"); | 
|  | ++CurrentIndex; | 
|  | Set->SkipRemovedElements(CurrentIndex); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { | 
|  | return CurrentIndex == RHS.CurrentIndex; | 
|  | } | 
|  |  | 
|  | bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { | 
|  | return !((*this) == RHS); | 
|  | } | 
|  |  | 
|  | /// Keep track of simplification of Phi nodes. | 
|  | /// Accept the set of all phi nodes and erase phi node from this set | 
|  | /// if it is simplified. | 
|  | class SimplificationTracker { | 
|  | DenseMap<Value *, Value *> Storage; | 
|  | const SimplifyQuery &SQ; | 
|  | // Tracks newly created Phi nodes. The elements are iterated by insertion | 
|  | // order. | 
|  | PhiNodeSet AllPhiNodes; | 
|  | // Tracks newly created Select nodes. | 
|  | SmallPtrSet<SelectInst *, 32> AllSelectNodes; | 
|  |  | 
|  | public: | 
|  | SimplificationTracker(const SimplifyQuery &sq) | 
|  | : SQ(sq) {} | 
|  |  | 
|  | Value *Get(Value *V) { | 
|  | do { | 
|  | auto SV = Storage.find(V); | 
|  | if (SV == Storage.end()) | 
|  | return V; | 
|  | V = SV->second; | 
|  | } while (true); | 
|  | } | 
|  |  | 
|  | Value *Simplify(Value *Val) { | 
|  | SmallVector<Value *, 32> WorkList; | 
|  | SmallPtrSet<Value *, 32> Visited; | 
|  | WorkList.push_back(Val); | 
|  | while (!WorkList.empty()) { | 
|  | auto P = WorkList.pop_back_val(); | 
|  | if (!Visited.insert(P).second) | 
|  | continue; | 
|  | if (auto *PI = dyn_cast<Instruction>(P)) | 
|  | if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { | 
|  | for (auto *U : PI->users()) | 
|  | WorkList.push_back(cast<Value>(U)); | 
|  | Put(PI, V); | 
|  | PI->replaceAllUsesWith(V); | 
|  | if (auto *PHI = dyn_cast<PHINode>(PI)) | 
|  | AllPhiNodes.erase(PHI); | 
|  | if (auto *Select = dyn_cast<SelectInst>(PI)) | 
|  | AllSelectNodes.erase(Select); | 
|  | PI->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | return Get(Val); | 
|  | } | 
|  |  | 
|  | void Put(Value *From, Value *To) { | 
|  | Storage.insert({ From, To }); | 
|  | } | 
|  |  | 
|  | void ReplacePhi(PHINode *From, PHINode *To) { | 
|  | Value* OldReplacement = Get(From); | 
|  | while (OldReplacement != From) { | 
|  | From = To; | 
|  | To = dyn_cast<PHINode>(OldReplacement); | 
|  | OldReplacement = Get(From); | 
|  | } | 
|  | assert(Get(To) == To && "Replacement PHI node is already replaced."); | 
|  | Put(From, To); | 
|  | From->replaceAllUsesWith(To); | 
|  | AllPhiNodes.erase(From); | 
|  | From->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | PhiNodeSet& newPhiNodes() { return AllPhiNodes; } | 
|  |  | 
|  | void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } | 
|  |  | 
|  | void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } | 
|  |  | 
|  | unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } | 
|  |  | 
|  | unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } | 
|  |  | 
|  | void destroyNewNodes(Type *CommonType) { | 
|  | // For safe erasing, replace the uses with dummy value first. | 
|  | auto Dummy = UndefValue::get(CommonType); | 
|  | for (auto I : AllPhiNodes) { | 
|  | I->replaceAllUsesWith(Dummy); | 
|  | I->eraseFromParent(); | 
|  | } | 
|  | AllPhiNodes.clear(); | 
|  | for (auto I : AllSelectNodes) { | 
|  | I->replaceAllUsesWith(Dummy); | 
|  | I->eraseFromParent(); | 
|  | } | 
|  | AllSelectNodes.clear(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// A helper class for combining addressing modes. | 
|  | class AddressingModeCombiner { | 
|  | typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; | 
|  | typedef std::pair<PHINode *, PHINode *> PHIPair; | 
|  |  | 
|  | private: | 
|  | /// The addressing modes we've collected. | 
|  | SmallVector<ExtAddrMode, 16> AddrModes; | 
|  |  | 
|  | /// The field in which the AddrModes differ, when we have more than one. | 
|  | ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; | 
|  |  | 
|  | /// Are the AddrModes that we have all just equal to their original values? | 
|  | bool AllAddrModesTrivial = true; | 
|  |  | 
|  | /// Common Type for all different fields in addressing modes. | 
|  | Type *CommonType; | 
|  |  | 
|  | /// SimplifyQuery for simplifyInstruction utility. | 
|  | const SimplifyQuery &SQ; | 
|  |  | 
|  | /// Original Address. | 
|  | Value *Original; | 
|  |  | 
|  | public: | 
|  | AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) | 
|  | : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} | 
|  |  | 
|  | /// Get the combined AddrMode | 
|  | const ExtAddrMode &getAddrMode() const { | 
|  | return AddrModes[0]; | 
|  | } | 
|  |  | 
|  | /// Add a new AddrMode if it's compatible with the AddrModes we already | 
|  | /// have. | 
|  | /// \return True iff we succeeded in doing so. | 
|  | bool addNewAddrMode(ExtAddrMode &NewAddrMode) { | 
|  | // Take note of if we have any non-trivial AddrModes, as we need to detect | 
|  | // when all AddrModes are trivial as then we would introduce a phi or select | 
|  | // which just duplicates what's already there. | 
|  | AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); | 
|  |  | 
|  | // If this is the first addrmode then everything is fine. | 
|  | if (AddrModes.empty()) { | 
|  | AddrModes.emplace_back(NewAddrMode); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Figure out how different this is from the other address modes, which we | 
|  | // can do just by comparing against the first one given that we only care | 
|  | // about the cumulative difference. | 
|  | ExtAddrMode::FieldName ThisDifferentField = | 
|  | AddrModes[0].compare(NewAddrMode); | 
|  | if (DifferentField == ExtAddrMode::NoField) | 
|  | DifferentField = ThisDifferentField; | 
|  | else if (DifferentField != ThisDifferentField) | 
|  | DifferentField = ExtAddrMode::MultipleFields; | 
|  |  | 
|  | // If NewAddrMode differs in more than one dimension we cannot handle it. | 
|  | bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; | 
|  |  | 
|  | // If Scale Field is different then we reject. | 
|  | CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; | 
|  |  | 
|  | // We also must reject the case when base offset is different and | 
|  | // scale reg is not null, we cannot handle this case due to merge of | 
|  | // different offsets will be used as ScaleReg. | 
|  | CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || | 
|  | !NewAddrMode.ScaledReg); | 
|  |  | 
|  | // We also must reject the case when GV is different and BaseReg installed | 
|  | // due to we want to use base reg as a merge of GV values. | 
|  | CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || | 
|  | !NewAddrMode.HasBaseReg); | 
|  |  | 
|  | // Even if NewAddMode is the same we still need to collect it due to | 
|  | // original value is different. And later we will need all original values | 
|  | // as anchors during finding the common Phi node. | 
|  | if (CanHandle) | 
|  | AddrModes.emplace_back(NewAddrMode); | 
|  | else | 
|  | AddrModes.clear(); | 
|  |  | 
|  | return CanHandle; | 
|  | } | 
|  |  | 
|  | /// Combine the addressing modes we've collected into a single | 
|  | /// addressing mode. | 
|  | /// \return True iff we successfully combined them or we only had one so | 
|  | /// didn't need to combine them anyway. | 
|  | bool combineAddrModes() { | 
|  | // If we have no AddrModes then they can't be combined. | 
|  | if (AddrModes.size() == 0) | 
|  | return false; | 
|  |  | 
|  | // A single AddrMode can trivially be combined. | 
|  | if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) | 
|  | return true; | 
|  |  | 
|  | // If the AddrModes we collected are all just equal to the value they are | 
|  | // derived from then combining them wouldn't do anything useful. | 
|  | if (AllAddrModesTrivial) | 
|  | return false; | 
|  |  | 
|  | if (!addrModeCombiningAllowed()) | 
|  | return false; | 
|  |  | 
|  | // Build a map between <original value, basic block where we saw it> to | 
|  | // value of base register. | 
|  | // Bail out if there is no common type. | 
|  | FoldAddrToValueMapping Map; | 
|  | if (!initializeMap(Map)) | 
|  | return false; | 
|  |  | 
|  | Value *CommonValue = findCommon(Map); | 
|  | if (CommonValue) | 
|  | AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); | 
|  | return CommonValue != nullptr; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Initialize Map with anchor values. For address seen | 
|  | /// we set the value of different field saw in this address. | 
|  | /// At the same time we find a common type for different field we will | 
|  | /// use to create new Phi/Select nodes. Keep it in CommonType field. | 
|  | /// Return false if there is no common type found. | 
|  | bool initializeMap(FoldAddrToValueMapping &Map) { | 
|  | // Keep track of keys where the value is null. We will need to replace it | 
|  | // with constant null when we know the common type. | 
|  | SmallVector<Value *, 2> NullValue; | 
|  | Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); | 
|  | for (auto &AM : AddrModes) { | 
|  | Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); | 
|  | if (DV) { | 
|  | auto *Type = DV->getType(); | 
|  | if (CommonType && CommonType != Type) | 
|  | return false; | 
|  | CommonType = Type; | 
|  | Map[AM.OriginalValue] = DV; | 
|  | } else { | 
|  | NullValue.push_back(AM.OriginalValue); | 
|  | } | 
|  | } | 
|  | assert(CommonType && "At least one non-null value must be!"); | 
|  | for (auto *V : NullValue) | 
|  | Map[V] = Constant::getNullValue(CommonType); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// We have mapping between value A and other value B where B was a field in | 
|  | /// addressing mode represented by A. Also we have an original value C | 
|  | /// representing an address we start with. Traversing from C through phi and | 
|  | /// selects we ended up with A's in a map. This utility function tries to find | 
|  | /// a value V which is a field in addressing mode C and traversing through phi | 
|  | /// nodes and selects we will end up in corresponded values B in a map. | 
|  | /// The utility will create a new Phi/Selects if needed. | 
|  | // The simple example looks as follows: | 
|  | // BB1: | 
|  | //   p1 = b1 + 40 | 
|  | //   br cond BB2, BB3 | 
|  | // BB2: | 
|  | //   p2 = b2 + 40 | 
|  | //   br BB3 | 
|  | // BB3: | 
|  | //   p = phi [p1, BB1], [p2, BB2] | 
|  | //   v = load p | 
|  | // Map is | 
|  | //   p1 -> b1 | 
|  | //   p2 -> b2 | 
|  | // Request is | 
|  | //   p -> ? | 
|  | // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. | 
|  | Value *findCommon(FoldAddrToValueMapping &Map) { | 
|  | // Tracks the simplification of newly created phi nodes. The reason we use | 
|  | // this mapping is because we will add new created Phi nodes in AddrToBase. | 
|  | // Simplification of Phi nodes is recursive, so some Phi node may | 
|  | // be simplified after we added it to AddrToBase. In reality this | 
|  | // simplification is possible only if original phi/selects were not | 
|  | // simplified yet. | 
|  | // Using this mapping we can find the current value in AddrToBase. | 
|  | SimplificationTracker ST(SQ); | 
|  |  | 
|  | // First step, DFS to create PHI nodes for all intermediate blocks. | 
|  | // Also fill traverse order for the second step. | 
|  | SmallVector<Value *, 32> TraverseOrder; | 
|  | InsertPlaceholders(Map, TraverseOrder, ST); | 
|  |  | 
|  | // Second Step, fill new nodes by merged values and simplify if possible. | 
|  | FillPlaceholders(Map, TraverseOrder, ST); | 
|  |  | 
|  | if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { | 
|  | ST.destroyNewNodes(CommonType); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Now we'd like to match New Phi nodes to existed ones. | 
|  | unsigned PhiNotMatchedCount = 0; | 
|  | if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { | 
|  | ST.destroyNewNodes(CommonType); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | auto *Result = ST.Get(Map.find(Original)->second); | 
|  | if (Result) { | 
|  | NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; | 
|  | NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Try to match PHI node to Candidate. | 
|  | /// Matcher tracks the matched Phi nodes. | 
|  | bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, | 
|  | SmallSetVector<PHIPair, 8> &Matcher, | 
|  | PhiNodeSet &PhiNodesToMatch) { | 
|  | SmallVector<PHIPair, 8> WorkList; | 
|  | Matcher.insert({ PHI, Candidate }); | 
|  | WorkList.push_back({ PHI, Candidate }); | 
|  | SmallSet<PHIPair, 8> Visited; | 
|  | while (!WorkList.empty()) { | 
|  | auto Item = WorkList.pop_back_val(); | 
|  | if (!Visited.insert(Item).second) | 
|  | continue; | 
|  | // We iterate over all incoming values to Phi to compare them. | 
|  | // If values are different and both of them Phi and the first one is a | 
|  | // Phi we added (subject to match) and both of them is in the same basic | 
|  | // block then we can match our pair if values match. So we state that | 
|  | // these values match and add it to work list to verify that. | 
|  | for (auto B : Item.first->blocks()) { | 
|  | Value *FirstValue = Item.first->getIncomingValueForBlock(B); | 
|  | Value *SecondValue = Item.second->getIncomingValueForBlock(B); | 
|  | if (FirstValue == SecondValue) | 
|  | continue; | 
|  |  | 
|  | PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); | 
|  | PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); | 
|  |  | 
|  | // One of them is not Phi or | 
|  | // The first one is not Phi node from the set we'd like to match or | 
|  | // Phi nodes from different basic blocks then | 
|  | // we will not be able to match. | 
|  | if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || | 
|  | FirstPhi->getParent() != SecondPhi->getParent()) | 
|  | return false; | 
|  |  | 
|  | // If we already matched them then continue. | 
|  | if (Matcher.count({ FirstPhi, SecondPhi })) | 
|  | continue; | 
|  | // So the values are different and does not match. So we need them to | 
|  | // match. | 
|  | Matcher.insert({ FirstPhi, SecondPhi }); | 
|  | // But me must check it. | 
|  | WorkList.push_back({ FirstPhi, SecondPhi }); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// For the given set of PHI nodes (in the SimplificationTracker) try | 
|  | /// to find their equivalents. | 
|  | /// Returns false if this matching fails and creation of new Phi is disabled. | 
|  | bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, | 
|  | unsigned &PhiNotMatchedCount) { | 
|  | // Matched and PhiNodesToMatch iterate their elements in a deterministic | 
|  | // order, so the replacements (ReplacePhi) are also done in a deterministic | 
|  | // order. | 
|  | SmallSetVector<PHIPair, 8> Matched; | 
|  | SmallPtrSet<PHINode *, 8> WillNotMatch; | 
|  | PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); | 
|  | while (PhiNodesToMatch.size()) { | 
|  | PHINode *PHI = *PhiNodesToMatch.begin(); | 
|  |  | 
|  | // Add us, if no Phi nodes in the basic block we do not match. | 
|  | WillNotMatch.clear(); | 
|  | WillNotMatch.insert(PHI); | 
|  |  | 
|  | // Traverse all Phis until we found equivalent or fail to do that. | 
|  | bool IsMatched = false; | 
|  | for (auto &P : PHI->getParent()->phis()) { | 
|  | if (&P == PHI) | 
|  | continue; | 
|  | if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) | 
|  | break; | 
|  | // If it does not match, collect all Phi nodes from matcher. | 
|  | // if we end up with no match, them all these Phi nodes will not match | 
|  | // later. | 
|  | for (auto M : Matched) | 
|  | WillNotMatch.insert(M.first); | 
|  | Matched.clear(); | 
|  | } | 
|  | if (IsMatched) { | 
|  | // Replace all matched values and erase them. | 
|  | for (auto MV : Matched) | 
|  | ST.ReplacePhi(MV.first, MV.second); | 
|  | Matched.clear(); | 
|  | continue; | 
|  | } | 
|  | // If we are not allowed to create new nodes then bail out. | 
|  | if (!AllowNewPhiNodes) | 
|  | return false; | 
|  | // Just remove all seen values in matcher. They will not match anything. | 
|  | PhiNotMatchedCount += WillNotMatch.size(); | 
|  | for (auto *P : WillNotMatch) | 
|  | PhiNodesToMatch.erase(P); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | /// Fill the placeholders with values from predecessors and simplify them. | 
|  | void FillPlaceholders(FoldAddrToValueMapping &Map, | 
|  | SmallVectorImpl<Value *> &TraverseOrder, | 
|  | SimplificationTracker &ST) { | 
|  | while (!TraverseOrder.empty()) { | 
|  | Value *Current = TraverseOrder.pop_back_val(); | 
|  | assert(Map.find(Current) != Map.end() && "No node to fill!!!"); | 
|  | Value *V = Map[Current]; | 
|  |  | 
|  | if (SelectInst *Select = dyn_cast<SelectInst>(V)) { | 
|  | // CurrentValue also must be Select. | 
|  | auto *CurrentSelect = cast<SelectInst>(Current); | 
|  | auto *TrueValue = CurrentSelect->getTrueValue(); | 
|  | assert(Map.find(TrueValue) != Map.end() && "No True Value!"); | 
|  | Select->setTrueValue(ST.Get(Map[TrueValue])); | 
|  | auto *FalseValue = CurrentSelect->getFalseValue(); | 
|  | assert(Map.find(FalseValue) != Map.end() && "No False Value!"); | 
|  | Select->setFalseValue(ST.Get(Map[FalseValue])); | 
|  | } else { | 
|  | // Must be a Phi node then. | 
|  | PHINode *PHI = cast<PHINode>(V); | 
|  | auto *CurrentPhi = dyn_cast<PHINode>(Current); | 
|  | // Fill the Phi node with values from predecessors. | 
|  | for (auto B : predecessors(PHI->getParent())) { | 
|  | Value *PV = CurrentPhi->getIncomingValueForBlock(B); | 
|  | assert(Map.find(PV) != Map.end() && "No predecessor Value!"); | 
|  | PHI->addIncoming(ST.Get(Map[PV]), B); | 
|  | } | 
|  | } | 
|  | Map[Current] = ST.Simplify(V); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Starting from original value recursively iterates over def-use chain up to | 
|  | /// known ending values represented in a map. For each traversed phi/select | 
|  | /// inserts a placeholder Phi or Select. | 
|  | /// Reports all new created Phi/Select nodes by adding them to set. | 
|  | /// Also reports and order in what values have been traversed. | 
|  | void InsertPlaceholders(FoldAddrToValueMapping &Map, | 
|  | SmallVectorImpl<Value *> &TraverseOrder, | 
|  | SimplificationTracker &ST) { | 
|  | SmallVector<Value *, 32> Worklist; | 
|  | assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && | 
|  | "Address must be a Phi or Select node"); | 
|  | auto *Dummy = UndefValue::get(CommonType); | 
|  | Worklist.push_back(Original); | 
|  | while (!Worklist.empty()) { | 
|  | Value *Current = Worklist.pop_back_val(); | 
|  | // if it is already visited or it is an ending value then skip it. | 
|  | if (Map.find(Current) != Map.end()) | 
|  | continue; | 
|  | TraverseOrder.push_back(Current); | 
|  |  | 
|  | // CurrentValue must be a Phi node or select. All others must be covered | 
|  | // by anchors. | 
|  | if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { | 
|  | // Is it OK to get metadata from OrigSelect?! | 
|  | // Create a Select placeholder with dummy value. | 
|  | SelectInst *Select = SelectInst::Create( | 
|  | CurrentSelect->getCondition(), Dummy, Dummy, | 
|  | CurrentSelect->getName(), CurrentSelect, CurrentSelect); | 
|  | Map[Current] = Select; | 
|  | ST.insertNewSelect(Select); | 
|  | // We are interested in True and False values. | 
|  | Worklist.push_back(CurrentSelect->getTrueValue()); | 
|  | Worklist.push_back(CurrentSelect->getFalseValue()); | 
|  | } else { | 
|  | // It must be a Phi node then. | 
|  | PHINode *CurrentPhi = cast<PHINode>(Current); | 
|  | unsigned PredCount = CurrentPhi->getNumIncomingValues(); | 
|  | PHINode *PHI = | 
|  | PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); | 
|  | Map[Current] = PHI; | 
|  | ST.insertNewPhi(PHI); | 
|  | for (Value *P : CurrentPhi->incoming_values()) | 
|  | Worklist.push_back(P); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool addrModeCombiningAllowed() { | 
|  | if (DisableComplexAddrModes) | 
|  | return false; | 
|  | switch (DifferentField) { | 
|  | default: | 
|  | return false; | 
|  | case ExtAddrMode::BaseRegField: | 
|  | return AddrSinkCombineBaseReg; | 
|  | case ExtAddrMode::BaseGVField: | 
|  | return AddrSinkCombineBaseGV; | 
|  | case ExtAddrMode::BaseOffsField: | 
|  | return AddrSinkCombineBaseOffs; | 
|  | case ExtAddrMode::ScaledRegField: | 
|  | return AddrSinkCombineScaledReg; | 
|  | } | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Try adding ScaleReg*Scale to the current addressing mode. | 
|  | /// Return true and update AddrMode if this addr mode is legal for the target, | 
|  | /// false if not. | 
|  | bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, | 
|  | unsigned Depth) { | 
|  | // If Scale is 1, then this is the same as adding ScaleReg to the addressing | 
|  | // mode.  Just process that directly. | 
|  | if (Scale == 1) | 
|  | return matchAddr(ScaleReg, Depth); | 
|  |  | 
|  | // If the scale is 0, it takes nothing to add this. | 
|  | if (Scale == 0) | 
|  | return true; | 
|  |  | 
|  | // If we already have a scale of this value, we can add to it, otherwise, we | 
|  | // need an available scale field. | 
|  | if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) | 
|  | return false; | 
|  |  | 
|  | ExtAddrMode TestAddrMode = AddrMode; | 
|  |  | 
|  | // Add scale to turn X*4+X*3 -> X*7.  This could also do things like | 
|  | // [A+B + A*7] -> [B+A*8]. | 
|  | TestAddrMode.Scale += Scale; | 
|  | TestAddrMode.ScaledReg = ScaleReg; | 
|  |  | 
|  | // If the new address isn't legal, bail out. | 
|  | if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) | 
|  | return false; | 
|  |  | 
|  | // It was legal, so commit it. | 
|  | AddrMode = TestAddrMode; | 
|  |  | 
|  | // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now | 
|  | // to see if ScaleReg is actually X+C.  If so, we can turn this into adding | 
|  | // X*Scale + C*Scale to addr mode. | 
|  | ConstantInt *CI = nullptr; Value *AddLHS = nullptr; | 
|  | if (isa<Instruction>(ScaleReg) &&  // not a constant expr. | 
|  | match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { | 
|  | TestAddrMode.ScaledReg = AddLHS; | 
|  | TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; | 
|  |  | 
|  | // If this addressing mode is legal, commit it and remember that we folded | 
|  | // this instruction. | 
|  | if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { | 
|  | AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); | 
|  | AddrMode = TestAddrMode; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, not (x+c)*scale, just return what we have. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// This is a little filter, which returns true if an addressing computation | 
|  | /// involving I might be folded into a load/store accessing it. | 
|  | /// This doesn't need to be perfect, but needs to accept at least | 
|  | /// the set of instructions that MatchOperationAddr can. | 
|  | static bool MightBeFoldableInst(Instruction *I) { | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::BitCast: | 
|  | case Instruction::AddrSpaceCast: | 
|  | // Don't touch identity bitcasts. | 
|  | if (I->getType() == I->getOperand(0)->getType()) | 
|  | return false; | 
|  | return I->getType()->isIntOrPtrTy(); | 
|  | case Instruction::PtrToInt: | 
|  | // PtrToInt is always a noop, as we know that the int type is pointer sized. | 
|  | return true; | 
|  | case Instruction::IntToPtr: | 
|  | // We know the input is intptr_t, so this is foldable. | 
|  | return true; | 
|  | case Instruction::Add: | 
|  | return true; | 
|  | case Instruction::Mul: | 
|  | case Instruction::Shl: | 
|  | // Can only handle X*C and X << C. | 
|  | return isa<ConstantInt>(I->getOperand(1)); | 
|  | case Instruction::GetElementPtr: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check whether or not \p Val is a legal instruction for \p TLI. | 
|  | /// \note \p Val is assumed to be the product of some type promotion. | 
|  | /// Therefore if \p Val has an undefined state in \p TLI, this is assumed | 
|  | /// to be legal, as the non-promoted value would have had the same state. | 
|  | static bool isPromotedInstructionLegal(const TargetLowering &TLI, | 
|  | const DataLayout &DL, Value *Val) { | 
|  | Instruction *PromotedInst = dyn_cast<Instruction>(Val); | 
|  | if (!PromotedInst) | 
|  | return false; | 
|  | int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); | 
|  | // If the ISDOpcode is undefined, it was undefined before the promotion. | 
|  | if (!ISDOpcode) | 
|  | return true; | 
|  | // Otherwise, check if the promoted instruction is legal or not. | 
|  | return TLI.isOperationLegalOrCustom( | 
|  | ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Hepler class to perform type promotion. | 
|  | class TypePromotionHelper { | 
|  | /// Utility function to add a promoted instruction \p ExtOpnd to | 
|  | /// \p PromotedInsts and record the type of extension we have seen. | 
|  | static void addPromotedInst(InstrToOrigTy &PromotedInsts, | 
|  | Instruction *ExtOpnd, | 
|  | bool IsSExt) { | 
|  | ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; | 
|  | InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); | 
|  | if (It != PromotedInsts.end()) { | 
|  | // If the new extension is same as original, the information in | 
|  | // PromotedInsts[ExtOpnd] is still correct. | 
|  | if (It->second.getInt() == ExtTy) | 
|  | return; | 
|  |  | 
|  | // Now the new extension is different from old extension, we make | 
|  | // the type information invalid by setting extension type to | 
|  | // BothExtension. | 
|  | ExtTy = BothExtension; | 
|  | } | 
|  | PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); | 
|  | } | 
|  |  | 
|  | /// Utility function to query the original type of instruction \p Opnd | 
|  | /// with a matched extension type. If the extension doesn't match, we | 
|  | /// cannot use the information we had on the original type. | 
|  | /// BothExtension doesn't match any extension type. | 
|  | static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, | 
|  | Instruction *Opnd, | 
|  | bool IsSExt) { | 
|  | ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; | 
|  | InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); | 
|  | if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) | 
|  | return It->second.getPointer(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Utility function to check whether or not a sign or zero extension | 
|  | /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by | 
|  | /// either using the operands of \p Inst or promoting \p Inst. | 
|  | /// The type of the extension is defined by \p IsSExt. | 
|  | /// In other words, check if: | 
|  | /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. | 
|  | /// #1 Promotion applies: | 
|  | /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). | 
|  | /// #2 Operand reuses: | 
|  | /// ext opnd1 to ConsideredExtType. | 
|  | /// \p PromotedInsts maps the instructions to their type before promotion. | 
|  | static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, | 
|  | const InstrToOrigTy &PromotedInsts, bool IsSExt); | 
|  |  | 
|  | /// Utility function to determine if \p OpIdx should be promoted when | 
|  | /// promoting \p Inst. | 
|  | static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { | 
|  | return !(isa<SelectInst>(Inst) && OpIdx == 0); | 
|  | } | 
|  |  | 
|  | /// Utility function to promote the operand of \p Ext when this | 
|  | /// operand is a promotable trunc or sext or zext. | 
|  | /// \p PromotedInsts maps the instructions to their type before promotion. | 
|  | /// \p CreatedInstsCost[out] contains the cost of all instructions | 
|  | /// created to promote the operand of Ext. | 
|  | /// Newly added extensions are inserted in \p Exts. | 
|  | /// Newly added truncates are inserted in \p Truncs. | 
|  | /// Should never be called directly. | 
|  | /// \return The promoted value which is used instead of Ext. | 
|  | static Value *promoteOperandForTruncAndAnyExt( | 
|  | Instruction *Ext, TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); | 
|  |  | 
|  | /// Utility function to promote the operand of \p Ext when this | 
|  | /// operand is promotable and is not a supported trunc or sext. | 
|  | /// \p PromotedInsts maps the instructions to their type before promotion. | 
|  | /// \p CreatedInstsCost[out] contains the cost of all the instructions | 
|  | /// created to promote the operand of Ext. | 
|  | /// Newly added extensions are inserted in \p Exts. | 
|  | /// Newly added truncates are inserted in \p Truncs. | 
|  | /// Should never be called directly. | 
|  | /// \return The promoted value which is used instead of Ext. | 
|  | static Value *promoteOperandForOther(Instruction *Ext, | 
|  | TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, | 
|  | unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, | 
|  | const TargetLowering &TLI, bool IsSExt); | 
|  |  | 
|  | /// \see promoteOperandForOther. | 
|  | static Value *signExtendOperandForOther( | 
|  | Instruction *Ext, TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | 
|  | return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, | 
|  | Exts, Truncs, TLI, true); | 
|  | } | 
|  |  | 
|  | /// \see promoteOperandForOther. | 
|  | static Value *zeroExtendOperandForOther( | 
|  | Instruction *Ext, TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | 
|  | return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, | 
|  | Exts, Truncs, TLI, false); | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// Type for the utility function that promotes the operand of Ext. | 
|  | using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, | 
|  | unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, | 
|  | const TargetLowering &TLI); | 
|  |  | 
|  | /// Given a sign/zero extend instruction \p Ext, return the appropriate | 
|  | /// action to promote the operand of \p Ext instead of using Ext. | 
|  | /// \return NULL if no promotable action is possible with the current | 
|  | /// sign extension. | 
|  | /// \p InsertedInsts keeps track of all the instructions inserted by the | 
|  | /// other CodeGenPrepare optimizations. This information is important | 
|  | /// because we do not want to promote these instructions as CodeGenPrepare | 
|  | /// will reinsert them later. Thus creating an infinite loop: create/remove. | 
|  | /// \p PromotedInsts maps the instructions to their type before promotion. | 
|  | static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, | 
|  | const TargetLowering &TLI, | 
|  | const InstrToOrigTy &PromotedInsts); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool TypePromotionHelper::canGetThrough(const Instruction *Inst, | 
|  | Type *ConsideredExtType, | 
|  | const InstrToOrigTy &PromotedInsts, | 
|  | bool IsSExt) { | 
|  | // The promotion helper does not know how to deal with vector types yet. | 
|  | // To be able to fix that, we would need to fix the places where we | 
|  | // statically extend, e.g., constants and such. | 
|  | if (Inst->getType()->isVectorTy()) | 
|  | return false; | 
|  |  | 
|  | // We can always get through zext. | 
|  | if (isa<ZExtInst>(Inst)) | 
|  | return true; | 
|  |  | 
|  | // sext(sext) is ok too. | 
|  | if (IsSExt && isa<SExtInst>(Inst)) | 
|  | return true; | 
|  |  | 
|  | // We can get through binary operator, if it is legal. In other words, the | 
|  | // binary operator must have a nuw or nsw flag. | 
|  | const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); | 
|  | if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && | 
|  | ((!IsSExt && BinOp->hasNoUnsignedWrap()) || | 
|  | (IsSExt && BinOp->hasNoSignedWrap()))) | 
|  | return true; | 
|  |  | 
|  | // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) | 
|  | if ((Inst->getOpcode() == Instruction::And || | 
|  | Inst->getOpcode() == Instruction::Or)) | 
|  | return true; | 
|  |  | 
|  | // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) | 
|  | if (Inst->getOpcode() == Instruction::Xor) { | 
|  | const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); | 
|  | // Make sure it is not a NOT. | 
|  | if (Cst && !Cst->getValue().isAllOnesValue()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) | 
|  | // It may change a poisoned value into a regular value, like | 
|  | //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12 | 
|  | //          poisoned value                    regular value | 
|  | // It should be OK since undef covers valid value. | 
|  | if (Inst->getOpcode() == Instruction::LShr && !IsSExt) | 
|  | return true; | 
|  |  | 
|  | // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) | 
|  | // It may change a poisoned value into a regular value, like | 
|  | //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12 | 
|  | //          poisoned value                    regular value | 
|  | // It should be OK since undef covers valid value. | 
|  | if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { | 
|  | const Instruction *ExtInst = | 
|  | dyn_cast<const Instruction>(*Inst->user_begin()); | 
|  | if (ExtInst->hasOneUse()) { | 
|  | const Instruction *AndInst = | 
|  | dyn_cast<const Instruction>(*ExtInst->user_begin()); | 
|  | if (AndInst && AndInst->getOpcode() == Instruction::And) { | 
|  | const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); | 
|  | if (Cst && | 
|  | Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if we can do the following simplification. | 
|  | // ext(trunc(opnd)) --> ext(opnd) | 
|  | if (!isa<TruncInst>(Inst)) | 
|  | return false; | 
|  |  | 
|  | Value *OpndVal = Inst->getOperand(0); | 
|  | // Check if we can use this operand in the extension. | 
|  | // If the type is larger than the result type of the extension, we cannot. | 
|  | if (!OpndVal->getType()->isIntegerTy() || | 
|  | OpndVal->getType()->getIntegerBitWidth() > | 
|  | ConsideredExtType->getIntegerBitWidth()) | 
|  | return false; | 
|  |  | 
|  | // If the operand of the truncate is not an instruction, we will not have | 
|  | // any information on the dropped bits. | 
|  | // (Actually we could for constant but it is not worth the extra logic). | 
|  | Instruction *Opnd = dyn_cast<Instruction>(OpndVal); | 
|  | if (!Opnd) | 
|  | return false; | 
|  |  | 
|  | // Check if the source of the type is narrow enough. | 
|  | // I.e., check that trunc just drops extended bits of the same kind of | 
|  | // the extension. | 
|  | // #1 get the type of the operand and check the kind of the extended bits. | 
|  | const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); | 
|  | if (OpndType) | 
|  | ; | 
|  | else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) | 
|  | OpndType = Opnd->getOperand(0)->getType(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | // #2 check that the truncate just drops extended bits. | 
|  | return Inst->getType()->getIntegerBitWidth() >= | 
|  | OpndType->getIntegerBitWidth(); | 
|  | } | 
|  |  | 
|  | TypePromotionHelper::Action TypePromotionHelper::getAction( | 
|  | Instruction *Ext, const SetOfInstrs &InsertedInsts, | 
|  | const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { | 
|  | assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && | 
|  | "Unexpected instruction type"); | 
|  | Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); | 
|  | Type *ExtTy = Ext->getType(); | 
|  | bool IsSExt = isa<SExtInst>(Ext); | 
|  | // If the operand of the extension is not an instruction, we cannot | 
|  | // get through. | 
|  | // If it, check we can get through. | 
|  | if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) | 
|  | return nullptr; | 
|  |  | 
|  | // Do not promote if the operand has been added by codegenprepare. | 
|  | // Otherwise, it means we are undoing an optimization that is likely to be | 
|  | // redone, thus causing potential infinite loop. | 
|  | if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) | 
|  | return nullptr; | 
|  |  | 
|  | // SExt or Trunc instructions. | 
|  | // Return the related handler. | 
|  | if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || | 
|  | isa<ZExtInst>(ExtOpnd)) | 
|  | return promoteOperandForTruncAndAnyExt; | 
|  |  | 
|  | // Regular instruction. | 
|  | // Abort early if we will have to insert non-free instructions. | 
|  | if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) | 
|  | return nullptr; | 
|  | return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; | 
|  | } | 
|  |  | 
|  | Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( | 
|  | Instruction *SExt, TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | 
|  | // By construction, the operand of SExt is an instruction. Otherwise we cannot | 
|  | // get through it and this method should not be called. | 
|  | Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); | 
|  | Value *ExtVal = SExt; | 
|  | bool HasMergedNonFreeExt = false; | 
|  | if (isa<ZExtInst>(SExtOpnd)) { | 
|  | // Replace s|zext(zext(opnd)) | 
|  | // => zext(opnd). | 
|  | HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); | 
|  | Value *ZExt = | 
|  | TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); | 
|  | TPT.replaceAllUsesWith(SExt, ZExt); | 
|  | TPT.eraseInstruction(SExt); | 
|  | ExtVal = ZExt; | 
|  | } else { | 
|  | // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) | 
|  | // => z|sext(opnd). | 
|  | TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); | 
|  | } | 
|  | CreatedInstsCost = 0; | 
|  |  | 
|  | // Remove dead code. | 
|  | if (SExtOpnd->use_empty()) | 
|  | TPT.eraseInstruction(SExtOpnd); | 
|  |  | 
|  | // Check if the extension is still needed. | 
|  | Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); | 
|  | if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { | 
|  | if (ExtInst) { | 
|  | if (Exts) | 
|  | Exts->push_back(ExtInst); | 
|  | CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; | 
|  | } | 
|  | return ExtVal; | 
|  | } | 
|  |  | 
|  | // At this point we have: ext ty opnd to ty. | 
|  | // Reassign the uses of ExtInst to the opnd and remove ExtInst. | 
|  | Value *NextVal = ExtInst->getOperand(0); | 
|  | TPT.eraseInstruction(ExtInst, NextVal); | 
|  | return NextVal; | 
|  | } | 
|  |  | 
|  | Value *TypePromotionHelper::promoteOperandForOther( | 
|  | Instruction *Ext, TypePromotionTransaction &TPT, | 
|  | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | 
|  | SmallVectorImpl<Instruction *> *Exts, | 
|  | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, | 
|  | bool IsSExt) { | 
|  | // By construction, the operand of Ext is an instruction. Otherwise we cannot | 
|  | // get through it and this method should not be called. | 
|  | Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); | 
|  | CreatedInstsCost = 0; | 
|  | if (!ExtOpnd->hasOneUse()) { | 
|  | // ExtOpnd will be promoted. | 
|  | // All its uses, but Ext, will need to use a truncated value of the | 
|  | // promoted version. | 
|  | // Create the truncate now. | 
|  | Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); | 
|  | if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { | 
|  | // Insert it just after the definition. | 
|  | ITrunc->moveAfter(ExtOpnd); | 
|  | if (Truncs) | 
|  | Truncs->push_back(ITrunc); | 
|  | } | 
|  |  | 
|  | TPT.replaceAllUsesWith(ExtOpnd, Trunc); | 
|  | // Restore the operand of Ext (which has been replaced by the previous call | 
|  | // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. | 
|  | TPT.setOperand(Ext, 0, ExtOpnd); | 
|  | } | 
|  |  | 
|  | // Get through the Instruction: | 
|  | // 1. Update its type. | 
|  | // 2. Replace the uses of Ext by Inst. | 
|  | // 3. Extend each operand that needs to be extended. | 
|  |  | 
|  | // Remember the original type of the instruction before promotion. | 
|  | // This is useful to know that the high bits are sign extended bits. | 
|  | addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); | 
|  | // Step #1. | 
|  | TPT.mutateType(ExtOpnd, Ext->getType()); | 
|  | // Step #2. | 
|  | TPT.replaceAllUsesWith(Ext, ExtOpnd); | 
|  | // Step #3. | 
|  | Instruction *ExtForOpnd = Ext; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); | 
|  | for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; | 
|  | ++OpIdx) { | 
|  | LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); | 
|  | if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || | 
|  | !shouldExtOperand(ExtOpnd, OpIdx)) { | 
|  | LLVM_DEBUG(dbgs() << "No need to propagate\n"); | 
|  | continue; | 
|  | } | 
|  | // Check if we can statically extend the operand. | 
|  | Value *Opnd = ExtOpnd->getOperand(OpIdx); | 
|  | if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { | 
|  | LLVM_DEBUG(dbgs() << "Statically extend\n"); | 
|  | unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); | 
|  | APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) | 
|  | : Cst->getValue().zext(BitWidth); | 
|  | TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); | 
|  | continue; | 
|  | } | 
|  | // UndefValue are typed, so we have to statically sign extend them. | 
|  | if (isa<UndefValue>(Opnd)) { | 
|  | LLVM_DEBUG(dbgs() << "Statically extend\n"); | 
|  | TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise we have to explicitly sign extend the operand. | 
|  | // Check if Ext was reused to extend an operand. | 
|  | if (!ExtForOpnd) { | 
|  | // If yes, create a new one. | 
|  | LLVM_DEBUG(dbgs() << "More operands to ext\n"); | 
|  | Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) | 
|  | : TPT.createZExt(Ext, Opnd, Ext->getType()); | 
|  | if (!isa<Instruction>(ValForExtOpnd)) { | 
|  | TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); | 
|  | continue; | 
|  | } | 
|  | ExtForOpnd = cast<Instruction>(ValForExtOpnd); | 
|  | } | 
|  | if (Exts) | 
|  | Exts->push_back(ExtForOpnd); | 
|  | TPT.setOperand(ExtForOpnd, 0, Opnd); | 
|  |  | 
|  | // Move the sign extension before the insertion point. | 
|  | TPT.moveBefore(ExtForOpnd, ExtOpnd); | 
|  | TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); | 
|  | CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); | 
|  | // If more sext are required, new instructions will have to be created. | 
|  | ExtForOpnd = nullptr; | 
|  | } | 
|  | if (ExtForOpnd == Ext) { | 
|  | LLVM_DEBUG(dbgs() << "Extension is useless now\n"); | 
|  | TPT.eraseInstruction(Ext); | 
|  | } | 
|  | return ExtOpnd; | 
|  | } | 
|  |  | 
|  | /// Check whether or not promoting an instruction to a wider type is profitable. | 
|  | /// \p NewCost gives the cost of extension instructions created by the | 
|  | /// promotion. | 
|  | /// \p OldCost gives the cost of extension instructions before the promotion | 
|  | /// plus the number of instructions that have been | 
|  | /// matched in the addressing mode the promotion. | 
|  | /// \p PromotedOperand is the value that has been promoted. | 
|  | /// \return True if the promotion is profitable, false otherwise. | 
|  | bool AddressingModeMatcher::isPromotionProfitable( | 
|  | unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { | 
|  | LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost | 
|  | << '\n'); | 
|  | // The cost of the new extensions is greater than the cost of the | 
|  | // old extension plus what we folded. | 
|  | // This is not profitable. | 
|  | if (NewCost > OldCost) | 
|  | return false; | 
|  | if (NewCost < OldCost) | 
|  | return true; | 
|  | // The promotion is neutral but it may help folding the sign extension in | 
|  | // loads for instance. | 
|  | // Check that we did not create an illegal instruction. | 
|  | return isPromotedInstructionLegal(TLI, DL, PromotedOperand); | 
|  | } | 
|  |  | 
|  | /// Given an instruction or constant expr, see if we can fold the operation | 
|  | /// into the addressing mode. If so, update the addressing mode and return | 
|  | /// true, otherwise return false without modifying AddrMode. | 
|  | /// If \p MovedAway is not NULL, it contains the information of whether or | 
|  | /// not AddrInst has to be folded into the addressing mode on success. | 
|  | /// If \p MovedAway == true, \p AddrInst will not be part of the addressing | 
|  | /// because it has been moved away. | 
|  | /// Thus AddrInst must not be added in the matched instructions. | 
|  | /// This state can happen when AddrInst is a sext, since it may be moved away. | 
|  | /// Therefore, AddrInst may not be valid when MovedAway is true and it must | 
|  | /// not be referenced anymore. | 
|  | bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, | 
|  | unsigned Depth, | 
|  | bool *MovedAway) { | 
|  | // Avoid exponential behavior on extremely deep expression trees. | 
|  | if (Depth >= 5) return false; | 
|  |  | 
|  | // By default, all matched instructions stay in place. | 
|  | if (MovedAway) | 
|  | *MovedAway = false; | 
|  |  | 
|  | switch (Opcode) { | 
|  | case Instruction::PtrToInt: | 
|  | // PtrToInt is always a noop, as we know that the int type is pointer sized. | 
|  | return matchAddr(AddrInst->getOperand(0), Depth); | 
|  | case Instruction::IntToPtr: { | 
|  | auto AS = AddrInst->getType()->getPointerAddressSpace(); | 
|  | auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); | 
|  | // This inttoptr is a no-op if the integer type is pointer sized. | 
|  | if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) | 
|  | return matchAddr(AddrInst->getOperand(0), Depth); | 
|  | return false; | 
|  | } | 
|  | case Instruction::BitCast: | 
|  | // BitCast is always a noop, and we can handle it as long as it is | 
|  | // int->int or pointer->pointer (we don't want int<->fp or something). | 
|  | if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && | 
|  | // Don't touch identity bitcasts.  These were probably put here by LSR, | 
|  | // and we don't want to mess around with them.  Assume it knows what it | 
|  | // is doing. | 
|  | AddrInst->getOperand(0)->getType() != AddrInst->getType()) | 
|  | return matchAddr(AddrInst->getOperand(0), Depth); | 
|  | return false; | 
|  | case Instruction::AddrSpaceCast: { | 
|  | unsigned SrcAS | 
|  | = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); | 
|  | unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); | 
|  | if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) | 
|  | return matchAddr(AddrInst->getOperand(0), Depth); | 
|  | return false; | 
|  | } | 
|  | case Instruction::Add: { | 
|  | // Check to see if we can merge in the RHS then the LHS.  If so, we win. | 
|  | ExtAddrMode BackupAddrMode = AddrMode; | 
|  | unsigned OldSize = AddrModeInsts.size(); | 
|  | // Start a transaction at this point. | 
|  | // The LHS may match but not the RHS. | 
|  | // Therefore, we need a higher level restoration point to undo partially | 
|  | // matched operation. | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  |  | 
|  | if (matchAddr(AddrInst->getOperand(1), Depth+1) && | 
|  | matchAddr(AddrInst->getOperand(0), Depth+1)) | 
|  | return true; | 
|  |  | 
|  | // Restore the old addr mode info. | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | TPT.rollback(LastKnownGood); | 
|  |  | 
|  | // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS. | 
|  | if (matchAddr(AddrInst->getOperand(0), Depth+1) && | 
|  | matchAddr(AddrInst->getOperand(1), Depth+1)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise we definitely can't merge the ADD in. | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | TPT.rollback(LastKnownGood); | 
|  | break; | 
|  | } | 
|  | //case Instruction::Or: | 
|  | // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. | 
|  | //break; | 
|  | case Instruction::Mul: | 
|  | case Instruction::Shl: { | 
|  | // Can only handle X*C and X << C. | 
|  | ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); | 
|  | if (!RHS || RHS->getBitWidth() > 64) | 
|  | return false; | 
|  | int64_t Scale = RHS->getSExtValue(); | 
|  | if (Opcode == Instruction::Shl) | 
|  | Scale = 1LL << Scale; | 
|  |  | 
|  | return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); | 
|  | } | 
|  | case Instruction::GetElementPtr: { | 
|  | // Scan the GEP.  We check it if it contains constant offsets and at most | 
|  | // one variable offset. | 
|  | int VariableOperand = -1; | 
|  | unsigned VariableScale = 0; | 
|  |  | 
|  | int64_t ConstantOffset = 0; | 
|  | gep_type_iterator GTI = gep_type_begin(AddrInst); | 
|  | for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { | 
|  | if (StructType *STy = GTI.getStructTypeOrNull()) { | 
|  | const StructLayout *SL = DL.getStructLayout(STy); | 
|  | unsigned Idx = | 
|  | cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); | 
|  | ConstantOffset += SL->getElementOffset(Idx); | 
|  | } else { | 
|  | uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { | 
|  | const APInt &CVal = CI->getValue(); | 
|  | if (CVal.getMinSignedBits() <= 64) { | 
|  | ConstantOffset += CVal.getSExtValue() * TypeSize; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (TypeSize) {  // Scales of zero don't do anything. | 
|  | // We only allow one variable index at the moment. | 
|  | if (VariableOperand != -1) | 
|  | return false; | 
|  |  | 
|  | // Remember the variable index. | 
|  | VariableOperand = i; | 
|  | VariableScale = TypeSize; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // A common case is for the GEP to only do a constant offset.  In this case, | 
|  | // just add it to the disp field and check validity. | 
|  | if (VariableOperand == -1) { | 
|  | AddrMode.BaseOffs += ConstantOffset; | 
|  | if (ConstantOffset == 0 || | 
|  | TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { | 
|  | // Check to see if we can fold the base pointer in too. | 
|  | if (matchAddr(AddrInst->getOperand(0), Depth+1)) | 
|  | return true; | 
|  | } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && | 
|  | TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && | 
|  | ConstantOffset > 0) { | 
|  | // Record GEPs with non-zero offsets as candidates for splitting in the | 
|  | // event that the offset cannot fit into the r+i addressing mode. | 
|  | // Simple and common case that only one GEP is used in calculating the | 
|  | // address for the memory access. | 
|  | Value *Base = AddrInst->getOperand(0); | 
|  | auto *BaseI = dyn_cast<Instruction>(Base); | 
|  | auto *GEP = cast<GetElementPtrInst>(AddrInst); | 
|  | if (isa<Argument>(Base) || isa<GlobalValue>(Base) || | 
|  | (BaseI && !isa<CastInst>(BaseI) && | 
|  | !isa<GetElementPtrInst>(BaseI))) { | 
|  | // If the base is an instruction, make sure the GEP is not in the same | 
|  | // basic block as the base. If the base is an argument or global | 
|  | // value, make sure the GEP is not in the entry block.  Otherwise, | 
|  | // instruction selection can undo the split.  Also make sure the | 
|  | // parent block allows inserting non-PHI instructions before the | 
|  | // terminator. | 
|  | BasicBlock *Parent = | 
|  | BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); | 
|  | if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) | 
|  | LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); | 
|  | } | 
|  | } | 
|  | AddrMode.BaseOffs -= ConstantOffset; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Save the valid addressing mode in case we can't match. | 
|  | ExtAddrMode BackupAddrMode = AddrMode; | 
|  | unsigned OldSize = AddrModeInsts.size(); | 
|  |  | 
|  | // See if the scale and offset amount is valid for this target. | 
|  | AddrMode.BaseOffs += ConstantOffset; | 
|  |  | 
|  | // Match the base operand of the GEP. | 
|  | if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { | 
|  | // If it couldn't be matched, just stuff the value in a register. | 
|  | if (AddrMode.HasBaseReg) { | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | return false; | 
|  | } | 
|  | AddrMode.HasBaseReg = true; | 
|  | AddrMode.BaseReg = AddrInst->getOperand(0); | 
|  | } | 
|  |  | 
|  | // Match the remaining variable portion of the GEP. | 
|  | if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, | 
|  | Depth)) { | 
|  | // If it couldn't be matched, try stuffing the base into a register | 
|  | // instead of matching it, and retrying the match of the scale. | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | if (AddrMode.HasBaseReg) | 
|  | return false; | 
|  | AddrMode.HasBaseReg = true; | 
|  | AddrMode.BaseReg = AddrInst->getOperand(0); | 
|  | AddrMode.BaseOffs += ConstantOffset; | 
|  | if (!matchScaledValue(AddrInst->getOperand(VariableOperand), | 
|  | VariableScale, Depth)) { | 
|  | // If even that didn't work, bail. | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | case Instruction::SExt: | 
|  | case Instruction::ZExt: { | 
|  | Instruction *Ext = dyn_cast<Instruction>(AddrInst); | 
|  | if (!Ext) | 
|  | return false; | 
|  |  | 
|  | // Try to move this ext out of the way of the addressing mode. | 
|  | // Ask for a method for doing so. | 
|  | TypePromotionHelper::Action TPH = | 
|  | TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); | 
|  | if (!TPH) | 
|  | return false; | 
|  |  | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  | unsigned CreatedInstsCost = 0; | 
|  | unsigned ExtCost = !TLI.isExtFree(Ext); | 
|  | Value *PromotedOperand = | 
|  | TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); | 
|  | // SExt has been moved away. | 
|  | // Thus either it will be rematched later in the recursive calls or it is | 
|  | // gone. Anyway, we must not fold it into the addressing mode at this point. | 
|  | // E.g., | 
|  | // op = add opnd, 1 | 
|  | // idx = ext op | 
|  | // addr = gep base, idx | 
|  | // is now: | 
|  | // promotedOpnd = ext opnd            <- no match here | 
|  | // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls) | 
|  | // addr = gep base, op                <- match | 
|  | if (MovedAway) | 
|  | *MovedAway = true; | 
|  |  | 
|  | assert(PromotedOperand && | 
|  | "TypePromotionHelper should have filtered out those cases"); | 
|  |  | 
|  | ExtAddrMode BackupAddrMode = AddrMode; | 
|  | unsigned OldSize = AddrModeInsts.size(); | 
|  |  | 
|  | if (!matchAddr(PromotedOperand, Depth) || | 
|  | // The total of the new cost is equal to the cost of the created | 
|  | // instructions. | 
|  | // The total of the old cost is equal to the cost of the extension plus | 
|  | // what we have saved in the addressing mode. | 
|  | !isPromotionProfitable(CreatedInstsCost, | 
|  | ExtCost + (AddrModeInsts.size() - OldSize), | 
|  | PromotedOperand)) { | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); | 
|  | TPT.rollback(LastKnownGood); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// If we can, try to add the value of 'Addr' into the current addressing mode. | 
|  | /// If Addr can't be added to AddrMode this returns false and leaves AddrMode | 
|  | /// unmodified. This assumes that Addr is either a pointer type or intptr_t | 
|  | /// for the target. | 
|  | /// | 
|  | bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { | 
|  | // Start a transaction at this point that we will rollback if the matching | 
|  | // fails. | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { | 
|  | // Fold in immediates if legal for the target. | 
|  | AddrMode.BaseOffs += CI->getSExtValue(); | 
|  | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | 
|  | return true; | 
|  | AddrMode.BaseOffs -= CI->getSExtValue(); | 
|  | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { | 
|  | // If this is a global variable, try to fold it into the addressing mode. | 
|  | if (!AddrMode.BaseGV) { | 
|  | AddrMode.BaseGV = GV; | 
|  | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | 
|  | return true; | 
|  | AddrMode.BaseGV = nullptr; | 
|  | } | 
|  | } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { | 
|  | ExtAddrMode BackupAddrMode = AddrMode; | 
|  | unsigned OldSize = AddrModeInsts.size(); | 
|  |  | 
|  | // Check to see if it is possible to fold this operation. | 
|  | bool MovedAway = false; | 
|  | if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { | 
|  | // This instruction may have been moved away. If so, there is nothing | 
|  | // to check here. | 
|  | if (MovedAway) | 
|  | return true; | 
|  | // Okay, it's possible to fold this.  Check to see if it is actually | 
|  | // *profitable* to do so.  We use a simple cost model to avoid increasing | 
|  | // register pressure too much. | 
|  | if (I->hasOneUse() || | 
|  | isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { | 
|  | AddrModeInsts.push_back(I); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // It isn't profitable to do this, roll back. | 
|  | //cerr << "NOT FOLDING: " << *I; | 
|  | AddrMode = BackupAddrMode; | 
|  | AddrModeInsts.resize(OldSize); | 
|  | TPT.rollback(LastKnownGood); | 
|  | } | 
|  | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { | 
|  | if (matchOperationAddr(CE, CE->getOpcode(), Depth)) | 
|  | return true; | 
|  | TPT.rollback(LastKnownGood); | 
|  | } else if (isa<ConstantPointerNull>(Addr)) { | 
|  | // Null pointer gets folded without affecting the addressing mode. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Worse case, the target should support [reg] addressing modes. :) | 
|  | if (!AddrMode.HasBaseReg) { | 
|  | AddrMode.HasBaseReg = true; | 
|  | AddrMode.BaseReg = Addr; | 
|  | // Still check for legality in case the target supports [imm] but not [i+r]. | 
|  | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | 
|  | return true; | 
|  | AddrMode.HasBaseReg = false; | 
|  | AddrMode.BaseReg = nullptr; | 
|  | } | 
|  |  | 
|  | // If the base register is already taken, see if we can do [r+r]. | 
|  | if (AddrMode.Scale == 0) { | 
|  | AddrMode.Scale = 1; | 
|  | AddrMode.ScaledReg = Addr; | 
|  | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | 
|  | return true; | 
|  | AddrMode.Scale = 0; | 
|  | AddrMode.ScaledReg = nullptr; | 
|  | } | 
|  | // Couldn't match. | 
|  | TPT.rollback(LastKnownGood); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check to see if all uses of OpVal by the specified inline asm call are due | 
|  | /// to memory operands. If so, return true, otherwise return false. | 
|  | static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, | 
|  | const TargetLowering &TLI, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | const Function *F = CI->getFunction(); | 
|  | TargetLowering::AsmOperandInfoVector TargetConstraints = | 
|  | TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, | 
|  | ImmutableCallSite(CI)); | 
|  |  | 
|  | for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { | 
|  | TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; | 
|  |  | 
|  | // Compute the constraint code and ConstraintType to use. | 
|  | TLI.ComputeConstraintToUse(OpInfo, SDValue()); | 
|  |  | 
|  | // If this asm operand is our Value*, and if it isn't an indirect memory | 
|  | // operand, we can't fold it! | 
|  | if (OpInfo.CallOperandVal == OpVal && | 
|  | (OpInfo.ConstraintType != TargetLowering::C_Memory || | 
|  | !OpInfo.isIndirect)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Max number of memory uses to look at before aborting the search to conserve | 
|  | // compile time. | 
|  | static constexpr int MaxMemoryUsesToScan = 20; | 
|  |  | 
|  | /// Recursively walk all the uses of I until we find a memory use. | 
|  | /// If we find an obviously non-foldable instruction, return true. | 
|  | /// Add the ultimately found memory instructions to MemoryUses. | 
|  | static bool FindAllMemoryUses( | 
|  | Instruction *I, | 
|  | SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, | 
|  | SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, | 
|  | const TargetRegisterInfo &TRI, int SeenInsts = 0) { | 
|  | // If we already considered this instruction, we're done. | 
|  | if (!ConsideredInsts.insert(I).second) | 
|  | return false; | 
|  |  | 
|  | // If this is an obviously unfoldable instruction, bail out. | 
|  | if (!MightBeFoldableInst(I)) | 
|  | return true; | 
|  |  | 
|  | const bool OptSize = I->getFunction()->optForSize(); | 
|  |  | 
|  | // Loop over all the uses, recursively processing them. | 
|  | for (Use &U : I->uses()) { | 
|  | // Conservatively return true if we're seeing a large number or a deep chain | 
|  | // of users. This avoids excessive compilation times in pathological cases. | 
|  | if (SeenInsts++ >= MaxMemoryUsesToScan) | 
|  | return true; | 
|  |  | 
|  | Instruction *UserI = cast<Instruction>(U.getUser()); | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { | 
|  | MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { | 
|  | unsigned opNo = U.getOperandNo(); | 
|  | if (opNo != StoreInst::getPointerOperandIndex()) | 
|  | return true; // Storing addr, not into addr. | 
|  | MemoryUses.push_back(std::make_pair(SI, opNo)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { | 
|  | unsigned opNo = U.getOperandNo(); | 
|  | if (opNo != AtomicRMWInst::getPointerOperandIndex()) | 
|  | return true; // Storing addr, not into addr. | 
|  | MemoryUses.push_back(std::make_pair(RMW, opNo)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { | 
|  | unsigned opNo = U.getOperandNo(); | 
|  | if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) | 
|  | return true; // Storing addr, not into addr. | 
|  | MemoryUses.push_back(std::make_pair(CmpX, opNo)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (CallInst *CI = dyn_cast<CallInst>(UserI)) { | 
|  | // If this is a cold call, we can sink the addressing calculation into | 
|  | // the cold path.  See optimizeCallInst | 
|  | if (!OptSize && CI->hasFnAttr(Attribute::Cold)) | 
|  | continue; | 
|  |  | 
|  | InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); | 
|  | if (!IA) return true; | 
|  |  | 
|  | // If this is a memory operand, we're cool, otherwise bail out. | 
|  | if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) | 
|  | return true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, | 
|  | SeenInsts)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if Val is already known to be live at the use site that we're | 
|  | /// folding it into. If so, there is no cost to include it in the addressing | 
|  | /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the | 
|  | /// instruction already. | 
|  | bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, | 
|  | Value *KnownLive2) { | 
|  | // If Val is either of the known-live values, we know it is live! | 
|  | if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) | 
|  | return true; | 
|  |  | 
|  | // All values other than instructions and arguments (e.g. constants) are live. | 
|  | if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; | 
|  |  | 
|  | // If Val is a constant sized alloca in the entry block, it is live, this is | 
|  | // true because it is just a reference to the stack/frame pointer, which is | 
|  | // live for the whole function. | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) | 
|  | if (AI->isStaticAlloca()) | 
|  | return true; | 
|  |  | 
|  | // Check to see if this value is already used in the memory instruction's | 
|  | // block.  If so, it's already live into the block at the very least, so we | 
|  | // can reasonably fold it. | 
|  | return Val->isUsedInBasicBlock(MemoryInst->getParent()); | 
|  | } | 
|  |  | 
|  | /// It is possible for the addressing mode of the machine to fold the specified | 
|  | /// instruction into a load or store that ultimately uses it. | 
|  | /// However, the specified instruction has multiple uses. | 
|  | /// Given this, it may actually increase register pressure to fold it | 
|  | /// into the load. For example, consider this code: | 
|  | /// | 
|  | ///     X = ... | 
|  | ///     Y = X+1 | 
|  | ///     use(Y)   -> nonload/store | 
|  | ///     Z = Y+1 | 
|  | ///     load Z | 
|  | /// | 
|  | /// In this case, Y has multiple uses, and can be folded into the load of Z | 
|  | /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to | 
|  | /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one | 
|  | /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the | 
|  | /// number of computations either. | 
|  | /// | 
|  | /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If | 
|  | /// X was live across 'load Z' for other reasons, we actually *would* want to | 
|  | /// fold the addressing mode in the Z case.  This would make Y die earlier. | 
|  | bool AddressingModeMatcher:: | 
|  | isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, | 
|  | ExtAddrMode &AMAfter) { | 
|  | if (IgnoreProfitability) return true; | 
|  |  | 
|  | // AMBefore is the addressing mode before this instruction was folded into it, | 
|  | // and AMAfter is the addressing mode after the instruction was folded.  Get | 
|  | // the set of registers referenced by AMAfter and subtract out those | 
|  | // referenced by AMBefore: this is the set of values which folding in this | 
|  | // address extends the lifetime of. | 
|  | // | 
|  | // Note that there are only two potential values being referenced here, | 
|  | // BaseReg and ScaleReg (global addresses are always available, as are any | 
|  | // folded immediates). | 
|  | Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; | 
|  |  | 
|  | // If the BaseReg or ScaledReg was referenced by the previous addrmode, their | 
|  | // lifetime wasn't extended by adding this instruction. | 
|  | if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) | 
|  | BaseReg = nullptr; | 
|  | if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) | 
|  | ScaledReg = nullptr; | 
|  |  | 
|  | // If folding this instruction (and it's subexprs) didn't extend any live | 
|  | // ranges, we're ok with it. | 
|  | if (!BaseReg && !ScaledReg) | 
|  | return true; | 
|  |  | 
|  | // If all uses of this instruction can have the address mode sunk into them, | 
|  | // we can remove the addressing mode and effectively trade one live register | 
|  | // for another (at worst.)  In this context, folding an addressing mode into | 
|  | // the use is just a particularly nice way of sinking it. | 
|  | SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; | 
|  | SmallPtrSet<Instruction*, 16> ConsideredInsts; | 
|  | if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) | 
|  | return false;  // Has a non-memory, non-foldable use! | 
|  |  | 
|  | // Now that we know that all uses of this instruction are part of a chain of | 
|  | // computation involving only operations that could theoretically be folded | 
|  | // into a memory use, loop over each of these memory operation uses and see | 
|  | // if they could  *actually* fold the instruction.  The assumption is that | 
|  | // addressing modes are cheap and that duplicating the computation involved | 
|  | // many times is worthwhile, even on a fastpath. For sinking candidates | 
|  | // (i.e. cold call sites), this serves as a way to prevent excessive code | 
|  | // growth since most architectures have some reasonable small and fast way to | 
|  | // compute an effective address.  (i.e LEA on x86) | 
|  | SmallVector<Instruction*, 32> MatchedAddrModeInsts; | 
|  | for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { | 
|  | Instruction *User = MemoryUses[i].first; | 
|  | unsigned OpNo = MemoryUses[i].second; | 
|  |  | 
|  | // Get the access type of this use.  If the use isn't a pointer, we don't | 
|  | // know what it accesses. | 
|  | Value *Address = User->getOperand(OpNo); | 
|  | PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); | 
|  | if (!AddrTy) | 
|  | return false; | 
|  | Type *AddressAccessTy = AddrTy->getElementType(); | 
|  | unsigned AS = AddrTy->getAddressSpace(); | 
|  |  | 
|  | // Do a match against the root of this address, ignoring profitability. This | 
|  | // will tell us if the addressing mode for the memory operation will | 
|  | // *actually* cover the shared instruction. | 
|  | ExtAddrMode Result; | 
|  | std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, | 
|  | 0); | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  | AddressingModeMatcher Matcher( | 
|  | MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, | 
|  | InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); | 
|  | Matcher.IgnoreProfitability = true; | 
|  | bool Success = Matcher.matchAddr(Address, 0); | 
|  | (void)Success; assert(Success && "Couldn't select *anything*?"); | 
|  |  | 
|  | // The match was to check the profitability, the changes made are not | 
|  | // part of the original matcher. Therefore, they should be dropped | 
|  | // otherwise the original matcher will not present the right state. | 
|  | TPT.rollback(LastKnownGood); | 
|  |  | 
|  | // If the match didn't cover I, then it won't be shared by it. | 
|  | if (!is_contained(MatchedAddrModeInsts, I)) | 
|  | return false; | 
|  |  | 
|  | MatchedAddrModeInsts.clear(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the specified values are defined in a | 
|  | /// different basic block than BB. | 
|  | static bool IsNonLocalValue(Value *V, BasicBlock *BB) { | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | return I->getParent() != BB; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Sink addressing mode computation immediate before MemoryInst if doing so | 
|  | /// can be done without increasing register pressure.  The need for the | 
|  | /// register pressure constraint means this can end up being an all or nothing | 
|  | /// decision for all uses of the same addressing computation. | 
|  | /// | 
|  | /// Load and Store Instructions often have addressing modes that can do | 
|  | /// significant amounts of computation. As such, instruction selection will try | 
|  | /// to get the load or store to do as much computation as possible for the | 
|  | /// program. The problem is that isel can only see within a single block. As | 
|  | /// such, we sink as much legal addressing mode work into the block as possible. | 
|  | /// | 
|  | /// This method is used to optimize both load/store and inline asms with memory | 
|  | /// operands.  It's also used to sink addressing computations feeding into cold | 
|  | /// call sites into their (cold) basic block. | 
|  | /// | 
|  | /// The motivation for handling sinking into cold blocks is that doing so can | 
|  | /// both enable other address mode sinking (by satisfying the register pressure | 
|  | /// constraint above), and reduce register pressure globally (by removing the | 
|  | /// addressing mode computation from the fast path entirely.). | 
|  | bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, | 
|  | Type *AccessTy, unsigned AddrSpace) { | 
|  | Value *Repl = Addr; | 
|  |  | 
|  | // Try to collapse single-value PHI nodes.  This is necessary to undo | 
|  | // unprofitable PRE transformations. | 
|  | SmallVector<Value*, 8> worklist; | 
|  | SmallPtrSet<Value*, 16> Visited; | 
|  | worklist.push_back(Addr); | 
|  |  | 
|  | // Use a worklist to iteratively look through PHI and select nodes, and | 
|  | // ensure that the addressing mode obtained from the non-PHI/select roots of | 
|  | // the graph are compatible. | 
|  | bool PhiOrSelectSeen = false; | 
|  | SmallVector<Instruction*, 16> AddrModeInsts; | 
|  | const SimplifyQuery SQ(*DL, TLInfo); | 
|  | AddressingModeCombiner AddrModes(SQ, Addr); | 
|  | TypePromotionTransaction TPT(RemovedInsts); | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  | while (!worklist.empty()) { | 
|  | Value *V = worklist.back(); | 
|  | worklist.pop_back(); | 
|  |  | 
|  | // We allow traversing cyclic Phi nodes. | 
|  | // In case of success after this loop we ensure that traversing through | 
|  | // Phi nodes ends up with all cases to compute address of the form | 
|  | //    BaseGV + Base + Scale * Index + Offset | 
|  | // where Scale and Offset are constans and BaseGV, Base and Index | 
|  | // are exactly the same Values in all cases. | 
|  | // It means that BaseGV, Scale and Offset dominate our memory instruction | 
|  | // and have the same value as they had in address computation represented | 
|  | // as Phi. So we can safely sink address computation to memory instruction. | 
|  | if (!Visited.insert(V).second) | 
|  | continue; | 
|  |  | 
|  | // For a PHI node, push all of its incoming values. | 
|  | if (PHINode *P = dyn_cast<PHINode>(V)) { | 
|  | for (Value *IncValue : P->incoming_values()) | 
|  | worklist.push_back(IncValue); | 
|  | PhiOrSelectSeen = true; | 
|  | continue; | 
|  | } | 
|  | // Similar for select. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(V)) { | 
|  | worklist.push_back(SI->getFalseValue()); | 
|  | worklist.push_back(SI->getTrueValue()); | 
|  | PhiOrSelectSeen = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For non-PHIs, determine the addressing mode being computed.  Note that | 
|  | // the result may differ depending on what other uses our candidate | 
|  | // addressing instructions might have. | 
|  | AddrModeInsts.clear(); | 
|  | std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, | 
|  | 0); | 
|  | ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( | 
|  | V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, | 
|  | InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); | 
|  |  | 
|  | GetElementPtrInst *GEP = LargeOffsetGEP.first; | 
|  | if (GEP && GEP->getParent() != MemoryInst->getParent() && | 
|  | !NewGEPBases.count(GEP)) { | 
|  | // If splitting the underlying data structure can reduce the offset of a | 
|  | // GEP, collect the GEP.  Skip the GEPs that are the new bases of | 
|  | // previously split data structures. | 
|  | LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); | 
|  | if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) | 
|  | LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); | 
|  | } | 
|  |  | 
|  | NewAddrMode.OriginalValue = V; | 
|  | if (!AddrModes.addNewAddrMode(NewAddrMode)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Try to combine the AddrModes we've collected. If we couldn't collect any, | 
|  | // or we have multiple but either couldn't combine them or combining them | 
|  | // wouldn't do anything useful, bail out now. | 
|  | if (!AddrModes.combineAddrModes()) { | 
|  | TPT.rollback(LastKnownGood); | 
|  | return false; | 
|  | } | 
|  | TPT.commit(); | 
|  |  | 
|  | // Get the combined AddrMode (or the only AddrMode, if we only had one). | 
|  | ExtAddrMode AddrMode = AddrModes.getAddrMode(); | 
|  |  | 
|  | // If all the instructions matched are already in this BB, don't do anything. | 
|  | // If we saw a Phi node then it is not local definitely, and if we saw a select | 
|  | // then we want to push the address calculation past it even if it's already | 
|  | // in this BB. | 
|  | if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { | 
|  | return IsNonLocalValue(V, MemoryInst->getParent()); | 
|  | })) { | 
|  | LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode | 
|  | << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Insert this computation right after this user.  Since our caller is | 
|  | // scanning from the top of the BB to the bottom, reuse of the expr are | 
|  | // guaranteed to happen later. | 
|  | IRBuilder<> Builder(MemoryInst); | 
|  |  | 
|  | // Now that we determined the addressing expression we want to use and know | 
|  | // that we have to sink it into this block.  Check to see if we have already | 
|  | // done this for some other load/store instr in this block.  If so, reuse | 
|  | // the computation.  Before attempting reuse, check if the address is valid | 
|  | // as it may have been erased. | 
|  |  | 
|  | WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; | 
|  |  | 
|  | Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; | 
|  | if (SunkAddr) { | 
|  | LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode | 
|  | << " for " << *MemoryInst << "\n"); | 
|  | if (SunkAddr->getType() != Addr->getType()) | 
|  | SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); | 
|  | } else if (AddrSinkUsingGEPs || | 
|  | (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { | 
|  | // By default, we use the GEP-based method when AA is used later. This | 
|  | // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. | 
|  | LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode | 
|  | << " for " << *MemoryInst << "\n"); | 
|  | Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); | 
|  | Value *ResultPtr = nullptr, *ResultIndex = nullptr; | 
|  |  | 
|  | // First, find the pointer. | 
|  | if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { | 
|  | ResultPtr = AddrMode.BaseReg; | 
|  | AddrMode.BaseReg = nullptr; | 
|  | } | 
|  |  | 
|  | if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { | 
|  | // We can't add more than one pointer together, nor can we scale a | 
|  | // pointer (both of which seem meaningless). | 
|  | if (ResultPtr || AddrMode.Scale != 1) | 
|  | return false; | 
|  |  | 
|  | ResultPtr = AddrMode.ScaledReg; | 
|  | AddrMode.Scale = 0; | 
|  | } | 
|  |  | 
|  | // It is only safe to sign extend the BaseReg if we know that the math | 
|  | // required to create it did not overflow before we extend it. Since | 
|  | // the original IR value was tossed in favor of a constant back when | 
|  | // the AddrMode was created we need to bail out gracefully if widths | 
|  | // do not match instead of extending it. | 
|  | // | 
|  | // (See below for code to add the scale.) | 
|  | if (AddrMode.Scale) { | 
|  | Type *ScaledRegTy = AddrMode.ScaledReg->getType(); | 
|  | if (cast<IntegerType>(IntPtrTy)->getBitWidth() > | 
|  | cast<IntegerType>(ScaledRegTy)->getBitWidth()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (AddrMode.BaseGV) { | 
|  | if (ResultPtr) | 
|  | return false; | 
|  |  | 
|  | ResultPtr = AddrMode.BaseGV; | 
|  | } | 
|  |  | 
|  | // If the real base value actually came from an inttoptr, then the matcher | 
|  | // will look through it and provide only the integer value. In that case, | 
|  | // use it here. | 
|  | if (!DL->isNonIntegralPointerType(Addr->getType())) { | 
|  | if (!ResultPtr && AddrMode.BaseReg) { | 
|  | ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), | 
|  | "sunkaddr"); | 
|  | AddrMode.BaseReg = nullptr; | 
|  | } else if (!ResultPtr && AddrMode.Scale == 1) { | 
|  | ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), | 
|  | "sunkaddr"); | 
|  | AddrMode.Scale = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ResultPtr && | 
|  | !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { | 
|  | SunkAddr = Constant::getNullValue(Addr->getType()); | 
|  | } else if (!ResultPtr) { | 
|  | return false; | 
|  | } else { | 
|  | Type *I8PtrTy = | 
|  | Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); | 
|  | Type *I8Ty = Builder.getInt8Ty(); | 
|  |  | 
|  | // Start with the base register. Do this first so that subsequent address | 
|  | // matching finds it last, which will prevent it from trying to match it | 
|  | // as the scaled value in case it happens to be a mul. That would be | 
|  | // problematic if we've sunk a different mul for the scale, because then | 
|  | // we'd end up sinking both muls. | 
|  | if (AddrMode.BaseReg) { | 
|  | Value *V = AddrMode.BaseReg; | 
|  | if (V->getType() != IntPtrTy) | 
|  | V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); | 
|  |  | 
|  | ResultIndex = V; | 
|  | } | 
|  |  | 
|  | // Add the scale value. | 
|  | if (AddrMode.Scale) { | 
|  | Value *V = AddrMode.ScaledReg; | 
|  | if (V->getType() == IntPtrTy) { | 
|  | // done. | 
|  | } else { | 
|  | assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < | 
|  | cast<IntegerType>(V->getType())->getBitWidth() && | 
|  | "We can't transform if ScaledReg is too narrow"); | 
|  | V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); | 
|  | } | 
|  |  | 
|  | if (AddrMode.Scale != 1) | 
|  | V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), | 
|  | "sunkaddr"); | 
|  | if (ResultIndex) | 
|  | ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); | 
|  | else | 
|  | ResultIndex = V; | 
|  | } | 
|  |  | 
|  | // Add in the Base Offset if present. | 
|  | if (AddrMode.BaseOffs) { | 
|  | Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); | 
|  | if (ResultIndex) { | 
|  | // We need to add this separately from the scale above to help with | 
|  | // SDAG consecutive load/store merging. | 
|  | if (ResultPtr->getType() != I8PtrTy) | 
|  | ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); | 
|  | ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); | 
|  | } | 
|  |  | 
|  | ResultIndex = V; | 
|  | } | 
|  |  | 
|  | if (!ResultIndex) { | 
|  | SunkAddr = ResultPtr; | 
|  | } else { | 
|  | if (ResultPtr->getType() != I8PtrTy) | 
|  | ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); | 
|  | SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); | 
|  | } | 
|  |  | 
|  | if (SunkAddr->getType() != Addr->getType()) | 
|  | SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); | 
|  | } | 
|  | } else { | 
|  | // We'd require a ptrtoint/inttoptr down the line, which we can't do for | 
|  | // non-integral pointers, so in that case bail out now. | 
|  | Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; | 
|  | Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; | 
|  | PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); | 
|  | PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); | 
|  | if (DL->isNonIntegralPointerType(Addr->getType()) || | 
|  | (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || | 
|  | (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || | 
|  | (AddrMode.BaseGV && | 
|  | DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode | 
|  | << " for " << *MemoryInst << "\n"); | 
|  | Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); | 
|  | Value *Result = nullptr; | 
|  |  | 
|  | // Start with the base register. Do this first so that subsequent address | 
|  | // matching finds it last, which will prevent it from trying to match it | 
|  | // as the scaled value in case it happens to be a mul. That would be | 
|  | // problematic if we've sunk a different mul for the scale, because then | 
|  | // we'd end up sinking both muls. | 
|  | if (AddrMode.BaseReg) { | 
|  | Value *V = AddrMode.BaseReg; | 
|  | if (V->getType()->isPointerTy()) | 
|  | V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); | 
|  | if (V->getType() != IntPtrTy) | 
|  | V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); | 
|  | Result = V; | 
|  | } | 
|  |  | 
|  | // Add the scale value. | 
|  | if (AddrMode.Scale) { | 
|  | Value *V = AddrMode.ScaledReg; | 
|  | if (V->getType() == IntPtrTy) { | 
|  | // done. | 
|  | } else if (V->getType()->isPointerTy()) { | 
|  | V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); | 
|  | } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < | 
|  | cast<IntegerType>(V->getType())->getBitWidth()) { | 
|  | V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); | 
|  | } else { | 
|  | // It is only safe to sign extend the BaseReg if we know that the math | 
|  | // required to create it did not overflow before we extend it. Since | 
|  | // the original IR value was tossed in favor of a constant back when | 
|  | // the AddrMode was created we need to bail out gracefully if widths | 
|  | // do not match instead of extending it. | 
|  | Instruction *I = dyn_cast_or_null<Instruction>(Result); | 
|  | if (I && (Result != AddrMode.BaseReg)) | 
|  | I->eraseFromParent(); | 
|  | return false; | 
|  | } | 
|  | if (AddrMode.Scale != 1) | 
|  | V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), | 
|  | "sunkaddr"); | 
|  | if (Result) | 
|  | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | 
|  | else | 
|  | Result = V; | 
|  | } | 
|  |  | 
|  | // Add in the BaseGV if present. | 
|  | if (AddrMode.BaseGV) { | 
|  | Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); | 
|  | if (Result) | 
|  | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | 
|  | else | 
|  | Result = V; | 
|  | } | 
|  |  | 
|  | // Add in the Base Offset if present. | 
|  | if (AddrMode.BaseOffs) { | 
|  | Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); | 
|  | if (Result) | 
|  | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | 
|  | else | 
|  | Result = V; | 
|  | } | 
|  |  | 
|  | if (!Result) | 
|  | SunkAddr = Constant::getNullValue(Addr->getType()); | 
|  | else | 
|  | SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); | 
|  | } | 
|  |  | 
|  | MemoryInst->replaceUsesOfWith(Repl, SunkAddr); | 
|  | // Store the newly computed address into the cache. In the case we reused a | 
|  | // value, this should be idempotent. | 
|  | SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); | 
|  |  | 
|  | // If we have no uses, recursively delete the value and all dead instructions | 
|  | // using it. | 
|  | if (Repl->use_empty()) { | 
|  | // This can cause recursive deletion, which can invalidate our iterator. | 
|  | // Use a WeakTrackingVH to hold onto it in case this happens. | 
|  | Value *CurValue = &*CurInstIterator; | 
|  | WeakTrackingVH IterHandle(CurValue); | 
|  | BasicBlock *BB = CurInstIterator->getParent(); | 
|  |  | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); | 
|  |  | 
|  | if (IterHandle != CurValue) { | 
|  | // If the iterator instruction was recursively deleted, start over at the | 
|  | // start of the block. | 
|  | CurInstIterator = BB->begin(); | 
|  | SunkAddrs.clear(); | 
|  | } | 
|  | } | 
|  | ++NumMemoryInsts; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If there are any memory operands, use OptimizeMemoryInst to sink their | 
|  | /// address computing into the block when possible / profitable. | 
|  | bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | const TargetRegisterInfo *TRI = | 
|  | TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); | 
|  | TargetLowering::AsmOperandInfoVector TargetConstraints = | 
|  | TLI->ParseConstraints(*DL, TRI, CS); | 
|  | unsigned ArgNo = 0; | 
|  | for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { | 
|  | TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; | 
|  |  | 
|  | // Compute the constraint code and ConstraintType to use. | 
|  | TLI->ComputeConstraintToUse(OpInfo, SDValue()); | 
|  |  | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory && | 
|  | OpInfo.isIndirect) { | 
|  | Value *OpVal = CS->getArgOperand(ArgNo++); | 
|  | MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); | 
|  | } else if (OpInfo.Type == InlineAsm::isInput) | 
|  | ArgNo++; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// Check if all the uses of \p Val are equivalent (or free) zero or | 
|  | /// sign extensions. | 
|  | static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { | 
|  | assert(!Val->use_empty() && "Input must have at least one use"); | 
|  | const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); | 
|  | bool IsSExt = isa<SExtInst>(FirstUser); | 
|  | Type *ExtTy = FirstUser->getType(); | 
|  | for (const User *U : Val->users()) { | 
|  | const Instruction *UI = cast<Instruction>(U); | 
|  | if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) | 
|  | return false; | 
|  | Type *CurTy = UI->getType(); | 
|  | // Same input and output types: Same instruction after CSE. | 
|  | if (CurTy == ExtTy) | 
|  | continue; | 
|  |  | 
|  | // If IsSExt is true, we are in this situation: | 
|  | // a = Val | 
|  | // b = sext ty1 a to ty2 | 
|  | // c = sext ty1 a to ty3 | 
|  | // Assuming ty2 is shorter than ty3, this could be turned into: | 
|  | // a = Val | 
|  | // b = sext ty1 a to ty2 | 
|  | // c = sext ty2 b to ty3 | 
|  | // However, the last sext is not free. | 
|  | if (IsSExt) | 
|  | return false; | 
|  |  | 
|  | // This is a ZExt, maybe this is free to extend from one type to another. | 
|  | // In that case, we would not account for a different use. | 
|  | Type *NarrowTy; | 
|  | Type *LargeTy; | 
|  | if (ExtTy->getScalarType()->getIntegerBitWidth() > | 
|  | CurTy->getScalarType()->getIntegerBitWidth()) { | 
|  | NarrowTy = CurTy; | 
|  | LargeTy = ExtTy; | 
|  | } else { | 
|  | NarrowTy = ExtTy; | 
|  | LargeTy = CurTy; | 
|  | } | 
|  |  | 
|  | if (!TLI.isZExtFree(NarrowTy, LargeTy)) | 
|  | return false; | 
|  | } | 
|  | // All uses are the same or can be derived from one another for free. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to speculatively promote extensions in \p Exts and continue | 
|  | /// promoting through newly promoted operands recursively as far as doing so is | 
|  | /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. | 
|  | /// When some promotion happened, \p TPT contains the proper state to revert | 
|  | /// them. | 
|  | /// | 
|  | /// \return true if some promotion happened, false otherwise. | 
|  | bool CodeGenPrepare::tryToPromoteExts( | 
|  | TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, | 
|  | SmallVectorImpl<Instruction *> &ProfitablyMovedExts, | 
|  | unsigned CreatedInstsCost) { | 
|  | bool Promoted = false; | 
|  |  | 
|  | // Iterate over all the extensions to try to promote them. | 
|  | for (auto I : Exts) { | 
|  | // Early check if we directly have ext(load). | 
|  | if (isa<LoadInst>(I->getOperand(0))) { | 
|  | ProfitablyMovedExts.push_back(I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check whether or not we want to do any promotion.  The reason we have | 
|  | // this check inside the for loop is to catch the case where an extension | 
|  | // is directly fed by a load because in such case the extension can be moved | 
|  | // up without any promotion on its operands. | 
|  | if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) | 
|  | return false; | 
|  |  | 
|  | // Get the action to perform the promotion. | 
|  | TypePromotionHelper::Action TPH = | 
|  | TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); | 
|  | // Check if we can promote. | 
|  | if (!TPH) { | 
|  | // Save the current extension as we cannot move up through its operand. | 
|  | ProfitablyMovedExts.push_back(I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Save the current state. | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  | SmallVector<Instruction *, 4> NewExts; | 
|  | unsigned NewCreatedInstsCost = 0; | 
|  | unsigned ExtCost = !TLI->isExtFree(I); | 
|  | // Promote. | 
|  | Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, | 
|  | &NewExts, nullptr, *TLI); | 
|  | assert(PromotedVal && | 
|  | "TypePromotionHelper should have filtered out those cases"); | 
|  |  | 
|  | // We would be able to merge only one extension in a load. | 
|  | // Therefore, if we have more than 1 new extension we heuristically | 
|  | // cut this search path, because it means we degrade the code quality. | 
|  | // With exactly 2, the transformation is neutral, because we will merge | 
|  | // one extension but leave one. However, we optimistically keep going, | 
|  | // because the new extension may be removed too. | 
|  | long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; | 
|  | // FIXME: It would be possible to propagate a negative value instead of | 
|  | // conservatively ceiling it to 0. | 
|  | TotalCreatedInstsCost = | 
|  | std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); | 
|  | if (!StressExtLdPromotion && | 
|  | (TotalCreatedInstsCost > 1 || | 
|  | !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { | 
|  | // This promotion is not profitable, rollback to the previous state, and | 
|  | // save the current extension in ProfitablyMovedExts as the latest | 
|  | // speculative promotion turned out to be unprofitable. | 
|  | TPT.rollback(LastKnownGood); | 
|  | ProfitablyMovedExts.push_back(I); | 
|  | continue; | 
|  | } | 
|  | // Continue promoting NewExts as far as doing so is profitable. | 
|  | SmallVector<Instruction *, 2> NewlyMovedExts; | 
|  | (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); | 
|  | bool NewPromoted = false; | 
|  | for (auto ExtInst : NewlyMovedExts) { | 
|  | Instruction *MovedExt = cast<Instruction>(ExtInst); | 
|  | Value *ExtOperand = MovedExt->getOperand(0); | 
|  | // If we have reached to a load, we need this extra profitability check | 
|  | // as it could potentially be merged into an ext(load). | 
|  | if (isa<LoadInst>(ExtOperand) && | 
|  | !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || | 
|  | (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) | 
|  | continue; | 
|  |  | 
|  | ProfitablyMovedExts.push_back(MovedExt); | 
|  | NewPromoted = true; | 
|  | } | 
|  |  | 
|  | // If none of speculative promotions for NewExts is profitable, rollback | 
|  | // and save the current extension (I) as the last profitable extension. | 
|  | if (!NewPromoted) { | 
|  | TPT.rollback(LastKnownGood); | 
|  | ProfitablyMovedExts.push_back(I); | 
|  | continue; | 
|  | } | 
|  | // The promotion is profitable. | 
|  | Promoted = true; | 
|  | } | 
|  | return Promoted; | 
|  | } | 
|  |  | 
|  | /// Merging redundant sexts when one is dominating the other. | 
|  | bool CodeGenPrepare::mergeSExts(Function &F) { | 
|  | DominatorTree DT(F); | 
|  | bool Changed = false; | 
|  | for (auto &Entry : ValToSExtendedUses) { | 
|  | SExts &Insts = Entry.second; | 
|  | SExts CurPts; | 
|  | for (Instruction *Inst : Insts) { | 
|  | if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || | 
|  | Inst->getOperand(0) != Entry.first) | 
|  | continue; | 
|  | bool inserted = false; | 
|  | for (auto &Pt : CurPts) { | 
|  | if (DT.dominates(Inst, Pt)) { | 
|  | Pt->replaceAllUsesWith(Inst); | 
|  | RemovedInsts.insert(Pt); | 
|  | Pt->removeFromParent(); | 
|  | Pt = Inst; | 
|  | inserted = true; | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | if (!DT.dominates(Pt, Inst)) | 
|  | // Give up if we need to merge in a common dominator as the | 
|  | // experiments show it is not profitable. | 
|  | continue; | 
|  | Inst->replaceAllUsesWith(Pt); | 
|  | RemovedInsts.insert(Inst); | 
|  | Inst->removeFromParent(); | 
|  | inserted = true; | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | if (!inserted) | 
|  | CurPts.push_back(Inst); | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Spliting large data structures so that the GEPs accessing them can have | 
|  | // smaller offsets so that they can be sunk to the same blocks as their users. | 
|  | // For example, a large struct starting from %base is splitted into two parts | 
|  | // where the second part starts from %new_base. | 
|  | // | 
|  | // Before: | 
|  | // BB0: | 
|  | //   %base     = | 
|  | // | 
|  | // BB1: | 
|  | //   %gep0     = gep %base, off0 | 
|  | //   %gep1     = gep %base, off1 | 
|  | //   %gep2     = gep %base, off2 | 
|  | // | 
|  | // BB2: | 
|  | //   %load1    = load %gep0 | 
|  | //   %load2    = load %gep1 | 
|  | //   %load3    = load %gep2 | 
|  | // | 
|  | // After: | 
|  | // BB0: | 
|  | //   %base     = | 
|  | //   %new_base = gep %base, off0 | 
|  | // | 
|  | // BB1: | 
|  | //   %new_gep0 = %new_base | 
|  | //   %new_gep1 = gep %new_base, off1 - off0 | 
|  | //   %new_gep2 = gep %new_base, off2 - off0 | 
|  | // | 
|  | // BB2: | 
|  | //   %load1    = load i32, i32* %new_gep0 | 
|  | //   %load2    = load i32, i32* %new_gep1 | 
|  | //   %load3    = load i32, i32* %new_gep2 | 
|  | // | 
|  | // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because | 
|  | // their offsets are smaller enough to fit into the addressing mode. | 
|  | bool CodeGenPrepare::splitLargeGEPOffsets() { | 
|  | bool Changed = false; | 
|  | for (auto &Entry : LargeOffsetGEPMap) { | 
|  | Value *OldBase = Entry.first; | 
|  | SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> | 
|  | &LargeOffsetGEPs = Entry.second; | 
|  | auto compareGEPOffset = | 
|  | [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, | 
|  | const std::pair<GetElementPtrInst *, int64_t> &RHS) { | 
|  | if (LHS.first == RHS.first) | 
|  | return false; | 
|  | if (LHS.second != RHS.second) | 
|  | return LHS.second < RHS.second; | 
|  | return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; | 
|  | }; | 
|  | // Sorting all the GEPs of the same data structures based on the offsets. | 
|  | llvm::sort(LargeOffsetGEPs, compareGEPOffset); | 
|  | LargeOffsetGEPs.erase( | 
|  | std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), | 
|  | LargeOffsetGEPs.end()); | 
|  | // Skip if all the GEPs have the same offsets. | 
|  | if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) | 
|  | continue; | 
|  | GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; | 
|  | int64_t BaseOffset = LargeOffsetGEPs.begin()->second; | 
|  | Value *NewBaseGEP = nullptr; | 
|  |  | 
|  | auto LargeOffsetGEP = LargeOffsetGEPs.begin(); | 
|  | while (LargeOffsetGEP != LargeOffsetGEPs.end()) { | 
|  | GetElementPtrInst *GEP = LargeOffsetGEP->first; | 
|  | int64_t Offset = LargeOffsetGEP->second; | 
|  | if (Offset != BaseOffset) { | 
|  | TargetLowering::AddrMode AddrMode; | 
|  | AddrMode.BaseOffs = Offset - BaseOffset; | 
|  | // The result type of the GEP might not be the type of the memory | 
|  | // access. | 
|  | if (!TLI->isLegalAddressingMode(*DL, AddrMode, | 
|  | GEP->getResultElementType(), | 
|  | GEP->getAddressSpace())) { | 
|  | // We need to create a new base if the offset to the current base is | 
|  | // too large to fit into the addressing mode. So, a very large struct | 
|  | // may be splitted into several parts. | 
|  | BaseGEP = GEP; | 
|  | BaseOffset = Offset; | 
|  | NewBaseGEP = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Generate a new GEP to replace the current one. | 
|  | LLVMContext &Ctx = GEP->getContext(); | 
|  | Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); | 
|  | Type *I8PtrTy = | 
|  | Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); | 
|  | Type *I8Ty = Type::getInt8Ty(Ctx); | 
|  |  | 
|  | if (!NewBaseGEP) { | 
|  | // Create a new base if we don't have one yet.  Find the insertion | 
|  | // pointer for the new base first. | 
|  | BasicBlock::iterator NewBaseInsertPt; | 
|  | BasicBlock *NewBaseInsertBB; | 
|  | if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { | 
|  | // If the base of the struct is an instruction, the new base will be | 
|  | // inserted close to it. | 
|  | NewBaseInsertBB = BaseI->getParent(); | 
|  | if (isa<PHINode>(BaseI)) | 
|  | NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); | 
|  | else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { | 
|  | NewBaseInsertBB = | 
|  | SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); | 
|  | NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); | 
|  | } else | 
|  | NewBaseInsertPt = std::next(BaseI->getIterator()); | 
|  | } else { | 
|  | // If the current base is an argument or global value, the new base | 
|  | // will be inserted to the entry block. | 
|  | NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); | 
|  | NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); | 
|  | } | 
|  | IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); | 
|  | // Create a new base. | 
|  | Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); | 
|  | NewBaseGEP = OldBase; | 
|  | if (NewBaseGEP->getType() != I8PtrTy) | 
|  | NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); | 
|  | NewBaseGEP = | 
|  | NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); | 
|  | NewGEPBases.insert(NewBaseGEP); | 
|  | } | 
|  |  | 
|  | IRBuilder<> Builder(GEP); | 
|  | Value *NewGEP = NewBaseGEP; | 
|  | if (Offset == BaseOffset) { | 
|  | if (GEP->getType() != I8PtrTy) | 
|  | NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); | 
|  | } else { | 
|  | // Calculate the new offset for the new GEP. | 
|  | Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); | 
|  | NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); | 
|  |  | 
|  | if (GEP->getType() != I8PtrTy) | 
|  | NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); | 
|  | } | 
|  | GEP->replaceAllUsesWith(NewGEP); | 
|  | LargeOffsetGEPID.erase(GEP); | 
|  | LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); | 
|  | GEP->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Return true, if an ext(load) can be formed from an extension in | 
|  | /// \p MovedExts. | 
|  | bool CodeGenPrepare::canFormExtLd( | 
|  | const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, | 
|  | Instruction *&Inst, bool HasPromoted) { | 
|  | for (auto *MovedExtInst : MovedExts) { | 
|  | if (isa<LoadInst>(MovedExtInst->getOperand(0))) { | 
|  | LI = cast<LoadInst>(MovedExtInst->getOperand(0)); | 
|  | Inst = MovedExtInst; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!LI) | 
|  | return false; | 
|  |  | 
|  | // If they're already in the same block, there's nothing to do. | 
|  | // Make the cheap checks first if we did not promote. | 
|  | // If we promoted, we need to check if it is indeed profitable. | 
|  | if (!HasPromoted && LI->getParent() == Inst->getParent()) | 
|  | return false; | 
|  |  | 
|  | return TLI->isExtLoad(LI, Inst, *DL); | 
|  | } | 
|  |  | 
|  | /// Move a zext or sext fed by a load into the same basic block as the load, | 
|  | /// unless conditions are unfavorable. This allows SelectionDAG to fold the | 
|  | /// extend into the load. | 
|  | /// | 
|  | /// E.g., | 
|  | /// \code | 
|  | /// %ld = load i32* %addr | 
|  | /// %add = add nuw i32 %ld, 4 | 
|  | /// %zext = zext i32 %add to i64 | 
|  | // \endcode | 
|  | /// => | 
|  | /// \code | 
|  | /// %ld = load i32* %addr | 
|  | /// %zext = zext i32 %ld to i64 | 
|  | /// %add = add nuw i64 %zext, 4 | 
|  | /// \encode | 
|  | /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which | 
|  | /// allow us to match zext(load i32*) to i64. | 
|  | /// | 
|  | /// Also, try to promote the computations used to obtain a sign extended | 
|  | /// value used into memory accesses. | 
|  | /// E.g., | 
|  | /// \code | 
|  | /// a = add nsw i32 b, 3 | 
|  | /// d = sext i32 a to i64 | 
|  | /// e = getelementptr ..., i64 d | 
|  | /// \endcode | 
|  | /// => | 
|  | /// \code | 
|  | /// f = sext i32 b to i64 | 
|  | /// a = add nsw i64 f, 3 | 
|  | /// e = getelementptr ..., i64 a | 
|  | /// \endcode | 
|  | /// | 
|  | /// \p Inst[in/out] the extension may be modified during the process if some | 
|  | /// promotions apply. | 
|  | bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { | 
|  | // ExtLoad formation and address type promotion infrastructure requires TLI to | 
|  | // be effective. | 
|  | if (!TLI) | 
|  | return false; | 
|  |  | 
|  | bool AllowPromotionWithoutCommonHeader = false; | 
|  | /// See if it is an interesting sext operations for the address type | 
|  | /// promotion before trying to promote it, e.g., the ones with the right | 
|  | /// type and used in memory accesses. | 
|  | bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( | 
|  | *Inst, AllowPromotionWithoutCommonHeader); | 
|  | TypePromotionTransaction TPT(RemovedInsts); | 
|  | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | 
|  | TPT.getRestorationPoint(); | 
|  | SmallVector<Instruction *, 1> Exts; | 
|  | SmallVector<Instruction *, 2> SpeculativelyMovedExts; | 
|  | Exts.push_back(Inst); | 
|  |  | 
|  | bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); | 
|  |  | 
|  | // Look for a load being extended. | 
|  | LoadInst *LI = nullptr; | 
|  | Instruction *ExtFedByLoad; | 
|  |  | 
|  | // Try to promote a chain of computation if it allows to form an extended | 
|  | // load. | 
|  | if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { | 
|  | assert(LI && ExtFedByLoad && "Expect a valid load and extension"); | 
|  | TPT.commit(); | 
|  | // Move the extend into the same block as the load | 
|  | ExtFedByLoad->moveAfter(LI); | 
|  | // CGP does not check if the zext would be speculatively executed when moved | 
|  | // to the same basic block as the load. Preserving its original location | 
|  | // would pessimize the debugging experience, as well as negatively impact | 
|  | // the quality of sample pgo. We don't want to use "line 0" as that has a | 
|  | // size cost in the line-table section and logically the zext can be seen as | 
|  | // part of the load. Therefore we conservatively reuse the same debug | 
|  | // location for the load and the zext. | 
|  | ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); | 
|  | ++NumExtsMoved; | 
|  | Inst = ExtFedByLoad; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Continue promoting SExts if known as considerable depending on targets. | 
|  | if (ATPConsiderable && | 
|  | performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, | 
|  | HasPromoted, TPT, SpeculativelyMovedExts)) | 
|  | return true; | 
|  |  | 
|  | TPT.rollback(LastKnownGood); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Perform address type promotion if doing so is profitable. | 
|  | // If AllowPromotionWithoutCommonHeader == false, we should find other sext | 
|  | // instructions that sign extended the same initial value. However, if | 
|  | // AllowPromotionWithoutCommonHeader == true, we expect promoting the | 
|  | // extension is just profitable. | 
|  | bool CodeGenPrepare::performAddressTypePromotion( | 
|  | Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, | 
|  | bool HasPromoted, TypePromotionTransaction &TPT, | 
|  | SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { | 
|  | bool Promoted = false; | 
|  | SmallPtrSet<Instruction *, 1> UnhandledExts; | 
|  | bool AllSeenFirst = true; | 
|  | for (auto I : SpeculativelyMovedExts) { | 
|  | Value *HeadOfChain = I->getOperand(0); | 
|  | DenseMap<Value *, Instruction *>::iterator AlreadySeen = | 
|  | SeenChainsForSExt.find(HeadOfChain); | 
|  | // If there is an unhandled SExt which has the same header, try to promote | 
|  | // it as well. | 
|  | if (AlreadySeen != SeenChainsForSExt.end()) { | 
|  | if (AlreadySeen->second != nullptr) | 
|  | UnhandledExts.insert(AlreadySeen->second); | 
|  | AllSeenFirst = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && | 
|  | SpeculativelyMovedExts.size() == 1)) { | 
|  | TPT.commit(); | 
|  | if (HasPromoted) | 
|  | Promoted = true; | 
|  | for (auto I : SpeculativelyMovedExts) { | 
|  | Value *HeadOfChain = I->getOperand(0); | 
|  | SeenChainsForSExt[HeadOfChain] = nullptr; | 
|  | ValToSExtendedUses[HeadOfChain].push_back(I); | 
|  | } | 
|  | // Update Inst as promotion happen. | 
|  | Inst = SpeculativelyMovedExts.pop_back_val(); | 
|  | } else { | 
|  | // This is the first chain visited from the header, keep the current chain | 
|  | // as unhandled. Defer to promote this until we encounter another SExt | 
|  | // chain derived from the same header. | 
|  | for (auto I : SpeculativelyMovedExts) { | 
|  | Value *HeadOfChain = I->getOperand(0); | 
|  | SeenChainsForSExt[HeadOfChain] = Inst; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!AllSeenFirst && !UnhandledExts.empty()) | 
|  | for (auto VisitedSExt : UnhandledExts) { | 
|  | if (RemovedInsts.count(VisitedSExt)) | 
|  | continue; | 
|  | TypePromotionTransaction TPT(RemovedInsts); | 
|  | SmallVector<Instruction *, 1> Exts; | 
|  | SmallVector<Instruction *, 2> Chains; | 
|  | Exts.push_back(VisitedSExt); | 
|  | bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); | 
|  | TPT.commit(); | 
|  | if (HasPromoted) | 
|  | Promoted = true; | 
|  | for (auto I : Chains) { | 
|  | Value *HeadOfChain = I->getOperand(0); | 
|  | // Mark this as handled. | 
|  | SeenChainsForSExt[HeadOfChain] = nullptr; | 
|  | ValToSExtendedUses[HeadOfChain].push_back(I); | 
|  | } | 
|  | } | 
|  | return Promoted; | 
|  | } | 
|  |  | 
|  | bool CodeGenPrepare::optimizeExtUses(Instruction *I) { | 
|  | BasicBlock *DefBB = I->getParent(); | 
|  |  | 
|  | // If the result of a {s|z}ext and its source are both live out, rewrite all | 
|  | // other uses of the source with result of extension. | 
|  | Value *Src = I->getOperand(0); | 
|  | if (Src->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Only do this xform if truncating is free. | 
|  | if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) | 
|  | return false; | 
|  |  | 
|  | // Only safe to perform the optimization if the source is also defined in | 
|  | // this block. | 
|  | if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) | 
|  | return false; | 
|  |  | 
|  | bool DefIsLiveOut = false; | 
|  | for (User *U : I->users()) { | 
|  | Instruction *UI = cast<Instruction>(U); | 
|  |  | 
|  | // Figure out which BB this ext is used in. | 
|  | BasicBlock *UserBB = UI->getParent(); | 
|  | if (UserBB == DefBB) continue; | 
|  | DefIsLiveOut = true; | 
|  | break; | 
|  | } | 
|  | if (!DefIsLiveOut) | 
|  | return false; | 
|  |  | 
|  | // Make sure none of the uses are PHI nodes. | 
|  | for (User *U : Src->users()) { | 
|  | Instruction *UI = cast<Instruction>(U); | 
|  | BasicBlock *UserBB = UI->getParent(); | 
|  | if (UserBB == DefBB) continue; | 
|  | // Be conservative. We don't want this xform to end up introducing | 
|  | // reloads just before load / store instructions. | 
|  | if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // InsertedTruncs - Only insert one trunc in each block once. | 
|  | DenseMap<BasicBlock*, Instruction*> InsertedTruncs; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (Use &U : Src->uses()) { | 
|  | Instruction *User = cast<Instruction>(U.getUser()); | 
|  |  | 
|  | // Figure out which BB this ext is used in. | 
|  | BasicBlock *UserBB = User->getParent(); | 
|  | if (UserBB == DefBB) continue; | 
|  |  | 
|  | // Both src and def are live in this block. Rewrite the use. | 
|  | Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; | 
|  |  | 
|  | if (!InsertedTrunc) { | 
|  | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | 
|  | assert(InsertPt != UserBB->end()); | 
|  | InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); | 
|  | InsertedInsts.insert(InsertedTrunc); | 
|  | } | 
|  |  | 
|  | // Replace a use of the {s|z}ext source with a use of the result. | 
|  | U = InsertedTrunc; | 
|  | ++NumExtUses; | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | // Find loads whose uses only use some of the loaded value's bits.  Add an "and" | 
|  | // just after the load if the target can fold this into one extload instruction, | 
|  | // with the hope of eliminating some of the other later "and" instructions using | 
|  | // the loaded value.  "and"s that are made trivially redundant by the insertion | 
|  | // of the new "and" are removed by this function, while others (e.g. those whose | 
|  | // path from the load goes through a phi) are left for isel to potentially | 
|  | // remove. | 
|  | // | 
|  | // For example: | 
|  | // | 
|  | // b0: | 
|  | //   x = load i32 | 
|  | //   ... | 
|  | // b1: | 
|  | //   y = and x, 0xff | 
|  | //   z = use y | 
|  | // | 
|  | // becomes: | 
|  | // | 
|  | // b0: | 
|  | //   x = load i32 | 
|  | //   x' = and x, 0xff | 
|  | //   ... | 
|  | // b1: | 
|  | //   z = use x' | 
|  | // | 
|  | // whereas: | 
|  | // | 
|  | // b0: | 
|  | //   x1 = load i32 | 
|  | //   ... | 
|  | // b1: | 
|  | //   x2 = load i32 | 
|  | //   ... | 
|  | // b2: | 
|  | //   x = phi x1, x2 | 
|  | //   y = and x, 0xff | 
|  | // | 
|  | // becomes (after a call to optimizeLoadExt for each load): | 
|  | // | 
|  | // b0: | 
|  | //   x1 = load i32 | 
|  | //   x1' = and x1, 0xff | 
|  | //   ... | 
|  | // b1: | 
|  | //   x2 = load i32 | 
|  | //   x2' = and x2, 0xff | 
|  | //   ... | 
|  | // b2: | 
|  | //   x = phi x1', x2' | 
|  | //   y = and x, 0xff | 
|  | bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { | 
|  | if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) | 
|  | return false; | 
|  |  | 
|  | // Skip loads we've already transformed. | 
|  | if (Load->hasOneUse() && | 
|  | InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) | 
|  | return false; | 
|  |  | 
|  | // Look at all uses of Load, looking through phis, to determine how many bits | 
|  | // of the loaded value are needed. | 
|  | SmallVector<Instruction *, 8> WorkList; | 
|  | SmallPtrSet<Instruction *, 16> Visited; | 
|  | SmallVector<Instruction *, 8> AndsToMaybeRemove; | 
|  | for (auto *U : Load->users()) | 
|  | WorkList.push_back(cast<Instruction>(U)); | 
|  |  | 
|  | EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); | 
|  | unsigned BitWidth = LoadResultVT.getSizeInBits(); | 
|  | APInt DemandBits(BitWidth, 0); | 
|  | APInt WidestAndBits(BitWidth, 0); | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | Instruction *I = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  |  | 
|  | // Break use-def graph loops. | 
|  | if (!Visited.insert(I).second) | 
|  | continue; | 
|  |  | 
|  | // For a PHI node, push all of its users. | 
|  | if (auto *Phi = dyn_cast<PHINode>(I)) { | 
|  | for (auto *U : Phi->users()) | 
|  | WorkList.push_back(cast<Instruction>(U)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::And: { | 
|  | auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); | 
|  | if (!AndC) | 
|  | return false; | 
|  | APInt AndBits = AndC->getValue(); | 
|  | DemandBits |= AndBits; | 
|  | // Keep track of the widest and mask we see. | 
|  | if (AndBits.ugt(WidestAndBits)) | 
|  | WidestAndBits = AndBits; | 
|  | if (AndBits == WidestAndBits && I->getOperand(0) == Load) | 
|  | AndsToMaybeRemove.push_back(I); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Shl: { | 
|  | auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); | 
|  | if (!ShlC) | 
|  | return false; | 
|  | uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); | 
|  | DemandBits.setLowBits(BitWidth - ShiftAmt); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Trunc: { | 
|  | EVT TruncVT = TLI->getValueType(*DL, I->getType()); | 
|  | unsigned TruncBitWidth = TruncVT.getSizeInBits(); | 
|  | DemandBits.setLowBits(TruncBitWidth); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t ActiveBits = DemandBits.getActiveBits(); | 
|  | // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the | 
|  | // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example, | 
|  | // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but | 
|  | // (and (load x) 1) is not matched as a single instruction, rather as a LDR | 
|  | // followed by an AND. | 
|  | // TODO: Look into removing this restriction by fixing backends to either | 
|  | // return false for isLoadExtLegal for i1 or have them select this pattern to | 
|  | // a single instruction. | 
|  | // | 
|  | // Also avoid hoisting if we didn't see any ands with the exact DemandBits | 
|  | // mask, since these are the only ands that will be removed by isel. | 
|  | if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || | 
|  | WidestAndBits != DemandBits) | 
|  | return false; | 
|  |  | 
|  | LLVMContext &Ctx = Load->getType()->getContext(); | 
|  | Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); | 
|  | EVT TruncVT = TLI->getValueType(*DL, TruncTy); | 
|  |  | 
|  | // Reject cases that won't be matched as extloads. | 
|  | if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || | 
|  | !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) | 
|  | return false; | 
|  |  | 
|  | IRBuilder<> Builder(Load->getNextNode()); | 
|  | auto *NewAnd = dyn_cast<Instruction>( | 
|  | Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); | 
|  | // Mark this instruction as "inserted by CGP", so that other | 
|  | // optimizations don't touch it. | 
|  | InsertedInsts.insert(NewAnd); | 
|  |  | 
|  | // Replace all uses of load with new and (except for the use of load in the | 
|  | // new and itself). | 
|  | Load->replaceAllUsesWith(NewAnd); | 
|  | NewAnd->setOperand(0, Load); | 
|  |  | 
|  | // Remove any and instructions that are now redundant. | 
|  | for (auto *And : AndsToMaybeRemove) | 
|  | // Check that the and mask is the same as the one we decided to put on the | 
|  | // new and. | 
|  | if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { | 
|  | And->replaceAllUsesWith(NewAnd); | 
|  | if (&*CurInstIterator == And) | 
|  | CurInstIterator = std::next(And->getIterator()); | 
|  | And->eraseFromParent(); | 
|  | ++NumAndUses; | 
|  | } | 
|  |  | 
|  | ++NumAndsAdded; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check if V (an operand of a select instruction) is an expensive instruction | 
|  | /// that is only used once. | 
|  | static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { | 
|  | auto *I = dyn_cast<Instruction>(V); | 
|  | // If it's safe to speculatively execute, then it should not have side | 
|  | // effects; therefore, it's safe to sink and possibly *not* execute. | 
|  | return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && | 
|  | TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; | 
|  | } | 
|  |  | 
|  | /// Returns true if a SelectInst should be turned into an explicit branch. | 
|  | static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, | 
|  | const TargetLowering *TLI, | 
|  | SelectInst *SI) { | 
|  | // If even a predictable select is cheap, then a branch can't be cheaper. | 
|  | if (!TLI->isPredictableSelectExpensive()) | 
|  | return false; | 
|  |  | 
|  | // FIXME: This should use the same heuristics as IfConversion to determine | 
|  | // whether a select is better represented as a branch. | 
|  |  | 
|  | // If metadata tells us that the select condition is obviously predictable, | 
|  | // then we want to replace the select with a branch. | 
|  | uint64_t TrueWeight, FalseWeight; | 
|  | if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { | 
|  | uint64_t Max = std::max(TrueWeight, FalseWeight); | 
|  | uint64_t Sum = TrueWeight + FalseWeight; | 
|  | if (Sum != 0) { | 
|  | auto Probability = BranchProbability::getBranchProbability(Max, Sum); | 
|  | if (Probability > TLI->getPredictableBranchThreshold()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); | 
|  |  | 
|  | // If a branch is predictable, an out-of-order CPU can avoid blocking on its | 
|  | // comparison condition. If the compare has more than one use, there's | 
|  | // probably another cmov or setcc around, so it's not worth emitting a branch. | 
|  | if (!Cmp || !Cmp->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // If either operand of the select is expensive and only needed on one side | 
|  | // of the select, we should form a branch. | 
|  | if (sinkSelectOperand(TTI, SI->getTrueValue()) || | 
|  | sinkSelectOperand(TTI, SI->getFalseValue())) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// If \p isTrue is true, return the true value of \p SI, otherwise return | 
|  | /// false value of \p SI. If the true/false value of \p SI is defined by any | 
|  | /// select instructions in \p Selects, look through the defining select | 
|  | /// instruction until the true/false value is not defined in \p Selects. | 
|  | static Value *getTrueOrFalseValue( | 
|  | SelectInst *SI, bool isTrue, | 
|  | const SmallPtrSet<const Instruction *, 2> &Selects) { | 
|  | Value *V; | 
|  |  | 
|  | for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); | 
|  | DefSI = dyn_cast<SelectInst>(V)) { | 
|  | assert(DefSI->getCondition() == SI->getCondition() && | 
|  | "The condition of DefSI does not match with SI"); | 
|  | V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// If we have a SelectInst that will likely profit from branch prediction, | 
|  | /// turn it into a branch. | 
|  | bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { | 
|  | // If branch conversion isn't desirable, exit early. | 
|  | if (DisableSelectToBranch || OptSize || !TLI) | 
|  | return false; | 
|  |  | 
|  | // Find all consecutive select instructions that share the same condition. | 
|  | SmallVector<SelectInst *, 2> ASI; | 
|  | ASI.push_back(SI); | 
|  | for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); | 
|  | It != SI->getParent()->end(); ++It) { | 
|  | SelectInst *I = dyn_cast<SelectInst>(&*It); | 
|  | if (I && SI->getCondition() == I->getCondition()) { | 
|  | ASI.push_back(I); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SelectInst *LastSI = ASI.back(); | 
|  | // Increment the current iterator to skip all the rest of select instructions | 
|  | // because they will be either "not lowered" or "all lowered" to branch. | 
|  | CurInstIterator = std::next(LastSI->getIterator()); | 
|  |  | 
|  | bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); | 
|  |  | 
|  | // Can we convert the 'select' to CF ? | 
|  | if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) | 
|  | return false; | 
|  |  | 
|  | TargetLowering::SelectSupportKind SelectKind; | 
|  | if (VectorCond) | 
|  | SelectKind = TargetLowering::VectorMaskSelect; | 
|  | else if (SI->getType()->isVectorTy()) | 
|  | SelectKind = TargetLowering::ScalarCondVectorVal; | 
|  | else | 
|  | SelectKind = TargetLowering::ScalarValSelect; | 
|  |  | 
|  | if (TLI->isSelectSupported(SelectKind) && | 
|  | !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) | 
|  | return false; | 
|  |  | 
|  | ModifiedDT = true; | 
|  |  | 
|  | // Transform a sequence like this: | 
|  | //    start: | 
|  | //       %cmp = cmp uge i32 %a, %b | 
|  | //       %sel = select i1 %cmp, i32 %c, i32 %d | 
|  | // | 
|  | // Into: | 
|  | //    start: | 
|  | //       %cmp = cmp uge i32 %a, %b | 
|  | //       br i1 %cmp, label %select.true, label %select.false | 
|  | //    select.true: | 
|  | //       br label %select.end | 
|  | //    select.false: | 
|  | //       br label %select.end | 
|  | //    select.end: | 
|  | //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] | 
|  | // | 
|  | // In addition, we may sink instructions that produce %c or %d from | 
|  | // the entry block into the destination(s) of the new branch. | 
|  | // If the true or false blocks do not contain a sunken instruction, that | 
|  | // block and its branch may be optimized away. In that case, one side of the | 
|  | // first branch will point directly to select.end, and the corresponding PHI | 
|  | // predecessor block will be the start block. | 
|  |  | 
|  | // First, we split the block containing the select into 2 blocks. | 
|  | BasicBlock *StartBlock = SI->getParent(); | 
|  | BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); | 
|  | BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); | 
|  |  | 
|  | // Delete the unconditional branch that was just created by the split. | 
|  | StartBlock->getTerminator()->eraseFromParent(); | 
|  |  | 
|  | // These are the new basic blocks for the conditional branch. | 
|  | // At least one will become an actual new basic block. | 
|  | BasicBlock *TrueBlock = nullptr; | 
|  | BasicBlock *FalseBlock = nullptr; | 
|  | BranchInst *TrueBranch = nullptr; | 
|  | BranchInst *FalseBranch = nullptr; | 
|  |  | 
|  | // Sink expensive instructions into the conditional blocks to avoid executing | 
|  | // them speculatively. | 
|  | for (SelectInst *SI : ASI) { | 
|  | if (sinkSelectOperand(TTI, SI->getTrueValue())) { | 
|  | if (TrueBlock == nullptr) { | 
|  | TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", | 
|  | EndBlock->getParent(), EndBlock); | 
|  | TrueBranch = BranchInst::Create(EndBlock, TrueBlock); | 
|  | TrueBranch->setDebugLoc(SI->getDebugLoc()); | 
|  | } | 
|  | auto *TrueInst = cast<Instruction>(SI->getTrueValue()); | 
|  | TrueInst->moveBefore(TrueBranch); | 
|  | } | 
|  | if (sinkSelectOperand(TTI, SI->getFalseValue())) { | 
|  | if (FalseBlock == nullptr) { | 
|  | FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", | 
|  | EndBlock->getParent(), EndBlock); | 
|  | FalseBranch = BranchInst::Create(EndBlock, FalseBlock); | 
|  | FalseBranch->setDebugLoc(SI->getDebugLoc()); | 
|  | } | 
|  | auto *FalseInst = cast<Instruction>(SI->getFalseValue()); | 
|  | FalseInst->moveBefore(FalseBranch); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there was nothing to sink, then arbitrarily choose the 'false' side | 
|  | // for a new input value to the PHI. | 
|  | if (TrueBlock == FalseBlock) { | 
|  | assert(TrueBlock == nullptr && | 
|  | "Unexpected basic block transform while optimizing select"); | 
|  |  | 
|  | FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", | 
|  | EndBlock->getParent(), EndBlock); | 
|  | auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); | 
|  | FalseBranch->setDebugLoc(SI->getDebugLoc()); | 
|  | } | 
|  |  | 
|  | // Insert the real conditional branch based on the original condition. | 
|  | // If we did not create a new block for one of the 'true' or 'false' paths | 
|  | // of the condition, it means that side of the branch goes to the end block | 
|  | // directly and the path originates from the start block from the point of | 
|  | // view of the new PHI. | 
|  | BasicBlock *TT, *FT; | 
|  | if (TrueBlock == nullptr) { | 
|  | TT = EndBlock; | 
|  | FT = FalseBlock; | 
|  | TrueBlock = StartBlock; | 
|  | } else if (FalseBlock == nullptr) { | 
|  | TT = TrueBlock; | 
|  | FT = EndBlock; | 
|  | FalseBlock = StartBlock; | 
|  | } else { | 
|  | TT = TrueBlock; | 
|  | FT = FalseBlock; | 
|  | } | 
|  | IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); | 
|  |  | 
|  | SmallPtrSet<const Instruction *, 2> INS; | 
|  | INS.insert(ASI.begin(), ASI.end()); | 
|  | // Use reverse iterator because later select may use the value of the | 
|  | // earlier select, and we need to propagate value through earlier select | 
|  | // to get the PHI operand. | 
|  | for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { | 
|  | SelectInst *SI = *It; | 
|  | // The select itself is replaced with a PHI Node. | 
|  | PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); | 
|  | PN->takeName(SI); | 
|  | PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); | 
|  | PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); | 
|  | PN->setDebugLoc(SI->getDebugLoc()); | 
|  |  | 
|  | SI->replaceAllUsesWith(PN); | 
|  | SI->eraseFromParent(); | 
|  | INS.erase(SI); | 
|  | ++NumSelectsExpanded; | 
|  | } | 
|  |  | 
|  | // Instruct OptimizeBlock to skip to the next block. | 
|  | CurInstIterator = StartBlock->end(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { | 
|  | SmallVector<int, 16> Mask(SVI->getShuffleMask()); | 
|  | int SplatElem = -1; | 
|  | for (unsigned i = 0; i < Mask.size(); ++i) { | 
|  | if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) | 
|  | return false; | 
|  | SplatElem = Mask[i]; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Some targets have expensive vector shifts if the lanes aren't all the same | 
|  | /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases | 
|  | /// it's often worth sinking a shufflevector splat down to its use so that | 
|  | /// codegen can spot all lanes are identical. | 
|  | bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { | 
|  | BasicBlock *DefBB = SVI->getParent(); | 
|  |  | 
|  | // Only do this xform if variable vector shifts are particularly expensive. | 
|  | if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) | 
|  | return false; | 
|  |  | 
|  | // We only expect better codegen by sinking a shuffle if we can recognise a | 
|  | // constant splat. | 
|  | if (!isBroadcastShuffle(SVI)) | 
|  | return false; | 
|  |  | 
|  | // InsertedShuffles - Only insert a shuffle in each block once. | 
|  | DenseMap<BasicBlock*, Instruction*> InsertedShuffles; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (User *U : SVI->users()) { | 
|  | Instruction *UI = cast<Instruction>(U); | 
|  |  | 
|  | // Figure out which BB this ext is used in. | 
|  | BasicBlock *UserBB = UI->getParent(); | 
|  | if (UserBB == DefBB) continue; | 
|  |  | 
|  | // For now only apply this when the splat is used by a shift instruction. | 
|  | if (!UI->isShift()) continue; | 
|  |  | 
|  | // Everything checks out, sink the shuffle if the user's block doesn't | 
|  | // already have a copy. | 
|  | Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; | 
|  |  | 
|  | if (!InsertedShuffle) { | 
|  | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | 
|  | assert(InsertPt != UserBB->end()); | 
|  | InsertedShuffle = | 
|  | new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), | 
|  | SVI->getOperand(2), "", &*InsertPt); | 
|  | } | 
|  |  | 
|  | UI->replaceUsesOfWith(SVI, InsertedShuffle); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // If we removed all uses, nuke the shuffle. | 
|  | if (SVI->use_empty()) { | 
|  | SVI->eraseFromParent(); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { | 
|  | if (!TLI || !DL) | 
|  | return false; | 
|  |  | 
|  | Value *Cond = SI->getCondition(); | 
|  | Type *OldType = Cond->getType(); | 
|  | LLVMContext &Context = Cond->getContext(); | 
|  | MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); | 
|  | unsigned RegWidth = RegType.getSizeInBits(); | 
|  |  | 
|  | if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) | 
|  | return false; | 
|  |  | 
|  | // If the register width is greater than the type width, expand the condition | 
|  | // of the switch instruction and each case constant to the width of the | 
|  | // register. By widening the type of the switch condition, subsequent | 
|  | // comparisons (for case comparisons) will not need to be extended to the | 
|  | // preferred register width, so we will potentially eliminate N-1 extends, | 
|  | // where N is the number of cases in the switch. | 
|  | auto *NewType = Type::getIntNTy(Context, RegWidth); | 
|  |  | 
|  | // Zero-extend the switch condition and case constants unless the switch | 
|  | // condition is a function argument that is already being sign-extended. | 
|  | // In that case, we can avoid an unnecessary mask/extension by sign-extending | 
|  | // everything instead. | 
|  | Instruction::CastOps ExtType = Instruction::ZExt; | 
|  | if (auto *Arg = dyn_cast<Argument>(Cond)) | 
|  | if (Arg->hasSExtAttr()) | 
|  | ExtType = Instruction::SExt; | 
|  |  | 
|  | auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); | 
|  | ExtInst->insertBefore(SI); | 
|  | ExtInst->setDebugLoc(SI->getDebugLoc()); | 
|  | SI->setCondition(ExtInst); | 
|  | for (auto Case : SI->cases()) { | 
|  | APInt NarrowConst = Case.getCaseValue()->getValue(); | 
|  | APInt WideConst = (ExtType == Instruction::ZExt) ? | 
|  | NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); | 
|  | Case.setValue(ConstantInt::get(Context, WideConst)); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Helper class to promote a scalar operation to a vector one. | 
|  | /// This class is used to move downward extractelement transition. | 
|  | /// E.g., | 
|  | /// a = vector_op <2 x i32> | 
|  | /// b = extractelement <2 x i32> a, i32 0 | 
|  | /// c = scalar_op b | 
|  | /// store c | 
|  | /// | 
|  | /// => | 
|  | /// a = vector_op <2 x i32> | 
|  | /// c = vector_op a (equivalent to scalar_op on the related lane) | 
|  | /// * d = extractelement <2 x i32> c, i32 0 | 
|  | /// * store d | 
|  | /// Assuming both extractelement and store can be combine, we get rid of the | 
|  | /// transition. | 
|  | class VectorPromoteHelper { | 
|  | /// DataLayout associated with the current module. | 
|  | const DataLayout &DL; | 
|  |  | 
|  | /// Used to perform some checks on the legality of vector operations. | 
|  | const TargetLowering &TLI; | 
|  |  | 
|  | /// Used to estimated the cost of the promoted chain. | 
|  | const TargetTransformInfo &TTI; | 
|  |  | 
|  | /// The transition being moved downwards. | 
|  | Instruction *Transition; | 
|  |  | 
|  | /// The sequence of instructions to be promoted. | 
|  | SmallVector<Instruction *, 4> InstsToBePromoted; | 
|  |  | 
|  | /// Cost of combining a store and an extract. | 
|  | unsigned StoreExtractCombineCost; | 
|  |  | 
|  | /// Instruction that will be combined with the transition. | 
|  | Instruction *CombineInst = nullptr; | 
|  |  | 
|  | /// The instruction that represents the current end of the transition. | 
|  | /// Since we are faking the promotion until we reach the end of the chain | 
|  | /// of computation, we need a way to get the current end of the transition. | 
|  | Instruction *getEndOfTransition() const { | 
|  | if (InstsToBePromoted.empty()) | 
|  | return Transition; | 
|  | return InstsToBePromoted.back(); | 
|  | } | 
|  |  | 
|  | /// Return the index of the original value in the transition. | 
|  | /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, | 
|  | /// c, is at index 0. | 
|  | unsigned getTransitionOriginalValueIdx() const { | 
|  | assert(isa<ExtractElementInst>(Transition) && | 
|  | "Other kind of transitions are not supported yet"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Return the index of the index in the transition. | 
|  | /// E.g., for "extractelement <2 x i32> c, i32 0" the index | 
|  | /// is at index 1. | 
|  | unsigned getTransitionIdx() const { | 
|  | assert(isa<ExtractElementInst>(Transition) && | 
|  | "Other kind of transitions are not supported yet"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// Get the type of the transition. | 
|  | /// This is the type of the original value. | 
|  | /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the | 
|  | /// transition is <2 x i32>. | 
|  | Type *getTransitionType() const { | 
|  | return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); | 
|  | } | 
|  |  | 
|  | /// Promote \p ToBePromoted by moving \p Def downward through. | 
|  | /// I.e., we have the following sequence: | 
|  | /// Def = Transition <ty1> a to <ty2> | 
|  | /// b = ToBePromoted <ty2> Def, ... | 
|  | /// => | 
|  | /// b = ToBePromoted <ty1> a, ... | 
|  | /// Def = Transition <ty1> ToBePromoted to <ty2> | 
|  | void promoteImpl(Instruction *ToBePromoted); | 
|  |  | 
|  | /// Check whether or not it is profitable to promote all the | 
|  | /// instructions enqueued to be promoted. | 
|  | bool isProfitableToPromote() { | 
|  | Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); | 
|  | unsigned Index = isa<ConstantInt>(ValIdx) | 
|  | ? cast<ConstantInt>(ValIdx)->getZExtValue() | 
|  | : -1; | 
|  | Type *PromotedType = getTransitionType(); | 
|  |  | 
|  | StoreInst *ST = cast<StoreInst>(CombineInst); | 
|  | unsigned AS = ST->getPointerAddressSpace(); | 
|  | unsigned Align = ST->getAlignment(); | 
|  | // Check if this store is supported. | 
|  | if (!TLI.allowsMisalignedMemoryAccesses( | 
|  | TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, | 
|  | Align)) { | 
|  | // If this is not supported, there is no way we can combine | 
|  | // the extract with the store. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The scalar chain of computation has to pay for the transition | 
|  | // scalar to vector. | 
|  | // The vector chain has to account for the combining cost. | 
|  | uint64_t ScalarCost = | 
|  | TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); | 
|  | uint64_t VectorCost = StoreExtractCombineCost; | 
|  | for (const auto &Inst : InstsToBePromoted) { | 
|  | // Compute the cost. | 
|  | // By construction, all instructions being promoted are arithmetic ones. | 
|  | // Moreover, one argument is a constant that can be viewed as a splat | 
|  | // constant. | 
|  | Value *Arg0 = Inst->getOperand(0); | 
|  | bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || | 
|  | isa<ConstantFP>(Arg0); | 
|  | TargetTransformInfo::OperandValueKind Arg0OVK = | 
|  | IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue | 
|  | : TargetTransformInfo::OK_AnyValue; | 
|  | TargetTransformInfo::OperandValueKind Arg1OVK = | 
|  | !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue | 
|  | : TargetTransformInfo::OK_AnyValue; | 
|  | ScalarCost += TTI.getArithmeticInstrCost( | 
|  | Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); | 
|  | VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, | 
|  | Arg0OVK, Arg1OVK); | 
|  | } | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Estimated cost of computation to be promoted:\nScalar: " | 
|  | << ScalarCost << "\nVector: " << VectorCost << '\n'); | 
|  | return ScalarCost > VectorCost; | 
|  | } | 
|  |  | 
|  | /// Generate a constant vector with \p Val with the same | 
|  | /// number of elements as the transition. | 
|  | /// \p UseSplat defines whether or not \p Val should be replicated | 
|  | /// across the whole vector. | 
|  | /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, | 
|  | /// otherwise we generate a vector with as many undef as possible: | 
|  | /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only | 
|  | /// used at the index of the extract. | 
|  | Value *getConstantVector(Constant *Val, bool UseSplat) const { | 
|  | unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); | 
|  | if (!UseSplat) { | 
|  | // If we cannot determine where the constant must be, we have to | 
|  | // use a splat constant. | 
|  | Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); | 
|  | if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) | 
|  | ExtractIdx = CstVal->getSExtValue(); | 
|  | else | 
|  | UseSplat = true; | 
|  | } | 
|  |  | 
|  | unsigned End = getTransitionType()->getVectorNumElements(); | 
|  | if (UseSplat) | 
|  | return ConstantVector::getSplat(End, Val); | 
|  |  | 
|  | SmallVector<Constant *, 4> ConstVec; | 
|  | UndefValue *UndefVal = UndefValue::get(Val->getType()); | 
|  | for (unsigned Idx = 0; Idx != End; ++Idx) { | 
|  | if (Idx == ExtractIdx) | 
|  | ConstVec.push_back(Val); | 
|  | else | 
|  | ConstVec.push_back(UndefVal); | 
|  | } | 
|  | return ConstantVector::get(ConstVec); | 
|  | } | 
|  |  | 
|  | /// Check if promoting to a vector type an operand at \p OperandIdx | 
|  | /// in \p Use can trigger undefined behavior. | 
|  | static bool canCauseUndefinedBehavior(const Instruction *Use, | 
|  | unsigned OperandIdx) { | 
|  | // This is not safe to introduce undef when the operand is on | 
|  | // the right hand side of a division-like instruction. | 
|  | if (OperandIdx != 1) | 
|  | return false; | 
|  | switch (Use->getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SRem: | 
|  | case Instruction::URem: | 
|  | return true; | 
|  | case Instruction::FDiv: | 
|  | case Instruction::FRem: | 
|  | return !Use->hasNoNaNs(); | 
|  | } | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  |  | 
|  | public: | 
|  | VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, | 
|  | const TargetTransformInfo &TTI, Instruction *Transition, | 
|  | unsigned CombineCost) | 
|  | : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), | 
|  | StoreExtractCombineCost(CombineCost) { | 
|  | assert(Transition && "Do not know how to promote null"); | 
|  | } | 
|  |  | 
|  | /// Check if we can promote \p ToBePromoted to \p Type. | 
|  | bool canPromote(const Instruction *ToBePromoted) const { | 
|  | // We could support CastInst too. | 
|  | return isa<BinaryOperator>(ToBePromoted); | 
|  | } | 
|  |  | 
|  | /// Check if it is profitable to promote \p ToBePromoted | 
|  | /// by moving downward the transition through. | 
|  | bool shouldPromote(const Instruction *ToBePromoted) const { | 
|  | // Promote only if all the operands can be statically expanded. | 
|  | // Indeed, we do not want to introduce any new kind of transitions. | 
|  | for (const Use &U : ToBePromoted->operands()) { | 
|  | const Value *Val = U.get(); | 
|  | if (Val == getEndOfTransition()) { | 
|  | // If the use is a division and the transition is on the rhs, | 
|  | // we cannot promote the operation, otherwise we may create a | 
|  | // division by zero. | 
|  | if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  | if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && | 
|  | !isa<ConstantFP>(Val)) | 
|  | return false; | 
|  | } | 
|  | // Check that the resulting operation is legal. | 
|  | int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); | 
|  | if (!ISDOpcode) | 
|  | return false; | 
|  | return StressStoreExtract || | 
|  | TLI.isOperationLegalOrCustom( | 
|  | ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); | 
|  | } | 
|  |  | 
|  | /// Check whether or not \p Use can be combined | 
|  | /// with the transition. | 
|  | /// I.e., is it possible to do Use(Transition) => AnotherUse? | 
|  | bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } | 
|  |  | 
|  | /// Record \p ToBePromoted as part of the chain to be promoted. | 
|  | void enqueueForPromotion(Instruction *ToBePromoted) { | 
|  | InstsToBePromoted.push_back(ToBePromoted); | 
|  | } | 
|  |  | 
|  | /// Set the instruction that will be combined with the transition. | 
|  | void recordCombineInstruction(Instruction *ToBeCombined) { | 
|  | assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); | 
|  | CombineInst = ToBeCombined; | 
|  | } | 
|  |  | 
|  | /// Promote all the instructions enqueued for promotion if it is | 
|  | /// is profitable. | 
|  | /// \return True if the promotion happened, false otherwise. | 
|  | bool promote() { | 
|  | // Check if there is something to promote. | 
|  | // Right now, if we do not have anything to combine with, | 
|  | // we assume the promotion is not profitable. | 
|  | if (InstsToBePromoted.empty() || !CombineInst) | 
|  | return false; | 
|  |  | 
|  | // Check cost. | 
|  | if (!StressStoreExtract && !isProfitableToPromote()) | 
|  | return false; | 
|  |  | 
|  | // Promote. | 
|  | for (auto &ToBePromoted : InstsToBePromoted) | 
|  | promoteImpl(ToBePromoted); | 
|  | InstsToBePromoted.clear(); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { | 
|  | // At this point, we know that all the operands of ToBePromoted but Def | 
|  | // can be statically promoted. | 
|  | // For Def, we need to use its parameter in ToBePromoted: | 
|  | // b = ToBePromoted ty1 a | 
|  | // Def = Transition ty1 b to ty2 | 
|  | // Move the transition down. | 
|  | // 1. Replace all uses of the promoted operation by the transition. | 
|  | // = ... b => = ... Def. | 
|  | assert(ToBePromoted->getType() == Transition->getType() && | 
|  | "The type of the result of the transition does not match " | 
|  | "the final type"); | 
|  | ToBePromoted->replaceAllUsesWith(Transition); | 
|  | // 2. Update the type of the uses. | 
|  | // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. | 
|  | Type *TransitionTy = getTransitionType(); | 
|  | ToBePromoted->mutateType(TransitionTy); | 
|  | // 3. Update all the operands of the promoted operation with promoted | 
|  | // operands. | 
|  | // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. | 
|  | for (Use &U : ToBePromoted->operands()) { | 
|  | Value *Val = U.get(); | 
|  | Value *NewVal = nullptr; | 
|  | if (Val == Transition) | 
|  | NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); | 
|  | else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || | 
|  | isa<ConstantFP>(Val)) { | 
|  | // Use a splat constant if it is not safe to use undef. | 
|  | NewVal = getConstantVector( | 
|  | cast<Constant>(Val), | 
|  | isa<UndefValue>(Val) || | 
|  | canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); | 
|  | } else | 
|  | llvm_unreachable("Did you modified shouldPromote and forgot to update " | 
|  | "this?"); | 
|  | ToBePromoted->setOperand(U.getOperandNo(), NewVal); | 
|  | } | 
|  | Transition->moveAfter(ToBePromoted); | 
|  | Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); | 
|  | } | 
|  |  | 
|  | /// Some targets can do store(extractelement) with one instruction. | 
|  | /// Try to push the extractelement towards the stores when the target | 
|  | /// has this feature and this is profitable. | 
|  | bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { | 
|  | unsigned CombineCost = std::numeric_limits<unsigned>::max(); | 
|  | if (DisableStoreExtract || !TLI || | 
|  | (!StressStoreExtract && | 
|  | !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), | 
|  | Inst->getOperand(1), CombineCost))) | 
|  | return false; | 
|  |  | 
|  | // At this point we know that Inst is a vector to scalar transition. | 
|  | // Try to move it down the def-use chain, until: | 
|  | // - We can combine the transition with its single use | 
|  | //   => we got rid of the transition. | 
|  | // - We escape the current basic block | 
|  | //   => we would need to check that we are moving it at a cheaper place and | 
|  | //      we do not do that for now. | 
|  | BasicBlock *Parent = Inst->getParent(); | 
|  | LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); | 
|  | VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); | 
|  | // If the transition has more than one use, assume this is not going to be | 
|  | // beneficial. | 
|  | while (Inst->hasOneUse()) { | 
|  | Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); | 
|  | LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); | 
|  |  | 
|  | if (ToBePromoted->getParent() != Parent) { | 
|  | LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" | 
|  | << ToBePromoted->getParent()->getName() | 
|  | << ") than the transition (" << Parent->getName() | 
|  | << ").\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (VPH.canCombine(ToBePromoted)) { | 
|  | LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' | 
|  | << "will be combined with: " << *ToBePromoted << '\n'); | 
|  | VPH.recordCombineInstruction(ToBePromoted); | 
|  | bool Changed = VPH.promote(); | 
|  | NumStoreExtractExposed += Changed; | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Try promoting.\n"); | 
|  | if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); | 
|  |  | 
|  | VPH.enqueueForPromotion(ToBePromoted); | 
|  | Inst = ToBePromoted; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// For the instruction sequence of store below, F and I values | 
|  | /// are bundled together as an i64 value before being stored into memory. | 
|  | /// Sometimes it is more efficient to generate separate stores for F and I, | 
|  | /// which can remove the bitwise instructions or sink them to colder places. | 
|  | /// | 
|  | ///   (store (or (zext (bitcast F to i32) to i64), | 
|  | ///              (shl (zext I to i64), 32)), addr)  --> | 
|  | ///   (store F, addr) and (store I, addr+4) | 
|  | /// | 
|  | /// Similarly, splitting for other merged store can also be beneficial, like: | 
|  | /// For pair of {i32, i32}, i64 store --> two i32 stores. | 
|  | /// For pair of {i32, i16}, i64 store --> two i32 stores. | 
|  | /// For pair of {i16, i16}, i32 store --> two i16 stores. | 
|  | /// For pair of {i16, i8},  i32 store --> two i16 stores. | 
|  | /// For pair of {i8, i8},   i16 store --> two i8 stores. | 
|  | /// | 
|  | /// We allow each target to determine specifically which kind of splitting is | 
|  | /// supported. | 
|  | /// | 
|  | /// The store patterns are commonly seen from the simple code snippet below | 
|  | /// if only std::make_pair(...) is sroa transformed before inlined into hoo. | 
|  | ///   void goo(const std::pair<int, float> &); | 
|  | ///   hoo() { | 
|  | ///     ... | 
|  | ///     goo(std::make_pair(tmp, ftmp)); | 
|  | ///     ... | 
|  | ///   } | 
|  | /// | 
|  | /// Although we already have similar splitting in DAG Combine, we duplicate | 
|  | /// it in CodeGenPrepare to catch the case in which pattern is across | 
|  | /// multiple BBs. The logic in DAG Combine is kept to catch case generated | 
|  | /// during code expansion. | 
|  | static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, | 
|  | const TargetLowering &TLI) { | 
|  | // Handle simple but common cases only. | 
|  | Type *StoreType = SI.getValueOperand()->getType(); | 
|  | if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || | 
|  | DL.getTypeSizeInBits(StoreType) == 0) | 
|  | return false; | 
|  |  | 
|  | unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; | 
|  | Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); | 
|  | if (DL.getTypeStoreSizeInBits(SplitStoreType) != | 
|  | DL.getTypeSizeInBits(SplitStoreType)) | 
|  | return false; | 
|  |  | 
|  | // Match the following patterns: | 
|  | // (store (or (zext LValue to i64), | 
|  | //            (shl (zext HValue to i64), 32)), HalfValBitSize) | 
|  | //  or | 
|  | // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) | 
|  | //            (zext LValue to i64), | 
|  | // Expect both operands of OR and the first operand of SHL have only | 
|  | // one use. | 
|  | Value *LValue, *HValue; | 
|  | if (!match(SI.getValueOperand(), | 
|  | m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), | 
|  | m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), | 
|  | m_SpecificInt(HalfValBitSize)))))) | 
|  | return false; | 
|  |  | 
|  | // Check LValue and HValue are int with size less or equal than 32. | 
|  | if (!LValue->getType()->isIntegerTy() || | 
|  | DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || | 
|  | !HValue->getType()->isIntegerTy() || | 
|  | DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) | 
|  | return false; | 
|  |  | 
|  | // If LValue/HValue is a bitcast instruction, use the EVT before bitcast | 
|  | // as the input of target query. | 
|  | auto *LBC = dyn_cast<BitCastInst>(LValue); | 
|  | auto *HBC = dyn_cast<BitCastInst>(HValue); | 
|  | EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) | 
|  | : EVT::getEVT(LValue->getType()); | 
|  | EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) | 
|  | : EVT::getEVT(HValue->getType()); | 
|  | if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) | 
|  | return false; | 
|  |  | 
|  | // Start to split store. | 
|  | IRBuilder<> Builder(SI.getContext()); | 
|  | Builder.SetInsertPoint(&SI); | 
|  |  | 
|  | // If LValue/HValue is a bitcast in another BB, create a new one in current | 
|  | // BB so it may be merged with the splitted stores by dag combiner. | 
|  | if (LBC && LBC->getParent() != SI.getParent()) | 
|  | LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); | 
|  | if (HBC && HBC->getParent() != SI.getParent()) | 
|  | HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); | 
|  |  | 
|  | bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); | 
|  | auto CreateSplitStore = [&](Value *V, bool Upper) { | 
|  | V = Builder.CreateZExtOrBitCast(V, SplitStoreType); | 
|  | Value *Addr = Builder.CreateBitCast( | 
|  | SI.getOperand(1), | 
|  | SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); | 
|  | if ((IsLE && Upper) || (!IsLE && !Upper)) | 
|  | Addr = Builder.CreateGEP( | 
|  | SplitStoreType, Addr, | 
|  | ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); | 
|  | Builder.CreateAlignedStore( | 
|  | V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); | 
|  | }; | 
|  |  | 
|  | CreateSplitStore(LValue, false); | 
|  | CreateSplitStore(HValue, true); | 
|  |  | 
|  | // Delete the old store. | 
|  | SI.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Return true if the GEP has two operands, the first operand is of a sequential | 
|  | // type, and the second operand is a constant. | 
|  | static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { | 
|  | gep_type_iterator I = gep_type_begin(*GEP); | 
|  | return GEP->getNumOperands() == 2 && | 
|  | I.isSequential() && | 
|  | isa<ConstantInt>(GEP->getOperand(1)); | 
|  | } | 
|  |  | 
|  | // Try unmerging GEPs to reduce liveness interference (register pressure) across | 
|  | // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, | 
|  | // reducing liveness interference across those edges benefits global register | 
|  | // allocation. Currently handles only certain cases. | 
|  | // | 
|  | // For example, unmerge %GEPI and %UGEPI as below. | 
|  | // | 
|  | // ---------- BEFORE ---------- | 
|  | // SrcBlock: | 
|  | //   ... | 
|  | //   %GEPIOp = ... | 
|  | //   ... | 
|  | //   %GEPI = gep %GEPIOp, Idx | 
|  | //   ... | 
|  | //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] | 
|  | //   (* %GEPI is alive on the indirectbr edges due to other uses ahead) | 
|  | //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by | 
|  | //   %UGEPI) | 
|  | // | 
|  | // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) | 
|  | // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) | 
|  | // ... | 
|  | // | 
|  | // DstBi: | 
|  | //   ... | 
|  | //   %UGEPI = gep %GEPIOp, UIdx | 
|  | // ... | 
|  | // --------------------------- | 
|  | // | 
|  | // ---------- AFTER ---------- | 
|  | // SrcBlock: | 
|  | //   ... (same as above) | 
|  | //    (* %GEPI is still alive on the indirectbr edges) | 
|  | //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the | 
|  | //    unmerging) | 
|  | // ... | 
|  | // | 
|  | // DstBi: | 
|  | //   ... | 
|  | //   %UGEPI = gep %GEPI, (UIdx-Idx) | 
|  | //   ... | 
|  | // --------------------------- | 
|  | // | 
|  | // The register pressure on the IndirectBr edges is reduced because %GEPIOp is | 
|  | // no longer alive on them. | 
|  | // | 
|  | // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging | 
|  | // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as | 
|  | // not to disable further simplications and optimizations as a result of GEP | 
|  | // merging. | 
|  | // | 
|  | // Note this unmerging may increase the length of the data flow critical path | 
|  | // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff | 
|  | // between the register pressure and the length of data-flow critical | 
|  | // path. Restricting this to the uncommon IndirectBr case would minimize the | 
|  | // impact of potentially longer critical path, if any, and the impact on compile | 
|  | // time. | 
|  | static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, | 
|  | const TargetTransformInfo *TTI) { | 
|  | BasicBlock *SrcBlock = GEPI->getParent(); | 
|  | // Check that SrcBlock ends with an IndirectBr. If not, give up. The common | 
|  | // (non-IndirectBr) cases exit early here. | 
|  | if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) | 
|  | return false; | 
|  | // Check that GEPI is a simple gep with a single constant index. | 
|  | if (!GEPSequentialConstIndexed(GEPI)) | 
|  | return false; | 
|  | ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); | 
|  | // Check that GEPI is a cheap one. | 
|  | if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) | 
|  | > TargetTransformInfo::TCC_Basic) | 
|  | return false; | 
|  | Value *GEPIOp = GEPI->getOperand(0); | 
|  | // Check that GEPIOp is an instruction that's also defined in SrcBlock. | 
|  | if (!isa<Instruction>(GEPIOp)) | 
|  | return false; | 
|  | auto *GEPIOpI = cast<Instruction>(GEPIOp); | 
|  | if (GEPIOpI->getParent() != SrcBlock) | 
|  | return false; | 
|  | // Check that GEP is used outside the block, meaning it's alive on the | 
|  | // IndirectBr edge(s). | 
|  | if (find_if(GEPI->users(), [&](User *Usr) { | 
|  | if (auto *I = dyn_cast<Instruction>(Usr)) { | 
|  | if (I->getParent() != SrcBlock) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | }) == GEPI->users().end()) | 
|  | return false; | 
|  | // The second elements of the GEP chains to be unmerged. | 
|  | std::vector<GetElementPtrInst *> UGEPIs; | 
|  | // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive | 
|  | // on IndirectBr edges. | 
|  | for (User *Usr : GEPIOp->users()) { | 
|  | if (Usr == GEPI) continue; | 
|  | // Check if Usr is an Instruction. If not, give up. | 
|  | if (!isa<Instruction>(Usr)) | 
|  | return false; | 
|  | auto *UI = cast<Instruction>(Usr); | 
|  | // Check if Usr in the same block as GEPIOp, which is fine, skip. | 
|  | if (UI->getParent() == SrcBlock) | 
|  | continue; | 
|  | // Check if Usr is a GEP. If not, give up. | 
|  | if (!isa<GetElementPtrInst>(Usr)) | 
|  | return false; | 
|  | auto *UGEPI = cast<GetElementPtrInst>(Usr); | 
|  | // Check if UGEPI is a simple gep with a single constant index and GEPIOp is | 
|  | // the pointer operand to it. If so, record it in the vector. If not, give | 
|  | // up. | 
|  | if (!GEPSequentialConstIndexed(UGEPI)) | 
|  | return false; | 
|  | if (UGEPI->getOperand(0) != GEPIOp) | 
|  | return false; | 
|  | if (GEPIIdx->getType() != | 
|  | cast<ConstantInt>(UGEPI->getOperand(1))->getType()) | 
|  | return false; | 
|  | ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); | 
|  | if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) | 
|  | > TargetTransformInfo::TCC_Basic) | 
|  | return false; | 
|  | UGEPIs.push_back(UGEPI); | 
|  | } | 
|  | if (UGEPIs.size() == 0) | 
|  | return false; | 
|  | // Check the materializing cost of (Uidx-Idx). | 
|  | for (GetElementPtrInst *UGEPI : UGEPIs) { | 
|  | ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); | 
|  | APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); | 
|  | unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); | 
|  | if (ImmCost > TargetTransformInfo::TCC_Basic) | 
|  | return false; | 
|  | } | 
|  | // Now unmerge between GEPI and UGEPIs. | 
|  | for (GetElementPtrInst *UGEPI : UGEPIs) { | 
|  | UGEPI->setOperand(0, GEPI); | 
|  | ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); | 
|  | Constant *NewUGEPIIdx = | 
|  | ConstantInt::get(GEPIIdx->getType(), | 
|  | UGEPIIdx->getValue() - GEPIIdx->getValue()); | 
|  | UGEPI->setOperand(1, NewUGEPIIdx); | 
|  | // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not | 
|  | // inbounds to avoid UB. | 
|  | if (!GEPI->isInBounds()) { | 
|  | UGEPI->setIsInBounds(false); | 
|  | } | 
|  | } | 
|  | // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not | 
|  | // alive on IndirectBr edges). | 
|  | assert(find_if(GEPIOp->users(), [&](User *Usr) { | 
|  | return cast<Instruction>(Usr)->getParent() != SrcBlock; | 
|  | }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { | 
|  | // Bail out if we inserted the instruction to prevent optimizations from | 
|  | // stepping on each other's toes. | 
|  | if (InsertedInsts.count(I)) | 
|  | return false; | 
|  |  | 
|  | if (PHINode *P = dyn_cast<PHINode>(I)) { | 
|  | // It is possible for very late stage optimizations (such as SimplifyCFG) | 
|  | // to introduce PHI nodes too late to be cleaned up.  If we detect such a | 
|  | // trivial PHI, go ahead and zap it here. | 
|  | if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { | 
|  | P->replaceAllUsesWith(V); | 
|  | P->eraseFromParent(); | 
|  | ++NumPHIsElim; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CastInst *CI = dyn_cast<CastInst>(I)) { | 
|  | // If the source of the cast is a constant, then this should have | 
|  | // already been constant folded.  The only reason NOT to constant fold | 
|  | // it is if something (e.g. LSR) was careful to place the constant | 
|  | // evaluation in a block other than then one that uses it (e.g. to hoist | 
|  | // the address of globals out of a loop).  If this is the case, we don't | 
|  | // want to forward-subst the cast. | 
|  | if (isa<Constant>(CI->getOperand(0))) | 
|  | return false; | 
|  |  | 
|  | if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) | 
|  | return true; | 
|  |  | 
|  | if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { | 
|  | /// Sink a zext or sext into its user blocks if the target type doesn't | 
|  | /// fit in one register | 
|  | if (TLI && | 
|  | TLI->getTypeAction(CI->getContext(), | 
|  | TLI->getValueType(*DL, CI->getType())) == | 
|  | TargetLowering::TypeExpandInteger) { | 
|  | return SinkCast(CI); | 
|  | } else { | 
|  | bool MadeChange = optimizeExt(I); | 
|  | return MadeChange | optimizeExtUses(I); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CmpInst *CI = dyn_cast<CmpInst>(I)) | 
|  | if (TLI && optimizeCmpExpression(CI, *TLI, *DL)) | 
|  | return true; | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); | 
|  | if (TLI) { | 
|  | bool Modified = optimizeLoadExt(LI); | 
|  | unsigned AS = LI->getPointerAddressSpace(); | 
|  | Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); | 
|  | return Modified; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(I)) { | 
|  | if (TLI && splitMergedValStore(*SI, *DL, *TLI)) | 
|  | return true; | 
|  | SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); | 
|  | if (TLI) { | 
|  | unsigned AS = SI->getPointerAddressSpace(); | 
|  | return optimizeMemoryInst(I, SI->getOperand(1), | 
|  | SI->getOperand(0)->getType(), AS); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { | 
|  | unsigned AS = RMW->getPointerAddressSpace(); | 
|  | return optimizeMemoryInst(I, RMW->getPointerOperand(), | 
|  | RMW->getType(), AS); | 
|  | } | 
|  |  | 
|  | if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { | 
|  | unsigned AS = CmpX->getPointerAddressSpace(); | 
|  | return optimizeMemoryInst(I, CmpX->getPointerOperand(), | 
|  | CmpX->getCompareOperand()->getType(), AS); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); | 
|  |  | 
|  | if (BinOp && (BinOp->getOpcode() == Instruction::And) && | 
|  | EnableAndCmpSinking && TLI) | 
|  | return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); | 
|  |  | 
|  | if (BinOp && (BinOp->getOpcode() == Instruction::AShr || | 
|  | BinOp->getOpcode() == Instruction::LShr)) { | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); | 
|  | if (TLI && CI && TLI->hasExtractBitsInsn()) | 
|  | return OptimizeExtractBits(BinOp, CI, *TLI, *DL); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { | 
|  | if (GEPI->hasAllZeroIndices()) { | 
|  | /// The GEP operand must be a pointer, so must its result -> BitCast | 
|  | Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), | 
|  | GEPI->getName(), GEPI); | 
|  | NC->setDebugLoc(GEPI->getDebugLoc()); | 
|  | GEPI->replaceAllUsesWith(NC); | 
|  | GEPI->eraseFromParent(); | 
|  | ++NumGEPsElim; | 
|  | optimizeInst(NC, ModifiedDT); | 
|  | return true; | 
|  | } | 
|  | if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CallInst *CI = dyn_cast<CallInst>(I)) | 
|  | return optimizeCallInst(CI, ModifiedDT); | 
|  |  | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(I)) | 
|  | return optimizeSelectInst(SI); | 
|  |  | 
|  | if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) | 
|  | return optimizeShuffleVectorInst(SVI); | 
|  |  | 
|  | if (auto *Switch = dyn_cast<SwitchInst>(I)) | 
|  | return optimizeSwitchInst(Switch); | 
|  |  | 
|  | if (isa<ExtractElementInst>(I)) | 
|  | return optimizeExtractElementInst(I); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Given an OR instruction, check to see if this is a bitreverse | 
|  | /// idiom. If so, insert the new intrinsic and return true. | 
|  | static bool makeBitReverse(Instruction &I, const DataLayout &DL, | 
|  | const TargetLowering &TLI) { | 
|  | if (!I.getType()->isIntegerTy() || | 
|  | !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, | 
|  | TLI.getValueType(DL, I.getType(), true))) | 
|  | return false; | 
|  |  | 
|  | SmallVector<Instruction*, 4> Insts; | 
|  | if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) | 
|  | return false; | 
|  | Instruction *LastInst = Insts.back(); | 
|  | I.replaceAllUsesWith(LastInst); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(&I); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // In this pass we look for GEP and cast instructions that are used | 
|  | // across basic blocks and rewrite them to improve basic-block-at-a-time | 
|  | // selection. | 
|  | bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { | 
|  | SunkAddrs.clear(); | 
|  | bool MadeChange = false; | 
|  |  | 
|  | CurInstIterator = BB.begin(); | 
|  | while (CurInstIterator != BB.end()) { | 
|  | MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); | 
|  | if (ModifiedDT) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MadeBitReverse = true; | 
|  | while (TLI && MadeBitReverse) { | 
|  | MadeBitReverse = false; | 
|  | for (auto &I : reverse(BB)) { | 
|  | if (makeBitReverse(I, *DL, *TLI)) { | 
|  | MadeBitReverse = MadeChange = true; | 
|  | ModifiedDT = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | MadeChange |= dupRetToEnableTailCallOpts(&BB); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | // llvm.dbg.value is far away from the value then iSel may not be able | 
|  | // handle it properly. iSel will drop llvm.dbg.value if it can not | 
|  | // find a node corresponding to the value. | 
|  | bool CodeGenPrepare::placeDbgValues(Function &F) { | 
|  | bool MadeChange = false; | 
|  | for (BasicBlock &BB : F) { | 
|  | Instruction *PrevNonDbgInst = nullptr; | 
|  | for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { | 
|  | Instruction *Insn = &*BI++; | 
|  | DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); | 
|  | // Leave dbg.values that refer to an alloca alone. These | 
|  | // intrinsics describe the address of a variable (= the alloca) | 
|  | // being taken.  They should not be moved next to the alloca | 
|  | // (and to the beginning of the scope), but rather stay close to | 
|  | // where said address is used. | 
|  | if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { | 
|  | PrevNonDbgInst = Insn; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); | 
|  | if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { | 
|  | // If VI is a phi in a block with an EHPad terminator, we can't insert | 
|  | // after it. | 
|  | if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) | 
|  | continue; | 
|  | LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" | 
|  | << *DVI << ' ' << *VI); | 
|  | DVI->removeFromParent(); | 
|  | if (isa<PHINode>(VI)) | 
|  | DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); | 
|  | else | 
|  | DVI->insertAfter(VI); | 
|  | MadeChange = true; | 
|  | ++NumDbgValueMoved; | 
|  | } | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// Scale down both weights to fit into uint32_t. | 
|  | static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { | 
|  | uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; | 
|  | uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; | 
|  | NewTrue = NewTrue / Scale; | 
|  | NewFalse = NewFalse / Scale; | 
|  | } | 
|  |  | 
|  | /// Some targets prefer to split a conditional branch like: | 
|  | /// \code | 
|  | ///   %0 = icmp ne i32 %a, 0 | 
|  | ///   %1 = icmp ne i32 %b, 0 | 
|  | ///   %or.cond = or i1 %0, %1 | 
|  | ///   br i1 %or.cond, label %TrueBB, label %FalseBB | 
|  | /// \endcode | 
|  | /// into multiple branch instructions like: | 
|  | /// \code | 
|  | ///   bb1: | 
|  | ///     %0 = icmp ne i32 %a, 0 | 
|  | ///     br i1 %0, label %TrueBB, label %bb2 | 
|  | ///   bb2: | 
|  | ///     %1 = icmp ne i32 %b, 0 | 
|  | ///     br i1 %1, label %TrueBB, label %FalseBB | 
|  | /// \endcode | 
|  | /// This usually allows instruction selection to do even further optimizations | 
|  | /// and combine the compare with the branch instruction. Currently this is | 
|  | /// applied for targets which have "cheap" jump instructions. | 
|  | /// | 
|  | /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. | 
|  | /// | 
|  | bool CodeGenPrepare::splitBranchCondition(Function &F) { | 
|  | if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) | 
|  | return false; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (auto &BB : F) { | 
|  | // Does this BB end with the following? | 
|  | //   %cond1 = icmp|fcmp|binary instruction ... | 
|  | //   %cond2 = icmp|fcmp|binary instruction ... | 
|  | //   %cond.or = or|and i1 %cond1, cond2 | 
|  | //   br i1 %cond.or label %dest1, label %dest2" | 
|  | BinaryOperator *LogicOp; | 
|  | BasicBlock *TBB, *FBB; | 
|  | if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) | 
|  | continue; | 
|  |  | 
|  | auto *Br1 = cast<BranchInst>(BB.getTerminator()); | 
|  | if (Br1->getMetadata(LLVMContext::MD_unpredictable)) | 
|  | continue; | 
|  |  | 
|  | unsigned Opc; | 
|  | Value *Cond1, *Cond2; | 
|  | if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), | 
|  | m_OneUse(m_Value(Cond2))))) | 
|  | Opc = Instruction::And; | 
|  | else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), | 
|  | m_OneUse(m_Value(Cond2))))) | 
|  | Opc = Instruction::Or; | 
|  | else | 
|  | continue; | 
|  |  | 
|  | if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || | 
|  | !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   ) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); | 
|  |  | 
|  | // Create a new BB. | 
|  | auto TmpBB = | 
|  | BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", | 
|  | BB.getParent(), BB.getNextNode()); | 
|  |  | 
|  | // Update original basic block by using the first condition directly by the | 
|  | // branch instruction and removing the no longer needed and/or instruction. | 
|  | Br1->setCondition(Cond1); | 
|  | LogicOp->eraseFromParent(); | 
|  |  | 
|  | // Depending on the condition we have to either replace the true or the | 
|  | // false successor of the original branch instruction. | 
|  | if (Opc == Instruction::And) | 
|  | Br1->setSuccessor(0, TmpBB); | 
|  | else | 
|  | Br1->setSuccessor(1, TmpBB); | 
|  |  | 
|  | // Fill in the new basic block. | 
|  | auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); | 
|  | if (auto *I = dyn_cast<Instruction>(Cond2)) { | 
|  | I->removeFromParent(); | 
|  | I->insertBefore(Br2); | 
|  | } | 
|  |  | 
|  | // Update PHI nodes in both successors. The original BB needs to be | 
|  | // replaced in one successor's PHI nodes, because the branch comes now from | 
|  | // the newly generated BB (NewBB). In the other successor we need to add one | 
|  | // incoming edge to the PHI nodes, because both branch instructions target | 
|  | // now the same successor. Depending on the original branch condition | 
|  | // (and/or) we have to swap the successors (TrueDest, FalseDest), so that | 
|  | // we perform the correct update for the PHI nodes. | 
|  | // This doesn't change the successor order of the just created branch | 
|  | // instruction (or any other instruction). | 
|  | if (Opc == Instruction::Or) | 
|  | std::swap(TBB, FBB); | 
|  |  | 
|  | // Replace the old BB with the new BB. | 
|  | for (PHINode &PN : TBB->phis()) { | 
|  | int i; | 
|  | while ((i = PN.getBasicBlockIndex(&BB)) >= 0) | 
|  | PN.setIncomingBlock(i, TmpBB); | 
|  | } | 
|  |  | 
|  | // Add another incoming edge form the new BB. | 
|  | for (PHINode &PN : FBB->phis()) { | 
|  | auto *Val = PN.getIncomingValueForBlock(&BB); | 
|  | PN.addIncoming(Val, TmpBB); | 
|  | } | 
|  |  | 
|  | // Update the branch weights (from SelectionDAGBuilder:: | 
|  | // FindMergedConditions). | 
|  | if (Opc == Instruction::Or) { | 
|  | // Codegen X | Y as: | 
|  | // BB1: | 
|  | //   jmp_if_X TBB | 
|  | //   jmp TmpBB | 
|  | // TmpBB: | 
|  | //   jmp_if_Y TBB | 
|  | //   jmp FBB | 
|  | // | 
|  |  | 
|  | // We have flexibility in setting Prob for BB1 and Prob for NewBB. | 
|  | // The requirement is that | 
|  | //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) | 
|  | //     = TrueProb for original BB. | 
|  | // Assuming the original weights are A and B, one choice is to set BB1's | 
|  | // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice | 
|  | // assumes that | 
|  | //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. | 
|  | // Another choice is to assume TrueProb for BB1 equals to TrueProb for | 
|  | // TmpBB, but the math is more complicated. | 
|  | uint64_t TrueWeight, FalseWeight; | 
|  | if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { | 
|  | uint64_t NewTrueWeight = TrueWeight; | 
|  | uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; | 
|  | scaleWeights(NewTrueWeight, NewFalseWeight); | 
|  | Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) | 
|  | .createBranchWeights(TrueWeight, FalseWeight)); | 
|  |  | 
|  | NewTrueWeight = TrueWeight; | 
|  | NewFalseWeight = 2 * FalseWeight; | 
|  | scaleWeights(NewTrueWeight, NewFalseWeight); | 
|  | Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) | 
|  | .createBranchWeights(TrueWeight, FalseWeight)); | 
|  | } | 
|  | } else { | 
|  | // Codegen X & Y as: | 
|  | // BB1: | 
|  | //   jmp_if_X TmpBB | 
|  | //   jmp FBB | 
|  | // TmpBB: | 
|  | //   jmp_if_Y TBB | 
|  | //   jmp FBB | 
|  | // | 
|  | //  This requires creation of TmpBB after CurBB. | 
|  |  | 
|  | // We have flexibility in setting Prob for BB1 and Prob for TmpBB. | 
|  | // The requirement is that | 
|  | //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) | 
|  | //     = FalseProb for original BB. | 
|  | // Assuming the original weights are A and B, one choice is to set BB1's | 
|  | // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice | 
|  | // assumes that | 
|  | //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. | 
|  | uint64_t TrueWeight, FalseWeight; | 
|  | if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { | 
|  | uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; | 
|  | uint64_t NewFalseWeight = FalseWeight; | 
|  | scaleWeights(NewTrueWeight, NewFalseWeight); | 
|  | Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) | 
|  | .createBranchWeights(TrueWeight, FalseWeight)); | 
|  |  | 
|  | NewTrueWeight = 2 * TrueWeight; | 
|  | NewFalseWeight = FalseWeight; | 
|  | scaleWeights(NewTrueWeight, NewFalseWeight); | 
|  | Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) | 
|  | .createBranchWeights(TrueWeight, FalseWeight)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note: No point in getting fancy here, since the DT info is never | 
|  | // available to CodeGenPrepare. | 
|  | ModifiedDT = true; | 
|  |  | 
|  | MadeChange = true; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); | 
|  | TmpBB->dump()); | 
|  | } | 
|  | return MadeChange; | 
|  | } |