|  | //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // For best-case performance on Cortex-A57, we should try to use a balanced | 
|  | // mix of odd and even D-registers when performing a critical sequence of | 
|  | // independent, non-quadword FP/ASIMD floating-point multiply or | 
|  | // multiply-accumulate operations. | 
|  | // | 
|  | // This pass attempts to detect situations where the register allocation may | 
|  | // adversely affect this load balancing and to change the registers used so as | 
|  | // to better utilize the CPU. | 
|  | // | 
|  | // Ideally we'd just take each multiply or multiply-accumulate in turn and | 
|  | // allocate it alternating even or odd registers. However, multiply-accumulates | 
|  | // are most efficiently performed in the same functional unit as their | 
|  | // accumulation operand. Therefore this pass tries to find maximal sequences | 
|  | // ("Chains") of multiply-accumulates linked via their accumulation operand, | 
|  | // and assign them all the same "color" (oddness/evenness). | 
|  | // | 
|  | // This optimization affects S-register and D-register floating point | 
|  | // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and | 
|  | // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are | 
|  | // not affected. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AArch64.h" | 
|  | #include "AArch64InstrInfo.h" | 
|  | #include "AArch64Subtarget.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/EquivalenceClasses.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RegisterClassInfo.h" | 
|  | #include "llvm/CodeGen/RegisterScavenging.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <list> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "aarch64-a57-fp-load-balancing" | 
|  |  | 
|  | // Enforce the algorithm to use the scavenged register even when the original | 
|  | // destination register is the correct color. Used for testing. | 
|  | static cl::opt<bool> | 
|  | TransformAll("aarch64-a57-fp-load-balancing-force-all", | 
|  | cl::desc("Always modify dest registers regardless of color"), | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | // Never use the balance information obtained from chains - return a specific | 
|  | // color always. Used for testing. | 
|  | static cl::opt<unsigned> | 
|  | OverrideBalance("aarch64-a57-fp-load-balancing-override", | 
|  | cl::desc("Ignore balance information, always return " | 
|  | "(1: Even, 2: Odd)."), | 
|  | cl::init(0), cl::Hidden); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper functions | 
|  |  | 
|  | // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs? | 
|  | static bool isMul(MachineInstr *MI) { | 
|  | switch (MI->getOpcode()) { | 
|  | case AArch64::FMULSrr: | 
|  | case AArch64::FNMULSrr: | 
|  | case AArch64::FMULDrr: | 
|  | case AArch64::FNMULDrr: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs? | 
|  | static bool isMla(MachineInstr *MI) { | 
|  | switch (MI->getOpcode()) { | 
|  | case AArch64::FMSUBSrrr: | 
|  | case AArch64::FMADDSrrr: | 
|  | case AArch64::FNMSUBSrrr: | 
|  | case AArch64::FNMADDSrrr: | 
|  | case AArch64::FMSUBDrrr: | 
|  | case AArch64::FMADDDrrr: | 
|  | case AArch64::FNMSUBDrrr: | 
|  | case AArch64::FNMADDDrrr: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | static void initializeAArch64A57FPLoadBalancingPass(PassRegistry &); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// A "color", which is either even or odd. Yes, these aren't really colors | 
|  | /// but the algorithm is conceptually doing two-color graph coloring. | 
|  | enum class Color { Even, Odd }; | 
|  | #ifndef NDEBUG | 
|  | static const char *ColorNames[2] = { "Even", "Odd" }; | 
|  | #endif | 
|  |  | 
|  | class Chain; | 
|  |  | 
|  | class AArch64A57FPLoadBalancing : public MachineFunctionPass { | 
|  | MachineRegisterInfo *MRI; | 
|  | const TargetRegisterInfo *TRI; | 
|  | RegisterClassInfo RCI; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  | explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) { | 
|  | initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &F) override; | 
|  |  | 
|  | MachineFunctionProperties getRequiredProperties() const override { | 
|  | return MachineFunctionProperties().set( | 
|  | MachineFunctionProperties::Property::AllVRegsAllocated); | 
|  | } | 
|  |  | 
|  | const char *getPassName() const override { | 
|  | return "A57 FP Anti-dependency breaker"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool runOnBasicBlock(MachineBasicBlock &MBB); | 
|  | bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB, | 
|  | int &Balance); | 
|  | bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB); | 
|  | int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB); | 
|  | void scanInstruction(MachineInstr *MI, unsigned Idx, | 
|  | std::map<unsigned, Chain*> &Active, | 
|  | std::vector<std::unique_ptr<Chain>> &AllChains); | 
|  | void maybeKillChain(MachineOperand &MO, unsigned Idx, | 
|  | std::map<unsigned, Chain*> &RegChains); | 
|  | Color getColor(unsigned Register); | 
|  | Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L); | 
|  | }; | 
|  | } | 
|  |  | 
|  | char AArch64A57FPLoadBalancing::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE, | 
|  | "AArch64 A57 FP Load-Balancing", false, false) | 
|  | INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE, | 
|  | "AArch64 A57 FP Load-Balancing", false, false) | 
|  |  | 
|  | namespace { | 
|  | /// A Chain is a sequence of instructions that are linked together by | 
|  | /// an accumulation operand. For example: | 
|  | /// | 
|  | ///   fmul d0<def>, ? | 
|  | ///   fmla d1<def>, ?, ?, d0<kill> | 
|  | ///   fmla d2<def>, ?, ?, d1<kill> | 
|  | /// | 
|  | /// There may be other instructions interleaved in the sequence that | 
|  | /// do not belong to the chain. These other instructions must not use | 
|  | /// the "chain" register at any point. | 
|  | /// | 
|  | /// We currently only support chains where the "chain" operand is killed | 
|  | /// at each link in the chain for simplicity. | 
|  | /// A chain has three important instructions - Start, Last and Kill. | 
|  | ///   * The start instruction is the first instruction in the chain. | 
|  | ///   * Last is the final instruction in the chain. | 
|  | ///   * Kill may or may not be defined. If defined, Kill is the instruction | 
|  | ///     where the outgoing value of the Last instruction is killed. | 
|  | ///     This information is important as if we know the outgoing value is | 
|  | ///     killed with no intervening uses, we can safely change its register. | 
|  | /// | 
|  | /// Without a kill instruction, we must assume the outgoing value escapes | 
|  | /// beyond our model and either must not change its register or must | 
|  | /// create a fixup FMOV to keep the old register value consistent. | 
|  | /// | 
|  | class Chain { | 
|  | public: | 
|  | /// The important (marker) instructions. | 
|  | MachineInstr *StartInst, *LastInst, *KillInst; | 
|  | /// The index, from the start of the basic block, that each marker | 
|  | /// appears. These are stored so we can do quick interval tests. | 
|  | unsigned StartInstIdx, LastInstIdx, KillInstIdx; | 
|  | /// All instructions in the chain. | 
|  | std::set<MachineInstr*> Insts; | 
|  | /// True if KillInst cannot be modified. If this is true, | 
|  | /// we cannot change LastInst's outgoing register. | 
|  | /// This will be true for tied values and regmasks. | 
|  | bool KillIsImmutable; | 
|  | /// The "color" of LastInst. This will be the preferred chain color, | 
|  | /// as changing intermediate nodes is easy but changing the last | 
|  | /// instruction can be more tricky. | 
|  | Color LastColor; | 
|  |  | 
|  | Chain(MachineInstr *MI, unsigned Idx, Color C) | 
|  | : StartInst(MI), LastInst(MI), KillInst(nullptr), | 
|  | StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0), | 
|  | LastColor(C) { | 
|  | Insts.insert(MI); | 
|  | } | 
|  |  | 
|  | /// Add a new instruction into the chain. The instruction's dest operand | 
|  | /// has the given color. | 
|  | void add(MachineInstr *MI, unsigned Idx, Color C) { | 
|  | LastInst = MI; | 
|  | LastInstIdx = Idx; | 
|  | LastColor = C; | 
|  | assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) && | 
|  | "Chain: broken invariant. A Chain can only be killed after its last " | 
|  | "def"); | 
|  |  | 
|  | Insts.insert(MI); | 
|  | } | 
|  |  | 
|  | /// Return true if MI is a member of the chain. | 
|  | bool contains(MachineInstr *MI) { return Insts.count(MI) > 0; } | 
|  |  | 
|  | /// Return the number of instructions in the chain. | 
|  | unsigned size() const { | 
|  | return Insts.size(); | 
|  | } | 
|  |  | 
|  | /// Inform the chain that its last active register (the dest register of | 
|  | /// LastInst) is killed by MI with no intervening uses or defs. | 
|  | void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) { | 
|  | KillInst = MI; | 
|  | KillInstIdx = Idx; | 
|  | KillIsImmutable = Immutable; | 
|  | assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) && | 
|  | "Chain: broken invariant. A Chain can only be killed after its last " | 
|  | "def"); | 
|  | } | 
|  |  | 
|  | /// Return the first instruction in the chain. | 
|  | MachineInstr *getStart() const { return StartInst; } | 
|  | /// Return the last instruction in the chain. | 
|  | MachineInstr *getLast() const { return LastInst; } | 
|  | /// Return the "kill" instruction (as set with setKill()) or NULL. | 
|  | MachineInstr *getKill() const { return KillInst; } | 
|  | /// Return an instruction that can be used as an iterator for the end | 
|  | /// of the chain. This is the maximum of KillInst (if set) and LastInst. | 
|  | MachineBasicBlock::iterator getEnd() const { | 
|  | return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst); | 
|  | } | 
|  |  | 
|  | /// Can the Kill instruction (assuming one exists) be modified? | 
|  | bool isKillImmutable() const { return KillIsImmutable; } | 
|  |  | 
|  | /// Return the preferred color of this chain. | 
|  | Color getPreferredColor() { | 
|  | if (OverrideBalance != 0) | 
|  | return OverrideBalance == 1 ? Color::Even : Color::Odd; | 
|  | return LastColor; | 
|  | } | 
|  |  | 
|  | /// Return true if this chain (StartInst..KillInst) overlaps with Other. | 
|  | bool rangeOverlapsWith(const Chain &Other) const { | 
|  | unsigned End = KillInst ? KillInstIdx : LastInstIdx; | 
|  | unsigned OtherEnd = Other.KillInst ? | 
|  | Other.KillInstIdx : Other.LastInstIdx; | 
|  |  | 
|  | return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End; | 
|  | } | 
|  |  | 
|  | /// Return true if this chain starts before Other. | 
|  | bool startsBefore(const Chain *Other) const { | 
|  | return StartInstIdx < Other->StartInstIdx; | 
|  | } | 
|  |  | 
|  | /// Return true if the group will require a fixup MOV at the end. | 
|  | bool requiresFixup() const { | 
|  | return (getKill() && isKillImmutable()) || !getKill(); | 
|  | } | 
|  |  | 
|  | /// Return a simple string representation of the chain. | 
|  | std::string str() const { | 
|  | std::string S; | 
|  | raw_string_ostream OS(S); | 
|  |  | 
|  | OS << "{"; | 
|  | StartInst->print(OS, /* SkipOpers= */true); | 
|  | OS << " -> "; | 
|  | LastInst->print(OS, /* SkipOpers= */true); | 
|  | if (KillInst) { | 
|  | OS << " (kill @ "; | 
|  | KillInst->print(OS, /* SkipOpers= */true); | 
|  | OS << ")"; | 
|  | } | 
|  | OS << "}"; | 
|  |  | 
|  | return OS.str(); | 
|  | } | 
|  |  | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) { | 
|  | // Don't do anything if this isn't an A53 or A57. | 
|  | if (!(F.getSubtarget<AArch64Subtarget>().isCortexA53() || | 
|  | F.getSubtarget<AArch64Subtarget>().isCortexA57())) | 
|  | return false; | 
|  |  | 
|  | bool Changed = false; | 
|  | DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n"); | 
|  |  | 
|  | MRI = &F.getRegInfo(); | 
|  | TRI = F.getRegInfo().getTargetRegisterInfo(); | 
|  | RCI.runOnMachineFunction(F); | 
|  |  | 
|  | for (auto &MBB : F) { | 
|  | Changed |= runOnBasicBlock(MBB); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) { | 
|  | bool Changed = false; | 
|  | DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n"); | 
|  |  | 
|  | // First, scan the basic block producing a set of chains. | 
|  |  | 
|  | // The currently "active" chains - chains that can be added to and haven't | 
|  | // been killed yet. This is keyed by register - all chains can only have one | 
|  | // "link" register between each inst in the chain. | 
|  | std::map<unsigned, Chain*> ActiveChains; | 
|  | std::vector<std::unique_ptr<Chain>> AllChains; | 
|  | unsigned Idx = 0; | 
|  | for (auto &MI : MBB) | 
|  | scanInstruction(&MI, Idx++, ActiveChains, AllChains); | 
|  |  | 
|  | DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n"); | 
|  |  | 
|  | // Group the chains into disjoint sets based on their liveness range. This is | 
|  | // a poor-man's version of graph coloring. Ideally we'd create an interference | 
|  | // graph and perform full-on graph coloring on that, but; | 
|  | //   (a) That's rather heavyweight for only two colors. | 
|  | //   (b) We expect multiple disjoint interference regions - in practice the live | 
|  | //       range of chains is quite small and they are clustered between loads | 
|  | //       and stores. | 
|  | EquivalenceClasses<Chain*> EC; | 
|  | for (auto &I : AllChains) | 
|  | EC.insert(I.get()); | 
|  |  | 
|  | for (auto &I : AllChains) | 
|  | for (auto &J : AllChains) | 
|  | if (I != J && I->rangeOverlapsWith(*J)) | 
|  | EC.unionSets(I.get(), J.get()); | 
|  | DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n"); | 
|  |  | 
|  | // Now we assume that every member of an equivalence class interferes | 
|  | // with every other member of that class, and with no members of other classes. | 
|  |  | 
|  | // Convert the EquivalenceClasses to a simpler set of sets. | 
|  | std::vector<std::vector<Chain*> > V; | 
|  | for (auto I = EC.begin(), E = EC.end(); I != E; ++I) { | 
|  | std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end()); | 
|  | if (Cs.empty()) continue; | 
|  | V.push_back(std::move(Cs)); | 
|  | } | 
|  |  | 
|  | // Now we have a set of sets, order them by start address so | 
|  | // we can iterate over them sequentially. | 
|  | std::sort(V.begin(), V.end(), | 
|  | [](const std::vector<Chain*> &A, | 
|  | const std::vector<Chain*> &B) { | 
|  | return A.front()->startsBefore(B.front()); | 
|  | }); | 
|  |  | 
|  | // As we only have two colors, we can track the global (BB-level) balance of | 
|  | // odds versus evens. We aim to keep this near zero to keep both execution | 
|  | // units fed. | 
|  | // Positive means we're even-heavy, negative we're odd-heavy. | 
|  | // | 
|  | // FIXME: If chains have interdependencies, for example: | 
|  | //   mul r0, r1, r2 | 
|  | //   mul r3, r0, r1 | 
|  | // We do not model this and may color each one differently, assuming we'll | 
|  | // get ILP when we obviously can't. This hasn't been seen to be a problem | 
|  | // in practice so far, so we simplify the algorithm by ignoring it. | 
|  | int Parity = 0; | 
|  |  | 
|  | for (auto &I : V) | 
|  | Changed |= colorChainSet(std::move(I), MBB, Parity); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor, | 
|  | std::vector<Chain*> &L) { | 
|  | if (L.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // We try and get the best candidate from L to color next, given that our | 
|  | // preferred color is "PreferredColor". L is ordered from larger to smaller | 
|  | // chains. It is beneficial to color the large chains before the small chains, | 
|  | // but if we can't find a chain of the maximum length with the preferred color, | 
|  | // we fuzz the size and look for slightly smaller chains before giving up and | 
|  | // returning a chain that must be recolored. | 
|  |  | 
|  | // FIXME: Does this need to be configurable? | 
|  | const unsigned SizeFuzz = 1; | 
|  | unsigned MinSize = L.front()->size() - SizeFuzz; | 
|  | for (auto I = L.begin(), E = L.end(); I != E; ++I) { | 
|  | if ((*I)->size() <= MinSize) { | 
|  | // We've gone past the size limit. Return the previous item. | 
|  | Chain *Ch = *--I; | 
|  | L.erase(I); | 
|  | return Ch; | 
|  | } | 
|  |  | 
|  | if ((*I)->getPreferredColor() == PreferredColor) { | 
|  | Chain *Ch = *I; | 
|  | L.erase(I); | 
|  | return Ch; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Bailout case - just return the first item. | 
|  | Chain *Ch = L.front(); | 
|  | L.erase(L.begin()); | 
|  | return Ch; | 
|  | } | 
|  |  | 
|  | bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV, | 
|  | MachineBasicBlock &MBB, | 
|  | int &Parity) { | 
|  | bool Changed = false; | 
|  | DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n"); | 
|  |  | 
|  | // Sort by descending size order so that we allocate the most important | 
|  | // sets first. | 
|  | // Tie-break equivalent sizes by sorting chains requiring fixups before | 
|  | // those without fixups. The logic here is that we should look at the | 
|  | // chains that we cannot change before we look at those we can, | 
|  | // so the parity counter is updated and we know what color we should | 
|  | // change them to! | 
|  | // Final tie-break with instruction order so pass output is stable (i.e. not | 
|  | // dependent on malloc'd pointer values). | 
|  | std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) { | 
|  | if (G1->size() != G2->size()) | 
|  | return G1->size() > G2->size(); | 
|  | if (G1->requiresFixup() != G2->requiresFixup()) | 
|  | return G1->requiresFixup() > G2->requiresFixup(); | 
|  | // Make sure startsBefore() produces a stable final order. | 
|  | assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) && | 
|  | "Starts before not total order!"); | 
|  | return G1->startsBefore(G2); | 
|  | }); | 
|  |  | 
|  | Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd; | 
|  | while (Chain *G = getAndEraseNext(PreferredColor, GV)) { | 
|  | // Start off by assuming we'll color to our own preferred color. | 
|  | Color C = PreferredColor; | 
|  | if (Parity == 0) | 
|  | // But if we really don't care, use the chain's preferred color. | 
|  | C = G->getPreferredColor(); | 
|  |  | 
|  | DEBUG(dbgs() << " - Parity=" << Parity << ", Color=" | 
|  | << ColorNames[(int)C] << "\n"); | 
|  |  | 
|  | // If we'll need a fixup FMOV, don't bother. Testing has shown that this | 
|  | // happens infrequently and when it does it has at least a 50% chance of | 
|  | // slowing code down instead of speeding it up. | 
|  | if (G->requiresFixup() && C != G->getPreferredColor()) { | 
|  | C = G->getPreferredColor(); | 
|  | DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; " | 
|  | "color remains " << ColorNames[(int)C] << "\n"); | 
|  | } | 
|  |  | 
|  | Changed |= colorChain(G, C, MBB); | 
|  |  | 
|  | Parity += (C == Color::Even) ? G->size() : -G->size(); | 
|  | PreferredColor = Parity < 0 ? Color::Even : Color::Odd; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C, | 
|  | MachineBasicBlock &MBB) { | 
|  | RegScavenger RS; | 
|  | RS.enterBasicBlock(&MBB); | 
|  | RS.forward(MachineBasicBlock::iterator(G->getStart())); | 
|  |  | 
|  | // Can we find an appropriate register that is available throughout the life | 
|  | // of the chain? | 
|  | unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass; | 
|  | BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID)); | 
|  | for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd(); | 
|  | I != E; ++I) { | 
|  | RS.forward(I); | 
|  | AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID)); | 
|  |  | 
|  | // Remove any registers clobbered by a regmask or any def register that is | 
|  | // immediately dead. | 
|  | for (auto J : I->operands()) { | 
|  | if (J.isRegMask()) | 
|  | AvailableRegs.clearBitsNotInMask(J.getRegMask()); | 
|  |  | 
|  | if (J.isReg() && J.isDef()) { | 
|  | MCRegAliasIterator AI(J.getReg(), TRI, /*IncludeSelf=*/true); | 
|  | if (J.isDead()) | 
|  | for (; AI.isValid(); ++AI) | 
|  | AvailableRegs.reset(*AI); | 
|  | #ifndef NDEBUG | 
|  | else | 
|  | for (; AI.isValid(); ++AI) | 
|  | assert(!AvailableRegs[*AI] && | 
|  | "Non-dead def should have been removed by now!"); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure we allocate in-order, to get the cheapest registers first. | 
|  | auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID)); | 
|  | for (auto Reg : Ord) { | 
|  | if (!AvailableRegs[Reg]) | 
|  | continue; | 
|  | if (C == getColor(Reg)) | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C, | 
|  | MachineBasicBlock &MBB) { | 
|  | bool Changed = false; | 
|  | DEBUG(dbgs() << " - colorChain(" << G->str() << ", " | 
|  | << ColorNames[(int)C] << ")\n"); | 
|  |  | 
|  | // Try and obtain a free register of the right class. Without a register | 
|  | // to play with we cannot continue. | 
|  | int Reg = scavengeRegister(G, C, MBB); | 
|  | if (Reg == -1) { | 
|  | DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n"); | 
|  | return false; | 
|  | } | 
|  | DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n"); | 
|  |  | 
|  | std::map<unsigned, unsigned> Substs; | 
|  | for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd(); | 
|  | I != E; ++I) { | 
|  | if (!G->contains(I) && | 
|  | (&*I != G->getKill() || G->isKillImmutable())) | 
|  | continue; | 
|  |  | 
|  | // I is a member of G, or I is a mutable instruction that kills G. | 
|  |  | 
|  | std::vector<unsigned> ToErase; | 
|  | for (auto &U : I->operands()) { | 
|  | if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) { | 
|  | unsigned OrigReg = U.getReg(); | 
|  | U.setReg(Substs[OrigReg]); | 
|  | if (U.isKill()) | 
|  | // Don't erase straight away, because there may be other operands | 
|  | // that also reference this substitution! | 
|  | ToErase.push_back(OrigReg); | 
|  | } else if (U.isRegMask()) { | 
|  | for (auto J : Substs) { | 
|  | if (U.clobbersPhysReg(J.first)) | 
|  | ToErase.push_back(J.first); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Now it's safe to remove the substs identified earlier. | 
|  | for (auto J : ToErase) | 
|  | Substs.erase(J); | 
|  |  | 
|  | // Only change the def if this isn't the last instruction. | 
|  | if (&*I != G->getKill()) { | 
|  | MachineOperand &MO = I->getOperand(0); | 
|  |  | 
|  | bool Change = TransformAll || getColor(MO.getReg()) != C; | 
|  | if (G->requiresFixup() && &*I == G->getLast()) | 
|  | Change = false; | 
|  |  | 
|  | if (Change) { | 
|  | Substs[MO.getReg()] = Reg; | 
|  | MO.setReg(Reg); | 
|  |  | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | assert(Substs.size() == 0 && "No substitutions should be left active!"); | 
|  |  | 
|  | if (G->getKill()) { | 
|  | DEBUG(dbgs() << " - Kill instruction seen.\n"); | 
|  | } else { | 
|  | // We didn't have a kill instruction, but we didn't seem to need to change | 
|  | // the destination register anyway. | 
|  | DEBUG(dbgs() << " - Destination register not changed.\n"); | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | void AArch64A57FPLoadBalancing::scanInstruction( | 
|  | MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains, | 
|  | std::vector<std::unique_ptr<Chain>> &AllChains) { | 
|  | // Inspect "MI", updating ActiveChains and AllChains. | 
|  |  | 
|  | if (isMul(MI)) { | 
|  |  | 
|  | for (auto &I : MI->uses()) | 
|  | maybeKillChain(I, Idx, ActiveChains); | 
|  | for (auto &I : MI->defs()) | 
|  | maybeKillChain(I, Idx, ActiveChains); | 
|  |  | 
|  | // Create a new chain. Multiplies don't require forwarding so can go on any | 
|  | // unit. | 
|  | unsigned DestReg = MI->getOperand(0).getReg(); | 
|  |  | 
|  | DEBUG(dbgs() << "New chain started for register " | 
|  | << TRI->getName(DestReg) << " at " << *MI); | 
|  |  | 
|  | auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg)); | 
|  | ActiveChains[DestReg] = G.get(); | 
|  | AllChains.push_back(std::move(G)); | 
|  |  | 
|  | } else if (isMla(MI)) { | 
|  |  | 
|  | // It is beneficial to keep MLAs on the same functional unit as their | 
|  | // accumulator operand. | 
|  | unsigned DestReg  = MI->getOperand(0).getReg(); | 
|  | unsigned AccumReg = MI->getOperand(3).getReg(); | 
|  |  | 
|  | maybeKillChain(MI->getOperand(1), Idx, ActiveChains); | 
|  | maybeKillChain(MI->getOperand(2), Idx, ActiveChains); | 
|  | if (DestReg != AccumReg) | 
|  | maybeKillChain(MI->getOperand(0), Idx, ActiveChains); | 
|  |  | 
|  | if (ActiveChains.find(AccumReg) != ActiveChains.end()) { | 
|  | DEBUG(dbgs() << "Chain found for accumulator register " | 
|  | << TRI->getName(AccumReg) << " in MI " << *MI); | 
|  |  | 
|  | // For simplicity we only chain together sequences of MULs/MLAs where the | 
|  | // accumulator register is killed on each instruction. This means we don't | 
|  | // need to track other uses of the registers we want to rewrite. | 
|  | // | 
|  | // FIXME: We could extend to handle the non-kill cases for more coverage. | 
|  | if (MI->getOperand(3).isKill()) { | 
|  | // Add to chain. | 
|  | DEBUG(dbgs() << "Instruction was successfully added to chain.\n"); | 
|  | ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg)); | 
|  | // Handle cases where the destination is not the same as the accumulator. | 
|  | if (DestReg != AccumReg) { | 
|  | ActiveChains[DestReg] = ActiveChains[AccumReg]; | 
|  | ActiveChains.erase(AccumReg); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't " | 
|  | << "marked <kill>!\n"); | 
|  | maybeKillChain(MI->getOperand(3), Idx, ActiveChains); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Creating new chain for dest register " | 
|  | << TRI->getName(DestReg) << "\n"); | 
|  | auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg)); | 
|  | ActiveChains[DestReg] = G.get(); | 
|  | AllChains.push_back(std::move(G)); | 
|  |  | 
|  | } else { | 
|  |  | 
|  | // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs | 
|  | // lists. | 
|  | for (auto &I : MI->uses()) | 
|  | maybeKillChain(I, Idx, ActiveChains); | 
|  | for (auto &I : MI->defs()) | 
|  | maybeKillChain(I, Idx, ActiveChains); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | void AArch64A57FPLoadBalancing:: | 
|  | maybeKillChain(MachineOperand &MO, unsigned Idx, | 
|  | std::map<unsigned, Chain*> &ActiveChains) { | 
|  | // Given an operand and the set of active chains (keyed by register), | 
|  | // determine if a chain should be ended and remove from ActiveChains. | 
|  | MachineInstr *MI = MO.getParent(); | 
|  |  | 
|  | if (MO.isReg()) { | 
|  |  | 
|  | // If this is a KILL of a current chain, record it. | 
|  | if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) { | 
|  | DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg()) | 
|  | << "\n"); | 
|  | ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied()); | 
|  | } | 
|  | ActiveChains.erase(MO.getReg()); | 
|  |  | 
|  | } else if (MO.isRegMask()) { | 
|  |  | 
|  | for (auto I = ActiveChains.begin(), E = ActiveChains.end(); | 
|  | I != E;) { | 
|  | if (MO.clobbersPhysReg(I->first)) { | 
|  | DEBUG(dbgs() << "Kill (regmask) seen for chain " | 
|  | << TRI->getName(I->first) << "\n"); | 
|  | I->second->setKill(MI, Idx, /*Immutable=*/true); | 
|  | ActiveChains.erase(I++); | 
|  | } else | 
|  | ++I; | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) { | 
|  | if ((TRI->getEncodingValue(Reg) % 2) == 0) | 
|  | return Color::Even; | 
|  | else | 
|  | return Color::Odd; | 
|  | } | 
|  |  | 
|  | // Factory function used by AArch64TargetMachine to add the pass to the passmanager. | 
|  | FunctionPass *llvm::createAArch64A57FPLoadBalancing() { | 
|  | return new AArch64A57FPLoadBalancing(); | 
|  | } |