|  | //===- InstCombineVectorOps.cpp -------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements instcombine for ExtractElement, InsertElement and | 
|  | // ShuffleVector. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombineInternal.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/VectorUtils.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  |  | 
|  | /// Return true if the value is cheaper to scalarize than it is to leave as a | 
|  | /// vector operation. isConstant indicates whether we're extracting one known | 
|  | /// element. If false we're extracting a variable index. | 
|  | static bool cheapToScalarize(Value *V, bool isConstant) { | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | if (isConstant) return true; | 
|  |  | 
|  | // If all elts are the same, we can extract it and use any of the values. | 
|  | if (Constant *Op0 = C->getAggregateElement(0U)) { | 
|  | for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; | 
|  | ++i) | 
|  | if (C->getAggregateElement(i) != Op0) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return false; | 
|  |  | 
|  | // Insert element gets simplified to the inserted element or is deleted if | 
|  | // this is constant idx extract element and its a constant idx insertelt. | 
|  | if (I->getOpcode() == Instruction::InsertElement && isConstant && | 
|  | isa<ConstantInt>(I->getOperand(2))) | 
|  | return true; | 
|  | if (I->getOpcode() == Instruction::Load && I->hasOneUse()) | 
|  | return true; | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) | 
|  | if (BO->hasOneUse() && | 
|  | (cheapToScalarize(BO->getOperand(0), isConstant) || | 
|  | cheapToScalarize(BO->getOperand(1), isConstant))) | 
|  | return true; | 
|  | if (CmpInst *CI = dyn_cast<CmpInst>(I)) | 
|  | if (CI->hasOneUse() && | 
|  | (cheapToScalarize(CI->getOperand(0), isConstant) || | 
|  | cheapToScalarize(CI->getOperand(1), isConstant))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we have a PHI node with a vector type that is only used to feed | 
|  | // itself and be an operand of extractelement at a constant location, | 
|  | // try to replace the PHI of the vector type with a PHI of a scalar type. | 
|  | Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { | 
|  | SmallVector<Instruction *, 2> Extracts; | 
|  | // The users we want the PHI to have are: | 
|  | // 1) The EI ExtractElement (we already know this) | 
|  | // 2) Possibly more ExtractElements with the same index. | 
|  | // 3) Another operand, which will feed back into the PHI. | 
|  | Instruction *PHIUser = nullptr; | 
|  | for (auto U : PN->users()) { | 
|  | if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { | 
|  | if (EI.getIndexOperand() == EU->getIndexOperand()) | 
|  | Extracts.push_back(EU); | 
|  | else | 
|  | return nullptr; | 
|  | } else if (!PHIUser) { | 
|  | PHIUser = cast<Instruction>(U); | 
|  | } else { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!PHIUser) | 
|  | return nullptr; | 
|  |  | 
|  | // Verify that this PHI user has one use, which is the PHI itself, | 
|  | // and that it is a binary operation which is cheap to scalarize. | 
|  | // otherwise return nullptr. | 
|  | if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || | 
|  | !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) | 
|  | return nullptr; | 
|  |  | 
|  | // Create a scalar PHI node that will replace the vector PHI node | 
|  | // just before the current PHI node. | 
|  | PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( | 
|  | PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); | 
|  | // Scalarize each PHI operand. | 
|  | for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { | 
|  | Value *PHIInVal = PN->getIncomingValue(i); | 
|  | BasicBlock *inBB = PN->getIncomingBlock(i); | 
|  | Value *Elt = EI.getIndexOperand(); | 
|  | // If the operand is the PHI induction variable: | 
|  | if (PHIInVal == PHIUser) { | 
|  | // Scalarize the binary operation. Its first operand is the | 
|  | // scalar PHI, and the second operand is extracted from the other | 
|  | // vector operand. | 
|  | BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); | 
|  | unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; | 
|  | Value *Op = InsertNewInstWith( | 
|  | ExtractElementInst::Create(B0->getOperand(opId), Elt, | 
|  | B0->getOperand(opId)->getName() + ".Elt"), | 
|  | *B0); | 
|  | Value *newPHIUser = InsertNewInstWith( | 
|  | BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), | 
|  | scalarPHI, Op, B0), *B0); | 
|  | scalarPHI->addIncoming(newPHIUser, inBB); | 
|  | } else { | 
|  | // Scalarize PHI input: | 
|  | Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); | 
|  | // Insert the new instruction into the predecessor basic block. | 
|  | Instruction *pos = dyn_cast<Instruction>(PHIInVal); | 
|  | BasicBlock::iterator InsertPos; | 
|  | if (pos && !isa<PHINode>(pos)) { | 
|  | InsertPos = ++pos->getIterator(); | 
|  | } else { | 
|  | InsertPos = inBB->getFirstInsertionPt(); | 
|  | } | 
|  |  | 
|  | InsertNewInstWith(newEI, *InsertPos); | 
|  |  | 
|  | scalarPHI->addIncoming(newEI, inBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (auto E : Extracts) | 
|  | replaceInstUsesWith(*E, scalarPHI); | 
|  |  | 
|  | return &EI; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { | 
|  | if (Value *V = SimplifyExtractElementInst(EI.getVectorOperand(), | 
|  | EI.getIndexOperand(), | 
|  | SQ.getWithInstruction(&EI))) | 
|  | return replaceInstUsesWith(EI, V); | 
|  |  | 
|  | // If vector val is constant with all elements the same, replace EI with | 
|  | // that element.  We handle a known element # below. | 
|  | if (Constant *C = dyn_cast<Constant>(EI.getOperand(0))) | 
|  | if (cheapToScalarize(C, false)) | 
|  | return replaceInstUsesWith(EI, C->getAggregateElement(0U)); | 
|  |  | 
|  | // If extracting a specified index from the vector, see if we can recursively | 
|  | // find a previously computed scalar that was inserted into the vector. | 
|  | if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) { | 
|  | unsigned VectorWidth = EI.getVectorOperandType()->getNumElements(); | 
|  |  | 
|  | // InstSimplify should handle cases where the index is invalid. | 
|  | if (!IdxC->getValue().ule(VectorWidth)) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned IndexVal = IdxC->getZExtValue(); | 
|  |  | 
|  | // This instruction only demands the single element from the input vector. | 
|  | // If the input vector has a single use, simplify it based on this use | 
|  | // property. | 
|  | if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { | 
|  | APInt UndefElts(VectorWidth, 0); | 
|  | APInt DemandedMask(VectorWidth, 0); | 
|  | DemandedMask.setBit(IndexVal); | 
|  | if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask, | 
|  | UndefElts)) { | 
|  | EI.setOperand(0, V); | 
|  | return &EI; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this extractelement is directly using a bitcast from a vector of | 
|  | // the same number of elements, see if we can find the source element from | 
|  | // it.  In this case, we will end up needing to bitcast the scalars. | 
|  | if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) { | 
|  | if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType())) | 
|  | if (VT->getNumElements() == VectorWidth) | 
|  | if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal)) | 
|  | return new BitCastInst(Elt, EI.getType()); | 
|  | } | 
|  |  | 
|  | // If there's a vector PHI feeding a scalar use through this extractelement | 
|  | // instruction, try to scalarize the PHI. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) { | 
|  | Instruction *scalarPHI = scalarizePHI(EI, PN); | 
|  | if (scalarPHI) | 
|  | return scalarPHI; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) { | 
|  | // Push extractelement into predecessor operation if legal and | 
|  | // profitable to do so. | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { | 
|  | if (I->hasOneUse() && | 
|  | cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) { | 
|  | Value *newEI0 = | 
|  | Builder.CreateExtractElement(BO->getOperand(0), EI.getOperand(1), | 
|  | EI.getName()+".lhs"); | 
|  | Value *newEI1 = | 
|  | Builder.CreateExtractElement(BO->getOperand(1), EI.getOperand(1), | 
|  | EI.getName()+".rhs"); | 
|  | return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), | 
|  | newEI0, newEI1, BO); | 
|  | } | 
|  | } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) { | 
|  | // Extracting the inserted element? | 
|  | if (IE->getOperand(2) == EI.getOperand(1)) | 
|  | return replaceInstUsesWith(EI, IE->getOperand(1)); | 
|  | // If the inserted and extracted elements are constants, they must not | 
|  | // be the same value, extract from the pre-inserted value instead. | 
|  | if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) { | 
|  | Worklist.AddValue(EI.getOperand(0)); | 
|  | EI.setOperand(0, IE->getOperand(0)); | 
|  | return &EI; | 
|  | } | 
|  | } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) { | 
|  | // If this is extracting an element from a shufflevector, figure out where | 
|  | // it came from and extract from the appropriate input element instead. | 
|  | if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) { | 
|  | int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); | 
|  | Value *Src; | 
|  | unsigned LHSWidth = | 
|  | SVI->getOperand(0)->getType()->getVectorNumElements(); | 
|  |  | 
|  | if (SrcIdx < 0) | 
|  | return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); | 
|  | if (SrcIdx < (int)LHSWidth) | 
|  | Src = SVI->getOperand(0); | 
|  | else { | 
|  | SrcIdx -= LHSWidth; | 
|  | Src = SVI->getOperand(1); | 
|  | } | 
|  | Type *Int32Ty = Type::getInt32Ty(EI.getContext()); | 
|  | return ExtractElementInst::Create(Src, | 
|  | ConstantInt::get(Int32Ty, | 
|  | SrcIdx, false)); | 
|  | } | 
|  | } else if (CastInst *CI = dyn_cast<CastInst>(I)) { | 
|  | // Canonicalize extractelement(cast) -> cast(extractelement). | 
|  | // Bitcasts can change the number of vector elements, and they cost | 
|  | // nothing. | 
|  | if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { | 
|  | Value *EE = Builder.CreateExtractElement(CI->getOperand(0), | 
|  | EI.getIndexOperand()); | 
|  | Worklist.AddValue(EE); | 
|  | return CastInst::Create(CI->getOpcode(), EE, EI.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// If V is a shuffle of values that ONLY returns elements from either LHS or | 
|  | /// RHS, return the shuffle mask and true. Otherwise, return false. | 
|  | static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, | 
|  | SmallVectorImpl<Constant*> &Mask) { | 
|  | assert(LHS->getType() == RHS->getType() && | 
|  | "Invalid CollectSingleShuffleElements"); | 
|  | unsigned NumElts = V->getType()->getVectorNumElements(); | 
|  |  | 
|  | if (isa<UndefValue>(V)) { | 
|  | Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (V == LHS) { | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (V == RHS) { | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), | 
|  | i+NumElts)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { | 
|  | // If this is an insert of an extract from some other vector, include it. | 
|  | Value *VecOp    = IEI->getOperand(0); | 
|  | Value *ScalarOp = IEI->getOperand(1); | 
|  | Value *IdxOp    = IEI->getOperand(2); | 
|  |  | 
|  | if (!isa<ConstantInt>(IdxOp)) | 
|  | return false; | 
|  | unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); | 
|  |  | 
|  | if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector. | 
|  | // We can handle this if the vector we are inserting into is | 
|  | // transitively ok. | 
|  | if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { | 
|  | // If so, update the mask to reflect the inserted undef. | 
|  | Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); | 
|  | return true; | 
|  | } | 
|  | } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ | 
|  | if (isa<ConstantInt>(EI->getOperand(1))) { | 
|  | unsigned ExtractedIdx = | 
|  | cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); | 
|  | unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); | 
|  |  | 
|  | // This must be extracting from either LHS or RHS. | 
|  | if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { | 
|  | // We can handle this if the vector we are inserting into is | 
|  | // transitively ok. | 
|  | if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { | 
|  | // If so, update the mask to reflect the inserted value. | 
|  | if (EI->getOperand(0) == LHS) { | 
|  | Mask[InsertedIdx % NumElts] = | 
|  | ConstantInt::get(Type::getInt32Ty(V->getContext()), | 
|  | ExtractedIdx); | 
|  | } else { | 
|  | assert(EI->getOperand(0) == RHS); | 
|  | Mask[InsertedIdx % NumElts] = | 
|  | ConstantInt::get(Type::getInt32Ty(V->getContext()), | 
|  | ExtractedIdx + NumLHSElts); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// If we have insertion into a vector that is wider than the vector that we | 
|  | /// are extracting from, try to widen the source vector to allow a single | 
|  | /// shufflevector to replace one or more insert/extract pairs. | 
|  | static void replaceExtractElements(InsertElementInst *InsElt, | 
|  | ExtractElementInst *ExtElt, | 
|  | InstCombiner &IC) { | 
|  | VectorType *InsVecType = InsElt->getType(); | 
|  | VectorType *ExtVecType = ExtElt->getVectorOperandType(); | 
|  | unsigned NumInsElts = InsVecType->getVectorNumElements(); | 
|  | unsigned NumExtElts = ExtVecType->getVectorNumElements(); | 
|  |  | 
|  | // The inserted-to vector must be wider than the extracted-from vector. | 
|  | if (InsVecType->getElementType() != ExtVecType->getElementType() || | 
|  | NumExtElts >= NumInsElts) | 
|  | return; | 
|  |  | 
|  | // Create a shuffle mask to widen the extended-from vector using undefined | 
|  | // values. The mask selects all of the values of the original vector followed | 
|  | // by as many undefined values as needed to create a vector of the same length | 
|  | // as the inserted-to vector. | 
|  | SmallVector<Constant *, 16> ExtendMask; | 
|  | IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); | 
|  | for (unsigned i = 0; i < NumExtElts; ++i) | 
|  | ExtendMask.push_back(ConstantInt::get(IntType, i)); | 
|  | for (unsigned i = NumExtElts; i < NumInsElts; ++i) | 
|  | ExtendMask.push_back(UndefValue::get(IntType)); | 
|  |  | 
|  | Value *ExtVecOp = ExtElt->getVectorOperand(); | 
|  | auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); | 
|  | BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) | 
|  | ? ExtVecOpInst->getParent() | 
|  | : ExtElt->getParent(); | 
|  |  | 
|  | // TODO: This restriction matches the basic block check below when creating | 
|  | // new extractelement instructions. If that limitation is removed, this one | 
|  | // could also be removed. But for now, we just bail out to ensure that we | 
|  | // will replace the extractelement instruction that is feeding our | 
|  | // insertelement instruction. This allows the insertelement to then be | 
|  | // replaced by a shufflevector. If the insertelement is not replaced, we can | 
|  | // induce infinite looping because there's an optimization for extractelement | 
|  | // that will delete our widening shuffle. This would trigger another attempt | 
|  | // here to create that shuffle, and we spin forever. | 
|  | if (InsertionBlock != InsElt->getParent()) | 
|  | return; | 
|  |  | 
|  | // TODO: This restriction matches the check in visitInsertElementInst() and | 
|  | // prevents an infinite loop caused by not turning the extract/insert pair | 
|  | // into a shuffle. We really should not need either check, but we're lacking | 
|  | // folds for shufflevectors because we're afraid to generate shuffle masks | 
|  | // that the backend can't handle. | 
|  | if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) | 
|  | return; | 
|  |  | 
|  | auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), | 
|  | ConstantVector::get(ExtendMask)); | 
|  |  | 
|  | // Insert the new shuffle after the vector operand of the extract is defined | 
|  | // (as long as it's not a PHI) or at the start of the basic block of the | 
|  | // extract, so any subsequent extracts in the same basic block can use it. | 
|  | // TODO: Insert before the earliest ExtractElementInst that is replaced. | 
|  | if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) | 
|  | WideVec->insertAfter(ExtVecOpInst); | 
|  | else | 
|  | IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); | 
|  |  | 
|  | // Replace extracts from the original narrow vector with extracts from the new | 
|  | // wide vector. | 
|  | for (User *U : ExtVecOp->users()) { | 
|  | ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); | 
|  | if (!OldExt || OldExt->getParent() != WideVec->getParent()) | 
|  | continue; | 
|  | auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); | 
|  | NewExt->insertAfter(OldExt); | 
|  | IC.replaceInstUsesWith(*OldExt, NewExt); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// We are building a shuffle to create V, which is a sequence of insertelement, | 
|  | /// extractelement pairs. If PermittedRHS is set, then we must either use it or | 
|  | /// not rely on the second vector source. Return a std::pair containing the | 
|  | /// left and right vectors of the proposed shuffle (or 0), and set the Mask | 
|  | /// parameter as required. | 
|  | /// | 
|  | /// Note: we intentionally don't try to fold earlier shuffles since they have | 
|  | /// often been chosen carefully to be efficiently implementable on the target. | 
|  | using ShuffleOps = std::pair<Value *, Value *>; | 
|  |  | 
|  | static ShuffleOps collectShuffleElements(Value *V, | 
|  | SmallVectorImpl<Constant *> &Mask, | 
|  | Value *PermittedRHS, | 
|  | InstCombiner &IC) { | 
|  | assert(V->getType()->isVectorTy() && "Invalid shuffle!"); | 
|  | unsigned NumElts = V->getType()->getVectorNumElements(); | 
|  |  | 
|  | if (isa<UndefValue>(V)) { | 
|  | Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); | 
|  | return std::make_pair( | 
|  | PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); | 
|  | } | 
|  |  | 
|  | if (isa<ConstantAggregateZero>(V)) { | 
|  | Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); | 
|  | return std::make_pair(V, nullptr); | 
|  | } | 
|  |  | 
|  | if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { | 
|  | // If this is an insert of an extract from some other vector, include it. | 
|  | Value *VecOp    = IEI->getOperand(0); | 
|  | Value *ScalarOp = IEI->getOperand(1); | 
|  | Value *IdxOp    = IEI->getOperand(2); | 
|  |  | 
|  | if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { | 
|  | if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { | 
|  | unsigned ExtractedIdx = | 
|  | cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); | 
|  | unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); | 
|  |  | 
|  | // Either the extracted from or inserted into vector must be RHSVec, | 
|  | // otherwise we'd end up with a shuffle of three inputs. | 
|  | if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { | 
|  | Value *RHS = EI->getOperand(0); | 
|  | ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); | 
|  | assert(LR.second == nullptr || LR.second == RHS); | 
|  |  | 
|  | if (LR.first->getType() != RHS->getType()) { | 
|  | // Although we are giving up for now, see if we can create extracts | 
|  | // that match the inserts for another round of combining. | 
|  | replaceExtractElements(IEI, EI, IC); | 
|  |  | 
|  | // We tried our best, but we can't find anything compatible with RHS | 
|  | // further up the chain. Return a trivial shuffle. | 
|  | for (unsigned i = 0; i < NumElts; ++i) | 
|  | Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); | 
|  | return std::make_pair(V, nullptr); | 
|  | } | 
|  |  | 
|  | unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); | 
|  | Mask[InsertedIdx % NumElts] = | 
|  | ConstantInt::get(Type::getInt32Ty(V->getContext()), | 
|  | NumLHSElts+ExtractedIdx); | 
|  | return std::make_pair(LR.first, RHS); | 
|  | } | 
|  |  | 
|  | if (VecOp == PermittedRHS) { | 
|  | // We've gone as far as we can: anything on the other side of the | 
|  | // extractelement will already have been converted into a shuffle. | 
|  | unsigned NumLHSElts = | 
|  | EI->getOperand(0)->getType()->getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Mask.push_back(ConstantInt::get( | 
|  | Type::getInt32Ty(V->getContext()), | 
|  | i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); | 
|  | return std::make_pair(EI->getOperand(0), PermittedRHS); | 
|  | } | 
|  |  | 
|  | // If this insertelement is a chain that comes from exactly these two | 
|  | // vectors, return the vector and the effective shuffle. | 
|  | if (EI->getOperand(0)->getType() == PermittedRHS->getType() && | 
|  | collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, | 
|  | Mask)) | 
|  | return std::make_pair(EI->getOperand(0), PermittedRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can't do anything fancy. Return an identity vector. | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); | 
|  | return std::make_pair(V, nullptr); | 
|  | } | 
|  |  | 
|  | /// Try to find redundant insertvalue instructions, like the following ones: | 
|  | ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0 | 
|  | ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0 | 
|  | /// Here the second instruction inserts values at the same indices, as the | 
|  | /// first one, making the first one redundant. | 
|  | /// It should be transformed to: | 
|  | ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0 | 
|  | Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { | 
|  | bool IsRedundant = false; | 
|  | ArrayRef<unsigned int> FirstIndices = I.getIndices(); | 
|  |  | 
|  | // If there is a chain of insertvalue instructions (each of them except the | 
|  | // last one has only one use and it's another insertvalue insn from this | 
|  | // chain), check if any of the 'children' uses the same indices as the first | 
|  | // instruction. In this case, the first one is redundant. | 
|  | Value *V = &I; | 
|  | unsigned Depth = 0; | 
|  | while (V->hasOneUse() && Depth < 10) { | 
|  | User *U = V->user_back(); | 
|  | auto UserInsInst = dyn_cast<InsertValueInst>(U); | 
|  | if (!UserInsInst || U->getOperand(0) != V) | 
|  | break; | 
|  | if (UserInsInst->getIndices() == FirstIndices) { | 
|  | IsRedundant = true; | 
|  | break; | 
|  | } | 
|  | V = UserInsInst; | 
|  | Depth++; | 
|  | } | 
|  |  | 
|  | if (IsRedundant) | 
|  | return replaceInstUsesWith(I, I.getOperand(0)); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { | 
|  | int MaskSize = Shuf.getMask()->getType()->getVectorNumElements(); | 
|  | int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements(); | 
|  |  | 
|  | // A vector select does not change the size of the operands. | 
|  | if (MaskSize != VecSize) | 
|  | return false; | 
|  |  | 
|  | // Each mask element must be undefined or choose a vector element from one of | 
|  | // the source operands without crossing vector lanes. | 
|  | for (int i = 0; i != MaskSize; ++i) { | 
|  | int Elt = Shuf.getMaskValue(i); | 
|  | if (Elt != -1 && Elt != i && Elt != i + VecSize) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Turn a chain of inserts that splats a value into a canonical insert + shuffle | 
|  | // splat. That is: | 
|  | // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> | 
|  | // shufflevector(insertelt(X, %k, 0), undef, zero) | 
|  | static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) { | 
|  | // We are interested in the last insert in a chain. So, if this insert | 
|  | // has a single user, and that user is an insert, bail. | 
|  | if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) | 
|  | return nullptr; | 
|  |  | 
|  | VectorType *VT = cast<VectorType>(InsElt.getType()); | 
|  | int NumElements = VT->getNumElements(); | 
|  |  | 
|  | // Do not try to do this for a one-element vector, since that's a nop, | 
|  | // and will cause an inf-loop. | 
|  | if (NumElements == 1) | 
|  | return nullptr; | 
|  |  | 
|  | Value *SplatVal = InsElt.getOperand(1); | 
|  | InsertElementInst *CurrIE = &InsElt; | 
|  | SmallVector<bool, 16> ElementPresent(NumElements, false); | 
|  | InsertElementInst *FirstIE = nullptr; | 
|  |  | 
|  | // Walk the chain backwards, keeping track of which indices we inserted into, | 
|  | // until we hit something that isn't an insert of the splatted value. | 
|  | while (CurrIE) { | 
|  | auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); | 
|  | if (!Idx || CurrIE->getOperand(1) != SplatVal) | 
|  | return nullptr; | 
|  |  | 
|  | auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); | 
|  | // Check none of the intermediate steps have any additional uses, except | 
|  | // for the root insertelement instruction, which can be re-used, if it | 
|  | // inserts at position 0. | 
|  | if (CurrIE != &InsElt && | 
|  | (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) | 
|  | return nullptr; | 
|  |  | 
|  | ElementPresent[Idx->getZExtValue()] = true; | 
|  | FirstIE = CurrIE; | 
|  | CurrIE = NextIE; | 
|  | } | 
|  |  | 
|  | // Make sure we've seen an insert into every element. | 
|  | if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; })) | 
|  | return nullptr; | 
|  |  | 
|  | // All right, create the insert + shuffle. | 
|  | Instruction *InsertFirst; | 
|  | if (cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) | 
|  | InsertFirst = FirstIE; | 
|  | else | 
|  | InsertFirst = InsertElementInst::Create( | 
|  | UndefValue::get(VT), SplatVal, | 
|  | ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0), | 
|  | "", &InsElt); | 
|  |  | 
|  | Constant *ZeroMask = ConstantAggregateZero::get( | 
|  | VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements)); | 
|  |  | 
|  | return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask); | 
|  | } | 
|  |  | 
|  | /// If we have an insertelement instruction feeding into another insertelement | 
|  | /// and the 2nd is inserting a constant into the vector, canonicalize that | 
|  | /// constant insertion before the insertion of a variable: | 
|  | /// | 
|  | /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> | 
|  | /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 | 
|  | /// | 
|  | /// This has the potential of eliminating the 2nd insertelement instruction | 
|  | /// via constant folding of the scalar constant into a vector constant. | 
|  | static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); | 
|  | if (!InsElt1 || !InsElt1->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *X, *Y; | 
|  | Constant *ScalarC; | 
|  | ConstantInt *IdxC1, *IdxC2; | 
|  | if (match(InsElt1->getOperand(0), m_Value(X)) && | 
|  | match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && | 
|  | match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && | 
|  | match(InsElt2.getOperand(1), m_Constant(ScalarC)) && | 
|  | match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { | 
|  | Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); | 
|  | return InsertElementInst::Create(NewInsElt1, Y, IdxC1); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex | 
|  | /// --> shufflevector X, CVec', Mask' | 
|  | static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { | 
|  | auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); | 
|  | // Bail out if the parent has more than one use. In that case, we'd be | 
|  | // replacing the insertelt with a shuffle, and that's not a clear win. | 
|  | if (!Inst || !Inst->hasOneUse()) | 
|  | return nullptr; | 
|  | if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { | 
|  | // The shuffle must have a constant vector operand. The insertelt must have | 
|  | // a constant scalar being inserted at a constant position in the vector. | 
|  | Constant *ShufConstVec, *InsEltScalar; | 
|  | uint64_t InsEltIndex; | 
|  | if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || | 
|  | !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || | 
|  | !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) | 
|  | return nullptr; | 
|  |  | 
|  | // Adding an element to an arbitrary shuffle could be expensive, but a | 
|  | // shuffle that selects elements from vectors without crossing lanes is | 
|  | // assumed cheap. | 
|  | // If we're just adding a constant into that shuffle, it will still be | 
|  | // cheap. | 
|  | if (!isShuffleEquivalentToSelect(*Shuf)) | 
|  | return nullptr; | 
|  |  | 
|  | // From the above 'select' check, we know that the mask has the same number | 
|  | // of elements as the vector input operands. We also know that each constant | 
|  | // input element is used in its lane and can not be used more than once by | 
|  | // the shuffle. Therefore, replace the constant in the shuffle's constant | 
|  | // vector with the insertelt constant. Replace the constant in the shuffle's | 
|  | // mask vector with the insertelt index plus the length of the vector | 
|  | // (because the constant vector operand of a shuffle is always the 2nd | 
|  | // operand). | 
|  | Constant *Mask = Shuf->getMask(); | 
|  | unsigned NumElts = Mask->getType()->getVectorNumElements(); | 
|  | SmallVector<Constant *, 16> NewShufElts(NumElts); | 
|  | SmallVector<Constant *, 16> NewMaskElts(NumElts); | 
|  | for (unsigned I = 0; I != NumElts; ++I) { | 
|  | if (I == InsEltIndex) { | 
|  | NewShufElts[I] = InsEltScalar; | 
|  | Type *Int32Ty = Type::getInt32Ty(Shuf->getContext()); | 
|  | NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts); | 
|  | } else { | 
|  | // Copy over the existing values. | 
|  | NewShufElts[I] = ShufConstVec->getAggregateElement(I); | 
|  | NewMaskElts[I] = Mask->getAggregateElement(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create new operands for a shuffle that includes the constant of the | 
|  | // original insertelt. The old shuffle will be dead now. | 
|  | return new ShuffleVectorInst(Shuf->getOperand(0), | 
|  | ConstantVector::get(NewShufElts), | 
|  | ConstantVector::get(NewMaskElts)); | 
|  | } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { | 
|  | // Transform sequences of insertelements ops with constant data/indexes into | 
|  | // a single shuffle op. | 
|  | unsigned NumElts = InsElt.getType()->getNumElements(); | 
|  |  | 
|  | uint64_t InsertIdx[2]; | 
|  | Constant *Val[2]; | 
|  | if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || | 
|  | !match(InsElt.getOperand(1), m_Constant(Val[0])) || | 
|  | !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || | 
|  | !match(IEI->getOperand(1), m_Constant(Val[1]))) | 
|  | return nullptr; | 
|  | SmallVector<Constant *, 16> Values(NumElts); | 
|  | SmallVector<Constant *, 16> Mask(NumElts); | 
|  | auto ValI = std::begin(Val); | 
|  | // Generate new constant vector and mask. | 
|  | // We have 2 values/masks from the insertelements instructions. Insert them | 
|  | // into new value/mask vectors. | 
|  | for (uint64_t I : InsertIdx) { | 
|  | if (!Values[I]) { | 
|  | assert(!Mask[I]); | 
|  | Values[I] = *ValI; | 
|  | Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), | 
|  | NumElts + I); | 
|  | } | 
|  | ++ValI; | 
|  | } | 
|  | // Remaining values are filled with 'undef' values. | 
|  | for (unsigned I = 0; I < NumElts; ++I) { | 
|  | if (!Values[I]) { | 
|  | assert(!Mask[I]); | 
|  | Values[I] = UndefValue::get(InsElt.getType()->getElementType()); | 
|  | Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); | 
|  | } | 
|  | } | 
|  | // Create new operands for a shuffle that includes the constant of the | 
|  | // original insertelt. | 
|  | return new ShuffleVectorInst(IEI->getOperand(0), | 
|  | ConstantVector::get(Values), | 
|  | ConstantVector::get(Mask)); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { | 
|  | Value *VecOp    = IE.getOperand(0); | 
|  | Value *ScalarOp = IE.getOperand(1); | 
|  | Value *IdxOp    = IE.getOperand(2); | 
|  |  | 
|  | if (auto *V = SimplifyInsertElementInst( | 
|  | VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) | 
|  | return replaceInstUsesWith(IE, V); | 
|  |  | 
|  | // Inserting an undef or into an undefined place, remove this. | 
|  | if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp)) | 
|  | replaceInstUsesWith(IE, VecOp); | 
|  |  | 
|  | // If the inserted element was extracted from some other vector, and if the | 
|  | // indexes are constant, try to turn this into a shufflevector operation. | 
|  | if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { | 
|  | if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { | 
|  | unsigned NumInsertVectorElts = IE.getType()->getNumElements(); | 
|  | unsigned NumExtractVectorElts = | 
|  | EI->getOperand(0)->getType()->getVectorNumElements(); | 
|  | unsigned ExtractedIdx = | 
|  | cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); | 
|  | unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); | 
|  |  | 
|  | if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract. | 
|  | return replaceInstUsesWith(IE, VecOp); | 
|  |  | 
|  | if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert. | 
|  | return replaceInstUsesWith(IE, UndefValue::get(IE.getType())); | 
|  |  | 
|  | // If we are extracting a value from a vector, then inserting it right | 
|  | // back into the same place, just use the input vector. | 
|  | if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) | 
|  | return replaceInstUsesWith(IE, VecOp); | 
|  |  | 
|  | // If this insertelement isn't used by some other insertelement, turn it | 
|  | // (and any insertelements it points to), into one big shuffle. | 
|  | if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) { | 
|  | SmallVector<Constant*, 16> Mask; | 
|  | ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); | 
|  |  | 
|  | // The proposed shuffle may be trivial, in which case we shouldn't | 
|  | // perform the combine. | 
|  | if (LR.first != &IE && LR.second != &IE) { | 
|  | // We now have a shuffle of LHS, RHS, Mask. | 
|  | if (LR.second == nullptr) | 
|  | LR.second = UndefValue::get(LR.first->getType()); | 
|  | return new ShuffleVectorInst(LR.first, LR.second, | 
|  | ConstantVector::get(Mask)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned VWidth = VecOp->getType()->getVectorNumElements(); | 
|  | APInt UndefElts(VWidth, 0); | 
|  | APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); | 
|  | if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { | 
|  | if (V != &IE) | 
|  | return replaceInstUsesWith(IE, V); | 
|  | return &IE; | 
|  | } | 
|  |  | 
|  | if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) | 
|  | return Shuf; | 
|  |  | 
|  | if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) | 
|  | return NewInsElt; | 
|  |  | 
|  | // Turn a sequence of inserts that broadcasts a scalar into a single | 
|  | // insert + shufflevector. | 
|  | if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE)) | 
|  | return Broadcast; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Return true if we can evaluate the specified expression tree if the vector | 
|  | /// elements were shuffled in a different order. | 
|  | static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask, | 
|  | unsigned Depth = 5) { | 
|  | // We can always reorder the elements of a constant. | 
|  | if (isa<Constant>(V)) | 
|  | return true; | 
|  |  | 
|  | // We won't reorder vector arguments. No IPO here. | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return false; | 
|  |  | 
|  | // Two users may expect different orders of the elements. Don't try it. | 
|  | if (!I->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | if (Depth == 0) return false; | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::FAdd: | 
|  | case Instruction::Sub: | 
|  | case Instruction::FSub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::FMul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::GetElementPtr: { | 
|  | for (Value *Operand : I->operands()) { | 
|  | if (!CanEvaluateShuffled(Operand, Mask, Depth-1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case Instruction::InsertElement: { | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); | 
|  | if (!CI) return false; | 
|  | int ElementNumber = CI->getLimitedValue(); | 
|  |  | 
|  | // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' | 
|  | // can't put an element into multiple indices. | 
|  | bool SeenOnce = false; | 
|  | for (int i = 0, e = Mask.size(); i != e; ++i) { | 
|  | if (Mask[i] == ElementNumber) { | 
|  | if (SeenOnce) | 
|  | return false; | 
|  | SeenOnce = true; | 
|  | } | 
|  | } | 
|  | return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Rebuild a new instruction just like 'I' but with the new operands given. | 
|  | /// In the event of type mismatch, the type of the operands is correct. | 
|  | static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { | 
|  | // We don't want to use the IRBuilder here because we want the replacement | 
|  | // instructions to appear next to 'I', not the builder's insertion point. | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::FAdd: | 
|  | case Instruction::Sub: | 
|  | case Instruction::FSub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::FMul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: { | 
|  | BinaryOperator *BO = cast<BinaryOperator>(I); | 
|  | assert(NewOps.size() == 2 && "binary operator with #ops != 2"); | 
|  | BinaryOperator *New = | 
|  | BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), | 
|  | NewOps[0], NewOps[1], "", BO); | 
|  | if (isa<OverflowingBinaryOperator>(BO)) { | 
|  | New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); | 
|  | New->setHasNoSignedWrap(BO->hasNoSignedWrap()); | 
|  | } | 
|  | if (isa<PossiblyExactOperator>(BO)) { | 
|  | New->setIsExact(BO->isExact()); | 
|  | } | 
|  | if (isa<FPMathOperator>(BO)) | 
|  | New->copyFastMathFlags(I); | 
|  | return New; | 
|  | } | 
|  | case Instruction::ICmp: | 
|  | assert(NewOps.size() == 2 && "icmp with #ops != 2"); | 
|  | return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), | 
|  | NewOps[0], NewOps[1]); | 
|  | case Instruction::FCmp: | 
|  | assert(NewOps.size() == 2 && "fcmp with #ops != 2"); | 
|  | return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), | 
|  | NewOps[0], NewOps[1]); | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: { | 
|  | // It's possible that the mask has a different number of elements from | 
|  | // the original cast. We recompute the destination type to match the mask. | 
|  | Type *DestTy = | 
|  | VectorType::get(I->getType()->getScalarType(), | 
|  | NewOps[0]->getType()->getVectorNumElements()); | 
|  | assert(NewOps.size() == 1 && "cast with #ops != 1"); | 
|  | return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, | 
|  | "", I); | 
|  | } | 
|  | case Instruction::GetElementPtr: { | 
|  | Value *Ptr = NewOps[0]; | 
|  | ArrayRef<Value*> Idx = NewOps.slice(1); | 
|  | GetElementPtrInst *GEP = GetElementPtrInst::Create( | 
|  | cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); | 
|  | GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); | 
|  | return GEP; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("failed to rebuild vector instructions"); | 
|  | } | 
|  |  | 
|  | Value * | 
|  | InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { | 
|  | // Mask.size() does not need to be equal to the number of vector elements. | 
|  |  | 
|  | assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); | 
|  | Type *EltTy = V->getType()->getScalarType(); | 
|  | if (isa<UndefValue>(V)) | 
|  | return UndefValue::get(VectorType::get(EltTy, Mask.size())); | 
|  |  | 
|  | if (isa<ConstantAggregateZero>(V)) | 
|  | return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size())); | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | SmallVector<Constant *, 16> MaskValues; | 
|  | for (int i = 0, e = Mask.size(); i != e; ++i) { | 
|  | if (Mask[i] == -1) | 
|  | MaskValues.push_back(UndefValue::get(Builder.getInt32Ty())); | 
|  | else | 
|  | MaskValues.push_back(Builder.getInt32(Mask[i])); | 
|  | } | 
|  | return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), | 
|  | ConstantVector::get(MaskValues)); | 
|  | } | 
|  |  | 
|  | Instruction *I = cast<Instruction>(V); | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::FAdd: | 
|  | case Instruction::Sub: | 
|  | case Instruction::FSub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::FMul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::Select: | 
|  | case Instruction::GetElementPtr: { | 
|  | SmallVector<Value*, 8> NewOps; | 
|  | bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); | 
|  | for (int i = 0, e = I->getNumOperands(); i != e; ++i) { | 
|  | Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask); | 
|  | NewOps.push_back(V); | 
|  | NeedsRebuild |= (V != I->getOperand(i)); | 
|  | } | 
|  | if (NeedsRebuild) { | 
|  | return buildNew(I, NewOps); | 
|  | } | 
|  | return I; | 
|  | } | 
|  | case Instruction::InsertElement: { | 
|  | int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); | 
|  |  | 
|  | // The insertelement was inserting at Element. Figure out which element | 
|  | // that becomes after shuffling. The answer is guaranteed to be unique | 
|  | // by CanEvaluateShuffled. | 
|  | bool Found = false; | 
|  | int Index = 0; | 
|  | for (int e = Mask.size(); Index != e; ++Index) { | 
|  | if (Mask[Index] == Element) { | 
|  | Found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If element is not in Mask, no need to handle the operand 1 (element to | 
|  | // be inserted). Just evaluate values in operand 0 according to Mask. | 
|  | if (!Found) | 
|  | return EvaluateInDifferentElementOrder(I->getOperand(0), Mask); | 
|  |  | 
|  | Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask); | 
|  | return InsertElementInst::Create(V, I->getOperand(1), | 
|  | Builder.getInt32(Index), "", I); | 
|  | } | 
|  | } | 
|  | llvm_unreachable("failed to reorder elements of vector instruction!"); | 
|  | } | 
|  |  | 
|  | static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask, | 
|  | bool &isLHSID, bool &isRHSID) { | 
|  | isLHSID = isRHSID = true; | 
|  |  | 
|  | for (unsigned i = 0, e = Mask.size(); i != e; ++i) { | 
|  | if (Mask[i] < 0) continue;  // Ignore undef values. | 
|  | // Is this an identity shuffle of the LHS value? | 
|  | isLHSID &= (Mask[i] == (int)i); | 
|  |  | 
|  | // Is this an identity shuffle of the RHS value? | 
|  | isRHSID &= (Mask[i]-e == i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns true if the shuffle is extracting a contiguous range of values from | 
|  | // LHS, for example: | 
|  | //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | 
|  | //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| | 
|  | //   Shuffles to:  |EE|FF|GG|HH| | 
|  | //                 +--+--+--+--+ | 
|  | static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, | 
|  | SmallVector<int, 16> &Mask) { | 
|  | unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements(); | 
|  | unsigned MaskElems = Mask.size(); | 
|  | unsigned BegIdx = Mask.front(); | 
|  | unsigned EndIdx = Mask.back(); | 
|  | if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) | 
|  | return false; | 
|  | for (unsigned I = 0; I != MaskElems; ++I) | 
|  | if (static_cast<unsigned>(Mask[I]) != BegIdx + I) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { | 
|  | Value *LHS = SVI.getOperand(0); | 
|  | Value *RHS = SVI.getOperand(1); | 
|  | SmallVector<int, 16> Mask = SVI.getShuffleMask(); | 
|  | Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); | 
|  |  | 
|  | if (auto *V = SimplifyShuffleVectorInst( | 
|  | LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI))) | 
|  | return replaceInstUsesWith(SVI, V); | 
|  |  | 
|  | bool MadeChange = false; | 
|  | unsigned VWidth = SVI.getType()->getVectorNumElements(); | 
|  |  | 
|  | APInt UndefElts(VWidth, 0); | 
|  | APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); | 
|  | if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { | 
|  | if (V != &SVI) | 
|  | return replaceInstUsesWith(SVI, V); | 
|  | return &SVI; | 
|  | } | 
|  |  | 
|  | unsigned LHSWidth = LHS->getType()->getVectorNumElements(); | 
|  |  | 
|  | // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask') | 
|  | // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). | 
|  | if (LHS == RHS || isa<UndefValue>(LHS)) { | 
|  | if (isa<UndefValue>(LHS) && LHS == RHS) { | 
|  | // shuffle(undef,undef,mask) -> undef. | 
|  | Value *Result = (VWidth == LHSWidth) | 
|  | ? LHS : UndefValue::get(SVI.getType()); | 
|  | return replaceInstUsesWith(SVI, Result); | 
|  | } | 
|  |  | 
|  | // Remap any references to RHS to use LHS. | 
|  | SmallVector<Constant*, 16> Elts; | 
|  | for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { | 
|  | if (Mask[i] < 0) { | 
|  | Elts.push_back(UndefValue::get(Int32Ty)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || | 
|  | (Mask[i] <  (int)e && isa<UndefValue>(LHS))) { | 
|  | Mask[i] = -1;     // Turn into undef. | 
|  | Elts.push_back(UndefValue::get(Int32Ty)); | 
|  | } else { | 
|  | Mask[i] = Mask[i] % e;  // Force to LHS. | 
|  | Elts.push_back(ConstantInt::get(Int32Ty, Mask[i])); | 
|  | } | 
|  | } | 
|  | SVI.setOperand(0, SVI.getOperand(1)); | 
|  | SVI.setOperand(1, UndefValue::get(RHS->getType())); | 
|  | SVI.setOperand(2, ConstantVector::get(Elts)); | 
|  | LHS = SVI.getOperand(0); | 
|  | RHS = SVI.getOperand(1); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | if (VWidth == LHSWidth) { | 
|  | // Analyze the shuffle, are the LHS or RHS and identity shuffles? | 
|  | bool isLHSID, isRHSID; | 
|  | recognizeIdentityMask(Mask, isLHSID, isRHSID); | 
|  |  | 
|  | // Eliminate identity shuffles. | 
|  | if (isLHSID) return replaceInstUsesWith(SVI, LHS); | 
|  | if (isRHSID) return replaceInstUsesWith(SVI, RHS); | 
|  | } | 
|  |  | 
|  | if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) { | 
|  | Value *V = EvaluateInDifferentElementOrder(LHS, Mask); | 
|  | return replaceInstUsesWith(SVI, V); | 
|  | } | 
|  |  | 
|  | // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to | 
|  | // a non-vector type. We can instead bitcast the original vector followed by | 
|  | // an extract of the desired element: | 
|  | // | 
|  | //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, | 
|  | //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3> | 
|  | //   %1 = bitcast <4 x i8> %sroa to i32 | 
|  | // Becomes: | 
|  | //   %bc = bitcast <16 x i8> %in to <4 x i32> | 
|  | //   %ext = extractelement <4 x i32> %bc, i32 0 | 
|  | // | 
|  | // If the shuffle is extracting a contiguous range of values from the input | 
|  | // vector then each use which is a bitcast of the extracted size can be | 
|  | // replaced. This will work if the vector types are compatible, and the begin | 
|  | // index is aligned to a value in the casted vector type. If the begin index | 
|  | // isn't aligned then we can shuffle the original vector (keeping the same | 
|  | // vector type) before extracting. | 
|  | // | 
|  | // This code will bail out if the target type is fundamentally incompatible | 
|  | // with vectors of the source type. | 
|  | // | 
|  | // Example of <16 x i8>, target type i32: | 
|  | // Index range [4,8):         v-----------v Will work. | 
|  | //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | 
|  | //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | | 
|  | //     <4 x i32>: |           |           |           |           | | 
|  | //                +-----------+-----------+-----------+-----------+ | 
|  | // Index range [6,10):              ^-----------^ Needs an extra shuffle. | 
|  | // Target type i40:           ^--------------^ Won't work, bail. | 
|  | if (isShuffleExtractingFromLHS(SVI, Mask)) { | 
|  | Value *V = LHS; | 
|  | unsigned MaskElems = Mask.size(); | 
|  | VectorType *SrcTy = cast<VectorType>(V->getType()); | 
|  | unsigned VecBitWidth = SrcTy->getBitWidth(); | 
|  | unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); | 
|  | assert(SrcElemBitWidth && "vector elements must have a bitwidth"); | 
|  | unsigned SrcNumElems = SrcTy->getNumElements(); | 
|  | SmallVector<BitCastInst *, 8> BCs; | 
|  | DenseMap<Type *, Value *> NewBCs; | 
|  | for (User *U : SVI.users()) | 
|  | if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) | 
|  | if (!BC->use_empty()) | 
|  | // Only visit bitcasts that weren't previously handled. | 
|  | BCs.push_back(BC); | 
|  | for (BitCastInst *BC : BCs) { | 
|  | unsigned BegIdx = Mask.front(); | 
|  | Type *TgtTy = BC->getDestTy(); | 
|  | unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); | 
|  | if (!TgtElemBitWidth) | 
|  | continue; | 
|  | unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; | 
|  | bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; | 
|  | bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); | 
|  | if (!VecBitWidthsEqual) | 
|  | continue; | 
|  | if (!VectorType::isValidElementType(TgtTy)) | 
|  | continue; | 
|  | VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); | 
|  | if (!BegIsAligned) { | 
|  | // Shuffle the input so [0,NumElements) contains the output, and | 
|  | // [NumElems,SrcNumElems) is undef. | 
|  | SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, | 
|  | UndefValue::get(Int32Ty)); | 
|  | for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) | 
|  | ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); | 
|  | V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), | 
|  | ConstantVector::get(ShuffleMask), | 
|  | SVI.getName() + ".extract"); | 
|  | BegIdx = 0; | 
|  | } | 
|  | unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; | 
|  | assert(SrcElemsPerTgtElem); | 
|  | BegIdx /= SrcElemsPerTgtElem; | 
|  | bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); | 
|  | auto *NewBC = | 
|  | BCAlreadyExists | 
|  | ? NewBCs[CastSrcTy] | 
|  | : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); | 
|  | if (!BCAlreadyExists) | 
|  | NewBCs[CastSrcTy] = NewBC; | 
|  | auto *Ext = Builder.CreateExtractElement( | 
|  | NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); | 
|  | // The shufflevector isn't being replaced: the bitcast that used it | 
|  | // is. InstCombine will visit the newly-created instructions. | 
|  | replaceInstUsesWith(*BC, Ext); | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the LHS is a shufflevector itself, see if we can combine it with this | 
|  | // one without producing an unusual shuffle. | 
|  | // Cases that might be simplified: | 
|  | // 1. | 
|  | // x1=shuffle(v1,v2,mask1) | 
|  | //  x=shuffle(x1,undef,mask) | 
|  | //        ==> | 
|  | //  x=shuffle(v1,undef,newMask) | 
|  | // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 | 
|  | // 2. | 
|  | // x1=shuffle(v1,undef,mask1) | 
|  | //  x=shuffle(x1,x2,mask) | 
|  | // where v1.size() == mask1.size() | 
|  | //        ==> | 
|  | //  x=shuffle(v1,x2,newMask) | 
|  | // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] | 
|  | // 3. | 
|  | // x2=shuffle(v2,undef,mask2) | 
|  | //  x=shuffle(x1,x2,mask) | 
|  | // where v2.size() == mask2.size() | 
|  | //        ==> | 
|  | //  x=shuffle(x1,v2,newMask) | 
|  | // newMask[i] = (mask[i] < x1.size()) | 
|  | //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() | 
|  | // 4. | 
|  | // x1=shuffle(v1,undef,mask1) | 
|  | // x2=shuffle(v2,undef,mask2) | 
|  | //  x=shuffle(x1,x2,mask) | 
|  | // where v1.size() == v2.size() | 
|  | //        ==> | 
|  | //  x=shuffle(v1,v2,newMask) | 
|  | // newMask[i] = (mask[i] < x1.size()) | 
|  | //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() | 
|  | // | 
|  | // Here we are really conservative: | 
|  | // we are absolutely afraid of producing a shuffle mask not in the input | 
|  | // program, because the code gen may not be smart enough to turn a merged | 
|  | // shuffle into two specific shuffles: it may produce worse code.  As such, | 
|  | // we only merge two shuffles if the result is either a splat or one of the | 
|  | // input shuffle masks.  In this case, merging the shuffles just removes | 
|  | // one instruction, which we know is safe.  This is good for things like | 
|  | // turning: (splat(splat)) -> splat, or | 
|  | // merge(V[0..n], V[n+1..2n]) -> V[0..2n] | 
|  | ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); | 
|  | ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); | 
|  | if (LHSShuffle) | 
|  | if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) | 
|  | LHSShuffle = nullptr; | 
|  | if (RHSShuffle) | 
|  | if (!isa<UndefValue>(RHSShuffle->getOperand(1))) | 
|  | RHSShuffle = nullptr; | 
|  | if (!LHSShuffle && !RHSShuffle) | 
|  | return MadeChange ? &SVI : nullptr; | 
|  |  | 
|  | Value* LHSOp0 = nullptr; | 
|  | Value* LHSOp1 = nullptr; | 
|  | Value* RHSOp0 = nullptr; | 
|  | unsigned LHSOp0Width = 0; | 
|  | unsigned RHSOp0Width = 0; | 
|  | if (LHSShuffle) { | 
|  | LHSOp0 = LHSShuffle->getOperand(0); | 
|  | LHSOp1 = LHSShuffle->getOperand(1); | 
|  | LHSOp0Width = LHSOp0->getType()->getVectorNumElements(); | 
|  | } | 
|  | if (RHSShuffle) { | 
|  | RHSOp0 = RHSShuffle->getOperand(0); | 
|  | RHSOp0Width = RHSOp0->getType()->getVectorNumElements(); | 
|  | } | 
|  | Value* newLHS = LHS; | 
|  | Value* newRHS = RHS; | 
|  | if (LHSShuffle) { | 
|  | // case 1 | 
|  | if (isa<UndefValue>(RHS)) { | 
|  | newLHS = LHSOp0; | 
|  | newRHS = LHSOp1; | 
|  | } | 
|  | // case 2 or 4 | 
|  | else if (LHSOp0Width == LHSWidth) { | 
|  | newLHS = LHSOp0; | 
|  | } | 
|  | } | 
|  | // case 3 or 4 | 
|  | if (RHSShuffle && RHSOp0Width == LHSWidth) { | 
|  | newRHS = RHSOp0; | 
|  | } | 
|  | // case 4 | 
|  | if (LHSOp0 == RHSOp0) { | 
|  | newLHS = LHSOp0; | 
|  | newRHS = nullptr; | 
|  | } | 
|  |  | 
|  | if (newLHS == LHS && newRHS == RHS) | 
|  | return MadeChange ? &SVI : nullptr; | 
|  |  | 
|  | SmallVector<int, 16> LHSMask; | 
|  | SmallVector<int, 16> RHSMask; | 
|  | if (newLHS != LHS) | 
|  | LHSMask = LHSShuffle->getShuffleMask(); | 
|  | if (RHSShuffle && newRHS != RHS) | 
|  | RHSMask = RHSShuffle->getShuffleMask(); | 
|  |  | 
|  | unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; | 
|  | SmallVector<int, 16> newMask; | 
|  | bool isSplat = true; | 
|  | int SplatElt = -1; | 
|  | // Create a new mask for the new ShuffleVectorInst so that the new | 
|  | // ShuffleVectorInst is equivalent to the original one. | 
|  | for (unsigned i = 0; i < VWidth; ++i) { | 
|  | int eltMask; | 
|  | if (Mask[i] < 0) { | 
|  | // This element is an undef value. | 
|  | eltMask = -1; | 
|  | } else if (Mask[i] < (int)LHSWidth) { | 
|  | // This element is from left hand side vector operand. | 
|  | // | 
|  | // If LHS is going to be replaced (case 1, 2, or 4), calculate the | 
|  | // new mask value for the element. | 
|  | if (newLHS != LHS) { | 
|  | eltMask = LHSMask[Mask[i]]; | 
|  | // If the value selected is an undef value, explicitly specify it | 
|  | // with a -1 mask value. | 
|  | if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) | 
|  | eltMask = -1; | 
|  | } else | 
|  | eltMask = Mask[i]; | 
|  | } else { | 
|  | // This element is from right hand side vector operand | 
|  | // | 
|  | // If the value selected is an undef value, explicitly specify it | 
|  | // with a -1 mask value. (case 1) | 
|  | if (isa<UndefValue>(RHS)) | 
|  | eltMask = -1; | 
|  | // If RHS is going to be replaced (case 3 or 4), calculate the | 
|  | // new mask value for the element. | 
|  | else if (newRHS != RHS) { | 
|  | eltMask = RHSMask[Mask[i]-LHSWidth]; | 
|  | // If the value selected is an undef value, explicitly specify it | 
|  | // with a -1 mask value. | 
|  | if (eltMask >= (int)RHSOp0Width) { | 
|  | assert(isa<UndefValue>(RHSShuffle->getOperand(1)) | 
|  | && "should have been check above"); | 
|  | eltMask = -1; | 
|  | } | 
|  | } else | 
|  | eltMask = Mask[i]-LHSWidth; | 
|  |  | 
|  | // If LHS's width is changed, shift the mask value accordingly. | 
|  | // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any | 
|  | // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. | 
|  | // If newRHS == newLHS, we want to remap any references from newRHS to | 
|  | // newLHS so that we can properly identify splats that may occur due to | 
|  | // obfuscation across the two vectors. | 
|  | if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) | 
|  | eltMask += newLHSWidth; | 
|  | } | 
|  |  | 
|  | // Check if this could still be a splat. | 
|  | if (eltMask >= 0) { | 
|  | if (SplatElt >= 0 && SplatElt != eltMask) | 
|  | isSplat = false; | 
|  | SplatElt = eltMask; | 
|  | } | 
|  |  | 
|  | newMask.push_back(eltMask); | 
|  | } | 
|  |  | 
|  | // If the result mask is equal to one of the original shuffle masks, | 
|  | // or is a splat, do the replacement. | 
|  | if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { | 
|  | SmallVector<Constant*, 16> Elts; | 
|  | for (unsigned i = 0, e = newMask.size(); i != e; ++i) { | 
|  | if (newMask[i] < 0) { | 
|  | Elts.push_back(UndefValue::get(Int32Ty)); | 
|  | } else { | 
|  | Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); | 
|  | } | 
|  | } | 
|  | if (!newRHS) | 
|  | newRHS = UndefValue::get(newLHS->getType()); | 
|  | return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); | 
|  | } | 
|  |  | 
|  | // If the result mask is an identity, replace uses of this instruction with | 
|  | // corresponding argument. | 
|  | bool isLHSID, isRHSID; | 
|  | recognizeIdentityMask(newMask, isLHSID, isRHSID); | 
|  | if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS); | 
|  | if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS); | 
|  |  | 
|  | return MadeChange ? &SVI : nullptr; | 
|  | } |