|  | //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines an instruction selector for the Hexagon target. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Hexagon.h" | 
|  | #include "HexagonISelDAGToDAG.h" | 
|  | #include "HexagonISelLowering.h" | 
|  | #include "HexagonMachineFunctionInfo.h" | 
|  | #include "HexagonTargetMachine.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "hexagon-isel" | 
|  |  | 
|  | static | 
|  | cl::opt<bool> | 
|  | EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true), | 
|  | cl::desc("Rebalance address calculation trees to improve " | 
|  | "instruction selection")); | 
|  |  | 
|  | // Rebalance only if this allows e.g. combining a GA with an offset or | 
|  | // factoring out a shift. | 
|  | static | 
|  | cl::opt<bool> | 
|  | RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false), | 
|  | cl::desc("Rebalance address tree only if this allows optimizations")); | 
|  |  | 
|  | static | 
|  | cl::opt<bool> | 
|  | RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden, | 
|  | cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced")); | 
|  |  | 
|  | static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden, | 
|  | cl::init(true), cl::desc("Enable checking of SDNode's single-use status")); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Instruction Selector Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define GET_DAGISEL_BODY HexagonDAGToDAGISel | 
|  | #include "HexagonGenDAGISel.inc" | 
|  |  | 
|  | /// createHexagonISelDag - This pass converts a legalized DAG into a | 
|  | /// Hexagon-specific DAG, ready for instruction scheduling. | 
|  | /// | 
|  | namespace llvm { | 
|  | FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | return new HexagonDAGToDAGISel(TM, OptLevel); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) { | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Base = LD->getBasePtr(); | 
|  | SDValue Offset = LD->getOffset(); | 
|  | int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); | 
|  | EVT LoadedVT = LD->getMemoryVT(); | 
|  | unsigned Opcode = 0; | 
|  |  | 
|  | // Check for zero extended loads. Treat any-extend loads as zero extended | 
|  | // loads. | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD); | 
|  | bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc); | 
|  |  | 
|  | assert(LoadedVT.isSimple()); | 
|  | switch (LoadedVT.getSimpleVT().SimpleTy) { | 
|  | case MVT::i8: | 
|  | if (IsZeroExt) | 
|  | Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io; | 
|  | else | 
|  | Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io; | 
|  | break; | 
|  | case MVT::i16: | 
|  | if (IsZeroExt) | 
|  | Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io; | 
|  | else | 
|  | Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io; | 
|  | break; | 
|  | case MVT::i32: | 
|  | case MVT::v2i16: | 
|  | case MVT::v4i8: | 
|  | Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io; | 
|  | break; | 
|  | case MVT::i64: | 
|  | case MVT::v2i32: | 
|  | case MVT::v4i16: | 
|  | case MVT::v8i8: | 
|  | Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io; | 
|  | break; | 
|  | case MVT::v64i8: | 
|  | case MVT::v32i16: | 
|  | case MVT::v16i32: | 
|  | case MVT::v8i64: | 
|  | case MVT::v128i8: | 
|  | case MVT::v64i16: | 
|  | case MVT::v32i32: | 
|  | case MVT::v16i64: | 
|  | if (isAlignedMemNode(LD)) { | 
|  | if (LD->isNonTemporal()) | 
|  | Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai; | 
|  | else | 
|  | Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai; | 
|  | } else { | 
|  | Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected memory type in indexed load"); | 
|  | } | 
|  |  | 
|  | SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = LD->getMemOperand(); | 
|  |  | 
|  | auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl) | 
|  | -> MachineSDNode* { | 
|  | if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) { | 
|  | SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); | 
|  | return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64, | 
|  | Zero, SDValue(N, 0)); | 
|  | } | 
|  | if (ExtType == ISD::SEXTLOAD) | 
|  | return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64, | 
|  | SDValue(N, 0)); | 
|  | return N; | 
|  | }; | 
|  |  | 
|  | //                  Loaded value   Next address   Chain | 
|  | SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) }; | 
|  | SDValue To[3]; | 
|  |  | 
|  | EVT ValueVT = LD->getValueType(0); | 
|  | if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) { | 
|  | // A load extending to i64 will actually produce i32, which will then | 
|  | // need to be extended to i64. | 
|  | assert(LoadedVT.getSizeInBits() <= 32); | 
|  | ValueVT = MVT::i32; | 
|  | } | 
|  |  | 
|  | if (IsValidInc) { | 
|  | MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, | 
|  | MVT::i32, MVT::Other, Base, | 
|  | IncV, Chain); | 
|  | L->setMemRefs(MemOp, MemOp+1); | 
|  | To[1] = SDValue(L, 1); // Next address. | 
|  | To[2] = SDValue(L, 2); // Chain. | 
|  | // Handle special case for extension to i64. | 
|  | if (LD->getValueType(0) == MVT::i64) | 
|  | L = getExt64(L, dl); | 
|  | To[0] = SDValue(L, 0); // Loaded (extended) value. | 
|  | } else { | 
|  | SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); | 
|  | MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other, | 
|  | Base, Zero, Chain); | 
|  | L->setMemRefs(MemOp, MemOp+1); | 
|  | To[2] = SDValue(L, 1); // Chain. | 
|  | MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, | 
|  | Base, IncV); | 
|  | To[1] = SDValue(A, 0); // Next address. | 
|  | // Handle special case for extension to i64. | 
|  | if (LD->getValueType(0) == MVT::i64) | 
|  | L = getExt64(L, dl); | 
|  | To[0] = SDValue(L, 0); // Loaded (extended) value. | 
|  | } | 
|  | ReplaceUses(From, To, 3); | 
|  | CurDAG->RemoveDeadNode(LD); | 
|  | } | 
|  |  | 
|  | MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) { | 
|  | if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) | 
|  | return nullptr; | 
|  |  | 
|  | SDLoc dl(IntN); | 
|  | unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); | 
|  |  | 
|  | static std::map<unsigned,unsigned> LoadPciMap = { | 
|  | { Intrinsic::hexagon_circ_ldb,  Hexagon::L2_loadrb_pci  }, | 
|  | { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci }, | 
|  | { Intrinsic::hexagon_circ_ldh,  Hexagon::L2_loadrh_pci  }, | 
|  | { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci }, | 
|  | { Intrinsic::hexagon_circ_ldw,  Hexagon::L2_loadri_pci  }, | 
|  | { Intrinsic::hexagon_circ_ldd,  Hexagon::L2_loadrd_pci  }, | 
|  | }; | 
|  | auto FLC = LoadPciMap.find(IntNo); | 
|  | if (FLC != LoadPciMap.end()) { | 
|  | EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32; | 
|  | EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; | 
|  | // Operands: { Base, Increment, Modifier, Chain } | 
|  | auto Inc = cast<ConstantSDNode>(IntN->getOperand(5)); | 
|  | SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32); | 
|  | MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys, | 
|  | { IntN->getOperand(2), I, IntN->getOperand(4), | 
|  | IntN->getOperand(0) }); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, | 
|  | SDNode *IntN) { | 
|  | // The "LoadN" is just a machine load instruction. The intrinsic also | 
|  | // involves storing it. Generate an appropriate store to the location | 
|  | // given in the intrinsic's operand(3). | 
|  | uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags; | 
|  | unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) & | 
|  | HexagonII::MemAccesSizeMask; | 
|  | unsigned Size = 1U << (SizeBits-1); | 
|  |  | 
|  | SDLoc dl(IntN); | 
|  | MachinePointerInfo PI; | 
|  | SDValue TS; | 
|  | SDValue Loc = IntN->getOperand(3); | 
|  |  | 
|  | if (Size >= 4) | 
|  | TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI, | 
|  | Size); | 
|  | else | 
|  | TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, | 
|  | PI, MVT::getIntegerVT(Size * 8), Size); | 
|  |  | 
|  | SDNode *StoreN; | 
|  | { | 
|  | HandleSDNode Handle(TS); | 
|  | SelectStore(TS.getNode()); | 
|  | StoreN = Handle.getValue().getNode(); | 
|  | } | 
|  |  | 
|  | // Load's results are { Loaded value, Updated pointer, Chain } | 
|  | ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1)); | 
|  | ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0)); | 
|  | return StoreN; | 
|  | } | 
|  |  | 
|  | bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) { | 
|  | // The intrinsics for load circ/brev perform two operations: | 
|  | // 1. Load a value V from the specified location, using the addressing | 
|  | //    mode corresponding to the intrinsic. | 
|  | // 2. Store V into a specified location. This location is typically a | 
|  | //    local, temporary object. | 
|  | // In many cases, the program using these intrinsics will immediately | 
|  | // load V again from the local object. In those cases, when certain | 
|  | // conditions are met, the last load can be removed. | 
|  | // This function identifies and optimizes this pattern. If the pattern | 
|  | // cannot be optimized, it returns nullptr, which will cause the load | 
|  | // to be selected separately from the intrinsic (which will be handled | 
|  | // in SelectIntrinsicWChain). | 
|  |  | 
|  | SDValue Ch = N->getOperand(0); | 
|  | SDValue Loc = N->getOperand(1); | 
|  |  | 
|  | // Assume that the load and the intrinsic are connected directly with a | 
|  | // chain: | 
|  | //   t1: i32,ch = int.load ..., ..., ..., Loc, ...    // <-- C | 
|  | //   t2: i32,ch = load t1:1, Loc, ... | 
|  | SDNode *C = Ch.getNode(); | 
|  |  | 
|  | if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN) | 
|  | return false; | 
|  |  | 
|  | // The second load can only be eliminated if its extension type matches | 
|  | // that of the load instruction corresponding to the intrinsic. The user | 
|  | // can provide an address of an unsigned variable to store the result of | 
|  | // a sign-extending intrinsic into (or the other way around). | 
|  | ISD::LoadExtType IntExt; | 
|  | switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) { | 
|  | case Intrinsic::hexagon_circ_ldub: | 
|  | case Intrinsic::hexagon_circ_lduh: | 
|  | IntExt = ISD::ZEXTLOAD; | 
|  | break; | 
|  | case Intrinsic::hexagon_circ_ldw: | 
|  | case Intrinsic::hexagon_circ_ldd: | 
|  | IntExt = ISD::NON_EXTLOAD; | 
|  | break; | 
|  | default: | 
|  | IntExt = ISD::SEXTLOAD; | 
|  | break; | 
|  | } | 
|  | if (N->getExtensionType() != IntExt) | 
|  | return false; | 
|  |  | 
|  | // Make sure the target location for the loaded value in the load intrinsic | 
|  | // is the location from which LD (or N) is loading. | 
|  | if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode()) | 
|  | return false; | 
|  |  | 
|  | if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) { | 
|  | SDNode *S = StoreInstrForLoadIntrinsic(L, C); | 
|  | SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) }; | 
|  | SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) }; | 
|  | ReplaceUses(F, T, array_lengthof(T)); | 
|  | // This transformation will leave the intrinsic dead. If it remains in | 
|  | // the DAG, the selection code will see it again, but without the load, | 
|  | // and it will generate a store that is normally required for it. | 
|  | CurDAG->RemoveDeadNode(C); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Convert the bit-reverse load intrinsic to appropriate target instruction. | 
|  | bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) { | 
|  | if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) | 
|  | return false; | 
|  |  | 
|  | const SDLoc &dl(IntN); | 
|  | unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); | 
|  |  | 
|  | static const std::map<unsigned, unsigned> LoadBrevMap = { | 
|  | { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr }, | 
|  | { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr }, | 
|  | { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr }, | 
|  | { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr }, | 
|  | { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr }, | 
|  | { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr } | 
|  | }; | 
|  | auto FLI = LoadBrevMap.find(IntNo); | 
|  | if (FLI != LoadBrevMap.end()) { | 
|  | EVT ValTy = | 
|  | (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32; | 
|  | EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; | 
|  | // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr, | 
|  | // modifier}. | 
|  | // Operands of target instruction: { Base, Modifier, Chain }. | 
|  | MachineSDNode *Res = CurDAG->getMachineNode( | 
|  | FLI->second, dl, RTys, | 
|  | {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)}); | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemIntrinsicSDNode>(IntN)->getMemOperand(); | 
|  | Res->setMemRefs(MemOp, MemOp + 1); | 
|  |  | 
|  | ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); | 
|  | ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); | 
|  | ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2)); | 
|  | CurDAG->RemoveDeadNode(IntN); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Generate a machine instruction node for the new circlar buffer intrinsics. | 
|  | /// The new versions use a CSx register instead of the K field. | 
|  | bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) { | 
|  | if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) | 
|  | return false; | 
|  |  | 
|  | SDLoc DL(IntN); | 
|  | unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); | 
|  | SmallVector<SDValue, 7> Ops; | 
|  |  | 
|  | static std::map<unsigned,unsigned> LoadNPcMap = { | 
|  | { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci }, | 
|  | { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci }, | 
|  | { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci }, | 
|  | { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci }, | 
|  | { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci }, | 
|  | { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci }, | 
|  | { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr }, | 
|  | { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr }, | 
|  | { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr }, | 
|  | { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr }, | 
|  | { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr }, | 
|  | { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr } | 
|  | }; | 
|  | auto FLI = LoadNPcMap.find (IntNo); | 
|  | if (FLI != LoadNPcMap.end()) { | 
|  | EVT ValTy = MVT::i32; | 
|  | if (IntNo == Intrinsic::hexagon_L2_loadrd_pci || | 
|  | IntNo == Intrinsic::hexagon_L2_loadrd_pcr) | 
|  | ValTy = MVT::i64; | 
|  | EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; | 
|  | // Handle load.*_pci case which has 6 operands. | 
|  | if (IntN->getNumOperands() == 6) { | 
|  | auto Inc = cast<ConstantSDNode>(IntN->getOperand(3)); | 
|  | SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32); | 
|  | // Operands: { Base, Increment, Modifier, Start, Chain }. | 
|  | Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5), | 
|  | IntN->getOperand(0) }; | 
|  | } else | 
|  | // Handle load.*_pcr case which has 5 operands. | 
|  | // Operands: { Base, Modifier, Start, Chain }. | 
|  | Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4), | 
|  | IntN->getOperand(0) }; | 
|  | MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops); | 
|  | ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); | 
|  | ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); | 
|  | ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2)); | 
|  | CurDAG->RemoveDeadNode(IntN); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static std::map<unsigned,unsigned> StoreNPcMap = { | 
|  | { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci }, | 
|  | { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci }, | 
|  | { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci }, | 
|  | { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci }, | 
|  | { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci }, | 
|  | { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr }, | 
|  | { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr }, | 
|  | { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr }, | 
|  | { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr }, | 
|  | { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr } | 
|  | }; | 
|  | auto FSI = StoreNPcMap.find (IntNo); | 
|  | if (FSI != StoreNPcMap.end()) { | 
|  | EVT RTys[] = { MVT::i32, MVT::Other }; | 
|  | // Handle store.*_pci case which has 7 operands. | 
|  | if (IntN->getNumOperands() == 7) { | 
|  | auto Inc = cast<ConstantSDNode>(IntN->getOperand(3)); | 
|  | SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32); | 
|  | // Operands: { Base, Increment, Modifier, Value, Start, Chain }. | 
|  | Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5), | 
|  | IntN->getOperand(6), IntN->getOperand(0) }; | 
|  | } else | 
|  | // Handle store.*_pcr case which has 6 operands. | 
|  | // Operands: { Base, Modifier, Value, Start, Chain }. | 
|  | Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4), | 
|  | IntN->getOperand(5), IntN->getOperand(0) }; | 
|  | MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops); | 
|  | ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); | 
|  | ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); | 
|  | CurDAG->RemoveDeadNode(IntN); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectLoad(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  |  | 
|  | // Handle indexed loads. | 
|  | ISD::MemIndexedMode AM = LD->getAddressingMode(); | 
|  | if (AM != ISD::UNINDEXED) { | 
|  | SelectIndexedLoad(LD, dl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle patterns using circ/brev load intrinsics. | 
|  | if (tryLoadOfLoadIntrinsic(LD)) | 
|  | return; | 
|  |  | 
|  | SelectCode(LD); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) { | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Base = ST->getBasePtr(); | 
|  | SDValue Offset = ST->getOffset(); | 
|  | SDValue Value = ST->getValue(); | 
|  | // Get the constant value. | 
|  | int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); | 
|  | EVT StoredVT = ST->getMemoryVT(); | 
|  | EVT ValueVT = Value.getValueType(); | 
|  |  | 
|  | bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc); | 
|  | unsigned Opcode = 0; | 
|  |  | 
|  | assert(StoredVT.isSimple()); | 
|  | switch (StoredVT.getSimpleVT().SimpleTy) { | 
|  | case MVT::i8: | 
|  | Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io; | 
|  | break; | 
|  | case MVT::i16: | 
|  | Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io; | 
|  | break; | 
|  | case MVT::i32: | 
|  | case MVT::v2i16: | 
|  | case MVT::v4i8: | 
|  | Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io; | 
|  | break; | 
|  | case MVT::i64: | 
|  | case MVT::v2i32: | 
|  | case MVT::v4i16: | 
|  | case MVT::v8i8: | 
|  | Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io; | 
|  | break; | 
|  | case MVT::v64i8: | 
|  | case MVT::v32i16: | 
|  | case MVT::v16i32: | 
|  | case MVT::v8i64: | 
|  | case MVT::v128i8: | 
|  | case MVT::v64i16: | 
|  | case MVT::v32i32: | 
|  | case MVT::v16i64: | 
|  | if (isAlignedMemNode(ST)) { | 
|  | if (ST->isNonTemporal()) | 
|  | Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai; | 
|  | else | 
|  | Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai; | 
|  | } else { | 
|  | Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected memory type in indexed store"); | 
|  | } | 
|  |  | 
|  | if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) { | 
|  | assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store"); | 
|  | Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, | 
|  | dl, MVT::i32, Value); | 
|  | } | 
|  |  | 
|  | SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = ST->getMemOperand(); | 
|  |  | 
|  | //                  Next address   Chain | 
|  | SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) }; | 
|  | SDValue To[2]; | 
|  |  | 
|  | if (IsValidInc) { | 
|  | // Build post increment store. | 
|  | SDValue Ops[] = { Base, IncV, Value, Chain }; | 
|  | MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other, | 
|  | Ops); | 
|  | S->setMemRefs(MemOp, MemOp + 1); | 
|  | To[0] = SDValue(S, 0); | 
|  | To[1] = SDValue(S, 1); | 
|  | } else { | 
|  | SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); | 
|  | SDValue Ops[] = { Base, Zero, Value, Chain }; | 
|  | MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); | 
|  | S->setMemRefs(MemOp, MemOp + 1); | 
|  | To[1] = SDValue(S, 0); | 
|  | MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, | 
|  | Base, IncV); | 
|  | To[0] = SDValue(A, 0); | 
|  | } | 
|  |  | 
|  | ReplaceUses(From, To, 2); | 
|  | CurDAG->RemoveDeadNode(ST); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectStore(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  | StoreSDNode *ST = cast<StoreSDNode>(N); | 
|  |  | 
|  | // Handle indexed stores. | 
|  | ISD::MemIndexedMode AM = ST->getAddressingMode(); | 
|  | if (AM != ISD::UNINDEXED) { | 
|  | SelectIndexedStore(ST, dl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SelectCode(ST); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectSHL(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  | SDValue Shl_0 = N->getOperand(0); | 
|  | SDValue Shl_1 = N->getOperand(1); | 
|  |  | 
|  | auto Default = [this,N] () -> void { SelectCode(N); }; | 
|  |  | 
|  | if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant) | 
|  | return Default(); | 
|  |  | 
|  | // RHS is const. | 
|  | int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue(); | 
|  |  | 
|  | if (Shl_0.getOpcode() == ISD::MUL) { | 
|  | SDValue Mul_0 = Shl_0.getOperand(0); // Val | 
|  | SDValue Mul_1 = Shl_0.getOperand(1); // Const | 
|  | // RHS of mul is const. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) { | 
|  | int32_t ValConst = C->getSExtValue() << ShlConst; | 
|  | if (isInt<9>(ValConst)) { | 
|  | SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32); | 
|  | SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, | 
|  | MVT::i32, Mul_0, Val); | 
|  | ReplaceNode(N, Result); | 
|  | return; | 
|  | } | 
|  | } | 
|  | return Default(); | 
|  | } | 
|  |  | 
|  | if (Shl_0.getOpcode() == ISD::SUB) { | 
|  | SDValue Sub_0 = Shl_0.getOperand(0); // Const 0 | 
|  | SDValue Sub_1 = Shl_0.getOperand(1); // Val | 
|  | if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) { | 
|  | if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL) | 
|  | return Default(); | 
|  | SDValue Shl2_0 = Sub_1.getOperand(0); // Val | 
|  | SDValue Shl2_1 = Sub_1.getOperand(1); // Const | 
|  | if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) { | 
|  | int32_t ValConst = 1 << (ShlConst + C2->getSExtValue()); | 
|  | if (isInt<9>(-ValConst)) { | 
|  | SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32); | 
|  | SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, | 
|  | MVT::i32, Shl2_0, Val); | 
|  | ReplaceNode(N, Result); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Default(); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Handling intrinsics for circular load and bitreverse load. | 
|  | // | 
|  | void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) { | 
|  | if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) { | 
|  | StoreInstrForLoadIntrinsic(L, N); | 
|  | CurDAG->RemoveDeadNode(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle bit-reverse load intrinsics. | 
|  | if (SelectBrevLdIntrinsic(N)) | 
|  | return; | 
|  |  | 
|  | if (SelectNewCircIntrinsic(N)) | 
|  | return; | 
|  |  | 
|  | unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | if (IntNo == Intrinsic::hexagon_V6_vgathermw || | 
|  | IntNo == Intrinsic::hexagon_V6_vgathermw_128B || | 
|  | IntNo == Intrinsic::hexagon_V6_vgathermh || | 
|  | IntNo == Intrinsic::hexagon_V6_vgathermh_128B || | 
|  | IntNo == Intrinsic::hexagon_V6_vgathermhw || | 
|  | IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) { | 
|  | SelectV65Gather(N); | 
|  | return; | 
|  | } | 
|  | if (IntNo == Intrinsic::hexagon_V6_vgathermwq || | 
|  | IntNo == Intrinsic::hexagon_V6_vgathermwq_128B || | 
|  | IntNo == Intrinsic::hexagon_V6_vgathermhq || | 
|  | IntNo == Intrinsic::hexagon_V6_vgathermhq_128B || | 
|  | IntNo == Intrinsic::hexagon_V6_vgathermhwq || | 
|  | IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) { | 
|  | SelectV65GatherPred(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SelectCode(N); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) { | 
|  | unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | 
|  | unsigned Bits; | 
|  | switch (IID) { | 
|  | case Intrinsic::hexagon_S2_vsplatrb: | 
|  | Bits = 8; | 
|  | break; | 
|  | case Intrinsic::hexagon_S2_vsplatrh: | 
|  | Bits = 16; | 
|  | break; | 
|  | case Intrinsic::hexagon_V6_vaddcarry: | 
|  | case Intrinsic::hexagon_V6_vaddcarry_128B: | 
|  | case Intrinsic::hexagon_V6_vsubcarry: | 
|  | case Intrinsic::hexagon_V6_vsubcarry_128B: | 
|  | SelectHVXDualOutput(N); | 
|  | return; | 
|  | default: | 
|  | SelectCode(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue V = N->getOperand(1); | 
|  | SDValue U; | 
|  | if (keepsLowBits(V, Bits, U)) { | 
|  | SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), | 
|  | N->getOperand(0), U); | 
|  | ReplaceNode(N, R.getNode()); | 
|  | SelectCode(R.getNode()); | 
|  | return; | 
|  | } | 
|  | SelectCode(N); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Map floating point constant values. | 
|  | // | 
|  | void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  | ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N); | 
|  | APInt A = CN->getValueAPF().bitcastToAPInt(); | 
|  | if (N->getValueType(0) == MVT::f32) { | 
|  | SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32); | 
|  | ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V)); | 
|  | return; | 
|  | } | 
|  | if (N->getValueType(0) == MVT::f64) { | 
|  | SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64); | 
|  | ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SelectCode(N); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Map boolean values. | 
|  | // | 
|  | void HexagonDAGToDAGISel::SelectConstant(SDNode *N) { | 
|  | if (N->getValueType(0) == MVT::i1) { | 
|  | assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1)); | 
|  | unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0) | 
|  | ? Hexagon::PS_true | 
|  | : Hexagon::PS_false; | 
|  | ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SelectCode(N); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) { | 
|  | MachineFrameInfo &MFI = MF->getFrameInfo(); | 
|  | const HexagonFrameLowering *HFI = HST->getFrameLowering(); | 
|  | int FX = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | unsigned StkA = HFI->getStackAlignment(); | 
|  | unsigned MaxA = MFI.getMaxAlignment(); | 
|  | SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32); | 
|  | SDLoc DL(N); | 
|  | SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  | SDNode *R = nullptr; | 
|  |  | 
|  | // Use PS_fi when: | 
|  | // - the object is fixed, or | 
|  | // - there are no objects with higher-than-default alignment, or | 
|  | // - there are no dynamically allocated objects. | 
|  | // Otherwise, use PS_fia. | 
|  | if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) { | 
|  | R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero); | 
|  | } else { | 
|  | auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>(); | 
|  | unsigned AR = HMFI.getStackAlignBaseVReg(); | 
|  | SDValue CH = CurDAG->getEntryNode(); | 
|  | SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero }; | 
|  | R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops); | 
|  | } | 
|  |  | 
|  | ReplaceNode(N, R); | 
|  | } | 
|  |  | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectBitcast(SDNode *N) { | 
|  | EVT SVT = N->getOperand(0).getValueType(); | 
|  | EVT DVT = N->getValueType(0); | 
|  | if (!SVT.isVector() || !DVT.isVector() || | 
|  | SVT.getVectorElementType() == MVT::i1 || | 
|  | DVT.getVectorElementType() == MVT::i1 || | 
|  | SVT.getSizeInBits() != DVT.getSizeInBits()) { | 
|  | SelectCode(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ReplaceUses(SDValue(N, 0), N->getOperand(0)); | 
|  | CurDAG->RemoveDeadNode(N); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) { | 
|  | MVT ResTy = N->getValueType(0).getSimpleVT(); | 
|  | if (HST->isHVXVectorType(ResTy, true)) | 
|  | return SelectHvxVAlign(N); | 
|  |  | 
|  | const SDLoc &dl(N); | 
|  | unsigned VecLen = ResTy.getSizeInBits(); | 
|  | if (VecLen == 32) { | 
|  | SDValue Ops[] = { | 
|  | CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), | 
|  | N->getOperand(0), | 
|  | CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), | 
|  | N->getOperand(1), | 
|  | CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) | 
|  | }; | 
|  | SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, | 
|  | MVT::i64, Ops); | 
|  |  | 
|  | // Shift right by "(Addr & 0x3) * 8" bytes. | 
|  | SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32); | 
|  | SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32); | 
|  | SDNode *C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32, | 
|  | M0, N->getOperand(2), M1); | 
|  | SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64, | 
|  | SDValue(R, 0), SDValue(C, 0)); | 
|  | SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy, | 
|  | SDValue(S, 0)); | 
|  | ReplaceNode(N, E.getNode()); | 
|  | } else { | 
|  | assert(VecLen == 64); | 
|  | SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1, | 
|  | N->getOperand(2)); | 
|  | SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy, | 
|  | N->getOperand(0), N->getOperand(1), | 
|  | SDValue(Pu,0)); | 
|  | ReplaceNode(N, VA); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) { | 
|  | const SDLoc &dl(N); | 
|  | SDValue A = N->getOperand(1); | 
|  | int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue(); | 
|  | assert(isPowerOf2_32(-Mask)); | 
|  |  | 
|  | SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32); | 
|  | SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32, | 
|  | N->getOperand(0), M); | 
|  | ReplaceNode(N, AA); | 
|  | } | 
|  |  | 
|  | // Handle these nodes here to avoid having to write patterns for all | 
|  | // combinations of input/output types. In all cases, the resulting | 
|  | // instruction is the same. | 
|  | void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) { | 
|  | SDValue Op = N->getOperand(0); | 
|  | MVT OpTy = Op.getValueType().getSimpleVT(); | 
|  | SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(), | 
|  | CurDAG->getVTList(OpTy), {Op}); | 
|  | ReplaceNode(T, Op.getNode()); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectP2D(SDNode *N) { | 
|  | MVT ResTy = N->getValueType(0).getSimpleVT(); | 
|  | SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy, | 
|  | N->getOperand(0)); | 
|  | ReplaceNode(N, T); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectD2P(SDNode *N) { | 
|  | const SDLoc &dl(N); | 
|  | MVT ResTy = N->getValueType(0).getSimpleVT(); | 
|  | SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); | 
|  | SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy, | 
|  | N->getOperand(0), Zero); | 
|  | ReplaceNode(N, T); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) { | 
|  | const SDLoc &dl(N); | 
|  | MVT ResTy = N->getValueType(0).getSimpleVT(); | 
|  |  | 
|  | SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32); | 
|  | SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C); | 
|  | SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy, | 
|  | N->getOperand(0), SDValue(R,0)); | 
|  | ReplaceNode(N, T); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) { | 
|  | const SDLoc &dl(N); | 
|  | MVT ResTy = N->getValueType(0).getSimpleVT(); | 
|  |  | 
|  | SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32); | 
|  | SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C); | 
|  | SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy, | 
|  | N->getOperand(0), SDValue(R,0)); | 
|  | ReplaceNode(N, T); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::Select(SDNode *N) { | 
|  | if (N->isMachineOpcode()) | 
|  | return N->setNodeId(-1);  // Already selected. | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::Constant:             return SelectConstant(N); | 
|  | case ISD::ConstantFP:           return SelectConstantFP(N); | 
|  | case ISD::FrameIndex:           return SelectFrameIndex(N); | 
|  | case ISD::BITCAST:              return SelectBitcast(N); | 
|  | case ISD::SHL:                  return SelectSHL(N); | 
|  | case ISD::LOAD:                 return SelectLoad(N); | 
|  | case ISD::STORE:                return SelectStore(N); | 
|  | case ISD::INTRINSIC_W_CHAIN:    return SelectIntrinsicWChain(N); | 
|  | case ISD::INTRINSIC_WO_CHAIN:   return SelectIntrinsicWOChain(N); | 
|  | case HexagonISD::VALIGN:        return SelectVAlign(N); | 
|  | case HexagonISD::VALIGNADDR:    return SelectVAlignAddr(N); | 
|  | case HexagonISD::TYPECAST:      return SelectTypecast(N); | 
|  | case HexagonISD::P2D:           return SelectP2D(N); | 
|  | case HexagonISD::D2P:           return SelectD2P(N); | 
|  | case HexagonISD::Q2V:           return SelectQ2V(N); | 
|  | case HexagonISD::V2Q:           return SelectV2Q(N); | 
|  | } | 
|  |  | 
|  | if (HST->useHVXOps()) { | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::VECTOR_SHUFFLE:     return SelectHvxShuffle(N); | 
|  | case HexagonISD::VROR:        return SelectHvxRor(N); | 
|  | } | 
|  | } | 
|  |  | 
|  | SelectCode(N); | 
|  | } | 
|  |  | 
|  | bool HexagonDAGToDAGISel:: | 
|  | SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, | 
|  | std::vector<SDValue> &OutOps) { | 
|  | SDValue Inp = Op, Res; | 
|  |  | 
|  | switch (ConstraintID) { | 
|  | default: | 
|  | return true; | 
|  | case InlineAsm::Constraint_i: | 
|  | case InlineAsm::Constraint_o: // Offsetable. | 
|  | case InlineAsm::Constraint_v: // Not offsetable. | 
|  | case InlineAsm::Constraint_m: // Memory. | 
|  | if (SelectAddrFI(Inp, Res)) | 
|  | OutOps.push_back(Res); | 
|  | else | 
|  | OutOps.push_back(Inp); | 
|  | break; | 
|  | } | 
|  |  | 
|  | OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | static bool isMemOPCandidate(SDNode *I, SDNode *U) { | 
|  | // I is an operand of U. Check if U is an arithmetic (binary) operation | 
|  | // usable in a memop, where the other operand is a loaded value, and the | 
|  | // result of U is stored in the same location. | 
|  |  | 
|  | if (!U->hasOneUse()) | 
|  | return false; | 
|  | unsigned Opc = U->getOpcode(); | 
|  | switch (Opc) { | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue S0 = U->getOperand(0); | 
|  | SDValue S1 = U->getOperand(1); | 
|  | SDValue SY = (S0.getNode() == I) ? S1 : S0; | 
|  |  | 
|  | SDNode *UUse = *U->use_begin(); | 
|  | if (UUse->getNumValues() != 1) | 
|  | return false; | 
|  |  | 
|  | // Check if one of the inputs to U is a load instruction and the output | 
|  | // is used by a store instruction. If so and they also have the same | 
|  | // base pointer, then don't preoprocess this node sequence as it | 
|  | // can be matched to a memop. | 
|  | SDNode *SYNode = SY.getNode(); | 
|  | if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) { | 
|  | SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr(); | 
|  | SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr(); | 
|  | if (LDBasePtr == STBasePtr) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Transform: (or (select c x 0) z)  ->  (select c (or x z) z) | 
|  | //            (or (select c 0 y) z)  ->  (select c z (or y z)) | 
|  | void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) { | 
|  | SelectionDAG &DAG = *CurDAG; | 
|  |  | 
|  | for (auto I : Nodes) { | 
|  | if (I->getOpcode() != ISD::OR) | 
|  | continue; | 
|  |  | 
|  | auto IsZero = [] (const SDValue &V) -> bool { | 
|  | if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode())) | 
|  | return SC->isNullValue(); | 
|  | return false; | 
|  | }; | 
|  | auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool { | 
|  | if (Op.getOpcode() != ISD::SELECT) | 
|  | return false; | 
|  | return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2)); | 
|  | }; | 
|  |  | 
|  | SDValue N0 = I->getOperand(0), N1 = I->getOperand(1); | 
|  | EVT VT = I->getValueType(0); | 
|  | bool SelN0 = IsSelect0(N0); | 
|  | SDValue SOp = SelN0 ? N0 : N1; | 
|  | SDValue VOp = SelN0 ? N1 : N0; | 
|  |  | 
|  | if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) { | 
|  | SDValue SC = SOp.getOperand(0); | 
|  | SDValue SX = SOp.getOperand(1); | 
|  | SDValue SY = SOp.getOperand(2); | 
|  | SDLoc DLS = SOp; | 
|  | if (IsZero(SY)) { | 
|  | SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp); | 
|  | SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp); | 
|  | DAG.ReplaceAllUsesWith(I, NewSel.getNode()); | 
|  | } else if (IsZero(SX)) { | 
|  | SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp); | 
|  | SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr); | 
|  | DAG.ReplaceAllUsesWith(I, NewSel.getNode()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform: (store ch val (add x (add (shl y c) e))) | 
|  | //        to: (store ch val (add x (shl (add y d) c))), | 
|  | // where e = (shl d c) for some integer d. | 
|  | // The purpose of this is to enable generation of loads/stores with | 
|  | // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift | 
|  | // value c must be 0, 1 or 2. | 
|  | void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) { | 
|  | SelectionDAG &DAG = *CurDAG; | 
|  |  | 
|  | for (auto I : Nodes) { | 
|  | if (I->getOpcode() != ISD::STORE) | 
|  | continue; | 
|  |  | 
|  | // I matched: (store ch val Off) | 
|  | SDValue Off = I->getOperand(2); | 
|  | // Off needs to match: (add x (add (shl y c) (shl d c)))) | 
|  | if (Off.getOpcode() != ISD::ADD) | 
|  | continue; | 
|  | // Off matched: (add x T0) | 
|  | SDValue T0 = Off.getOperand(1); | 
|  | // T0 needs to match: (add T1 T2): | 
|  | if (T0.getOpcode() != ISD::ADD) | 
|  | continue; | 
|  | // T0 matched: (add T1 T2) | 
|  | SDValue T1 = T0.getOperand(0); | 
|  | SDValue T2 = T0.getOperand(1); | 
|  | // T1 needs to match: (shl y c) | 
|  | if (T1.getOpcode() != ISD::SHL) | 
|  | continue; | 
|  | SDValue C = T1.getOperand(1); | 
|  | ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode()); | 
|  | if (CN == nullptr) | 
|  | continue; | 
|  | unsigned CV = CN->getZExtValue(); | 
|  | if (CV > 2) | 
|  | continue; | 
|  | // T2 needs to match e, where e = (shl d c) for some d. | 
|  | ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode()); | 
|  | if (EN == nullptr) | 
|  | continue; | 
|  | unsigned EV = EN->getZExtValue(); | 
|  | if (EV % (1 << CV) != 0) | 
|  | continue; | 
|  | unsigned DV = EV / (1 << CV); | 
|  |  | 
|  | // Replace T0 with: (shl (add y d) c) | 
|  | SDLoc DL = SDLoc(I); | 
|  | EVT VT = T0.getValueType(); | 
|  | SDValue D = DAG.getConstant(DV, DL, VT); | 
|  | // NewAdd = (add y d) | 
|  | SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D); | 
|  | // NewShl = (shl NewAdd c) | 
|  | SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C); | 
|  | ReplaceNode(T0.getNode(), NewShl.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform: (load ch (add x (and (srl y c) Mask))) | 
|  | //        to: (load ch (add x (shl (srl y d) d-c))) | 
|  | // where | 
|  | // Mask = 00..0 111..1 0.0 | 
|  | //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2. | 
|  | //          |     +-------- 1s | 
|  | //          +-------------- at most c 0s | 
|  | // Motivating example: | 
|  | // DAG combiner optimizes (add x (shl (srl y 5) 2)) | 
|  | //                     to (add x (and (srl y 3) 1FFFFFFC)) | 
|  | // which results in a constant-extended and(##...,lsr). This transformation | 
|  | // undoes this simplification for cases where the shl can be folded into | 
|  | // an addressing mode. | 
|  | void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) { | 
|  | SelectionDAG &DAG = *CurDAG; | 
|  |  | 
|  | for (SDNode *N : Nodes) { | 
|  | unsigned Opc = N->getOpcode(); | 
|  | if (Opc != ISD::LOAD && Opc != ISD::STORE) | 
|  | continue; | 
|  | SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2); | 
|  | // Addr must match: (add x T0) | 
|  | if (Addr.getOpcode() != ISD::ADD) | 
|  | continue; | 
|  | SDValue T0 = Addr.getOperand(1); | 
|  | // T0 must match: (and T1 Mask) | 
|  | if (T0.getOpcode() != ISD::AND) | 
|  | continue; | 
|  |  | 
|  | // We have an AND. | 
|  | // | 
|  | // Check the first operand. It must be: (srl y c). | 
|  | SDValue S = T0.getOperand(0); | 
|  | if (S.getOpcode() != ISD::SRL) | 
|  | continue; | 
|  | ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode()); | 
|  | if (SN == nullptr) | 
|  | continue; | 
|  | if (SN->getAPIntValue().getBitWidth() != 32) | 
|  | continue; | 
|  | uint32_t CV = SN->getZExtValue(); | 
|  |  | 
|  | // Check the second operand: the supposed mask. | 
|  | ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode()); | 
|  | if (MN == nullptr) | 
|  | continue; | 
|  | if (MN->getAPIntValue().getBitWidth() != 32) | 
|  | continue; | 
|  | uint32_t Mask = MN->getZExtValue(); | 
|  | // Examine the mask. | 
|  | uint32_t TZ = countTrailingZeros(Mask); | 
|  | uint32_t M1 = countTrailingOnes(Mask >> TZ); | 
|  | uint32_t LZ = countLeadingZeros(Mask); | 
|  | // Trailing zeros + middle ones + leading zeros must equal the width. | 
|  | if (TZ + M1 + LZ != 32) | 
|  | continue; | 
|  | // The number of trailing zeros will be encoded in the addressing mode. | 
|  | if (TZ > 2) | 
|  | continue; | 
|  | // The number of leading zeros must be at most c. | 
|  | if (LZ > CV) | 
|  | continue; | 
|  |  | 
|  | // All looks good. | 
|  | SDValue Y = S.getOperand(0); | 
|  | EVT VT = Addr.getValueType(); | 
|  | SDLoc dl(S); | 
|  | // TZ = D-C, so D = TZ+C. | 
|  | SDValue D = DAG.getConstant(TZ+CV, dl, VT); | 
|  | SDValue DC = DAG.getConstant(TZ, dl, VT); | 
|  | SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D); | 
|  | SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC); | 
|  | ReplaceNode(T0.getNode(), NewShl.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) | 
|  | //                                                  (op ... 1 ...)) | 
|  | void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) { | 
|  | SelectionDAG &DAG = *CurDAG; | 
|  |  | 
|  | for (SDNode *N : Nodes) { | 
|  | unsigned Opc = N->getOpcode(); | 
|  | if (Opc != ISD::ZERO_EXTEND) | 
|  | continue; | 
|  | SDValue OpI1 = N->getOperand(0); | 
|  | EVT OpVT = OpI1.getValueType(); | 
|  | if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1) | 
|  | continue; | 
|  | for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) { | 
|  | SDNode *U = *I; | 
|  | if (U->getNumValues() != 1) | 
|  | continue; | 
|  | EVT UVT = U->getValueType(0); | 
|  | if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1) | 
|  | continue; | 
|  | if (isMemOPCandidate(N, U)) | 
|  | continue; | 
|  |  | 
|  | // Potentially simplifiable operation. | 
|  | unsigned I1N = I.getOperandNo(); | 
|  | SmallVector<SDValue,2> Ops(U->getNumOperands()); | 
|  | for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) | 
|  | Ops[i] = U->getOperand(i); | 
|  | EVT BVT = Ops[I1N].getValueType(); | 
|  |  | 
|  | SDLoc dl(U); | 
|  | SDValue C0 = DAG.getConstant(0, dl, BVT); | 
|  | SDValue C1 = DAG.getConstant(1, dl, BVT); | 
|  | SDValue If0, If1; | 
|  |  | 
|  | if (isa<MachineSDNode>(U)) { | 
|  | unsigned UseOpc = U->getMachineOpcode(); | 
|  | Ops[I1N] = C0; | 
|  | If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); | 
|  | Ops[I1N] = C1; | 
|  | If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); | 
|  | } else { | 
|  | unsigned UseOpc = U->getOpcode(); | 
|  | Ops[I1N] = C0; | 
|  | If0 = DAG.getNode(UseOpc, dl, UVT, Ops); | 
|  | Ops[I1N] = C1; | 
|  | If1 = DAG.getNode(UseOpc, dl, UVT, Ops); | 
|  | } | 
|  | SDValue Sel = DAG.getNode(ISD::SELECT, dl, UVT, OpI1, If1, If0); | 
|  | DAG.ReplaceAllUsesWith(U, Sel.getNode()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::PreprocessISelDAG() { | 
|  | // Repack all nodes before calling each preprocessing function, | 
|  | // because each of them can modify the set of nodes. | 
|  | auto getNodes = [this] () -> std::vector<SDNode*> { | 
|  | std::vector<SDNode*> T; | 
|  | T.reserve(CurDAG->allnodes_size()); | 
|  | for (SDNode &N : CurDAG->allnodes()) | 
|  | T.push_back(&N); | 
|  | return T; | 
|  | }; | 
|  |  | 
|  | // Transform: (or (select c x 0) z)  ->  (select c (or x z) z) | 
|  | //            (or (select c 0 y) z)  ->  (select c z (or y z)) | 
|  | ppSimplifyOrSelect0(getNodes()); | 
|  |  | 
|  | // Transform: (store ch val (add x (add (shl y c) e))) | 
|  | //        to: (store ch val (add x (shl (add y d) c))), | 
|  | // where e = (shl d c) for some integer d. | 
|  | // The purpose of this is to enable generation of loads/stores with | 
|  | // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift | 
|  | // value c must be 0, 1 or 2. | 
|  | ppAddrReorderAddShl(getNodes()); | 
|  |  | 
|  | // Transform: (load ch (add x (and (srl y c) Mask))) | 
|  | //        to: (load ch (add x (shl (srl y d) d-c))) | 
|  | // where | 
|  | // Mask = 00..0 111..1 0.0 | 
|  | //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2. | 
|  | //          |     +-------- 1s | 
|  | //          +-------------- at most c 0s | 
|  | // Motivating example: | 
|  | // DAG combiner optimizes (add x (shl (srl y 5) 2)) | 
|  | //                     to (add x (and (srl y 3) 1FFFFFFC)) | 
|  | // which results in a constant-extended and(##...,lsr). This transformation | 
|  | // undoes this simplification for cases where the shl can be folded into | 
|  | // an addressing mode. | 
|  | ppAddrRewriteAndSrl(getNodes()); | 
|  |  | 
|  | // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) | 
|  | //                                                  (op ... 1 ...)) | 
|  | ppHoistZextI1(getNodes()); | 
|  |  | 
|  | DEBUG_WITH_TYPE("isel", { | 
|  | dbgs() << "Preprocessed (Hexagon) selection DAG:"; | 
|  | CurDAG->dump(); | 
|  | }); | 
|  |  | 
|  | if (EnableAddressRebalancing) { | 
|  | rebalanceAddressTrees(); | 
|  |  | 
|  | DEBUG_WITH_TYPE("isel", { | 
|  | dbgs() << "Address tree balanced selection DAG:"; | 
|  | CurDAG->dump(); | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::EmitFunctionEntryCode() { | 
|  | auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget()); | 
|  | auto &HFI = *HST.getFrameLowering(); | 
|  | if (!HFI.needsAligna(*MF)) | 
|  | return; | 
|  |  | 
|  | MachineFrameInfo &MFI = MF->getFrameInfo(); | 
|  | MachineBasicBlock *EntryBB = &MF->front(); | 
|  | unsigned AR = FuncInfo->CreateReg(MVT::i32); | 
|  | unsigned MaxA = MFI.getMaxAlignment(); | 
|  | BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AR) | 
|  | .addImm(MaxA); | 
|  | MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR); | 
|  | } | 
|  |  | 
|  | // Match a frame index that can be used in an addressing mode. | 
|  | bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) { | 
|  | if (N.getOpcode() != ISD::FrameIndex) | 
|  | return false; | 
|  | auto &HFI = *HST->getFrameLowering(); | 
|  | MachineFrameInfo &MFI = MF->getFrameInfo(); | 
|  | int FX = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF)) | 
|  | return false; | 
|  | R = CurDAG->getTargetFrameIndex(FX, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) { | 
|  | return SelectGlobalAddress(N, R, false, 0); | 
|  | } | 
|  |  | 
|  | inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) { | 
|  | return SelectGlobalAddress(N, R, true, 0); | 
|  | } | 
|  |  | 
|  | inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) { | 
|  | return SelectAnyImmediate(N, R, 0); | 
|  | } | 
|  |  | 
|  | inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) { | 
|  | return SelectAnyImmediate(N, R, 0); | 
|  | } | 
|  | inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) { | 
|  | return SelectAnyImmediate(N, R, 1); | 
|  | } | 
|  | inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) { | 
|  | return SelectAnyImmediate(N, R, 2); | 
|  | } | 
|  | inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) { | 
|  | return SelectAnyImmediate(N, R, 3); | 
|  | } | 
|  |  | 
|  | inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) { | 
|  | EVT T = N.getValueType(); | 
|  | if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N)) | 
|  | return false; | 
|  | R = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R, | 
|  | uint32_t LogAlign) { | 
|  | auto IsAligned = [LogAlign] (uint64_t V) -> bool { | 
|  | return alignTo(V, (uint64_t)1 << LogAlign) == V; | 
|  | }; | 
|  |  | 
|  | switch (N.getOpcode()) { | 
|  | case ISD::Constant: { | 
|  | if (N.getValueType() != MVT::i32) | 
|  | return false; | 
|  | int32_t V = cast<const ConstantSDNode>(N)->getZExtValue(); | 
|  | if (!IsAligned(V)) | 
|  | return false; | 
|  | R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType()); | 
|  | return true; | 
|  | } | 
|  | case HexagonISD::JT: | 
|  | case HexagonISD::CP: | 
|  | // These are assumed to always be aligned at least 8-byte boundary. | 
|  | if (LogAlign > 3) | 
|  | return false; | 
|  | R = N.getOperand(0); | 
|  | return true; | 
|  | case ISD::ExternalSymbol: | 
|  | // Symbols may be aligned at any boundary. | 
|  | if (LogAlign > 0) | 
|  | return false; | 
|  | R = N; | 
|  | return true; | 
|  | case ISD::BlockAddress: | 
|  | // Block address is always aligned at least 4-byte boundary. | 
|  | if (LogAlign > 2 || !IsAligned(cast<BlockAddressSDNode>(N)->getOffset())) | 
|  | return false; | 
|  | R = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (SelectGlobalAddress(N, R, false, LogAlign) || | 
|  | SelectGlobalAddress(N, R, true, LogAlign)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R, | 
|  | bool UseGP, uint32_t LogAlign) { | 
|  | auto IsAligned = [LogAlign] (uint64_t V) -> bool { | 
|  | return alignTo(V, (uint64_t)1 << LogAlign) == V; | 
|  | }; | 
|  |  | 
|  | switch (N.getOpcode()) { | 
|  | case ISD::ADD: { | 
|  | SDValue N0 = N.getOperand(0); | 
|  | SDValue N1 = N.getOperand(1); | 
|  | unsigned GAOpc = N0.getOpcode(); | 
|  | if (UseGP && GAOpc != HexagonISD::CONST32_GP) | 
|  | return false; | 
|  | if (!UseGP && GAOpc != HexagonISD::CONST32) | 
|  | return false; | 
|  | if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) { | 
|  | SDValue Addr = N0.getOperand(0); | 
|  | // For the purpose of alignment, sextvalue and zextvalue are the same. | 
|  | if (!IsAligned(Const->getZExtValue())) | 
|  | return false; | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) { | 
|  | if (GA->getOpcode() == ISD::TargetGlobalAddress) { | 
|  | uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue(); | 
|  | R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const), | 
|  | N.getValueType(), NewOff); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case HexagonISD::CP: | 
|  | case HexagonISD::JT: | 
|  | case HexagonISD::CONST32: | 
|  | // The operand(0) of CONST32 is TargetGlobalAddress, which is what we | 
|  | // want in the instruction. | 
|  | if (!UseGP) | 
|  | R = N.getOperand(0); | 
|  | return !UseGP; | 
|  | case HexagonISD::CONST32_GP: | 
|  | if (UseGP) | 
|  | R = N.getOperand(0); | 
|  | return UseGP; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) { | 
|  | // This (complex pattern) function is meant to detect a sign-extension | 
|  | // i32->i64 on a per-operand basis. This would allow writing single | 
|  | // patterns that would cover a number of combinations of different ways | 
|  | // a sign-extensions could be written. For example: | 
|  | //   (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y) | 
|  | // could match either one of these: | 
|  | //   (mul (sext x) (sext_inreg y)) | 
|  | //   (mul (sext-load *p) (sext_inreg y)) | 
|  | //   (mul (sext_inreg x) (sext y)) | 
|  | // etc. | 
|  | // | 
|  | // The returned value will have type i64 and its low word will | 
|  | // contain the value being extended. The high bits are not specified. | 
|  | // The returned type is i64 because the original type of N was i64, | 
|  | // but the users of this function should only use the low-word of the | 
|  | // result, e.g. | 
|  | //  (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y)) | 
|  |  | 
|  | if (N.getValueType() != MVT::i64) | 
|  | return false; | 
|  | unsigned Opc = N.getOpcode(); | 
|  | switch (Opc) { | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | // sext_inreg has the source type as a separate operand. | 
|  | EVT T = Opc == ISD::SIGN_EXTEND | 
|  | ? N.getOperand(0).getValueType() | 
|  | : cast<VTSDNode>(N.getOperand(1))->getVT(); | 
|  | unsigned SW = T.getSizeInBits(); | 
|  | if (SW == 32) | 
|  | R = N.getOperand(0); | 
|  | else if (SW < 32) | 
|  | R = N; | 
|  | else | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *L = cast<LoadSDNode>(N); | 
|  | if (L->getExtensionType() != ISD::SEXTLOAD) | 
|  | return false; | 
|  | // All extending loads extend to i32, so even if the value in | 
|  | // memory is shorter than 32 bits, it will be i32 after the load. | 
|  | if (L->getMemoryVT().getSizeInBits() > 32) | 
|  | return false; | 
|  | R = N; | 
|  | break; | 
|  | } | 
|  | case ISD::SRA: { | 
|  | auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!S || S->getZExtValue() != 32) | 
|  | return false; | 
|  | R = N; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | EVT RT = R.getValueType(); | 
|  | if (RT == MVT::i64) | 
|  | return true; | 
|  | assert(RT == MVT::i32); | 
|  | // This is only to produce a value of type i64. Do not rely on the | 
|  | // high bits produced by this. | 
|  | const SDLoc &dl(N); | 
|  | SDValue Ops[] = { | 
|  | CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), | 
|  | R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), | 
|  | R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) | 
|  | }; | 
|  | SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, | 
|  | MVT::i64, Ops); | 
|  | R = SDValue(T, 0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits, | 
|  | SDValue &Src) { | 
|  | unsigned Opc = Val.getOpcode(); | 
|  | switch (Opc) { | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: { | 
|  | const SDValue &Op0 = Val.getOperand(0); | 
|  | EVT T = Op0.getValueType(); | 
|  | if (T.isInteger() && T.getSizeInBits() == NumBits) { | 
|  | Src = Op0; | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | case ISD::AssertSext: | 
|  | case ISD::AssertZext: | 
|  | if (Val.getOperand(0).getValueType().isInteger()) { | 
|  | VTSDNode *T = cast<VTSDNode>(Val.getOperand(1)); | 
|  | if (T->getVT().getSizeInBits() == NumBits) { | 
|  | Src = Val.getOperand(0); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::AND: { | 
|  | // Check if this is an AND with NumBits of lower bits set to 1. | 
|  | uint64_t Mask = (1 << NumBits) - 1; | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { | 
|  | if (C->getZExtValue() == Mask) { | 
|  | Src = Val.getOperand(1); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { | 
|  | if (C->getZExtValue() == Mask) { | 
|  | Src = Val.getOperand(0); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  | // OR/XOR with the lower NumBits bits set to 0. | 
|  | uint64_t Mask = (1 << NumBits) - 1; | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { | 
|  | if ((C->getZExtValue() & Mask) == 0) { | 
|  | Src = Val.getOperand(1); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { | 
|  | if ((C->getZExtValue() & Mask) == 0) { | 
|  | Src = Val.getOperand(0); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const { | 
|  | return N->getAlignment() >= N->getMemoryVT().getStoreSize(); | 
|  | } | 
|  |  | 
|  | bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const { | 
|  | unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF); | 
|  | switch (N->getMemoryVT().getStoreSize()) { | 
|  | case 1: | 
|  | return StackSize <= 56;   // 1*2^6 - 8 | 
|  | case 2: | 
|  | return StackSize <= 120;  // 2*2^6 - 8 | 
|  | case 4: | 
|  | return StackSize <= 248;  // 4*2^6 - 8 | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return true when the given node fits in a positive half word. | 
|  | bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const { | 
|  | if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) { | 
|  | int64_t V = CN->getSExtValue(); | 
|  | return V > 0 && isInt<16>(V); | 
|  | } | 
|  | if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) { | 
|  | const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1)); | 
|  | return VN->getVT().getSizeInBits() <= 16; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const { | 
|  | return !CheckSingleUse || N->hasOneUse(); | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // Rebalancing of address calculation trees | 
|  |  | 
|  | static bool isOpcodeHandled(const SDNode *N) { | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::ADD: | 
|  | case ISD::MUL: | 
|  | return true; | 
|  | case ISD::SHL: | 
|  | // We only handle constant shifts because these can be easily flattened | 
|  | // into multiplications by 2^Op1. | 
|  | return isa<ConstantSDNode>(N->getOperand(1).getNode()); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Return the weight of an SDNode | 
|  | int HexagonDAGToDAGISel::getWeight(SDNode *N) { | 
|  | if (!isOpcodeHandled(N)) | 
|  | return 1; | 
|  | assert(RootWeights.count(N) && "Cannot get weight of unseen root!"); | 
|  | assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!"); | 
|  | assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!"); | 
|  | return RootWeights[N]; | 
|  | } | 
|  |  | 
|  | int HexagonDAGToDAGISel::getHeight(SDNode *N) { | 
|  | if (!isOpcodeHandled(N)) | 
|  | return 0; | 
|  | assert(RootWeights.count(N) && RootWeights[N] >= 0 && | 
|  | "Cannot query height of unvisited/RAUW'd node!"); | 
|  | return RootHeights[N]; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct WeightedLeaf { | 
|  | SDValue Value; | 
|  | int Weight; | 
|  | int InsertionOrder; | 
|  |  | 
|  | WeightedLeaf() : Value(SDValue()) { } | 
|  |  | 
|  | WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) : | 
|  | Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) { | 
|  | assert(Weight >= 0 && "Weight must be >= 0"); | 
|  | } | 
|  |  | 
|  | static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) { | 
|  | assert(A.Value.getNode() && B.Value.getNode()); | 
|  | return A.Weight == B.Weight ? | 
|  | (A.InsertionOrder > B.InsertionOrder) : | 
|  | (A.Weight > B.Weight); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// A specialized priority queue for WeigthedLeaves. It automatically folds | 
|  | /// constants and allows removal of non-top elements while maintaining the | 
|  | /// priority order. | 
|  | class LeafPrioQueue { | 
|  | SmallVector<WeightedLeaf, 8> Q; | 
|  | bool HaveConst; | 
|  | WeightedLeaf ConstElt; | 
|  | unsigned Opcode; | 
|  |  | 
|  | public: | 
|  | bool empty() { | 
|  | return (!HaveConst && Q.empty()); | 
|  | } | 
|  |  | 
|  | size_t size() { | 
|  | return Q.size() + HaveConst; | 
|  | } | 
|  |  | 
|  | bool hasConst() { | 
|  | return HaveConst; | 
|  | } | 
|  |  | 
|  | const WeightedLeaf &top() { | 
|  | if (HaveConst) | 
|  | return ConstElt; | 
|  | return Q.front(); | 
|  | } | 
|  |  | 
|  | WeightedLeaf pop() { | 
|  | if (HaveConst) { | 
|  | HaveConst = false; | 
|  | return ConstElt; | 
|  | } | 
|  | std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); | 
|  | return Q.pop_back_val(); | 
|  | } | 
|  |  | 
|  | void push(WeightedLeaf L, bool SeparateConst=true) { | 
|  | if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) { | 
|  | if (Opcode == ISD::MUL && | 
|  | cast<ConstantSDNode>(L.Value)->getSExtValue() == 1) | 
|  | return; | 
|  | if (Opcode == ISD::ADD && | 
|  | cast<ConstantSDNode>(L.Value)->getSExtValue() == 0) | 
|  | return; | 
|  |  | 
|  | HaveConst = true; | 
|  | ConstElt = L; | 
|  | } else { | 
|  | Q.push_back(L); | 
|  | std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Push L to the bottom of the queue regardless of its weight. If L is | 
|  | /// constant, it will not be folded with other constants in the queue. | 
|  | void pushToBottom(WeightedLeaf L) { | 
|  | L.Weight = 1000; | 
|  | push(L, false); | 
|  | } | 
|  |  | 
|  | /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of | 
|  | /// lowest weight and remove it from the queue. | 
|  | WeightedLeaf findSHL(uint64_t MaxAmount); | 
|  |  | 
|  | WeightedLeaf findMULbyConst(); | 
|  |  | 
|  | LeafPrioQueue(unsigned Opcode) : | 
|  | HaveConst(false), Opcode(Opcode) { } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) { | 
|  | int ResultPos; | 
|  | WeightedLeaf Result; | 
|  |  | 
|  | for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { | 
|  | const WeightedLeaf &L = Q[Pos]; | 
|  | const SDValue &Val = L.Value; | 
|  | if (Val.getOpcode() != ISD::SHL || | 
|  | !isa<ConstantSDNode>(Val.getOperand(1)) || | 
|  | Val.getConstantOperandVal(1) > MaxAmount) | 
|  | continue; | 
|  | if (!Result.Value.getNode() || Result.Weight > L.Weight || | 
|  | (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) | 
|  | { | 
|  | Result = L; | 
|  | ResultPos = Pos; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Result.Value.getNode()) { | 
|  | Q.erase(&Q[ResultPos]); | 
|  | std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | WeightedLeaf LeafPrioQueue::findMULbyConst() { | 
|  | int ResultPos; | 
|  | WeightedLeaf Result; | 
|  |  | 
|  | for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { | 
|  | const WeightedLeaf &L = Q[Pos]; | 
|  | const SDValue &Val = L.Value; | 
|  | if (Val.getOpcode() != ISD::MUL || | 
|  | !isa<ConstantSDNode>(Val.getOperand(1)) || | 
|  | Val.getConstantOperandVal(1) > 127) | 
|  | continue; | 
|  | if (!Result.Value.getNode() || Result.Weight > L.Weight || | 
|  | (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) | 
|  | { | 
|  | Result = L; | 
|  | ResultPos = Pos; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Result.Value.getNode()) { | 
|  | Q.erase(&Q[ResultPos]); | 
|  | std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) { | 
|  | uint64_t MulFactor = 1ull << N->getConstantOperandVal(1); | 
|  | return CurDAG->getConstant(MulFactor, SDLoc(N), | 
|  | N->getOperand(1).getValueType()); | 
|  | } | 
|  |  | 
|  | /// @returns the value x for which 2^x is a factor of Val | 
|  | static unsigned getPowerOf2Factor(SDValue Val) { | 
|  | if (Val.getOpcode() == ISD::MUL) { | 
|  | unsigned MaxFactor = 0; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i)); | 
|  | if (!C) | 
|  | continue; | 
|  | const APInt &CInt = C->getAPIntValue(); | 
|  | if (CInt.getBoolValue()) | 
|  | MaxFactor = CInt.countTrailingZeros(); | 
|  | } | 
|  | return MaxFactor; | 
|  | } | 
|  | if (Val.getOpcode() == ISD::SHL) { | 
|  | if (!isa<ConstantSDNode>(Val.getOperand(1).getNode())) | 
|  | return 0; | 
|  | return (unsigned) Val.getConstantOperandVal(1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// @returns true if V>>Amount will eliminate V's operation on its child | 
|  | static bool willShiftRightEliminate(SDValue V, unsigned Amount) { | 
|  | if (V.getOpcode() == ISD::MUL) { | 
|  | SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; | 
|  | for (int i = 0; i < 2; ++i) | 
|  | if (isa<ConstantSDNode>(Ops[i].getNode()) && | 
|  | V.getConstantOperandVal(i) % (1ULL << Amount) == 0) { | 
|  | uint64_t NewConst = V.getConstantOperandVal(i) >> Amount; | 
|  | return (NewConst == 1); | 
|  | } | 
|  | } else if (V.getOpcode() == ISD::SHL) { | 
|  | return (Amount == V.getConstantOperandVal(1)); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) { | 
|  | SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; | 
|  | if (V.getOpcode() == ISD::MUL) { | 
|  | for (int i=0; i < 2; ++i) { | 
|  | if (isa<ConstantSDNode>(Ops[i].getNode()) && | 
|  | V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) { | 
|  | uint64_t NewConst = V.getConstantOperandVal(i) >> Power; | 
|  | if (NewConst == 1) | 
|  | return Ops[!i]; | 
|  | Ops[i] = CurDAG->getConstant(NewConst, | 
|  | SDLoc(V), V.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (V.getOpcode() == ISD::SHL) { | 
|  | uint64_t ShiftAmount = V.getConstantOperandVal(1); | 
|  | if (ShiftAmount == Power) | 
|  | return Ops[0]; | 
|  | Ops[1] = CurDAG->getConstant(ShiftAmount - Power, | 
|  | SDLoc(V), V.getValueType()); | 
|  | } | 
|  |  | 
|  | return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops); | 
|  | } | 
|  |  | 
|  | static bool isTargetConstant(const SDValue &V) { | 
|  | return V.getOpcode() == HexagonISD::CONST32 || | 
|  | V.getOpcode() == HexagonISD::CONST32_GP; | 
|  | } | 
|  |  | 
|  | unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) { | 
|  | if (GAUsesInFunction.count(V)) | 
|  | return GAUsesInFunction[V]; | 
|  |  | 
|  | unsigned Result = 0; | 
|  | const Function &CurF = CurDAG->getMachineFunction().getFunction(); | 
|  | for (const User *U : V->users()) { | 
|  | if (isa<Instruction>(U) && | 
|  | cast<Instruction>(U)->getParent()->getParent() == &CurF) | 
|  | ++Result; | 
|  | } | 
|  |  | 
|  | GAUsesInFunction[V] = Result; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Note - After calling this, N may be dead. It may have been replaced by a | 
|  | /// new node, so always use the returned value in place of N. | 
|  | /// | 
|  | /// @returns The SDValue taking the place of N (which could be N if it is | 
|  | /// unchanged) | 
|  | SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) { | 
|  | assert(RootWeights.count(N) && "Cannot balance non-root node."); | 
|  | assert(RootWeights[N] != -2 && "This node was RAUW'd!"); | 
|  | assert(!TopLevel || N->getOpcode() == ISD::ADD); | 
|  |  | 
|  | // Return early if this node was already visited | 
|  | if (RootWeights[N] != -1) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | assert(isOpcodeHandled(N)); | 
|  |  | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  |  | 
|  | // Return early if the operands will remain unchanged or are all roots | 
|  | if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) && | 
|  | (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) { | 
|  | SDNode *Op0N = Op0.getNode(); | 
|  | int Weight; | 
|  | if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) { | 
|  | Weight = getWeight(balanceSubTree(Op0N).getNode()); | 
|  | // Weight = calculateWeight(Op0N); | 
|  | } else | 
|  | Weight = getWeight(Op0N); | 
|  |  | 
|  | SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd | 
|  | if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) { | 
|  | Weight += getWeight(balanceSubTree(Op1N).getNode()); | 
|  | // Weight += calculateWeight(Op1N); | 
|  | } else | 
|  | Weight += getWeight(Op1N); | 
|  |  | 
|  | RootWeights[N] = Weight; | 
|  | RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()), | 
|  | getHeight(N->getOperand(1).getNode())) + 1; | 
|  |  | 
|  | DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight | 
|  | << " Height=" << RootHeights[N] << "): "); | 
|  | DEBUG(N->dump(CurDAG)); | 
|  |  | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "** Balancing root node: "); | 
|  | DEBUG(N->dump(CurDAG)); | 
|  |  | 
|  | unsigned NOpcode = N->getOpcode(); | 
|  |  | 
|  | LeafPrioQueue Leaves(NOpcode); | 
|  | SmallVector<SDValue, 4> Worklist; | 
|  | Worklist.push_back(SDValue(N, 0)); | 
|  |  | 
|  | // SHL nodes will be converted to MUL nodes | 
|  | if (NOpcode == ISD::SHL) | 
|  | NOpcode = ISD::MUL; | 
|  |  | 
|  | bool CanFactorize = false; | 
|  | WeightedLeaf Mul1, Mul2; | 
|  | unsigned MaxPowerOf2 = 0; | 
|  | WeightedLeaf GA; | 
|  |  | 
|  | // Do not try to factor out a shift if there is already a shift at the tip of | 
|  | // the tree. | 
|  | bool HaveTopLevelShift = false; | 
|  | if (TopLevel && | 
|  | ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL && | 
|  | Op0.getConstantOperandVal(1) < 4) || | 
|  | (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL && | 
|  | Op1.getConstantOperandVal(1) < 4))) | 
|  | HaveTopLevelShift = true; | 
|  |  | 
|  | // Flatten the subtree into an ordered list of leaves; at the same time | 
|  | // determine whether the tree is already balanced. | 
|  | int InsertionOrder = 0; | 
|  | SmallDenseMap<SDValue, int> NodeHeights; | 
|  | bool Imbalanced = false; | 
|  | int CurrentWeight = 0; | 
|  | while (!Worklist.empty()) { | 
|  | SDValue Child = Worklist.pop_back_val(); | 
|  |  | 
|  | if (Child.getNode() != N && RootWeights.count(Child.getNode())) { | 
|  | // CASE 1: Child is a root note | 
|  |  | 
|  | int Weight = RootWeights[Child.getNode()]; | 
|  | if (Weight == -1) { | 
|  | Child = balanceSubTree(Child.getNode()); | 
|  | // calculateWeight(Child.getNode()); | 
|  | Weight = getWeight(Child.getNode()); | 
|  | } else if (Weight == -2) { | 
|  | // Whoops, this node was RAUWd by one of the balanceSubTree calls we | 
|  | // made. Our worklist isn't up to date anymore. | 
|  | // Restart the whole process. | 
|  | DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); | 
|  | return balanceSubTree(N, TopLevel); | 
|  | } | 
|  |  | 
|  | NodeHeights[Child] = 1; | 
|  | CurrentWeight += Weight; | 
|  |  | 
|  | unsigned PowerOf2; | 
|  | if (TopLevel && !CanFactorize && !HaveTopLevelShift && | 
|  | (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) && | 
|  | Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) { | 
|  | // Try to identify two factorizable MUL/SHL children greedily. Leave | 
|  | // them out of the priority queue for now so we can deal with them | 
|  | // after. | 
|  | if (!Mul1.Value.getNode()) { | 
|  | Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++); | 
|  | MaxPowerOf2 = PowerOf2; | 
|  | } else { | 
|  | Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++); | 
|  | MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2); | 
|  |  | 
|  | // Our addressing modes can only shift by a maximum of 3 | 
|  | if (MaxPowerOf2 > 3) | 
|  | MaxPowerOf2 = 3; | 
|  |  | 
|  | CanFactorize = true; | 
|  | } | 
|  | } else | 
|  | Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); | 
|  | } else if (!isOpcodeHandled(Child.getNode())) { | 
|  | // CASE 2: Child is an unhandled kind of node (e.g. constant) | 
|  | int Weight = getWeight(Child.getNode()); | 
|  |  | 
|  | NodeHeights[Child] = getHeight(Child.getNode()); | 
|  | CurrentWeight += Weight; | 
|  |  | 
|  | if (isTargetConstant(Child) && !GA.Value.getNode()) | 
|  | GA = WeightedLeaf(Child, Weight, InsertionOrder++); | 
|  | else | 
|  | Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); | 
|  | } else { | 
|  | // CASE 3: Child is a subtree of same opcode | 
|  | // Visit children first, then flatten. | 
|  | unsigned ChildOpcode = Child.getOpcode(); | 
|  | assert(ChildOpcode == NOpcode || | 
|  | (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL)); | 
|  |  | 
|  | // Convert SHL to MUL | 
|  | SDValue Op1; | 
|  | if (ChildOpcode == ISD::SHL) | 
|  | Op1 = getMultiplierForSHL(Child.getNode()); | 
|  | else | 
|  | Op1 = Child->getOperand(1); | 
|  |  | 
|  | if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) { | 
|  | assert(!NodeHeights.count(Child) && "Parent visited before children?"); | 
|  | // Visit children first, then re-visit this node | 
|  | Worklist.push_back(Child); | 
|  | Worklist.push_back(Op1); | 
|  | Worklist.push_back(Child->getOperand(0)); | 
|  | } else { | 
|  | // Back at this node after visiting the children | 
|  | if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1) | 
|  | Imbalanced = true; | 
|  |  | 
|  | NodeHeights[Child] = std::max(NodeHeights[Op1], | 
|  | NodeHeights[Child->getOperand(0)]) + 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)] | 
|  | << " weight=" << CurrentWeight << " imbalanced=" | 
|  | << Imbalanced << "\n"); | 
|  |  | 
|  | // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y) | 
|  | //  This factors out a shift in order to match memw(a<<Y+b). | 
|  | if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) || | 
|  | willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) { | 
|  | DEBUG(dbgs() << "--> Found common factor for two MUL children!\n"); | 
|  | int Weight = Mul1.Weight + Mul2.Weight; | 
|  | int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1; | 
|  | SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2); | 
|  | SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2); | 
|  | SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(), | 
|  | Mul1Factored, Mul2Factored); | 
|  | SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N), | 
|  | Mul1.Value.getValueType()); | 
|  | SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(), | 
|  | Sum, Const); | 
|  | NodeHeights[New] = Height; | 
|  | Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder)); | 
|  | } else if (Mul1.Value.getNode()) { | 
|  | // We failed to factorize two MULs, so now the Muls are left outside the | 
|  | // queue... add them back. | 
|  | Leaves.push(Mul1); | 
|  | if (Mul2.Value.getNode()) | 
|  | Leaves.push(Mul2); | 
|  | CanFactorize = false; | 
|  | } | 
|  |  | 
|  | // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere | 
|  | // and the root node itself is not used more than twice. This reduces the | 
|  | // amount of additional constant extenders introduced by this optimization. | 
|  | bool CombinedGA = false; | 
|  | if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() && | 
|  | GA.Value.hasOneUse() && N->use_size() < 3) { | 
|  | GlobalAddressSDNode *GANode = | 
|  | cast<GlobalAddressSDNode>(GA.Value.getOperand(0)); | 
|  | ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value); | 
|  |  | 
|  | if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() && | 
|  | getTargetLowering()->isOffsetFoldingLegal(GANode)) { | 
|  | DEBUG(dbgs() << "--> Combining GA and offset (" << Offset->getSExtValue() | 
|  | << "): "); | 
|  | DEBUG(GANode->dump(CurDAG)); | 
|  |  | 
|  | SDValue NewTGA = | 
|  | CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value), | 
|  | GANode->getValueType(0), | 
|  | GANode->getOffset() + (uint64_t)Offset->getSExtValue()); | 
|  | GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value), | 
|  | GA.Value.getValueType(), NewTGA); | 
|  | GA.Weight += Leaves.top().Weight; | 
|  |  | 
|  | NodeHeights[GA.Value] = getHeight(GA.Value.getNode()); | 
|  | CombinedGA = true; | 
|  |  | 
|  | Leaves.pop(); // Remove the offset constant from the queue | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) || | 
|  | (RebalanceOnlyImbalancedTrees && !Imbalanced)) { | 
|  | RootWeights[N] = CurrentWeight; | 
|  | RootHeights[N] = NodeHeights[SDValue(N, 0)]; | 
|  |  | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5)) | 
|  | if (NOpcode == ISD::ADD && GA.Value.getNode()) { | 
|  | WeightedLeaf SHL = Leaves.findSHL(31); | 
|  | if (SHL.Value.getNode()) { | 
|  | int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1; | 
|  | GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value), | 
|  | GA.Value.getValueType(), | 
|  | GA.Value, SHL.Value); | 
|  | GA.Weight = SHL.Weight; // Specifically ignore the GA weight here | 
|  | NodeHeights[GA.Value] = Height; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (GA.Value.getNode()) | 
|  | Leaves.push(GA); | 
|  |  | 
|  | // If this is the top level and we haven't factored out a shift, we should try | 
|  | // to move a constant to the bottom to match addressing modes like memw(rX+C) | 
|  | if (TopLevel && !CanFactorize && Leaves.hasConst()) { | 
|  | DEBUG(dbgs() << "--> Pushing constant to tip of tree."); | 
|  | Leaves.pushToBottom(Leaves.pop()); | 
|  | } | 
|  |  | 
|  | const DataLayout &DL = CurDAG->getDataLayout(); | 
|  | const TargetLowering &TLI = *getTargetLowering(); | 
|  |  | 
|  | // Rebuild the tree using Huffman's algorithm | 
|  | while (Leaves.size() > 1) { | 
|  | WeightedLeaf L0 = Leaves.pop(); | 
|  |  | 
|  | // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)), | 
|  | // otherwise just get the next leaf | 
|  | WeightedLeaf L1 = Leaves.findMULbyConst(); | 
|  | if (!L1.Value.getNode()) | 
|  | L1 = Leaves.pop(); | 
|  |  | 
|  | assert(L0.Weight <= L1.Weight && "Priority queue is broken!"); | 
|  |  | 
|  | SDValue V0 = L0.Value; | 
|  | int V0Weight = L0.Weight; | 
|  | SDValue V1 = L1.Value; | 
|  | int V1Weight = L1.Weight; | 
|  |  | 
|  | // Make sure that none of these nodes have been RAUW'd | 
|  | if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) || | 
|  | (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) { | 
|  | DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); | 
|  | return balanceSubTree(N, TopLevel); | 
|  | } | 
|  |  | 
|  | ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0); | 
|  | ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue NewNode; | 
|  |  | 
|  | if (V0C && !V1C) { | 
|  | std::swap(V0, V1); | 
|  | std::swap(V0C, V1C); | 
|  | } | 
|  |  | 
|  | // Calculate height of this node | 
|  | assert(NodeHeights.count(V0) && NodeHeights.count(V1) && | 
|  | "Children must have been visited before re-combining them!"); | 
|  | int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1; | 
|  |  | 
|  | // Rebuild this node (and restore SHL from MUL if needed) | 
|  | if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2()) | 
|  | NewNode = CurDAG->getNode( | 
|  | ISD::SHL, SDLoc(V0), VT, V0, | 
|  | CurDAG->getConstant( | 
|  | V1C->getAPIntValue().logBase2(), SDLoc(N), | 
|  | TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); | 
|  | else | 
|  | NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1); | 
|  |  | 
|  | NodeHeights[NewNode] = Height; | 
|  |  | 
|  | int Weight = V0Weight + V1Weight; | 
|  | Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder)); | 
|  |  | 
|  | DEBUG(dbgs() << "--> Built new node (Weight=" << Weight << ",Height=" | 
|  | << Height << "):\n"); | 
|  | DEBUG(NewNode.dump()); | 
|  | } | 
|  |  | 
|  | assert(Leaves.size() == 1); | 
|  | SDValue NewRoot = Leaves.top().Value; | 
|  |  | 
|  | assert(NodeHeights.count(NewRoot)); | 
|  | int Height = NodeHeights[NewRoot]; | 
|  |  | 
|  | // Restore SHL if we earlier converted it to a MUL | 
|  | if (NewRoot.getOpcode() == ISD::MUL) { | 
|  | ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1)); | 
|  | if (V1C && V1C->getAPIntValue().isPowerOf2()) { | 
|  | EVT VT = NewRoot.getValueType(); | 
|  | SDValue V0 = NewRoot.getOperand(0); | 
|  | NewRoot = CurDAG->getNode( | 
|  | ISD::SHL, SDLoc(NewRoot), VT, V0, | 
|  | CurDAG->getConstant( | 
|  | V1C->getAPIntValue().logBase2(), SDLoc(NewRoot), | 
|  | TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N != NewRoot.getNode()) { | 
|  | DEBUG(dbgs() << "--> Root is now: "); | 
|  | DEBUG(NewRoot.dump()); | 
|  |  | 
|  | // Replace all uses of old root by new root | 
|  | CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode()); | 
|  | // Mark that we have RAUW'd N | 
|  | RootWeights[N] = -2; | 
|  | } else { | 
|  | DEBUG(dbgs() << "--> Root unchanged.\n"); | 
|  | } | 
|  |  | 
|  | RootWeights[NewRoot.getNode()] = Leaves.top().Weight; | 
|  | RootHeights[NewRoot.getNode()] = Height; | 
|  |  | 
|  | return NewRoot; | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::rebalanceAddressTrees() { | 
|  | for (auto I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E;) { | 
|  | SDNode *N = &*I++; | 
|  | if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE) | 
|  | continue; | 
|  |  | 
|  | SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr(); | 
|  | if (BasePtr.getOpcode() != ISD::ADD) | 
|  | continue; | 
|  |  | 
|  | // We've already processed this node | 
|  | if (RootWeights.count(BasePtr.getNode())) | 
|  | continue; | 
|  |  | 
|  | DEBUG(dbgs() << "** Rebalancing address calculation in node: "); | 
|  | DEBUG(N->dump(CurDAG)); | 
|  |  | 
|  | // FindRoots | 
|  | SmallVector<SDNode *, 4> Worklist; | 
|  |  | 
|  | Worklist.push_back(BasePtr.getOperand(0).getNode()); | 
|  | Worklist.push_back(BasePtr.getOperand(1).getNode()); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | SDNode *N = Worklist.pop_back_val(); | 
|  | unsigned Opcode = N->getOpcode(); | 
|  |  | 
|  | if (!isOpcodeHandled(N)) | 
|  | continue; | 
|  |  | 
|  | Worklist.push_back(N->getOperand(0).getNode()); | 
|  | Worklist.push_back(N->getOperand(1).getNode()); | 
|  |  | 
|  | // Not a root if it has only one use and same opcode as its parent | 
|  | if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode()) | 
|  | continue; | 
|  |  | 
|  | // This root node has already been processed | 
|  | if (RootWeights.count(N)) | 
|  | continue; | 
|  |  | 
|  | RootWeights[N] = -1; | 
|  | } | 
|  |  | 
|  | // Balance node itself | 
|  | RootWeights[BasePtr.getNode()] = -1; | 
|  | SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true); | 
|  |  | 
|  | if (N->getOpcode() == ISD::LOAD) | 
|  | N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), | 
|  | NewBasePtr, N->getOperand(2)); | 
|  | else | 
|  | N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1), | 
|  | NewBasePtr, N->getOperand(3)); | 
|  |  | 
|  | DEBUG(dbgs() << "--> Final node: "); | 
|  | DEBUG(N->dump(CurDAG)); | 
|  | } | 
|  |  | 
|  | CurDAG->RemoveDeadNodes(); | 
|  | GAUsesInFunction.clear(); | 
|  | RootHeights.clear(); | 
|  | RootWeights.clear(); | 
|  | } |