|  | //===-- Constants.cpp - Implement Constant nodes --------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Constant* classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "ConstantFold.h" | 
|  | #include "LLVMContextImpl.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/FoldingSet.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/ManagedStatic.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cstdarg> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              Constant Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void Constant::anchor() { } | 
|  |  | 
|  | bool Constant::isNegativeZeroValue() const { | 
|  | // Floating point values have an explicit -0.0 value. | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
|  | return CFP->isZero() && CFP->isNegative(); | 
|  |  | 
|  | // Equivalent for a vector of -0.0's. | 
|  | if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) | 
|  | if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) | 
|  | if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) | 
|  | return true; | 
|  |  | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) | 
|  | if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) | 
|  | if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) | 
|  | return true; | 
|  |  | 
|  | // We've already handled true FP case; any other FP vectors can't represent -0.0. | 
|  | if (getType()->isFPOrFPVectorTy()) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, just use +0.0. | 
|  | return isNullValue(); | 
|  | } | 
|  |  | 
|  | // Return true iff this constant is positive zero (floating point), negative | 
|  | // zero (floating point), or a null value. | 
|  | bool Constant::isZeroValue() const { | 
|  | // Floating point values have an explicit -0.0 value. | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
|  | return CFP->isZero(); | 
|  |  | 
|  | // Equivalent for a vector of -0.0's. | 
|  | if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) | 
|  | if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) | 
|  | if (SplatCFP && SplatCFP->isZero()) | 
|  | return true; | 
|  |  | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) | 
|  | if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) | 
|  | if (SplatCFP && SplatCFP->isZero()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, just use +0.0. | 
|  | return isNullValue(); | 
|  | } | 
|  |  | 
|  | bool Constant::isNullValue() const { | 
|  | // 0 is null. | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
|  | return CI->isZero(); | 
|  |  | 
|  | // +0.0 is null. | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
|  | return CFP->isZero() && !CFP->isNegative(); | 
|  |  | 
|  | // constant zero is zero for aggregates, cpnull is null for pointers, none for | 
|  | // tokens. | 
|  | return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || | 
|  | isa<ConstantTokenNone>(this); | 
|  | } | 
|  |  | 
|  | bool Constant::isAllOnesValue() const { | 
|  | // Check for -1 integers | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
|  | return CI->isMinusOne(); | 
|  |  | 
|  | // Check for FP which are bitcasted from -1 integers | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
|  | return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); | 
|  |  | 
|  | // Check for constant vectors which are splats of -1 values. | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) | 
|  | if (Constant *Splat = CV->getSplatValue()) | 
|  | return Splat->isAllOnesValue(); | 
|  |  | 
|  | // Check for constant vectors which are splats of -1 values. | 
|  | if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) | 
|  | if (Constant *Splat = CV->getSplatValue()) | 
|  | return Splat->isAllOnesValue(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Constant::isOneValue() const { | 
|  | // Check for 1 integers | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
|  | return CI->isOne(); | 
|  |  | 
|  | // Check for FP which are bitcasted from 1 integers | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
|  | return CFP->getValueAPF().bitcastToAPInt() == 1; | 
|  |  | 
|  | // Check for constant vectors which are splats of 1 values. | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) | 
|  | if (Constant *Splat = CV->getSplatValue()) | 
|  | return Splat->isOneValue(); | 
|  |  | 
|  | // Check for constant vectors which are splats of 1 values. | 
|  | if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) | 
|  | if (Constant *Splat = CV->getSplatValue()) | 
|  | return Splat->isOneValue(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Constant::isMinSignedValue() const { | 
|  | // Check for INT_MIN integers | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
|  | return CI->isMinValue(/*isSigned=*/true); | 
|  |  | 
|  | // Check for FP which are bitcasted from INT_MIN integers | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
|  | return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); | 
|  |  | 
|  | // Check for constant vectors which are splats of INT_MIN values. | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) | 
|  | if (Constant *Splat = CV->getSplatValue()) | 
|  | return Splat->isMinSignedValue(); | 
|  |  | 
|  | // Check for constant vectors which are splats of INT_MIN values. | 
|  | if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) | 
|  | if (Constant *Splat = CV->getSplatValue()) | 
|  | return Splat->isMinSignedValue(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Constant::isNotMinSignedValue() const { | 
|  | // Check for INT_MIN integers | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
|  | return !CI->isMinValue(/*isSigned=*/true); | 
|  |  | 
|  | // Check for FP which are bitcasted from INT_MIN integers | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
|  | return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); | 
|  |  | 
|  | // Check for constant vectors which are splats of INT_MIN values. | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) | 
|  | if (Constant *Splat = CV->getSplatValue()) | 
|  | return Splat->isNotMinSignedValue(); | 
|  |  | 
|  | // Check for constant vectors which are splats of INT_MIN values. | 
|  | if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) | 
|  | if (Constant *Splat = CV->getSplatValue()) | 
|  | return Splat->isNotMinSignedValue(); | 
|  |  | 
|  | // It *may* contain INT_MIN, we can't tell. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Constructor to create a '0' constant of arbitrary type... | 
|  | Constant *Constant::getNullValue(Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | case Type::IntegerTyID: | 
|  | return ConstantInt::get(Ty, 0); | 
|  | case Type::HalfTyID: | 
|  | return ConstantFP::get(Ty->getContext(), | 
|  | APFloat::getZero(APFloat::IEEEhalf)); | 
|  | case Type::FloatTyID: | 
|  | return ConstantFP::get(Ty->getContext(), | 
|  | APFloat::getZero(APFloat::IEEEsingle)); | 
|  | case Type::DoubleTyID: | 
|  | return ConstantFP::get(Ty->getContext(), | 
|  | APFloat::getZero(APFloat::IEEEdouble)); | 
|  | case Type::X86_FP80TyID: | 
|  | return ConstantFP::get(Ty->getContext(), | 
|  | APFloat::getZero(APFloat::x87DoubleExtended)); | 
|  | case Type::FP128TyID: | 
|  | return ConstantFP::get(Ty->getContext(), | 
|  | APFloat::getZero(APFloat::IEEEquad)); | 
|  | case Type::PPC_FP128TyID: | 
|  | return ConstantFP::get(Ty->getContext(), | 
|  | APFloat(APFloat::PPCDoubleDouble, | 
|  | APInt::getNullValue(128))); | 
|  | case Type::PointerTyID: | 
|  | return ConstantPointerNull::get(cast<PointerType>(Ty)); | 
|  | case Type::StructTyID: | 
|  | case Type::ArrayTyID: | 
|  | case Type::VectorTyID: | 
|  | return ConstantAggregateZero::get(Ty); | 
|  | case Type::TokenTyID: | 
|  | return ConstantTokenNone::get(Ty->getContext()); | 
|  | default: | 
|  | // Function, Label, or Opaque type? | 
|  | llvm_unreachable("Cannot create a null constant of that type!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { | 
|  | Type *ScalarTy = Ty->getScalarType(); | 
|  |  | 
|  | // Create the base integer constant. | 
|  | Constant *C = ConstantInt::get(Ty->getContext(), V); | 
|  |  | 
|  | // Convert an integer to a pointer, if necessary. | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) | 
|  | C = ConstantExpr::getIntToPtr(C, PTy); | 
|  |  | 
|  | // Broadcast a scalar to a vector, if necessary. | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | C = ConstantVector::getSplat(VTy->getNumElements(), C); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  | Constant *Constant::getAllOnesValue(Type *Ty) { | 
|  | if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) | 
|  | return ConstantInt::get(Ty->getContext(), | 
|  | APInt::getAllOnesValue(ITy->getBitWidth())); | 
|  |  | 
|  | if (Ty->isFloatingPointTy()) { | 
|  | APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), | 
|  | !Ty->isPPC_FP128Ty()); | 
|  | return ConstantFP::get(Ty->getContext(), FL); | 
|  | } | 
|  |  | 
|  | VectorType *VTy = cast<VectorType>(Ty); | 
|  | return ConstantVector::getSplat(VTy->getNumElements(), | 
|  | getAllOnesValue(VTy->getElementType())); | 
|  | } | 
|  |  | 
|  | /// getAggregateElement - For aggregates (struct/array/vector) return the | 
|  | /// constant that corresponds to the specified element if possible, or null if | 
|  | /// not.  This can return null if the element index is a ConstantExpr, or if | 
|  | /// 'this' is a constant expr. | 
|  | Constant *Constant::getAggregateElement(unsigned Elt) const { | 
|  | if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this)) | 
|  | return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr; | 
|  |  | 
|  | if (const ConstantArray *CA = dyn_cast<ConstantArray>(this)) | 
|  | return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr; | 
|  |  | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) | 
|  | return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr; | 
|  |  | 
|  | if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this)) | 
|  | return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr; | 
|  |  | 
|  | if (const UndefValue *UV = dyn_cast<UndefValue>(this)) | 
|  | return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; | 
|  |  | 
|  | if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) | 
|  | return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) | 
|  | : nullptr; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Constant *Constant::getAggregateElement(Constant *Elt) const { | 
|  | assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) | 
|  | return getAggregateElement(CI->getZExtValue()); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void Constant::destroyConstant() { | 
|  | /// First call destroyConstantImpl on the subclass.  This gives the subclass | 
|  | /// a chance to remove the constant from any maps/pools it's contained in. | 
|  | switch (getValueID()) { | 
|  | default: | 
|  | llvm_unreachable("Not a constant!"); | 
|  | #define HANDLE_CONSTANT(Name)                                                  \ | 
|  | case Value::Name##Val:                                                       \ | 
|  | cast<Name>(this)->destroyConstantImpl();                                   \ | 
|  | break; | 
|  | #include "llvm/IR/Value.def" | 
|  | } | 
|  |  | 
|  | // When a Constant is destroyed, there may be lingering | 
|  | // references to the constant by other constants in the constant pool.  These | 
|  | // constants are implicitly dependent on the module that is being deleted, | 
|  | // but they don't know that.  Because we only find out when the CPV is | 
|  | // deleted, we must now notify all of our users (that should only be | 
|  | // Constants) that they are, in fact, invalid now and should be deleted. | 
|  | // | 
|  | while (!use_empty()) { | 
|  | Value *V = user_back(); | 
|  | #ifndef NDEBUG // Only in -g mode... | 
|  | if (!isa<Constant>(V)) { | 
|  | dbgs() << "While deleting: " << *this | 
|  | << "\n\nUse still stuck around after Def is destroyed: " << *V | 
|  | << "\n\n"; | 
|  | } | 
|  | #endif | 
|  | assert(isa<Constant>(V) && "References remain to Constant being destroyed"); | 
|  | cast<Constant>(V)->destroyConstant(); | 
|  |  | 
|  | // The constant should remove itself from our use list... | 
|  | assert((use_empty() || user_back() != V) && "Constant not removed!"); | 
|  | } | 
|  |  | 
|  | // Value has no outstanding references it is safe to delete it now... | 
|  | delete this; | 
|  | } | 
|  |  | 
|  | static bool canTrapImpl(const Constant *C, | 
|  | SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) { | 
|  | assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); | 
|  | // The only thing that could possibly trap are constant exprs. | 
|  | const ConstantExpr *CE = dyn_cast<ConstantExpr>(C); | 
|  | if (!CE) | 
|  | return false; | 
|  |  | 
|  | // ConstantExpr traps if any operands can trap. | 
|  | for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { | 
|  | if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) { | 
|  | if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, only specific operations can trap. | 
|  | switch (CE->getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | // Div and rem can trap if the RHS is not known to be non-zero. | 
|  | if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// canTrap - Return true if evaluation of this constant could trap.  This is | 
|  | /// true for things like constant expressions that could divide by zero. | 
|  | bool Constant::canTrap() const { | 
|  | SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps; | 
|  | return canTrapImpl(this, NonTrappingOps); | 
|  | } | 
|  |  | 
|  | /// Check if C contains a GlobalValue for which Predicate is true. | 
|  | static bool | 
|  | ConstHasGlobalValuePredicate(const Constant *C, | 
|  | bool (*Predicate)(const GlobalValue *)) { | 
|  | SmallPtrSet<const Constant *, 8> Visited; | 
|  | SmallVector<const Constant *, 8> WorkList; | 
|  | WorkList.push_back(C); | 
|  | Visited.insert(C); | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | const Constant *WorkItem = WorkList.pop_back_val(); | 
|  | if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) | 
|  | if (Predicate(GV)) | 
|  | return true; | 
|  | for (const Value *Op : WorkItem->operands()) { | 
|  | const Constant *ConstOp = dyn_cast<Constant>(Op); | 
|  | if (!ConstOp) | 
|  | continue; | 
|  | if (Visited.insert(ConstOp).second) | 
|  | WorkList.push_back(ConstOp); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if the value can vary between threads. | 
|  | bool Constant::isThreadDependent() const { | 
|  | auto DLLImportPredicate = [](const GlobalValue *GV) { | 
|  | return GV->isThreadLocal(); | 
|  | }; | 
|  | return ConstHasGlobalValuePredicate(this, DLLImportPredicate); | 
|  | } | 
|  |  | 
|  | bool Constant::isDLLImportDependent() const { | 
|  | auto DLLImportPredicate = [](const GlobalValue *GV) { | 
|  | return GV->hasDLLImportStorageClass(); | 
|  | }; | 
|  | return ConstHasGlobalValuePredicate(this, DLLImportPredicate); | 
|  | } | 
|  |  | 
|  | /// Return true if the constant has users other than constant exprs and other | 
|  | /// dangling things. | 
|  | bool Constant::isConstantUsed() const { | 
|  | for (const User *U : users()) { | 
|  | const Constant *UC = dyn_cast<Constant>(U); | 
|  | if (!UC || isa<GlobalValue>(UC)) | 
|  | return true; | 
|  |  | 
|  | if (UC->isConstantUsed()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Constant::needsRelocation() const { | 
|  | if (isa<GlobalValue>(this)) | 
|  | return true; // Global reference. | 
|  |  | 
|  | if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) | 
|  | return BA->getFunction()->needsRelocation(); | 
|  |  | 
|  | // While raw uses of blockaddress need to be relocated, differences between | 
|  | // two of them don't when they are for labels in the same function.  This is a | 
|  | // common idiom when creating a table for the indirect goto extension, so we | 
|  | // handle it efficiently here. | 
|  | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) | 
|  | if (CE->getOpcode() == Instruction::Sub) { | 
|  | ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); | 
|  | ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); | 
|  | if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && | 
|  | RHS->getOpcode() == Instruction::PtrToInt && | 
|  | isa<BlockAddress>(LHS->getOperand(0)) && | 
|  | isa<BlockAddress>(RHS->getOperand(0)) && | 
|  | cast<BlockAddress>(LHS->getOperand(0))->getFunction() == | 
|  | cast<BlockAddress>(RHS->getOperand(0))->getFunction()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Result = false; | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | Result |= cast<Constant>(getOperand(i))->needsRelocation(); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove | 
|  | /// it.  This involves recursively eliminating any dead users of the | 
|  | /// constantexpr. | 
|  | static bool removeDeadUsersOfConstant(const Constant *C) { | 
|  | if (isa<GlobalValue>(C)) return false; // Cannot remove this | 
|  |  | 
|  | while (!C->use_empty()) { | 
|  | const Constant *User = dyn_cast<Constant>(C->user_back()); | 
|  | if (!User) return false; // Non-constant usage; | 
|  | if (!removeDeadUsersOfConstant(User)) | 
|  | return false; // Constant wasn't dead | 
|  | } | 
|  |  | 
|  | const_cast<Constant*>(C)->destroyConstant(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// removeDeadConstantUsers - If there are any dead constant users dangling | 
|  | /// off of this constant, remove them.  This method is useful for clients | 
|  | /// that want to check to see if a global is unused, but don't want to deal | 
|  | /// with potentially dead constants hanging off of the globals. | 
|  | void Constant::removeDeadConstantUsers() const { | 
|  | Value::const_user_iterator I = user_begin(), E = user_end(); | 
|  | Value::const_user_iterator LastNonDeadUser = E; | 
|  | while (I != E) { | 
|  | const Constant *User = dyn_cast<Constant>(*I); | 
|  | if (!User) { | 
|  | LastNonDeadUser = I; | 
|  | ++I; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!removeDeadUsersOfConstant(User)) { | 
|  | // If the constant wasn't dead, remember that this was the last live use | 
|  | // and move on to the next constant. | 
|  | LastNonDeadUser = I; | 
|  | ++I; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the constant was dead, then the iterator is invalidated. | 
|  | if (LastNonDeadUser == E) { | 
|  | I = user_begin(); | 
|  | if (I == E) break; | 
|  | } else { | 
|  | I = LastNonDeadUser; | 
|  | ++I; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                ConstantInt | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ConstantInt::anchor() { } | 
|  |  | 
|  | ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) | 
|  | : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) { | 
|  | assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); | 
|  | } | 
|  |  | 
|  | ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { | 
|  | LLVMContextImpl *pImpl = Context.pImpl; | 
|  | if (!pImpl->TheTrueVal) | 
|  | pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); | 
|  | return pImpl->TheTrueVal; | 
|  | } | 
|  |  | 
|  | ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { | 
|  | LLVMContextImpl *pImpl = Context.pImpl; | 
|  | if (!pImpl->TheFalseVal) | 
|  | pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); | 
|  | return pImpl->TheFalseVal; | 
|  | } | 
|  |  | 
|  | Constant *ConstantInt::getTrue(Type *Ty) { | 
|  | VectorType *VTy = dyn_cast<VectorType>(Ty); | 
|  | if (!VTy) { | 
|  | assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); | 
|  | return ConstantInt::getTrue(Ty->getContext()); | 
|  | } | 
|  | assert(VTy->getElementType()->isIntegerTy(1) && | 
|  | "True must be vector of i1 or i1."); | 
|  | return ConstantVector::getSplat(VTy->getNumElements(), | 
|  | ConstantInt::getTrue(Ty->getContext())); | 
|  | } | 
|  |  | 
|  | Constant *ConstantInt::getFalse(Type *Ty) { | 
|  | VectorType *VTy = dyn_cast<VectorType>(Ty); | 
|  | if (!VTy) { | 
|  | assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); | 
|  | return ConstantInt::getFalse(Ty->getContext()); | 
|  | } | 
|  | assert(VTy->getElementType()->isIntegerTy(1) && | 
|  | "False must be vector of i1 or i1."); | 
|  | return ConstantVector::getSplat(VTy->getNumElements(), | 
|  | ConstantInt::getFalse(Ty->getContext())); | 
|  | } | 
|  |  | 
|  | // Get a ConstantInt from an APInt. | 
|  | ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { | 
|  | // get an existing value or the insertion position | 
|  | LLVMContextImpl *pImpl = Context.pImpl; | 
|  | ConstantInt *&Slot = pImpl->IntConstants[V]; | 
|  | if (!Slot) { | 
|  | // Get the corresponding integer type for the bit width of the value. | 
|  | IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); | 
|  | Slot = new ConstantInt(ITy, V); | 
|  | } | 
|  | assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); | 
|  | return Slot; | 
|  | } | 
|  |  | 
|  | Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { | 
|  | Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); | 
|  |  | 
|  | // For vectors, broadcast the value. | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | return ConstantVector::getSplat(VTy->getNumElements(), C); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  | ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, | 
|  | bool isSigned) { | 
|  | return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); | 
|  | } | 
|  |  | 
|  | ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { | 
|  | return get(Ty, V, true); | 
|  | } | 
|  |  | 
|  | Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { | 
|  | return get(Ty, V, true); | 
|  | } | 
|  |  | 
|  | Constant *ConstantInt::get(Type *Ty, const APInt& V) { | 
|  | ConstantInt *C = get(Ty->getContext(), V); | 
|  | assert(C->getType() == Ty->getScalarType() && | 
|  | "ConstantInt type doesn't match the type implied by its value!"); | 
|  |  | 
|  | // For vectors, broadcast the value. | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | return ConstantVector::getSplat(VTy->getNumElements(), C); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  | ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, | 
|  | uint8_t radix) { | 
|  | return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); | 
|  | } | 
|  |  | 
|  | /// Remove the constant from the constant table. | 
|  | void ConstantInt::destroyConstantImpl() { | 
|  | llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                ConstantFP | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static const fltSemantics *TypeToFloatSemantics(Type *Ty) { | 
|  | if (Ty->isHalfTy()) | 
|  | return &APFloat::IEEEhalf; | 
|  | if (Ty->isFloatTy()) | 
|  | return &APFloat::IEEEsingle; | 
|  | if (Ty->isDoubleTy()) | 
|  | return &APFloat::IEEEdouble; | 
|  | if (Ty->isX86_FP80Ty()) | 
|  | return &APFloat::x87DoubleExtended; | 
|  | else if (Ty->isFP128Ty()) | 
|  | return &APFloat::IEEEquad; | 
|  |  | 
|  | assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); | 
|  | return &APFloat::PPCDoubleDouble; | 
|  | } | 
|  |  | 
|  | void ConstantFP::anchor() { } | 
|  |  | 
|  | /// get() - This returns a constant fp for the specified value in the | 
|  | /// specified type.  This should only be used for simple constant values like | 
|  | /// 2.0/1.0 etc, that are known-valid both as double and as the target format. | 
|  | Constant *ConstantFP::get(Type *Ty, double V) { | 
|  | LLVMContext &Context = Ty->getContext(); | 
|  |  | 
|  | APFloat FV(V); | 
|  | bool ignored; | 
|  | FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), | 
|  | APFloat::rmNearestTiesToEven, &ignored); | 
|  | Constant *C = get(Context, FV); | 
|  |  | 
|  | // For vectors, broadcast the value. | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | return ConstantVector::getSplat(VTy->getNumElements(), C); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  |  | 
|  | Constant *ConstantFP::get(Type *Ty, StringRef Str) { | 
|  | LLVMContext &Context = Ty->getContext(); | 
|  |  | 
|  | APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); | 
|  | Constant *C = get(Context, FV); | 
|  |  | 
|  | // For vectors, broadcast the value. | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | return ConstantVector::getSplat(VTy->getNumElements(), C); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  | Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) { | 
|  | const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); | 
|  | APFloat NaN = APFloat::getNaN(Semantics, Negative, Type); | 
|  | Constant *C = get(Ty->getContext(), NaN); | 
|  |  | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | return ConstantVector::getSplat(VTy->getNumElements(), C); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  | Constant *ConstantFP::getNegativeZero(Type *Ty) { | 
|  | const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); | 
|  | APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true); | 
|  | Constant *C = get(Ty->getContext(), NegZero); | 
|  |  | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | return ConstantVector::getSplat(VTy->getNumElements(), C); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  |  | 
|  | Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { | 
|  | if (Ty->isFPOrFPVectorTy()) | 
|  | return getNegativeZero(Ty); | 
|  |  | 
|  | return Constant::getNullValue(Ty); | 
|  | } | 
|  |  | 
|  |  | 
|  | // ConstantFP accessors. | 
|  | ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { | 
|  | LLVMContextImpl* pImpl = Context.pImpl; | 
|  |  | 
|  | ConstantFP *&Slot = pImpl->FPConstants[V]; | 
|  |  | 
|  | if (!Slot) { | 
|  | Type *Ty; | 
|  | if (&V.getSemantics() == &APFloat::IEEEhalf) | 
|  | Ty = Type::getHalfTy(Context); | 
|  | else if (&V.getSemantics() == &APFloat::IEEEsingle) | 
|  | Ty = Type::getFloatTy(Context); | 
|  | else if (&V.getSemantics() == &APFloat::IEEEdouble) | 
|  | Ty = Type::getDoubleTy(Context); | 
|  | else if (&V.getSemantics() == &APFloat::x87DoubleExtended) | 
|  | Ty = Type::getX86_FP80Ty(Context); | 
|  | else if (&V.getSemantics() == &APFloat::IEEEquad) | 
|  | Ty = Type::getFP128Ty(Context); | 
|  | else { | 
|  | assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && | 
|  | "Unknown FP format"); | 
|  | Ty = Type::getPPC_FP128Ty(Context); | 
|  | } | 
|  | Slot = new ConstantFP(Ty, V); | 
|  | } | 
|  |  | 
|  | return Slot; | 
|  | } | 
|  |  | 
|  | Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { | 
|  | const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); | 
|  | Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); | 
|  |  | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | return ConstantVector::getSplat(VTy->getNumElements(), C); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  | ConstantFP::ConstantFP(Type *Ty, const APFloat& V) | 
|  | : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) { | 
|  | assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && | 
|  | "FP type Mismatch"); | 
|  | } | 
|  |  | 
|  | bool ConstantFP::isExactlyValue(const APFloat &V) const { | 
|  | return Val.bitwiseIsEqual(V); | 
|  | } | 
|  |  | 
|  | /// Remove the constant from the constant table. | 
|  | void ConstantFP::destroyConstantImpl() { | 
|  | llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                   ConstantAggregateZero Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// getSequentialElement - If this CAZ has array or vector type, return a zero | 
|  | /// with the right element type. | 
|  | Constant *ConstantAggregateZero::getSequentialElement() const { | 
|  | return Constant::getNullValue(getType()->getSequentialElementType()); | 
|  | } | 
|  |  | 
|  | /// getStructElement - If this CAZ has struct type, return a zero with the | 
|  | /// right element type for the specified element. | 
|  | Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { | 
|  | return Constant::getNullValue(getType()->getStructElementType(Elt)); | 
|  | } | 
|  |  | 
|  | /// getElementValue - Return a zero of the right value for the specified GEP | 
|  | /// index if we can, otherwise return null (e.g. if C is a ConstantExpr). | 
|  | Constant *ConstantAggregateZero::getElementValue(Constant *C) const { | 
|  | if (isa<SequentialType>(getType())) | 
|  | return getSequentialElement(); | 
|  | return getStructElement(cast<ConstantInt>(C)->getZExtValue()); | 
|  | } | 
|  |  | 
|  | /// getElementValue - Return a zero of the right value for the specified GEP | 
|  | /// index. | 
|  | Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { | 
|  | if (isa<SequentialType>(getType())) | 
|  | return getSequentialElement(); | 
|  | return getStructElement(Idx); | 
|  | } | 
|  |  | 
|  | unsigned ConstantAggregateZero::getNumElements() const { | 
|  | Type *Ty = getType(); | 
|  | if (auto *AT = dyn_cast<ArrayType>(Ty)) | 
|  | return AT->getNumElements(); | 
|  | if (auto *VT = dyn_cast<VectorType>(Ty)) | 
|  | return VT->getNumElements(); | 
|  | return Ty->getStructNumElements(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         UndefValue Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// getSequentialElement - If this undef has array or vector type, return an | 
|  | /// undef with the right element type. | 
|  | UndefValue *UndefValue::getSequentialElement() const { | 
|  | return UndefValue::get(getType()->getSequentialElementType()); | 
|  | } | 
|  |  | 
|  | /// getStructElement - If this undef has struct type, return a zero with the | 
|  | /// right element type for the specified element. | 
|  | UndefValue *UndefValue::getStructElement(unsigned Elt) const { | 
|  | return UndefValue::get(getType()->getStructElementType(Elt)); | 
|  | } | 
|  |  | 
|  | /// getElementValue - Return an undef of the right value for the specified GEP | 
|  | /// index if we can, otherwise return null (e.g. if C is a ConstantExpr). | 
|  | UndefValue *UndefValue::getElementValue(Constant *C) const { | 
|  | if (isa<SequentialType>(getType())) | 
|  | return getSequentialElement(); | 
|  | return getStructElement(cast<ConstantInt>(C)->getZExtValue()); | 
|  | } | 
|  |  | 
|  | /// getElementValue - Return an undef of the right value for the specified GEP | 
|  | /// index. | 
|  | UndefValue *UndefValue::getElementValue(unsigned Idx) const { | 
|  | if (isa<SequentialType>(getType())) | 
|  | return getSequentialElement(); | 
|  | return getStructElement(Idx); | 
|  | } | 
|  |  | 
|  | unsigned UndefValue::getNumElements() const { | 
|  | Type *Ty = getType(); | 
|  | if (auto *AT = dyn_cast<ArrayType>(Ty)) | 
|  | return AT->getNumElements(); | 
|  | if (auto *VT = dyn_cast<VectorType>(Ty)) | 
|  | return VT->getNumElements(); | 
|  | return Ty->getStructNumElements(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            ConstantXXX Classes | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | template <typename ItTy, typename EltTy> | 
|  | static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { | 
|  | for (; Start != End; ++Start) | 
|  | if (*Start != Elt) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename SequentialTy, typename ElementTy> | 
|  | static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { | 
|  | assert(!V.empty() && "Cannot get empty int sequence."); | 
|  |  | 
|  | SmallVector<ElementTy, 16> Elts; | 
|  | for (Constant *C : V) | 
|  | if (auto *CI = dyn_cast<ConstantInt>(C)) | 
|  | Elts.push_back(CI->getZExtValue()); | 
|  | else | 
|  | return nullptr; | 
|  | return SequentialTy::get(V[0]->getContext(), Elts); | 
|  | } | 
|  |  | 
|  | template <typename SequentialTy, typename ElementTy> | 
|  | static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { | 
|  | assert(!V.empty() && "Cannot get empty FP sequence."); | 
|  |  | 
|  | SmallVector<ElementTy, 16> Elts; | 
|  | for (Constant *C : V) | 
|  | if (auto *CFP = dyn_cast<ConstantFP>(C)) | 
|  | Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); | 
|  | else | 
|  | return nullptr; | 
|  | return SequentialTy::getFP(V[0]->getContext(), Elts); | 
|  | } | 
|  |  | 
|  | template <typename SequenceTy> | 
|  | static Constant *getSequenceIfElementsMatch(Constant *C, | 
|  | ArrayRef<Constant *> V) { | 
|  | // We speculatively build the elements here even if it turns out that there is | 
|  | // a constantexpr or something else weird, since it is so uncommon for that to | 
|  | // happen. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { | 
|  | if (CI->getType()->isIntegerTy(8)) | 
|  | return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); | 
|  | else if (CI->getType()->isIntegerTy(16)) | 
|  | return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); | 
|  | else if (CI->getType()->isIntegerTy(32)) | 
|  | return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); | 
|  | else if (CI->getType()->isIntegerTy(64)) | 
|  | return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); | 
|  | } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { | 
|  | if (CFP->getType()->isHalfTy()) | 
|  | return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); | 
|  | else if (CFP->getType()->isFloatTy()) | 
|  | return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); | 
|  | else if (CFP->getType()->isDoubleTy()) | 
|  | return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) | 
|  | : Constant(T, ConstantArrayVal, | 
|  | OperandTraits<ConstantArray>::op_end(this) - V.size(), | 
|  | V.size()) { | 
|  | assert(V.size() == T->getNumElements() && | 
|  | "Invalid initializer vector for constant array"); | 
|  | for (unsigned i = 0, e = V.size(); i != e; ++i) | 
|  | assert(V[i]->getType() == T->getElementType() && | 
|  | "Initializer for array element doesn't match array element type!"); | 
|  | std::copy(V.begin(), V.end(), op_begin()); | 
|  | } | 
|  |  | 
|  | Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { | 
|  | if (Constant *C = getImpl(Ty, V)) | 
|  | return C; | 
|  | return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); | 
|  | } | 
|  |  | 
|  | Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { | 
|  | // Empty arrays are canonicalized to ConstantAggregateZero. | 
|  | if (V.empty()) | 
|  | return ConstantAggregateZero::get(Ty); | 
|  |  | 
|  | for (unsigned i = 0, e = V.size(); i != e; ++i) { | 
|  | assert(V[i]->getType() == Ty->getElementType() && | 
|  | "Wrong type in array element initializer"); | 
|  | } | 
|  |  | 
|  | // If this is an all-zero array, return a ConstantAggregateZero object.  If | 
|  | // all undef, return an UndefValue, if "all simple", then return a | 
|  | // ConstantDataArray. | 
|  | Constant *C = V[0]; | 
|  | if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) | 
|  | return UndefValue::get(Ty); | 
|  |  | 
|  | if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) | 
|  | return ConstantAggregateZero::get(Ty); | 
|  |  | 
|  | // Check to see if all of the elements are ConstantFP or ConstantInt and if | 
|  | // the element type is compatible with ConstantDataVector.  If so, use it. | 
|  | if (ConstantDataSequential::isElementTypeCompatible(C->getType())) | 
|  | return getSequenceIfElementsMatch<ConstantDataArray>(C, V); | 
|  |  | 
|  | // Otherwise, we really do want to create a ConstantArray. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// getTypeForElements - Return an anonymous struct type to use for a constant | 
|  | /// with the specified set of elements.  The list must not be empty. | 
|  | StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, | 
|  | ArrayRef<Constant*> V, | 
|  | bool Packed) { | 
|  | unsigned VecSize = V.size(); | 
|  | SmallVector<Type*, 16> EltTypes(VecSize); | 
|  | for (unsigned i = 0; i != VecSize; ++i) | 
|  | EltTypes[i] = V[i]->getType(); | 
|  |  | 
|  | return StructType::get(Context, EltTypes, Packed); | 
|  | } | 
|  |  | 
|  |  | 
|  | StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, | 
|  | bool Packed) { | 
|  | assert(!V.empty() && | 
|  | "ConstantStruct::getTypeForElements cannot be called on empty list"); | 
|  | return getTypeForElements(V[0]->getContext(), V, Packed); | 
|  | } | 
|  |  | 
|  |  | 
|  | ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) | 
|  | : Constant(T, ConstantStructVal, | 
|  | OperandTraits<ConstantStruct>::op_end(this) - V.size(), | 
|  | V.size()) { | 
|  | assert(V.size() == T->getNumElements() && | 
|  | "Invalid initializer vector for constant structure"); | 
|  | for (unsigned i = 0, e = V.size(); i != e; ++i) | 
|  | assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) && | 
|  | "Initializer for struct element doesn't match struct element type!"); | 
|  | std::copy(V.begin(), V.end(), op_begin()); | 
|  | } | 
|  |  | 
|  | // ConstantStruct accessors. | 
|  | Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { | 
|  | assert((ST->isOpaque() || ST->getNumElements() == V.size()) && | 
|  | "Incorrect # elements specified to ConstantStruct::get"); | 
|  |  | 
|  | // Create a ConstantAggregateZero value if all elements are zeros. | 
|  | bool isZero = true; | 
|  | bool isUndef = false; | 
|  |  | 
|  | if (!V.empty()) { | 
|  | isUndef = isa<UndefValue>(V[0]); | 
|  | isZero = V[0]->isNullValue(); | 
|  | if (isUndef || isZero) { | 
|  | for (unsigned i = 0, e = V.size(); i != e; ++i) { | 
|  | if (!V[i]->isNullValue()) | 
|  | isZero = false; | 
|  | if (!isa<UndefValue>(V[i])) | 
|  | isUndef = false; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (isZero) | 
|  | return ConstantAggregateZero::get(ST); | 
|  | if (isUndef) | 
|  | return UndefValue::get(ST); | 
|  |  | 
|  | return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); | 
|  | } | 
|  |  | 
|  | Constant *ConstantStruct::get(StructType *T, ...) { | 
|  | va_list ap; | 
|  | SmallVector<Constant*, 8> Values; | 
|  | va_start(ap, T); | 
|  | while (Constant *Val = va_arg(ap, llvm::Constant*)) | 
|  | Values.push_back(Val); | 
|  | va_end(ap); | 
|  | return get(T, Values); | 
|  | } | 
|  |  | 
|  | ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) | 
|  | : Constant(T, ConstantVectorVal, | 
|  | OperandTraits<ConstantVector>::op_end(this) - V.size(), | 
|  | V.size()) { | 
|  | for (size_t i = 0, e = V.size(); i != e; i++) | 
|  | assert(V[i]->getType() == T->getElementType() && | 
|  | "Initializer for vector element doesn't match vector element type!"); | 
|  | std::copy(V.begin(), V.end(), op_begin()); | 
|  | } | 
|  |  | 
|  | // ConstantVector accessors. | 
|  | Constant *ConstantVector::get(ArrayRef<Constant*> V) { | 
|  | if (Constant *C = getImpl(V)) | 
|  | return C; | 
|  | VectorType *Ty = VectorType::get(V.front()->getType(), V.size()); | 
|  | return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); | 
|  | } | 
|  |  | 
|  | Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { | 
|  | assert(!V.empty() && "Vectors can't be empty"); | 
|  | VectorType *T = VectorType::get(V.front()->getType(), V.size()); | 
|  |  | 
|  | // If this is an all-undef or all-zero vector, return a | 
|  | // ConstantAggregateZero or UndefValue. | 
|  | Constant *C = V[0]; | 
|  | bool isZero = C->isNullValue(); | 
|  | bool isUndef = isa<UndefValue>(C); | 
|  |  | 
|  | if (isZero || isUndef) { | 
|  | for (unsigned i = 1, e = V.size(); i != e; ++i) | 
|  | if (V[i] != C) { | 
|  | isZero = isUndef = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isZero) | 
|  | return ConstantAggregateZero::get(T); | 
|  | if (isUndef) | 
|  | return UndefValue::get(T); | 
|  |  | 
|  | // Check to see if all of the elements are ConstantFP or ConstantInt and if | 
|  | // the element type is compatible with ConstantDataVector.  If so, use it. | 
|  | if (ConstantDataSequential::isElementTypeCompatible(C->getType())) | 
|  | return getSequenceIfElementsMatch<ConstantDataVector>(C, V); | 
|  |  | 
|  | // Otherwise, the element type isn't compatible with ConstantDataVector, or | 
|  | // the operand list constants a ConstantExpr or something else strange. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) { | 
|  | // If this splat is compatible with ConstantDataVector, use it instead of | 
|  | // ConstantVector. | 
|  | if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && | 
|  | ConstantDataSequential::isElementTypeCompatible(V->getType())) | 
|  | return ConstantDataVector::getSplat(NumElts, V); | 
|  |  | 
|  | SmallVector<Constant*, 32> Elts(NumElts, V); | 
|  | return get(Elts); | 
|  | } | 
|  |  | 
|  | ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { | 
|  | LLVMContextImpl *pImpl = Context.pImpl; | 
|  | if (!pImpl->TheNoneToken) | 
|  | pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); | 
|  | return pImpl->TheNoneToken.get(); | 
|  | } | 
|  |  | 
|  | /// Remove the constant from the constant table. | 
|  | void ConstantTokenNone::destroyConstantImpl() { | 
|  | llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); | 
|  | } | 
|  |  | 
|  | // Utility function for determining if a ConstantExpr is a CastOp or not. This | 
|  | // can't be inline because we don't want to #include Instruction.h into | 
|  | // Constant.h | 
|  | bool ConstantExpr::isCast() const { | 
|  | return Instruction::isCast(getOpcode()); | 
|  | } | 
|  |  | 
|  | bool ConstantExpr::isCompare() const { | 
|  | return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; | 
|  | } | 
|  |  | 
|  | bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { | 
|  | if (getOpcode() != Instruction::GetElementPtr) return false; | 
|  |  | 
|  | gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); | 
|  | User::const_op_iterator OI = std::next(this->op_begin()); | 
|  |  | 
|  | // Skip the first index, as it has no static limit. | 
|  | ++GEPI; | 
|  | ++OI; | 
|  |  | 
|  | // The remaining indices must be compile-time known integers within the | 
|  | // bounds of the corresponding notional static array types. | 
|  | for (; GEPI != E; ++GEPI, ++OI) { | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(*OI); | 
|  | if (!CI) return false; | 
|  | if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI)) | 
|  | if (CI->getValue().getActiveBits() > 64 || | 
|  | CI->getZExtValue() >= ATy->getNumElements()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // All the indices checked out. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ConstantExpr::hasIndices() const { | 
|  | return getOpcode() == Instruction::ExtractValue || | 
|  | getOpcode() == Instruction::InsertValue; | 
|  | } | 
|  |  | 
|  | ArrayRef<unsigned> ConstantExpr::getIndices() const { | 
|  | if (const ExtractValueConstantExpr *EVCE = | 
|  | dyn_cast<ExtractValueConstantExpr>(this)) | 
|  | return EVCE->Indices; | 
|  |  | 
|  | return cast<InsertValueConstantExpr>(this)->Indices; | 
|  | } | 
|  |  | 
|  | unsigned ConstantExpr::getPredicate() const { | 
|  | return cast<CompareConstantExpr>(this)->predicate; | 
|  | } | 
|  |  | 
|  | /// getWithOperandReplaced - Return a constant expression identical to this | 
|  | /// one, but with the specified operand set to the specified value. | 
|  | Constant * | 
|  | ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { | 
|  | assert(Op->getType() == getOperand(OpNo)->getType() && | 
|  | "Replacing operand with value of different type!"); | 
|  | if (getOperand(OpNo) == Op) | 
|  | return const_cast<ConstantExpr*>(this); | 
|  |  | 
|  | SmallVector<Constant*, 8> NewOps; | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | NewOps.push_back(i == OpNo ? Op : getOperand(i)); | 
|  |  | 
|  | return getWithOperands(NewOps); | 
|  | } | 
|  |  | 
|  | /// getWithOperands - This returns the current constant expression with the | 
|  | /// operands replaced with the specified values.  The specified array must | 
|  | /// have the same number of operands as our current one. | 
|  | Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, | 
|  | bool OnlyIfReduced, Type *SrcTy) const { | 
|  | assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); | 
|  |  | 
|  | // If no operands changed return self. | 
|  | if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) | 
|  | return const_cast<ConstantExpr*>(this); | 
|  |  | 
|  | Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; | 
|  | switch (getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::BitCast: | 
|  | case Instruction::AddrSpaceCast: | 
|  | return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); | 
|  | case Instruction::Select: | 
|  | return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); | 
|  | case Instruction::InsertElement: | 
|  | return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], | 
|  | OnlyIfReducedTy); | 
|  | case Instruction::ExtractElement: | 
|  | return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); | 
|  | case Instruction::InsertValue: | 
|  | return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(), | 
|  | OnlyIfReducedTy); | 
|  | case Instruction::ExtractValue: | 
|  | return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy); | 
|  | case Instruction::ShuffleVector: | 
|  | return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2], | 
|  | OnlyIfReducedTy); | 
|  | case Instruction::GetElementPtr: { | 
|  | auto *GEPO = cast<GEPOperator>(this); | 
|  | assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); | 
|  | return ConstantExpr::getGetElementPtr( | 
|  | SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), | 
|  | GEPO->isInBounds(), OnlyIfReducedTy); | 
|  | } | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], | 
|  | OnlyIfReducedTy); | 
|  | default: | 
|  | assert(getNumOperands() == 2 && "Must be binary operator?"); | 
|  | return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, | 
|  | OnlyIfReducedTy); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      isValueValidForType implementations | 
|  |  | 
|  | bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { | 
|  | unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay | 
|  | if (Ty->isIntegerTy(1)) | 
|  | return Val == 0 || Val == 1; | 
|  | if (NumBits >= 64) | 
|  | return true; // always true, has to fit in largest type | 
|  | uint64_t Max = (1ll << NumBits) - 1; | 
|  | return Val <= Max; | 
|  | } | 
|  |  | 
|  | bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { | 
|  | unsigned NumBits = Ty->getIntegerBitWidth(); | 
|  | if (Ty->isIntegerTy(1)) | 
|  | return Val == 0 || Val == 1 || Val == -1; | 
|  | if (NumBits >= 64) | 
|  | return true; // always true, has to fit in largest type | 
|  | int64_t Min = -(1ll << (NumBits-1)); | 
|  | int64_t Max = (1ll << (NumBits-1)) - 1; | 
|  | return (Val >= Min && Val <= Max); | 
|  | } | 
|  |  | 
|  | bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { | 
|  | // convert modifies in place, so make a copy. | 
|  | APFloat Val2 = APFloat(Val); | 
|  | bool losesInfo; | 
|  | switch (Ty->getTypeID()) { | 
|  | default: | 
|  | return false;         // These can't be represented as floating point! | 
|  |  | 
|  | // FIXME rounding mode needs to be more flexible | 
|  | case Type::HalfTyID: { | 
|  | if (&Val2.getSemantics() == &APFloat::IEEEhalf) | 
|  | return true; | 
|  | Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo); | 
|  | return !losesInfo; | 
|  | } | 
|  | case Type::FloatTyID: { | 
|  | if (&Val2.getSemantics() == &APFloat::IEEEsingle) | 
|  | return true; | 
|  | Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo); | 
|  | return !losesInfo; | 
|  | } | 
|  | case Type::DoubleTyID: { | 
|  | if (&Val2.getSemantics() == &APFloat::IEEEhalf || | 
|  | &Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | &Val2.getSemantics() == &APFloat::IEEEdouble) | 
|  | return true; | 
|  | Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); | 
|  | return !losesInfo; | 
|  | } | 
|  | case Type::X86_FP80TyID: | 
|  | return &Val2.getSemantics() == &APFloat::IEEEhalf || | 
|  | &Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | &Val2.getSemantics() == &APFloat::IEEEdouble || | 
|  | &Val2.getSemantics() == &APFloat::x87DoubleExtended; | 
|  | case Type::FP128TyID: | 
|  | return &Val2.getSemantics() == &APFloat::IEEEhalf || | 
|  | &Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | &Val2.getSemantics() == &APFloat::IEEEdouble || | 
|  | &Val2.getSemantics() == &APFloat::IEEEquad; | 
|  | case Type::PPC_FP128TyID: | 
|  | return &Val2.getSemantics() == &APFloat::IEEEhalf || | 
|  | &Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | &Val2.getSemantics() == &APFloat::IEEEdouble || | 
|  | &Val2.getSemantics() == &APFloat::PPCDoubleDouble; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      Factory Function Implementation | 
|  |  | 
|  | ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { | 
|  | assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && | 
|  | "Cannot create an aggregate zero of non-aggregate type!"); | 
|  |  | 
|  | ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty]; | 
|  | if (!Entry) | 
|  | Entry = new ConstantAggregateZero(Ty); | 
|  |  | 
|  | return Entry; | 
|  | } | 
|  |  | 
|  | /// destroyConstant - Remove the constant from the constant table. | 
|  | /// | 
|  | void ConstantAggregateZero::destroyConstantImpl() { | 
|  | getContext().pImpl->CAZConstants.erase(getType()); | 
|  | } | 
|  |  | 
|  | /// destroyConstant - Remove the constant from the constant table... | 
|  | /// | 
|  | void ConstantArray::destroyConstantImpl() { | 
|  | getType()->getContext().pImpl->ArrayConstants.remove(this); | 
|  | } | 
|  |  | 
|  |  | 
|  | //---- ConstantStruct::get() implementation... | 
|  | // | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantStruct::destroyConstantImpl() { | 
|  | getType()->getContext().pImpl->StructConstants.remove(this); | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantVector::destroyConstantImpl() { | 
|  | getType()->getContext().pImpl->VectorConstants.remove(this); | 
|  | } | 
|  |  | 
|  | /// getSplatValue - If this is a splat vector constant, meaning that all of | 
|  | /// the elements have the same value, return that value. Otherwise return 0. | 
|  | Constant *Constant::getSplatValue() const { | 
|  | assert(this->getType()->isVectorTy() && "Only valid for vectors!"); | 
|  | if (isa<ConstantAggregateZero>(this)) | 
|  | return getNullValue(this->getType()->getVectorElementType()); | 
|  | if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) | 
|  | return CV->getSplatValue(); | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) | 
|  | return CV->getSplatValue(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// getSplatValue - If this is a splat constant, where all of the | 
|  | /// elements have the same value, return that value. Otherwise return null. | 
|  | Constant *ConstantVector::getSplatValue() const { | 
|  | // Check out first element. | 
|  | Constant *Elt = getOperand(0); | 
|  | // Then make sure all remaining elements point to the same value. | 
|  | for (unsigned I = 1, E = getNumOperands(); I < E; ++I) | 
|  | if (getOperand(I) != Elt) | 
|  | return nullptr; | 
|  | return Elt; | 
|  | } | 
|  |  | 
|  | /// If C is a constant integer then return its value, otherwise C must be a | 
|  | /// vector of constant integers, all equal, and the common value is returned. | 
|  | const APInt &Constant::getUniqueInteger() const { | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
|  | return CI->getValue(); | 
|  | assert(this->getSplatValue() && "Doesn't contain a unique integer!"); | 
|  | const Constant *C = this->getAggregateElement(0U); | 
|  | assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); | 
|  | return cast<ConstantInt>(C)->getValue(); | 
|  | } | 
|  |  | 
|  | //---- ConstantPointerNull::get() implementation. | 
|  | // | 
|  |  | 
|  | ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { | 
|  | ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty]; | 
|  | if (!Entry) | 
|  | Entry = new ConstantPointerNull(Ty); | 
|  |  | 
|  | return Entry; | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantPointerNull::destroyConstantImpl() { | 
|  | getContext().pImpl->CPNConstants.erase(getType()); | 
|  | } | 
|  |  | 
|  |  | 
|  | //---- UndefValue::get() implementation. | 
|  | // | 
|  |  | 
|  | UndefValue *UndefValue::get(Type *Ty) { | 
|  | UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty]; | 
|  | if (!Entry) | 
|  | Entry = new UndefValue(Ty); | 
|  |  | 
|  | return Entry; | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table. | 
|  | // | 
|  | void UndefValue::destroyConstantImpl() { | 
|  | // Free the constant and any dangling references to it. | 
|  | getContext().pImpl->UVConstants.erase(getType()); | 
|  | } | 
|  |  | 
|  | //---- BlockAddress::get() implementation. | 
|  | // | 
|  |  | 
|  | BlockAddress *BlockAddress::get(BasicBlock *BB) { | 
|  | assert(BB->getParent() && "Block must have a parent"); | 
|  | return get(BB->getParent(), BB); | 
|  | } | 
|  |  | 
|  | BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { | 
|  | BlockAddress *&BA = | 
|  | F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; | 
|  | if (!BA) | 
|  | BA = new BlockAddress(F, BB); | 
|  |  | 
|  | assert(BA->getFunction() == F && "Basic block moved between functions"); | 
|  | return BA; | 
|  | } | 
|  |  | 
|  | BlockAddress::BlockAddress(Function *F, BasicBlock *BB) | 
|  | : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, | 
|  | &Op<0>(), 2) { | 
|  | setOperand(0, F); | 
|  | setOperand(1, BB); | 
|  | BB->AdjustBlockAddressRefCount(1); | 
|  | } | 
|  |  | 
|  | BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { | 
|  | if (!BB->hasAddressTaken()) | 
|  | return nullptr; | 
|  |  | 
|  | const Function *F = BB->getParent(); | 
|  | assert(F && "Block must have a parent"); | 
|  | BlockAddress *BA = | 
|  | F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); | 
|  | assert(BA && "Refcount and block address map disagree!"); | 
|  | return BA; | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table. | 
|  | // | 
|  | void BlockAddress::destroyConstantImpl() { | 
|  | getFunction()->getType()->getContext().pImpl | 
|  | ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); | 
|  | getBasicBlock()->AdjustBlockAddressRefCount(-1); | 
|  | } | 
|  |  | 
|  | Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To, Use *U) { | 
|  | // This could be replacing either the Basic Block or the Function.  In either | 
|  | // case, we have to remove the map entry. | 
|  | Function *NewF = getFunction(); | 
|  | BasicBlock *NewBB = getBasicBlock(); | 
|  |  | 
|  | if (U == &Op<0>()) | 
|  | NewF = cast<Function>(To->stripPointerCasts()); | 
|  | else | 
|  | NewBB = cast<BasicBlock>(To); | 
|  |  | 
|  | // See if the 'new' entry already exists, if not, just update this in place | 
|  | // and return early. | 
|  | BlockAddress *&NewBA = | 
|  | getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; | 
|  | if (NewBA) | 
|  | return NewBA; | 
|  |  | 
|  | getBasicBlock()->AdjustBlockAddressRefCount(-1); | 
|  |  | 
|  | // Remove the old entry, this can't cause the map to rehash (just a | 
|  | // tombstone will get added). | 
|  | getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), | 
|  | getBasicBlock())); | 
|  | NewBA = this; | 
|  | setOperand(0, NewF); | 
|  | setOperand(1, NewBB); | 
|  | getBasicBlock()->AdjustBlockAddressRefCount(1); | 
|  |  | 
|  | // If we just want to keep the existing value, then return null. | 
|  | // Callers know that this means we shouldn't delete this value. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | //---- ConstantExpr::get() implementations. | 
|  | // | 
|  |  | 
|  | /// This is a utility function to handle folding of casts and lookup of the | 
|  | /// cast in the ExprConstants map. It is used by the various get* methods below. | 
|  | static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, | 
|  | bool OnlyIfReduced = false) { | 
|  | assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); | 
|  | // Fold a few common cases | 
|  | if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) | 
|  | return FC; | 
|  |  | 
|  | if (OnlyIfReduced) | 
|  | return nullptr; | 
|  |  | 
|  | LLVMContextImpl *pImpl = Ty->getContext().pImpl; | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness. | 
|  | ConstantExprKeyType Key(opc, C); | 
|  |  | 
|  | return pImpl->ExprConstants.getOrCreate(Ty, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, | 
|  | bool OnlyIfReduced) { | 
|  | Instruction::CastOps opc = Instruction::CastOps(oc); | 
|  | assert(Instruction::isCast(opc) && "opcode out of range"); | 
|  | assert(C && Ty && "Null arguments to getCast"); | 
|  | assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); | 
|  |  | 
|  | switch (opc) { | 
|  | default: | 
|  | llvm_unreachable("Invalid cast opcode"); | 
|  | case Instruction::Trunc: | 
|  | return getTrunc(C, Ty, OnlyIfReduced); | 
|  | case Instruction::ZExt: | 
|  | return getZExt(C, Ty, OnlyIfReduced); | 
|  | case Instruction::SExt: | 
|  | return getSExt(C, Ty, OnlyIfReduced); | 
|  | case Instruction::FPTrunc: | 
|  | return getFPTrunc(C, Ty, OnlyIfReduced); | 
|  | case Instruction::FPExt: | 
|  | return getFPExtend(C, Ty, OnlyIfReduced); | 
|  | case Instruction::UIToFP: | 
|  | return getUIToFP(C, Ty, OnlyIfReduced); | 
|  | case Instruction::SIToFP: | 
|  | return getSIToFP(C, Ty, OnlyIfReduced); | 
|  | case Instruction::FPToUI: | 
|  | return getFPToUI(C, Ty, OnlyIfReduced); | 
|  | case Instruction::FPToSI: | 
|  | return getFPToSI(C, Ty, OnlyIfReduced); | 
|  | case Instruction::PtrToInt: | 
|  | return getPtrToInt(C, Ty, OnlyIfReduced); | 
|  | case Instruction::IntToPtr: | 
|  | return getIntToPtr(C, Ty, OnlyIfReduced); | 
|  | case Instruction::BitCast: | 
|  | return getBitCast(C, Ty, OnlyIfReduced); | 
|  | case Instruction::AddrSpaceCast: | 
|  | return getAddrSpaceCast(C, Ty, OnlyIfReduced); | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { | 
|  | if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
|  | return getBitCast(C, Ty); | 
|  | return getZExt(C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { | 
|  | if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
|  | return getBitCast(C, Ty); | 
|  | return getSExt(C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { | 
|  | if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
|  | return getBitCast(C, Ty); | 
|  | return getTrunc(C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { | 
|  | assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); | 
|  | assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && | 
|  | "Invalid cast"); | 
|  |  | 
|  | if (Ty->isIntOrIntVectorTy()) | 
|  | return getPtrToInt(S, Ty); | 
|  |  | 
|  | unsigned SrcAS = S->getType()->getPointerAddressSpace(); | 
|  | if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) | 
|  | return getAddrSpaceCast(S, Ty); | 
|  |  | 
|  | return getBitCast(S, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, | 
|  | Type *Ty) { | 
|  | assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); | 
|  | assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); | 
|  |  | 
|  | if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) | 
|  | return getAddrSpaceCast(S, Ty); | 
|  |  | 
|  | return getBitCast(S, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, | 
|  | bool isSigned) { | 
|  | assert(C->getType()->isIntOrIntVectorTy() && | 
|  | Ty->isIntOrIntVectorTy() && "Invalid cast"); | 
|  | unsigned SrcBits = C->getType()->getScalarSizeInBits(); | 
|  | unsigned DstBits = Ty->getScalarSizeInBits(); | 
|  | Instruction::CastOps opcode = | 
|  | (SrcBits == DstBits ? Instruction::BitCast : | 
|  | (SrcBits > DstBits ? Instruction::Trunc : | 
|  | (isSigned ? Instruction::SExt : Instruction::ZExt))); | 
|  | return getCast(opcode, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { | 
|  | assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && | 
|  | "Invalid cast"); | 
|  | unsigned SrcBits = C->getType()->getScalarSizeInBits(); | 
|  | unsigned DstBits = Ty->getScalarSizeInBits(); | 
|  | if (SrcBits == DstBits) | 
|  | return C; // Avoid a useless cast | 
|  | Instruction::CastOps opcode = | 
|  | (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); | 
|  | return getCast(opcode, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); | 
|  | assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); | 
|  | assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& | 
|  | "SrcTy must be larger than DestTy for Trunc!"); | 
|  |  | 
|  | return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); | 
|  | assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); | 
|  | assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& | 
|  | "SrcTy must be smaller than DestTy for SExt!"); | 
|  |  | 
|  | return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); | 
|  | assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); | 
|  | assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& | 
|  | "SrcTy must be smaller than DestTy for ZExt!"); | 
|  |  | 
|  | return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && | 
|  | C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& | 
|  | "This is an illegal floating point truncation!"); | 
|  | return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && | 
|  | C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& | 
|  | "This is an illegal floating point extension!"); | 
|  | return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && | 
|  | "This is an illegal uint to floating point cast!"); | 
|  | return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && | 
|  | "This is an illegal sint to floating point cast!"); | 
|  | return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && | 
|  | "This is an illegal floating point to uint cast!"); | 
|  | return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && | 
|  | "This is an illegal floating point to sint cast!"); | 
|  | return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, | 
|  | bool OnlyIfReduced) { | 
|  | assert(C->getType()->getScalarType()->isPointerTy() && | 
|  | "PtrToInt source must be pointer or pointer vector"); | 
|  | assert(DstTy->getScalarType()->isIntegerTy() && | 
|  | "PtrToInt destination must be integer or integer vector"); | 
|  | assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); | 
|  | if (isa<VectorType>(C->getType())) | 
|  | assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& | 
|  | "Invalid cast between a different number of vector elements"); | 
|  | return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, | 
|  | bool OnlyIfReduced) { | 
|  | assert(C->getType()->getScalarType()->isIntegerTy() && | 
|  | "IntToPtr source must be integer or integer vector"); | 
|  | assert(DstTy->getScalarType()->isPointerTy() && | 
|  | "IntToPtr destination must be a pointer or pointer vector"); | 
|  | assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); | 
|  | if (isa<VectorType>(C->getType())) | 
|  | assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& | 
|  | "Invalid cast between a different number of vector elements"); | 
|  | return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, | 
|  | bool OnlyIfReduced) { | 
|  | assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && | 
|  | "Invalid constantexpr bitcast!"); | 
|  |  | 
|  | // It is common to ask for a bitcast of a value to its own type, handle this | 
|  | // speedily. | 
|  | if (C->getType() == DstTy) return C; | 
|  |  | 
|  | return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, | 
|  | bool OnlyIfReduced) { | 
|  | assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && | 
|  | "Invalid constantexpr addrspacecast!"); | 
|  |  | 
|  | // Canonicalize addrspacecasts between different pointer types by first | 
|  | // bitcasting the pointer type and then converting the address space. | 
|  | PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType()); | 
|  | PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType()); | 
|  | Type *DstElemTy = DstScalarTy->getElementType(); | 
|  | if (SrcScalarTy->getElementType() != DstElemTy) { | 
|  | Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace()); | 
|  | if (VectorType *VT = dyn_cast<VectorType>(DstTy)) { | 
|  | // Handle vectors of pointers. | 
|  | MidTy = VectorType::get(MidTy, VT->getNumElements()); | 
|  | } | 
|  | C = getBitCast(C, MidTy); | 
|  | } | 
|  | return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, | 
|  | unsigned Flags, Type *OnlyIfReducedTy) { | 
|  | // Check the operands for consistency first. | 
|  | assert(Opcode >= Instruction::BinaryOpsBegin && | 
|  | Opcode <  Instruction::BinaryOpsEnd   && | 
|  | "Invalid opcode in binary constant expression"); | 
|  | assert(C1->getType() == C2->getType() && | 
|  | "Operand types in binary constant expression should match"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create an integer operation on a non-integer type!"); | 
|  | break; | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | case Instruction::FMul: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isFPOrFPVectorTy() && | 
|  | "Tried to create a floating-point operation on a " | 
|  | "non-floating-point type!"); | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::FDiv: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isFPOrFPVectorTy() && | 
|  | "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::FRem: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isFPOrFPVectorTy() && | 
|  | "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create a logical operation on a non-integral type!"); | 
|  | break; | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create a shift operation on a non-integer type!"); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) | 
|  | return FC;          // Fold a few common cases. | 
|  |  | 
|  | if (OnlyIfReducedTy == C1->getType()) | 
|  | return nullptr; | 
|  |  | 
|  | Constant *ArgVec[] = { C1, C2 }; | 
|  | ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); | 
|  |  | 
|  | LLVMContextImpl *pImpl = C1->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSizeOf(Type* Ty) { | 
|  | // sizeof is implemented as: (i64) gep (Ty*)null, 1 | 
|  | // Note that a non-inbounds gep is used, as null isn't within any object. | 
|  | Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); | 
|  | Constant *GEP = getGetElementPtr( | 
|  | Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); | 
|  | return getPtrToInt(GEP, | 
|  | Type::getInt64Ty(Ty->getContext())); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getAlignOf(Type* Ty) { | 
|  | // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 | 
|  | // Note that a non-inbounds gep is used, as null isn't within any object. | 
|  | Type *AligningTy = | 
|  | StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr); | 
|  | Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); | 
|  | Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); | 
|  | Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); | 
|  | Constant *Indices[2] = { Zero, One }; | 
|  | Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); | 
|  | return getPtrToInt(GEP, | 
|  | Type::getInt64Ty(Ty->getContext())); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { | 
|  | return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), | 
|  | FieldNo)); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { | 
|  | // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo | 
|  | // Note that a non-inbounds gep is used, as null isn't within any object. | 
|  | Constant *GEPIdx[] = { | 
|  | ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), | 
|  | FieldNo | 
|  | }; | 
|  | Constant *GEP = getGetElementPtr( | 
|  | Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); | 
|  | return getPtrToInt(GEP, | 
|  | Type::getInt64Ty(Ty->getContext())); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, | 
|  | Constant *C2, bool OnlyIfReduced) { | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  |  | 
|  | switch (Predicate) { | 
|  | default: llvm_unreachable("Invalid CmpInst predicate"); | 
|  | case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: | 
|  | case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: | 
|  | case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: | 
|  | case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: | 
|  | case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: | 
|  | case CmpInst::FCMP_TRUE: | 
|  | return getFCmp(Predicate, C1, C2, OnlyIfReduced); | 
|  |  | 
|  | case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT: | 
|  | case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: | 
|  | case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: | 
|  | case CmpInst::ICMP_SLE: | 
|  | return getICmp(Predicate, C1, C2, OnlyIfReduced); | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2, | 
|  | Type *OnlyIfReducedTy) { | 
|  | assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); | 
|  |  | 
|  | if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) | 
|  | return SC;        // Fold common cases | 
|  |  | 
|  | if (OnlyIfReducedTy == V1->getType()) | 
|  | return nullptr; | 
|  |  | 
|  | Constant *ArgVec[] = { C, V1, V2 }; | 
|  | ConstantExprKeyType Key(Instruction::Select, ArgVec); | 
|  |  | 
|  | LLVMContextImpl *pImpl = C->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, | 
|  | ArrayRef<Value *> Idxs, bool InBounds, | 
|  | Type *OnlyIfReducedTy) { | 
|  | if (!Ty) | 
|  | Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType(); | 
|  | else | 
|  | assert( | 
|  | Ty == | 
|  | cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u)); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldGetElementPtr(Ty, C, InBounds, Idxs)) | 
|  | return FC;          // Fold a few common cases. | 
|  |  | 
|  | // Get the result type of the getelementptr! | 
|  | Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs); | 
|  | assert(DestTy && "GEP indices invalid!"); | 
|  | unsigned AS = C->getType()->getPointerAddressSpace(); | 
|  | Type *ReqTy = DestTy->getPointerTo(AS); | 
|  | if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) | 
|  | ReqTy = VectorType::get(ReqTy, VecTy->getNumElements()); | 
|  |  | 
|  | if (OnlyIfReducedTy == ReqTy) | 
|  | return nullptr; | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec; | 
|  | ArgVec.reserve(1 + Idxs.size()); | 
|  | ArgVec.push_back(C); | 
|  | for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { | 
|  | assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() && | 
|  | "getelementptr index type missmatch"); | 
|  | assert((!Idxs[i]->getType()->isVectorTy() || | 
|  | ReqTy->getVectorNumElements() == | 
|  | Idxs[i]->getType()->getVectorNumElements()) && | 
|  | "getelementptr index type missmatch"); | 
|  | ArgVec.push_back(cast<Constant>(Idxs[i])); | 
|  | } | 
|  | const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, | 
|  | InBounds ? GEPOperator::IsInBounds : 0, None, | 
|  | Ty); | 
|  |  | 
|  | LLVMContextImpl *pImpl = C->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(ReqTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, | 
|  | Constant *RHS, bool OnlyIfReduced) { | 
|  | assert(LHS->getType() == RHS->getType()); | 
|  | assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && | 
|  | pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) | 
|  | return FC;          // Fold a few common cases... | 
|  |  | 
|  | if (OnlyIfReduced) | 
|  | return nullptr; | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | Constant *ArgVec[] = { LHS, RHS }; | 
|  | // Get the key type with both the opcode and predicate | 
|  | const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred); | 
|  |  | 
|  | Type *ResultTy = Type::getInt1Ty(LHS->getContext()); | 
|  | if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) | 
|  | ResultTy = VectorType::get(ResultTy, VT->getNumElements()); | 
|  |  | 
|  | LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(ResultTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, | 
|  | Constant *RHS, bool OnlyIfReduced) { | 
|  | assert(LHS->getType() == RHS->getType()); | 
|  | assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) | 
|  | return FC;          // Fold a few common cases... | 
|  |  | 
|  | if (OnlyIfReduced) | 
|  | return nullptr; | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | Constant *ArgVec[] = { LHS, RHS }; | 
|  | // Get the key type with both the opcode and predicate | 
|  | const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred); | 
|  |  | 
|  | Type *ResultTy = Type::getInt1Ty(LHS->getContext()); | 
|  | if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) | 
|  | ResultTy = VectorType::get(ResultTy, VT->getNumElements()); | 
|  |  | 
|  | LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(ResultTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, | 
|  | Type *OnlyIfReducedTy) { | 
|  | assert(Val->getType()->isVectorTy() && | 
|  | "Tried to create extractelement operation on non-vector type!"); | 
|  | assert(Idx->getType()->isIntegerTy() && | 
|  | "Extractelement index must be an integer type!"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) | 
|  | return FC;          // Fold a few common cases. | 
|  |  | 
|  | Type *ReqTy = Val->getType()->getVectorElementType(); | 
|  | if (OnlyIfReducedTy == ReqTy) | 
|  | return nullptr; | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | Constant *ArgVec[] = { Val, Idx }; | 
|  | const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); | 
|  |  | 
|  | LLVMContextImpl *pImpl = Val->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(ReqTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, | 
|  | Constant *Idx, Type *OnlyIfReducedTy) { | 
|  | assert(Val->getType()->isVectorTy() && | 
|  | "Tried to create insertelement operation on non-vector type!"); | 
|  | assert(Elt->getType() == Val->getType()->getVectorElementType() && | 
|  | "Insertelement types must match!"); | 
|  | assert(Idx->getType()->isIntegerTy() && | 
|  | "Insertelement index must be i32 type!"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) | 
|  | return FC;          // Fold a few common cases. | 
|  |  | 
|  | if (OnlyIfReducedTy == Val->getType()) | 
|  | return nullptr; | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | Constant *ArgVec[] = { Val, Elt, Idx }; | 
|  | const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); | 
|  |  | 
|  | LLVMContextImpl *pImpl = Val->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, | 
|  | Constant *Mask, Type *OnlyIfReducedTy) { | 
|  | assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && | 
|  | "Invalid shuffle vector constant expr operands!"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) | 
|  | return FC;          // Fold a few common cases. | 
|  |  | 
|  | unsigned NElts = Mask->getType()->getVectorNumElements(); | 
|  | Type *EltTy = V1->getType()->getVectorElementType(); | 
|  | Type *ShufTy = VectorType::get(EltTy, NElts); | 
|  |  | 
|  | if (OnlyIfReducedTy == ShufTy) | 
|  | return nullptr; | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | Constant *ArgVec[] = { V1, V2, Mask }; | 
|  | const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec); | 
|  |  | 
|  | LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(ShufTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, | 
|  | ArrayRef<unsigned> Idxs, | 
|  | Type *OnlyIfReducedTy) { | 
|  | assert(Agg->getType()->isFirstClassType() && | 
|  | "Non-first-class type for constant insertvalue expression"); | 
|  |  | 
|  | assert(ExtractValueInst::getIndexedType(Agg->getType(), | 
|  | Idxs) == Val->getType() && | 
|  | "insertvalue indices invalid!"); | 
|  | Type *ReqTy = Val->getType(); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs)) | 
|  | return FC; | 
|  |  | 
|  | if (OnlyIfReducedTy == ReqTy) | 
|  | return nullptr; | 
|  |  | 
|  | Constant *ArgVec[] = { Agg, Val }; | 
|  | const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs); | 
|  |  | 
|  | LLVMContextImpl *pImpl = Agg->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(ReqTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, | 
|  | Type *OnlyIfReducedTy) { | 
|  | assert(Agg->getType()->isFirstClassType() && | 
|  | "Tried to create extractelement operation on non-first-class type!"); | 
|  |  | 
|  | Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); | 
|  | (void)ReqTy; | 
|  | assert(ReqTy && "extractvalue indices invalid!"); | 
|  |  | 
|  | assert(Agg->getType()->isFirstClassType() && | 
|  | "Non-first-class type for constant extractvalue expression"); | 
|  | if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs)) | 
|  | return FC; | 
|  |  | 
|  | if (OnlyIfReducedTy == ReqTy) | 
|  | return nullptr; | 
|  |  | 
|  | Constant *ArgVec[] = { Agg }; | 
|  | const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs); | 
|  |  | 
|  | LLVMContextImpl *pImpl = Agg->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(ReqTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { | 
|  | assert(C->getType()->isIntOrIntVectorTy() && | 
|  | "Cannot NEG a nonintegral value!"); | 
|  | return getSub(ConstantFP::getZeroValueForNegation(C->getType()), | 
|  | C, HasNUW, HasNSW); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFNeg(Constant *C) { | 
|  | assert(C->getType()->isFPOrFPVectorTy() && | 
|  | "Cannot FNEG a non-floating-point value!"); | 
|  | return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getNot(Constant *C) { | 
|  | assert(C->getType()->isIntOrIntVectorTy() && | 
|  | "Cannot NOT a nonintegral value!"); | 
|  | return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, | 
|  | bool HasNUW, bool HasNSW) { | 
|  | unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | | 
|  | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); | 
|  | return get(Instruction::Add, C1, C2, Flags); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::FAdd, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, | 
|  | bool HasNUW, bool HasNSW) { | 
|  | unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | | 
|  | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); | 
|  | return get(Instruction::Sub, C1, C2, Flags); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::FSub, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, | 
|  | bool HasNUW, bool HasNSW) { | 
|  | unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | | 
|  | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); | 
|  | return get(Instruction::Mul, C1, C2, Flags); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::FMul, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { | 
|  | return get(Instruction::UDiv, C1, C2, | 
|  | isExact ? PossiblyExactOperator::IsExact : 0); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { | 
|  | return get(Instruction::SDiv, C1, C2, | 
|  | isExact ? PossiblyExactOperator::IsExact : 0); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::FDiv, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::URem, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::SRem, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::FRem, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::And, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::Or, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::Xor, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, | 
|  | bool HasNUW, bool HasNSW) { | 
|  | unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | | 
|  | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); | 
|  | return get(Instruction::Shl, C1, C2, Flags); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { | 
|  | return get(Instruction::LShr, C1, C2, | 
|  | isExact ? PossiblyExactOperator::IsExact : 0); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { | 
|  | return get(Instruction::AShr, C1, C2, | 
|  | isExact ? PossiblyExactOperator::IsExact : 0); | 
|  | } | 
|  |  | 
|  | /// getBinOpIdentity - Return the identity for the given binary operation, | 
|  | /// i.e. a constant C such that X op C = X and C op X = X for every X.  It | 
|  | /// returns null if the operator doesn't have an identity. | 
|  | Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | // Doesn't have an identity. | 
|  | return nullptr; | 
|  |  | 
|  | case Instruction::Add: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | return Constant::getNullValue(Ty); | 
|  |  | 
|  | case Instruction::Mul: | 
|  | return ConstantInt::get(Ty, 1); | 
|  |  | 
|  | case Instruction::And: | 
|  | return Constant::getAllOnesValue(Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getBinOpAbsorber - Return the absorbing element for the given binary | 
|  | /// operation, i.e. a constant C such that X op C = C and C op X = C for | 
|  | /// every X.  For example, this returns zero for integer multiplication. | 
|  | /// It returns null if the operator doesn't have an absorbing element. | 
|  | Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | // Doesn't have an absorber. | 
|  | return nullptr; | 
|  |  | 
|  | case Instruction::Or: | 
|  | return Constant::getAllOnesValue(Ty); | 
|  |  | 
|  | case Instruction::And: | 
|  | case Instruction::Mul: | 
|  | return Constant::getNullValue(Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantExpr::destroyConstantImpl() { | 
|  | getType()->getContext().pImpl->ExprConstants.remove(this); | 
|  | } | 
|  |  | 
|  | const char *ConstantExpr::getOpcodeName() const { | 
|  | return Instruction::getOpcodeName(getOpcode()); | 
|  | } | 
|  |  | 
|  | GetElementPtrConstantExpr::GetElementPtrConstantExpr( | 
|  | Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) | 
|  | : ConstantExpr(DestTy, Instruction::GetElementPtr, | 
|  | OperandTraits<GetElementPtrConstantExpr>::op_end(this) - | 
|  | (IdxList.size() + 1), | 
|  | IdxList.size() + 1), | 
|  | SrcElementTy(SrcElementTy) { | 
|  | Op<0>() = C; | 
|  | Use *OperandList = getOperandList(); | 
|  | for (unsigned i = 0, E = IdxList.size(); i != E; ++i) | 
|  | OperandList[i+1] = IdxList[i]; | 
|  | } | 
|  |  | 
|  | Type *GetElementPtrConstantExpr::getSourceElementType() const { | 
|  | return SrcElementTy; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                       ConstantData* implementations | 
|  |  | 
|  | void ConstantDataArray::anchor() {} | 
|  | void ConstantDataVector::anchor() {} | 
|  |  | 
|  | /// getElementType - Return the element type of the array/vector. | 
|  | Type *ConstantDataSequential::getElementType() const { | 
|  | return getType()->getElementType(); | 
|  | } | 
|  |  | 
|  | StringRef ConstantDataSequential::getRawDataValues() const { | 
|  | return StringRef(DataElements, getNumElements()*getElementByteSize()); | 
|  | } | 
|  |  | 
|  | /// isElementTypeCompatible - Return true if a ConstantDataSequential can be | 
|  | /// formed with a vector or array of the specified element type. | 
|  | /// ConstantDataArray only works with normal float and int types that are | 
|  | /// stored densely in memory, not with things like i42 or x86_f80. | 
|  | bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { | 
|  | if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true; | 
|  | if (auto *IT = dyn_cast<IntegerType>(Ty)) { | 
|  | switch (IT->getBitWidth()) { | 
|  | case 8: | 
|  | case 16: | 
|  | case 32: | 
|  | case 64: | 
|  | return true; | 
|  | default: break; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getNumElements - Return the number of elements in the array or vector. | 
|  | unsigned ConstantDataSequential::getNumElements() const { | 
|  | if (ArrayType *AT = dyn_cast<ArrayType>(getType())) | 
|  | return AT->getNumElements(); | 
|  | return getType()->getVectorNumElements(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getElementByteSize - Return the size in bytes of the elements in the data. | 
|  | uint64_t ConstantDataSequential::getElementByteSize() const { | 
|  | return getElementType()->getPrimitiveSizeInBits()/8; | 
|  | } | 
|  |  | 
|  | /// getElementPointer - Return the start of the specified element. | 
|  | const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { | 
|  | assert(Elt < getNumElements() && "Invalid Elt"); | 
|  | return DataElements+Elt*getElementByteSize(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isAllZeros - return true if the array is empty or all zeros. | 
|  | static bool isAllZeros(StringRef Arr) { | 
|  | for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I) | 
|  | if (*I != 0) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getImpl - This is the underlying implementation of all of the | 
|  | /// ConstantDataSequential::get methods.  They all thunk down to here, providing | 
|  | /// the correct element type.  We take the bytes in as a StringRef because | 
|  | /// we *want* an underlying "char*" to avoid TBAA type punning violations. | 
|  | Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { | 
|  | assert(isElementTypeCompatible(Ty->getSequentialElementType())); | 
|  | // If the elements are all zero or there are no elements, return a CAZ, which | 
|  | // is more dense and canonical. | 
|  | if (isAllZeros(Elements)) | 
|  | return ConstantAggregateZero::get(Ty); | 
|  |  | 
|  | // Do a lookup to see if we have already formed one of these. | 
|  | auto &Slot = | 
|  | *Ty->getContext() | 
|  | .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) | 
|  | .first; | 
|  |  | 
|  | // The bucket can point to a linked list of different CDS's that have the same | 
|  | // body but different types.  For example, 0,0,0,1 could be a 4 element array | 
|  | // of i8, or a 1-element array of i32.  They'll both end up in the same | 
|  | /// StringMap bucket, linked up by their Next pointers.  Walk the list. | 
|  | ConstantDataSequential **Entry = &Slot.second; | 
|  | for (ConstantDataSequential *Node = *Entry; Node; | 
|  | Entry = &Node->Next, Node = *Entry) | 
|  | if (Node->getType() == Ty) | 
|  | return Node; | 
|  |  | 
|  | // Okay, we didn't get a hit.  Create a node of the right class, link it in, | 
|  | // and return it. | 
|  | if (isa<ArrayType>(Ty)) | 
|  | return *Entry = new ConstantDataArray(Ty, Slot.first().data()); | 
|  |  | 
|  | assert(isa<VectorType>(Ty)); | 
|  | return *Entry = new ConstantDataVector(Ty, Slot.first().data()); | 
|  | } | 
|  |  | 
|  | void ConstantDataSequential::destroyConstantImpl() { | 
|  | // Remove the constant from the StringMap. | 
|  | StringMap<ConstantDataSequential*> &CDSConstants = | 
|  | getType()->getContext().pImpl->CDSConstants; | 
|  |  | 
|  | StringMap<ConstantDataSequential*>::iterator Slot = | 
|  | CDSConstants.find(getRawDataValues()); | 
|  |  | 
|  | assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); | 
|  |  | 
|  | ConstantDataSequential **Entry = &Slot->getValue(); | 
|  |  | 
|  | // Remove the entry from the hash table. | 
|  | if (!(*Entry)->Next) { | 
|  | // If there is only one value in the bucket (common case) it must be this | 
|  | // entry, and removing the entry should remove the bucket completely. | 
|  | assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); | 
|  | getContext().pImpl->CDSConstants.erase(Slot); | 
|  | } else { | 
|  | // Otherwise, there are multiple entries linked off the bucket, unlink the | 
|  | // node we care about but keep the bucket around. | 
|  | for (ConstantDataSequential *Node = *Entry; ; | 
|  | Entry = &Node->Next, Node = *Entry) { | 
|  | assert(Node && "Didn't find entry in its uniquing hash table!"); | 
|  | // If we found our entry, unlink it from the list and we're done. | 
|  | if (Node == this) { | 
|  | *Entry = Node->Next; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we were part of a list, make sure that we don't delete the list that is | 
|  | // still owned by the uniquing map. | 
|  | Next = nullptr; | 
|  | } | 
|  |  | 
|  | /// get() constructors - Return a constant with array type with an element | 
|  | /// count and element type matching the ArrayRef passed in.  Note that this | 
|  | /// can return a ConstantAggregateZero object. | 
|  | Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) { | 
|  | Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); | 
|  | } | 
|  | Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ | 
|  | Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); | 
|  | } | 
|  | Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ | 
|  | Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); | 
|  | } | 
|  | Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ | 
|  | Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); | 
|  | } | 
|  | Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) { | 
|  | Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); | 
|  | } | 
|  | Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) { | 
|  | Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); | 
|  | } | 
|  |  | 
|  | /// getFP() constructors - Return a constant with array type with an element | 
|  | /// count and element type of float with precision matching the number of | 
|  | /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, | 
|  | /// double for 64bits) Note that this can return a ConstantAggregateZero | 
|  | /// object. | 
|  | Constant *ConstantDataArray::getFP(LLVMContext &Context, | 
|  | ArrayRef<uint16_t> Elts) { | 
|  | Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty); | 
|  | } | 
|  | Constant *ConstantDataArray::getFP(LLVMContext &Context, | 
|  | ArrayRef<uint32_t> Elts) { | 
|  | Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty); | 
|  | } | 
|  | Constant *ConstantDataArray::getFP(LLVMContext &Context, | 
|  | ArrayRef<uint64_t> Elts) { | 
|  | Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); | 
|  | } | 
|  |  | 
|  | /// getString - This method constructs a CDS and initializes it with a text | 
|  | /// string. The default behavior (AddNull==true) causes a null terminator to | 
|  | /// be placed at the end of the array (increasing the length of the string by | 
|  | /// one more than the StringRef would normally indicate.  Pass AddNull=false | 
|  | /// to disable this behavior. | 
|  | Constant *ConstantDataArray::getString(LLVMContext &Context, | 
|  | StringRef Str, bool AddNull) { | 
|  | if (!AddNull) { | 
|  | const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data()); | 
|  | return get(Context, makeArrayRef(const_cast<uint8_t *>(Data), | 
|  | Str.size())); | 
|  | } | 
|  |  | 
|  | SmallVector<uint8_t, 64> ElementVals; | 
|  | ElementVals.append(Str.begin(), Str.end()); | 
|  | ElementVals.push_back(0); | 
|  | return get(Context, ElementVals); | 
|  | } | 
|  |  | 
|  | /// get() constructors - Return a constant with vector type with an element | 
|  | /// count and element type matching the ArrayRef passed in.  Note that this | 
|  | /// can return a ConstantAggregateZero object. | 
|  | Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ | 
|  | Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); | 
|  | } | 
|  | Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ | 
|  | Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); | 
|  | } | 
|  | Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ | 
|  | Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); | 
|  | } | 
|  | Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ | 
|  | Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); | 
|  | } | 
|  | Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { | 
|  | Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); | 
|  | } | 
|  | Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { | 
|  | Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); | 
|  | } | 
|  |  | 
|  | /// getFP() constructors - Return a constant with vector type with an element | 
|  | /// count and element type of float with the precision matching the number of | 
|  | /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits, | 
|  | /// double for 64bits) Note that this can return a ConstantAggregateZero | 
|  | /// object. | 
|  | Constant *ConstantDataVector::getFP(LLVMContext &Context, | 
|  | ArrayRef<uint16_t> Elts) { | 
|  | Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty); | 
|  | } | 
|  | Constant *ConstantDataVector::getFP(LLVMContext &Context, | 
|  | ArrayRef<uint32_t> Elts) { | 
|  | Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty); | 
|  | } | 
|  | Constant *ConstantDataVector::getFP(LLVMContext &Context, | 
|  | ArrayRef<uint64_t> Elts) { | 
|  | Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); | 
|  | const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
|  | return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { | 
|  | assert(isElementTypeCompatible(V->getType()) && | 
|  | "Element type not compatible with ConstantData"); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | if (CI->getType()->isIntegerTy(8)) { | 
|  | SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); | 
|  | return get(V->getContext(), Elts); | 
|  | } | 
|  | if (CI->getType()->isIntegerTy(16)) { | 
|  | SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); | 
|  | return get(V->getContext(), Elts); | 
|  | } | 
|  | if (CI->getType()->isIntegerTy(32)) { | 
|  | SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); | 
|  | return get(V->getContext(), Elts); | 
|  | } | 
|  | assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); | 
|  | SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); | 
|  | return get(V->getContext(), Elts); | 
|  | } | 
|  |  | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { | 
|  | if (CFP->getType()->isHalfTy()) { | 
|  | SmallVector<uint16_t, 16> Elts( | 
|  | NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); | 
|  | return getFP(V->getContext(), Elts); | 
|  | } | 
|  | if (CFP->getType()->isFloatTy()) { | 
|  | SmallVector<uint32_t, 16> Elts( | 
|  | NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); | 
|  | return getFP(V->getContext(), Elts); | 
|  | } | 
|  | if (CFP->getType()->isDoubleTy()) { | 
|  | SmallVector<uint64_t, 16> Elts( | 
|  | NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); | 
|  | return getFP(V->getContext(), Elts); | 
|  | } | 
|  | } | 
|  | return ConstantVector::getSplat(NumElts, V); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getElementAsInteger - If this is a sequential container of integers (of | 
|  | /// any size), return the specified element in the low bits of a uint64_t. | 
|  | uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { | 
|  | assert(isa<IntegerType>(getElementType()) && | 
|  | "Accessor can only be used when element is an integer"); | 
|  | const char *EltPtr = getElementPointer(Elt); | 
|  |  | 
|  | // The data is stored in host byte order, make sure to cast back to the right | 
|  | // type to load with the right endianness. | 
|  | switch (getElementType()->getIntegerBitWidth()) { | 
|  | default: llvm_unreachable("Invalid bitwidth for CDS"); | 
|  | case 8: | 
|  | return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr)); | 
|  | case 16: | 
|  | return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr)); | 
|  | case 32: | 
|  | return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr)); | 
|  | case 64: | 
|  | return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getElementAsAPFloat - If this is a sequential container of floating point | 
|  | /// type, return the specified element as an APFloat. | 
|  | APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { | 
|  | const char *EltPtr = getElementPointer(Elt); | 
|  |  | 
|  | switch (getElementType()->getTypeID()) { | 
|  | default: | 
|  | llvm_unreachable("Accessor can only be used when element is float/double!"); | 
|  | case Type::HalfTyID: { | 
|  | auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); | 
|  | return APFloat(APFloat::IEEEhalf, APInt(16, EltVal)); | 
|  | } | 
|  | case Type::FloatTyID: { | 
|  | auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); | 
|  | return APFloat(APFloat::IEEEsingle, APInt(32, EltVal)); | 
|  | } | 
|  | case Type::DoubleTyID: { | 
|  | auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); | 
|  | return APFloat(APFloat::IEEEdouble, APInt(64, EltVal)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getElementAsFloat - If this is an sequential container of floats, return | 
|  | /// the specified element as a float. | 
|  | float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { | 
|  | assert(getElementType()->isFloatTy() && | 
|  | "Accessor can only be used when element is a 'float'"); | 
|  | const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt)); | 
|  | return *const_cast<float *>(EltPtr); | 
|  | } | 
|  |  | 
|  | /// getElementAsDouble - If this is an sequential container of doubles, return | 
|  | /// the specified element as a float. | 
|  | double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { | 
|  | assert(getElementType()->isDoubleTy() && | 
|  | "Accessor can only be used when element is a 'float'"); | 
|  | const double *EltPtr = | 
|  | reinterpret_cast<const double *>(getElementPointer(Elt)); | 
|  | return *const_cast<double *>(EltPtr); | 
|  | } | 
|  |  | 
|  | /// getElementAsConstant - Return a Constant for a specified index's element. | 
|  | /// Note that this has to compute a new constant to return, so it isn't as | 
|  | /// efficient as getElementAsInteger/Float/Double. | 
|  | Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { | 
|  | if (getElementType()->isHalfTy() || getElementType()->isFloatTy() || | 
|  | getElementType()->isDoubleTy()) | 
|  | return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); | 
|  |  | 
|  | return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); | 
|  | } | 
|  |  | 
|  | /// isString - This method returns true if this is an array of i8. | 
|  | bool ConstantDataSequential::isString() const { | 
|  | return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8); | 
|  | } | 
|  |  | 
|  | /// isCString - This method returns true if the array "isString", ends with a | 
|  | /// nul byte, and does not contains any other nul bytes. | 
|  | bool ConstantDataSequential::isCString() const { | 
|  | if (!isString()) | 
|  | return false; | 
|  |  | 
|  | StringRef Str = getAsString(); | 
|  |  | 
|  | // The last value must be nul. | 
|  | if (Str.back() != 0) return false; | 
|  |  | 
|  | // Other elements must be non-nul. | 
|  | return Str.drop_back().find(0) == StringRef::npos; | 
|  | } | 
|  |  | 
|  | /// getSplatValue - If this is a splat constant, meaning that all of the | 
|  | /// elements have the same value, return that value. Otherwise return nullptr. | 
|  | Constant *ConstantDataVector::getSplatValue() const { | 
|  | const char *Base = getRawDataValues().data(); | 
|  |  | 
|  | // Compare elements 1+ to the 0'th element. | 
|  | unsigned EltSize = getElementByteSize(); | 
|  | for (unsigned i = 1, e = getNumElements(); i != e; ++i) | 
|  | if (memcmp(Base, Base+i*EltSize, EltSize)) | 
|  | return nullptr; | 
|  |  | 
|  | // If they're all the same, return the 0th one as a representative. | 
|  | return getElementAsConstant(0); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                handleOperandChange implementations | 
|  |  | 
|  | /// Update this constant array to change uses of | 
|  | /// 'From' to be uses of 'To'.  This must update the uniquing data structures | 
|  | /// etc. | 
|  | /// | 
|  | /// Note that we intentionally replace all uses of From with To here.  Consider | 
|  | /// a large array that uses 'From' 1000 times.  By handling this case all here, | 
|  | /// ConstantArray::handleOperandChange is only invoked once, and that | 
|  | /// single invocation handles all 1000 uses.  Handling them one at a time would | 
|  | /// work, but would be really slow because it would have to unique each updated | 
|  | /// array instance. | 
|  | /// | 
|  | void Constant::handleOperandChange(Value *From, Value *To, Use *U) { | 
|  | Value *Replacement = nullptr; | 
|  | switch (getValueID()) { | 
|  | default: | 
|  | llvm_unreachable("Not a constant!"); | 
|  | #define HANDLE_CONSTANT(Name)                                                  \ | 
|  | case Value::Name##Val:                                                       \ | 
|  | Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To, U);      \ | 
|  | break; | 
|  | #include "llvm/IR/Value.def" | 
|  | } | 
|  |  | 
|  | // If handleOperandChangeImpl returned nullptr, then it handled | 
|  | // replacing itself and we don't want to delete or replace anything else here. | 
|  | if (!Replacement) | 
|  | return; | 
|  |  | 
|  | // I do need to replace this with an existing value. | 
|  | assert(Replacement != this && "I didn't contain From!"); | 
|  |  | 
|  | // Everyone using this now uses the replacement. | 
|  | replaceAllUsesWith(Replacement); | 
|  |  | 
|  | // Delete the old constant! | 
|  | destroyConstant(); | 
|  | } | 
|  |  | 
|  | Value *ConstantInt::handleOperandChangeImpl(Value *From, Value *To, Use *U) { | 
|  | llvm_unreachable("Unsupported class for handleOperandChange()!"); | 
|  | } | 
|  |  | 
|  | Value *ConstantFP::handleOperandChangeImpl(Value *From, Value *To, Use *U) { | 
|  | llvm_unreachable("Unsupported class for handleOperandChange()!"); | 
|  | } | 
|  |  | 
|  | Value *ConstantTokenNone::handleOperandChangeImpl(Value *From, Value *To, | 
|  | Use *U) { | 
|  | llvm_unreachable("Unsupported class for handleOperandChange()!"); | 
|  | } | 
|  |  | 
|  | Value *UndefValue::handleOperandChangeImpl(Value *From, Value *To, Use *U) { | 
|  | llvm_unreachable("Unsupported class for handleOperandChange()!"); | 
|  | } | 
|  |  | 
|  | Value *ConstantPointerNull::handleOperandChangeImpl(Value *From, Value *To, | 
|  | Use *U) { | 
|  | llvm_unreachable("Unsupported class for handleOperandChange()!"); | 
|  | } | 
|  |  | 
|  | Value *ConstantAggregateZero::handleOperandChangeImpl(Value *From, Value *To, | 
|  | Use *U) { | 
|  | llvm_unreachable("Unsupported class for handleOperandChange()!"); | 
|  | } | 
|  |  | 
|  | Value *ConstantDataSequential::handleOperandChangeImpl(Value *From, Value *To, | 
|  | Use *U) { | 
|  | llvm_unreachable("Unsupported class for handleOperandChange()!"); | 
|  | } | 
|  |  | 
|  | Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To, Use *U) { | 
|  | assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); | 
|  | Constant *ToC = cast<Constant>(To); | 
|  |  | 
|  | SmallVector<Constant*, 8> Values; | 
|  | Values.reserve(getNumOperands());  // Build replacement array. | 
|  |  | 
|  | // Fill values with the modified operands of the constant array.  Also, | 
|  | // compute whether this turns into an all-zeros array. | 
|  | unsigned NumUpdated = 0; | 
|  |  | 
|  | // Keep track of whether all the values in the array are "ToC". | 
|  | bool AllSame = true; | 
|  | Use *OperandList = getOperandList(); | 
|  | for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { | 
|  | Constant *Val = cast<Constant>(O->get()); | 
|  | if (Val == From) { | 
|  | Val = ToC; | 
|  | ++NumUpdated; | 
|  | } | 
|  | Values.push_back(Val); | 
|  | AllSame &= Val == ToC; | 
|  | } | 
|  |  | 
|  | if (AllSame && ToC->isNullValue()) | 
|  | return ConstantAggregateZero::get(getType()); | 
|  |  | 
|  | if (AllSame && isa<UndefValue>(ToC)) | 
|  | return UndefValue::get(getType()); | 
|  |  | 
|  | // Check for any other type of constant-folding. | 
|  | if (Constant *C = getImpl(getType(), Values)) | 
|  | return C; | 
|  |  | 
|  | // Update to the new value. | 
|  | return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( | 
|  | Values, this, From, ToC, NumUpdated, U - OperandList); | 
|  | } | 
|  |  | 
|  | Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To, Use *U) { | 
|  | assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); | 
|  | Constant *ToC = cast<Constant>(To); | 
|  |  | 
|  | Use *OperandList = getOperandList(); | 
|  | unsigned OperandToUpdate = U-OperandList; | 
|  | assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); | 
|  |  | 
|  | SmallVector<Constant*, 8> Values; | 
|  | Values.reserve(getNumOperands());  // Build replacement struct. | 
|  |  | 
|  | // Fill values with the modified operands of the constant struct.  Also, | 
|  | // compute whether this turns into an all-zeros struct. | 
|  | bool isAllZeros = false; | 
|  | bool isAllUndef = false; | 
|  | if (ToC->isNullValue()) { | 
|  | isAllZeros = true; | 
|  | for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { | 
|  | Constant *Val = cast<Constant>(O->get()); | 
|  | Values.push_back(Val); | 
|  | if (isAllZeros) isAllZeros = Val->isNullValue(); | 
|  | } | 
|  | } else if (isa<UndefValue>(ToC)) { | 
|  | isAllUndef = true; | 
|  | for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { | 
|  | Constant *Val = cast<Constant>(O->get()); | 
|  | Values.push_back(Val); | 
|  | if (isAllUndef) isAllUndef = isa<UndefValue>(Val); | 
|  | } | 
|  | } else { | 
|  | for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) | 
|  | Values.push_back(cast<Constant>(O->get())); | 
|  | } | 
|  | Values[OperandToUpdate] = ToC; | 
|  |  | 
|  | if (isAllZeros) | 
|  | return ConstantAggregateZero::get(getType()); | 
|  |  | 
|  | if (isAllUndef) | 
|  | return UndefValue::get(getType()); | 
|  |  | 
|  | // Update to the new value. | 
|  | return getContext().pImpl->StructConstants.replaceOperandsInPlace( | 
|  | Values, this, From, ToC); | 
|  | } | 
|  |  | 
|  | Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To, Use *U) { | 
|  | assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); | 
|  | Constant *ToC = cast<Constant>(To); | 
|  |  | 
|  | SmallVector<Constant*, 8> Values; | 
|  | Values.reserve(getNumOperands());  // Build replacement array... | 
|  | unsigned NumUpdated = 0; | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | Constant *Val = getOperand(i); | 
|  | if (Val == From) { | 
|  | ++NumUpdated; | 
|  | Val = ToC; | 
|  | } | 
|  | Values.push_back(Val); | 
|  | } | 
|  |  | 
|  | if (Constant *C = getImpl(Values)) | 
|  | return C; | 
|  |  | 
|  | // Update to the new value. | 
|  | Use *OperandList = getOperandList(); | 
|  | return getContext().pImpl->VectorConstants.replaceOperandsInPlace( | 
|  | Values, this, From, ToC, NumUpdated, U - OperandList); | 
|  | } | 
|  |  | 
|  | Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV, Use *U) { | 
|  | assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); | 
|  | Constant *To = cast<Constant>(ToV); | 
|  |  | 
|  | SmallVector<Constant*, 8> NewOps; | 
|  | unsigned NumUpdated = 0; | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | Constant *Op = getOperand(i); | 
|  | if (Op == From) { | 
|  | ++NumUpdated; | 
|  | Op = To; | 
|  | } | 
|  | NewOps.push_back(Op); | 
|  | } | 
|  | assert(NumUpdated && "I didn't contain From!"); | 
|  |  | 
|  | if (Constant *C = getWithOperands(NewOps, getType(), true)) | 
|  | return C; | 
|  |  | 
|  | // Update to the new value. | 
|  | Use *OperandList = getOperandList(); | 
|  | return getContext().pImpl->ExprConstants.replaceOperandsInPlace( | 
|  | NewOps, this, From, To, NumUpdated, U - OperandList); | 
|  | } | 
|  |  | 
|  | Instruction *ConstantExpr::getAsInstruction() { | 
|  | SmallVector<Value *, 4> ValueOperands(op_begin(), op_end()); | 
|  | ArrayRef<Value*> Ops(ValueOperands); | 
|  |  | 
|  | switch (getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::BitCast: | 
|  | case Instruction::AddrSpaceCast: | 
|  | return CastInst::Create((Instruction::CastOps)getOpcode(), | 
|  | Ops[0], getType()); | 
|  | case Instruction::Select: | 
|  | return SelectInst::Create(Ops[0], Ops[1], Ops[2]); | 
|  | case Instruction::InsertElement: | 
|  | return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]); | 
|  | case Instruction::ExtractElement: | 
|  | return ExtractElementInst::Create(Ops[0], Ops[1]); | 
|  | case Instruction::InsertValue: | 
|  | return InsertValueInst::Create(Ops[0], Ops[1], getIndices()); | 
|  | case Instruction::ExtractValue: | 
|  | return ExtractValueInst::Create(Ops[0], getIndices()); | 
|  | case Instruction::ShuffleVector: | 
|  | return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]); | 
|  |  | 
|  | case Instruction::GetElementPtr: { | 
|  | const auto *GO = cast<GEPOperator>(this); | 
|  | if (GO->isInBounds()) | 
|  | return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(), | 
|  | Ops[0], Ops.slice(1)); | 
|  | return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], | 
|  | Ops.slice(1)); | 
|  | } | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | return CmpInst::Create((Instruction::OtherOps)getOpcode(), | 
|  | (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]); | 
|  |  | 
|  | default: | 
|  | assert(getNumOperands() == 2 && "Must be binary operator?"); | 
|  | BinaryOperator *BO = | 
|  | BinaryOperator::Create((Instruction::BinaryOps)getOpcode(), | 
|  | Ops[0], Ops[1]); | 
|  | if (isa<OverflowingBinaryOperator>(BO)) { | 
|  | BO->setHasNoUnsignedWrap(SubclassOptionalData & | 
|  | OverflowingBinaryOperator::NoUnsignedWrap); | 
|  | BO->setHasNoSignedWrap(SubclassOptionalData & | 
|  | OverflowingBinaryOperator::NoSignedWrap); | 
|  | } | 
|  | if (isa<PossiblyExactOperator>(BO)) | 
|  | BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); | 
|  | return BO; | 
|  | } | 
|  | } |