|  | //===- InstCombineCasts.cpp -----------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visit functions for cast operations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombine.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Support/PatternMatch.h" | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear | 
|  | /// expression.  If so, decompose it, returning some value X, such that Val is | 
|  | /// X*Scale+Offset. | 
|  | /// | 
|  | static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, | 
|  | uint64_t &Offset) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { | 
|  | Offset = CI->getZExtValue(); | 
|  | Scale  = 0; | 
|  | return ConstantInt::get(Val->getType(), 0); | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | if (I->getOpcode() == Instruction::Shl) { | 
|  | // This is a value scaled by '1 << the shift amt'. | 
|  | Scale = UINT64_C(1) << RHS->getZExtValue(); | 
|  | Offset = 0; | 
|  | return I->getOperand(0); | 
|  | } | 
|  |  | 
|  | if (I->getOpcode() == Instruction::Mul) { | 
|  | // This value is scaled by 'RHS'. | 
|  | Scale = RHS->getZExtValue(); | 
|  | Offset = 0; | 
|  | return I->getOperand(0); | 
|  | } | 
|  |  | 
|  | if (I->getOpcode() == Instruction::Add) { | 
|  | // We have X+C.  Check to see if we really have (X*C2)+C1, | 
|  | // where C1 is divisible by C2. | 
|  | unsigned SubScale; | 
|  | Value *SubVal = | 
|  | DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); | 
|  | Offset += RHS->getZExtValue(); | 
|  | Scale = SubScale; | 
|  | return SubVal; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can't look past this. | 
|  | Scale = 1; | 
|  | Offset = 0; | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, | 
|  | /// try to eliminate the cast by moving the type information into the alloc. | 
|  | Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, | 
|  | AllocaInst &AI) { | 
|  | // This requires TargetData to get the alloca alignment and size information. | 
|  | if (!TD) return 0; | 
|  |  | 
|  | // Insist that the amount-to-allocate not overflow. | 
|  | OverflowingBinaryOperator *OBI = | 
|  | dyn_cast<OverflowingBinaryOperator>(AI.getOperand(0)); | 
|  | if (OBI && !(OBI->hasNoSignedWrap() || OBI->hasNoUnsignedWrap())) return 0; | 
|  |  | 
|  | const PointerType *PTy = cast<PointerType>(CI.getType()); | 
|  |  | 
|  | BuilderTy AllocaBuilder(*Builder); | 
|  | AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); | 
|  |  | 
|  | // Get the type really allocated and the type casted to. | 
|  | const Type *AllocElTy = AI.getAllocatedType(); | 
|  | const Type *CastElTy = PTy->getElementType(); | 
|  | if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; | 
|  |  | 
|  | unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy); | 
|  | unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy); | 
|  | if (CastElTyAlign < AllocElTyAlign) return 0; | 
|  |  | 
|  | // If the allocation has multiple uses, only promote it if we are strictly | 
|  | // increasing the alignment of the resultant allocation.  If we keep it the | 
|  | // same, we open the door to infinite loops of various kinds. | 
|  | if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0; | 
|  |  | 
|  | uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy); | 
|  | uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy); | 
|  | if (CastElTySize == 0 || AllocElTySize == 0) return 0; | 
|  |  | 
|  | // See if we can satisfy the modulus by pulling a scale out of the array | 
|  | // size argument. | 
|  | unsigned ArraySizeScale; | 
|  | uint64_t ArrayOffset; | 
|  | Value *NumElements = // See if the array size is a decomposable linear expr. | 
|  | DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); | 
|  |  | 
|  | // If we can now satisfy the modulus, by using a non-1 scale, we really can | 
|  | // do the xform. | 
|  | if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || | 
|  | (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0; | 
|  |  | 
|  | unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; | 
|  | Value *Amt = 0; | 
|  | if (Scale == 1) { | 
|  | Amt = NumElements; | 
|  | } else { | 
|  | Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); | 
|  | // Insert before the alloca, not before the cast. | 
|  | Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp"); | 
|  | } | 
|  |  | 
|  | if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { | 
|  | Value *Off = ConstantInt::get(AI.getArraySize()->getType(), | 
|  | Offset, true); | 
|  | Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp"); | 
|  | } | 
|  |  | 
|  | AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); | 
|  | New->setAlignment(AI.getAlignment()); | 
|  | New->takeName(&AI); | 
|  |  | 
|  | // If the allocation has multiple real uses, insert a cast and change all | 
|  | // things that used it to use the new cast.  This will also hack on CI, but it | 
|  | // will die soon. | 
|  | if (!AI.hasOneUse()) { | 
|  | // New is the allocation instruction, pointer typed. AI is the original | 
|  | // allocation instruction, also pointer typed. Thus, cast to use is BitCast. | 
|  | Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); | 
|  | ReplaceInstUsesWith(AI, NewCast); | 
|  | } | 
|  | return ReplaceInstUsesWith(CI, New); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// EvaluateInDifferentType - Given an expression that | 
|  | /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually | 
|  | /// insert the code to evaluate the expression. | 
|  | Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, | 
|  | bool isSigned) { | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); | 
|  | // If we got a constantexpr back, try to simplify it with TD info. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) | 
|  | C = ConstantFoldConstantExpression(CE, TD); | 
|  | return C; | 
|  | } | 
|  |  | 
|  | // Otherwise, it must be an instruction. | 
|  | Instruction *I = cast<Instruction>(V); | 
|  | Instruction *Res = 0; | 
|  | unsigned Opc = I->getOpcode(); | 
|  | switch (Opc) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::AShr: | 
|  | case Instruction::LShr: | 
|  | case Instruction::Shl: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: { | 
|  | Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); | 
|  | Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); | 
|  | Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); | 
|  | break; | 
|  | } | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | // If the source type of the cast is the type we're trying for then we can | 
|  | // just return the source.  There's no need to insert it because it is not | 
|  | // new. | 
|  | if (I->getOperand(0)->getType() == Ty) | 
|  | return I->getOperand(0); | 
|  |  | 
|  | // Otherwise, must be the same type of cast, so just reinsert a new one. | 
|  | // This also handles the case of zext(trunc(x)) -> zext(x). | 
|  | Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, | 
|  | Opc == Instruction::SExt); | 
|  | break; | 
|  | case Instruction::Select: { | 
|  | Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); | 
|  | Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); | 
|  | Res = SelectInst::Create(I->getOperand(0), True, False); | 
|  | break; | 
|  | } | 
|  | case Instruction::PHI: { | 
|  | PHINode *OPN = cast<PHINode>(I); | 
|  | PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); | 
|  | for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); | 
|  | NPN->addIncoming(V, OPN->getIncomingBlock(i)); | 
|  | } | 
|  | Res = NPN; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | // TODO: Can handle more cases here. | 
|  | llvm_unreachable("Unreachable!"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Res->takeName(I); | 
|  | return InsertNewInstWith(Res, *I); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// This function is a wrapper around CastInst::isEliminableCastPair. It | 
|  | /// simply extracts arguments and returns what that function returns. | 
|  | static Instruction::CastOps | 
|  | isEliminableCastPair( | 
|  | const CastInst *CI, ///< The first cast instruction | 
|  | unsigned opcode,       ///< The opcode of the second cast instruction | 
|  | const Type *DstTy,     ///< The target type for the second cast instruction | 
|  | TargetData *TD         ///< The target data for pointer size | 
|  | ) { | 
|  |  | 
|  | const Type *SrcTy = CI->getOperand(0)->getType();   // A from above | 
|  | const Type *MidTy = CI->getType();                  // B from above | 
|  |  | 
|  | // Get the opcodes of the two Cast instructions | 
|  | Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); | 
|  | Instruction::CastOps secondOp = Instruction::CastOps(opcode); | 
|  |  | 
|  | unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, | 
|  | DstTy, | 
|  | TD ? TD->getIntPtrType(CI->getContext()) : 0); | 
|  |  | 
|  | // We don't want to form an inttoptr or ptrtoint that converts to an integer | 
|  | // type that differs from the pointer size. | 
|  | if ((Res == Instruction::IntToPtr && | 
|  | (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) || | 
|  | (Res == Instruction::PtrToInt && | 
|  | (!TD || DstTy != TD->getIntPtrType(CI->getContext())))) | 
|  | Res = 0; | 
|  |  | 
|  | return Instruction::CastOps(Res); | 
|  | } | 
|  |  | 
|  | /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually | 
|  | /// results in any code being generated and is interesting to optimize out. If | 
|  | /// the cast can be eliminated by some other simple transformation, we prefer | 
|  | /// to do the simplification first. | 
|  | bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, | 
|  | const Type *Ty) { | 
|  | // Noop casts and casts of constants should be eliminated trivially. | 
|  | if (V->getType() == Ty || isa<Constant>(V)) return false; | 
|  |  | 
|  | // If this is another cast that can be eliminated, we prefer to have it | 
|  | // eliminated. | 
|  | if (const CastInst *CI = dyn_cast<CastInst>(V)) | 
|  | if (isEliminableCastPair(CI, opc, Ty, TD)) | 
|  | return false; | 
|  |  | 
|  | // If this is a vector sext from a compare, then we don't want to break the | 
|  | // idiom where each element of the extended vector is either zero or all ones. | 
|  | if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// @brief Implement the transforms common to all CastInst visitors. | 
|  | Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { | 
|  | Value *Src = CI.getOperand(0); | 
|  |  | 
|  | // Many cases of "cast of a cast" are eliminable. If it's eliminable we just | 
|  | // eliminate it now. | 
|  | if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast | 
|  | if (Instruction::CastOps opc = | 
|  | isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { | 
|  | // The first cast (CSrc) is eliminable so we need to fix up or replace | 
|  | // the second cast (CI). CSrc will then have a good chance of being dead. | 
|  | return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are casting a select then fold the cast into the select | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Src)) | 
|  | if (Instruction *NV = FoldOpIntoSelect(CI, SI)) | 
|  | return NV; | 
|  |  | 
|  | // If we are casting a PHI then fold the cast into the PHI | 
|  | if (isa<PHINode>(Src)) { | 
|  | // We don't do this if this would create a PHI node with an illegal type if | 
|  | // it is currently legal. | 
|  | if (!Src->getType()->isIntegerTy() || | 
|  | !CI.getType()->isIntegerTy() || | 
|  | ShouldChangeType(CI.getType(), Src->getType())) | 
|  | if (Instruction *NV = FoldOpIntoPhi(CI)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// CanEvaluateTruncated - Return true if we can evaluate the specified | 
|  | /// expression tree as type Ty instead of its larger type, and arrive with the | 
|  | /// same value.  This is used by code that tries to eliminate truncates. | 
|  | /// | 
|  | /// Ty will always be a type smaller than V.  We should return true if trunc(V) | 
|  | /// can be computed by computing V in the smaller type.  If V is an instruction, | 
|  | /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only | 
|  | /// makes sense if x and y can be efficiently truncated. | 
|  | /// | 
|  | /// This function works on both vectors and scalars. | 
|  | /// | 
|  | static bool CanEvaluateTruncated(Value *V, const Type *Ty) { | 
|  | // We can always evaluate constants in another type. | 
|  | if (isa<Constant>(V)) | 
|  | return true; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return false; | 
|  |  | 
|  | const Type *OrigTy = V->getType(); | 
|  |  | 
|  | // If this is an extension from the dest type, we can eliminate it, even if it | 
|  | // has multiple uses. | 
|  | if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && | 
|  | I->getOperand(0)->getType() == Ty) | 
|  | return true; | 
|  |  | 
|  | // We can't extend or shrink something that has multiple uses: doing so would | 
|  | // require duplicating the instruction in general, which isn't profitable. | 
|  | if (!I->hasOneUse()) return false; | 
|  |  | 
|  | unsigned Opc = I->getOpcode(); | 
|  | switch (Opc) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | // These operators can all arbitrarily be extended or truncated. | 
|  | return CanEvaluateTruncated(I->getOperand(0), Ty) && | 
|  | CanEvaluateTruncated(I->getOperand(1), Ty); | 
|  |  | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: { | 
|  | // UDiv and URem can be truncated if all the truncated bits are zero. | 
|  | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); | 
|  | uint32_t BitWidth = Ty->getScalarSizeInBits(); | 
|  | if (BitWidth < OrigBitWidth) { | 
|  | APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); | 
|  | if (MaskedValueIsZero(I->getOperand(0), Mask) && | 
|  | MaskedValueIsZero(I->getOperand(1), Mask)) { | 
|  | return CanEvaluateTruncated(I->getOperand(0), Ty) && | 
|  | CanEvaluateTruncated(I->getOperand(1), Ty); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Shl: | 
|  | // If we are truncating the result of this SHL, and if it's a shift of a | 
|  | // constant amount, we can always perform a SHL in a smaller type. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | uint32_t BitWidth = Ty->getScalarSizeInBits(); | 
|  | if (CI->getLimitedValue(BitWidth) < BitWidth) | 
|  | return CanEvaluateTruncated(I->getOperand(0), Ty); | 
|  | } | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | // If this is a truncate of a logical shr, we can truncate it to a smaller | 
|  | // lshr iff we know that the bits we would otherwise be shifting in are | 
|  | // already zeros. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); | 
|  | uint32_t BitWidth = Ty->getScalarSizeInBits(); | 
|  | if (MaskedValueIsZero(I->getOperand(0), | 
|  | APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && | 
|  | CI->getLimitedValue(BitWidth) < BitWidth) { | 
|  | return CanEvaluateTruncated(I->getOperand(0), Ty); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Trunc: | 
|  | // trunc(trunc(x)) -> trunc(x) | 
|  | return true; | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest | 
|  | // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest | 
|  | return true; | 
|  | case Instruction::Select: { | 
|  | SelectInst *SI = cast<SelectInst>(I); | 
|  | return CanEvaluateTruncated(SI->getTrueValue(), Ty) && | 
|  | CanEvaluateTruncated(SI->getFalseValue(), Ty); | 
|  | } | 
|  | case Instruction::PHI: { | 
|  | // We can change a phi if we can change all operands.  Note that we never | 
|  | // get into trouble with cyclic PHIs here because we only consider | 
|  | // instructions with a single use. | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | // TODO: Can handle more cases here. | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitTrunc(TruncInst &CI) { | 
|  | if (Instruction *Result = commonCastTransforms(CI)) | 
|  | return Result; | 
|  |  | 
|  | // See if we can simplify any instructions used by the input whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | if (SimplifyDemandedInstructionBits(CI)) | 
|  | return &CI; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  | const Type *DestTy = CI.getType(), *SrcTy = Src->getType(); | 
|  |  | 
|  | // Attempt to truncate the entire input expression tree to the destination | 
|  | // type.   Only do this if the dest type is a simple type, don't convert the | 
|  | // expression tree to something weird like i93 unless the source is also | 
|  | // strange. | 
|  | if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && | 
|  | CanEvaluateTruncated(Src, DestTy)) { | 
|  |  | 
|  | // If this cast is a truncate, evaluting in a different type always | 
|  | // eliminates the cast, so it is always a win. | 
|  | DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" | 
|  | " to avoid cast: " << CI << '\n'); | 
|  | Value *Res = EvaluateInDifferentType(Src, DestTy, false); | 
|  | assert(Res->getType() == DestTy); | 
|  | return ReplaceInstUsesWith(CI, Res); | 
|  | } | 
|  |  | 
|  | // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. | 
|  | if (DestTy->getScalarSizeInBits() == 1) { | 
|  | Constant *One = ConstantInt::get(Src->getType(), 1); | 
|  | Src = Builder->CreateAnd(Src, One, "tmp"); | 
|  | Value *Zero = Constant::getNullValue(Src->getType()); | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); | 
|  | } | 
|  |  | 
|  | // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. | 
|  | Value *A = 0; ConstantInt *Cst = 0; | 
|  | if (Src->hasOneUse() && | 
|  | match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { | 
|  | // We have three types to worry about here, the type of A, the source of | 
|  | // the truncate (MidSize), and the destination of the truncate. We know that | 
|  | // ASize < MidSize   and MidSize > ResultSize, but don't know the relation | 
|  | // between ASize and ResultSize. | 
|  | unsigned ASize = A->getType()->getPrimitiveSizeInBits(); | 
|  |  | 
|  | // If the shift amount is larger than the size of A, then the result is | 
|  | // known to be zero because all the input bits got shifted out. | 
|  | if (Cst->getZExtValue() >= ASize) | 
|  | return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType())); | 
|  |  | 
|  | // Since we're doing an lshr and a zero extend, and know that the shift | 
|  | // amount is smaller than ASize, it is always safe to do the shift in A's | 
|  | // type, then zero extend or truncate to the result. | 
|  | Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); | 
|  | Shift->takeName(Src); | 
|  | return CastInst::CreateIntegerCast(Shift, CI.getType(), false); | 
|  | } | 
|  |  | 
|  | // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest | 
|  | // type isn't non-native. | 
|  | if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) && | 
|  | ShouldChangeType(Src->getType(), CI.getType()) && | 
|  | match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { | 
|  | Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr"); | 
|  | return BinaryOperator::CreateAnd(NewTrunc, | 
|  | ConstantExpr::getTrunc(Cst, CI.getType())); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations | 
|  | /// in order to eliminate the icmp. | 
|  | Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, | 
|  | bool DoXform) { | 
|  | // If we are just checking for a icmp eq of a single bit and zext'ing it | 
|  | // to an integer, then shift the bit to the appropriate place and then | 
|  | // cast to integer to avoid the comparison. | 
|  | if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { | 
|  | const APInt &Op1CV = Op1C->getValue(); | 
|  |  | 
|  | // zext (x <s  0) to i32 --> x>>u31      true if signbit set. | 
|  | // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear. | 
|  | if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || | 
|  | (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { | 
|  | if (!DoXform) return ICI; | 
|  |  | 
|  | Value *In = ICI->getOperand(0); | 
|  | Value *Sh = ConstantInt::get(In->getType(), | 
|  | In->getType()->getScalarSizeInBits()-1); | 
|  | In = Builder->CreateLShr(In, Sh, In->getName()+".lobit"); | 
|  | if (In->getType() != CI.getType()) | 
|  | In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp"); | 
|  |  | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { | 
|  | Constant *One = ConstantInt::get(In->getType(), 1); | 
|  | In = Builder->CreateXor(In, One, In->getName()+".not"); | 
|  | } | 
|  |  | 
|  | return ReplaceInstUsesWith(CI, In); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // zext (X == 0) to i32 --> X^1      iff X has only the low bit set. | 
|  | // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. | 
|  | // zext (X == 1) to i32 --> X        iff X has only the low bit set. | 
|  | // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set. | 
|  | // zext (X != 0) to i32 --> X        iff X has only the low bit set. | 
|  | // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set. | 
|  | // zext (X != 1) to i32 --> X^1      iff X has only the low bit set. | 
|  | // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. | 
|  | if ((Op1CV == 0 || Op1CV.isPowerOf2()) && | 
|  | // This only works for EQ and NE | 
|  | ICI->isEquality()) { | 
|  | // If Op1C some other power of two, convert: | 
|  | uint32_t BitWidth = Op1C->getType()->getBitWidth(); | 
|  | APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); | 
|  | APInt TypeMask(APInt::getAllOnesValue(BitWidth)); | 
|  | ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne); | 
|  |  | 
|  | APInt KnownZeroMask(~KnownZero); | 
|  | if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? | 
|  | if (!DoXform) return ICI; | 
|  |  | 
|  | bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; | 
|  | if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { | 
|  | // (X&4) == 2 --> false | 
|  | // (X&4) != 2 --> true | 
|  | Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), | 
|  | isNE); | 
|  | Res = ConstantExpr::getZExt(Res, CI.getType()); | 
|  | return ReplaceInstUsesWith(CI, Res); | 
|  | } | 
|  |  | 
|  | uint32_t ShiftAmt = KnownZeroMask.logBase2(); | 
|  | Value *In = ICI->getOperand(0); | 
|  | if (ShiftAmt) { | 
|  | // Perform a logical shr by shiftamt. | 
|  | // Insert the shift to put the result in the low bit. | 
|  | In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), | 
|  | In->getName()+".lobit"); | 
|  | } | 
|  |  | 
|  | if ((Op1CV != 0) == isNE) { // Toggle the low bit. | 
|  | Constant *One = ConstantInt::get(In->getType(), 1); | 
|  | In = Builder->CreateXor(In, One, "tmp"); | 
|  | } | 
|  |  | 
|  | if (CI.getType() == In->getType()) | 
|  | return ReplaceInstUsesWith(CI, In); | 
|  | return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // icmp ne A, B is equal to xor A, B when A and B only really have one bit. | 
|  | // It is also profitable to transform icmp eq into not(xor(A, B)) because that | 
|  | // may lead to additional simplifications. | 
|  | if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { | 
|  | if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { | 
|  | uint32_t BitWidth = ITy->getBitWidth(); | 
|  | Value *LHS = ICI->getOperand(0); | 
|  | Value *RHS = ICI->getOperand(1); | 
|  |  | 
|  | APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); | 
|  | APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); | 
|  | APInt TypeMask(APInt::getAllOnesValue(BitWidth)); | 
|  | ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS); | 
|  | ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS); | 
|  |  | 
|  | if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { | 
|  | APInt KnownBits = KnownZeroLHS | KnownOneLHS; | 
|  | APInt UnknownBit = ~KnownBits; | 
|  | if (UnknownBit.countPopulation() == 1) { | 
|  | if (!DoXform) return ICI; | 
|  |  | 
|  | Value *Result = Builder->CreateXor(LHS, RHS); | 
|  |  | 
|  | // Mask off any bits that are set and won't be shifted away. | 
|  | if (KnownOneLHS.uge(UnknownBit)) | 
|  | Result = Builder->CreateAnd(Result, | 
|  | ConstantInt::get(ITy, UnknownBit)); | 
|  |  | 
|  | // Shift the bit we're testing down to the lsb. | 
|  | Result = Builder->CreateLShr( | 
|  | Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); | 
|  |  | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_EQ) | 
|  | Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); | 
|  | Result->takeName(ICI); | 
|  | return ReplaceInstUsesWith(CI, Result); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// CanEvaluateZExtd - Determine if the specified value can be computed in the | 
|  | /// specified wider type and produce the same low bits.  If not, return false. | 
|  | /// | 
|  | /// If this function returns true, it can also return a non-zero number of bits | 
|  | /// (in BitsToClear) which indicates that the value it computes is correct for | 
|  | /// the zero extend, but that the additional BitsToClear bits need to be zero'd | 
|  | /// out.  For example, to promote something like: | 
|  | /// | 
|  | ///   %B = trunc i64 %A to i32 | 
|  | ///   %C = lshr i32 %B, 8 | 
|  | ///   %E = zext i32 %C to i64 | 
|  | /// | 
|  | /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be | 
|  | /// set to 8 to indicate that the promoted value needs to have bits 24-31 | 
|  | /// cleared in addition to bits 32-63.  Since an 'and' will be generated to | 
|  | /// clear the top bits anyway, doing this has no extra cost. | 
|  | /// | 
|  | /// This function works on both vectors and scalars. | 
|  | static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) { | 
|  | BitsToClear = 0; | 
|  | if (isa<Constant>(V)) | 
|  | return true; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return false; | 
|  |  | 
|  | // If the input is a truncate from the destination type, we can trivially | 
|  | // eliminate it, even if it has multiple uses. | 
|  | // FIXME: This is currently disabled until codegen can handle this without | 
|  | // pessimizing code, PR5997. | 
|  | if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) | 
|  | return true; | 
|  |  | 
|  | // We can't extend or shrink something that has multiple uses: doing so would | 
|  | // require duplicating the instruction in general, which isn't profitable. | 
|  | if (!I->hasOneUse()) return false; | 
|  |  | 
|  | unsigned Opc = I->getOpcode(), Tmp; | 
|  | switch (Opc) { | 
|  | case Instruction::ZExt:  // zext(zext(x)) -> zext(x). | 
|  | case Instruction::SExt:  // zext(sext(x)) -> sext(x). | 
|  | case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) | 
|  | return true; | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::Shl: | 
|  | if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) || | 
|  | !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp)) | 
|  | return false; | 
|  | // These can all be promoted if neither operand has 'bits to clear'. | 
|  | if (BitsToClear == 0 && Tmp == 0) | 
|  | return true; | 
|  |  | 
|  | // If the operation is an AND/OR/XOR and the bits to clear are zero in the | 
|  | // other side, BitsToClear is ok. | 
|  | if (Tmp == 0 && | 
|  | (Opc == Instruction::And || Opc == Instruction::Or || | 
|  | Opc == Instruction::Xor)) { | 
|  | // We use MaskedValueIsZero here for generality, but the case we care | 
|  | // about the most is constant RHS. | 
|  | unsigned VSize = V->getType()->getScalarSizeInBits(); | 
|  | if (MaskedValueIsZero(I->getOperand(1), | 
|  | APInt::getHighBitsSet(VSize, BitsToClear))) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, we don't know how to analyze this BitsToClear case yet. | 
|  | return false; | 
|  |  | 
|  | case Instruction::LShr: | 
|  | // We can promote lshr(x, cst) if we can promote x.  This requires the | 
|  | // ultimate 'and' to clear out the high zero bits we're clearing out though. | 
|  | if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear)) | 
|  | return false; | 
|  | BitsToClear += Amt->getZExtValue(); | 
|  | if (BitsToClear > V->getType()->getScalarSizeInBits()) | 
|  | BitsToClear = V->getType()->getScalarSizeInBits(); | 
|  | return true; | 
|  | } | 
|  | // Cannot promote variable LSHR. | 
|  | return false; | 
|  | case Instruction::Select: | 
|  | if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) || | 
|  | !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) || | 
|  | // TODO: If important, we could handle the case when the BitsToClear are | 
|  | // known zero in the disagreeing side. | 
|  | Tmp != BitsToClear) | 
|  | return false; | 
|  | return true; | 
|  |  | 
|  | case Instruction::PHI: { | 
|  | // We can change a phi if we can change all operands.  Note that we never | 
|  | // get into trouble with cyclic PHIs here because we only consider | 
|  | // instructions with a single use. | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear)) | 
|  | return false; | 
|  | for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) || | 
|  | // TODO: If important, we could handle the case when the BitsToClear | 
|  | // are known zero in the disagreeing input. | 
|  | Tmp != BitsToClear) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | // TODO: Can handle more cases here. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitZExt(ZExtInst &CI) { | 
|  | // If this zero extend is only used by a truncate, let the truncate by | 
|  | // eliminated before we try to optimize this zext. | 
|  | if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) | 
|  | return 0; | 
|  |  | 
|  | // If one of the common conversion will work, do it. | 
|  | if (Instruction *Result = commonCastTransforms(CI)) | 
|  | return Result; | 
|  |  | 
|  | // See if we can simplify any instructions used by the input whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | if (SimplifyDemandedInstructionBits(CI)) | 
|  | return &CI; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  | const Type *SrcTy = Src->getType(), *DestTy = CI.getType(); | 
|  |  | 
|  | // Attempt to extend the entire input expression tree to the destination | 
|  | // type.   Only do this if the dest type is a simple type, don't convert the | 
|  | // expression tree to something weird like i93 unless the source is also | 
|  | // strange. | 
|  | unsigned BitsToClear; | 
|  | if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && | 
|  | CanEvaluateZExtd(Src, DestTy, BitsToClear)) { | 
|  | assert(BitsToClear < SrcTy->getScalarSizeInBits() && | 
|  | "Unreasonable BitsToClear"); | 
|  |  | 
|  | // Okay, we can transform this!  Insert the new expression now. | 
|  | DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" | 
|  | " to avoid zero extend: " << CI); | 
|  | Value *Res = EvaluateInDifferentType(Src, DestTy, false); | 
|  | assert(Res->getType() == DestTy); | 
|  |  | 
|  | uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; | 
|  | uint32_t DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | // If the high bits are already filled with zeros, just replace this | 
|  | // cast with the result. | 
|  | if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize, | 
|  | DestBitSize-SrcBitsKept))) | 
|  | return ReplaceInstUsesWith(CI, Res); | 
|  |  | 
|  | // We need to emit an AND to clear the high bits. | 
|  | Constant *C = ConstantInt::get(Res->getType(), | 
|  | APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); | 
|  | return BinaryOperator::CreateAnd(Res, C); | 
|  | } | 
|  |  | 
|  | // If this is a TRUNC followed by a ZEXT then we are dealing with integral | 
|  | // types and if the sizes are just right we can convert this into a logical | 
|  | // 'and' which will be much cheaper than the pair of casts. | 
|  | if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast | 
|  | // TODO: Subsume this into EvaluateInDifferentType. | 
|  |  | 
|  | // Get the sizes of the types involved.  We know that the intermediate type | 
|  | // will be smaller than A or C, but don't know the relation between A and C. | 
|  | Value *A = CSrc->getOperand(0); | 
|  | unsigned SrcSize = A->getType()->getScalarSizeInBits(); | 
|  | unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); | 
|  | unsigned DstSize = CI.getType()->getScalarSizeInBits(); | 
|  | // If we're actually extending zero bits, then if | 
|  | // SrcSize <  DstSize: zext(a & mask) | 
|  | // SrcSize == DstSize: a & mask | 
|  | // SrcSize  > DstSize: trunc(a) & mask | 
|  | if (SrcSize < DstSize) { | 
|  | APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); | 
|  | Constant *AndConst = ConstantInt::get(A->getType(), AndValue); | 
|  | Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); | 
|  | return new ZExtInst(And, CI.getType()); | 
|  | } | 
|  |  | 
|  | if (SrcSize == DstSize) { | 
|  | APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); | 
|  | return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), | 
|  | AndValue)); | 
|  | } | 
|  | if (SrcSize > DstSize) { | 
|  | Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp"); | 
|  | APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); | 
|  | return BinaryOperator::CreateAnd(Trunc, | 
|  | ConstantInt::get(Trunc->getType(), | 
|  | AndValue)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) | 
|  | return transformZExtICmp(ICI, CI); | 
|  |  | 
|  | BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); | 
|  | if (SrcI && SrcI->getOpcode() == Instruction::Or) { | 
|  | // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one | 
|  | // of the (zext icmp) will be transformed. | 
|  | ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); | 
|  | ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); | 
|  | if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && | 
|  | (transformZExtICmp(LHS, CI, false) || | 
|  | transformZExtICmp(RHS, CI, false))) { | 
|  | Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); | 
|  | Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); | 
|  | return BinaryOperator::Create(Instruction::Or, LCast, RCast); | 
|  | } | 
|  | } | 
|  |  | 
|  | // zext(trunc(t) & C) -> (t & zext(C)). | 
|  | if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse()) | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) | 
|  | if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) { | 
|  | Value *TI0 = TI->getOperand(0); | 
|  | if (TI0->getType() == CI.getType()) | 
|  | return | 
|  | BinaryOperator::CreateAnd(TI0, | 
|  | ConstantExpr::getZExt(C, CI.getType())); | 
|  | } | 
|  |  | 
|  | // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)). | 
|  | if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse()) | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) | 
|  | if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0))) | 
|  | if (And->getOpcode() == Instruction::And && And->hasOneUse() && | 
|  | And->getOperand(1) == C) | 
|  | if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) { | 
|  | Value *TI0 = TI->getOperand(0); | 
|  | if (TI0->getType() == CI.getType()) { | 
|  | Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); | 
|  | Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp"); | 
|  | return BinaryOperator::CreateXor(NewAnd, ZC); | 
|  | } | 
|  | } | 
|  |  | 
|  | // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1 | 
|  | Value *X; | 
|  | if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) && | 
|  | match(SrcI, m_Not(m_Value(X))) && | 
|  | (!X->hasOneUse() || !isa<CmpInst>(X))) { | 
|  | Value *New = Builder->CreateZExt(X, CI.getType()); | 
|  | return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations | 
|  | /// in order to eliminate the icmp. | 
|  | Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { | 
|  | Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); | 
|  | ICmpInst::Predicate Pred = ICI->getPredicate(); | 
|  |  | 
|  | if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { | 
|  | // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative | 
|  | // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive | 
|  | if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) || | 
|  | (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { | 
|  |  | 
|  | Value *Sh = ConstantInt::get(Op0->getType(), | 
|  | Op0->getType()->getScalarSizeInBits()-1); | 
|  | Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); | 
|  | if (In->getType() != CI.getType()) | 
|  | In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/, "tmp"); | 
|  |  | 
|  | if (Pred == ICmpInst::ICMP_SGT) | 
|  | In = Builder->CreateNot(In, In->getName()+".not"); | 
|  | return ReplaceInstUsesWith(CI, In); | 
|  | } | 
|  |  | 
|  | // If we know that only one bit of the LHS of the icmp can be set and we | 
|  | // have an equality comparison with zero or a power of 2, we can transform | 
|  | // the icmp and sext into bitwise/integer operations. | 
|  | if (ICI->hasOneUse() && | 
|  | ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ | 
|  | unsigned BitWidth = Op1C->getType()->getBitWidth(); | 
|  | APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); | 
|  | APInt TypeMask(APInt::getAllOnesValue(BitWidth)); | 
|  | ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne); | 
|  |  | 
|  | APInt KnownZeroMask(~KnownZero); | 
|  | if (KnownZeroMask.isPowerOf2()) { | 
|  | Value *In = ICI->getOperand(0); | 
|  |  | 
|  | // If the icmp tests for a known zero bit we can constant fold it. | 
|  | if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { | 
|  | Value *V = Pred == ICmpInst::ICMP_NE ? | 
|  | ConstantInt::getAllOnesValue(CI.getType()) : | 
|  | ConstantInt::getNullValue(CI.getType()); | 
|  | return ReplaceInstUsesWith(CI, V); | 
|  | } | 
|  |  | 
|  | if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { | 
|  | // sext ((x & 2^n) == 0)   -> (x >> n) - 1 | 
|  | // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 | 
|  | unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); | 
|  | // Perform a right shift to place the desired bit in the LSB. | 
|  | if (ShiftAmt) | 
|  | In = Builder->CreateLShr(In, | 
|  | ConstantInt::get(In->getType(), ShiftAmt)); | 
|  |  | 
|  | // At this point "In" is either 1 or 0. Subtract 1 to turn | 
|  | // {1, 0} -> {0, -1}. | 
|  | In = Builder->CreateAdd(In, | 
|  | ConstantInt::getAllOnesValue(In->getType()), | 
|  | "sext"); | 
|  | } else { | 
|  | // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1 | 
|  | // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 | 
|  | unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); | 
|  | // Perform a left shift to place the desired bit in the MSB. | 
|  | if (ShiftAmt) | 
|  | In = Builder->CreateShl(In, | 
|  | ConstantInt::get(In->getType(), ShiftAmt)); | 
|  |  | 
|  | // Distribute the bit over the whole bit width. | 
|  | In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), | 
|  | BitWidth - 1), "sext"); | 
|  | } | 
|  |  | 
|  | if (CI.getType() == In->getType()) | 
|  | return ReplaceInstUsesWith(CI, In); | 
|  | return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed. | 
|  | if (const VectorType *VTy = dyn_cast<VectorType>(CI.getType())) { | 
|  | if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) && | 
|  | Op0->getType() == CI.getType()) { | 
|  | const Type *EltTy = VTy->getElementType(); | 
|  |  | 
|  | // splat the shift constant to a constant vector. | 
|  | Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1); | 
|  | Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit"); | 
|  | return ReplaceInstUsesWith(CI, In); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// CanEvaluateSExtd - Return true if we can take the specified value | 
|  | /// and return it as type Ty without inserting any new casts and without | 
|  | /// changing the value of the common low bits.  This is used by code that tries | 
|  | /// to promote integer operations to a wider types will allow us to eliminate | 
|  | /// the extension. | 
|  | /// | 
|  | /// This function works on both vectors and scalars. | 
|  | /// | 
|  | static bool CanEvaluateSExtd(Value *V, const Type *Ty) { | 
|  | assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && | 
|  | "Can't sign extend type to a smaller type"); | 
|  | // If this is a constant, it can be trivially promoted. | 
|  | if (isa<Constant>(V)) | 
|  | return true; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return false; | 
|  |  | 
|  | // If this is a truncate from the dest type, we can trivially eliminate it, | 
|  | // even if it has multiple uses. | 
|  | // FIXME: This is currently disabled until codegen can handle this without | 
|  | // pessimizing code, PR5997. | 
|  | if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) | 
|  | return true; | 
|  |  | 
|  | // We can't extend or shrink something that has multiple uses: doing so would | 
|  | // require duplicating the instruction in general, which isn't profitable. | 
|  | if (!I->hasOneUse()) return false; | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::SExt:  // sext(sext(x)) -> sext(x) | 
|  | case Instruction::ZExt:  // sext(zext(x)) -> zext(x) | 
|  | case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) | 
|  | return true; | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | // These operators can all arbitrarily be extended if their inputs can. | 
|  | return CanEvaluateSExtd(I->getOperand(0), Ty) && | 
|  | CanEvaluateSExtd(I->getOperand(1), Ty); | 
|  |  | 
|  | //case Instruction::Shl:   TODO | 
|  | //case Instruction::LShr:  TODO | 
|  |  | 
|  | case Instruction::Select: | 
|  | return CanEvaluateSExtd(I->getOperand(1), Ty) && | 
|  | CanEvaluateSExtd(I->getOperand(2), Ty); | 
|  |  | 
|  | case Instruction::PHI: { | 
|  | // We can change a phi if we can change all operands.  Note that we never | 
|  | // get into trouble with cyclic PHIs here because we only consider | 
|  | // instructions with a single use. | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false; | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | // TODO: Can handle more cases here. | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSExt(SExtInst &CI) { | 
|  | // If this sign extend is only used by a truncate, let the truncate by | 
|  | // eliminated before we try to optimize this zext. | 
|  | if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) | 
|  | return 0; | 
|  |  | 
|  | if (Instruction *I = commonCastTransforms(CI)) | 
|  | return I; | 
|  |  | 
|  | // See if we can simplify any instructions used by the input whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | if (SimplifyDemandedInstructionBits(CI)) | 
|  | return &CI; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  | const Type *SrcTy = Src->getType(), *DestTy = CI.getType(); | 
|  |  | 
|  | // Attempt to extend the entire input expression tree to the destination | 
|  | // type.   Only do this if the dest type is a simple type, don't convert the | 
|  | // expression tree to something weird like i93 unless the source is also | 
|  | // strange. | 
|  | if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && | 
|  | CanEvaluateSExtd(Src, DestTy)) { | 
|  | // Okay, we can transform this!  Insert the new expression now. | 
|  | DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" | 
|  | " to avoid sign extend: " << CI); | 
|  | Value *Res = EvaluateInDifferentType(Src, DestTy, true); | 
|  | assert(Res->getType() == DestTy); | 
|  |  | 
|  | uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | uint32_t DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | // If the high bits are already filled with sign bit, just replace this | 
|  | // cast with the result. | 
|  | if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize) | 
|  | return ReplaceInstUsesWith(CI, Res); | 
|  |  | 
|  | // We need to emit a shl + ashr to do the sign extend. | 
|  | Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); | 
|  | return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), | 
|  | ShAmt); | 
|  | } | 
|  |  | 
|  | // If this input is a trunc from our destination, then turn sext(trunc(x)) | 
|  | // into shifts. | 
|  | if (TruncInst *TI = dyn_cast<TruncInst>(Src)) | 
|  | if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { | 
|  | uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | uint32_t DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | // We need to emit a shl + ashr to do the sign extend. | 
|  | Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); | 
|  | Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); | 
|  | return BinaryOperator::CreateAShr(Res, ShAmt); | 
|  | } | 
|  |  | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) | 
|  | return transformSExtICmp(ICI, CI); | 
|  |  | 
|  | // If the input is a shl/ashr pair of a same constant, then this is a sign | 
|  | // extension from a smaller value.  If we could trust arbitrary bitwidth | 
|  | // integers, we could turn this into a truncate to the smaller bit and then | 
|  | // use a sext for the whole extension.  Since we don't, look deeper and check | 
|  | // for a truncate.  If the source and dest are the same type, eliminate the | 
|  | // trunc and extend and just do shifts.  For example, turn: | 
|  | //   %a = trunc i32 %i to i8 | 
|  | //   %b = shl i8 %a, 6 | 
|  | //   %c = ashr i8 %b, 6 | 
|  | //   %d = sext i8 %c to i32 | 
|  | // into: | 
|  | //   %a = shl i32 %i, 30 | 
|  | //   %d = ashr i32 %a, 30 | 
|  | Value *A = 0; | 
|  | // TODO: Eventually this could be subsumed by EvaluateInDifferentType. | 
|  | ConstantInt *BA = 0, *CA = 0; | 
|  | if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), | 
|  | m_ConstantInt(CA))) && | 
|  | BA == CA && A->getType() == CI.getType()) { | 
|  | unsigned MidSize = Src->getType()->getScalarSizeInBits(); | 
|  | unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); | 
|  | unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; | 
|  | Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); | 
|  | A = Builder->CreateShl(A, ShAmtV, CI.getName()); | 
|  | return BinaryOperator::CreateAShr(A, ShAmtV); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// FitsInFPType - Return a Constant* for the specified FP constant if it fits | 
|  | /// in the specified FP type without changing its value. | 
|  | static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { | 
|  | bool losesInfo; | 
|  | APFloat F = CFP->getValueAPF(); | 
|  | (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); | 
|  | if (!losesInfo) | 
|  | return ConstantFP::get(CFP->getContext(), F); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// LookThroughFPExtensions - If this is an fp extension instruction, look | 
|  | /// through it until we get the source value. | 
|  | static Value *LookThroughFPExtensions(Value *V) { | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | if (I->getOpcode() == Instruction::FPExt) | 
|  | return LookThroughFPExtensions(I->getOperand(0)); | 
|  |  | 
|  | // If this value is a constant, return the constant in the smallest FP type | 
|  | // that can accurately represent it.  This allows us to turn | 
|  | // (float)((double)X+2.0) into x+2.0f. | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { | 
|  | if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) | 
|  | return V;  // No constant folding of this. | 
|  | // See if the value can be truncated to float and then reextended. | 
|  | if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle)) | 
|  | return V; | 
|  | if (CFP->getType()->isDoubleTy()) | 
|  | return V;  // Won't shrink. | 
|  | if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble)) | 
|  | return V; | 
|  | // Don't try to shrink to various long double types. | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { | 
|  | if (Instruction *I = commonCastTransforms(CI)) | 
|  | return I; | 
|  |  | 
|  | // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are | 
|  | // smaller than the destination type, we can eliminate the truncate by doing | 
|  | // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well | 
|  | // as many builtins (sqrt, etc). | 
|  | BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); | 
|  | if (OpI && OpI->hasOneUse()) { | 
|  | switch (OpI->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | case Instruction::FMul: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::FRem: | 
|  | const Type *SrcTy = OpI->getType(); | 
|  | Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0)); | 
|  | Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); | 
|  | if (LHSTrunc->getType() != SrcTy && | 
|  | RHSTrunc->getType() != SrcTy) { | 
|  | unsigned DstSize = CI.getType()->getScalarSizeInBits(); | 
|  | // If the source types were both smaller than the destination type of | 
|  | // the cast, do this xform. | 
|  | if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize && | 
|  | RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) { | 
|  | LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType()); | 
|  | RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType()); | 
|  | return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x) | 
|  | // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it. | 
|  | CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0)); | 
|  | if (Call && Call->getCalledFunction() && | 
|  | Call->getCalledFunction()->getName() == "sqrt" && | 
|  | Call->getNumArgOperands() == 1) { | 
|  | CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0)); | 
|  | if (Arg && Arg->getOpcode() == Instruction::FPExt && | 
|  | CI.getType()->isFloatTy() && | 
|  | Call->getType()->isDoubleTy() && | 
|  | Arg->getType()->isDoubleTy() && | 
|  | Arg->getOperand(0)->getType()->isFloatTy()) { | 
|  | Function *Callee = Call->getCalledFunction(); | 
|  | Module *M = CI.getParent()->getParent()->getParent(); | 
|  | Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf", | 
|  | Callee->getAttributes(), | 
|  | Builder->getFloatTy(), | 
|  | Builder->getFloatTy(), | 
|  | NULL); | 
|  | CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0), | 
|  | "sqrtfcall"); | 
|  | ret->setAttributes(Callee->getAttributes()); | 
|  |  | 
|  |  | 
|  | // Remove the old Call.  With -fmath-errno, it won't get marked readnone. | 
|  | ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType())); | 
|  | EraseInstFromFunction(*Call); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPExt(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { | 
|  | Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); | 
|  | if (OpI == 0) | 
|  | return commonCastTransforms(FI); | 
|  |  | 
|  | // fptoui(uitofp(X)) --> X | 
|  | // fptoui(sitofp(X)) --> X | 
|  | // This is safe if the intermediate type has enough bits in its mantissa to | 
|  | // accurately represent all values of X.  For example, do not do this with | 
|  | // i64->float->i64.  This is also safe for sitofp case, because any negative | 
|  | // 'X' value would cause an undefined result for the fptoui. | 
|  | if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && | 
|  | OpI->getOperand(0)->getType() == FI.getType() && | 
|  | (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ | 
|  | OpI->getType()->getFPMantissaWidth()) | 
|  | return ReplaceInstUsesWith(FI, OpI->getOperand(0)); | 
|  |  | 
|  | return commonCastTransforms(FI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { | 
|  | Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); | 
|  | if (OpI == 0) | 
|  | return commonCastTransforms(FI); | 
|  |  | 
|  | // fptosi(sitofp(X)) --> X | 
|  | // fptosi(uitofp(X)) --> X | 
|  | // This is safe if the intermediate type has enough bits in its mantissa to | 
|  | // accurately represent all values of X.  For example, do not do this with | 
|  | // i64->float->i64.  This is also safe for sitofp case, because any negative | 
|  | // 'X' value would cause an undefined result for the fptoui. | 
|  | if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && | 
|  | OpI->getOperand(0)->getType() == FI.getType() && | 
|  | (int)FI.getType()->getScalarSizeInBits() <= | 
|  | OpI->getType()->getFPMantissaWidth()) | 
|  | return ReplaceInstUsesWith(FI, OpI->getOperand(0)); | 
|  |  | 
|  | return commonCastTransforms(FI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitUIToFP(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSIToFP(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { | 
|  | // If the source integer type is not the intptr_t type for this target, do a | 
|  | // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the | 
|  | // cast to be exposed to other transforms. | 
|  | if (TD) { | 
|  | if (CI.getOperand(0)->getType()->getScalarSizeInBits() > | 
|  | TD->getPointerSizeInBits()) { | 
|  | Value *P = Builder->CreateTrunc(CI.getOperand(0), | 
|  | TD->getIntPtrType(CI.getContext()), "tmp"); | 
|  | return new IntToPtrInst(P, CI.getType()); | 
|  | } | 
|  | if (CI.getOperand(0)->getType()->getScalarSizeInBits() < | 
|  | TD->getPointerSizeInBits()) { | 
|  | Value *P = Builder->CreateZExt(CI.getOperand(0), | 
|  | TD->getIntPtrType(CI.getContext()), "tmp"); | 
|  | return new IntToPtrInst(P, CI.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *I = commonCastTransforms(CI)) | 
|  | return I; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) | 
|  | Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { | 
|  | Value *Src = CI.getOperand(0); | 
|  |  | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { | 
|  | // If casting the result of a getelementptr instruction with no offset, turn | 
|  | // this into a cast of the original pointer! | 
|  | if (GEP->hasAllZeroIndices()) { | 
|  | // Changing the cast operand is usually not a good idea but it is safe | 
|  | // here because the pointer operand is being replaced with another | 
|  | // pointer operand so the opcode doesn't need to change. | 
|  | Worklist.Add(GEP); | 
|  | CI.setOperand(0, GEP->getOperand(0)); | 
|  | return &CI; | 
|  | } | 
|  |  | 
|  | // If the GEP has a single use, and the base pointer is a bitcast, and the | 
|  | // GEP computes a constant offset, see if we can convert these three | 
|  | // instructions into fewer.  This typically happens with unions and other | 
|  | // non-type-safe code. | 
|  | if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) && | 
|  | GEP->hasAllConstantIndices()) { | 
|  | // We are guaranteed to get a constant from EmitGEPOffset. | 
|  | ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP)); | 
|  | int64_t Offset = OffsetV->getSExtValue(); | 
|  |  | 
|  | // Get the base pointer input of the bitcast, and the type it points to. | 
|  | Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0); | 
|  | const Type *GEPIdxTy = | 
|  | cast<PointerType>(OrigBase->getType())->getElementType(); | 
|  | SmallVector<Value*, 8> NewIndices; | 
|  | if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) { | 
|  | // If we were able to index down into an element, create the GEP | 
|  | // and bitcast the result.  This eliminates one bitcast, potentially | 
|  | // two. | 
|  | Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ? | 
|  | Builder->CreateInBoundsGEP(OrigBase, | 
|  | NewIndices.begin(), NewIndices.end()) : | 
|  | Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end()); | 
|  | NGEP->takeName(GEP); | 
|  |  | 
|  | if (isa<BitCastInst>(CI)) | 
|  | return new BitCastInst(NGEP, CI.getType()); | 
|  | assert(isa<PtrToIntInst>(CI)); | 
|  | return new PtrToIntInst(NGEP, CI.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { | 
|  | // If the destination integer type is not the intptr_t type for this target, | 
|  | // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast | 
|  | // to be exposed to other transforms. | 
|  | if (TD) { | 
|  | if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) { | 
|  | Value *P = Builder->CreatePtrToInt(CI.getOperand(0), | 
|  | TD->getIntPtrType(CI.getContext()), | 
|  | "tmp"); | 
|  | return new TruncInst(P, CI.getType()); | 
|  | } | 
|  | if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) { | 
|  | Value *P = Builder->CreatePtrToInt(CI.getOperand(0), | 
|  | TD->getIntPtrType(CI.getContext()), | 
|  | "tmp"); | 
|  | return new ZExtInst(P, CI.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return commonPointerCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | /// OptimizeVectorResize - This input value (which is known to have vector type) | 
|  | /// is being zero extended or truncated to the specified vector type.  Try to | 
|  | /// replace it with a shuffle (and vector/vector bitcast) if possible. | 
|  | /// | 
|  | /// The source and destination vector types may have different element types. | 
|  | static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy, | 
|  | InstCombiner &IC) { | 
|  | // We can only do this optimization if the output is a multiple of the input | 
|  | // element size, or the input is a multiple of the output element size. | 
|  | // Convert the input type to have the same element type as the output. | 
|  | const VectorType *SrcTy = cast<VectorType>(InVal->getType()); | 
|  |  | 
|  | if (SrcTy->getElementType() != DestTy->getElementType()) { | 
|  | // The input types don't need to be identical, but for now they must be the | 
|  | // same size.  There is no specific reason we couldn't handle things like | 
|  | // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten | 
|  | // there yet. | 
|  | if (SrcTy->getElementType()->getPrimitiveSizeInBits() != | 
|  | DestTy->getElementType()->getPrimitiveSizeInBits()) | 
|  | return 0; | 
|  |  | 
|  | SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); | 
|  | InVal = IC.Builder->CreateBitCast(InVal, SrcTy); | 
|  | } | 
|  |  | 
|  | // Now that the element types match, get the shuffle mask and RHS of the | 
|  | // shuffle to use, which depends on whether we're increasing or decreasing the | 
|  | // size of the input. | 
|  | SmallVector<Constant*, 16> ShuffleMask; | 
|  | Value *V2; | 
|  | const IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext()); | 
|  |  | 
|  | if (SrcTy->getNumElements() > DestTy->getNumElements()) { | 
|  | // If we're shrinking the number of elements, just shuffle in the low | 
|  | // elements from the input and use undef as the second shuffle input. | 
|  | V2 = UndefValue::get(SrcTy); | 
|  | for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) | 
|  | ShuffleMask.push_back(ConstantInt::get(Int32Ty, i)); | 
|  |  | 
|  | } else { | 
|  | // If we're increasing the number of elements, shuffle in all of the | 
|  | // elements from InVal and fill the rest of the result elements with zeros | 
|  | // from a constant zero. | 
|  | V2 = Constant::getNullValue(SrcTy); | 
|  | unsigned SrcElts = SrcTy->getNumElements(); | 
|  | for (unsigned i = 0, e = SrcElts; i != e; ++i) | 
|  | ShuffleMask.push_back(ConstantInt::get(Int32Ty, i)); | 
|  |  | 
|  | // The excess elements reference the first element of the zero input. | 
|  | ShuffleMask.append(DestTy->getNumElements()-SrcElts, | 
|  | ConstantInt::get(Int32Ty, SrcElts)); | 
|  | } | 
|  |  | 
|  | return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask)); | 
|  | } | 
|  |  | 
|  | static bool isMultipleOfTypeSize(unsigned Value, const Type *Ty) { | 
|  | return Value % Ty->getPrimitiveSizeInBits() == 0; | 
|  | } | 
|  |  | 
|  | static unsigned getTypeSizeIndex(unsigned Value, const Type *Ty) { | 
|  | return Value / Ty->getPrimitiveSizeInBits(); | 
|  | } | 
|  |  | 
|  | /// CollectInsertionElements - V is a value which is inserted into a vector of | 
|  | /// VecEltTy.  Look through the value to see if we can decompose it into | 
|  | /// insertions into the vector.  See the example in the comment for | 
|  | /// OptimizeIntegerToVectorInsertions for the pattern this handles. | 
|  | /// The type of V is always a non-zero multiple of VecEltTy's size. | 
|  | /// | 
|  | /// This returns false if the pattern can't be matched or true if it can, | 
|  | /// filling in Elements with the elements found here. | 
|  | static bool CollectInsertionElements(Value *V, unsigned ElementIndex, | 
|  | SmallVectorImpl<Value*> &Elements, | 
|  | const Type *VecEltTy) { | 
|  | // Undef values never contribute useful bits to the result. | 
|  | if (isa<UndefValue>(V)) return true; | 
|  |  | 
|  | // If we got down to a value of the right type, we win, try inserting into the | 
|  | // right element. | 
|  | if (V->getType() == VecEltTy) { | 
|  | // Inserting null doesn't actually insert any elements. | 
|  | if (Constant *C = dyn_cast<Constant>(V)) | 
|  | if (C->isNullValue()) | 
|  | return true; | 
|  |  | 
|  | // Fail if multiple elements are inserted into this slot. | 
|  | if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0) | 
|  | return false; | 
|  |  | 
|  | Elements[ElementIndex] = V; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | // Figure out the # elements this provides, and bitcast it or slice it up | 
|  | // as required. | 
|  | unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), | 
|  | VecEltTy); | 
|  | // If the constant is the size of a vector element, we just need to bitcast | 
|  | // it to the right type so it gets properly inserted. | 
|  | if (NumElts == 1) | 
|  | return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), | 
|  | ElementIndex, Elements, VecEltTy); | 
|  |  | 
|  | // Okay, this is a constant that covers multiple elements.  Slice it up into | 
|  | // pieces and insert each element-sized piece into the vector. | 
|  | if (!isa<IntegerType>(C->getType())) | 
|  | C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), | 
|  | C->getType()->getPrimitiveSizeInBits())); | 
|  | unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); | 
|  | const Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); | 
|  |  | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), | 
|  | i*ElementSize)); | 
|  | Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); | 
|  | if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!V->hasOneUse()) return false; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (I == 0) return false; | 
|  | switch (I->getOpcode()) { | 
|  | default: return false; // Unhandled case. | 
|  | case Instruction::BitCast: | 
|  | return CollectInsertionElements(I->getOperand(0), ElementIndex, | 
|  | Elements, VecEltTy); | 
|  | case Instruction::ZExt: | 
|  | if (!isMultipleOfTypeSize( | 
|  | I->getOperand(0)->getType()->getPrimitiveSizeInBits(), | 
|  | VecEltTy)) | 
|  | return false; | 
|  | return CollectInsertionElements(I->getOperand(0), ElementIndex, | 
|  | Elements, VecEltTy); | 
|  | case Instruction::Or: | 
|  | return CollectInsertionElements(I->getOperand(0), ElementIndex, | 
|  | Elements, VecEltTy) && | 
|  | CollectInsertionElements(I->getOperand(1), ElementIndex, | 
|  | Elements, VecEltTy); | 
|  | case Instruction::Shl: { | 
|  | // Must be shifting by a constant that is a multiple of the element size. | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); | 
|  | if (CI == 0) return false; | 
|  | if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false; | 
|  | unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy); | 
|  |  | 
|  | return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift, | 
|  | Elements, VecEltTy); | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we | 
|  | /// may be doing shifts and ors to assemble the elements of the vector manually. | 
|  | /// Try to rip the code out and replace it with insertelements.  This is to | 
|  | /// optimize code like this: | 
|  | /// | 
|  | ///    %tmp37 = bitcast float %inc to i32 | 
|  | ///    %tmp38 = zext i32 %tmp37 to i64 | 
|  | ///    %tmp31 = bitcast float %inc5 to i32 | 
|  | ///    %tmp32 = zext i32 %tmp31 to i64 | 
|  | ///    %tmp33 = shl i64 %tmp32, 32 | 
|  | ///    %ins35 = or i64 %tmp33, %tmp38 | 
|  | ///    %tmp43 = bitcast i64 %ins35 to <2 x float> | 
|  | /// | 
|  | /// Into two insertelements that do "buildvector{%inc, %inc5}". | 
|  | static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI, | 
|  | InstCombiner &IC) { | 
|  | const VectorType *DestVecTy = cast<VectorType>(CI.getType()); | 
|  | Value *IntInput = CI.getOperand(0); | 
|  |  | 
|  | SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); | 
|  | if (!CollectInsertionElements(IntInput, 0, Elements, | 
|  | DestVecTy->getElementType())) | 
|  | return 0; | 
|  |  | 
|  | // If we succeeded, we know that all of the element are specified by Elements | 
|  | // or are zero if Elements has a null entry.  Recast this as a set of | 
|  | // insertions. | 
|  | Value *Result = Constant::getNullValue(CI.getType()); | 
|  | for (unsigned i = 0, e = Elements.size(); i != e; ++i) { | 
|  | if (Elements[i] == 0) continue;  // Unset element. | 
|  |  | 
|  | Result = IC.Builder->CreateInsertElement(Result, Elements[i], | 
|  | IC.Builder->getInt32(i)); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double | 
|  | /// bitcast.  The various long double bitcasts can't get in here. | 
|  | static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ | 
|  | Value *Src = CI.getOperand(0); | 
|  | const Type *DestTy = CI.getType(); | 
|  |  | 
|  | // If this is a bitcast from int to float, check to see if the int is an | 
|  | // extraction from a vector. | 
|  | Value *VecInput = 0; | 
|  | // bitcast(trunc(bitcast(somevector))) | 
|  | if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) && | 
|  | isa<VectorType>(VecInput->getType())) { | 
|  | const VectorType *VecTy = cast<VectorType>(VecInput->getType()); | 
|  | unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); | 
|  |  | 
|  | if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) { | 
|  | // If the element type of the vector doesn't match the result type, | 
|  | // bitcast it to be a vector type we can extract from. | 
|  | if (VecTy->getElementType() != DestTy) { | 
|  | VecTy = VectorType::get(DestTy, | 
|  | VecTy->getPrimitiveSizeInBits() / DestWidth); | 
|  | VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); | 
|  | } | 
|  |  | 
|  | return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // bitcast(trunc(lshr(bitcast(somevector), cst)) | 
|  | ConstantInt *ShAmt = 0; | 
|  | if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)), | 
|  | m_ConstantInt(ShAmt)))) && | 
|  | isa<VectorType>(VecInput->getType())) { | 
|  | const VectorType *VecTy = cast<VectorType>(VecInput->getType()); | 
|  | unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); | 
|  | if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 && | 
|  | ShAmt->getZExtValue() % DestWidth == 0) { | 
|  | // If the element type of the vector doesn't match the result type, | 
|  | // bitcast it to be a vector type we can extract from. | 
|  | if (VecTy->getElementType() != DestTy) { | 
|  | VecTy = VectorType::get(DestTy, | 
|  | VecTy->getPrimitiveSizeInBits() / DestWidth); | 
|  | VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); | 
|  | } | 
|  |  | 
|  | unsigned Elt = ShAmt->getZExtValue() / DestWidth; | 
|  | return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { | 
|  | // If the operands are integer typed then apply the integer transforms, | 
|  | // otherwise just apply the common ones. | 
|  | Value *Src = CI.getOperand(0); | 
|  | const Type *SrcTy = Src->getType(); | 
|  | const Type *DestTy = CI.getType(); | 
|  |  | 
|  | // Get rid of casts from one type to the same type. These are useless and can | 
|  | // be replaced by the operand. | 
|  | if (DestTy == Src->getType()) | 
|  | return ReplaceInstUsesWith(CI, Src); | 
|  |  | 
|  | if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { | 
|  | const PointerType *SrcPTy = cast<PointerType>(SrcTy); | 
|  | const Type *DstElTy = DstPTy->getElementType(); | 
|  | const Type *SrcElTy = SrcPTy->getElementType(); | 
|  |  | 
|  | // If the address spaces don't match, don't eliminate the bitcast, which is | 
|  | // required for changing types. | 
|  | if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace()) | 
|  | return 0; | 
|  |  | 
|  | // If we are casting a alloca to a pointer to a type of the same | 
|  | // size, rewrite the allocation instruction to allocate the "right" type. | 
|  | // There is no need to modify malloc calls because it is their bitcast that | 
|  | // needs to be cleaned up. | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) | 
|  | if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) | 
|  | return V; | 
|  |  | 
|  | // If the source and destination are pointers, and this cast is equivalent | 
|  | // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep. | 
|  | // This can enhance SROA and other transforms that want type-safe pointers. | 
|  | Constant *ZeroUInt = | 
|  | Constant::getNullValue(Type::getInt32Ty(CI.getContext())); | 
|  | unsigned NumZeros = 0; | 
|  | while (SrcElTy != DstElTy && | 
|  | isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && | 
|  | SrcElTy->getNumContainedTypes() /* not "{}" */) { | 
|  | SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); | 
|  | ++NumZeros; | 
|  | } | 
|  |  | 
|  | // If we found a path from the src to dest, create the getelementptr now. | 
|  | if (SrcElTy == DstElTy) { | 
|  | SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt); | 
|  | return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to optimize int -> float bitcasts. | 
|  | if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy)) | 
|  | if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this)) | 
|  | return I; | 
|  |  | 
|  | if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { | 
|  | if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { | 
|  | Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); | 
|  | return InsertElementInst::Create(UndefValue::get(DestTy), Elem, | 
|  | Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); | 
|  | // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) | 
|  | } | 
|  |  | 
|  | if (isa<IntegerType>(SrcTy)) { | 
|  | // If this is a cast from an integer to vector, check to see if the input | 
|  | // is a trunc or zext of a bitcast from vector.  If so, we can replace all | 
|  | // the casts with a shuffle and (potentially) a bitcast. | 
|  | if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { | 
|  | CastInst *SrcCast = cast<CastInst>(Src); | 
|  | if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) | 
|  | if (isa<VectorType>(BCIn->getOperand(0)->getType())) | 
|  | if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0), | 
|  | cast<VectorType>(DestTy), *this)) | 
|  | return I; | 
|  | } | 
|  |  | 
|  | // If the input is an 'or' instruction, we may be doing shifts and ors to | 
|  | // assemble the elements of the vector manually.  Try to rip the code out | 
|  | // and replace it with insertelements. | 
|  | if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this)) | 
|  | return ReplaceInstUsesWith(CI, V); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { | 
|  | if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) { | 
|  | Value *Elem = | 
|  | Builder->CreateExtractElement(Src, | 
|  | Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); | 
|  | return CastInst::Create(Instruction::BitCast, Elem, DestTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { | 
|  | // Okay, we have (bitcast (shuffle ..)).  Check to see if this is | 
|  | // a bitcast to a vector with the same # elts. | 
|  | if (SVI->hasOneUse() && DestTy->isVectorTy() && | 
|  | cast<VectorType>(DestTy)->getNumElements() == | 
|  | SVI->getType()->getNumElements() && | 
|  | SVI->getType()->getNumElements() == | 
|  | cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) { | 
|  | BitCastInst *Tmp; | 
|  | // If either of the operands is a cast from CI.getType(), then | 
|  | // evaluating the shuffle in the casted destination's type will allow | 
|  | // us to eliminate at least one cast. | 
|  | if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && | 
|  | Tmp->getOperand(0)->getType() == DestTy) || | 
|  | ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && | 
|  | Tmp->getOperand(0)->getType() == DestTy)) { | 
|  | Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); | 
|  | Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); | 
|  | // Return a new shuffle vector.  Use the same element ID's, as we | 
|  | // know the vector types match #elts. | 
|  | return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SrcTy->isPointerTy()) | 
|  | return commonPointerCastTransforms(CI); | 
|  | return commonCastTransforms(CI); | 
|  | } |